Winston, P.H.,
Learning Structural Descriptions from Examples,
PsychCV75(157-209). Chapter 5.
BibRef
7500
And:
Ph.D.Thesis (EE),
BibRef
MAC-TR-76, September, 1970.
BibRef
And:
MIT AI-TR-231, 1970.
WWW Link.
Learning. Matching network descriptions. Winston built on the work of
Guzman(
See also Computer Recognition of Three-Dimensional Objects in a Visual Scene. )
by using recognized blocks-world objects in a learning
system. Three-dimensional structures are represented using semantic
networks with elementary objects as a node and relations or
descriptions given by the arcs. Object descriptions are learned by
giving the system well selected examples that cause specializations or
generalizations of the description. This work avoids the very real
problem of extracting these descriptions from images, but provides a
good introduction to the issues of high level computer vision.
BibRef
Winston, P.H.,
Scene Understanding Systems,
FPR72(569-574), 1972.
BibRef
7200
Winston, P.H.,
Learning and Reasoning by Analogy,
CACM(23), No. 12, December 1980, pp. 689-703.
BibRef
8012
Earlier:
MIT AI Memo-520, April 1979.
BibRef
Winston, P.H.,
Learning New Principles from Precedents and Exercises,
AI(19), No. 3, November 1982, pp. 321-350.
Elsevier DOI Continuing learning, less on vision.
BibRef
8211
Winston, P.H.,
Binford, T.O.,
Katz, B., and
Lowry, M.,
Learning Physical Descriptions from Functional Definitions, Examples,
and Precedents,
RR-IS84(xx).
BibRef
8400
Earlier:
Learning Physical Descriptions from Functional Descriptions,
AAAI-83(433-439).
BibRef
Evans, T.G.,
A Heuristic Program to Solve Geometry-Analogy Problems,
SJCC1964, AFIPS, Vol. 25, pp. 5-16.
BibRef
6400
And:
RCV87(444-455).
Analogy. Graph descriptions of 2-D pictures.
BibRef
Pavlidis, T.,
Representation of Figures by Labeled Graphs,
PR(4), No. 1, January 1972, pp. 5-17.
Elsevier DOI
BibRef
7201
Fischler, M.A., and
Elschlager, R.A.[Robert A.],
The Representation and Matching of Pictorial Structures,
TC(22), No. 1, January, 1973, pp. 67-92.
BibRef
7301
And:
CMetImAly77(31-56).
Deformable Template. Early good paper using springs between nodes in the graph.
BibRef
Fischler, M.A.,
On the Representation of Natural Scenes,
CVS78(47-52).
BibRef
7800
Earlier:
Robot Vision: Sketching Natural Scenes,
ARPA96(879-890).
Similar in concept to intrinsic images. Do not need exact data.
BibRef
Firschein, O., and
Fischler, M.A.,
Describing and Abstracting Pictorial Structures,
PR(3), No. 4, November 1971, pp. 421-434.
Elsevier DOI
BibRef
7111
Firschein, O.,
Fischler, M.A.,
A study in descriptive representation of pictorial data,
PR(4), No. 4, December 1972, pp. 361-366.
Elsevier DOI
0309
Attempt at general descriptions for general analysis.
BibRef
Ram, G.,
Analysis of Images Specified by Graphlike Descriptions,
CGIP(5), 1976, pp. 137-148.
BibRef
7600
Cohen, B.L.,
A Powerful and Efficient Structural Pattern Recognition System,
AI(9), No. 3, December 1977, pp. 223-255.
Elsevier DOI
BibRef
7712
Giustini, R.G.,
Levine, M.D.,
Malowany, A.S.,
Picture Generation Using Semantic Nets,
CGIP(7), No. 1, February 1978, pp. 1-29.
Elsevier DOI
BibRef
7802
Itai, A.,
Rodeh, M.,
Tanimoto, S.L.,
Some Matching Problems for Bipartite Graphs,
JACM(25), 1978, pp. 517-525.
BibRef
7800
Funt, B.V.[Brian V.],
Problem Solving with Diagrammatic Representations,
AI(13), No. 3, May 1980, pp. 201-230.
Elsevier DOI
BibRef
8005
Earlier:
Whisper: A Problem-Solving System Utilizing Diagrams and a Parallel
Processing Retina,
IJCAI77(459-464).
BibRef
Levine, M.D.,
Ting, D.,
Intermediate Level Picture Interpretation Using
Complete Two-Dimensional Models,
CGIP(16), No. 3, July 1981, pp. 185-209.
Elsevier DOI
BibRef
8107
Kodratoff, Y.[Yves],
Generation and semantics of patterns in a discrete space,
CGIP(5), No. 4, December 1976, pp. 447-458.
Elsevier DOI
0501
BibRef
Kodratoff, Y.[Yves],
Lemerle-Loisel, R.[Regine],
Kodratoff, Y.,
Lemerle-Loisel, R.,
Learning Complex Structural Descriptions from Examples,
CVGIP(27), No. 3, September 1984, pp. 266-290.
Elsevier DOI
BibRef
8409
Earlier:
IJCAI81(141-143).
BibRef
Krose, B.J.A.,
A Structure Description of Visual Information,
PRL(3), 1985, pp. 41-50.
BibRef
8500
Werman, M.,
Peleg, S.,
Melter, R., and
Kong, T.Y.,
Bipartite Graph Matching for Points on a Line or a Circle,
Algorithms(7), 1986, pp. 277-284.
BibRef
8600
Niemann, H.,
Sagerer, G.F.,
Schroder, S., and
Kummert, F.,
ERNEST: A Semantic Network System for Pattern Understanding,
PAMI(12), No. 9, September 1990, pp. 883-905.
IEEE DOI Discusses the graph structure for matching and how to use a general
graph matching system. A lot is fairly standard, except that it is
general.
BibRef
9009
Bauckhage, C.[Christian],
Kummert, F.[Franz],
Sagerer, G.F.[Gerhard F.],
A Structural Framework for Assembly Modeling and Recognition,
CAIP03(49-56).
Springer DOI
0311
BibRef
Hanheide, M.,
Bauckhage, C.,
Sagerer, G.F.,
Memory consistency validation in a cognitive vision system,
ICPR04(II: 459-462).
IEEE DOI
0409
BibRef
Niemann, H.,
Sagerer, G.F.,
Eichhorn, W.,
Control Strategies in a Hierarchical Knowledge Structure,
PRAI(2), 1988, pp. 557-572.
BibRef
8800
Niemann, H.,
A Homogeneous Architecture for Knowledge Based
Image Understanding Systems,
CAIA85(88-93).
BibRef
8500
Goel, A.,
Bylander, T.,
Computational feasibility of structured matching,
PAMI(11), No. 12, December 1989, pp. 1312-1316.
IEEE DOI
0401
BibRef
Suganuma, Y.[Yoshinori],
Learning Structures of Visual Patterns from Single Instances,
AI(50), No. 1, June 1991, pp. 1-36.
Elsevier DOI
BibRef
9106
Blake, R.E.,
Partitioning Graph Matching with Constraints,
PR(27), No. 3, March 1994, pp. 439-446.
Elsevier DOI
BibRef
9403
Caelli, T.M.[Terry M.],
Kosinov, S.[Serhiy],
An Eigenspace Projection Clustering Method for Inexact Graph Matching,
PAMI(26), No. 4, April 2004, pp. 515-519.
IEEE Abstract.
0403
Spectral approach for graph matching.
BibRef
Caelli, T.M.[Terry M.],
Caetano, T.S.[Tiberio S.],
Graphical models for graph matching:
Approximate models and optimal algorithms,
PRL(26), No. 3, February 2005, pp. 339-346.
Elsevier DOI
0501
See also Graphical Models and Point Pattern Matching.
BibRef
Caetano, T.S.,
Caelli, T.M.,
Barone, D.A.C.,
Graphical models for graph matching,
CVPR04(II: 466-473).
IEEE DOI
0408
Probabilistic approach for graph matching.
BibRef
Lu, J.F.[Jian-Feng],
Caelli, T.M.,
Yang, J.Y.[Jing-Yu],
A graph decomposition approach to least squares attributed graph
matching,
ICPR04(II: 471-474).
IEEE DOI
0409
BibRef
Caetano, T.S.[Tibério S.],
McAuley, J.J.[Julian J.],
Cheng, L.[Li],
Le, Q.V.[Quoc V.],
Smola, A.J.[Alex J.],
Learning Graph Matching,
PAMI(31), No. 6, June 2009, pp. 1048-1058.
IEEE DOI
PDF File.
0904
BibRef
Earlier: A1, A3, A4, A5, Only:
ICCV07(1-8).
IEEE DOI
PDF File.
0710
Graph matching for point matching.
See also Graph Rigidity, Cyclic Belief Propagation, and Point Pattern Matching.
BibRef
McAuley, J.J.[Julian J.],
de Campos, T.E.[Teofilo E.],
Caetano, T.S.[Tiberio S.],
Unified graph matching in Euclidean spaces,
CVPR10(1871-1878).
IEEE DOI
1006
BibRef
McAuley, J.J.[Julian J.],
Ramisa, A.[Arnau],
Caetano, T.S.[Tibério S.],
Optimization of Robust Loss Functions for Weakly-Labeled Image
Taxonomies,
IJCV(104), No. 3, September 2013, pp. 343-361.
Springer DOI
1308
BibRef
Earlier:
Optimization of Robust Loss Functions for Weakly-Labeled Image
Taxonomies: An ImageNet Case Study,
EMMCVPR11(355-368).
Springer DOI
1107
BibRef
Chen, L.B.[Long-Bin],
McAuley, J.J.[Julian J.],
Feris, R.S.[Rogerio S.],
Caetano, T.S.[Tiberio S.],
Turk, M.A.[Matthew A.],
Shape classification through structured learning of matching measures,
CVPR09(365-372).
IEEE DOI
0906
BibRef
de Piero, F.W.,
Trivedi, M.M.,
Serbin, S.,
Graph Matching Using a Direct Classification of Node Attendance,
PR(29), No. 6, June 1996, pp. 1031-1048.
Elsevier DOI
9606
BibRef
Tang, Y.C.,
Lee, C.S.G.,
Optimal Strategic Recognition of Objects Based on
Candidate Discriminating Graph with Coordinated Sensors,
SMC(22), 1992, pp. 647-661.
BibRef
9200
Cross, A.D.J.,
Wilson, R.C.,
Hancock, E.R.,
Inexact Graph Matching Using Genetic Search,
PR(30), No. 6, June 1997, pp. 953-970.
Elsevier DOI
9706
BibRef
Earlier:
Genetic Search for Structural Matching,
ECCV96(I:514-525).
Springer DOI
BibRef
Cross, A.D.J.[Andrew D.J.],
Hancock, E.R.[Edwin R.],
Graph Matching with a Dual-Step EM Algorithm,
PAMI(20), No. 11, November 1998, pp. 1236-1253.
IEEE DOI
9811
BibRef
Earlier:
Perspective matching using the EM algorithm,
CIAP97(I: 406-413).
Springer DOI
9709
BibRef
Wilson, R.C.[Richard C.],
Cross, A.D.J.[Andrew D.J.],
Hancock, E.R.[Edwin R.],
Structural Matching with Active Triangulations,
CVIU(72), No. 1, October 1998, pp. 21-38.
DOI Link
BibRef
9810
Torsello, A.[Andrea],
Hancock, E.R.[Edwin R.],
Learning Shape-Classes Using a Mixture of Tree-Unions,
PAMI(28), No. 6, June 2006, pp. 954-967.
IEEE DOI
0605
BibRef
Earlier:
Learning Mixtures of Weighted Tree-Unions by Minimizing Description
Length,
ECCV04(Vol III: 13-25).
Springer DOI
0405
BibRef
Earlier:
Graph Clustering with Tree-Unions,
CAIP03(451-459).
Springer DOI
0311
BibRef
Earlier:
Shape-space from tree-union,
ICPR02(I: 188-191).
IEEE DOI
0211
edit operations produce the trees.
See also Skeletal Measure of 2D Shape Similarity, A.
BibRef
Sagerer, G.F.[Gerhard F.],
Niemann, H.[Heinrich],
Semantic Networks for Understanding Scenes,
Plenum1997.
ISBN 0-306-45704-0. 512 pp.
Segmentation, Knowledge representation, Judgment, Control, Acquisition
of Knowledge, Explanation and User Interface, Applications.
BibRef
9700
Niemann, H.,
Hierarchical Graphs in Pattern Analysis,
ICPR80(213-216).
BibRef
8000
Bunke, H.,
Sagerer, G.F.,
Use and Representation of Knowledge in Image Understanding Based on
Semantic Networks,
ICPR84(1135-1137).
BibRef
8400
Finch, A.M.[Andrew M.],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Symbolic graph matching with the EM algorithm,
PR(31), No. 11, November 1998, pp. 1777-1790.
Elsevier DOI
BibRef
9811
Williams, M.L.[Mark L.],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Deterministic search for relational graph matching,
PR(32), No. 7, July 1999, pp. 1255-1271.
Elsevier DOI
BibRef
9907
Jiang, X.Y.[Xiao-Yi],
Bunke, H.[Horst],
Optimal quadratic-time isomorphism of ordered graphs,
PR(32), No. 7, July 1999, pp. 1273-1283.
Elsevier DOI
BibRef
9907
Pelillo, M.[Marcello],
Siddiqi, K.[Kaleem],
Zucker, S.W.[Steven W.],
Matching Hierarchical Structures Using Association Graphs,
PAMI(21), No. 11, November 1999, pp. 1105-1120.
IEEE DOI
9912
BibRef
Earlier:
ECCV98(II: 3).
Springer DOI
BibRef
And:
Attributed tree matching and maximum weight cliques,
CIAP99(1154-1159).
IEEE DOI
9909
When trees are hierarchical find maximal cliques may not work. Recast the
matching problem as a quadratic program.
BibRef
Pelillo, M.[Marcello],
Siddiqi, K.[Kaleem],
Zucker, S.W.[Steven W.],
Many-to-many Matching of Attributed Trees Using Association Graphs and
Game Dynamics,
VF01(583 ff.).
Springer DOI
0209
BibRef
Pelillo, M.[Marcello],
Matching Free Trees, Maximal Cliques, and Monotone Game Dynamics,
PAMI(24), No. 11, November 2002, pp. 1535-1541.
IEEE Abstract.
0211
BibRef
Earlier:
EMMCVPR01(423-437).
Springer DOI
0205
BibRef
Pelillo, M.[Marcello],
Replicator Equations, Maximal Cliques, and Graph Isomorphism,
NeuroComp(11), No. 9, 1999, pp. 1933-1955.
Replicator Equations.
BibRef
9900
Pelillo, M.[Marcello],
A Unifying Framework for Relational Structure Matching,
ICPR98(Vol II: 1316-1319).
IEEE DOI
9808
BibRef
Torsello, A.[Andrea],
Hidovic-Rowe, D.[Dzena],
Pelillo, M.[Marcello],
Polynomial-Time Metrics for Attributed Trees,
PAMI(27), No. 7, July 2005, pp. 1087-1099.
IEEE Abstract.
0506
BibRef
Earlier:
A Polynomial-Time Metric for Attributed Trees,
ECCV04(Vol IV: 414-427).
Springer DOI
0405
BibRef
And:
Four metrics for efficiently comparing attributed trees,
ICPR04(II: 467-470).
IEEE DOI
0409
Four distance measures centered around the notion of
a maximal similarity common subtree.
See also game-theoretic approach to partial clique enumeration, A.
BibRef
Torsello, A.[Andrea],
Albarelli, A.[Andrea],
Pelillo, M.[Marcello],
Matching Relational Structures using the Edge-Association Graph,
CIAP07(775-780).
IEEE DOI
0709
BibRef
Erdem, A.[Aykut],
Pelillo, M.[Marcello],
Graph Transduction as a Non-cooperative Game,
GbRPR11(195-204).
Springer DOI
1105
BibRef
van Wyk, M.A.[Michaël A.],
Durrani, T.S.[Tariq S.],
van Wyk, B.J.[Barend J.],
A RKHS Interpolator-Based Graph Matching Algorithm,
PAMI(24), No. 7, July 2002, pp. 988-995.
IEEE Abstract.
0207
Graph matching for lines from aerial images.
BibRef
Toudjeu, I.T.[Ignace Tchangou],
van Wyk, B.J.[Barend Jacobus],
van Wyk, M.A.[Michaël Antonie],
van den Bergh, F.[Frans],
Global Image Feature Extraction Using Slope Pattern Spectra,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
van Wyk, M.A.[Michaël A.],
Durrani, T.S.[Tariq S.],
A Framework for Multi-Scale and Hybrid RKHS-Based Approximators,
TSP(48), No. 12, 2000, pp. 3559-3568.
IEEE Top Reference.
BibRef
0001
van Wyk, B.J.,
van Wyk, M.A.,
Kronecker product graph matching,
PR(36), No. 9, September 2003, pp. 2019-2030.
Elsevier DOI
0307
BibRef
Sangineto, E.[Enver],
An abstract representation of geometric knowledge for object
classification,
PRL(24), No. 9-10, June 2003, pp. 1241-1250.
Elsevier DOI
0304
Efficient algorithm for constraint satisfaction.
BibRef
He, L.[Lei],
Han, C.Y.[Chia Y.],
Everding, B.[Bryan],
Wee, W.G.[William G.],
Graph matching for object recognition and recovery,
PR(37), No. 7, July 2004, pp. 1557-1560.
Elsevier DOI
0405
BibRef
Lopresti, D.P.,
Wilfong, G.,
A fast technique for comparing graph representations with applications
to performance evaluation,
IJDAR(6), No. 4, April 2004, pp. 219-229.
Springer DOI
0406
Document analysis application.
BibRef
Gori, M.,
Maggini, M.,
Sarti, L.,
Exact and Approximate Graph Matching Using Random Walks,
PAMI(27), No. 7, July 2005, pp. 1100-1111.
IEEE Abstract.
0506
BibRef
Earlier:
Graph matching using random walks,
ICPR04(III: 394-397).
IEEE DOI
0409
BibRef
Frey, B.J.[Brendan J.],
Jojic, N.[Nebojsa],
A Comparison of Algorithms for Inference and Learning in Probabilistic
Graphical Models,
PAMI(27), No. 9, September 2005, pp. 1392-1416.
IEEE DOI
0508
Graph models of the image.
BibRef
Naik, S.K.[Sarif Kumar],
Murthy, C.A.,
Distinct Multicolored Region Descriptors for Object Recognition,
PAMI(29), No. 7, July 2007, pp. 1291-1296.
IEEE DOI
0706
Color features of regions for recognition.
BibRef
Kohli, P.[Pushmeet],
Ladický, L.[Lubor],
Torr, P.H.S.[Philip H.S.],
Robust Higher Order Potentials for Enforcing Label Consistency,
IJCV(82), No. 3, May 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Earlier:
CVPR08(1-8).
IEEE DOI
0806
BibRef
Alahari, K.[Karteek],
Russell, C.[Chris],
Torr, P.H.S.[Philip H. S.],
Efficient piecewise learning for conditional random fields,
CVPR10(895-901).
IEEE DOI
1006
BibRef
Kohli, P.[Pushmeet],
Kumar, M.P.[M. Pawan],
Torr, P.H.S.[Philip H.S.],
P3 and Beyond:
Move Making Algorithms for Solving Higher Order Functions,
PAMI(31), No. 9, September 2009, pp. 1645-1656.
IEEE DOI
0907
BibRef
Earlier:
P3 and Beyond: Solving Energies with Higher Order Cliques,
CVPR07(1-8).
IEEE DOI
0706
Energy minimization for texture segmentation.
Extend class for computing in polynomial time.
BibRef
Zheng, K.J.[Kai-Jie],
Peng, J.G.[Ji-Gen],
Ying, S.H.[Shi-Hui],
A New Approach to Weighted Graph Matching,
IEICE(E92-D), No. 8, August 2009, pp. 1580-1583.
WWW Link.
0909
BibRef
Zaslavskiy, M.[Mikhail],
Bach, F.[Francis],
Vert, J.P.[Jean-Philippe],
A Path Following Algorithm for the Graph Matching Problem,
PAMI(31), No. 12, December 2009, pp. 2227-2242.
IEEE DOI
0911
BibRef
Earlier:
A Path Following Algorithm for Graph Matching,
ICISP08(329-337).
Springer DOI
0807
Weighted graph matching
BibRef
Harchaoui, Z.[Zaid],
Bach, F.[Francis],
Image Classification with Segmentation Graph Kernels,
CVPR07(1-8).
IEEE DOI
0706
Kernels based on graph matching.
BibRef
Cheng, B.,
Yang, J.,
Yan, S.,
Fu, Y.,
Huang, T.S.,
Learning With L1-Graph for Image Analysis,
IP(19), No. 4, April 2010, pp. 858-866.
IEEE DOI
1003
Graph construction for learning and clustering.
BibRef
Lin, L.[Liang],
Liu, X.B.[Xiao-Bai],
Zhu, S.C.[Song-Chun],
Layered Graph Matching with Composite Cluster Sampling,
PAMI(32), No. 8, August 2010, pp. 1426-1442.
IEEE DOI
1007
Integrate graph partitioning and matching. Find unknown number of corresponding
graph structures in two images.
BibRef
Lin, L.[Liang],
Zeng, K.[Kun],
Liu, X.B.[Xiao-Bai],
Zhu, S.C.[Song-Chun],
Layered graph matching by composite cluster sampling with collaborative
and competitive interactions,
CVPR09(1351-1358).
IEEE DOI
0906
BibRef
Chertok, M.[Michael],
Keller, Y.[Yosi],
Efficient High Order Matching,
PAMI(32), No. 12, December 2010, pp. 2205-2215.
IEEE DOI
1011
measure scores of matching more than 2 pairs of points at a time.
Graph matching.
See also Probabilistic graph and hypergraph matching.
BibRef
Darom, T.[Tal],
Keller, Y.[Yosi],
Spectral Analysis Driven Sparse Matching of 3D Shapes,
3DOR12(59-62)
PDF File.
DOI Link
1301
BibRef
Huang, Y.[Yuchi],
Liu, Q.S.[Qing-Shan],
Lv, F.J.[Feng-Jun],
Gong, Y.H.[Yi-Hong],
Metaxas, D.N.[Dimitris N.],
Unsupervised Image Categorization by Hypergraph Partition,
PAMI(33), No. 6, June 2011, pp. 1266-1273.
IEEE DOI
1105
Images containing objects are vertices, clustering via hypergraph partition.
Select ROI then edges based on shapes.
BibRef
Demirci, M.F.[M. Fatih],
Osmanlioglu, Y.[Yusuf],
Shokoufandeh, A.[Ali],
Dickinson, S.J.[Sven J.],
Efficient Many-to-Many Feature Matching under the L1 Norm,
CVIU(115), No. 7, July 2011, pp. 976-983.
Elsevier DOI
1106
BibRef
Earlier: A1, A2, Only:
Many-to-Many Matching under the L1 Norm,
CIAP09(787-796).
Springer DOI
0909
Distortion-free metric embedding; Earth Mover's Distance; Many-to-many
matching; Object recognition
Graph matching.
BibRef
Wang, J.Y.[Jing-Yan],
Li, Y.P.[Yong-Ping],
Bai, X.[Xiang],
Zhang, Y.[Ying],
Wang, C.[Chao],
Tang, N.[Ning],
Learning context-sensitive similarity by shortest path propagation,
PR(44), No. 10-11, October-November 2011, pp. 2367-2374.
Elsevier DOI
1101
Shape retrieval; Contextual similarity learning; Graph transduction;
Shortest path propagation
BibRef
Duchenne, O.[Olivier],
Bach, F.[Francis],
Kweon, I.S.[In-So],
Ponce, J.[Jean],
A Tensor-Based Algorithm for High-Order Graph Matching,
PAMI(33), No. 12, December 2011, pp. 2383-2395.
IEEE DOI
1110
BibRef
Earlier:
CVPR09(1980-1987).
IEEE DOI
0906
Award, CVPR, Student, HM. Establish correspondence using higher level (more than pairwise).
BibRef
Cho, M.S.[Min-Su],
Alahari, K.[Karteek],
Ponce, J.[Jean],
Learning Graphs to Match,
ICCV13(25-32)
IEEE DOI
1403
feature correspondence
BibRef
Duchenne, O.[Olivier],
Joulin, A.[Armand],
Ponce, J.[Jean],
A graph-matching kernel for object categorization,
ICCV11(1792-1799).
IEEE DOI
1201
BibRef
Liu, Z.Y.[Zhi-Yong],
Qiao, H.[Hong],
Xu, L.[Lei],
An Extended Path Following Algorithm for Graph-Matching Problem,
PAMI(34), No. 7, July 2012, pp. 1451-1456.
IEEE DOI
1205
Solve matching on directed graphs using path following (previously for
undirected graphs).
See also Path Following Algorithm for the Graph Matching Problem, A.
BibRef
Yu, J.,
Tao, D.,
Wang, M.,
Adaptive Hypergraph Learning and its Application in Image
Classification,
IP(21), No. 7, July 2012, pp. 3262-3272.
IEEE DOI
1206
BibRef
Molina-Abril, H.[Helena],
Real Jurado, P.[Pedro],
Homological optimality in Discrete Morse Theory through chain
homotopies,
PRL(33), No. 11, 1 August 2012, pp. 1501-1506.
Elsevier DOI
1206
BibRef
Earlier:
A Homological-Based Description of Subdivided n-D Objects,
CAIP11(I: 42-50).
Springer DOI
1109
BibRef
Earlier:
Homological Computation Using Spanning Trees,
CIARP09(272-278).
Springer DOI
0911
BibRef
Earlier:
Advanced Homology Computation of Digital Volumes Via Cell Complexes,
SSPR08(361-371).
Springer DOI
0812
Discrete Morse Theory; Gradient vector field; Cell complex;
Integral-chain complex; Chain homotopy; Graph
BibRef
Real Jurado, P.[Pedro],
Molina-Abril, H.[Helena],
Kropatsch, W.G.[Walter G.],
Homological Tree-Based Strategies for Image Analysis,
CAIP09(326-333).
Springer DOI
0909
BibRef
Real Jurado, P.[Pedro],
Molina-Abril, H.[Helena],
Cell AT-Models for Digital Volumes,
GbRPR09(314-323).
Springer DOI
0905
BibRef
Pacheco, A.[Ana],
Real Jurado, P.[Pedro],
Associating Cell Complexes to Four Dimensional Digital Objects,
DGCI11(104-115).
Springer DOI
1104
BibRef
Earlier:
Getting Topological Information for a 80-Adjacency Doxel-Based 4D
Volume through a Polytopal Cell Complex,
CIARP09(279-286).
Springer DOI
0911
BibRef
Taylor, K.M.[Kye M.],
Meyer, F.G.[François G.],
A Random Walk on Image Patches,
SIIMS(5), No. 2, 2012, pp. 688-725.
DOI Link
1206
Analyze algorithms that organize patches using graph-based metrics.
BibRef
Tuia, D.,
Munoz-Mari, J.,
Gomez-Chova, L.,
Malo, J.,
Graph Matching for Adaptation in Remote Sensing,
GeoRS(51), No. 1, January 2013, pp. 329-341.
IEEE DOI
1301
BibRef
de Ita Luna, G.[Guillermo],
Castillo, J.A.[Javier A.],
Recognizing 3-colorings cycle-patterns on graphs,
PRL(34), No. 4, 1 March 2013, pp. 433-438.
Elsevier DOI
1302
Graph coloring; 3-Coloring; Satisfiability problem; Recognizing
cycle-patterns
BibRef
Spears, W.M.[William M.],
Prager, S.D.[Steven D.],
Evolutionary search for understanding movement dynamics on mixed
networks,
GeoInfo(17), No. 2, April 2013, pp. 353-385.
Springer DOI
1304
Paths through networks.
BibRef
Daneshgar, A.,
Javadi, R.,
Shariat Razavi, S.B.,
Clustering and outlier detection using isoperimetric number of trees,
PR(46), No. 12, 2013, pp. 3371-3382.
Elsevier DOI
1308
Isoperimetric constant.
Graph based clustering.
BibRef
Xu, J.J.[Jie-Jun],
Jagadeesh, V.,
Manjunath, B.S.,
Multi-Label Learning With Fused Multimodal Bi-Relational Graph,
MultMed(16), No. 2, February 2014, pp. 403-412.
IEEE DOI
1404
graph theory
BibRef
McGreggor, K.[Keith],
Kunda, M.[Maithilee],
Goel, A.[Ashok],
Fractals and Ravens,
AI(215), No. 1, 2014, pp. 1-23.
Elsevier DOI
1408
Analogy. Reasoning.
BibRef
Dazzi, E.[Estephan],
de Campos, T.E.[Teofilo E.],
Cesar, Jr., R.M.[Roberto M.],
Improved Object Matching Using Structural Relations,
SSSPR14(444-453).
Springer DOI
1408
BibRef
Jeong, H.,
Yoon, B.J.,
Effective Estimation of Node-to-Node Correspondence Between Different
Graphs,
SPLetters(22), No. 6, June 2015, pp. 661-665.
IEEE DOI
1411
Biological system modeling
BibRef
Czioska, P.[Paul],
Thiemann, F.[Frank],
Sester, M.[Monika],
Giese, R.[Robin],
Vogt, H.[Hermann],
An Algorithm to Generate a Simplified Railway Network through
Generalization,
PFG(2015), No. 1, 2015, pp. 95-104.
DOI Link
1503
BibRef
Qi, X.Q.[Xing-Qin],
Fuller, E.[Edgar],
Luo, R.[Rong],
Zhang, C.Q.[Cun-Quan],
A novel centrality method for weighted networks based on the
Kirchhoff polynomial,
PRL(58), No. 1, 2015, pp. 51-60.
Elsevier DOI
1505
Centrality method. Importance of vertex in network.
BibRef
Gudivada, S.[Sravan],
Bors, A.G.[Adrian G.],
Ortho-diffusion decompositions of graph-based representation of
images,
PR(48), No. 12, 2015, pp. 4097-4115.
Elsevier DOI
1509
BibRef
And:
Robust Learning from Ortho-Diffusion Decompositions,
CAIP15(I:546-557).
Springer DOI
1511
BibRef
Earlier:
Orthonormal Diffusion Decompositions of Images for Optical Flow
Estimation,
CAIP13(II:241-249).
Springer DOI
1311
Ortho-diffusion decompositions
BibRef
Halappanavar, M.,
Pothen, A.,
Azad, A.,
Manne, F.,
Langguth, J.,
Khan, A.,
Codesign Lessons Learned from Implementing Graph Matching on
Multithreaded Architectures,
Computer(48), No. 8, August 2015, pp. 46-55.
IEEE DOI
1509
graph theory
BibRef
Wang, S.[Song],
Guo, X.[Xin],
Mu, X.M.[Xiao-Min],
Huo, Y.[Yahong],
Qi, L.[Lin],
Advanced weight graph transformation matching algorithm,
IET-CV(9), No. 6, 2015, pp. 960-966.
DOI Link
1512
graph theory
BibRef
Xie, X.H.[Xiao-Hua],
Yang, L.X.[Ling-Xiao],
Zheng, W.S.[Wei-Shi],
Learning object-specific DAGs for multi-label material recognition,
CVIU(143), No. 1, 2016, pp. 183-190.
Elsevier DOI
1601
Directed Acyclic Graph.
Material recognition
BibRef
Zhang, Q.S.[Quan-Shi],
Song, X.[Xuan],
Shao, X.W.[Xiao-Wei],
Zhao, H.J.[Hui-Jing],
Shibasaki, R.[Ryosuke],
Object Discovery: Soft Attributed Graph Mining,
PAMI(38), No. 3, March 2016, pp. 532-545.
IEEE DOI
1602
BibRef
Earlier:
Attributed Graph Mining and Matching:
An Attempt to Define and Extract Soft Attributed Patterns,
CVPR14(1394-1401)
IEEE DOI
1409
Data mining.
Attributed Relational Graphs; Graph Matching; Graph Mining
BibRef
Zhang, Q.S.[Quan-Shi],
Song, X.[Xuan],
Yang, Y.[Yu],
Ma, H.T.[Hao-Tian],
Shibasaki, R.[Ryosuke],
Visual graph mining for graph matching,
CVIU(178), 2019, pp. 16-29.
Elsevier DOI
1812
BibRef
Yan, J.C.[Jun-Chi],
Cho, M.,
Zha, H.Y.[Hong-Yuan],
Yang, X.K.[Xiao-Kang],
Chu, S.M.Y.[Stephen Ming-Yu],
Multi-Graph Matching via Affinity Optimization with Graduated
Consistency Regularization,
PAMI(38), No. 6, June 2016, pp. 1228-1242.
IEEE DOI
1605
Accuracy
BibRef
Yan, J.C.[Jun-Chi],
Li, Y.[Yin],
Liu, W.[Wei],
Zha, H.Y.[Hong-Yuan],
Yang, X.K.[Xiao-Kang],
Chu, S.M.Y.[Stephen Ming-Yu],
Graduated Consistency-Regularized Optimization for Multi-graph Matching,
ECCV14(I: 407-422).
Springer DOI
1408
BibRef
Yan, J.C.[Jun-Chi],
Xu, H.T.[Hong-Teng],
Zha, H.Y.[Hong-Yuan],
Yang, X.K.[Xiao-Kang],
Liu, H.X.[Huan-Xi],
Chu, S.[Stephen],
A Matrix Decomposition Perspective to Multiple Graph Matching,
ICCV15(199-207)
IEEE DOI
1602
Computer vision
BibRef
Wang, P.[Peng],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Torr, P.H.S.[Philip H. S.],
Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference,
IJCV(117), No. 3, May 2016, pp. 269-289.
Springer DOI
1605
BibRef
Earlier: A1, A2, A3, Only:
Efficient SDP inference for fully-connected CRFs based on low-rank
decomposition,
CVPR15(3222-3231)
IEEE DOI
1510
BibRef
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Dimension Reduction and Construction of Feature Space for Image Pattern
Recognition,
JMIV(56), No. 1, September 2016, pp. 1-31.
WWW Link.
1605
BibRef
Earlier:
Discriminative Properties in Directional Distributions for Image
Pattern Recognition,
PSIVT15(617-630).
Springer DOI
1602
BibRef
Earlier: A3, A1, A2:
Multi-label Classification for Image Annotation via Sparse Similarity
Voting,
Subspace10(344-353).
Springer DOI
1109
See also Volumetric Image Pattern Recognition Using Three-Way Principal Component Analysis.
BibRef
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Multilinear Methods for Spatio-Temporal Image Recognition,
CAIP17(I: 148-159).
Springer DOI
1708
BibRef
Itoh, H.[Hayato],
Sakai, T.[Tomoya],
Kawamoto, K.[Kazuhiko],
Imiya, A.[Atsushi],
Topology-Preserving Dimension-Reduction Methods for Image Pattern
Recognition,
SCIA13(195-204).
Springer DOI
1311
BibRef
Igelmo, M.[Manuel],
Sanfeliu, A.[Alberto],
Filtering graphs to check isomorphism and extracting mapping by using
the Conductance Electrical Model,
PR(58), No. 1, 2016, pp. 68-82.
Elsevier DOI
1606
Graph isomorphism
BibRef
Igelmo, M.[Manuel],
Sanfeliu, A.[Alberto],
Compact Form of the Pseudo-Inverse Matrix in the Approximation of a
Star Graph Using the Conductance Electrical Model (CEM),
SSSPR12(539-547).
Springer DOI
1211
BibRef
Igelmo, M.[Manuel],
Sanfeliu, A.[Alberto],
Ferrer, M.[Miquel],
A Conductance Electrical Model for Representing and Matching Weighted
Undirected Graphs,
ICPR10(958-961).
IEEE DOI
1008
BibRef
Yang, X.[Xu],
Qiao, H.[Hong],
Liu, Z.Y.[Zhi-Yong],
Point correspondence by a new third order graph matching algorithm,
PR(65), No. 1, 2017, pp. 108-118.
Elsevier DOI
1702
Graph matching
BibRef
Luo, S.[Sheng],
Zhou, H.M.[Hong-Ming],
Xu, J.H.[Jing-Hua],
Zhang, S.Y.[Shu-You],
Matching images based on consistency graph and region adjacency graphs,
SIViP(11), No. 3, March 2017, pp. 501-508.
WWW Link.
1702
BibRef
Bujoreanu, D.[Denis],
Dorez, H.[Hugo],
Boutegrabet, W.[Warda],
Moussata, D.[Driffa],
Sablong, R.[Raphaël],
Rousseau, D.[David],
Robust graph representation of images with underlying structural
networks. Application to the classification of vascular networks of
mice's colon,
PRL(87), No. 1, 2017, pp. 29-37.
Elsevier DOI
1703
Graph-based image representation
BibRef
Osmanlioglu, Y.[Yusuf],
Shokoufandeh, A.[Ali],
Multilayer matching of metric structures using hierarchically
well-separated trees,
PRL(87), No. 1, 2017, pp. 63-70.
Elsevier DOI
1703
Hierarchically well-separated tree.
One-to-one matching of features may not always be possible.
BibRef
Yin, R.J.[Ru-Jie],
Gao, T.[Tingran],
Lu, Y.M.[Yue M.],
Daubechies, I.[Ingrid],
A Tale of Two Bases: Local-Nonlocal Regularization on Image Patches
with Convolution Framelets,
SIIMS(10), No. 2, 2017, pp. 711-750.
DOI Link
1708
Local and nonlocal patch descriptions.
BibRef
Park, H.M.[Han-Mu],
Yoon, K.J.[Kuk-Jin],
Multi-Attributed Graph Matching With Multi-Layer Graph Structure and
Multi-Layer Random Walks,
IP(27), No. 5, May 2018, pp. 2314-2325.
IEEE DOI
1804
BibRef
Earlier:
Multi-attributed Graph Matching with Multi-layer Random Walks,
ECCV16(III: 189-204).
Springer DOI
1611
graph theory, random processes,
conventional graph matching algorithms,
multiple attributes
BibRef
Park, H.M.[Han-Mu],
Yoon, K.J.[Kuk-Jin],
Exploiting multi-layer graph factorization for multi-attributed graph
matching,
PRL(127), 2019, pp. 85-93.
Elsevier DOI
1911
Multi-attributed graph matching, Multi-layer structure,
Matrix factorization, Path following
BibRef
Park, H.M.[Han-Mu],
Yoon, K.J.[Kuk-Jin],
Consistent multiple graph matching with multi-layer random walks
synchronization,
PRL(127), 2019, pp. 76-84.
Elsevier DOI
1911
BibRef
Cheung, G.[Gene],
Magli, E.[Enrico],
Tanaka, Y.C.[Yui-Chi],
Ng, M.K.[Michael K.],
Graph Spectral Image Processing,
PIEEE(106), No. 5, May 2018, pp. 907-930.
IEEE DOI
1805
Digital images, Eigenvalues and eigenfunctions, Graph theory,
Image coding, Image edge detection, Laplace equations,
image processing
BibRef
Liu, L.,
Nie, F.,
Wiliem, A.,
Li, Z.,
Zhang, T.[Teng],
Lovell, B.C.,
Multi-Modal Joint Clustering With Application for Unsupervised
Attribute Discovery,
IP(27), No. 9, September 2018, pp. 4345-4356.
IEEE DOI
1807
BibRef
Earlier: A1, A2, A5, A3, A6, Only:
Unsupervised automatic attribute discovery method via multi-graph
clustering,
ICPR16(1713-1718)
IEEE DOI
1705
graph theory, image representation, pattern clustering,
unsupervised learning, automatic attribute discovery method,
unsupervised automatic attribute discovery.
Binary codes, Iterative methods, Labeling, Linear programming,
Measurement, Pathology, Visualization
BibRef
Lu, B.B.[Bin-Bin],
Sun, H.B.[Hua-Bo],
Harris, P.[Paul],
Xu, M.Z.[Miao-Zhong],
Charlton, M.[Martin],
Shp2graph:
Tools to Convert a Spatial Network into an Igraph Graph in R,
IJGI(7), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Dazzi, E.[Estephan],
de Campos, T.E.[Teofilo E.],
Hilton, A.[Adrian],
Cesar, Jr., R.M.[Roberto M.],
Scalable object instance recognition based on keygraph matching,
PRL(114), 2018, pp. 53-62.
Elsevier DOI
1811
Local invariant features, Semi-local graph matching,
Graph topological properties
BibRef
Shi, D.[Dan],
Zhu, L.[Lei],
Cheng, Z.Y.[Zhi-Yong],
Li, Z.H.[Zhi-Hui],
Zhang, H.X.[Hua-Xiang],
Unsupervised multi-view feature extraction with dynamic graph
learning,
JVCIR(56), 2018, pp. 256-264.
Elsevier DOI
1811
Multi-view feature extraction, Intrinsic sample relations,
Dynamic graph learning
BibRef
Liang, C.[Cheng],
Wang, L.Z.[Lian-Zhi],
Liu, L.[Li],
Zhang, H.X.[Hua-Xiang],
Guo, F.[Fei],
Multi-view unsupervised feature selection with tensor robust
principal component analysis and consensus graph learning,
PR(141), 2023, pp. 109632.
Elsevier DOI
2306
Multi-view unsupervised feature selection,
Low-rank tensor learning, Spectral embedding, Robust sparse regression model
BibRef
Gligorijevic, V.[Vladimir],
Panagakis, Y.[Yannis],
Zafeiriou, S.P.[Stefanos P.],
Non-Negative Matrix Factorizations for Multiplex Network Analysis,
PAMI(41), No. 4, April 2019, pp. 928-940.
IEEE DOI
1903
BibRef
Earlier:
Fusion and community detection in multi-layer graphs,
ICPR16(1327-1332)
IEEE DOI
1705
Multiplexing, Matrix decomposition, Feature extraction, Biology,
Clustering algorithms, Partitioning algorithms, Tools,
network integration.
Image edge detection, Linear programming,
Optimization, Robustness, Symmetric matrices.
BibRef
Jin, T.,
Ji, R.,
Gao, Y.,
Sun, X.,
Zhao, X.,
Tao, D.,
Correntropy-Induced Robust Low-Rank Hypergraph,
IP(28), No. 6, June 2019, pp. 2755-2769.
IEEE DOI
1905
data structures, Gaussian noise, graph theory,
image classification, image representation,
hyperedge
BibRef
Li, C.,
Zhu, C.,
Zhang, J.,
Luo, B.,
Wu, X.,
Tang, J.,
Learning Local-Global Multi-Graph Descriptors for RGB-T Object
Tracking,
CirSysVideo(29), No. 10, October 2019, pp. 2913-2926.
IEEE DOI
1910
graph theory, image colour analysis, image representation,
infrared imaging, learning (artificial intelligence),
fast optimization
BibRef
Cantero, S.V.A.B.,
Gonçalves, D.N.,
dos Santos Scabini, L.F.,
Gonçalves, W.N.,
Importance of Vertices in Complex Networks Applied to Texture
Analysis,
Cyber(50), No. 2, February 2020, pp. 777-786.
IEEE DOI
1912
Web pages, Level measurement, Complex networks, Topology,
Computational modeling, Cybernetics,
texture analysis
BibRef
Kang, Z.,
Pan, H.,
Hoi, S.C.H.,
Xu, Z.,
Robust Graph Learning From Noisy Data,
Cyber(50), No. 5, May 2020, pp. 1833-1843.
IEEE DOI
2005
Noise measurement, Adaptation models, Laplace equations, Manifolds,
Task analysis, Reliability, Data models, Clustering,
similarity measure
BibRef
Li, J.N.[Jun-Nan],
Xiong, C.M.[Cai-Ming],
Hoi, S.C.H.[Steven C.H.],
Learning from Noisy Data with Robust Representation Learning,
ICCV21(9465-9474)
IEEE DOI
2203
Representation learning, Codes, Computational modeling,
Benchmark testing, Cleaning, Robustness,
Representation learning
BibRef
Li, J.N.[Jun-Nan],
Wong, Y.K.[Yong-Kang],
Zhao, Q.[Qi],
Kankanhalli, M.S.[Mohan S.],
Learning to Learn From Noisy Labeled Data,
CVPR19(5046-5054).
IEEE DOI
2002
BibRef
Anderson, T.[Taylor],
Dragicevic, S.[Suzana],
Representing Complex Evolving Spatial Networks:
Geographic Network Automata,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Wang, J.J.[Jian-Jia],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Directed and undirected network evolution from Euler-Lagrange
dynamics,
PRL(134), 2020, pp. 135-144.
Elsevier DOI
2005
BibRef
Earlier:
Directed Graph Evolution from Euler-Lagrange Dynamics,
ICPR18(448-453)
IEEE DOI
1812
Dynamic networks, Euler-Lagrange equation, Approximate von neumann entropy.
Entropy, Mathematical model, Correlation, Data models,
Complex networks, Computational modeling
BibRef
Brun, L.[Luc],
Foggia, P.[Pasquale],
Vento, M.[Mario],
Trends in graph-based representations for Pattern Recognition,
PRL(134), 2020, pp. 3-9.
Elsevier DOI
2005
Graph-based representations, Graph matching,
Graph edit distance, Graph kernels
BibRef
Martineau, M.[Maxime],
Raveaux, R.[Romain],
Conte, D.[Donatello],
Venturini, G.[Gilles],
Learning error-correcting graph matching with a multiclass neural
network,
PRL(134), 2020, pp. 68-76.
Elsevier DOI
2005
Learning graph matching, Graph classification, Graph edit distance
BibRef
Santacruz, P.[Pep],
Serratosa, F.[Francesc],
Error-tolerant graph matching in linear computational cost using an
initial small partial matching,
PRL(134), 2020, pp. 10-19.
Elsevier DOI
2005
Graph Edit Distance, Sub-optimal algorithm, Linear computational cost
BibRef
Santacruz, P.[Pep],
Algabli, S.[Shaima],
Serratosa, F.[Francesc],
Node Matching Computation Between Two Large Graphs in Linear
Computational Cost,
GbRPR17(143-153).
Springer DOI
1706
BibRef
Algabli, S.[Shaima],
Serratosa, F.[Francesc],
Learning Graph Matching Substitution Weights based on a Linear
Regression,
ICPR21(53-58)
IEEE DOI
2105
Runtime, Databases, Linear regression, Buildings, Euclidean distance,
Testing, Attributed graphs,
linear regression
BibRef
Bougleux, S.[Sébastien],
Gaüzčre, B.[Benoit],
Blumenthal, D.B.[David B.],
Brun, L.[Luc],
Fast linear sum assignment with error-correction and no cost
constraints,
PRL(134), 2020, pp. 37-45.
Elsevier DOI
2005
Inexact graph matching, Linear assignment, Graph edit distance
BibRef
Daller, É.[Évariste],
Bougleux, S.[Sébastien],
Brun, L.[Luc],
Lézoray, O.[Olivier],
Local Patterns and Supergraph for Chemical Graph Classification with
Convolutional Networks,
SSSPR18(97-106).
Springer DOI
1810
BibRef
Morimitsu, A.[Alexandre],
Passat, N.[Nicolas],
Alves, W.A.L.[Wonder A.L.],
Hashimoto, R.F.[Ronaldo F.],
Efficient component-hypertree construction based on hierarchy of
partitions,
PRL(135), 2020, pp. 30-37.
Elsevier DOI
2006
Mathematical morphology, Component-hypertree, Component tree,
Connected operators, Hierarchy of partitions
BibRef
Lyu, X.[Xiang],
Sun, W.W.[Will Wei],
Wang, Z.R.[Zhao-Ran],
Liu, H.[Han],
Yang, J.[Jian],
Cheng, G.[Guang],
Tensor Graphical Model: Non-Convex Optimization and Statistical
Inference,
PAMI(42), No. 8, August 2020, pp. 2024-2037.
IEEE DOI
2007
Graphical models, Estimation, Convergence, Testing, Sparse matrices,
Covariance matrices, Asymptotic normality, hypothesis testing,
rate of convergence
BibRef
Lee, S.H.[Se-Hyung],
Lim, J.W.[Jong-Woo],
Suh, I.H.[Il Hong],
Progressive Feature Matching:
Incremental Graph Construction and Optimization,
IP(29), 2020, pp. 6992-7005.
IEEE DOI
2007
Feature extraction, Optimization, Approximation algorithms,
Computational modeling, Clustering algorithms, Markov processes,
progressive optimization
BibRef
Colonnese, S.[Stefania],
di Lorenzo, P.[Paolo],
Cattai, T.[Tiziana],
Scarano, G.[Gaetano],
de Vico Fallani, F.[Fabrizio],
A Joint Markov Model for Communities, Connectivity and Signals
Defined Over Graphs,
SPLetters(27), 2020, pp. 1160-1164.
IEEE DOI
2007
Graph signal processing, markov random field, graph community,
graph learning, graph signal denoising
BibRef
Xu, L.X.[Li-Xiang],
Bai, L.[Lu],
Jiang, X.Y.[Xiao-Yi],
Tan, M.[Ming],
Zhang, D.Q.[Dao-Qiang],
Luo, B.[Bin],
Deep Rényi entropy graph kernel,
PR(111), 2021, pp. 107668.
Elsevier DOI
2012
Shannon entropy, Rényi entropy, Deep representation,
Graph kernel, Graph classification
BibRef
Hu, F.Y.[Fen-Yu],
Zhu, Y.Q.[Yan-Qiao],
Wu, S.[Shu],
Huang, W.R.[Wei-Ran],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
GraphAIR: Graph representation learning with neighborhood aggregation
and interaction,
PR(112), 2021, pp. 107745.
Elsevier DOI
2102
Graph representation learning, Neighborhood aggregation,
Graph neural networks, Neighborhood interaction, Link prediction
BibRef
Zhu, S.B.[Shuai-Bing],
Zhou, J.[Jin],
Chen, G.R.[Guan-Rong],
Lu, J.A.[Jun-An],
A New Method for Topology Identification of Complex Dynamical
Networks,
Cyber(51), No. 4, April 2021, pp. 2224-2231.
IEEE DOI
2103
Topology, Synchronization, Couplings, Complex networks, Delays,
Artificial neural networks, Complex network,
topology identification
BibRef
Li, J.[Jing],
Wang, X.T.[Xuan-Tong],
Zhang, T.[Tong],
Sequence-based centrality measures in maritime transportation networks,
IET-ITS(14), No. 14, 27 December 2020, pp. 2042-2051.
DOI Link
2103
BibRef
Hao, X.J.[Xue-Jie],
Ji, Z.[Zheng],
Li, X.H.[Xiu-Hong],
Yin, L.Y.[Lize-Yan],
Liu, L.[Lu],
Sun, M.Y.[Mei-Ying],
Liu, Q.[Qiang],
Yang, R.J.[Rong-Jin],
Construction and Application of a Knowledge Graph,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Chen, T.S.[Tian-Shui],
Lin, L.[Liang],
Chen, R.[Riquan],
Hui, X.L.[Xiao-Lu],
Wu, H.F.[He-Feng],
Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition,
PAMI(44), No. 3, March 2022, pp. 1371-1384.
IEEE DOI
2202
Semantics, Task analysis, Training, Image recognition, Correlation,
Neural networks, Proposals, Image recognition, graph reasoning
BibRef
Lin, J.T.[Jian-Tao],
Chen, T.S.[Tian-Shui],
Chen, Y.C.[Ying-Cong],
Yang, Z.J.[Zhi-Jing],
Gao, Y.F.[Yue-Fang],
Graph Representation and Prototype Learning for webly supervised
fine-grained image recognition,
PRL(183), 2024, pp. 78-85.
Elsevier DOI
2406
Webly supervised learning, Fine-grained image recognition,
Graph representation learning
BibRef
Chen, T.S.[Tian-Shui],
Xu, M.X.[Mu-Xin],
Hui, X.L.[Xiao-Lu],
Wu, H.F.[He-Feng],
Lin, L.A.[Li-Ang],
Learning Semantic-Specific Graph Representation for Multi-Label Image
Recognition,
ICCV19(522-531)
IEEE DOI
2004
Code, Graph Representation.
WWW Link. graph theory, image recognition,
learning (artificial intelligence), semantic regions,
Task analysis
BibRef
Liu, H.[Hui],
Jia, Y.H.[Yu-Heng],
Hou, J.H.[Jun-Hui],
Zhang, Q.F.[Qing-Fu],
Learning Low-Rank Graph With Enhanced Supervision,
CirSysVideo(32), No. 4, April 2022, pp. 2501-2506.
IEEE DOI
2204
Measurement, Laplace equations, Learning systems, Sparse matrices,
Optimization, Linear approximation, Kernel, propagation
BibRef
Peng, Z.[Zhen],
Luo, M.[Minnan],
Huang, W.B.[Wen-Bing],
Li, J.D.[Jun-Dong],
Zheng, Q.H.[Qing-Hua],
Sun, F.C.[Fu-Chun],
Huang, J.Z.[Jun-Zhou],
Learning Representations by Graphical Mutual Information Estimation
and Maximization,
PAMI(45), No. 1, January 2023, pp. 722-737.
IEEE DOI
2212
Mutual information, Task analysis, Representation learning,
Estimation, Topology, Anomaly detection, unsupervised learning
BibRef
Zhang, L.[Li],
Chen, M.[Mohan],
Arnab, A.[Anurag],
Xue, X.Y.[Xiang-Yang],
Torr, P.H.S.[Philip H. S.],
Dynamic Graph Message Passing Networks,
PAMI(45), No. 5, May 2023, pp. 5712-5730.
IEEE DOI
2304
Task analysis, Message passing, Computational modeling,
Transformers, Convolution, Image segmentation
BibRef
Zhang, L.[Li],
Xu, D.[Dan],
Arnab, A.[Anurag],
Torr, P.H.S.[Philip H.S.],
Dynamic Graph Message Passing Networks,
CVPR20(3723-3732)
IEEE DOI
2008
Structural information.
Message passing, Task analysis, Computational modeling,
Convolution, Neural networks, Context modeling
BibRef
Zhou, Y.M.[Yang-Ming],
Zhang, X.Z.[Xia-Ze],
Geng, N.[Na],
Jiang, Z.B.[Zhi-Bin],
Wang, S.G.[Shou-Guang],
Zhou, M.C.[Meng-Chu],
Frequent Itemset-Driven Search for Finding Minimal Node Separators
and its Application to Air Transportation Network Analysis,
ITS(24), No. 8, August 2023, pp. 8348-8360.
IEEE DOI
2308
Statistics, Sociology, Peer-to-peer computing, Optimization,
Itemsets, Particle separators, Memetics, Memetic search,
transportation network
BibRef
Zhang, Y.[Yunong],
Zhang, A.[Anmin],
Gao, M.[Miao],
Liang, Y.[Yi],
A Spatial Relation Model of Three-Dimensional Electronic Navigation
Charts Based on Point-Set Topology Theory,
IJGI(12), No. 7, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Liang, J.[Jiye],
Du, Z.J.[Zi-Jin],
Liang, J.Q.[Jian-Qing],
Yao, K.X.[Kai-Xuan],
Cao, F.L.[Fei-Long],
Long and Short-Range Dependency Graph Structure Learning Framework on
Point Cloud,
PAMI(45), No. 12, December 2023, pp. 14975-14989.
IEEE DOI
2311
BibRef
Ahmad, A.[Amreen],
Ahmad, T.[Tanvir],
Ahmad, M.[Musheer],
Muthanna, A.[Ammar],
Gupta, B.[Brij],
El-Latif, A.A.A.[Ahmed A. Abd],
Determination of Critical Edges in Air Route Network Using Modified
Weighted Sum Method and Grey Relational Analysis,
ITS(24), No. 12, December 2023, pp. 15578-15589.
IEEE DOI
2312
BibRef
Zou, M.H.[Min-Hao],
Gan, Z.X.[Zhong-Xue],
Wang, Y.T.[Yu-Tong],
Zhang, J.H.[Jun-Heng],
Sui, D.Y.[Dong-Yan],
Guan, C.[Chun],
Leng, S.Y.[Si-Yang],
UniG-Encoder: A universal feature encoder for graph and hypergraph
node classification,
PR(147), 2024, pp. 110115.
Elsevier DOI Code:
WWW Link.
2312
Graph and hypergraph, Representation learning,
Homophily and heterophily, Node classification, Feature projection
BibRef
Zhou, Z.Z.[Zhuang-Zhuang],
Zhu, Y.Y.[Ying-Ying],
RaFPN: Relation-Aware Feature Pyramid Network for Dense Image
Prediction,
MultMed(26), 2024, pp. 7787-7800.
IEEE DOI
2405
Feature extraction, Detectors, Task analysis, Transformers,
Semantics, Object detection, Adaptation models,
feature pyramid network
BibRef
Zhang, K.[Kai],
Shen, J.[Junchen],
He, G.[Gaoqi],
Sun, Y.[Yu],
Ling, H.B.[Hai-Bin],
Zha, H.Y.[Hong-Yuan],
Li, H.L.[Hong-Lin],
Zhang, J.[Jie],
A Transformative Topological Representation for Link Modeling,
Prediction and Cross-Domain Network Analysis,
PAMI(46), No. 9, September 2024, pp. 6126-6138.
IEEE DOI
2408
Predictive models, Feature extraction, Vectors, Topology,
Graph neural networks, Prediction algorithms, Kernel,
topological representation
BibRef
Liang, K.[Ke],
Meng, L.[Lingyuan],
Liu, M.[Meng],
Liu, Y.[Yue],
Tu, W.X.[Wen-Xuan],
Wang, S.W.[Si-Wei],
Zhou, S.[Sihang],
Liu, X.W.[Xin-Wang],
Sun, F.C.[Fu-Chun],
He, K.L.[Kun-Lun],
A Survey of Knowledge Graph Reasoning on Graph Types:
Static, Dynamic, and Multi-Modal,
PAMI(46), No. 12, December 2024, pp. 9456-9478.
IEEE DOI
2411
Survey, Knowledge Graphs. Knowledge graphs, Cognition, Surveys, Extrapolation, Taxonomy,
Interpolation, Fasteners, Knowledge graph reasoning,
multi-modal knowledge graph
BibRef
Wittmann, B.[Bastian],
Paetzold, J.C.[Johannes C.],
Prabhakar, C.[Chinmay],
Rueckert, D.[Daniel],
Menze, B.[Bjoern],
Link Prediction for Flow-Driven Spatial Networks,
WACV24(2460-2469)
IEEE DOI
2404
Measurement, Codes, Roads, Transportation, Benchmark testing,
Prediction algorithms, Algorithms, Biomedical / healthcare / medicine
BibRef
Serratosa, F.[Francesc],
Graph Embedding of Almost Constant Large Graphs,
CIARP23(I:16-30).
Springer DOI
2312
Apply to molecule descriptions.
BibRef
Fazeny, A.[Ariane],
Tenbrinck, D.[Daniel],
Burger, M.[Martin],
Hypergraph P-Laplacians, Scale Spaces, and Information Flow in Networks,
SSVM23(677-690).
Springer DOI
2307
Differential operators on hypergraphs,
BibRef
Stanovic, S.[Stevan],
Gaüzčre, B.[Benoit],
Brun, L.[Luc],
Maximal Independent Vertex Set Applied to Graph Pooling,
SSSPR22(11-21).
Springer DOI
2301
BibRef
Zhang, C.Y.[Chao-Yi],
Yu, J.H.[Jian-Hui],
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Exploiting Edge-Oriented Reasoning for 3D Point-based Scene Graph
Analysis,
CVPR21(9700-9710)
IEEE DOI
2111
Bridges, Benchmark testing, Cognition
BibRef
Vandaele, R.[Robin],
Saeys, Y.[Yvan],
Bie, T.D.[Tijl De],
Graph Approximations to Geodesics on Metric Graphs,
ICPR21(7328-7334)
IEEE DOI
2105
Manifolds, Bridges, Visualization,
Machine learning, Extraterrestrial measurements
BibRef
Chen, C.F.[Chao-Fan],
A General Model for Learning Node and Graph Representations Jointly,
ICPR21(2867-2873)
IEEE DOI
2105
Correlation, Computational modeling, Benchmark testing,
Feature extraction, Routing, Task analysis,
deep learning
BibRef
Manandhar, D.[Dipu],
Ruta, D.[Dan],
Collomosse, J.[John],
Learning Structural Similarity of User Interface Layouts Using Graph
Networks,
ECCV20(XXII:730-746).
Springer DOI
2011
Code, Graph Matching.
WWW Link.
BibRef
Shekkizhar, S.,
Ortega, A.,
Efficient Graph Construction For Image Representation,
ICIP20(1956-1960)
IEEE DOI
2011
Kernel, Windows, Image edge detection,
Image representation, Adaptation models, Image representation,
Graph Signal Processing.
BibRef
Abelé, R.,
Damoiseaux, J.L.,
Fronte, D.,
Liardet, P.Y.,
Boď, J.M.,
Merad, D.,
Graph Matching Applied For Textured Pattern Recognition,
ICIP20(1451-1455)
IEEE DOI
2011
Integrated circuits, Image edge detection, Noise measurement,
Robustness, Shape, Tensile stress, Labeling, Graph matching,
superincreasing series
BibRef
Li, Y.Z.[Yong-Zhi],
Zhang, D.[Duo],
Mu, Y.D.[Ya-Dong],
Visual-Semantic Matching by Exploring High-Order Attention and
Distraction,
CVPR20(12783-12792)
IEEE DOI
2008
Semantics, Visualization, Task analysis, Computational modeling,
Image edge detection, Proposals
BibRef
Yu, T.,
Yan, J.,
Li, B.,
Determinant Regularization for Gradient-Efficient Graph Matching,
CVPR20(7121-7130)
IEEE DOI
2008
Optimization, Entropy, Tensile stress,
Task analysis, Benchmark testing, Graphics
BibRef
Birdal, T.[Tolga],
Arbel, M.[Michael],
Simsekli, U.[Umut],
Guibas, L.J.[Leonidas J.],
Synchronizing Probability Measures on Rotations via Optimal Transport,
CVPR20(1566-1576)
IEEE DOI
2008
Synchronization, Quaternions, Atmospheric measurements,
Particle measurements, Rotation measurement, Manifolds
BibRef
Raboh, M.[Moshiko],
Herzig, R.[Roei],
Berant, J.[Jonathan],
Chechik, G.[Gal],
Globerson, A.[Amir],
Differentiable Scene Graphs,
WACV20(1477-1486)
IEEE DOI
2006
Task analysis, Cognition, Visualization, Feature extraction,
Proposals, Image edge detection, Training
BibRef
Liu, S.F.[Si-Fei],
Li, X.T.[Xue-Ting],
Jampani, V.[Varun],
Mello, S.[Shalini],
Kautz, J.[Jan],
Learning Propagation for Arbitrarily-Structured Data,
ICCV19(652-661)
IEEE DOI
2004
superpixels, point clouds.
graph theory, image segmentation,
learning (artificial intelligence), object detection, CNN, SGPN,
Convolution
BibRef
Suhail, M.,
Sigal, L.,
Mixture-Kernel Graph Attention Network for Situation Recognition,
ICCV19(10362-10371)
IEEE DOI
2004
graph theory, image motion analysis, image representation,
inference mechanisms, learning (artificial intelligence), Training
BibRef
Li, Y.M.[Yi-Ming],
Yang, X.S.[Xiao-Shan],
Xu, C.S.[Chang-Sheng],
Structured Neural Motifs: Scene Graph Parsing via Enhanced Context,
MMMod20(II:175-188).
Springer DOI
2003
BibRef
Zhang, J.[Ji],
Shih, K.J.[Kevin J.],
Elgammal, A.[Ahmed],
Tao, A.[Andrew],
Catanzaro, B.[Bryan],
Graphical Contrastive Losses for Scene Graph Parsing,
CVPR19(11527-11535).
IEEE DOI
2002
BibRef
Kim, S.[Seungryong],
Min, D.B.[Dong-Bo],
Jeong, S.[Somi],
Kim, S.[Sunok],
Jeon, S.[Sangryul],
Sohn, K.H.[Kwang-Hoon],
Semantic Attribute Matching Networks,
CVPR19(12331-12340).
IEEE DOI
2002
BibRef
Matejek, B.[Brian],
Haehn, D.[Daniel],
Zhu, H.D.[Hai-Dong],
Wei, D.L.[Dong-Lai],
Parag, T.[Toufiq],
Pfister, H.[Hanspeter],
Biologically-Constrained Graphs for Global Connectomics Reconstruction,
CVPR19(2084-2093).
IEEE DOI
2002
BibRef
González, V.,
Ortega, A.,
Multi-Resolution Spectral Graph Matching,
ICIP19(2319-2323)
IEEE DOI
1910
Graph matching, spectral graph theory, Graph Signal Processing,
multi-resolution systems
BibRef
Douze, M.[Matthijs],
Sablayrolles, A.[Alexandre],
Jégou, H.[Hervé],
Link and Code: Fast Indexing with Graphs and Compact Regression Codes,
CVPR18(3646-3654)
IEEE DOI
1812
BibRef
Zellers, R.[Rowan],
Yatskar, M.[Mark],
Thomson, S.[Sam],
Choi, Y.J.[Ye-Jin],
Neural Motifs: Scene Graph Parsing with Global Context,
CVPR18(5831-5840)
IEEE DOI
1812
Visualization, Head, Genomics, Bioinformatics, Semantics,
Image edge detection, Wheels
BibRef
Kurzejamski, G.[Grzegorz],
Iwanowski, M.[Marcin],
Selective and Simple Graph Structures for Better Description of Local
Point-Based Image Features,
ICCVG18(125-136).
Springer DOI
1810
BibRef
Rayar, F.[Frédéric],
Uchida, S.[Seiichi],
An Image-Based Representation for Graph Classification,
SSSPR18(140-149).
Springer DOI
1810
BibRef
Zhou, X.[Xiong],
Wang, H.Z.[Han-Zi],
Xiao, G.B.[Guo-Bao],
Wang, X.[Xing],
Yan, Y.[Yan],
Zhang, L.M.[Li-Ming],
Weighted median-shift on graphs for geometric model fitting,
ICIP17(555-559)
IEEE DOI
1803
Adaptation models, Computational modeling, Data models, Estimation,
Kernel, Standards, Weight measurement, geometric model fitting,
weighted median-shift
BibRef
Drees, D.[Dominik],
Scherzinger, A.[Aaron],
Jiang, X.Y.[Xiao-Yi],
GERoMe: A Novel Graph Extraction Robustness Measure,
GbRPR17(73-82).
Springer DOI
1706
Graph structure from vector data.
BibRef
Schiavinato, M.[Michele],
Torsello, A.[Andrea],
Synchronization Over the Birkhoff Polytope for Multi-graph Matching,
GbRPR17(266-275).
Springer DOI
1706
BibRef
de Ita Luna, G.[Guillermo],
Marcial-Romero, J.R.[J. Raymundo],
Hernández, J.A.,
Valdovinos, R.M.[Rosa Maria],
Romero, M.[Marcelo],
Extending Extremal Polygonal Arrays for the Merrifield-Simmons Index,
MCPR17(22-31).
Springer DOI
1706
Intrinsic properties of molecular graphs.
BibRef
Miyazaki, T.,
Omachi, S.,
Graph model boosting for structural data recognition,
ICPR16(1707-1712)
IEEE DOI
1705
Approximation algorithms, Boosting, Data models,
Probability, Probability density function,
Training, data
BibRef
Som, A.[Anirudh],
Anirudh, R.[Rushil],
Wang, Q.[Qiao],
Turaga, P.K.[Pavan K.],
Riemannian Geometric Approaches for Measuring Movement Quality,
DIFF-CV16(1005-1005)
IEEE DOI
1612
BibRef
Anirudh, R.,
Venkataraman, V.,
Ramamurthy, K.N.,
Turaga, P.K.,
A Riemannian Framework for Statistical Analysis of Topological
Persistence Diagrams,
DIFF-CV16(1023-1031)
IEEE DOI
1612
BibRef
Bai, S.[Song],
Sun, S.Y.[Shao-Yan],
Bai, X.[Xiang],
Zhang, Z.X.[Zhao-Xiang],
Tian, Q.[Qi],
Smooth Neighborhood Structure Mining on Multiple Affinity Graphs with
Applications to Context-Sensitive Similarity,
ECCV16(II: 592-608).
Springer DOI
1611
Diffusion process on graph.
BibRef
Yue, H.[Han],
Zhu, X.Y.[Xin-Yan],
Chen, D.[Di],
Liu, L.J.[Ling-Jia],
A Multi-scale Settlement Matching Algorithm Based on ARG,
ISPRS16(B2: 139-143).
DOI Link
1610
Attributed Relational Graph.
BibRef
Doersch, C.[Carl],
Gupta, A.[Abhinav],
Efros, A.A.[Alexei A.],
Doersch, C.,
Gupta, A.,
Efros, A.A.,
Unsupervised Visual Representation Learning by Context Prediction,
ICCV15(1422-1430)
IEEE DOI
1602
Context. Train to predict first patch relative to second. Find similarities.
BibRef
Wong, A.[Alex],
Yuille, A.L.,
One Shot Learning via Compositions of Meaningful Patches,
ICCV15(1197-1205)
IEEE DOI
1602
Dictionary of image patches represent components of an object.
BibRef
Castaldo, F.[Francesco],
Zamir, A.,
Angst, R.,
Palmieri, F.A.N.[Francesco A.N.],
Savarese, S.,
Semantic Cross-View Matching,
SatStreet15(1044-1052)
IEEE DOI
1602
Cameras. Matching the descriptors rather than image values.
BibRef
Li, W.[Wei],
Wang, C.H.[Chang-Hu],
Zhang, L.[Lei],
Rui, Y.[Yong],
Zhang, B.[Bo],
Scalable Visual Instance Mining with Instance Graph,
BMVC15(xx-yy).
DOI Link
1601
automatically discover frequently appearing visual instances.
BibRef
Xu, L.X.[Li-Xiang],
Xie, J.[Jin],
Wang, X.F.[Xiao-Feng],
Luo, B.[Bin],
A Mixed Weisfeiler-Lehman Graph Kernel,
GbRPR15(242-251).
Springer DOI
1511
BibRef
Essa, E.[Ehab],
Xie, X.H.[Xiang-Hua],
Jones, J.L.[Jonathan-Lee],
Graph Based Lymphatic Vessel Wall Localisation and Tracking,
GbRPR15(345-354).
Springer DOI
1511
BibRef
Nematollahi, M.[Maryam],
Zhang, X.P.[Xiao-Ping],
A new robust context-based dense CRF model for image labeling,
ICIP14(5876-5880)
IEEE DOI
1502
Computational modeling
BibRef
Dornaika, F.[Fadi],
Bosaghzadeh, A.[Alireza],
Salmane, H.[Houssam],
Ruichek, Y.[Yassine],
Locality Constrained Encoding Graph Construction and Application to
Outdoor Object Classification,
ICPR14(2483-2488)
IEEE DOI
1412
Databases
BibRef
Paragios, N.[Nikos],
Komodakis, N.[Nikos],
Discrete Visual Perception,
ICPR14(18-25)
IEEE DOI
1412
Biological system modeling
BibRef
Pinheiro, M.A.[Miguel Amável],
Kybic, J.[Jan],
Path Descriptors for Geometric Graph Matching and Registration,
ICIAR14(I: 3-11).
Springer DOI
1410
BibRef
Cho, M.S.[Min-Su],
Sun, J.[Jian],
Duchenne, O.[Olivier],
Ponce, J.[Jean],
Finding Matches in a Haystack: A Max-Pooling Strategy for Graph
Matching in the Presence of Outliers,
CVPR14(2091-2098)
IEEE DOI
1409
feature correspondence; graph matching; max pooling; outlier rejection
BibRef
Hu, N.[Nan],
Rustamov, R.M.[Raif M.],
Guibas, L.J.[Leonidas J.],
Stable and Informative Spectral Signatures for Graph Matching,
CVPR14(2313-2320)
IEEE DOI
1409
BibRef
Earlier:
Graph Matching with Anchor Nodes: A Learning Approach,
CVPR13(2906-2913)
IEEE DOI
1309
BibRef
Skoura, A.[Angeliki],
Nuzhnaya, T.[Tatyana],
Bakic, P.R.[Predrag R.],
Megalooikonomou, V.[Vasilis],
Detecting and Localizing Tree Nodes in Anatomic Structures of Branching
Topology,
ICIAR13(485-493).
Springer DOI
1307
BibRef
Chen, H.[Hao],
Sun, J.[Jitao],
Model construction of mix-valued logical network via observed data,
ICARCV12(413-417).
IEEE DOI
1304
BibRef
Chen, L.[Lifei],
Wang, S.R.[Sheng-Rui],
Yan, X.H.[Xuan-Hui],
Centroid-based clustering for graph datasets,
ICPR12(2144-2147).
WWW Link.
1302
BibRef
Albarelli, A.,
Bergamasco, F.,
Rossi, L.,
Vascon, S.,
Torsello, A.,
A stable graph-based representation for object recognition through
high-order matching,
ICPR12(3341-3344).
WWW Link.
1302
BibRef
Rubio, J.C.[Jose C.],
Serrat, J.[Joan],
Lopez, A.[Antonio],
Paragios, N.[Nikos],
Image contextual representation and matching through hierarchies and
higher order graphs,
ICPR12(2664-2667).
WWW Link.
1302
BibRef
Su, J.[Jiang],
Dong, L.[Le],
Ren, P.[Peng],
Hancock, E.R.[Edwin R.],
Hypergraph matching based on Marginalized Constrained Compatibility,
ICPR12(2922-2925).
WWW Link.
1302
BibRef
Donoser, M.[Michael],
Urschler, M.[Martin],
Bischof, H.[Horst],
Learning Edge-Specific Kernel Functions For Pairwise Graph Matching,
BMVC12(17).
DOI Link
1301
BibRef
Gould, S.[Stephen],
Zhang, Y.H.[Yu-Hang],
PatchMatchGraph: Building a Graph of Dense Patch Correspondences for
Label Transfer,
ECCV12(V: 439-452).
Springer DOI
1210
BibRef
Srinivas, U.[Umamahesh],
Monga, V.[Vishal],
Raj, R.G.[Raghu G.],
Automatic target recognition using discriminative graphical models,
ICIP11(33-36).
IEEE DOI
1201
BibRef
Wang, D.H.[Dong-Hui],
Deng, X.[Xiao],
Learning structural conjunction of image content by sparse graphical
model,
ICIP11(45-48).
IEEE DOI
1201
BibRef
Wang, H.[Hua],
Nie, F.P.[Fei-Ping],
Huang, H.[Heng],
Ding, C.[Chris],
Heterogeneous Visual Features Fusion via Sparse Multimodal Machine,
CVPR13(3097-3102)
IEEE DOI
1309
Data Integration; Structured Sparsity; Visual Features Fusion
BibRef
Wang, H.[Hua],
Nie, F.P.[Fei-Ping],
Cai, W.D.[Wei-Dong],
Huang, H.[Heng],
Semi-supervised Robust Dictionary Learning via Efficient l-Norms
Minimization,
ICCV13(1145-1152)
IEEE DOI
1403
Dictionary Learning
BibRef
Nie, F.P.[Fei-Ping],
Wang, H.[Hua],
Huang, H.[Heng],
Ding, C.[Chris],
Unsupervised and semi-supervised learning via l1-norm graph,
ICCV11(2268-2273).
IEEE DOI
1201
BibRef
Wang, H.[Hua],
Huang, H.[Heng],
Ding, C.[Chris],
Multi-label Feature Transform for Image Classifications,
ECCV10(IV: 793-806).
Springer DOI
1009
For dealing with annotation problems. multi-label, multi-class.
BibRef
Wang, H.[Hua],
Ding, C.[Chris],
Huang, H.[Heng],
Multi-label Linear Discriminant Analysis,
ECCV10(VI: 126-139).
Springer DOI
1009
BibRef
Strug, B.[Barbara],
Using Kernels on Hierarchical Graphs in Automatic Classification of
Designs,
GbRPR11(335-344).
Springer DOI
1105
Evaluate designs in CAD system.
BibRef
Wang, A.[Aiping],
Li, S.[Sikun],
Zeng, L.[Liang],
Multiple Order Graph Matching,
ACCV10(III: 471-482).
Springer DOI
1011
BibRef
Su, B.Y.[Bor-Yiing],
Brutch, T.G.[Tasneem G.],
Keutzer, K.[Kurt],
A parallel region based object recognition system,
WACV11(81-88).
IEEE DOI
1101
BibRef
Earlier:
Parallel BFS graph traversal on images using structured grid,
ICIP10(4489-4492).
IEEE DOI
1009
Breadth first search.
BibRef
Wang, S.J.[Shi-Jun],
Petrick, N.[Nicholas],
van Uitert, R.L.[Robert L.],
Periaswamy, S.[Senthil],
Summers, R.M.[Ronald M.],
Graph matching based on mean field theory,
ICIP10(1893-1896).
IEEE DOI
1009
BibRef
Zass, R.[Ron],
Shashua, A.[Amnon],
Probabilistic graph and hypergraph matching,
CVPR08(1-8).
IEEE DOI
0806
See also Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization.
BibRef
Zass, R.[Ron],
Shashua, A.[Amnon],
Nonnegative Sparse PCA,
NIPS07(xx-yy).
BibRef
0700
Zass, R.[Ron],
Shashua, A.[Amnon],
A Unifying Approach to Hard and Probabilistic Clustering,
ICCV05(I: 294-301).
IEEE DOI
0510
Analysis of clustering approaches.
BibRef
Fan, N.[Na],
Feature-Based Partially Occluded Object Recognition,
ICPR10(3001-3004).
IEEE DOI
1008
Geometry, color, texture
BibRef
Revaud, J.[Jerome],
Lavoué, G.[Guillaume],
Ariki, Y.[Yasuo],
Baskurt, A.[Atilla],
Learning an Efficient and Robust Graph Matching Procedure for Specific
Object Recognition,
ICPR10(754-757).
IEEE DOI
1008
BibRef
And:
Scale-invariant proximity graph for fast probabilistic object
recognition,
CIVR10(414-421).
DOI Link
1007
BibRef
Earlier:
Fast and cheap object recognition by linear combination of views,
CIVR07(194-201).
DOI Link
0707
BibRef
Gu, S.[Steve],
Tomasi, C.[Carlo],
Branch and track,
CVPR11(1169-1174).
IEEE DOI
1106
BibRef
Gu, S.[Steve],
Zheng, Y.[Ying],
Tomasi, C.[Carlo],
Twisted window search for efficient shape localization,
CVPR12(167-173).
IEEE DOI
1208
BibRef
And:
Critical Nets and Beta-Stable Features for Image Matching,
ECCV10(III: 663-676).
Springer DOI
1009
Combine Bag of features and constellation descriptors.
BibRef
Croonen, G.[Gerardus],
Beleznai, C.[Csaba],
Detection of Near-Regular Object Configurations by Elastic Graph Search,
ICCVG10(I: 283-291).
Springer DOI
1009
Configurations with substantial clutter.
BibRef
Arun, R.,
Suresh, V.,
Madhavan, C.E.V.[C.E. Veni],
Clustering in Concept Association Networks,
PReMI09(86-91).
Springer DOI
0912
BibRef
Li, X.[Xi],
Hu, W.M.[Wei-Ming],
Zhang, Z.F.[Zhong-Fei],
Liu, Y.[Yang],
Spectral Graph Partitioning Based on a Random Walk Diffusion Similarity
Measure,
ACCV09(II: 667-676).
Springer DOI
0909
BibRef
Morrison, P.[Paul],
Zou, J.J.[Ju Jia],
Efficient hierarchical graph matching,
ICIP09(445-448).
IEEE DOI
0911
BibRef
Shi, D.C.[Dong-Cheng],
Yan, G.Q.[Guo-Qing],
Maximally Stable Color Regions Based Natural Scene Recognition,
CISP09(1-5).
IEEE DOI
0910
BibRef
Prankl, J.[Johann],
Zillich, M.[Michael],
Leibe, B.[Bastian],
Vincze, M.[Markus],
Incremental Model Selection for Detection and Tracking of Planar
Surfaces,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Prankl, J.[Johann],
Antenreiter, M.[Martin],
Auer, P.[Peter],
Vincze, M.[Markus],
Consistent Interpretation of Image Sequences to Improve Object Models
on the Fly,
CVS09(384-393).
Springer DOI
0910
Track multiple objects with occlusions. Build graph based description.
Add and remove interest points via reasoning.
BibRef
Vasconcelos, C.N.[Cristina Nader],
Rosenhahn, B.[Bodo],
Bipartite Graph Matching Computation on GPU,
EMMCVPR09(42-55).
Springer DOI
0908
BibRef
Kunegis, J.[Jerome],
Lommatzsch, A.[Andreas],
Bauckhage, C.[Christian],
Alternative similarity functions for graph kernels,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jalali, M.[Mehrdad],
Mustapha, N.[Norwati],
Mamat, A.[Ali],
Sulaiman, M.N.B.[M. Nasir B.],
A new clustering approach based on graph partitioning for navigation
patterns mining,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Lee, W.J.[Wan-Jui],
Duin, R.P.W.[Robert P. W.],
An Inexact Graph Comparison Approach in Joint Eigenspace,
SSPR08(35-44).
Springer DOI
0812
BibRef
Shin, D.J.[Dong-Joe],
Tjahjadi, T.[Tardi],
Similarity Invariant Delaunay Graph Matching,
SSPR08(25-34).
Springer DOI
0812
BibRef
Pohl, M.[Mathias],
Birke, P.[Peter],
Interactive Exploration of Large Dynamic Networks,
Visual08(xx-yy).
Springer DOI
0809
BibRef
George, B.[Betsy],
Shekhar, S.[Shashi],
Modeling Spatio-temporal Network Computations: A Summary of Results,
GS07(177-194).
Springer DOI
0711
BibRef
Fazl-Ersi, E.[Ehsan],
Zelek, J.S.[John S.],
Region detection and description for Object Category Recognition,
CRV07(321-328).
IEEE DOI
0705
BibRef
Fazl-Ersi, E.[Ehsan],
Zelek, J.S.[John S.],
Local Graph Matching for Object Category Recognition,
CRV07(73-80).
IEEE DOI
0705
BibRef
Declercq, A.[Arnaud],
Piater, J.H.[Justus H.],
Affine Warp Propagation for Fast Simultaneous Modelling and Tracking of
Articulated Objects,
ACCV10(III: 422-435).
Springer DOI
1011
BibRef
Declercq, A.[Arnaud],
Piater, J.H.[Justus H.],
On-line Simultaneous Learning and Tracking of Visual Feature Graphs,
Learning07(1-6).
IEEE DOI
0706
BibRef
Gokalp, D.[Demir],
Aksoy, S.[Selim],
Scene Classification Using Bag-of-Regions Representations,
BP07(1-8).
IEEE DOI
0706
BibRef
Lu, H.,
Ghanbari, M.,
Woods, J.,
Establishing Object Correspondences by Utilizing Surrounding
Information,
ICIP06(1813-1816).
IEEE DOI
0610
BibRef
Xu, Z.J.[Zi-Jian],
Luo, J.B.[Jie-Bo],
Face Recognition by Expression-Driven Sketch Graph Matching,
ICPR06(III: 1119-1122).
IEEE DOI
0609
BibRef
Pawan Kumar, M.,
Torr, P.H.S.,
Zisserman, A.,
Extending Pictorial Structures for Object Recognition,
BMVC04(xx-yy).
HTML Version.
0508
Deformable object recognition.
Graph model, boundary and texture.
BibRef
Bart, E.[Evgeniy],
Ullman, S.[Shimon],
Cross-Generalization: Learning Novel Classes from a Single Example by
Feature Replacement,
CVPR05(I: 672-679).
IEEE DOI
0507
BibRef
And:
Single-example learning of novel classes using representation by
similarity,
BMVC05(xx-yy).
HTML Version.
0509
Add a new class. find the distinguising features.
BibRef
Jiang, H.[Hui],
Ngo, C.W.[Chong-Wah],
Graph based image matching,
ICPR04(III: 658-661).
IEEE DOI
0409
BibRef
Lee, R.L.,
Marrs, A.,
Webb, A.,
Webber, H.,
Using graphs for statistical object models,
ICIP03(I: 273-276).
IEEE DOI
0312
BibRef
Isard, M.,
PAMPAS: Real-Valued Graphical Models for Computer Vision,
CVPR03(I: 613-620).
IEEE DOI
0307
BibRef
El Badawy, O.,
Kamel, M.,
Shape retrieval using concavity trees,
ICPR04(III: 111-114).
IEEE DOI
0409
BibRef
El Badawy, O.,
Kamel, M.,
Shape representation using concavity graphs,
ICPR02(III: 461-464).
IEEE DOI
0211
BibRef
Peura, M.[Markus],
Flexible Heuristic Matching of Attribute Trees,
SCIA01(O-Th1).
0206
BibRef
And:
(Listed Twice?)
SCIA01(O-Tu4A).
0206
BibRef
Earlier:
Attribute Trees In Image Analysis:
Heuristic Matching and Learning Techniques,
CIAP99(1160-1165).
IEEE DOI
9909
BibRef
Peura, M.,
Visa, A.,
Kostamo, P.,
A New Approach to Land-Based Cloud Classification,
ICPR96(IV: 143-147).
IEEE DOI
9608
(Helsinki Univ. of Technology, SF)
BibRef
Massey, S.[Simon],
Jones, G.A.[Graeme A.],
Decomposition and Hierarchy: Efficient Structural Matching of Large
Multi-scale Representations,
ScaleSpace99(495-500).
BibRef
9900
Sainath, S.,
Sarkar, S.,
An approximate algorithm for structural matching of images,
ICIP98(I: 798-802).
IEEE DOI
9810
BibRef
Watanabe, Y.,
Takahashi, K.,
A fast structural matching and its application to pattern analysis of
2-D electrophoresis images,
ICIP98(III: 804-808).
IEEE DOI
9810
BibRef
Wu, A.Y.[Angela Y.],
Rosenfeld, A.[Azriel],
Geodesic Visibility in Graphs,
UMD--TR3800, May 1997.
WWW Link.
WWW Link.
BibRef
9705
Umeki, H.,
Mizutani, H.,
Dynamic Link Matching for Multiple Object Recognition,
ICPR96(IV: 65-69).
IEEE DOI
9608
(Real World Computing Partners, J)
BibRef
Pulli, K.,
Shapiro, L.G.,
Triplet-Based Object Recognition Using Synthetic and
Real Probability Models,
ICPR96(IV: 75-79).
IEEE DOI
9608
(Univ. of Washington, USA)
BibRef
Kinoshita, H.,
An image digital signature system with ZKIP for the graph isomorphism,
ICIP96(III: 247-250).
IEEE DOI
9610
BibRef
Wang, J.T.L.,
Zhang, K.,
Chirn, G.W.,
The Approximate Graph Matching Problem,
ICPR94(B:284-288).
IEEE DOI
BibRef
9400
Wang, C.H.[Cai-Hua],
Abe, K.[Keiichi],
Region Correspondence by Inexact Attributed Planar Graph Matching,
ICCV95(440-447).
IEEE DOI Says more than it does.
BibRef
9500
Wang, C.H.[Cai-Hua],
Abe, K.[Keiichi],
Region Correspondence for Color Scene Images Taken
from Different Viewpoints,
MVA94(26-29).
Geometric relations only.
BibRef
9400
Pik, J.,
Structural patterns or discrete events? A link between pattern
recognition and discrete-event systems,
ICPR92(II:290-293).
IEEE DOI
9208
BibRef
Gaudron, I.,
2D objects recognition by graph matching,
ICPR92(II:508-511).
IEEE DOI
9208
BibRef
Esposito, F.,
Malerba, D.,
Semeraro, G.,
Flexible Matching for Noisy Structural Descriptions,
IJCAI91(658-664).
BibRef
9100
Wang, X.J.[Xiao-Jun],
Fu, J.[Jie],
Wu, L.D.[Li-De],
A matching algorithm based on hierarchical primitive structure,
ICPR90(I: 285-287).
IEEE DOI
9006
BibRef
Yang, H.[Hefei],
Tai, J.W.[Ju-Wei],
On isomorphisms of attributed relational graphs for pattern analysis
and a new branch and bound algorithm,
ICPR88(II: 957-959).
IEEE DOI
8811
BibRef
Granger, C.,
Symbolic Scene Matching,
ICPR84(883-885).
BibRef
8400
Khan, N.A.,
Jain, R.,
Matching an Imprecise Object Description with Models in a
Knowledge Base,
ICPR84(1131-1134).
BibRef
8400
Diamond, M.D.,
Narasimhamurthi, N., and
Ganapathy, S.,
A Systematic Approach to Continuous Graph Labeling with
Application to Computer Vision,
AAAI-82(50-54).
BibRef
8200
Tanimoto, S.L., and
Pavlidis, T.,
Graph Labelling Algorithms for Picture Analysis,
ICPR76(749-752).
BibRef
7600
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Scene Graph Construction, Scene Graph Generation .