Haralick, R.M.,
Nelson, A.,
Kim, Y.,
Anderson, P.,
Johnson, R., and
DeSoto, L.,
Stereo and Multiplanar Video Display of 3-D
Magnetic Resonance Image Data,
),
JIT(15), No. 2, April, 1989, pp. 74-78.
BibRef
8904
Snyder, W.E.,
Logenthiran, A.,
Santago, P.,
Link, K.,
Bilbro, G.L.,
Rajala, S.,
Segmentation of magnetic resonance images using mean field annealing,
IVC(10), No. 6, July-August 1992, pp. 361-368.
Elsevier DOI
0401
BibRef
Han, Y.S.[Youn-Sik],
Snyder, W.E.[Wesley E.],
Bilbro, G.L.[Griff L.],
Discontinuity-Preserving Vector Smoothing of Multivariate MR Images
Using Vector Mean Field Annealing,
JMIV(9), No. 3, November 1998, pp. 199-212.
DOI Link
BibRef
9811
Bezdek, J.C.,
Hall, L.O.,
Clarke, L.P.,
Review of MR image segmentation techniques using pattern recognition,
MedPhys(20), No. 4, July/August 1993, pp. 1033-1048.
BibRef
9307
Toulson, D.L.,
Boyce, J.F.,
Segmentation of MR images using neural nets,
IVC(10), No. 5, June 1992, pp. 324-328.
Elsevier DOI
0401
BibRef
Earlier:
BMVC91(xx-yy).
PDF File.
9109
BibRef
de Munck, J.C.,
Bhagwandien, R.,
Muller, S.H.,
Verster, F.C.,
van Herk, M.B.,
The computation of MR image distortions caused by tissue susceptibility
using the boundary element method,
MedImg(15), No. 5, October 1996, pp. 620-627.
IEEE Top Reference.
0203
BibRef
Nosratinia, A.,
Mohsenian, N.,
Orchard, M.T.,
Liu, B.,
Interframe coding of magnetic resonance images,
MedImg(15), No. 5, October 1996, pp. 639-647.
IEEE Top Reference.
0203
BibRef
Earlier: A1, A3, A2, A4:
Interslice coding of magnetic resonance images using deformable
triangular patches,
ICIP94(II: 898-902).
IEEE DOI
9411
BibRef
Orchard, M.T.,
Nosratinia, A.,
Rajagopalan, R.,
On interframe coding models for volumetric medical data,
ICIP95(II: 17-20).
IEEE DOI
9510
BibRef
Laidlaw, D.H.,
Fleischer, K.W.,
Barr, A.H.,
Partial Volume Bayesian Classification of Material Mixtures in MR
Volume Data Using Voxel Histograms,
MedImg(17), No. 1, February 1998, pp. 74-86.
IEEE Top Reference.
9806
BibRef
Lelieveldt, B.P.F.[Boudewijn P. F.],
Sonka, M.[Milan],
Bolinger, L.[Lizann],
Scholz, T.D.[Thomas D.],
Kayser, H.[Hein],
van der Geest, R.[Rob],
Reiber, J.H.C.[Johan H. C.],
Anatomical Modeling with Fuzzy Implicit Surface Templates:
Application to Automated Localization of the Heart and Lungs in
Thoracic MR Volumes,
CVIU(80), No. 1, October 2000, pp. 1-20.
DOI Link
0010
BibRef
Styner, M.,
Brechbuhler, C.,
Szckely, G.,
Gerig, G.,
Parametric estimate of intensity inhomogeneities applied to MRI,
MedImg(19), No. 3, March 2000, pp. 153-165.
IEEE Top Reference.
0110
BibRef
Wilson, D.L.,
Noble, J.A.,
An adaptive segmentation algorithm for time-of-flight MRA data,
MedImg(18), No. 10, October 1999, pp. 938-945.
IEEE Top Reference.
0110
BibRef
Gao, Y.[Yun],
Reeves, S.J.,
Fast k-space sample selection in MRSI with a limited region of support,
MedImg(20), No. 9, September 2001, pp. 868-876.
IEEE Top Reference.
0110
BibRef
van der Weide, R.,
Bakker, C.J.,
Viergever, M.A.,
Localization of intravascular devices with paramagnetic markers in MR
images,
MedImg(20), No. 10, October 2001, pp. 1061-1071.
IEEE Top Reference.
0111
BibRef
Ashton, E.A.,
Parker, K.J.,
Berg, M.J.,
Chen, C.W.[Chang Wen],
A novel volumetric feature extraction technique with applications to MR
images,
MedImg(16), No. 4, August 1997, pp. 365-371.
IEEE Top Reference.
0205
BibRef
Earlier:
ICIP95(III: 564-567).
IEEE DOI
9510
BibRef
Ashton, E.A.,
Berg, M.J.,
Parker, K.J.,
Weisberg, J.,
Chen, C.W.[Chang Wen],
Ketonen, L.,
Segmentation and features extraction techniques, with applications to
biomedical images,
ICIP94(III: 726-730).
IEEE DOI
9411
BibRef
Ashton, E.A.,
Molinelli, L.,
Totterman, S.,
Parker, K.J.,
Evaluation of reproducibility for manual and semi-automated feature
extraction in CT and MR images,
ICIP02(III: 161-164).
IEEE DOI
0210
BibRef
Chang, J.[Jenghwa],
Graber, H.L.,
Koo, P.C.[Ping Chen],
Aronson, R.,
Barbour, S.L.S.,
Barbour, R.L.,
Optical imaging of anatomical maps derived from magnetic resonance
images using time-independent optical sources,
MedImg(16), No. 1, February 1997, pp. 68-77.
IEEE Top Reference.
0205
BibRef
Pham, D.L.[Dzung L.],
Prince, J.L.[Jerry L.],
An adaptive fuzzy C-means algorithm for image segmentation in the
presence of intensity inhomogeneities,
PRL(20), No. 1, January 1999, pp. 57-68.
BibRef
9901
Pham, D.L.,
Prince, J.L.,
Adaptive fuzzy segmentation of magnetic resonance images,
MedImg(18), No. 9, September 1999, pp. 737-752.
IEEE Top Reference.
0110
BibRef
Pham, D.L.[Dzung L.],
Fuzzy Fractal Analysis of Molecular Imaging Data,
PIEEE(96), No. 8, August 2008, pp. 1332-1347.
IEEE DOI
0804
BibRef
Pham, D.L.[Dzung L.],
Spatial Models for Fuzzy Clustering,
CVIU(84), No. 2, November 2001, pp. 285-297.
DOI Link
0203
BibRef
Earlier:
Fuzzy clustering with spatial constraints,
ICIP02(II: 65-68).
IEEE DOI
0210
BibRef
Earlier:
Edge-adaptive Clustering for Unsupervised Image Segmentation,
ICIP00(Vol I: 816-819).
IEEE DOI
0008
BibRef
Hiltner, J.,
Fathi, M.,
Reusch, B.,
An approach to use linguistic and model-based fuzzy expert knowledge
for the analysis of MRT images,
IVC(19), No. 4, March 2001, pp. 195-206.
Elsevier DOI
0102
BibRef
And:
Erratum:
IVC(19), No. 13, November 2001, pp. 1021.
Elsevier DOI
0111
BibRef
Ahmed, M.N.,
Yamany, S.M.,
Mohamed, N.,
Farag, A.A.,
Moriarty, T.,
A modified fuzzy C-means algorithm for bias field estimation and
segmentation of MRI data,
MedImg(21), No. 3, March 2002, pp. 193-199.
IEEE Top Reference.
0205
BibRef
Ahmed, M.N.,
Yamany, S.M.,
Farag, A.A.,
Moriarty, T.,
Bias Field Estimation and Adaptive Segmentation of MRI Data Using a
Modified Fuzzy C-Means Algorithm,
CVPR99(I: 250-255).
IEEE DOI
BibRef
9900
Tang, M.X.[Meng-Xing],
Wang, W.[Wei],
Wheeler, J.,
McCormick, M.,
Dong, X.Z.[Xiu-Zhen],
Effects of incompatible boundary information in EIT on the convergence
behavior of an iterative algorithm,
MedImg(21), No. 6, June 2002, pp. 620-628.
IEEE Top Reference.
0208
BibRef
Menegaz, G.,
Thiran, J.P.,
Lossy to lossless object-based coding of 3-d MRI data,
IP(11), No. 9, September 2002, pp. 1053-1061.
IEEE DOI
0210
BibRef
Chen, Y.S.[Ya-Sheng],
Amini, A.A.,
A MAP Framework for Tag Line Detection in SPAMM Data Using Markov
Random Fields on the B-Spline Solid,
MedImg(21), No. 9, September 2002, pp. 1110-1122.
IEEE Top Reference.
0301
BibRef
Earlier:
MMBIA01(xx-yy).
0110
BibRef
Chavez, S.,
Xiang, Q.S.[Qing-San],
An, L.[Li],
Understanding phase maps in MRI: a new cutline phase unwrapping method,
MedImg(21), No. 8, August 2002, pp. 966-977.
IEEE Top Reference.
0301
BibRef
Rohr, K.[Karl],
Extraction of 3d anatomical point landmarks based on invariance
principles,
PR(32), No. 1, January 1999, pp. 3-15.
Elsevier DOI
See also Evaluation of 3D Operators for the Detection of Anatomical Point Landmarks in MR and CT Images.
BibRef
9901
Frantz, S.[Sönke],
Rohr, K.[Karl],
Stiehl, H.S.[H. Siegfried],
Development and validation of a multi-step approach to improved
detection of 3D point landmarks in tomographic images,
IVC(23), No. 11, 1 October 2005, pp. 956-971.
Elsevier DOI
0510
BibRef
Earlier:
Multi-Step Procedures for the Localization of 2-D and 3-D Point Landmarks
and Automatic ROI Size Selection,
ECCV98(I: 687).
Springer DOI
BibRef
Wang, C.M.[Chuin-Mu],
Chen, C.C.C.[Clayton Chi-Chang],
Chung, Y.N.[Yi-Nung],
Yang, S.C.[Sheng-Chih],
Chung, P.C.[Pau-Choo],
Yang, C.W.[Ching-Wen],
Chang, C.I.[Chein-I.],
Detection of spectral signatures in multispectral MR images for
classification,
MedImg(22), No. 1, January 2003, pp. 50-61.
IEEE Top Reference.
0304
BibRef
Basser, P.J.,
Pajevic, S.,
A Normal Distribution for Tensor-Valued Random Variables:
Applications to Diffusion Tensor MRI,
MedImg(22), No. 7, July 2003, pp. 785-794.
IEEE Abstract.
0308
BibRef
Liew, A.W.C.,
Yan, H.[Hong],
An adaptive spatial fuzzy clustering algorithm for 3-D MR image
segmentation,
MedImg(22), No. 9, September 2003, pp. 1063-1075.
IEEE Abstract.
0309
BibRef
Sato, Y.,
Tanaka, H.,
Nishii, T.,
Nakanishi, K.,
Sugano, N.,
Kubota, T.,
Nakamura, H.,
Yoshikawa, H.,
Ochi, T.,
Tamura, S.,
Limits on the accuracy of 3-D thickness measurement in magnetic
resonance images- Effects of voxel anisotropy,
MedImg(22), No. 9, September 2003, pp. 1076-1088.
IEEE Abstract.
0309
BibRef
Carballido-Gamio, J.,
Belongie, S.J.,
Majumdar, S.,
Normalized Cuts in 3-D for Spinal MRI Segmentation,
MedImg(23), No. 1, January 2004, pp. 36-44.
IEEE Abstract.
0403
BibRef
Fournial, R.,
Traore, A.S.,
Laurendeau, D.,
Moisan, C.,
An Analytic Method to Predict the Thermal Map of Cryosurgery Iceballs
in MR Images,
MedImg(23), No. 1, January 2004, pp. 122-129.
IEEE Abstract.
0403
BibRef
Chan, D.Y.[Din-Yuen],
Cheng, H.Y.,
Hsieh, H.L.[Hsin-Lung],
Tissue separation in MR images: From supervised to unsupervised
classification,
JVCIR(15), No. 2, June 2004, pp. 185-202.
Elsevier DOI
0405
BibRef
Gilchrist, C.L.,
Xia, J.Q.,
Setton, L.A.,
Hsu, E.W.,
High-resolution determination of soft tissue deformations using MRI and
first-order texture correlation,
MedImg(23), No. 5, May 2004, pp. 546-553.
IEEE Abstract.
0406
BibRef
Ng, S.K.[Shu-Kay],
McLachlan, G.J.[Geoffrey J.],
Speeding up the EM algorithm for mixture model-based segmentation of
magnetic resonance images,
PR(37), No. 8, August 2004, pp. 1573-1589.
Elsevier DOI
0407
BibRef
Wang, Z.Z.,
Vemuri, B.C.,
Chen, Y.,
Mareci, T.H.,
A Constrained Variational Principle for Direct Estimation and Smoothing
of the Diffusion Tensor Field From Complex DWI,
MedImg(23), No. 8, August 2004, pp. 930-939.
IEEE Abstract.
0409
BibRef
Earlier:
Simultaneous smoothing and estimation of the tensor field from
diffusion tensor MRI,
CVPR03(I: 461-466).
IEEE DOI
0307
BibRef
Wang, Z.Z.[Zhi-Zhou],
Vemuri, B.C.[Baba C.],
An affine invariant tensor dissimilarity measure and its applications
to tensor-valued image segmentation,
CVPR04(I: 228-233).
IEEE DOI
0408
BibRef
And:
Tensor Field Segmentation Using Region Based Active Contour Model,
ECCV04(Vol IV: 304-315).
Springer DOI
0405
BibRef
Chen, Y.,
Guo, W.,
Zeng, Q.,
Yan, X.,
Huang, F.,
Zhang, H.,
He, G.,
Vemuri, B.C.,
Liu, Y.,
Estimation, smoothing, and characterization of apparent diffusion
coefficient profiles from high angular resolution DWI,
CVPR04(I: 588-593).
IEEE DOI
0408
Diffusion Weighted MRI.
BibRef
Kannan, S.R.,
A New Clustering Algorith for Segmentation of Magnetic Resonance Images
Using Fuzzy C-Mean and Computer Programming,
GVIP(05), No. V2, January 2005, pp. 17-23
HTML Version.
BibRef
0501
Buonocore, M.H.,
Katzberg, R.W.,
Estimation of Extraction Fraction (EF) and Glomerular Filtration Rate
(GFR) Using MRI: Considerations Derived From a New Gd-Chelate
Biodistribution Model Simulation,
MedImg(24), No. 5, May 2005, pp. 651-666.
IEEE Abstract.
0505
BibRef
Soleimani, M.,
Powell, C.E.,
Polydorides, N.,
Improving the Forward Solver for the Complete Electrode Model in EIT
Using Algebraic Multigrid,
MedImg(24), No. 5, May 2005, pp. 577-583.
IEEE Abstract.
0505
electrical impedance tomography
BibRef
Srikanth, R.,
Ramakrishnan, A.G.,
Contextual Encoding in Uniform and Adaptive Mesh-Based Lossless
Compression of MR Images,
MedImg(24), No. 9, September 2005, pp. 1199-1206.
IEEE DOI
0509
BibRef
Wang, Z.,
Vemuri, B.C.,
DTI Segmentation Using an Information Theoretic Tensor Dissimilarity
Measure,
MedImg(24), No. 10, October 2005, pp. 1267-1277.
IEEE DOI
0510
Diffusion Tensor Imaging.
BibRef
Hung, W.L.[Wen-Liang],
Yang, M.S.[Miin-Shen],
Chen, D.H.[De-Hua],
Parameter selection for suppressed fuzzy c-means with an application to
MRI segmentation,
PRL(27), No. 5, 1 April 2006, pp. 424-438.
Elsevier DOI Fuzzy clustering; Fuzzy c-means; Suppressed fuzzy c-means; Parameter selection; Magnetic resonance image segmentation
0604
BibRef
Hung, W.L.[Wen-Liang],
Yang, M.S.[Miin-Shen],
Chen, D.H.[De-Hua],
Bootstrapping approach to feature-weight selection in fuzzy c-means
algorithms with an application in color image segmentation,
PRL(29), No. 9, 1 July 2008, pp. 1317-1325.
Elsevier DOI
0711
Fuzzy clustering; Fuzzy c-means; Weighted fuzzy c-means; Bootstrap;
Variation; Color image segmentation
BibRef
Raj, A.[Ashish],
Wang, Y.,
Zabih, R.,
A Maximum Likelihood Approach to Parallel Imaging With Coil Sensitivity
Noise,
MedImg(26), No. 8, August 2007, pp. 1046-1057.
IEEE DOI
0709
BibRef
Raj, A.[Ashish],
Singh, G.[Gurmeet],
Zabih, R.[Ramin],
MRFs for MRIs: Bayesian Reconstruction of MR Images via
Graph Cuts,
CVPR06(I: 1061-1068).
IEEE DOI
0606
BibRef
Soleimani, M.,
Lionheart, W.R.B.,
Absolute Conductivity Reconstruction in Magnetic Induction Tomography
Using a Nonlinear Method,
MedImg(25), No. 12, December 2006, pp. 1521-1530.
IEEE DOI
0701
BibRef
Vovk, U.,
Pernus, F.[Franjo],
Likar, B.[Bostjan],
A Review of Methods for Correction of Intensity Inhomogeneity in MRI,
MedImg(26), No. 3, March 2007, pp. 405-421.
IEEE DOI
0703
BibRef
Kindlmann, G.,
Ennis, D.B.,
Whitaker, R.T.,
Westin, C.F.[Carl-Fredrik],
Diffusion Tensor Analysis With Invariant Gradients and Rotation
Tangents,
MedImg(26), No. 11, November 2007, pp. 1483-1499.
IEEE DOI
0709
BibRef
Awate, S.P.,
Zhang, H.,
Gee, J.C.,
A Fuzzy, Nonparametric Segmentation Framework for DTI and MRI Analysis:
With Applications to DTI-Tract Extraction,
MedImg(26), No. 11, November 2007, pp. 1525-1536.
IEEE DOI
0709
BibRef
Fonteijn, H.M.J.,
Verstraten, F.A.J.,
Norris, D.G.,
Probabilistic Inference on Q-ball Imaging Data,
MedImg(26), No. 11, November 2007, pp. 1515-1524.
IEEE DOI
0709
MRI issue.
BibRef
Freidlin, R.Z.,
Ãzarslan, E.,
Komlosh, M.E.,
Chang, L.C.,
Koay, C.G.,
Jones, D.K.,
Basser, P.J.,
Parsimonious Model Selection for Tissue Segmentation and Classification
Applications: A Study Using Simulated and Experimental DTI Data,
MedImg(26), No. 11, November 2007, pp. 1576-1584.
IEEE DOI
0709
BibRef
Dharmaraj, C.D.[Christopher D.],
Krishna, M.C.[Murali C.],
Murugesan, R.,
A Feature Identification System for Electron Magnetic Resonance
Tomography: Fusion of Principal Components Transform, Color
Quantization and Boundary Information,
JMIV(30), No. 3, March 2008, pp. 284-297.
Springer DOI
0802
BibRef
Duchesne, S.,
Caroli, A.,
Geroldi, C.,
Barillot, C.,
Frisoni, G.B.,
Collins, D.L.,
MRI-Based Automated Computer Classification of Probable AD Versus
Normal Controls,
MedImg(27), No. 4, April 2008, pp. 509-520.
IEEE DOI
0804
BibRef
Niedre, M.,
Ntziachristos, V.,
Elucidating Structure and Function In Vivo With Hybrid Fluorescence and
Magnetic Resonance Imaging,
PIEEE(96), No. 3, March 2008, pp. 382-396.
IEEE DOI
0804
BibRef
Zalesky, A.,
DT-MRI Fiber Tracking: A Shortest Paths Approach,
MedImg(27), No. 10, October 2008, pp. 1458-1471.
IEEE DOI
0810
BibRef
Jacob, M.,
Sutton, B.P.,
Algebraic Decomposition of Fat and Water in MRI,
MedImg(28), No. 2, February 2009, pp. 173-184.
IEEE DOI
0902
BibRef
Bresch, E.,
Narayanan, S.,
Region Segmentation in the Frequency Domain Applied to Upper Airway
Real-Time Magnetic Resonance Images,
MedImg(28), No. 3, March 2009, pp. 323-338.
IEEE DOI
0903
BibRef
Shilling, R.Z.,
Robbie, T.Q.,
Bailloeul, T.,
Mewes, K.,
Mersereau, R.M.,
Brummer, M.E.[Marijn E.],
A Super-Resolution Framework for 3-D High-Resolution and High-Contrast
Imaging Using 2-D Multislice MRI,
MedImg(28), No. 5, May 2009, pp. 633-644.
IEEE DOI
0905
BibRef
Shilling, R.Z.[Richard Z.],
Ramamurthy, S.[Senthil],
Brummer, M.E.[Marijn E.],
Sampling strategies for super-resolution in multi-slice MRI,
ICIP08(2240-2243).
IEEE DOI
0810
BibRef
Lee, J.D.,
Su, H.R.,
Cheng, P.E.,
Liou, M.,
Aston, J.A.D.,
Tsai, A.C.,
Chen, C.Y.,
MR Image Segmentation Using a Power Transformation Approach,
MedImg(28), No. 6, June 2009, pp. 894-905.
IEEE DOI
0906
BibRef
Withey, D.J.,
Pedrycz, W.,
Koles, Z.J.,
Dynamic edge tracing: Boundary identification in medical images,
CVIU(113), No. 10, October 2009, pp. 1039-1052.
Elsevier DOI
0910
Image segmentation; Medical image analysis; Edge tracing; Kalman
filter; Target tracking; Magnetic resonance imaging
BibRef
Kressler, B.,
de Rochefort, L.,
Liu, T.,
Spincemaille, P.,
Jiang, Q.,
Wang, Y.,
Nonlinear Regularization for Per Voxel Estimation of Magnetic
Susceptibility Distributions From MRI Field Maps,
MedImg(29), No. 2, February 2010, pp. 273-281.
IEEE DOI
1002
BibRef
Liu, T.,
Xu, W.,
Spincemaille, P.,
Avestimehr, A.S.,
Wang, Y.,
Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm
for Quantitative Susceptibility Mapping in MRI,
MedImg(31), No. 3, March 2012, pp. 816-824.
IEEE DOI
1203
BibRef
Zhang, X.,
Zhu, S.,
He, B.,
Imaging Electric Properties of Biological Tissues by RF Field Mapping
in MRI,
MedImg(29), No. 2, February 2010, pp. 474-481.
IEEE DOI
1002
BibRef
Ng, H.P.,
Ong, S.H.,
Huang, S.,
Liu, J.,
Foong, K.W.C.,
Goh, P.S.,
Nowinski, W.L.,
Salient features useful for the accurate segmentation of masticatory
muscles from minimum slices subsets of magnetic resonance images,
MVA(21), No. 4, June 2010, pp. xx-yy.
Springer DOI
1006
BibRef
Ng, H.P.,
Ong, S.H.,
Foong, K.W.C.,
Goh, P.S.,
Nowinski, W.L.,
Automatic Segmentation of Muscles of Mastication from Magnetic
Resonance Images Using Prior Knowledge,
ICPR06(III: 968-971).
IEEE DOI
0609
BibRef
Earlier: A1, A2, A4, A3, A5:
Template-based Automatic Segmentation of Masseter Using Prior Knowledge,
Southwest06(208-212).
IEEE DOI
0603
BibRef
Ng, H.P.,
Ong, S.H.,
Foong, K.W.C.,
Goh, P.S.,
Nowinski, W.L.,
Medical Image Segmentation Using K-Means Clustering and Improved
Watershed Algorithm,
Southwest06(61-65).
IEEE DOI
0603
BibRef
Duits, R.[Remco],
Franken, E.[Erik],
Left-Invariant Diffusions on the Space of Positions and Orientations
and their Application to Crossing-Preserving Smoothing of HARDI images,
IJCV(92), No. 3, May 2011, pp. 231-264.
WWW Link.
1103
High Angular Resolution Diffusion Images
BibRef
Reisert, M.,
Kiselev, V.G.,
Fiber Continuity: An Anisotropic Prior for ODF Estimation,
MedImg(30), No. 6, June 2011, pp. 1274-1283.
IEEE DOI
1101
HARDI data.
BibRef
Reisert, M.,
Kellner, E.,
Kiselev, V.G.,
About the Geometry of Asymmetric Fiber Orientation Distributions,
MedImg(31), No. 6, June 2012, pp. 1240-1249.
IEEE DOI
1206
BibRef
Huang, F.,
Narayan, S.,
Wilson, D.,
Johnson, D.,
Zhang, G.Q.,
A Fast Iterated Conditional Modes Algorithm for Water-Fat Decomposition
in MRI,
MedImg(30), No. 8, August 2011, pp. 1480-1492.
IEEE DOI
1108
BibRef
Kranjc, M.,
Bajd, F.,
Sersa, I.,
Miklavcic, D.,
Magnetic Resonance Electrical Impedance Tomography for Monitoring
Electric Field Distribution During Tissue Electroporation,
MedImg(30), No. 10, October 2011, pp. 1771-1778.
IEEE DOI
1110
BibRef
Fouquier, G.[Geoffroy],
Atif, J.[Jamal],
Bloch, I.[Isabelle],
Sequential model-based segmentation and recognition of image structures
driven by visual features and spatial relations,
CVIU(116), No. 1, January 2012, pp. 146-165.
Elsevier DOI
1112
Segmentation; Knowledge-based system; Spatial relations; Graph
representations; Fuzzy sets; Medical images; MRI
BibRef
Fouquier, G.[Geoffroy],
Anquez, J.[Jérémie],
Bloch, I.[Isabelle],
Falip, C.[Céline],
Adamsbaum, C.[Catherine],
Subcutaneous Adipose Tissue Segmentation in Whole-Body MRI of Children,
CIARP11(97-104).
Springer DOI
1111
BibRef
Chinnadurai, V.[Vijayakumar],
Chandrashekhar, G.D.[Gharpure Damayanti],
Neuro-levelset system based segmentation in dynamic susceptibility
contrast enhanced and diffusion weighted magnetic resonance images,
PR(45), No. 9, September 2012, pp. 3501-3511.
Elsevier DOI
1206
Neuro-levelset method; Artificial neural networks; Radial basis
function; Self-organizing map; Dynamic contrast susceptibility magnetic
resonance images; Diffusion weighted images
BibRef
Rivest-Henault, D.,
Cheriet, M.[Mohamed],
3-D Curvilinear Structure Detection Filter Via Structure-Ball Analysis,
IP(22), No. 7, 2013, pp. 2849-2863.
IEEE DOI
1307
biological tissues; biomedical MRI
BibRef
Tran, L.[Loc],
Banerjee, D.[Debrup],
Wang, J.H.[Ji-Hong],
Kumar, A.J.[Ashok J.],
McKenzie, F.[Frederic],
Li, Y.H.[Yao-Hang],
Li, J.[Jiang],
High-dimensional MRI data analysis using a large-scale manifold
learning approach,
MVA(24), No. 5, July 2013, pp. 995-1014.
Springer DOI
1306
BibRef
Qiu, C.Y.[Cun-Yong],
Xiao, J.[Jian],
Yu, L.[Long],
Han, L.[Lu],
Iqbal, M.N.[Muhammad Naveed],
A modified interval type-2 fuzzy C-means algorithm with application in
MR image segmentation,
PRL(34), No. 12, 1 September 2013, pp. 1329-1338.
Elsevier DOI
1306
Image segmentation; Magnetic resonance imaging; Fuzzy
C-means; Interval type-2 fuzzy sets
BibRef
Qiu, C.Y.[Cun-Yong],
Xiao, J.[Jian],
Han, L.[Lu],
Iqbal, M.N.[Muhammad Naveed],
Enhanced interval type-2 fuzzy c-means algorithm with improved
initial center,
PRL(38), No. 1, 2014, pp. 86-92.
Elsevier DOI
1402
Fuzzy clustering
BibRef
Malgina, O.,
Praznikar, A.,
Tasic, J.F.,
Inhomogeneity correction and fat-tissue extraction in MR images of
FacioScapuloHumeral muscular Dystrophy,
PRL(34), No. 12, 1 September 2013, pp. 1364-1371.
Elsevier DOI
1306
Magnetic resonance imaging; Fat tissue; Muscle tissue; Bias
field; Inhomogeneity correction
BibRef
Rondina, J.M.,
Hahn, T.,
de Oliveira, L.,
Marquand, A.F.,
Dresler, T.,
Leitner, T.,
Fallgatter, A.J.,
Shawe-Taylor, J.,
Mourao-Miranda, J.,
SCoRS: A Method Based on Stability for Feature Selection and Apping
in Neuroimaging,
MedImg(33), No. 1, January 2014, pp. 85-98.
IEEE DOI
1402
BibRef
And:
Correction:
MedImg(33), No. 3, March 2014, pp. 794-794.
IEEE DOI
1404
biomedical MRI
BibRef
Cetingul, H.E.,
Wright, M.J.,
Thompson, P.M.,
Vidal, R.,
Segmentation of High Angular Resolution Diffusion MRI Using Sparse
Riemannian Manifold Clustering,
MedImg(33), No. 2, February 2014, pp. 301-317.
IEEE DOI
1403
biodiffusion
BibRef
Yaqub, M.,
Javaid, M.K.,
Cooper, C.,
Noble, J.A.,
Investigation of the Role of Feature Selection and Weighted Voting in
Random Forests for 3-D Volumetric Segmentation,
MedImg(33), No. 2, February 2014, pp. 258-271.
IEEE DOI
1403
biomedical MRI
BibRef
Gao, J.J.[Jing-Jing],
Xie, M.[Mei],
Mao, L.[Ling],
Interleaved k-NN Classification and Bias Field Estimation for MR Image
with Intensity Inhomogeneity,
IEICE(E97-D), No. 4, April 2014, pp. 1011-1015.
WWW Link.
1404
BibRef
Zhao, B.[Bo],
Lam, F.[Fan],
Liang, Z.P.[Zhi-Pei],
Model-Based MR Parameter Mapping With Sparsity Constraints:
Parameter Estimation and Performance Bounds,
MedImg(33), No. 9, September 2014, pp. 1832-1844.
IEEE DOI
1410
biological tissues
BibRef
Akhondi-Asl, A.,
Hoyte, L.,
Lockhart, M.E.,
Warfield, S.K.,
A Logarithmic Opinion Pool Based STAPLE Algorithm for the Fusion of
Segmentations With Associated Reliability Weights,
MedImg(33), No. 10, October 2014, pp. 1997-2009.
IEEE DOI
1411
biomedical MRI
BibRef
Méndez, C.A.[C. Andrés],
Summers, P.[Paul],
Menegaz, G.[Gloria],
Multiview cluster ensembles for multimodal MRI segmentation,
IJIST(25), No. 1, 2015, pp. 56-67.
DOI Link
1502
multimodal MRI
BibRef
Liu, B.[Bin],
Jia, X.Y.[Xian-Yong],
Jiang, Q.F.[Qian-Feng],
Huang, R.[Rui],
Zhang, H.[Hui],
Wan, C.[Chao],
A segmentation system based on clustering method for pediatric DTI
images,
IJIST(25), No. 1, 2015, pp. 102-113.
DOI Link
1502
DTI
BibRef
Smith, S.,
Williams, I.,
A Statistical Method for Improved 3D Surface Detection,
SPLetters(22), No. 8, August 2015, pp. 1045-1049.
IEEE DOI
1502
edge detection
BibRef
Kim, D.H.,
Chauhan, M.,
Kim, M.O.,
Jeong, W.C.,
Kim, H.J.,
Sersa, I.,
Kwon, O.I.,
Woo, E.J.,
Frequency-Dependent Conductivity Contrast for Tissue Characterization
Using a Dual-Frequency Range Conductivity Mapping Magnetic Resonance
Method,
MedImg(34), No. 2, February 2015, pp. 507-513.
IEEE DOI
1502
Animals
BibRef
Lee, S.K.[Seung-Kyun],
Bulumulla, S.,
Wiesinger, F.,
Sacolick, L.,
Sun, W.,
Hancu, I.,
Tissue Electrical Property Mapping From Zero Echo-Time Magnetic
Resonance Imaging,
MedImg(34), No. 2, February 2015, pp. 541-550.
IEEE DOI
1502
Coils
BibRef
Lee, S.K.[Seung-Kyun],
Bulumulla, S.,
Hancu, I.,
Theoretical Investigation of Random Noise-Limited Signal-to-Noise
Ratio in MR-Based Electrical Properties Tomography,
MedImg(34), No. 11, November 2015, pp. 2220-2232.
IEEE DOI
1512
bioelectric phenomena
BibRef
Al-Hinnawi, A.R.[Abdel Razzak],
Daear, M.[Mohammed],
Assessment of bilateral filter on low NEX open MRI views,
SIViP(9), No. 1, January 2015, pp. 9-17.
WWW Link.
1503
BibRef
Xu, X.,
Lee, K.,
Zhang, L.,
Sonka, M.,
Abramoff, M.D.,
Stratified Sampling Voxel Classification for Segmentation of
Intraretinal and Subretinal Fluid in Longitudinal Clinical OCT Data,
MedImg(34), No. 7, July 2015, pp. 1616-1623.
IEEE DOI
1507
Anisotropic magnetoresistance
BibRef
Ahmadvand, A.[Ali],
Kabiri, P.[Peyman],
Multispectral MRI image segmentation using Markov random field model,
SIViP(10), No. 1, February 2016, pp. 251-258.
WWW Link.
1601
BibRef
Goetz, M.,
Weber, C.,
Binczyk, F.,
Polanska, J.,
Tarnawski, R.,
Bobek-Billewicz, B.,
Koethe, U.,
Kleesiek, J.,
Stieltjes, B.,
Maier-Hein, K.H.,
DALSA: Domain Adaptation for Supervised Learning From Sparsely
Annotated MR Images,
MedImg(35), No. 1, January 2016, pp. 184-196.
IEEE DOI
1601
Image segmentation
BibRef
Pratondo, A.,
Chui, C.K.[Chee-Kong],
Ong, S.H.[Sim-Heng],
Robust Edge-Stop Functions for Edge-Based Active Contour Models in
Medical Image Segmentation,
SPLetters(23), No. 2, February 2016, pp. 222-226.
IEEE DOI
1602
biomedical MRI
BibRef
Lê, M.,
Delingette, H.,
Kalpathy-Cramer, J.,
Gerstner, E.R.,
Batchelor, T.,
Unkelbach, J.,
Ayache, N.,
MRI Based Bayesian Personalization of a Tumor Growth Model,
MedImg(35), No. 10, October 2016, pp. 2329-2339.
IEEE DOI
1610
Bayes methods
BibRef
Blaiotta, C.[Claudia],
Cardoso, M.J.[M. Jorge],
Ashburner, J.[John],
Variational inference for medical image segmentation,
CVIU(151), No. 1, 2016, pp. 14-28.
Elsevier DOI
1610
Image segmentation
BibRef
Tan, C.W.[Chao-Wei],
Li, K.[Kang],
Yan, Z.N.[Zhen-Nan],
Yang, D.[Dong],
Zhang, S.T.[Shao-Ting],
Yu, H.J.[Hui Jing],
Engelke, K.[Klaus],
Miller, C.[Colin],
Metaxas, D.N.[Dimitris N.],
A detection-driven and sparsity-constrained deformable model for
fascia lata labeling and thigh inter-muscular adipose quantification,
CVIU(151), No. 1, 2016, pp. 80-89.
Elsevier DOI
1610
Thigh inter-muscular adipose tissue quantification
BibRef
van Niekerk, A.,
van der Kouwe, A.,
Meintjes, E.,
A Method for Measuring Orientation Within a Magnetic Resonance
Imaging Scanner Using Gravity and the Static Magnetic Field
(VectOrient),
MedImg(36), No. 5, May 2017, pp. 1129-1139.
IEEE DOI
1705
Gravity, Magnetic domains, Magnetic resonance imaging,
Magnetometers, Position measurement, Tracking, Accelerometer, MRI,
angular rate, magnetometer, orientation, prospective, motion, correction
BibRef
Bao, S.,
Chung, A.C.S.,
Feature Sensitive Label Fusion With Random Walker for Atlas-Based
Image Segmentation,
IP(26), No. 6, June 2017, pp. 2797-2810.
IEEE DOI
1705
Biomedical imaging, Feature extraction, Image analysis,
Image registration, Image segmentation, Labeling, Sensitivity,
Segmentation, brain, magnetic resonance imaging
BibRef
Zhang, L.,
Cobzas, D.,
Wilman, A.H.,
Kong, L.,
Significant Anatomy Detection Through Sparse Classification:
A Comparative Study,
MedImg(37), No. 1, January 2018, pp. 128-137.
IEEE DOI
1801
biomedical MRI, graph theory, image classification,
medical image processing, neurophysiology,
voxel based analysis
BibRef
Nongmeikapam, K.[Kishorjit],
Kumar, W.K.[Wahengbam Kanan],
Singh, A.D.[Aheibam Dinamani],
Fast and Automatically Adjustable GRBF Kernel Based Fuzzy C-Means for
Cluster-wise Coloured Feature Extraction and Segmentation of MR Images,
IET-IPR(12), No. 4, April 2018, pp. 513-524.
DOI Link
1804
BibRef
Daniels, C.J.,
Gallagher, F.A.,
Unsupervised Segmentation of 5D Hyperpolarized Carbon-13 MRI Data
Using a Fuzzy Markov Random Field Model,
MedImg(37), No. 4, April 2018, pp. 840-850.
IEEE DOI
1804
Biochemistry, Image segmentation, In vivo,
Magnetic resonance imaging, Markov processes, Tumors,
markov random field
BibRef
Wang, G.T.[Guo-Tai],
Li, W.Q.[Wen-Qi],
Zuluaga, M.A.[Maria A.],
Pratt, R.[Rosalind],
Patel, P.A.[Premal A.],
Aertsen, M.[Michael],
Doel, T.[Tom],
David, A.L.[Anna L.],
Deprest, J.[Jan],
Ourselin, S.[Sébastien],
Vercauteren, T.[Tom],
Interactive Medical Image Segmentation Using Deep Learning With
Image-Specific Fine Tuning,
MedImg(37), No. 7, July 2018, pp. 1562-1573.
IEEE DOI
1808
biomedical MRI, convolution, feedforward neural nets,
human computer interaction, image segmentation,
brain tumor
BibRef
Wang, G.T.[Guo-Tai],
Zuluaga, M.A.[Maria A.],
Li, W.Q.[Wen-Qi],
Pratt, R.[Rosalind],
Patel, P.A.[Premal A.],
Aertsen, M.[Michael],
Doel, T.[Tom],
David, A.L.[Anna L.],
Deprest, J.[Jan],
Ourselin, S.[Sébastien],
Vercauteren, T.[Tom],
DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image
Segmentation,
PAMI(41), No. 7, July 2019, pp. 1559-1572.
IEEE DOI
1906
Image segmentation, Biomedical imaging,
Image resolution,
conditional random fields
BibRef
Ramos-Llordén, G.,
Vegas-Sánchez-Ferrero, G.,
Björk, M.,
Vanhevel, F.,
Parizel, P.M.,
San José Estépar, R.,
den Dekker, A.J.,
Sijbers, J.,
NOVIFAST: A Fast Algorithm for Accurate and Precise VFA MRI T_1
Mapping,
MedImg(37), No. 11, November 2018, pp. 2414-2427.
IEEE DOI
1811
Optimization, Estimation, Approximation algorithms,
Magnetic resonance imaging, Steady-state, Computational modeling,
relaxometry
BibRef
Cai, J.Z.[Jin-Zheng],
Xing, F.Y.[Fu-Yong],
Batra, A.[Abhinandan],
Liu, F.J.[Fu-Jun],
Walter, G.A.[Glenn A.],
Vandenborne, K.[Krista],
Yang, L.[Lin],
Texture analysis for muscular dystrophy classification in MRI with
improved class activation mapping,
PR(86), 2019, pp. 368-375.
Elsevier DOI
1811
Muscular dystrophy, Convolutional neural network, MRI analysis,
Texture classification, Abnormality detection
BibRef
Maidens, J.,
Gordon, J.W.,
Chen, H.,
Park, I.,
van Criekinge, M.,
Milshteyn, E.,
Bok, R.,
Aggarwal, R.,
Ferrone, M.,
Slater, J.B.,
Kurhanewicz, J.,
Vigneron, D.B.,
Arcak, M.,
Larson, P.E.Z.,
Spatio-Temporally Constrained Reconstruction for Hyperpolarized
Carbon-13 MRI Using Kinetic Models,
MedImg(37), No. 12, December 2018, pp. 2603-2612.
IEEE DOI
1812
Magnetic resonance imaging, Optimization, Data models, Substrates,
Convex functions, Image reconstruction, Correlation,
molecular imaging
BibRef
Tashan, T.[Tariq],
Al-Azawi, M.[Maher],
Multilevel magnetic resonance imaging compression using compressive
sensing,
IET-IPR(12), No. 12, December 2018, pp. 2186-2191.
DOI Link
1812
BibRef
Christiaens, D.,
Cordero-Grande, L.,
Hutter, J.,
Price, A.N.,
Deprez, M.,
Hajnal, J.V.,
Tournier, J.,
Learning Compact q-Space Representations for Multi-Shell
Diffusion-Weighted MRI,
MedImg(38), No. 3, March 2019, pp. 834-843.
IEEE DOI
1903
Harmonic analysis, Covariance matrices, Signal representation,
Magnetic resonance imaging, Microstructure, Image resolution,
dimensionality reduction
BibRef
Grigorescu, I.[Irina],
Uus, A.[Alena],
Christiaens, D.[Daan],
Cordero-Grande, L.[Lucilio],
Hutter, J.[Jana],
Edwards, A.D.[A. David],
Hajnal, J.V.[Joseph V.],
Modat, M.[Marc],
Deprez, M.[Maria],
Diffusion Tensor Driven Image Registration: A Deep Learning Approach,
WBIR20(131-140).
Springer DOI
2006
BibRef
Deprez, M.,
Price, A.,
Christiaens, D.,
Lockwood Estrin, G.,
Cordero-Grande, L.,
Hutter, J.,
Daducci, A.,
Tournier, J.,
Rutherford, M.,
Counsell, S.J.,
Cuadra, M.B.,
Hajnal, J.V.,
Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion
MRI With Intensity Correction,
MedImg(39), No. 4, April 2020, pp. 1104-1113.
IEEE DOI
2004
Image reconstruction, Magnetic resonance imaging, Distortion,
Harmonic analysis, Nonhomogeneous media, Mathematical model,
tractography
BibRef
Mehrtash, A.,
Ghafoorian, M.,
Pernelle, G.,
Ziaei, A.,
Heslinga, F.G.,
Tuncali, K.,
Fedorov, A.,
Kikinis, R.,
Tempany, C.M.,
Wells, W.M.,
Abolmaesumi, P.,
Kapur, T.,
Automatic Needle Segmentation and Localization in MRI With 3-D
Convolutional Neural Networks: Application to MRI-Targeted Prostate
Biopsy,
MedImg(38), No. 4, April 2019, pp. 1026-1036.
IEEE DOI
1904
Needles, Magnetic resonance imaging, Biopsy, Image segmentation,
Trajectory, Cancer, Observers, Convolutional neural networks,
biopsy
BibRef
Huo, Y.,
Xu, Z.,
Moon, H.,
Bao, S.,
Assad, A.,
Moyo, T.K.,
Savona, M.R.,
Abramson, R.G.,
Landman, B.A.,
SynSeg-Net: Synthetic Segmentation Without Target Modality Ground
Truth,
MedImg(38), No. 4, April 2019, pp. 1016-1025.
IEEE DOI
1904
Image segmentation, Magnetic resonance imaging,
Computed tomography, Image generation, Training, Manuals, Synthesis,
convolutional
BibRef
Huo, Y.,
Xu, Z.,
Bao, S.,
Bermudez, C.,
Moon, H.,
Parvathaneni, P.,
Moyo, T.K.,
Savona, M.R.,
Assad, A.,
Abramson, R.G.,
Landman, B.A.,
Splenomegaly Segmentation on Multi-Modal MRI Using Deep Convolutional
Networks,
MedImg(38), No. 5, May 2019, pp. 1185-1196.
IEEE DOI
1905
Image segmentation, Magnetic resonance imaging, Kernel,
splenomegaly
BibRef
Kaushik, S.[Sumit],
Slovák, J.[Jan],
HARDI Segmentation via Fourth-Order Tensors and Anisotropy Preserving
Similarity Measures,
JMIV(61), No. 8, October 2019, pp. 1221-1234.
WWW Link.
1909
BibRef
Yan, W.,
Wang, Y.,
Xia, M.,
Tao, Q.,
Edge-Guided Output Adaptor: Highly Efficient Adaptation Module for
Cross-Vendor Medical Image Segmentation,
SPLetters(26), No. 11, November 2019, pp. 1593-1597.
IEEE DOI
1911
biomedical MRI, convolutional neural nets, edge detection,
image segmentation, learning (artificial intelligence),
edge detection
BibRef
Jatla, V.,
Pattichis, M.S.,
Arge, C.N.,
Image Processing Methods for Coronal Hole Segmentation, Matching, and
Map Classification,
IP(29), No. , 2020, pp. 1641-1653.
IEEE DOI
1911
Image segmentation, Magnetic resonance imaging,
Integrated circuit modeling, Atmospheric modeling, Manuals,
random forests
BibRef
Moutal, N.,
Maximov, I.I.,
Grebenkov, D.S.,
Probing Surface-to-Volume Ratio of an Anisotropic Medium by Diffusion
NMR with General Gradient Encoding,
MedImg(38), No. 11, November 2019, pp. 2507-2522.
IEEE DOI
1911
Anisotropic magnetoresistance, Encoding, Shape, Surface waves,
Nuclear magnetic resonance, Microscopy, Radio frequency,
anisotropy
BibRef
Vigneshwaran, S.,
Govindaraj, V.[Vishnuvarthanan],
Murugan, P.R.[Pallikonda R.],
Zhang, Y.D.[Yu-Dong],
Prasath, T.A.[Thiyagarajan Arun],
Unsupervised learning-based clustering approach for smart
identification of pathologies and segmentation of tissues in brain
magnetic resonance imaging,
IJIST(29), No. 4, 2019, pp. 439-456.
DOI Link
1911
medical image analysis, modified fuzzy K-means,
self-organizing map, tissue segmentation, tumors and lesion identification
BibRef
Abdullah Al, W.[Walid],
Yun, I.D.[Il Dong],
Partial Policy-Based Reinforcement Learning for Anatomical Landmark
Localization in 3D Medical Images,
MedImg(39), No. 4, April 2020, pp. 1245-1255.
IEEE DOI
2004
Reinforcement learning, Biomedical imaging,
Training, Search problems, reinforcement learning
BibRef
Biffi, C.,
Cerrolaza, J.J.,
Tarroni, G.,
Bai, W.,
de Marvao, A.,
Oktay, O.,
Ledig, C.,
Le Folgoc, L.,
Kamnitsas, K.,
Doumou, G.,
Duan, J.,
Prasad, S.K.,
Cook, S.A.,
O'Regan, D.P.,
Rueckert, D.,
Explainable Anatomical Shape Analysis Through Deep Hierarchical
Generative Models,
MedImg(39), No. 6, June 2020, pp. 2088-2099.
IEEE DOI
2006
Shape analysis, explainable deep learning, generative modeling, MRI
BibRef
Dou, Q.,
Liu, Q.,
Heng, P.A.,
Glocker, B.,
Unpaired Multi-Modal Segmentation via Knowledge Distillation,
MedImg(39), No. 7, July 2020, pp. 2415-2425.
IEEE DOI
2007
Magnetic resonance imaging, Computed tomography,
Image segmentation, Semantics, Task analysis, Feature extraction,
image segmentation
BibRef
Zhang, L.,
Wang, X.,
Yang, D.,
Sanford, T.,
Harmon, S.,
Turkbey, B.,
Wood, B.J.,
Roth, H.,
Myronenko, A.,
Xu, D.,
Xu, Z.,
Generalizing Deep Learning for Medical Image Segmentation to Unseen
Domains via Deep Stacked Transformation,
MedImg(39), No. 7, July 2020, pp. 2531-2540.
IEEE DOI
2007
Biomedical imaging, Training, Magnetic resonance imaging,
Data models, Adaptation models, Image segmentation, Deep learning,
medical image segmentation
BibRef
Chen, C.,
Dou, Q.,
Chen, H.,
Qin, J.,
Heng, P.A.,
Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image
Segmentation,
MedImg(39), No. 7, July 2020, pp. 2494-2505.
IEEE DOI
2007
Image segmentation, Magnetic resonance imaging,
Feature extraction, Biomedical imaging, Computed tomography,
adversarial learning
BibRef
Jiang, J.[Jue],
Hu, Y.C.,
Tyagi, N.,
Rimner, A.[Andreas],
Lee, N.,
Deasy, J.O.[Joseph O.],
Berry, S.,
Veeraraghavan, H.[Harini],
PSIGAN: Joint Probabilistic Segmentation and Image Distribution
Matching for Unpaired Cross-Modality Adaptation-Based MRI
Segmentation,
MedImg(39), No. 12, December 2020, pp. 4071-4084.
IEEE DOI
2012
Image segmentation, Magnetic resonance imaging,
Computed tomography, Training, Generators, Geometry, abdominal organs
BibRef
Jiang, J.[Jue],
Rimner, A.[Andreas],
Deasy, J.O.[Joseph O.],
Veeraraghavan, H.[Harini],
Unpaired Cross-Modality Educed Distillation (CMEDL) for Medical Image
Segmentation,
MedImg(41), No. 5, May 2022, pp. 1057-1068.
IEEE DOI
2205
Magnetic resonance imaging, Computed tomography,
Image segmentation, Feature extraction, Tumors, Training,
lung tumor segmentation
BibRef
Zhu, J.[Jiening],
Veeraraghavan, H.[Harini],
Jiang, J.[Jue],
Oh, J.H.[Jung Hun],
Norton, L.[Larry],
Deasy, J.O.[Joseph O.],
Tannenbaum, A.[Allen],
Wasserstein HOG: Local Directionality Extraction via Optimal
Transport,
MedImg(43), No. 3, March 2024, pp. 916-927.
IEEE DOI
2403
Feature extraction, Computed tomography, Tumors, Entropy, Cancer,
Radiomics, Magnetic resonance imaging, Optimal transport, MRI, CT,
imaging processing
BibRef
Govindaraj, V.[Vishnuvarthanan],
Thiyagarajan, A.[Arunprasath],
Rajasekaran, P.[Pallikonda],
Zhang, Y.D.[Yu-Dong],
Krishnasamy, R.[Rajesh],
Automated unsupervised learning-based clustering approach for effective
anomaly detection in brain magnetic resonance imaging (MRI),
IET-IPR(14), No. 14, December 2020, pp. 3516-3526.
DOI Link
2012
BibRef
Chartsias, A.,
Papanastasiou, G.,
Wang, C.,
Semple, S.,
Newby, D.E.,
Dharmakumar, R.,
Tsaftaris, S.A.,
Disentangle, Align and Fuse for Multimodal and Semi-Supervised Image
Segmentation,
MedImg(40), No. 3, March 2021, pp. 781-792.
IEEE DOI
2103
Image segmentation, Biomedical imaging, Annotations, Training,
Semantics, Decoding, Multimodal segmentation, disentanglement,
magnetic resonance imaging
BibRef
Nasor, M.[Mohamed],
Obaid, W.[Walid],
Segmentation of osteosarcoma in MRI images by K-means clustering,
Chan-Vese segmentation, and iterative Gaussian filtering,
IET-IPR(15), No. 6, 2021, pp. 1310-1318.
DOI Link
2106
BibRef
Molaie, M.[Malihe],
Zoroofi, R.A.[Reza Aghaeizadeh],
Thigh muscle segmentation using a hybrid FRFCM-based multi-atlas
method and morphology-based interpolation algorithm,
IET-IPR(15), No. 11, 2021, pp. 2572-2579.
DOI Link
2108
BibRef
Ji, S.[Sooyeon],
Jeong, J.[Jinhee],
Oh, S.H.[Se-Hong],
Nam, Y.[Yoonho],
Choi, S.H.[Seung Hong],
Shin, H.G.[Hyeong-Geol],
Shin, D.[Dongmyung],
Jung, W.[Woojin],
Lee, J.[Jongho],
Quad-Contrast Imaging: Simultaneous Acquisition of Four
Contrast-Weighted Images (PD-Weighted, T2-Weighted, PD-FLAIR and
T2-FLAIR Images) With Synthetic T1-Weighted Image, T1- and T2-Maps,
MedImg(40), No. 12, December 2021, pp. 3617-3626.
IEEE DOI
2112
Imaging, Image reconstruction, Magnetic resonance imaging,
Radio frequency, Timing, Specific absorption rate, Encoding,
multi-contrast imaging
BibRef
Zhou, K.[Kang],
Li, J.[Jing],
Luo, W.X.[Wei-Xin],
Li, Z.X.[Zheng-Xin],
Yang, J.L.[Jian-Long],
Fu, H.Z.[Hua-Zhu],
Cheng, J.[Jun],
Liu, J.[Jiang],
Gao, S.H.[Sheng-Hua],
Proxy-Bridged Image Reconstruction Network for Anomaly Detection in
Medical Images,
MedImg(41), No. 3, March 2022, pp. 582-594.
IEEE DOI
2203
Image reconstruction, Anomaly detection, Biomedical imaging,
Retina, Feature extraction, Magnetic resonance imaging, Training,
pseudo anomalies
BibRef
Chen, C.[Cheng],
Dou, Q.[Qi],
Jin, Y.M.[Yue-Ming],
Liu, Q.[Quande],
Heng, P.A.[Pheng Ann],
Learning With Privileged Multimodal Knowledge for Unimodal
Segmentation,
MedImg(41), No. 3, March 2022, pp. 621-632.
IEEE DOI
2203
Training, Magnetic resonance imaging, Image segmentation,
Task analysis, Data models, Training data, Image synthesis,
contrastive learning
BibRef
Abulnaga, S.M.[S. Mazdak],
Turk, E.A.[Esra Abaci],
Bessmeltsev, M.[Mikhail],
Grant, P.E.[P. Ellen],
Solomon, J.[Justin],
Golland, P.[Polina],
Volumetric Parameterization of the Placenta to a Flattened Template,
MedImg(41), No. 4, April 2022, pp. 925-936.
IEEE DOI
2204
Shape, Distortion, Magnetic resonance imaging, Visualization,
Mesh generation, Strain, Anatomy visualization, injective map,
volumetric mesh parameterization
BibRef
Mo, S.C.[Shao-Cong],
Cai, M.[Ming],
Lin, L.F.[Lan-Fen],
Tong, R.F.[Ruo-Feng],
Chen, Q.Q.[Qing-Qing],
Wang, F.[Fang],
Hu, H.J.[Hong-Jie],
Iwamoto, Y.[Yutaro],
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Mutual Information-Based Graph Co-Attention Networks for Multimodal
Prior-Guided Magnetic Resonance Imaging Segmentation,
CirSysVideo(32), No. 5, May 2022, pp. 2512-2526.
IEEE DOI
2205
Magnetic resonance imaging, Feature extraction, Lesions,
Image segmentation, Liver, Fuses, Mutual information, MRI
BibRef
Zhang, B.[Bo],
Tan, Y.P.[Yun-Peng],
Wang, H.[Hui],
Zhang, Z.[Zheng],
Zhou, X.Z.[Xiu-Zhuang],
Wu, J.Y.[Jing-Yun],
Mi, Y.[Yue],
Huang, H.[Haiwen],
Wang, W.D.[Wen-Dong],
LSRML: A latent space regularization based meta-learning framework
for MR image segmentation,
PR(130), 2022, pp. 108821.
Elsevier DOI
2206
Latent space regularization, Meta learning,
Domain generalization, Domain discriminator, Multi-source domain adaptation
BibRef
Trombini, M.[Marco],
Solarna, D.[David],
Moser, G.[Gabriele],
Dellepiane, S.[Silvana],
A goal-driven unsupervised image segmentation method combining
graph-based processing and Markov random fields,
PR(134), 2023, pp. 109082.
Elsevier DOI
2212
Graph signal processing, Segmentation, Markovian modeling,
Parametric model estimation, Pattern recognition, Magnetic resonance imagery
BibRef
Decaux, N.[Nathan],
Conze, P.H.[Pierre-Henri],
Ropars, J.[Juliette],
He, X.[Xinyan],
Sheehan, F.T.[Frances T.],
Pons, C.[Christelle],
Ben Salem, D.[Douraied],
Brochard, S.[Sylvain],
Rousseau, F.[François],
Semi-automatic muscle segmentation in MR images using deep
registration-based label propagation,
PR(140), 2023, pp. 109529.
Elsevier DOI
2305
Semi-automatic segmentation, Musculoskeletal system,
Label propagation, Deep registration
BibRef
Yang, H.[Heran],
Sun, J.[Jian],
Xu, Z.B.[Zong-Ben],
Learning Unified Hyper-Network for Multi-Modal MR Image Synthesis and
Tumor Segmentation With Missing Modalities,
MedImg(42), No. 12, December 2023, pp. 3678-3689.
IEEE DOI
2312
BibRef
Lobos, R.A.[Rodrigo A.],
Chan, C.C.[Chin-Cheng],
Haldar, J.P.[Justin P.],
New Theory and Faster Computations for Subspace-Based Sensitivity Map
Estimation in Multichannel MRI,
MedImg(43), No. 1, January 2024, pp. 286-296.
IEEE DOI
2401
BibRef
Autorino, M.M.[Maria Maddalena],
Franceschini, S.[Stefano],
Ambrosanio, M.[Michele],
Pascazio, V.[Vito],
Baselice, F.[Fabio],
Intra voxel analysis in magnetic resonance imaging via deep learning,
IJIST(34), No. 1, 2024, pp. e22977.
DOI Link
2401
deep learning, intra voxel analysis,
magnetic resonance imaging, neural network, tissues discrimination
BibRef
Javanbakhat, M.[Masoumeh],
Starke, L.[Ludger],
Waiczies, S.[Sonia],
Lippert, C.[Christoph],
Quantifying model uncertainty for semantic segmentation of
Fluorine-19 MRI using stochastic gradient MCMC,
CVIU(241), 2024, pp. 103967.
Elsevier DOI
2403
Fluorine-19 MRI, Segmentation, Deep learning, Uncertainty, MCMC
BibRef
Fidon, L.[Lucas],
Aertsen, M.[Michael],
Kofler, F.[Florian],
Bink, A.[Andrea],
David, A.L.[Anna L.],
Deprest, T.[Thomas],
Emam, D.[Doaa],
Guffens, F.[Fr©d©ric],
Jakab, A.[Andr¡s],
Kasprian, G.[Gregor],
Kienast, P.[Patric],
Melbourne, A.[Andrew],
Menze, B.[Bjoern],
Mufti, N.[Nada],
Pogledic, I.[Ivana],
Prayer, D.[Daniela],
Stuempflen, M.[Marlene],
van Elslander, E.[Esther],
Ourselin, S.[S©bastien],
Deprest, J.[Jan],
Vercauteren, T.[Tom],
A Dempster-Shafer Approach to Trustworthy AI With Application to
Fetal Brain MRI Segmentation,
PAMI(46), No. 5, May 2024, pp. 3784-3795.
IEEE DOI
2404
Artificial intelligence, Image segmentation, Contracts,
Biomedical imaging, Magnetic resonance imaging, Training,
out-of-domain generalization
BibRef
Kim, J.[Jonghun],
Park, H.[Hyunjin],
Adaptive Latent Diffusion Model for 3D Medical Image to Image
Translation: Multi-modal Magnetic Resonance Imaging Study,
WACV24(7589-7598)
IEEE DOI Code:
WWW Link.
2404
Adaptation models, Solid modeling, Image synthesis,
Computational modeling, Magnetic resonance imaging, Switches
BibRef
Antonelli, L.[Laura],
de Simone, V.[Valentina],
Viola, M.[Marco],
Segmenting MR Images Through Texture Extraction and Multiplicative
Components Optimization,
SSVM23(511-521).
Springer DOI
2307
BibRef
Samele, S.[Stefano],
Matteucci, M.[Matteo],
Patchwise Sparse Dictionary Learning from pre-trained Neural Network
Activation Maps for Anomaly Detection in Images,
ICPR22(1307-1313)
IEEE DOI
2212
Representation learning, Location awareness,
Surface reconstruction, Dictionaries, Magnetic resonance imaging, Pipelines
BibRef
Jang, J.S.[Jin-Seong],
Hwang, D.[Dosik],
M3T: three-dimensional Medical image classifier using Multi-plane and
Multi-slice Transformer,
CVPR22(20686-20697)
IEEE DOI
2210
Training, Representation learning, Databases, Open Access,
Magnetic resonance imaging, Computer architecture, Medical,
Deep learning architectures and techniques
BibRef
Cairone, L.[Luca],
Benfante, V.[Viviana],
Bignardi, S.[Samuel],
Marinozzi, F.[Franco],
Yezzi, A.[Anthony],
Tuttolomondo, A.[Antonino],
Salvaggio, G.[Giuseppe],
Bini, F.[Fabiano],
Comelli, A.[Albert],
Robustness of Radiomics Features to Varying Segmentation Algorithms in
Magnetic Resonance Images,
AIRCAD22(462-472).
Springer DOI
2208
BibRef
Trigui, R.[Rania],
Adel, M.[Mouloud],
di Bisceglie, M.[Mathieu],
Wojak, J.[Julien],
Pinol, J.[Jessica],
Faure, A.[Alice],
Chaumoitre, K.[Katia],
Comparison of GWO-SVM and Random Forest Classifiers in a LevelSet
based approach for Bladder wall segmentation and characterisation
using MR images,
IPTA22(1-6)
IEEE DOI
2206
Support vector machines, Measurement, Image segmentation, Shape,
Manuals, Bladder, Bladder wall segmentation, Classification,
Magnetic Resonance Imaging
BibRef
Ding, Z.P.[Zhi-Peng],
Han, X.[Xu],
Liu, P.R.[Pei-Rong],
Niethammer, M.[Marc],
Local Temperature Scaling for Probability Calibration,
ICCV21(6869-6879)
IEEE DOI
2203
Measurement, Temperature distribution, Image segmentation,
Impedance matching, Semantics, Magnetic resonance, Segmentation,
Scene analysis and understanding
BibRef
Ding, H.[Hao],
Sun, C.C.[Chang-Chang],
Tang, H.[Hao],
Cai, D.[Dawen],
Yan, Y.[Yan],
Few-shot Medical Image Segmentation with Cycle-resemblance Attention,
WACV23(2487-2496)
IEEE DOI
2302
Semantic segmentation, Computed tomography,
Magnetic resonance imaging, Prototypes, Task analysis,
visual reasoning)
BibRef
Tang, H.[Hao],
Liu, X.W.[Xing-Wei],
Sun, S.L.[Shan-Lin],
Yan, X.Y.[Xiang-Yi],
Xie, X.H.[Xiao-Hui],
Recurrent Mask Refinement for Few-Shot Medical Image Segmentation,
ICCV21(3898-3908)
IEEE DOI
2203
Training, Image segmentation, Technological innovation,
Correlation, Magnetic resonance imaging, Manuals, Medical,
grouping and shape
BibRef
Chen, Y.C.[Yung-Chih],
Hsieh, J.W.[Jun-Wei],
Yang, Y.H.[Yao-Hong],
Lee, C.H.[Chien-Hung],
Yu, P.Y.[Pei-Yi],
Chen, P.Y.[Ping-Yang],
Santa, A.S.[Arpita Samanta],
Towards Deep Learning-Based Sarcopenia Screening with Body Joint
Composition Analysis,
ICIP21(3807-3811)
IEEE DOI
2201
Muscle degeneration.
Training, Muscles, Aging, Real-time systems, Physiology,
Clinical diagnosis, Random forests, Sarcopenia classification,
LSTM
BibRef
Al Suman, A.[Abdulla],
Sarda, S.[Shubham],
Asikuzzaman, M.,
Webb, A.L.[Alexandra Louise],
Diana, M.P.[M. Perriman],
Tahtali, M.[Murat],
di Ieva, A.[Antonio],
Pickering, M.R.[Mark R.],
Two-stage U-Net++ for Medical Image Segmentation,
DICTA21(01-06)
IEEE DOI
2201
Image segmentation, Magnetic resonance imaging, Digital images,
Computer architecture, Muscles, Feature extraction, Neck, U-Net, MRI
BibRef
Ma, T.Y.[Tian-Yu],
Zhang, H.[Hang],
Ong, H.[Hanley],
Vora, A.[Amar],
Nguyen, T.D.[Thanh D.],
Gupta, A.[Ajay],
Wang, Y.[Yi],
Sabuncu, M.R.[Mert R.],
Ensembling Low Precision Models for Binary Biomedical Image
Segmentation,
WACV21(325-334)
IEEE DOI
2106
Image segmentation, Biological system modeling,
Magnetic resonance imaging, Predictive models,
Brain modeling
BibRef
Guo, D.F.[Dan-Feng],
Terzopoulos, D.[Demetri],
A Transformer-Based Network for Anisotropic 3D Medical Image
Segmentation,
ICPR21(8857-8861)
IEEE DOI
2105
Training, Adaptation models, Solid modeling, Image segmentation,
Anisotropic magnetoresistance, Computational modeling
BibRef
Kolarik, M.[Martin],
Burget, R.[Radim],
Travieso-Gonzalez, C.M.[Carlos M.],
Kocica, J.[Jan],
Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced
Data Segmentation,
ICPR21(6051-6058)
IEEE DOI
2105
Training, Image segmentation,
Sensitivity, Magnetic resonance imaging, Transfer learning, Training data
BibRef
Jurek, J.[Jakub],
Reisæter, L.[Lars],
Kocinski, M.[Marek],
Materka, A.[Andrzej],
On the Effect of DCE MRI Slice Thickness and Noise on Estimated
Pharmacokinetic Biomarkers: A Simulation Study,
ICCVG20(72-86).
Springer DOI
2009
BibRef
Kiefer, L.[Lukas],
Petra, S.[Stefania],
Storath, M.[Martin],
Weinmann, A.[Andreas],
Direct MRI Segmentation from k-Space Data by Iterative Potts
Minimization,
SSVM19(406-418).
Springer DOI
1909
BibRef
Roy, S.[Sudipta],
Shoghi, K.I.[Kooresh Isaac],
Computer-Aided Tumor Segmentation from T2-Weighted MR Images of
Patient-Derived Tumor Xenografts,
ICIAR19(II:159-171).
Springer DOI
1909
BibRef
Rezaei, M.[Mina],
Yang, H.J.[Hao-Jin],
Harmuth, K.[Konstantin],
Meinel, C.[Christoph],
Conditional Generative Adversarial Refinement Networks for Unbalanced
Medical Image Semantic Segmentation,
WACV19(1836-1845)
IEEE DOI
1904
biomedical MRI, brain, computerised tomography, image segmentation,
learning (artificial intelligence), medical image processing,
Generative adversarial networks
BibRef
Basukala, D.,
Mukundan, R.,
Melzer, T.,
Keenan, R.,
Segmentation of Substantia Nigra Using Weighted Thresholding Method,
IVCNZ18(1-6)
IEEE DOI
1902
Image segmentation, Magnetic resonance imaging, Level set,
Clustering algorithms, Classification algorithms, Visualization,
substantia nigra
BibRef
Ghosh, S.,
Ray, N.,
Boulanger, P.,
A Structured Deep-Learning Based Approach for the Automated
Segmentation of Human Leg Muscle from 3D MRI,
CRV17(117-123)
IEEE DOI
1804
biomedical MRI, convolution, feedforward neural nets,
image segmentation, learning (artificial intelligence),
principal component analysis (PCA)
BibRef
Ghosh, S.,
Boulanger, P.[Pierre],
Acton, S.T.,
Blemker, S.S.,
Ray, N.,
Automated 3D Muscle Segmentation from MRI Data Using Convolutional
Neural Network,
ICIP17(4437-4441)
IEEE DOI
1803
3D modeling, Magnetic resonance imaging (MRI),
convolutional neural networks (CNN), leg muscle segmentation,
principal component analysis (PCA)
BibRef
Thoma, J.[Janine],
Ozdemir, F.[Firat],
Goksel, O.[Orcun],
Automatic Segmentation of Abdominal MRI Using Selective Sampling and
Random Walker,
MCV16(83-93).
Springer DOI
1711
BibRef
McDonagh, S.[Steven],
Hou, B.[Benjamin],
Alansary, A.[Amir],
Oktay, O.[Ozan],
Kamnitsas, K.[Konstantinos],
Rutherford, M.[Mary],
Hajnal, J.V.[Jo V.],
Kainz, B.[Bernhard],
Context-Sensitive Super-Resolution for Fast Fetal Magnetic Resonance
Imaging,
RAMBO17(116-126).
Springer DOI
1711
BibRef
Tseng, K.L.[Kuan-Lun],
Lin, Y.L.[Yen-Liang],
Hsu, W.[Winston],
Huang, C.Y.[Chung-Yang],
Joint Sequence Learning and Cross-Modality Convolution for 3D
Biomedical Segmentation,
CVPR17(3739-3746)
IEEE DOI
1711
Convolution, Decoding, Image segmentation,
Tumors,
BibRef
Hai, J.J.[Jin-Jin],
Chen, J.[Jian],
Qiao, K.[Kai],
Zeng, L.[Lei],
Xu, J.B.[Jing-Bo],
Yan, B.[Bin],
Fast medical image segmentation based on patch sharing,
ICIVC17(336-340)
IEEE DOI
1708
Convolution, Image segmentation, Knowledge engineering,
Magnetic resonance imaging, Medical diagnostic imaging,
convolutional neural network, medical image segmentation, patch sharing
BibRef
Fan, B.J.[Bai-Jiang],
Rao, Y.[Yunbo],
Liu, W.[Wei],
Wang, Q.F.[Qi-Fei],
Wen, H.Y.[Huai-Yu],
Region-based growing algorithm for 3D reconstruction from MRI images,
ICIVC17(521-525)
IEEE DOI
1708
Image edge detection, Image reconstruction, Image segmentation,
Magnetic resonance imaging, Mathematical model, Solid modeling,
3D reconstruction,
image segmentation, multiple angle observation, region-based, growing
BibRef
Mohebpour, M.R.,
Guibault, F.,
Cheriet, F.,
Mesh-Based Active Model Initialization for Multiple Organ Segmentation
in MR Images,
ICIAR17(429-436).
Springer DOI
1706
BibRef
Christensen, A.N.[Anders Nymark],
Larsen, C.T.[Christian Thode],
Mandrup, C.M.[Camilla Maria],
Petersen, M.B.[Martin Bæk],
Larsen, R.[Rasmus],
Conradsen, K.[Knut],
Dahl, V.A.[Vedrana Andersen],
Automatic Segmentation of Abdominal Fat in MRI-Scans, Using Graph-Cuts
and Image Derived Energies,
SCIA17(II: 109-120).
Springer DOI
1706
BibRef
Lapuyade-Lahorgue, J.,
Ruan, S.,
Li, H.,
Vera, P.,
Tumor segmentation by fusion of MRI images using copula based
statistical methods,
ICIP16(4136-4139)
IEEE DOI
1610
Hidden Markov models
BibRef
Cardona, H.D.V.[Hernán Darío Vargas],
López-Lopera, A.F.[Andrés F.],
Orozco, Á.A.[Álvaro A.],
Álvarez, M.A.[Mauricio A.],
Tamames, J.A.H.[Juan Antonio Hernández],
Malpica, N.[Norberto],
Gaussian Processes for Slice-Based Super-Resolution MR Images,
ISVC15(II: 692-701).
Springer DOI
1601
BibRef
Pan, X.[Xu],
Zhu, H.Q.[Hong-Qing],
Xie, Q.Y.[Qun-Yi],
A robust nonsymmetric student's-t finite mixture model for MR image
segmentation,
ICIP15(1830-1834)
IEEE DOI
1512
MR image
BibRef
Ito, S.[Satoshi],
Yasaka, S.[Shungo],
Yamada, Y.[Yoshifumi],
MR image reconstruction of a regularly undersampled signal using
quadratic phase scrambling,
ICIP15(2994-2998)
IEEE DOI
1512
Fresnel transform; aliasing; compressed sensing; sampling
BibRef
Adhikari, S.K.,
Sing, J.K.,
Basu, D.K.,
Nasipuri, M.,
A spatial fuzzy C-means algorithm with application to MRI image
segmentation,
ICAPR15(1-6)
IEEE DOI
1511
biomedical MRI
BibRef
Aparajeeta, J.,
Nanda, P.K.,
Das, N.,
Bias field estimation and segmentation of MR image using modified
fuzzy-C means algorithms,
ICAPR15(1-6)
IEEE DOI
1511
biomedical MRI
BibRef
Roy, A.,
Maity, S.P.,
On segmentation of CS reconstructed MR images,
ICAPR15(1-6)
IEEE DOI
1511
adaptive filters
BibRef
Orbes-Arteaga, M.[Mauricio],
Cárdenas-Peña, D.[David],
Álvarez, M.A.[Mauricio A.],
Orozco, A.A.[Alvaro A.],
Castellanos-Dominguez, G.[Germán],
Magnetic Resonance Image Selection for Multi-Atlas Segmentation Using
Mixture Models,
CIARP15(391-399).
Springer DOI
1511
BibRef
Khatami, M.[Mohammad],
Schmidt-Wilcke, T.[Tobias],
Sundgren, P.C.[Pia C.],
Abbasloo, A.[Amin],
Schölkopf, B.[Bernhard],
Schultz, T.[Thomas],
BundleMAP: Anatomically localized classification, regression, and
hypothesis testing in diffusion MRI,
PR(63), No. 1, 2017, pp. 593-600.
Elsevier DOI
1612
BibRef
Earlier:
BundleMAP:
Anatomically Localized Features from dMRI for Detection of Disease,
MLMI15(52-60).
Springer DOI
1511
Disease detection
BibRef
Imamoglu, N.[Nevrez],
Gomez-Tames, J.[Jose],
He, S.[Siyu],
Gu, D.Y.[Dong-Yun],
Kita, K.[Kahori],
Yu, W.W.[Wen-Wei],
Unsupervised muscle region extraction by fuzzy decision based
saliency feature integration on thigh MRI for 3D modeling,
MVA15(150-153)
IEEE DOI
1507
Feature extraction
BibRef
Cárdenas-Peña, D.[David],
Orozco, A.A.[Alvaro A.],
Castellanos-Dominguez, G.[Germán],
Information-Based Cost Function for a Bayesian MRI Segmentation
Framework,
CIAP15(I:548-556).
Springer DOI
1511
BibRef
Orbes-Arteaga, M.[Mauricio],
Cárdenas-Peña, D.[David],
Álvarez, M.A.[Mauricio A.],
Orozco, A.A.[Alvaro A.],
Castellanos-Dominguez, G.[Germán],
Kernel Centered Alignment Supervised Metric for Multi-Atlas
Segmentation,
CIAP15(I:658-667).
Springer DOI
1511
BibRef
Earlier:
Spatial-Dependent Similarity Metric Supporting Multi-atlas MRI
Segmentation,
IbPRIA15(300-308).
Springer DOI
1506
BibRef
Lin, E.U.[En-Ui],
McLaughlin, M.,
Alshehri, A.A.,
Ezekiel, S.,
Farag, W.,
Medical image segmentation using multi-scale and super-resolution
method,
AIPR14(1-5)
IEEE DOI
1504
biomedical MRI
BibRef
Trebuchet, G.,
Fasquel, J.,
Cavaro-Menard, C.,
Willoteaux, S.,
Coupling anatomical and functional information for the computer-aided
delineation of Phase-Contrast MRI images using active contours,
IPTA12(172-177)
IEEE DOI
1503
biomedical MRI
BibRef
Antony, J.,
McGuinness, K.,
Welch, N.,
Coyle, J.,
Franklyn-Miller, A.,
OConnor, N.E.,
Moran, K.,
Fat quantification in MRI-defined lumbar muscles,
IPTA14(1-6)
IEEE DOI
1503
biomedical MRI
BibRef
Kinani, J.M.V.[J.M. Vianney],
Rosales-Silva, A.J.,
Gallegos-Funes, F.J.,
Arellano, A.,
Fuzzy C-means applied to MRI images for an automatic lesion detection
using image enhancement and constrained clustering,
IPTA14(1-7)
IEEE DOI
1503
biomedical MRI
BibRef
Pham, M.H.,
Doncescu, A.,
Detection of the features of the objects in MR images using dynamic
programming,
IPTA14(1-6)
IEEE DOI
1503
biomedical MRI
BibRef
Benkarim, O.M.[Oualid M.],
Radeva, P.I.[Petia I.],
Igual, L.[Laura],
Label Consistent Multiclass Discriminative Dictionary Learning for MRI
Segmentation,
AMDO14(138-147).
Springer DOI
1407
BibRef
Mazo, C.[Claudia],
Trujillo, M.[Maria],
Salazar, L.[Liliana],
Identifying Loose Connective and Muscle Tissues on Histology Images,
CIARP13(II:174-180).
Springer DOI
1311
BibRef
Ivanovska, T.[Tatyana],
Laqua, R.[René],
Wang, L.[Lei],
Völzke, H.[Henry],
Hegenscheid, K.[Katrin],
Fast Implementations of the Levelset Segmentation Method With Bias
Field Correction in MR Images: Full Domain and Mask-Based Versions,
IbPRIA13(674-681).
Springer DOI
1307
BibRef
Purushwalkam, S.[Senthil],
Li, B.H.[Bai-Hua],
Meng, Q.G.[Qing-Gang],
McPhee, J.[Jamie],
Automatic Segmentation of Adipose Tissue from Thigh Magnetic Resonance
Images,
ICIAR13(451-458).
Springer DOI
1307
BibRef
Selvathi, D.,
Dhivya, R.,
Segmentation of tissues in MR images using Modified Spatial Fuzzy C
Means algorithm,
ICSIPR13(136-140).
IEEE DOI
1304
BibRef
Zhang, H.[Haili],
Chen, Y.M.[Yun-Mei],
Ye, X.J.[Xiao-Jing],
A variational multiphase model for simultaneous MR image segmentation
and bias correction,
ICIP12(2037-2040).
IEEE DOI
1302
BibRef
Baudin, P.Y.[Pierre-Yves],
Azzabou, N.[Noura],
Carlier, P.[Pierre],
Paragios, N.[Nikos],
Manifold-enhanced Segmentation through Random Walks on Linear Subspace
Priors,
BMVC12(52).
DOI Link
1301
BibRef
Salehian, H.[Hesamoddin],
Cheng, G.[Guang],
Vemuri, B.C.[Baba C.],
Ho, J.[Jeffrey],
Recursive Estimation of the Stein Center of SPD Matrices and Its
Applications,
ICCV13(1793-1800)
IEEE DOI
1403
BibRef
Wang, Y.X.[Yuan-Xiang],
Salehian, H.[Hesamoddin],
Cheng, G.[Guang],
Vemuri, B.C.[Baba C.],
Tracking on the Product Manifold of Shape and Orientation for
Tractography from Diffusion MRI,
CVPR14(3051-3056)
IEEE DOI
1409
Riemannian Manifold;Tractography;Unscented Kalman Filter
BibRef
Cheng, G.[Guang],
Salehian, H.[Hesamoddin],
Vemuri, B.C.[Baba C.],
Efficient Recursive Algorithms for Computing the Mean Diffusion Tensor
and Applications to DTI Segmentation,
ECCV12(VII: 390-401).
Springer DOI
1210
BibRef
Liu, Z.[Zheng],
Nutter, B.[Brian],
Mitra, S.[Sunanda],
Compressive sampling in fast wavelet-encoded MRI,
Southwest12(137-140).
IEEE DOI
1205
BibRef
Ncube, S.[Sentibaleng],
Xie, Q.[Qian],
Srivastava, A.[Anuj],
A geometric analysis of ODFs as oriented surfaces for interpolation,
averaging and denoising in HARDI data,
MMBIA12(1-6).
IEEE DOI
1203
BibRef
Singh, V.[Vimal],
Wang, D.[Dan],
Tewfik, A.H.[Ahmed H.],
Segmented rapid magnetic resonance imaging using structured sparse
representations,
ICIP11(2277-2260).
IEEE DOI
1201
BibRef
Yaqub, M.[Mohammad],
Javaid, M.K.[M. Kassim],
Cooper, C.[Cyrus],
Noble, J.A.[J. Alison],
Improving the Classification Accuracy of the Classic RF Method by
Intelligent Feature Selection and Weighted Voting of Trees with
Application to Medical Image Segmentation,
MLMI11(184-192).
Springer DOI
1109
3D MRI Segmentation.
BibRef
Zhou, J.[Jiayin],
Tian, Q.[Qi],
Chong, V.[Vincent],
Xiong, W.[Wei],
Huang, W.M.[Wei-Min],
Wang, Z.M.[Zhi-Min],
Segmentation of Skull Base Tumors from MRI Using a Hybrid Support
Vector Machine-Based Method,
MLMI11(134-141).
Springer DOI
1109
BibRef
Farzinfar, M.,
Teoh, E.K.[Eam Khwang],
Xue, Z.[Zhong],
A coupled implicit shape-based deformable model for segmentation of MR
images,
ICARCV08(651-656).
IEEE DOI
1109
BibRef
Tran, T.T.,
Lee, P.L.[Po-Lei],
Pham, V.T.,
Shyu, K.K.[Kuo-Kai],
MRI image segmentation based on fast global minimization of snake model,
ICARCV08(1769-1772).
IEEE DOI
1109
BibRef
Mosbech, T.H.[Thomas Hammershaimb],
Pilgaard, K.[Kasper],
Vaag, A.[Allan],
Larsen, R.[Rasmus],
Automatic Segmentation of Abdominal Adipose Tissue in MRI,
SCIA11(501-511).
Springer DOI
1105
BibRef
Feltell, D.[David],
Bai, L.[Li],
A New Marching Cubes Algorithm for Interactive Level Set with
Application to MR Image Segmentation,
ISVC10(I: 371-380).
Springer DOI
1011
BibRef
Koh, J.[Jaehan],
Chaudhary, V.[Vipin],
Dhillon, G.[Gurmeet],
A fully automated method of associating axial slices with a disc based
on labeling of multi-protocol lumbar MRI,
ICIP10(4341-4344).
IEEE DOI
1009
BibRef
Turnes, C.K.[Christopher K.],
Romberg, J.[Justin],
Spiral FFT: An efficient method for 3-D FFTS on spiral MRI contours,
ICIP10(617-620).
IEEE DOI
1009
BibRef
Khider, M.[Mohamed],
Taleb-Ahmed, A.[Abdelmalik],
Haddad, B.[Boualem],
Generation of Synthetic Multifractal Realistic Surfaces Based on
Natural Model and Lognormal Cascade: Application to MRI Classification,
CIARP10(71-78).
Springer DOI
1011
BibRef
Donoso, R.[Ramiro],
Veloz, A.[Alejandro],
Allende, H.[Héctor],
Modified Expectation Maximization Algorithm for MRI Segmentation,
CIARP10(63-70).
Springer DOI
1011
BibRef
Li, Y.[Yi],
Gao, Z.J.[Zhi-Jun],
A review of segmentation method for MR image,
IASP10(351-357).
IEEE DOI
1004
BibRef
Ray, D.[Dipankar],
Majumder, D.D.[D. Dutta],
Development of a Neuro-fuzzy MR Image Segmentation Approach Using Fuzzy
C-Means and Recurrent Neural Network,
PReMI09(128-133).
Springer DOI
0912
BibRef
Jørgensen, P.S.[Peter S.],
Larsen, R.[Rasmus],
Wraae, K.[Kristian],
Unsupervised Assessment of Subcutaneous and Visceral Fat by MRI,
SCIA09(179-188).
Springer DOI
0906
BibRef
Leinhard, O.D.[O. Dahlqvist],
Johansson, A.,
Rydell, J.,
Smedby, O.,
Nystrom, F.,
Lundberg, P.,
Borga, M.,
Quantitative abdominal fat estimation using MRI,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Faggian, N.,
Chen, Z.L.[Zhao-Lin],
Johnston, L.,
Oh, S.H.[Se-Hong],
Cho, Z.H.[Zang-Hee],
Egan, G.,
A Method for Shape Analysis and Segmentation in MRI,
DICTA08(335-342).
IEEE DOI
0812
BibRef
Goh, A.[Alvina],
Lenglet, C.[Christophe],
Thompson, P.M.[Paul M.],
Vidal, R.[Rene],
A nonparametric Riemannian framework for processing high angular
resolution diffusion images (HARDI),
CVPR09(2496-2503).
IEEE DOI
0906
MRI data.
BibRef
Li, C.M.[Chun-Ming],
Gatenby, C.[Chris],
Wang, L.[Li],
Gore, J.C.[John C.],
A Robust Parametric Method for Bias Field Estimation and Segmentation
of MR Images,
CVPR09(218-223).
IEEE DOI
0906
BibRef
Tang, S.Y.[Song-Yuan],
Fan, Y.[Yong],
Zhu, H.T.[Hong-Tu],
Yap, P.T.[Pew-Thian],
Gao, W.[Wei],
Lin, W.L.[Wei-Li],
Shen, D.G.[Ding-Gang],
Regularization of diffusion tensor field using coupled robust
anisotropic diffusion filters,
MMBIA09(52-57).
IEEE DOI
0906
BibRef
Jodoin, P.M.[Pierre-Marc],
Lalande, A.[Alain],
Voisin, Y.[Yvon],
Bouchot, O.[Olivier],
Steinmetz, E.[Eric],
Markovian method for 2D, 3D and 4D segmentation of MRI,
ICIP08(3012-3015).
IEEE DOI
0810
BibRef
Babacan, S.D.[S. Derin],
Yin, X.M.[Xiao-Ming],
Larson, A.C.[Andrew C.],
Katsaggelos, A.K.[Aggelos K.],
Combination of MR surface coil images using weighted constrained least
squares,
ICIP08(2236-2239).
IEEE DOI
0810
BibRef
Placidi, G.[Giuseppe],
Circular Acquisition to Define the Minimal Set of Projections for
Optimal MRI Reconstruction,
CompIMAGE10(254-262).
Springer DOI
1006
BibRef
Placidi, G.[Giuseppe],
Franchi, D.[Danilo],
Galante, A.[Angelo],
Sotgiu, A.[Antonello],
A Novel Acceleration Coding/Reconstruction Algorithm for Magnetic
Resonance Imaging in Presence of Static Magnetic Field In-Homogeneities,
ISVC08(II: 1115-1124).
Springer DOI
0812
BibRef
Wong, A.[Alexander],
An Iterative Approach to Improved Local Phase Coherence Estimation,
CRV08(301-307).
IEEE DOI
0805
BibRef
Schultz, T.[Thomas],
Seidel, H.P.[Hans-Peter],
Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Mayer, G.S.,
Vrscay, E.R.[Edward R.],
Lauzon, M.L.,
Goodyear, B.G.,
Mitchell, J.R.,
Self-similarity of Images in the Fourier Domain, with Applications to
MRI,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Melonakos, J.[John],
Niethammer, M.[Marc],
Mohan, V.[Vandana],
Kubicki, M.[Marek],
Miller, J.V.[James V.],
Tannenbaum, A.[Allen],
Locally-Constrained Region-Based Methods for DW-MRI Segmentation,
MMBIA07(1-8).
IEEE DOI
0710
See also Finsler Level Set Segmentation for Imagery in Oriented Domains.
BibRef
Assemlal, H.E.[Haz-Edine],
Tschumperle, D.,
Brun, L.,
Fiber Tracking on HARDI Data using Robust ODF Fields,
ICIP07(III: 133-136).
WWW Link.
0709
HARDI: High-Angular Resolution MRI.
ODF: Orientation Diffusion Functions
BibRef
El-Baz, A.S.[Ayman S.],
Farag, A.[Aly],
Fahmi, R.[Rachid],
Yuksela, S.[Seniha],
El-Ghar, M.A.[Mohamed A.],
Eldiasty, T.[Tarek],
Image Analysis of Renal DCE MRI for the Detection of Acute Renal
Rejection,
ICPR06(III: 822-825).
IEEE DOI
0609
BibRef
Liu, J.[Jiang],
Leong, T.Y.[Tze-Yun],
Chee, K.B.[Kin Ban],
Tan, B.P.[Boon Pin],
Shuter, B.,
Wang, S.C.[Shih-Chang],
A Set-based Hybrid Approach (SHA) for MRI Segmentation,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Li, Y.[Yan],
Li, Z.M.[Zhong-Ming],
Xue, Z.[Zhong],
Segmenting MR Images Using Fully-Tuned Radial Basis Functions (RBF),
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Balov, N.[Nikolay],
Srivastava, A.[Anuj],
Li, C.M.[Chun-Ming],
Ding, Z.H.[Zhao-Hua],
Shape Analysis of Open Curves in R3 with Applications to Study of Fiber
Tracts in DT-MRI Data,
EMMCVPR07(399-413).
Springer DOI
0708
BibRef
Danyali, H.[Habibollah],
Mertins, A.[Alfred],
Multiresolution Lossy-to-Lossless Coding of MRI Objects,
ACIVS06(877-886).
Springer DOI
0609
BibRef
Cao, Y.[Yan],
Miller, M.I.[Michael I.],
Mori, S.[Susumu],
Winslow, R.L.[Raimond L.],
Younes, L.[Laurent],
Diffeomorphic Matching of Diffusion Tensor Images,
MMBIA06(67).
IEEE DOI
0609
BibRef
Balci, M.[Murat],
Alnasser, M.[Mais],
Foroosh, H.[Hassan],
Subpixel Alignment of MRI Data Under Cartesian and Log-Polar Sampling,
ICPR06(III: 607-610).
IEEE DOI
0609
BibRef
McGraw, T.[Tim],
Vemuri, B.C.[Baba C.],
Yezierski, R.[Robert],
Mareci, T.[Thomas],
Segmentation of High Angular Resolution Diffusion MRI Modeled as a
Field of von Mises-Fisher Mixtures,
ECCV06(III: 463-475).
Springer DOI
0608
BibRef
Bronstein, A.M.,
Bronstein, M.M.,
Zibulevsky, M.,
Zeevi, Y.Y.,
'Unmixing' Tissues: Sparse Component Analysis in Multi-Contrast MRI,
ICIP05(II: 1282-1285).
IEEE DOI
0512
BibRef
Persson, M.[Markus],
Solem, J.E.[Jan Erik],
Markenroth, K.[Karin],
Svensson, J.[Jonas],
Heyden, A.[Anders],
Phase Contrast MRI Segmentation Using Velocity and Intensity,
ScaleSpace05(119-130).
Springer DOI
0505
BibRef
Chen, W.F.[Wu-Fan],
Zhou, S.J.[Shou-Jun],
Liang, B.[Bin],
LV contour tracking in MRI sequences based on the generalized fuzzy GVF,
ICIP04(I: 373-376).
IEEE DOI
0505
BibRef
Minagawa, A.,
Takahashi, S.,
Tagawa, N.,
Strain Calculation from Sinusoidal Tagged MR Images Via Moire Analysis,
ICIP03(I: 1073-1076).
IEEE DOI
0312
BibRef
Hellier, P.,
Consistent intensity correction of MR images,
ICIP03(I: 1109-1112).
IEEE DOI
0312
BibRef
Ardizzone, E.[Edoardo],
Pirrone, R.[Roberto],
Gambino, O.[Orazio],
Automatic segmentation of MR images based on adaptive anisotropic
filtering,
CIAP03(283-288).
IEEE DOI
0310
BibRef
Desbleds-Mansard, C.[Catherine],
Anwander, A.[Alfred],
Chaabane, L.[Linda],
Orkisz, M.[Maciej],
Neyran, B.[Bruno],
Douek, P.C.[Philippe C.],
Magnin, I.E.[Isabelle E.],
Dynamic Active Contour Model for Size Independent Blood Vessel Lumen
Segmentation and Quantification in High-Resolution Magnetic Resonance
Images,
CAIP01(264 ff.).
Springer DOI
0210
BibRef
Hill, N.[Naomi],
Boyle, R.[Roger],
Berry, E.[Elizabeth],
A Deformable Model using Probabalistic Labelling and Surface Relaxation
to Segment MR Volumes,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Thacker, N.A.,
Lacey, A.J.,
Bromiley, P.A.,
Validating MRI Field Homogeneity Correction Using Image Information
Measures,
BMVC02(Poster Session).
0208
BibRef
Tschumperlé, D.,
Deriche, R.,
Diffusion Tensor Regularization with Constraints Preservation,
CVPR01(I:948-953).
IEEE DOI
0110
Regularization applied to MRI data.
BibRef
Kobashi, S.,
Takae, T.,
Kitamura, Y.,
Hata, Y.,
Yanagida, T.,
Fuzzy Medical Image Processing for Segmenting the Lateral Ventricles
from MR Images,
ICIP01(III: 1095-1098).
IEEE DOI
0108
BibRef
Vemuri, B.C.,
Chen, Y.,
Rao, M.,
McGraw, T.,
Mareci, T.H.,
Fiber Tract Mapping from Diffusion Tensor MRI,
LevelSet01(xx-yy).
0106
BibRef
Rifai, H.,
Bloch, I.,
Wiart, J.,
Garnero, L.,
Segmentation, Tracking, 3D Modelling and Matching of the Inner Ear
Based on MRI Data,
SCIA99(Biological Applications I).
BibRef
9900
Garza-Jinich, M.,
Meer, P.,
Medina, V.,
Robust Retrieval of 3D Structures from Magnetic Resonance Images,
ICPR96(III: 391-395).
IEEE DOI
9608
(Univ. Nacional Autonoma, MEX)
BibRef
Lin, J.S.,
Cheng, K.S.,
Mao, C.W.,
A Modified Hopfield Neural Network with Fuzzy C-Means Technique
for Multispectral MR Image Segmentation,
ICIP96(I: 327-330).
IEEE DOI
BibRef
9600
Bello, F.,
Colchester, A.C.F.,
Röll, S.A.,
A generalised geometry and intensity based partial volume correction
for magnetic resonance images,
CIAP97(II: 428-435).
Springer DOI
9709
BibRef
Ito, S.,
Sato, O.,
Yamada, Y.,
Kamimura, Y.,
On-line holographic reconstruction of NMR images by means of a liquid
crystal spatial light modulator,
ICIP96(III: 531-534).
IEEE DOI
9610
BibRef
Wang, Y.[Yue],
Lei, T.[Tianhu],
Statistical analysis of MR imaging and its applications in image
modeling,
ICIP94(I: 866-870).
IEEE DOI
9411
BibRef
And:
A new stochastic model-based image segmentation technique for MR image,
ICIP94(II: 182-186).
IEEE DOI
9411
BibRef
Lee, J.L.,
Rodriguez, J.J.,
Edge-based segmentation of 3-D magnetic resonance images,
ICIP94(I: 876-880).
IEEE DOI
9411
BibRef
Pien, H.H.,
Gauch, J.M.,
Variational segmentation of multi-channel MRI images,
ICIP94(III: 508-512).
IEEE DOI
9411
BibRef
Yan, H.[Hong],
Mao, J.T.[Jing-Tong],
Zhu, Y.[Yan],
Chen, B.,
Magnetic resonance image segmentation using optimized nearest neighbor
classifiers,
ICIP94(III: 49-52).
IEEE DOI
9411
BibRef
Gath, I.,
Hoory, D.,
Detection of elliptic shells using fuzzy clustering:
Application to MRI images,
ICPR94(B:251-255).
IEEE DOI
9410
BibRef
Amamoto, D.Y.,
Kasturi, R.,
Mamourian, A.,
Tissue-type discrimination in magnetic resonance images,
ICPR90(I: 603-607).
IEEE DOI
9006
BibRef
Brelstaff, G.J.,
Ibison, M.C.,
Elliott, P.J.,
Edge-region integration for segmentation of MR images,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Young, I.R.,
Hall, A.S.,
Observations of the choice of reconstruction matrix in magnetic
resonance imaging,
ICPR88(II: 1187-1191).
IEEE DOI
8811
BibRef
Merickel, M.B.,
Carman, C.S.,
Watterson, W.K.,
Brookeman, J.R.,
Ayers, C.R.,
Multispectral pattern recognition of MR imagery for the noninvasive
analysis of atherosclerosis,
ICPR88(II: 1192-1197).
IEEE DOI
8811
BibRef
Suzuki, H.,
Toriwaki, J.,
Knowledge-guided automatic thresholding for 3-dimensional display of
head MRI images,
ICPR88(II: 1210-1212).
IEEE DOI
8811
BibRef
Li, C.C.,
Gokmen, M.,
Hirschman, A.D.,
Wang, Y.,
Information preserving image compression for archiving NMR images,
ICPR88(II: 1295-1299).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Magnetic Resonance Imaging, Registration, Alignment, Fusion .