MIT Car Database MITC,
Online2000
HTML Version.
Dataset, Vehicles.
BibRef
0001
PKU-VD Dataset,
2017
HTML Version.
Dataset, Vehicles. VD1: 1,097,649 images. 1,232 vehicle models and 11 colors.
VD2: 807,260 images. 1,112 vehicle models and 11 colors.
Reference:
See also Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles.
PKU VehicleID Dataset,
2016
HTML Version.
Dataset, Vehicles. 10319 vehicles, 90196 images.
Reference:
See also Deep Relative Distance Learning: Tell the Difference between Similar Vehicles.
Tanaka, R.[Ryohei],
Kitamura, A.[Akinobu],
Odake, T.[Takaaki],
Kato, Y.[Yutaka],
Optical vehicle detection system,
US_Patent4,433,325, 02/21/1984.
HTML Version. In a selected lane.
BibRef
8402
Fujioka, A.[Arisa],
Kageyama, S.[Satoshi],
Method for measuring the maximum gross weight of a motor vehicle,
US_Patent4,813,004, 03/14/1989
HTML Version. Measure the wheel diameter and compute.
BibRef
8903
Michalopoulos, P.G.[Panos G.],
Fundakowski, R.A.[Richard A.],
Geokezas, M.[Meletios],
Fitch, R.C.[Robert C.],
Vehicle detection through image processing for traffic
surveillance and control,
US_Patent4,847,772, 07/11/1989.
HTML Version. Monitor section of road.
BibRef
8907
Leung, M.K.[Mun K.],
Huang, T.S.[Thomas S.],
Detecting the wheel pattern of a vehicle using stereo images,
PR(24), No. 12, 1991, pp. 1139-1151.
Elsevier DOI
0401
BibRef
Earlier:
Detecting wheels of vehicle in stereo images,
ICPR90(I: 263-267).
IEEE DOI
9006
Calculate the parameters of the plane containing wheels of the
vehicle. Then transform any elliptical wheels
contained in the plane to circular ones which can be extracted by the
circle extraction algorithm.
BibRef
Tan, T.N.,
Sullivan, G.D.,
Baker, K.D.,
Recognizing Objects on the Ground-Plane,
IVC(12), No. 3, April 1994, pp. 164-172.
Elsevier DOI
BibRef
9404
Earlier:
Recognising Objects on the Ground Plane,
BMVC93(xx).
PDF File.
BibRef
And: A1, A3, A2:
Structure from Motion Using Ground Plane Constraint,
ECCV92(277-281).
Springer DOI Reading Univ.
See also 3D Structure and Motion Estimation from 2D Image Sequences.
BibRef
Tan, T.N.,
Sullivan, G.D.,
Baker, K.D.,
Closed-Form Algorithms for Object Pose and Scale Recovery in
Constrained Scenes,
PR(29), No. 3, March 1996, pp. 449-461.
Elsevier DOI
BibRef
9603
And:
Fast Algorithms for Object Orientation Determination,
SPIE(2488), 1995, pp. 263-273.
BibRef
Earlier:
Pose Determination and Recognition of Vehicles in Traffic Scenes,
ECCV94(A:501-506).
Springer DOI
BibRef
Earlier:
Linear Algorithms for Object Pose Estimation,
BMVC92(600-609).
PDF File.
BibRef
Tan, T.N.,
Baker, K.D.,
Sullivan, G.D.,
Model-Independent Recovery of Object Orientations,
RA(13), No. 4, August 1997, pp. 602-606.
9708
BibRef
And: A1, A3, A2:
On Computing the Perspective Transformation Matrix and
Camera Parameters,
BMVC93(125-134).
PDF File.
BibRef
Du, L.,
Sullivan, G.D.,
Baker, K.D.,
3D Grouping by Viewpoint Consistency Ascent,
IVC(10), No. 5, June 1992, pp. 301-307.
Elsevier DOI
BibRef
9206
Earlier:
BMVC91(xx-yy).
PDF File.
9109
BibRef
And:
Quantitative Analysis of the Viewpoint Consistency Constraint
in Model-Based Vision,
ICCV93(632-639).
IEEE DOI Match line models to the image.
BibRef
Du, L.,
Sullivan, G.D.,
Baker, K.D.,
Modelling Data Complexity for Model-based Vision,
BMVC92(xx-yy).
PDF File.
9209
BibRef
And:
On Evidence Assessment for Model-based Recognition,
BMVC92(xx-yy).
PDF File.
9209
BibRef
Zhang, Z.,
Du, L.,
Sullivan, G.D.,
Baker, K.D.,
Model based 3D grouping by using 2D cues,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Marslin, R.F.,
Sullivan, G.D.,
Baker, K.D.,
Kalman Filters in Constrained Model Based Tracking,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Worrall, A.D.,
Marslin, R.F.,
Sullivan, G.D., and
Baker, K.D.,
Model-based Tracking,
BMVC91(xx).
PDF File.
BibRef
9100
Sullivan, G.D.,
Baker, K.D.,
Worrall, A.D.,
Attwood, C.I.,
Remagnino, P.M.,
Model-based Vehicle Detection and Classification using
Orthographic Approximations,
IVC(15), No. 8, August 1997, pp. 649-654.
Elsevier DOI
9708
BibRef
Earlier:
BMVC96(Applications).
9608
University of Reading
BibRef
Worrall, A.D.,
Sullivan, G.D.,
Baker, K.D.,
Advances in Model Based Traffic Vision,
BMVC93(559-569).
PDF File. (Reading Univ)
BibRef
9300
Tan, T.N.,
Sullivan, G.D.,
Baker, K.D.,
Model-Based Localization and Recognition of Road Vehicles,
IJCV(27), No. 1, March 1998, pp. 5-25.
DOI Link
9805
BibRef
And:
Fast Vehicle Localization and Recognition without
Line Extraction and Matching,
BMVC94(95-104).
PDF File.
9409
(Discrepancy in page number.)
See also Three-Dimensional Deformable-Model-Based Localization and Recognition of Road Vehicles.
BibRef
Zhang, Z.X.[Zhao-Xiang],
Dong, W.S.[Wei-Shan],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
EDA Approach for Model Based Localization and Recognition of Vehicles,
VS07(1-8).
IEEE DOI
0706
BibRef
Tan, T.N.,
Locating and Recognizing Road Vehicles,
OptEng(37), No. 1, January 1998, pp. 202-207.
9802
BibRef
Tan, T.N.,
Baker, K.D.,
Efficient Image Gradient Based Vehicle Localization,
IP(9), No. 8, August 2000, pp. 1343-1356.
IEEE DOI
0008
BibRef
Tan, T.N.,
Sullivan, G.D.,
Baker, K.D.,
Efficient Image Gradient-Based Object Localization and Recognition,
CVPR96(397-402).
IEEE DOI Image gradients for vehicle models.
BibRef
9600
Maybank, S.J.,
Worrall, A.D.,
Sullivan, G.D.,
Filter for Car Tracking Based on Acceleration and Steering Angle,
BMVC96(Poster Session 2).
9608
BibRef
And:
A Filter for Visual Tracking Based on a Stochastic Model for
Driver Behaviour,
ECCV96(II:540-549).
Springer DOI University of Reading
BibRef
Maybank, S.J.,
Filter based estimates of depth,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Sullivan, G.D.,
Worrall, A.D.,
Ferryman, J.M.,
Visual Object Recognition Using Deformable Models of Vehicles,
Context95(xx)
BibRef
9500
Charkari, N.M.,
Mori, H.,
Visual Vehicle Detection and Tracking Based on the Sign Pattern,
AdvRob(9), No. 4, 1995, pp. 367-382.
BibRef
9500
Dubuisson-Jolly, M.P.[Marie-Pierre],
Lakshmanan, S.,
Jain, A.K.,
Vehicle Segmentation and Classification Using Deformable Templates,
PAMI(18), No. 3, March 1996, pp. 293-308.
IEEE DOI
Tracking.
BibRef
9603
Earlier:
Vehicle Segmentation Using Deformable Templates,
SCV95(581-586).
IEEE DOI Siemens Corporate Research. U. of Michigan Dearbon.
Michigan State University.
Given a simple polygonal model of the vehicle, find and track it.
BibRef
Alves, J.F.[James F.],
Cacnio, G.R.[Gerry R.],
Stevens, D.R.[David R.],
Video image processor and method for detecting vehicles,
US_Patent5,535,314, Jul 9, 1996
WWW Link.
BibRef
9607
Mantri, S.,
Bullock, D.,
Garrett, J.,
Vehicle Detection Using a Hardware-Implemented Neural-Net,
IEEE_Expert(12), No. 1, January/February 1997, pp. 15-21.
9703
BibRef
Kitamura, T.[Tadaaki],
Kobayashi, Y.[Yoshiki],
Nakanishi, K.[Kunio],
Yahiro, M.[Masakazu],
Satoh, Y.[Yoshiyuki],
Shibata, T.[Toshiro],
Horie, T.[Takeshi],
Yamamoto, K.[Katsuyuki],
Takatou, M.[Masao],
Inoue, H.[Haruki],
Asada, K.[Kazuyoshi],
Object recognition system and abnormality detection system
using image processing,
US_Patent5,757,287, May 26, 1998.
HTML Version.
BibRef
9805
Earlier:
US_Patent5,554,983, September 10, 1996.
HTML Version. Use templates to find the parts of the vehicle.
BibRef
Takatou, M.[Masao],
Takahashi, K.[Kazunori],
Hamada, N.[Nobuhiro],
Kitamura, T.[Tadaaki],
Kikuchi, K.[Kuniyuki],
Takenaga, H.[Hiroshi],
Morooka, Y.[Yasuo],
Traffic flow measuring method and apparatus,
US_Patent5,283,573, February 1, 1994,
HTML Version.
BibRef
9402
Takatou, M.,
Onuma, C.,
Kobayashi, Y.,
Detection of Objects Including Persons Using Image Processing,
ICPR96(III: 466-472).
IEEE DOI
9608
(Hitachi Res. Laboratory, J)
BibRef
Lai, A.H.S.,
Yung, N.H.C.,
Vehicle-Type Identification Through
Automated Virtual Loop Assignment and Block-Based
Direction-Biased Motion Estimation,
ITS(1), No. 2, June 2000, pp. 86-97.
IEEE Abstract.
BibRef
0006
Ellis, R.D.,
Meitzler, T.J.,
Witus, G.,
Sohn, E.,
Bryk, D.,
Goetz, R.,
Gerhart, G.R.,
Computational Modeling of Age-Differences in a Visually Demanding
Driving Task: Vehicle Detection,
SMC-A(30), No. 3, May 2000, pp. 336-346.
IEEE Top Reference.
0006
Evaluation, Vehicle Detection. Human performance.
BibRef
Kagesawa, M.,
Ueno, S.,
Ikeuchi, K.,
Kashiwagi, H.,
Recognizing vehicles in infrared images using IMAP parallel vision
board,
ITS(2), No. 1, March 2001, pp. 10-17.
IEEE Abstract.
0402
BibRef
Gupte, S.,
Masoud, O.T.,
Martin, R.F.K.,
Papanikolopoulos, N.P.,
Detection and classification of vehicles,
ITS(3), No. 1, March 2002, pp. 37-47.
IEEE Abstract.
0402
BibRef
Li, X.B.[Xiao-Bo],
Liu, Z.Q.[Zhi-Qiang],
Leung, K.M.[Ka-Ming],
Detection of vehicles from traffic scenes using fuzzy integrals,
PR(35), No. 4, April 2002, pp. 967-980.
Elsevier DOI
0201
BibRef
Setchell, C.,
Dagless, E.L.,
Vision-based road-traffic monitoring sensor,
VISP(148), No. 1, February 2001, pp. 78-84.
0105
BibRef
Bedenas, J.,
Boder, M.,
Pla, F.,
Segmenting Traffic Scenes from Grey Level and Motion Information,
PAA(4), No. 1, 2001, pp. 28-38.
Springer DOI
0105
BibRef
Kato, J.[Jien],
Watanabe, T.[Toyohide],
Joga, S.[Sébastien],
Rittscher, J.[Jens],
Blake, A.[Andrew],
An HMM-Based Segmentation Method for Traffic Monitoring Movies,
PAMI(24), No. 9, September 2002, pp. 1291-1296.
IEEE Abstract.
0209
Deal with shadows of moving ogjects. Classify each region as shadow,
background, foreground.
BibRef
Zhang, W.[Wei],
Fang, X.Z.[Xiang Zhong],
Yang, X.K.[Xiao-Kang],
Moving vehicles segmentation based on Bayesian framework for Gaussian
motion model,
PRL(27), No. 9, July 2006, pp. 956-967.
Elsevier DOI Vehicles detection
0605
BibRef
Stojmenovic, M.[Milos],
Real Time Machine Learning Based Car
Detection in Images With Fast Training,
MVA(17), No. 3, August 2006, pp. 163-172.
Springer DOI
0606
BibRef
Toulminet, G.,
Bertozzi, M.,
Mousset, S.,
Bensrhair, A.,
Broggi, A.,
Vehicle Detection by Means of Stereo Vision-Based Obstacles Features
Extraction and Monocular Pattern Analysis,
IP(15), No. 8, August 2006, pp. 2364-2375.
IEEE DOI
0606
See also Pedestrian localization and tracking system with Kalman filtering.
BibRef
Tsai, L.W.,
Hsieh, J.W.[Jun-Wei],
Fan, K.C.,
Vehicle Detection Using Normalized Color and Edge Map,
IP(16), No. 3, March 2007, pp. 850-864.
IEEE DOI
0703
BibRef
Urazghildiiev, I.,
Ragnarsson, R.,
Ridderstrom, P.,
Rydberg, A.,
Ojefors, E.,
Wallin, K.,
Enochsson, P.,
Ericson, M.,
Lofqvist, G.,
Vehicle Classification Based on the Radar Measurement of Height
Profiles,
ITS(8), No. 2, April 2007, pp. 245-253.
IEEE DOI
0706
BibRef
Lam, W.W.L.,
Pang, C.C.C.,
Yung, N.H.C.,
Vehicle-Component Identification Based on Multiscale Textural Couriers,
ITS(8), No. 4, December 2007, pp. 681-694.
IEEE DOI
0712
BibRef
Earlier:
Multi-scale space vehicle component identification,
ICIP04(II: 925-928).
IEEE DOI
0505
BibRef
Wang, C.C.R.[Chi-Chen Raxle],
Lien, J.J.J.[Jenn-Jier James],
Automatic Vehicle Detection Using Local Features:
A Statistical Approach,
ITS(9), No. 1, March 2008, pp. 83-96.
IEEE DOI
0803
BibRef
Earlier:
Automatic Vehicle Detection Using Statistical Approach,
ACCV06(II:171-182).
Springer DOI
0601
BibRef
Pang, C.C.C.[Clement Chun Cheong],
Tan, Z.G.[Zhi-Gang],
Yung, N.H.C.[Nelson Hon Ching],
A methodology for resolving severely occluded vehicles based on
component-based multi-resolution relational graph matching,
ICMV07(141-146).
IEEE DOI
0712
BibRef
Grabner, H.[Helmut],
Nguyen, T.T.[Thuy Thi],
Gruber, B.[Barbara],
Bischof, H.[Horst],
On-line boosting-based car detection from aerial images,
PandRS(63), No. 3, May 2008, pp. 382-396.
Elsevier DOI
0711
Award, ISPRS.
Vehicle Detection.
Car detection; Aerial image; Adaboost; On-line learning;
Pattern recognition; UltraCamD
BibRef
Grabner, H.[Helmut],
Sochman, J.[Jan],
Bischof, H.[Horst],
Matas, J.G.[Jiri G.],
Training sequential on-line boosting classifier for visual tracking,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Grabner, M.[Michael],
Zach, C.[Christopher],
Bischof, H.[Horst],
Efficient Tracking as Linear Program on Weak Binary Classifiers,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Grabner, M.[Michael],
Grabner, H.[Helmut],
Bischof, H.[Horst],
Learning Features for Tracking,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier: A2, A1, A3:
Real-Time Tracking via On-line Boosting,
BMVC06(I:47).
PDF File.
0609
See also Conservative Visual Learning for Object Detection with Minimal Hand Labeling Effort.
See also On robustness of on-line boosting: a competitive study.
BibRef
Grabner, H.[Helmut],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Eigenboosting: Combining Discriminative and Generative Information,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier: A1, A3, Only:
On-line Boosting and Vision,
CVPR06(I: 260-267).
IEEE DOI
0606
AdaBoost feature selection method.
BibRef
Santner, J.[Jakob],
Leistner, C.[Christian],
Saffari, A.[Amir],
Pock, T.[Thomas],
Bischof, H.[Horst],
PROST: Parallel robust online simple tracking,
CVPR10(723-730).
IEEE DOI
1006
BibRef
Leistner, C.[Christian],
Godec, M.[Martin],
Schulter, S.[Samuel],
Saffari, A.[Amir],
Werlberger, M.[Manuel],
Bischof, H.[Horst],
Improving classifiers with unlabeled weakly-related videos,
CVPR11(2753-2760).
IEEE DOI
1106
BibRef
Saffari, A.[Amir],
Leistner, C.[Christian],
Godec, M.[Martin],
Bischof, H.[Horst],
Robust Multi-View Boosting with Priors,
ECCV10(III: 776-789).
Springer DOI
1009
BibRef
Saffari, A.[Amir],
Godec, M.[Martin],
Pock, T.[Thomas],
Leistner, C.[Christian],
Bischof, H.[Horst],
Online multi-class LPBoost,
CVPR10(3570-3577).
IEEE DOI
1006
See also On robustness of on-line boosting: a competitive study.
See also On-Line Multi-view Forests for Tracking.
BibRef
Godec, M.[Martin],
Sternig, S.[Sabine],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Context-driven clustering by multi-class classification in an active
learning framework,
UCVP10(19-24).
IEEE DOI
1006
BibRef
Saffari, A.[Amir],
Leistner, C.[Christian],
Bischof, H.[Horst],
Regularized multi-class semi-supervised boosting,
CVPR09(967-974).
IEEE DOI
0906
BibRef
Grabner, H.[Helmut],
Leistner, C.[Christian],
Bischof, H.[Horst],
Semi-supervised On-Line Boosting for Robust Tracking,
ECCV08(I: 234-247).
Springer DOI
0810
Award, Koenderink Prize.
BibRef
Earlier: A2, A1, A3:
Semi-supervised boosting using visual similarity learning,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Leistner, C.,
Roth, P.M.,
Grabner, H.,
Bischof, H.,
Starzacher, A.,
Rinner, B.,
Visual on-line learning in distributed camera networks,
ICDSC08(1-10).
IEEE DOI
0809
BibRef
Arth, C.[Clemens],
Leistner, C.[Christian],
Bischof, H.[Horst],
Object Reacquisition and Tracking in Large-Scale Smart Camera Networks,
ICDSC07(156-163).
IEEE DOI
0709
BibRef
Earlier: A1, A3, A2:
TRICam: An Embedded Platform for Remote Traffic Surveillance,
EmbedCV06(125).
IEEE DOI
0609
BibRef
Saffari, A.[Amir],
Grabner, H.[Helmut],
Bischof, H.[Horst],
SERBoost: Semi-supervised Boosting with Expectation Regularization,
ECCV08(III: 588-601).
Springer DOI
0810
BibRef
Jia, Y.Q.[Yang-Qing],
Zhang, C.S.[Chang-Shui],
Front-view vehicle detection by Markov chain Monte Carlo method,
PR(42), No. 3, March 2009, pp. 313-321.
Elsevier DOI
0811
Vehicle detection; Bayesian method; Maximizing a posteriori;
Markov chain Monte Carlo
BibRef
Lamosa, F.[Francisco],
Hu, Z.C.[Zhen-Cheng],
Uchimura, K.[Keiichi],
Vehicle Detection Using Multi-level Probability Fusion Maps Generated
by a Multi-camera System,
AVSBS08(10-17).
IEEE DOI
0809
BibRef
Zhu, Z.F.[Zhen-Feng],
Lu, H.Q.[Han-Qing],
Hu, J.,
Uchimura, K.,
Car detection based on multi-cues integration,
ICPR04(II: 699-702).
IEEE DOI
0409
BibRef
Ponsa, D.[Daniel],
Lopez, A.M.[Antonio M.],
Variance reduction techniques in particle-based visual contour tracking,
PR(42), No. 11, November 2009, pp. 2372-2391.
Elsevier DOI
0907
BibRef
And:
Cascade of Classifiers for Vehicle Detection,
ACIVS07(980-989).
Springer DOI
0708
BibRef
Earlier:
Vehicle Trajectory Estimation Based on Monocular Vision,
IbPRIA07(I: 587-594).
Springer DOI
0706
Contour tracking; Active shape models; Kalman filter; Particle filter;
Importance sampling; Unscented particle filter; Rao-Blackwellization;
Partitioned sampling
BibRef
Thomas, A.[Alexander],
Ferrari, V.[Vittorio],
Leibe, B.[Bastian],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Shape-from-recognition: Recognition enables meta-data transfer,
CVIU(113), No. 12, Decmeber 2009, pp. 1222-1234,.
Elsevier DOI
0911
BibRef
Earlier:
Depth-From-Recognition: Inferring Meta-data by Cognitive Feedback,
ICCV07(1-8).
IEEE DOI
0710
Object recognition; Shape-from-X
Infer low level cues from high level information.
Given a vehicle, infer the shape.
See also Robust Object Detection with Interleaved Categorization and Segmentation.
BibRef
Thomas, A.[Alexander],
Ferrar, V.[Vittorio],
Leibe, B.[Bastian],
Tuytelaars, T.[Tinne],
Schiel, B.[Bernt],
Van Gool, L.J.[Luc J.],
Towards Multi-View Object Class Detection,
CVPR06(II: 1589-1596).
IEEE DOI
0606
BibRef
Leibe, B.[Bastian],
Mikolajczyk, K.[Krystian],
Schiele, B.[Bernt],
Segmentation Based Multi-Cue Integration for Object Detection,
BMVC06(III:1169).
PDF File.
0609
BibRef
And: A2, A1, A3:
Multiple Object Class Detection with a Generative Model,
CVPR06(I: 26-36).
IEEE DOI
0606
See also Efficient Clustering and Matching for Object Class Recognition.
BibRef
Shan, Y.[Ying],
Sawhney, H.S.[Harpreet S.],
Kumar, R.T.[Rakesh Teddy],
Unsupervised Learning of Discriminative Edge Measures for Vehicle
Matching between Non-Overlapping Cameras,
PAMI(30), No. 4, April 2008, pp. 700-711.
IEEE DOI
0803
BibRef
Earlier:
CVPR05(I: 894-901).
IEEE DOI
0507
BibRef
And:
Vehicle Identification between Non-Overlapping Cameras without Direct
Feature Matching,
ICCV05(I: 378-385).
IEEE DOI
0510
BibRef
Guo, Y.L.[Yan-Lin],
Kumar, R.[Rakesh],
Sawhney, H.S.[Harpreet S.],
Method and apparatus for detecting independent motion in
three-dimensional scenes,
US_Patent6,353,678, Mar 5, 2002
WWW Link.
BibRef
0203
Guo, Y.L.[Yan-Lin],
Rao, C.[Cen],
Samarasekera, S.[Supun],
Kim, J.[Janet],
Kumar, R.[Rakesh],
Sawhney, H.S.[Harpreet S.],
Matching vehicles under large pose transformations using approximate 3D
models and piecewise MRF model,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Guo, Y.L.[Yan-Lin],
Shan, Y.[Ying],
Sawhney, H.S.[Harpreet S.],
Kumar, R.T.[Rakesh T.],
PEET: Prototype Embedding and Embedding Transition for Matching
Vehicles over Disparate Viewpoints,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Morris, B.T.[Brendan T.],
Trivedi, M.M.[Mohan M.],
A Survey of Vision-Based Trajectory Learning and Analysis for
Surveillance,
CirSysVideo(18), No. 8, August 2008, pp. 1114-1127.
IEEE DOI
0809
Survey, Trajectory Analysis.
BibRef
Morris, B.T.[Brendan T.],
Trivedi, M.M.[Mohan M.],
Trajectory Learning for Activity Understanding:
Unsupervised, Multilevel, and Long-Term Adaptive Approach,
PAMI(33), No. 11, November 2011, pp. 2287-2301.
IEEE DOI
1110
BibRef
Earlier:
Learning trajectory patterns by clustering:
Experimental studies and comparative evaluation,
CVPR09(312-319).
IEEE DOI
0906
BibRef
Morris, B.T.[Brendan T.],
Trivedi, M.M.[Mohan M.],
Learning, Modeling, and Classification of Vehicle Track Patterns from
Live Video,
ITS(9), No. 3, September 2008, pp. 425-437.
IEEE DOI
0809
BibRef
Earlier:
Improved Vehicle Classification in Long Traffic Video by Cooperating
Tracker and Classifier Modules,
AVSBS06(9-9).
IEEE DOI
0611
BibRef
Morris, B.T.[Brendan T.],
Trivedi, M.M.[Mohan M.],
Contextual Activity Visualization from Long-Term Video Observations,
IEEE_Int_Sys(25), No. 3, May-June 2010, pp. 50-62.
IEEE DOI
1007
BibRef
Earlier:
Learning and Classification of Trajectories in Dynamic Scenes:
A General Framework for Live Video Analysis,
AVSBS08(154-161).
IEEE DOI
0809
See also Commentary Paper on Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis.
BibRef
Guo, F.[Feng],
Chellappa, R.[Rama],
Video Metrology Using a Single Camera,
PAMI(32), No. 7, July 2010, pp. 1329-1335.
IEEE DOI
1006
BibRef
Earlier:
Video Mensuration Using a Stationary Camera,
ECCV06(III: 164-176).
Springer DOI
0608
Measure line on plane (wheel-base).
Uncalibrated camera, stationary or planar motion.
BibRef
Wang, P.J.[Pao-Jen],
Li, C.M.[Chi-Min],
Wu, C.Y.[Cheng-Ying],
Li, H.J.[Hsueh-Jyh],
A Channel Awareness Vehicle Detector,
ITS(11), No. 2, June 2010, pp. 339-347.
IEEE DOI
1007
BibRef
Leotta, M.J.[Matthew J.],
Mundy, J.L.[Joseph L.],
Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model,
PAMI(33), No. 7, July 2011, pp. 1457-1469.
IEEE DOI
1106
BibRef
Earlier:
Predicting high resolution image edges with a generic, adaptive, 3-D
vehicle model,
CVPR09(1311-1318).
IEEE DOI
0906
BibRef
Faro, A.,
Giordano, D.,
Spampinato, C.,
Adaptive Background Modeling Integrated With Luminosity Sensors and
Occlusion Processing for Reliable Vehicle Detection,
ITS(12), No. 4, December 2011, pp. 1398-1412.
IEEE DOI
1112
BibRef
Feris, R.S.[Rogerio S.],
Siddiquie, B.[Behjat],
Petterson, J.[James],
Zhai, Y.,
Datta, A.[Ankur],
Brown, L.M.[Lisa M.],
Pankanti, S.[Sharath],
Large-Scale Vehicle Detection, Indexing, and Search in Urban
Surveillance Videos,
MultMed(14), No. 1, January 2012, pp. 28-42.
IEEE DOI
1201
BibRef
Earlier: A1, A3, A2, A6, A7, Only:
Large-scale vehicle detection in challenging urban surveillance
environments,
WACV11(527-533).
IEEE DOI
1101
BibRef
Earlier: A1, A2, A4, A3, A6, A7, Only:
Attribute-based vehicle search in crowded surveillance videos,
ICMR11(18).
DOI Link
1301
user specifies a set of vehicle characteristics (such as color,
direction of travel, speed, length, height, etc.)
BibRef
Fan, Q.F.[Quan-Fu],
Pankanti, S.[Sharath],
Brown, L.[Lisa],
Long-term object tracking for parked vehicle detection,
AVSS14(223-229)
IEEE DOI
1411
Feature extraction
BibRef
Siddiquie, B.[Behjat],
Feris, R.S.[Rogerio S.],
Datta, A.[Ankur],
Davis, L.S.[Larry S.],
Unsupervised model selection for view-invariant object detection in
surveillance environments,
ICPR12(3252-3255).
WWW Link.
1302
BibRef
Huang, D.Y.[Deng-Yuan],
Chen, C.H.[Chao-Ho],
Hu, W.C.[Wu-Chih],
Su, S.S.[Sing-Syong],
Reliable moving vehicle detection based on the filtering of swinging
tree leaves and raindrops,
JVCIR(23), No. 4, May 2012, pp. 648-664.
Elsevier DOI
1205
Traffic surveillance system; Motion detection; Motion estimation;
Motion compensation; Background subtraction; Swinging trees filtering;
Raindrops filtering; Shadow elimination
BibRef
Chan, Y.M.[Yi-Ming],
Huang, S.S.[Shin-Shinh],
Fu, L.C.[Li-Chen],
Hsiao, P.Y.[Pei-Yung],
Lo, M.F.,
Vehicle detection and tracking under various lighting conditions using
a particle filter,
IET-ITS(6), No. 1, 2012, pp. 1-8.
DOI Link
1204
BibRef
Chan, Y.M.[Yi-Ming],
Fu, L.C.[Li-Chen],
Hsiao, P.Y.[Pei-Yung],
Huang, S.S.[Shin-Shinh],
Pedestrian and Vehicle Detection and Tracking with Object-Driven
Vanishing Line Estimation,
CVTSV16(I: 436-451).
Springer DOI
1704
BibRef
Han, D.J.[Dong-Jin],
Hwang, J.,
Cooper, D.B.,
Hahn, H.,
Robust three-dimensional vehicle reconstruction using cross-ratio
invariance,
IET-CV(6), No. 3, 2012, pp. 186-196.
DOI Link
1205
BibRef
Han, D.J.[Dong-Jin],
Leotta, M.J.,
Cooper, D.B.,
Mundy, J.L.,
Vehicle Class Recognition from Video-Based on 3D Curve Probes,
PETS05(285-292).
IEEE DOI
0602
BibRef
Leotta, M.J.,
Mundy, J.L.,
Learning Background and Shadow Appearance with 3-D Vehicle Models,
BMVC06(II:649).
PDF File.
0609
BibRef
Wu, B.F.[Bing-Fei],
Juang, J.H.[Jhy-Hong],
Adaptive Vehicle Detector Approach for Complex Environments,
ITS(13), No. 2, June 2012, pp. 817-827.
IEEE DOI
1206
BibRef
Wang, S.[Shuang],
Cui, L.J.[Li-Juan],
Liu, D.C.[Dian-Chao],
Huck, R.,
Verma, P.,
Sluss, J.J.,
Cheng, S.,
Vehicle Identification Via Sparse Representation,
ITS(13), No. 2, June 2012, pp. 955-962.
IEEE DOI
1206
BibRef
Teoh, S.S.[Soo Siang],
Bräunl, T.[Thomas],
Symmetry-based monocular vehicle detection system,
MVA(23), No. 5, September 2012, pp. 831-842.
WWW Link.
1208
BibRef
Mithun, N.C.,
Rashid, N.U.,
Rahman, S.M.M.,
Detection and Classification of Vehicles From Video Using Multiple
Time-Spatial Images,
ITS(13), No. 3, September 2012, pp. 1215-1225.
IEEE DOI
1209
BibRef
Cheon, M.,
Lee, W.,
Yoon, C.,
Park, M.,
Vision-Based Vehicle Detection System With Consideration of the
Detecting Location,
ITS(13), No. 3, September 2012, pp. 1243-1252.
IEEE DOI
1209
BibRef
McDonald, G.J.,
Ellis, J.S.,
Penney, R.W.,
Price, R.W.,
Real-Time Vehicle Identification Performance Using FPGA Correlator
Hardware,
ITS(13), No. 4, December 2012, pp. 1891-1895.
IEEE DOI
1212
BibRef
Lin, Y.L.,
Tsai, M.K.,
Hsu, W.H.,
Chen, C.W.,
Investigating 3-D Model and Part Information for Improving
Content-Based Vehicle Retrieval,
CirSysVideo(23), No. 3, March 2013, pp. 401-413.
IEEE DOI
1303
BibRef
Liu, L.W.[Li-Wei],
Xing, J.L.[Jun-Liang],
Duan, G.Q.[Gen-Quan],
Ai, H.Z.[Hai-Zhou],
Scene transformation for detector adaptation,
PRL(36), No. 1, 2014, pp. 154-160.
Elsevier DOI
1312
Vehicle detection
BibRef
León, L.C.[Leissi Castañeda],
Hirata, Jr., R.[Roberto],
Car detection in sequences of images of urban environments using
mixture of deformable part models,
PRL(39), No. 1, 2014, pp. 39-51.
Elsevier DOI
1402
Mixture of deformable part models
BibRef
Tian, B.,
Li, Y.,
Li, B.,
Wen, D.,
Rear-View Vehicle Detection and Tracking by Combining Multiple Parts
for Complex Urban Surveillance,
ITS(15), No. 2, April 2014, pp. 597-606.
IEEE DOI
1404
Color
BibRef
Li, B.[Bo],
Song, X.[Xi],
Wu, T.F.[Tian-Fu],
Hu, W.Z.[Wen-Ze],
Pei, M.T.[Ming-Tao],
Coupling-and-decoupling:
A hierarchical model for occlusion-free object detection,
PR(47), No. 10, 2014, pp. 3254-3264.
Elsevier DOI
1406
BibRef
Earlier: A1, A3, A4, A5, Only:
Coupling-and-Decoupling:
A Hierarchical Model for Occlusion-Free Car Detection,
ACCV12(I:164-175).
Springer DOI
1304
Occlusion modeling
BibRef
Mangai, M.A.,
Gounden, N.A.,
Principal component analysis-based learning for preceding vehicle
classification,
IET-ITS(8), No. 1, February 2014, pp. 28-35.
DOI Link
1406
image classification
BibRef
Ambardekar, A.[Amol],
Nicolescu, M.[Mircea],
Bebis, G.N.[George N.],
Nicolescu, M.[Monica],
Vehicle classification framework: a comparative study,
JIVP(2014), No. 1, 2014, pp. 29.
DOI Link
1407
Survey, Vehicle Classification.
BibRef
Chen, P.[Pan],
Bai, X.[Xiang],
Liu, W.Y.[Wen-Yu],
Vehicle Color Recognition on Urban Road by Feature Context,
ITS(15), No. 5, October 2014, pp. 2340-2346.
IEEE DOI
1410
automobiles
BibRef
Lee, K.H.[Kuan-Hui],
Hwang, J.N.[Jenq-Neng],
Chen, S.I.[Shih-I],
Model-Based Vehicle Localization Based on 3-D Constrained
Multiple-Kernel Tracking,
CirSysVideo(25), No. 1, January 2015, pp. 38-50.
IEEE DOI
1502
mobile radio
BibRef
Wen, X.,
Shao, L.,
Fang, W.,
Xue, Y.,
Efficient Feature Selection and Classification for Vehicle Detection,
CirSysVideo(25), No. 3, March 2015, pp. 508-517.
IEEE DOI
1503
Educational institutions
BibRef
Rao, Y.[Yunbo],
Automatic vehicle recognition in multiple cameras for video
surveillance,
VC(31), No. 3, March 2015, pp. 271-280.
WWW Link.
1503
BibRef
Wu, T.F.[Tian-Fu],
Zhu, S.C.[Song-Chun],
Learning Near-Optimal Cost-Sensitive Decision Policy for Object
Detection,
PAMI(37), No. 5, May 2015, pp. 1013-1027.
IEEE DOI
1504
Accuracy
BibRef
Earlier:
ICCV13(753-760)
IEEE DOI
1403
Cost-Sensitive Computing
BibRef
Wu, T.F.[Tian-Fu],
Li, B.[Bo],
Zhu, S.C.[Song-Chun],
Learning And-Or Model to Represent Context and Occlusion for Car
Detection and Viewpoint Estimation,
PAMI(38), No. 9, September 2016, pp. 1829-1843.
IEEE DOI
1609
BibRef
Earlier: A2, A1, A3:
Integrating Context and Occlusion for Car Detection by Hierarchical
And-Or Model,
ECCV14(VI: 652-667).
Springer DOI
1408
CAD
See also Numerical Study of the Bottom-Up and Top-Down Inference Processes in And-Or Graphs, A.
BibRef
Vaddi, R.S.,
Boggavarapu, L.N.,
Anne, K.R.,
Computer Vision based Vehicle Recognition on Indian Roads,
IJCVSP(5), No. 1, 2015, pp. xx-yy.
WWW Link.
1504
BibRef
Park, J.H.[Jae-Hyuck],
Tai, Y.W.[Yu-Wing],
A simulation based method for vehicle motion prediction,
CVIU(136), No. 1, 2015, pp. 79-91.
Elsevier DOI
1506
On-road vehicle motion prediction
BibRef
Cho, H.M.[Han-Min],
Hwang, S.Y.[Sun-Young],
High-performance on-road vehicle detection with non-biased cascade
classifier by weight-balanced training,
JIVP(2015), No. 1, 2015, pp. 16.
DOI Link
1506
BibRef
Li, Y.,
Er, M.J.,
Shen, D.,
A Novel Approach for Vehicle Detection Using an AND-OR-Graph-Based
Multiscale Model,
ITS(16), No. 4, August 2015, pp. 2284-2289.
IEEE DOI
1508
Feature extraction
BibRef
Ohn-Bar, E.[Eshed],
Trivedi, M.M.[Mohan M.],
Learning to Detect Vehicles by Clustering Appearance Patterns,
ITS(16), No. 5, October 2015, pp. 2511-2521.
IEEE DOI
1511
BibRef
Earlier:
Fast and Robust Object Detection Using Visual Subcategories,
IWMV14(179-184)
IEEE DOI
1409
feature extraction.
multiview vehicle detection
See also Multi-scale volumes for deep object detection and localization.
BibRef
Ramirez, A.[Alfredo],
Ohn-Bar, E.[Eshed],
Trivedi, M.M.[Mohan M.],
Go with the Flow:
Improving Multi-view Vehicle Detection with Motion Cues,
ICPR14(4140-4145)
IEEE DOI
1412
Adaptive optics
BibRef
Achler, O.,
Trivedi, M.M.,
Vehicle wheel detector using 2D filter banks,
IVS04(25-30).
IEEE DOI
0411
Detect vehicles from moving vehicle. Find the wheels.
Omnidirectional camera.
BibRef
Satzoda, R.K.[Ravi Kumar],
Trivedi, M.M.[Mohan M.],
Multipart Vehicle Detection Using Symmetry-Derived Analysis and
Active Learning,
ITS(17), No. 4, April 2016, pp. 926-937.
IEEE DOI
1604
Cameras
See also On Enhancing Lane Estimation Using Contextual Cues.
BibRef
Hu, C.P.[Chuan-Ping],
Bai, X.[Xiang],
Qi, L.[Li],
Chen, P.[Pan],
Xue, G.J.[Geng-Jian],
Mei, L.[Lin],
Vehicle Color Recognition With Spatial Pyramid Deep Learning,
ITS(16), No. 5, October 2015, pp. 2925-2934.
IEEE DOI
1511
convolution
BibRef
Hu, C.P.[Chuan-Ping],
Bai, X.[Xiang],
Qi, L.[Li],
Wang, X.,
Xue, G.J.[Geng-Jian],
Mei, L.[Lin],
Learning Discriminative Pattern for Real-Time Car Brand Recognition,
ITS(16), No. 6, December 2015, pp. 3170-3181.
IEEE DOI
1512
Image classification
BibRef
Kim, J.,
Baek, J.,
Kim, E.,
A Novel On-Road Vehicle Detection Method Using pi-HOG,
ITS(16), No. 6, December 2015, pp. 3414-3429.
IEEE DOI
1512
Bayes methods
BibRef
Cinaroglu, I.[Ibrahim],
Bastanlar, Y.L.[Ya-Lin],
A direct approach for object detection with catadioptric
omnidirectional cameras,
SIViP(10), No. 2, February 2016, pp. 413-420.
Springer DOI
1601
BibRef
Noh, S.[Seung_Jong],
Shim, D.,
Jeon, M.[Moongu],
Adaptive Sliding-Window Strategy for Vehicle Detection in Highway
Environments,
ITS(17), No. 2, February 2016, pp. 323-335.
IEEE DOI
1602
Adaptation models
BibRef
Noh, S.[Seung_Jong],
Jeon, M.[Moongu],
Vehicle Detection Using Local Size-Specific Classifiers,
IEICE(E99-D), No. 9, September 2016, pp. 2351-2359.
WWW Link.
1609
BibRef
Zhuang, X.,
Kang, W.,
Wu, Q.,
Real-time vehicle detection with foreground-based cascade classifier,
IET-IPR(10), No. 4, 2016, pp. 289-296.
DOI Link
1604
Haar transforms
BibRef
Hu, Q.,
Paisitkriangkrai, S.[Sakrapee],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Porikli, F.M.,
Fast Detection of Multiple Objects in Traffic Scenes With a Common
Detection Framework,
ITS(17), No. 4, April 2016, pp. 1002-1014.
IEEE DOI
1604
Australia
BibRef
Nieto, M.,
Vélez, G.,
Otaegui, O.,
Gaines, S.,
van Cutsem, G.,
Optimising computer vision based ADAS: vehicle detection case study,
IET-ITS(10), No. 3, 2016, pp. 157-164.
DOI Link
1604
computer vision
BibRef
Zhang, Y.,
Zhao, C.,
He, J.,
Chen, A.,
Vehicles detection in complex urban traffic scenes using Gaussian
mixture model with confidence measurement,
IET-ITS(10), No. 6, 2016, pp. 445-452.
DOI Link
1608
Gaussian processes
BibRef
Yang, D.,
Park, H.,
A New Shape Feature for Vehicle Classification in Thermal Video
Sequences,
CirSysVideo(26), No. 7, July 2016, pp. 1363-1375.
IEEE DOI
1608
edge detection
BibRef
Lin, Y.B.[Yen-Bor],
Young, C.P.[Chung-Ping],
High-precision bicycle detection on single side-view image based on
the geometric relationship,
PR(63), No. 1, 2017, pp. 334-354.
Elsevier DOI
1612
Bicycle
BibRef
Fairley, P.,
Self-driving cars have a bicycle problem,
Spectrum(54), No. 3, March 2017, pp. 12-13.
IEEE DOI
1703
News item.
BibRef
Suhr, J.K.,
Jang, J.,
Min, D.,
Jung, H.G.,
Sensor Fusion-Based Low-Cost Vehicle Localization System for Complex
Urban Environments,
ITS(18), No. 5, May 2017, pp. 1078-1086.
IEEE DOI
1705
Cameras, Feature extraction, Global Positioning System, Roads,
Urban areas, Vehicles, Wheels, GPS, IMU, Vehicle localization,
digital map, particle filter, road marking, sensor, fusion
BibRef
Yuan, X.,
Cao, X.,
Hao, X.,
Chen, H.,
Wei, X.,
Vehicle Detection by a Context-Aware Multichannel Feature Pyramid,
SMCS(47), No. 7, July 2017, pp. 1348-1357.
IEEE DOI
1706
Cameras, Feature extraction, Gray-scale, Image color analysis,
Transforms, Vehicle detection, Vehicles, Context-aware feature,
context-aware structural feature, scale invariant, vehicle, detection
BibRef
Belgiovane, D.J.,
Chen, C.C.,
Chien, S.Y.P.,
Sherony, R.,
Surrogate Bicycle Design for Millimeter-Wave Automotive Radar
Pre-Collision Testing,
ITS(18), No. 9, September 2017, pp. 2413-2422.
IEEE DOI
1709
bicycles, road safety,
precollision systems, automotive radar,
collision avoidance, pedestrian detection
BibRef
Aqel, S.,
Hmimid, A.,
Sabri, M.A.,
Aarab, A.,
Road traffic: Vehicle detection and classification,
ISCV17(1-5)
IEEE DOI
1710
image motion analysis,
object detection, road traffic,
background subtraction approach,
Shadow detection and removal.
BibRef
Zhuo, L.[Li],
Jiang, L.Y.[Li-Ying],
Zhu, Z.Q.[Zi-Qi],
Li, J.F.[Jia-Feng],
Zhang, J.[Jing],
Long, H.X.[Hai-Xia],
Vehicle classification for large-scale traffic surveillance videos
using Convolutional Neural Networks,
MVA(28), No. 7, October 2017, pp. 793-802.
Springer DOI
1710
BibRef
Liu, M.[Meng],
Hua, W.[Wang],
Wei, Q.[Quan],
Vehicle detection using three-axis AMR sensors deployed along travel
lane markings,
IET-ITS(11), No. 9, November 2017, pp. 581-587.
DOI Link
1710
BibRef
Chu, W.,
Liu, Y.,
Shen, C.,
Cai, D.,
Hua, X.S.,
Multi-Task Vehicle Detection With Region-of-Interest Voting,
IP(27), No. 1, January 2018, pp. 432-441.
IEEE DOI
1712
feedforward neural nets,
learning (artificial intelligence), object detection,
region-of-interest
BibRef
Yang, Z.[Zi],
Pun-Cheng, L.S.C.[Lilian S.C.],
Vehicle detection in intelligent transportation systems and its
applications under varying environments: A review,
IVC(69), 2018, pp. 143-154.
Elsevier DOI
1802
Survey, Vehicle Detection. Vehicle detection,
Intelligent Transportation Systems, Varying environments, Traffic surveillance
BibRef
Bai, S.[Shuang],
Liu, Z.Y.[Zhen-Yao],
Yao, C.[Chang],
Classify vehicles in traffic scene images with deformable part-based
models,
MVA(29), No. 3, April 2018, pp. 393-403.
WWW Link.
1804
BibRef
Zhou, Y.,
Liu, L.,
Shao, L.,
Mellor, M.,
Fast Automatic Vehicle Annotation for Urban Traffic Surveillance,
ITS(19), No. 6, June 2018, pp. 1973-1984.
IEEE DOI
1806
Image color analysis, Proposals, Real-time systems, Surveillance,
Training, Vehicle detection, Vehicle detection,
latent knowledge guidance
BibRef
Tao, H.J.[Huan-Jie],
Lu, X.B.[Xiao-Bo],
Smoky vehicle detection based on multi-scale block Tamura features,
SIViP(12), No. 6, September 2018, pp. 1061-1068.
WWW Link.
1808
BibRef
Tao, H.J.[Huan-Jie],
Lu, X.B.[Xiao-Bo],
Automatic smoky vehicle detection from traffic surveillance video based
on vehicle rear detection and multi-feature fusion,
IET-ITS(13), No. 2, February 2019, pp. 252-259.
DOI Link
1902
BibRef
Tao, H.J.[Huan-Jie],
Lu, X.B.[Xiao-Bo],
Contour-based smoky vehicle detection from surveillance video for alarm
systems,
SIViP(13), No. 2, March 2019, pp. 217-225.
WWW Link.
1904
BibRef
Chen, J.,
Xu, W.,
Xu, H.,
Lin, F.,
Sun, Y.,
Shi, X.,
Fast Vehicle Detection Using a Disparity Projection Method,
ITS(19), No. 9, September 2018, pp. 2801-2813.
IEEE DOI
1809
Feature extraction, Vehicle detection, Robustness, Stereo vision,
Lighting, Cameras, Roads, Stereo vision, disparity feature,
reusing of fourier transformation
BibRef
Tu, C.L.[Chun-Ling],
Du, S.Z.[Sheng-Zhi],
A Hough Space Feature for Vehicle Detection,
ISVC18(147-156).
Springer DOI
1811
BibRef
Ding, L.[Lu],
Wang, Y.[Yong],
Laganière, R.[Robert],
Luo, X.B.[Xin-Bin],
Fu, S.[Shan],
Scale-Aware RPN for Vehicle Detection,
ISVC18(487-499).
Springer DOI
1811
BibRef
Zhang, Y.S.[Yun-Sheng],
Zhao, C.H.[Chi-Hang],
Shi, W.[Wen],
Leng, K.J.[Kai-Jun],
Vehicles detection for illumination changes urban traffic scenes
employing adaptive local texture feature background model,
IET-ITS(12), No. 10, December 2018, pp. 1283-1290.
DOI Link
1812
BibRef
OBrien, E.J.[Eugene J.],
Caprani, C.C.[Colin C.],
Blacoe, S.[Serena],
Guo, D.[Dong],
Malekjafarian, A.[Abdollah],
Detection of vehicle wheels from images using a pseudo-wavelet filter
for analysis of congested traffic,
IET-IPR(12), No. 12, December 2018, pp. 2222-2228.
DOI Link
1812
BibRef
Liang, J.[Jun],
Chen, X.[Xu],
He, M.L.[Mei-Ling],
Chen, L.[Long],
Cai, T.[Tao],
Zhu, N.[Ning],
Car detection and classification using cascade model,
IET-ITS(12), No. 10, December 2018, pp. 1201-1209.
DOI Link
1812
BibRef
Hu, X.,
Xu, X.,
Xiao, Y.,
Chen, H.,
He, S.,
Qin, J.,
Heng, P.,
SINet: A Scale-Insensitive Convolutional Neural Network for Fast
Vehicle Detection,
ITS(20), No. 3, March 2019, pp. 1010-1019.
IEEE DOI
1903
Vehicle detection, Feature extraction, Proposals, Object detection,
Videos, Convolutional neural networks, Computer science,
intelligent transportation system
BibRef
Kim, C.Y.[Chang-Yon],
Gwak, J.[Jeonghwan],
Shim, D.[Daeyoung],
Jeon, M.[Moongu],
A framework for automatically constructing a dataset for training a
vehicle detector,
IJCVR(9), No. 2, 2019, pp. 192-206.
DOI Link
1904
BibRef
Huang, Y.[Yu],
Zhou, Z.H.[Zhi-Heng],
Wang, T.L.[Tian-Lei],
Cao, Q.[QiAn],
Huang, J.C.[Jun-Chu],
Chen, Z.R.[Zi-Rong],
A Part-Based Gaussian Reweighted Approach for Occluded Vehicle
Detection,
IEICE(E102-D), No. 5, May 2019, pp. 1097-1101.
WWW Link.
1906
BibRef
Wang, Y.[Ye],
Deng, W.W.[Wei-Wen],
Liu, Z.Y.[Zhen-Yi],
Wang, J.S.[Jin-Song],
Deep learning-based vehicle detection with synthetic image data,
IET-ITS(13), No. 7, July 2019, pp. 1097-1105.
DOI Link
1906
BibRef
Tong, G.F.[Guo-Feng],
Chen, H.R.[Huai-Rong],
Li, Y.[Yong],
Du, X.[Xiance],
Zhang, Q.C.[Qing-Chun],
Object detection for panoramic images based on MS-RPN structure in
traffic road scenes,
IET-CV(13), No. 5, August 2019, pp. 500-506.
DOI Link
1908
BibRef
Bibars, A.[Ahmed],
Mahroos, M.[Mohsen],
New local difference binary image descriptor and algorithm for rapid
and precise vehicle visual localisation,
IET-CV(13), No. 5, August 2019, pp. 443-451.
DOI Link
1908
BibRef
Liu, W.,
Liao, S.,
Hu, W.,
Perceiving Motion From Dynamic Memory for Vehicle Detection in
Surveillance Videos,
CirSysVideo(29), No. 12, December 2019, pp. 3558-3567.
IEEE DOI
1912
Videos, Feature extraction, Object detection, Detectors,
Surveillance, Proposals, Dynamics, Object detection,
deep neural network
BibRef
Husain, A.A.[Agha Asim],
Maity, T.[Tanmoy],
Yadav, R.K.[Ravindra Kumar],
Vehicle detection in intelligent transport system under a hazy
environment: a survey,
IET-IPR(14), No. 1, January 2020, pp. 1-10.
DOI Link
1912
BibRef
Teng, S.Z.[Shang-Zhi],
Zhang, S.L.[Shi-Liang],
Huang, Q.M.[Qing-Ming],
Sebe, N.[Nicu],
Viewpoint and Scale Consistency Reinforcement for UAV Vehicle
Re-Identification,
IJCV(129), No. 3, March 2021, pp. 719-735.
Springer DOI
2103
BibRef
Xu, K.[Ke],
Gong, H.[Hua],
Liu, F.[Fang],
Vehicle detection based on improved multitask cascaded convolutional
neural network and mixed image enhancement,
IET-IPR(14), No. 17, 24 December 2020, pp. 4621-4632.
DOI Link
2104
BibRef
Boukerche, A.[Azzedine],
Hou, Z.J.[Zhi-Jun],
Object Detection Using Deep Learning Methods in Traffic Scenarios,
Surveys(54), No. 2, March 2021, pp. xx-yy.
DOI Link
2104
convolutional neural networks, autonomous driving system,
Object detection, vehicle detection, deep learning
BibRef
Li, D.L.[Dong Lin],
Prasad, M.[Mukesh],
Liu, C.L.[Chih-Ling],
Lin, C.T.[Chin-Teng],
Multi-View Vehicle Detection Based on Fusion Part Model With Active
Learning,
ITS(22), No. 5, May 2021, pp. 3146-3157.
IEEE DOI
2105
Vehicle detection, Image color analysis, Roads, Transforms,
Feature extraction, Robustness, Deformable models,
color transformation
BibRef
Zhao, M.[Min],
Zhong, Y.[Yuan],
Sun, D.[Dihua],
Chen, Y.H.[Yu-Hao],
Accurate and efficient vehicle detection framework based on SSD
algorithm,
IET-IPR(15), No. 13, 2021, pp. 3094-3104.
DOI Link
2110
BibRef
Chen, G.[Guang],
Wang, F.[Fa],
Qu, S.Q.[San-Qing],
Chen, K.[Kai],
Yu, J.W.[Jun-Wei],
Liu, X.Y.[Xiang-Yong],
Xiong, L.[Lu],
Knoll, A.[Alois],
Pseudo-Image and Sparse Points: Vehicle Detection With 2D LiDAR
Revisited by Deep Learning-Based Methods,
ITS(22), No. 12, December 2021, pp. 7699-7711.
IEEE DOI
2112
Laser radar, Robot sensing systems, intelligent transportation system
BibRef
Zhang, J.Y.[Jin-Yu],
Zhang, Y.F.[Yi-Fan],
Vehicular Localization Based on CSI-Fingerprint and Vector Match,
ITS(22), No. 12, December 2021, pp. 7736-7746.
IEEE DOI
2112
OFDM, Roads, Global Positioning System,
Signal processing algorithms, filter
BibRef
Luo, X.Y.[Xiao-Yue],
Wang, Y.H.[Yan-Hui],
Cai, B.[Benhe],
Li, Z.X.[Zhan-Xing],
Moving Object Detection in Traffic Surveillance Video:
New MOD-AT Method Based on Adaptive Threshold,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Tian, Y.[Yan],
Chen, T.[Tao],
Cheng, G.H.[Guo-Hua],
Yu, S.H.[Shi-Hao],
Li, X.[Xi],
Li, J.Y.[Jian-Yuan],
Yang, B.[Bailin],
Global Context Assisted Structure-Aware Vehicle Retrieval,
ITS(23), No. 1, January 2022, pp. 165-174.
IEEE DOI
2201
Semantics, Convolution, Image retrieval, Vehicle detection,
Space vehicles, Image retrieval, deep learning, landmark alignment,
intelligent transportation system
BibRef
Shen, B.[Bo],
Zhang, R.[Rui],
Chen, H.[Hao],
An Adaptively Attention-Driven Cascade Part-Based Graph Embedding
Framework for UAV Object Re-Identification,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Zheng, M.X.[Ming-Xue],
Wu, H.Y.[Hua-Yi],
Vehicle Recognition Based on Region Growth of Relative Tension and
Similarity Measurement of Side Projection Profile of Vehicle Body,
RS(15), No. 6, 2023, pp. 1493.
DOI Link
2304
BibRef
Oh, D.[Dahyun],
Kang, K.[Kyubyung],
Seo, S.[Sungchul],
Xiao, J.[Jinwu],
Jang, K.[Kyochul],
Kim, K.[Kibum],
Park, H.[Hyungkeun],
Won, J.[Jeonghun],
Low-Cost Object Detection Models for Traffic Control Devices through
Domain Adaption of Geographical Regions,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Roy, D.[Debashri],
Li, Y.Y.[Yuan-Yuan],
Jian, T.[Tong],
Tian, P.[Peng],
Chowdhury, K.[Kaushik],
Ioannidis, S.[Stratis],
Multi-Modality Sensing and Data Fusion for Multi-Vehicle Detection,
MultMed(25), 2023, pp. 2280-2295.
IEEE DOI
2306
Radar tracking, Sensors, Radar imaging, Radar, Acoustics,
Visualization, Sensor fusion, Vehicle detection, tracking,
radar
BibRef
Lu, Y.F.[Yan-Feng],
Gao, J.W.[Jing-Wen],
Yu, Q.[Qian],
Li, Y.[Yi],
Lv, Y.S.[Yi-Sheng],
Qiao, H.[Hong],
A Cross-Scale and Illumination Invariance-Based Model for Robust
Object Detection in Traffic Surveillance Scenarios,
ITS(24), No. 7, July 2023, pp. 6989-6999.
IEEE DOI
2307
Feature extraction, Object detection, Lighting, Traffic control,
Adaptation models, Task analysis, Robustness, Traffic detection,
illumination invariance
BibRef
Luo, T.[Tong],
Wang, H.[Hai],
Cai, Y.F.[Ying-Feng],
Chen, L.[Long],
Wang, K.[Kuan],
Yu, Y.J.[Yi-Jie],
Binary residual feature pyramid network: An improved feature fusion
module based on double-channel residual pyramid structure for
autonomous detection algorithm,
IET-ITS(17), No. 7, 2023, pp. 1288-1301.
DOI Link
2307
BibRef
Chen, C.[Chen],
Wang, C.Y.[Chen-Yu],
Liu, B.[Bin],
He, C.[Ci],
Cong, L.[Li],
Wan, S.H.[Shao-Hua],
Edge Intelligence Empowered Vehicle Detection and Image Segmentation
for Autonomous Vehicles,
ITS(24), No. 11, November 2023, pp. 13023-13034.
IEEE DOI
2311
BibRef
Xie, D.[Dong],
Liu, L.[Linhu],
Zhang, S.J.[Sheng-Jun],
Tian, J.[Jiang],
A Unified Multi-modal Structure for Retrieving Tracked Vehicles
through Natural Language Descriptions,
AICity23(5419-5427)
IEEE DOI
2309
BibRef
Mokayed, H.[Hamam],
Nayebiastaneh, A.[Amirhossein],
De, K.[Kanjar],
Sozos, S.[Stergios],
Hagner, O.[Olle],
Backe, B.[Björn],
Nordic Vehicle Dataset (NVD): Performance of vehicle detectors using
newly captured NVD from UAV in different snowy weather conditions,
AICity23(5314-5322)
IEEE DOI
2309
BibRef
García-Aguilar, I.[Iván],
García-González, J.[Jorge],
Luque-Baena, R.M.[Rafael Marcos],
López-Rubio, E.[Ezequiel],
Automated labeling of training data for improved object detection in
traffic videos by fine-tuned deep convolutional neural networks,
PRL(167), 2023, pp. 45-52.
Elsevier DOI
2303
Object detection, Small scale, Super-resolution, Convolutional neural networks
BibRef
Seo, T.[Taewon],
Park, K.H.[Kyung Ho],
Chung, H.[Hyunhee],
SOCAR: Socially-Obtained CAR Dataset for Image Recognition in the
Wild,
Novelty23(430-438)
IEEE DOI
2302
Image recognition, Computational modeling, Surveillance,
Conferences, Reproducibility of results, Automobiles
BibRef
Yuan, M.X.[Mao-Xun],
Wang, Y.Y.[Yin-Yan],
Wei, X.X.[Xing-Xing],
Translation, Scale and Rotation: Cross-Modal Alignment Meets
RGB-Infrared Vehicle Detection,
ECCV22(IX:509-525).
Springer DOI
2211
BibRef
Wang, Z.T.[Zhen-Ting],
Li, W.[Wei],
Wu, X.[Xiao],
Sheng, L.[Luhan],
Learning Selective Assignment Network for Scene-Aware Vehicle
Detection,
ICIP22(1366-1370)
IEEE DOI
2211
Training, Deep learning, Vehicle detection, Scalability, Semantics,
Detectors, Object detection, Deep learning, object detection,
vehicle detection
BibRef
Zhang, J.C.[Jia-Cheng],
Lin, X.R.[Xiang-Ru],
Jiang, M.[Minyue],
Yu, Y.[Yue],
Gong, C.T.[Chen-Ting],
Zhang, W.[Wei],
Tan, X.[Xiao],
Li, Y.Y.[Ying-Ying],
Ding, E.[Errui],
Li, G.B.[Guan-Bin],
A Multi-granularity Retrieval System for Natural Language-based
Vehicle Retrieval,
AICity22(3215-3224)
IEEE DOI
2210
Training, Target tracking, Fuses, Urban areas, Semantics, Force, Linguistics
BibRef
Miao, H.[Hui],
Lu, F.X.[Fei-Xiang],
Liu, Z.D.[Zong-Dai],
Zhang, L.J.[Liang-Jun],
Manocha, D.[Dinesh],
Zhou, B.[Bin],
Robust 2D/3D Vehicle Parsing in Arbitrary Camera Views for CVIS,
ICCV21(15611-15620)
IEEE DOI
2203
Training, Deep learning, Image segmentation, Annotations,
Pose estimation, Vision for robotics and autonomous vehicles,
Vision applications and systems
BibRef
Liu, M.Y.[Meng-Yun],
Qi, N.[Na],
Shi, Y.H.[Yun-Hui],
Yin, B.C.[Bao-Cai],
An Attention Fusion Network for Event-Based Vehicle Object Detection,
ICIP21(3363-3367)
IEEE DOI
2201
Location awareness, Uncertainty, Fuses, Object detection,
Predictive models, Feature extraction, vehicle detection, Attention module
BibRef
Zhang, H.T.[Hao-Tian],
Ji, H.R.[Hao-Rui],
Zheng, A.[Aotian],
Hwang, J.N.[Jenq-Neng],
Hwang, R.H.[Ren-Hung],
Monocular 3D Localization of Vehicles in Road Scenes,
AVVision21(2855-2864)
IEEE DOI
2112
Location awareness, Roads, Cameras, Iron,
Sensors, Task analysis
BibRef
Sun, P.[Pei],
Wang, W.[Weiyue],
Chai, Y.N.[Yu-Ning],
Elsayed, G.[Gamaleldin],
Bewley, A.[Alex],
Zhang, X.[Xiao],
Sminchisescu, C.[Cristian],
Anguelov, D.[Dragomir],
RSN:
Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection,
CVPR21(5721-5730)
IEEE DOI
2111
Measurement, Laser radar, Head,
Vehicle detection, Object detection, Detectors
BibRef
Koestler, L.[Lukas],
Yang, N.[Nan],
Wang, R.[Rui],
Cremers, D.[Daniel],
Learning Monocular 3D Vehicle Detection Without 3D Bounding Box Labels,
GCPR20(116-129).
Springer DOI
2110
BibRef
Hofstetter, I.[Isabell],
Springer, M.[Malte],
Ries, F.[Florian],
Haueis, M.[Martin],
Constellation Codebooks for Reliable Vehicle Localization,
GCPR20(303-315).
Springer DOI
2110
BibRef
Bai, S.[Shuai],
Zheng, Z.D.[Zhe-Dong],
Wang, X.H.[Xiao-Han],
Lin, J.Y.[Jun-Yang],
Zhang, Z.[Zhu],
Zhou, C.[Chang],
Yang, H.X.[Hong-Xia],
Yang, Y.[Yi],
Connecting Language and Vision for Natural Language-Based Vehicle
Retrieval,
AICity21(4029-4038)
IEEE DOI
2109
Code, Vehicle Detection.
WWW Link. Training, Smart cities, Search problems,
Robustness, Pattern recognition, Task analysis
BibRef
Lee, S.[Sangrok],
Woo, T.[Taekang],
Lee, S.H.[Sang Hun],
SBNet: Segmentation-based Network for Natural Language-based Vehicle
Search,
AICity21(4049-4055)
IEEE DOI
2109
Deep learning, Image segmentation,
Law enforcement, Urban areas, Natural languages
BibRef
Sun, Z.[Ziruo],
Liu, X.F.[Xin-Fang],
Bi, X.P.[Xiao-Peng],
Nie, X.S.[Xiu-Shan],
Yin, Y.L.[Yi-Long],
DUN: Dual-path Temporal Matching Network for Natural Language-based
Vehicle Retrieval,
AICity21(4056-4062)
IEEE DOI
2109
Visualization, Silver, Databases, Natural languages,
Urban areas, Feature extraction
BibRef
Khorramshahi, P.[Pirazh],
Rambhatla, S.S.[Sai Saketh],
Chellappa, R.[Rama],
Towards Accurate Visual and Natural Language-Based Vehicle Retrieval
Systems,
AICity21(4178-4187)
IEEE DOI
2109
Training, Visualization, Adaptation models,
Urban areas, Cameras
BibRef
Park, E.J.[Eun-Ju],
Kim, H.[Hoyoung],
Jeong, S.[Seonghwan],
Kang, B.[Byungkon],
Kwon, Y.[YoungMin],
Keyword-based Vehicle Retrieval,
AICity21(4215-4222)
IEEE DOI
2109
Training, Deep learning, Urban areas, Semantics, Streaming media,
Feature extraction, Particle measurements
BibRef
Nguyen, T.M.[Tam Minh],
Pham, Q.H.[Quang Huu],
Doan, L.B.[Linh Bao],
Trinh, H.V.[Hoang Viet],
Nguyen, V.A.[Viet-Anh],
Phan, V.H.[Viet-Hoang],
Contrastive Learning for Natural Language-Based Vehicle Retrieval,
AICity21(4240-4247)
IEEE DOI
2109
Target tracking, Urban areas,
Natural languages, Pattern recognition
BibRef
Scribano, C.[Carmelo],
Sapienza, D.[Davide],
Franchini, G.[Giorgia],
Verucchi, M.[Micaela],
Bertogna, M.[Marko],
All You Can Embed: Natural Language based Vehicle Retrieval with
Spatio-Temporal Transformers,
AICity21(4248-4257)
IEEE DOI
2109
Training, Visualization, Target tracking, Natural languages,
Urban areas, Loss measurement
BibRef
Lee, C.[Chaehyeon],
Seo, J.[Junghoon],
Jung, H.[Heechul],
Training Domain-invariant Object Detector Faster with Feature Replay
and Slow Learner,
EarthVision21(1172-1181)
IEEE DOI
2109
Training, Vehicle detection,
Object detection, Detectors, Benchmark testing
BibRef
Azimi, S.M.[Seyed Majid],
Bahmanyar, R.[Reza],
Henry, C.[Corentin],
Kurz, F.[Franz],
EAGLE: Large-Scale Vehicle Detection Dataset in Real-World Scenarios
using Aerial Imagery,
ICPR21(6920-6927)
IEEE DOI
2105
Photography, Vehicle detection, Urban areas, Superresolution,
Object detection, Tools, Cameras
BibRef
Wang, X.,
Hu, X.,
Chen, C.,
Fan, Z.,
Peng, S.,
Illuminating Vehicles With Motion Priors For Surveillance Vehicle
Detection,
ICIP20(2021-2025)
IEEE DOI
2011
Detectors, Surveillance, Feature extraction, Videos, Training,
Object detection, Roads, Motion priors, vehicle detection,
traffic surveillance videos
BibRef
Woo, S.,
Hwang, S.,
Kim, W.,
Lee, J.,
Lee, D.,
Lee, S.,
False Positive Removal for 3D Vehicle Detection With Penetrated Point
Classifier,
ICIP20(2721-2725)
IEEE DOI
2011
Laser radar, Solid modeling, Automobiles, Shape, Autonomous vehicles,
autonomous driving
BibRef
Yao, Y.[Yue],
Zheng, L.[Liang],
Yang, X.D.[Xiao-Dong],
Naphade, M.[Milind],
Gedeon, T.[Tom],
Simulating Content Consistent Vehicle Datasets with Attribute Descent,
ECCV20(VI:775-791).
Springer DOI
2011
Code, Vehicle Synthesis.
WWW Link.
BibRef
Peri, N.,
Khorramshahi, P.,
Rambhatla, S.S.,
Shenoy, V.,
Rawat, S.,
Chen, J.,
Chellappa, R.,
Towards Real-Time Systems for Vehicle Re-Identification, Multi-Camera
Tracking, and Anomaly Detection,
City20(2648-2657)
IEEE DOI
2008
Cameras, Task analysis, Training, Feature extraction,
Anomaly detection, Robustness, Computational modeling
BibRef
Qian, Y.J.[Yi-Jun],
Yu, L.J.[Li-Jun],
Liu, W.H.[Wen-He],
Hauptmann, A.G.[Alexander G.],
ELECTRICITY: An Efficient Multi-camera Vehicle Tracking System for
Intelligent City,
City20(2511-2519)
IEEE DOI
2008
Cameras, Feature extraction, Urban areas, Target tracking,
Task analysis, Object detection, Computational modeling
BibRef
Yu, L.J.[Li-Jun],
Qian, Y.J.[Yi-Jun],
Liu, W.H.[Wen-He],
Hauptmann, A.G.[Alexander G.],
Argus++: Robust Real-time Activity Detection for Unconstrained Video
Streams with Overlapping Cube Proposals,
Activity22(112-121)
IEEE DOI
2202
Surveillance, Roads, Streaming media, NIST,
Benchmark testing, Real-time systems
BibRef
Yu, L.J.[Li-Jun],
Feng, Q.Y.[Qian-Yu],
Qian, Y.J.[Yi-Jun],
Liu, W.H.[Wen-He],
Hauptmann, A.G.[Alexander G.],
Zero-VIRUS*: Zero-shot Vehicle Route Understanding System for
Intelligent Transportation,
City20(2534-2543)
IEEE DOI
2008
Cameras, Target tracking, Trajectory, Videos, Automobiles, Task analysis
BibRef
Liu, Z.,
Lian, T.,
Farrell, J.,
Wandell, B.,
Soft Prototyping Camera Designs for Car Detection Based on a
Convolutional Neural Network,
ADW19(2383-2392)
IEEE DOI
2004
cameras, convolutional neural nets, image processing,
object detection, photography, software simulations, metrics
BibRef
Yan, X.,
Yu, Y.,
Wang, F.,
Liu, W.,
He, S.,
Pan, J.,
Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery,
ICCV19(7617-7626)
IEEE DOI
2004
hidden feature removal, image segmentation, object tracking,
traffic engineering computing, video signal processing,
Training
BibRef
Fattal, A.K.[Ann-Katrin],
Karg, M.[Michelle],
Scharfenberger, C.[Christian],
Adamy, J.[Jürgen],
Distant Vehicle Detection: How Well Can Region Proposal Networks Cope
with Tiny Objects at Low Resolution?,
CVRoads18(I:289-304).
Springer DOI
1905
BibRef
Gupta, I.[Ishan],
Rangesh, A.[Akshay],
Trivedi, M.[Mohan],
3D Bounding Boxes for Road Vehicles: A One-Stage, Localization
Prioritized Approach Using Single Monocular Images,
AutoNUE18(V:626-641).
Springer DOI
1905
BibRef
Sandhu, M.[Mahtab],
Upadhyay, S.[Sarthak],
Krishna, M.[Madhava],
Medasani, S.[Shanti],
Motion Segmentation Using Spectral Clustering on Indian Road Scenes,
AutoNUE18(V:676-687).
Springer DOI
1905
BibRef
Sun, Y.,
Li, M.,
Lu, J.,
Part-based Multi-stream Model for Vehicle Searching,
ICPR18(1372-1377)
IEEE DOI
1812
Streaming media, Training, Task analysis, Measurement,
Feature extraction, Computational modeling, Multi-stream CNN
BibRef
Sheeny, M.,
Wallace, A.,
Emambakhsh, M.,
Wang, S.,
Connor, B.,
POL-LWIR Vehicle Detection:
Convolutional Neural Networks Meet Polarised Infrared Sensors,
PBVS18(1328-13286)
IEEE DOI
1812
Convolution, Feature extraction, Neural networks, Meteorology,
Sensors, Object detection, Training
BibRef
Tokuda, E.K.,
Ferreira, G.B.A.,
Silva, C.,
Cesar, R.M.,
A Novel Semi-Supervised Detection Approach with Weak Annotation,
Southwest18(129-132)
IEEE DOI
1809
Detectors, Quality control, Training, Automobiles, Cameras,
Meteorology, Videos
BibRef
Fan, W.,
Ainouz, S.,
Meriaudeau, F.,
Bensrhair, A.,
Polarization-Based Car Detection,
ICIP18(3069-3073)
IEEE DOI
1809
Feature extraction, Automobiles, Image color analysis, Color, Roads,
Computational modeling, Detectors, Car detection, polarization,
road scenes
BibRef
Wang, X.,
Cheng, P.,
Liu, X.,
Uzochukwu, B.,
Focal loss dense detector for vehicle surveillance,
ISCV18(1-5)
IEEE DOI
1807
convolution, feedforward neural nets,
learning (artificial intelligence), object detection,
Vehicle detection
BibRef
Moate, C.P.[Chris P.],
Hayward, S.D.[Stephen D.],
Ellis, J.S.[Jonathan S.],
Russell, L.[Lee],
Timmerman, R.O.[Ralph O.],
Lane, R.O.[Richard O.],
Strain, T.J.[Thomas J.],
Vehicle Detection in Infrared Imagery Using Neural Networks with
Synthetic Training Data,
ICIAR18(453-461).
Springer DOI
1807
BibRef
Yang, B.[Biao],
Zhang, Y.Y.[Yu-Yu],
Cao, J.M.[Jin-Meng],
Zou, L.[Ling],
On Road Vehicle Detection Using an Improved Faster RCNN Framework with
Small-Size Region Up-Scaling Strategy,
PSIVTWS17(241-253).
Springer DOI
1806
BibRef
Rujikietgumjorn, S.,
Watcharapinchai, N.,
Vehicle detection with sub-class training using R-CNN for the
UA-DETRAC benchmark,
AVSS17(1-5)
IEEE DOI
1806
feature extraction, learning (artificial intelligence),
object detection, road vehicles, traffic engineering computing,
Vehicle detection
BibRef
Yuan, X.[Xue],
Su, S.A.[Shu-Ai],
Chen, H.J.[Hou-Jin],
A Graph-Based Vehicle Proposal Location and Detection Algorithm,
ITS(18), No. 12, December 2017, pp. 3282-3289.
IEEE DOI
1712
Cameras, Image color analysis, Image segmentation, Proposals,
Sensors, Shape, Vehicle detection, graph based, vehicle proposal location
BibRef
Espinosa, J.E.[Jorge E.],
Velastin, S.A.[Sergio A.],
Branch, J.W.[John W.],
Vehicle Detection Using Alex Net and Faster R-CNN Deep Learning Models:
A Comparative Study,
IVIC17(3-15).
Springer DOI
1711
BibRef
Castrejón, L.[Lluís],
Kundu, K.[Kaustav],
Urtasun, R.[Raquel],
Fidler, S.[Sanja],
Annotating Object Instances with a Polygon-RNN,
CVPR17(4485-4493)
IEEE DOI
1711
Award, CVPR, HM. Agriculture, Image segmentation, Kernel,
Labeling.
Interactive segmentation of objects. Annotation. Cityscapes, Cars.
BibRef
Lee, J.T.,
Chung, Y.,
Deep Learning-Based Vehicle Classification Using an Ensemble of Local
Expert and Global Networks,
Traffic17(920-925)
IEEE DOI
1709
Automobiles, Bicycles, Error analysis, Lighting, Training, Training, data
BibRef
Liu, J.X.[Ji-Xin],
Sun, N.[Ning],
Han, G.[Guang],
Yang, H.G.[Hai-Gen],
Vehicle sparse recognition via class dictionary learning,
ICIVC17(185-188)
IEEE DOI
1708
Automobiles, Bicycles, Databases, Dictionaries, Motorcycles, Training,
dictionary learning, intelligent transportation,
sparse framework, vehicle recognition
BibRef
Farhat, M.,
Mhiri, S.,
Tagina, M.,
Free training object detection based on multi-stage fusion using
belief functions,
ISIVC16(153-158)
IEEE DOI
1704
Automobiles
BibRef
van den Brand, J.[Jan],
Ochs, M.[Matthias],
Mester, R.[Rudolf],
Instance-Level Segmentation of Vehicles by Deep Contours,
CVTSV16(I: 477-492).
Springer DOI
1704
BibRef
Møgelmose, A.,
Moeslund, T.B.,
Analyzing Wheels of Vehicles in Motion Using Laser Scanning,
Traffic16(1601-1608)
IEEE DOI
1612
BibRef
Czapla, Z.[Zbigniew],
Orthogonal Gradient-Based Binary Image Representation for Vehicle
Detection,
ICCVG16(453-461).
Springer DOI
1611
BibRef
Zhou, Y.[Yi],
Liu, L.[Li],
Shao, L.[Ling],
Mellor, M.[Matt],
DAVE: A Unified Framework for Fast Vehicle Detection and Annotation,
ECCV16(II: 278-293).
Springer DOI
1611
BibRef
Fang, Y.,
Sun, L.,
Fu, H.,
Wu, T.,
Wang, R.,
Dai, B.,
Learning deep compact channel features for object detection in
traffic scenes,
ICIP16(1052-1056)
IEEE DOI
1610
Benchmark testing
BibRef
Huang, J.,
You, S.,
Vehicle detection in urban point clouds with orthogonal-view
convolutional neural network,
ICIP16(2593-2597)
IEEE DOI
1610
Automobiles
BibRef
Xu, H.,
Huang, Q.,
Kuo, C.C.J.,
Car detection using deformable part models with composite features,
ICIP16(3812-3816)
IEEE DOI
1610
Automobiles
BibRef
Sedaghat, N.[Nima],
Brox, T.[Thomas],
Unsupervised Generation of a View Point Annotated Car Dataset from
Videos,
ICCV15(1314-1322)
IEEE DOI
1602
Cameras. Generation of the dataset.
BibRef
Struwe, M.[Marvin],
Hasler, S.[Stephan],
Bauer-Wersing, U.[Ute],
Rendered Benchmark Data Set for Evaluation of Occlusion-Handling
Strategies of a Parts-Based Car Detector,
PSIVT15(99-110).
Springer DOI
1602
Dataset, Vehicle Detection.
BibRef
Shahraki, F.F.[Farideh Foroozandeh],
Yazdanpanah, A.P.[Ali Pour],
Regentova, E.E.[Emma E.],
Muthukumar, V.[Venkatesan],
Bicycle Detection Using HOG, HSC and MLBP,
ISVC15(II: 554-562).
Springer DOI
1601
BibRef
Dekkiche, D.[Djamila],
Vincke, B.[Bastien],
Mérigot, A.[Alain],
Vehicles Detection in Stereo Vision Based on Disparity Map Segmentation
and Objects Classification,
ISVC15(I: 762-773).
Springer DOI
1601
BibRef
Bloisi, D.D.,
Iocchi, L.,
Pennisi, A.,
Tombolini, L.,
ARGOS: Venice Boat Classification,
AVSS15(1-6)
IEEE DOI
1511
boats
BibRef
Shih, H.C.[Huang-Chia],
Wang, H.Y.[Hao-You],
Vehicle identification using distance-based appearance model,
AVSS15(1-4)
IEEE DOI
1511
Calibration
BibRef
Yang, L.J.[Lin-Jie],
Luo, P.[Ping],
Loy, C.C.[Chen Change],
Tang, X.[Xiaoou],
A large-scale car dataset for fine-grained categorization and
verification,
CVPR15(3973-3981)
IEEE DOI
1510
BibRef
Naiel, M.A.[Mohamed A.],
Ahmad, M.O.[M. Omair],
Swamy, M.N.S.,
Vehicle Detection Using Approximation of Feature Pyramids in the DFT
Domain,
ICIAR15(429-436).
Springer DOI
1507
BibRef
Takeuchi, R.,
Kato, K.,
Harwood, D.,
Davis, L.S.,
Vehicle detection using PLS Hough transform,
FCV15(1-6)
IEEE DOI
1506
Hough transforms
BibRef
Kurnianggoro, L.,
Wahyono,
Jo, K.H.[Kang-Hyun],
Utilization of optimally selected features for car detection in
calibrated camera and LRF system,
FCV15(1-4)
IEEE DOI
1506
feature extraction
BibRef
Wong, D.[David],
Deguchi, D.[Daisuke],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Vision-Based Vehicle Localization Using a Visual Street Map with
Embedded SURF Scale,
CVVT14(167-179).
Springer DOI
1504
BibRef
Wei, L.J.[Li-Jun],
Soheilian, B.[Bahman],
Gouet-Brunet, V.[Valérie],
Augmenting Vehicle Localization Accuracy with Cameras and 3D Road
Infrastructure Database,
CVVT14(194-208).
Springer DOI
1504
BibRef
Zhang, D.H.[Dong-Hao],
He, X.M.[Xu-Ming],
Li, H.X.[Han-Xi],
Data-Driven Street Scene Layout Estimation for Distant Object
Detection,
DICTA14(1-7)
IEEE DOI
1502
image matching. Find similar layouts to images.
BibRef
Ballesteros, G.[Gonzalo],
Salgado, L.[Luis],
Histograms of oriented gradients for fast on-board vehicle
verification,
ICIP14(1638-1642)
IEEE DOI
1502
Accuracy
BibRef
Li, L.[Lei],
Yoon, S.[Seongbeak],
Liu, J.[Jixuan],
Yi, J.H.[June-Ho],
Multi-scale car detection and localization using contour fragments,
ICIP14(1609-1613)
IEEE DOI
1502
Active contours
BibRef
Elmikaty, M.[Mohamed],
Stathaki, T.[Tania],
Car Detection in High-Resolution Urban Scenes Using Multiple Image
Descriptors,
ICPR14(4299-4304)
IEEE DOI
1412
Feature extraction
BibRef
Feris, R.[Rogerio],
Brown, L.M.[Lisa M.],
Pankanti, S.[Sharath],
Sun, M.T.[Ming-Ting],
Appearance-Based Object Detection Under Varying Environmental
Conditions,
ICPR14(166-171)
IEEE DOI
1412
Cameras; Detectors; Lighting; Standards; Surveillance; Training; Vehicles
BibRef
Jaccard, N.[Nicolas],
Rogers, T.W.[Thomas W.],
Griffin, L.D.[Lewis D.],
Automated detection of cars in transmission X-ray images of freight
containers,
AVSS14(387-392)
IEEE DOI
1411
Different sensor than usual.
BibRef
Oramas Mogrovejo, J.A.[José Antonio],
Tuytelaars, T.[Tinne],
Scene-driven Cues for Viewpoint Classification for Elongated Object
Classes,
BMVC14(xx-yy).
HTML Version.
1410
primarily vehicles.
BibRef
Lu, W.H.[Wen-Hao],
Lian, X.C.[Xiao-Chen],
Yuille, A.L.[Alan L.],
Parsing Semantic Parts of Cars Using Graphical Models and Segment
Appearance Consistency,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Wang, J.Y.[Jian-Yu],
Yuille, A.L.[Alan L.],
Semantic part segmentation using compositional model combining shape
and appearance,
CVPR15(1788-1797)
IEEE DOI
1510
BibRef
Duan, K.[Kun],
Marchesotti, L.[Luca],
Crandall, D.J.[David J.],
Attribute-based vehicle recognition using viewpoint-aware multiple
instance SVMs,
WACV14(333-338)
IEEE DOI
1406
Accuracy
BibRef
Li, B.[Bo],
Hu, W.Z.[Wen-Ze],
Wu, T.F.[Tian-Fu],
Zhu, S.C.[Song-Chun],
Modeling Occlusion by Discriminative AND-OR Structures,
ICCV13(2560-2567)
IEEE DOI
1403
AND-OR structure; CAD simulation; Car Detection; Occlusion Modeling
BibRef
Rezaei, M.[Mahdi],
Terauchi, M.[Mutsuhiro],
Vehicle Detection Based on Multi-feature Clues and Dempster-Shafer
Fusion Theory,
PSIVT13(60-72).
Springer DOI
1402
BibRef
Chen, Y.C.[Yu-Chun],
Su, T.F.[Te-Feng],
Lai, S.H.[Shang-Hong],
Efficient vehicle detection with adaptive scan based on perspective
geometry,
ICIP13(3321-3325)
IEEE DOI
1402
Vehicle detection
BibRef
Ratajczak, R.[Robert],
Grajek, T.[Tomasz],
Wegner, K.[Krzysztof],
Klimaszewski, K.[Krzysztof],
Kurc, M.[Maciej],
Domanski, M.[Marek],
Vehicle dimensions estimation scheme using AAM on stereoscopic video,
AVSS13(478-482)
IEEE DOI
1311
Active appearance model
BibRef
Gerschuni, M.[Mijail],
Pardo, A.[Alvaro],
Bus Detection for Intelligent Transport Systems Using Computer Vision,
CIARP13(II:59-66).
Springer DOI
1311
BibRef
Wang, T.[Tao],
Zhu, Z.G.[Zhi-Gang],
Hammoud, R.[Riad],
Audio-Visual Feature Fusion for Vehicles Classification in a
Surveillance System,
PBVS13(381-386)
IEEE DOI
1309
BibRef
Hyun Kim, D.[Do],
Kwon, J.[Jangwoo],
Chen, K.[Ken],
Choi, K.[Kyoungho],
Finite state machine for vehicle detection in highway surveillance
systems,
FCV13(84-87).
IEEE DOI
1304
BibRef
Wang, T.[Tao],
An Adaptive and Integrated Multimodal Sensing and Processing Framework
For Long-Range Moving Object Detection and Classification,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Wang, T.[Tao],
Zhu, Z.G.[Zhi-Gang],
Multimodal and Multi-task Audio-Visual Vehicle Detection and
Classification,
AVSS12(440-446).
IEEE DOI
1211
BibRef
Rodriguez-Serrano, J.A.[Jose A.],
Sandhawalia, H.[Harsimrat],
Bala, R.[Raja],
Perronnin, F.[Florent],
Saunders, C.[Craig],
Data-Driven Vehicle Identification by Image Matching,
CVVT12(II: 536-545).
Springer DOI
1210
BibRef
Kim, T.[Taewan],
Kim, D.J.[Dai-Jin],
Example based learning for object detection in images,
VNBA08(39-46).
DOI Link
1208
Vehicles.
BibRef
Kumar, S.S.[Shyam Sunder],
Sun, M.[Min],
Savarese, S.[Silvio],
Mobile object detection through client-server based vote transfer,
CVPR12(3290-3297).
IEEE DOI
1208
BibRef
Lv, Y.[Yang],
Yao, B.[Benjamin],
Wang, Y.T.[Yong-Tian],
Zhu, S.C.[Song-Chun],
Reconfigurable templates for robust vehicle detection and
classification,
WACV12(321-328).
IEEE DOI
1203
See also Learning a scene contextual model for tracking and abnormality detection.
BibRef
Kim, J.[Jonghwan],
Lee, C.H.[Chung-Hee],
Lim, Y.C.[Young-Chul],
Kwon, S.[Soon],
Stereo Vision-Based Improving Cascade Classifier Learning for Vehicle
Detection,
ISVC11(II: 387-397).
Springer DOI
1109
BibRef
Han, D.J.[Dong-Jin],
Hwang, J.[Jae],
Hahn, H.S.[Hern-Soo],
Cooper, D.B.[David B.],
Vehicle Class Recognition Using Multiple Video Cameras,
VS10(246-255).
Springer DOI
1109
BibRef
Jang, D.M.[Daniel Marcus],
Turk, M.A.[Matthew A.],
Car-Rec: A real time car recognition system,
WACV11(599-605).
IEEE DOI
1101
BibRef
Larsen, S.Ø.[Siri Øyen],
Salberg, A.B.[Arnt-Børre],
Vehicle Detection and Roadside Tree Shadow Removal in High Resolution
Satellite Images,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Cao, Q.[Qiong],
Liu, R.J.[Ru-Jie],
Li, F.[Fei],
Wang, Y.H.[Yue-Hong],
An Automatic Vehicle Detection Method Based on Traffic Videos,
ICIP10(4649-4652).
IEEE DOI
1009
BibRef
Godec, M.,
Leistner, C.,
Bischof, H.,
Starzacher, A.,
Rinner, B.,
Audio-Visual Co-Training for Vehicle Classification,
AVSS10(586-592).
IEEE DOI
1009
BibRef
Tsai, Y.M.[Yi-Min],
Huang, K.Y.[Keng-Yen],
Tsai, C.C.[Chih-Chung],
Chen, L.G.[Liang-Gee],
Learning-Based Vehicle Detection Using Up-Scaling Schemes and
Predictive Frame Pipeline Structures,
ICPR10(3101-3104).
IEEE DOI
1008
BibRef
Placzek, B.[Bartlomiej],
A Real Time Vehicle Detection Algorithm for Vision-Based Sensors,
ICCVG10(II: 211-218).
Springer DOI
1009
BibRef
Yan, B.[Bo],
Wang, S.J.[Sheng-Jin],
Chen, Y.B.[You-Bin],
Ding, X.Q.[Xiao-Qing],
Deformable 3-D model based vehicle matching with weighted Hausdorff and
EDA in traffic surveillance,
IASP10(22-27).
IEEE DOI
1004
BibRef
Yin, G.F.[Guo-Fu],
Study of Fast Video Discrimination System of Vehicles under Complicated
Road Environment,
CISP09(1-5).
IEEE DOI
0910
BibRef
Yin, F.[Fei],
Makris, D.[Dimitrios],
Orwell, J.[James],
Velastin, S.A.[Sergio A.],
Learning Non-coplanar Scene Models by Exploring the Height Variation of
Tracked Objects,
ACCV10(III: 262-275).
Springer DOI
1011
BibRef
Zheng, W.[Wei],
Liang, L.H.[Lu-Hong],
Fast car detection using image strip features,
CVPR09(2703-2710).
IEEE DOI
0906
BibRef
Tivive, F.H.C.[Fok Hing Chi],
Bouzerdoum, A.[Abdesselam],
A car detection system based on hierarchical visual features,
CIMSVP09(35-40).
IEEE DOI
0903
BibRef
Zhang, J.G.[Jun-Ge],
Huang, K.Q.[Kai-Qi],
Yu, Y.N.[Yi-Nan],
Tan, T.N.[Tie-Niu],
Boosted local structured HOG-LBP for object localization,
CVPR11(1393-1400).
IEEE DOI
1106
BibRef
Zhang, Z.X.[Zhao-Xiang],
Li, M.[Min],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
3D model based vehicle localization by optimizing local gradient based
fitness evaluation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Boosting local feature descriptors for automatic objects classification
in traffic scene surveillance,
ICPR08(1-4).
IEEE DOI
0812
See also Robust automated ground plane rectification based on moving vehicles for traffic scene surveillance.
BibRef
Yarlagadda, P.[Pradeep],
Ozcanli, O.C.[Ozge C.],
Mundy, J.L.[Joseph L.],
Lie group distance based generic 3-d vehicle classification,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Molyneaux, D.[David],
Gellersen, H.[Hans],
Schiele, B.[Bernt],
Vision-Based Detection of Mobile Smart Objects,
SSC08(27-40).
Springer DOI
0810
BibRef
Amlacher, K.[Katrin],
Luley, P.[Patrick],
Fritz, G.[Gerald],
Almer, A.[Alexander],
Paletta, L.[Lucas],
Mobile object recognition using multi-sensor information fusion in
urban environments,
ICIP08(2384-2387).
IEEE DOI
0810
BibRef
Klausner, A.,
Tengg, A.,
Rinner, B.,
Vehicle Classification on Multi-Sensor Smart Cameras Using
Feature- and Decision-Fusion,
ICDSC07(67-74).
IEEE DOI
0709
BibRef
Rojo Ruiz, A.[Arturo],
Sánchez Fernandez, L.P.[Luis P.],
Felipe-Riverón, E.[Edgardo],
Suárez Guerra, S.[Sergio],
Computational Model for Aircraft's Takeoffs Pattern Recognition,
CIARP08(14-21).
Springer DOI
0809
BibRef
Gao, L.[Lei],
Li, C.[Chao],
Fang, T.[Ting],
Xiong, Z.[Zhang],
Vehicle Detection Based on Color and Edge Information,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Alonso, D.[Daniel],
Salgado, L.[Luis],
Nieto, M.[Marcos],
Robust Vehicle Detection Through Multidimensional Classification for on
Board Video Based Systems,
ICIP07(IV: 321-324).
IEEE DOI
0709
BibRef
Katahara, S.J.[Shun-Ji],
Aoki, M.[Masayoshi],
Vehicle Detection Using Double Slit Camera,
ACCV06(II:162-170).
Springer DOI
0601
BibRef
Fang, J.Z.[Jian-Zhong],
Qiu, G.P.[Guo-Ping],
Car/Non-Car Classification in an Informative Sample Subspace,
ICPR06(II: 962-965).
IEEE DOI
0609
BibRef
Koch, M.W.[Mark W.],
Malone, K.T.[Kevin T.],
A Sequential Vehicle Classifier for Infrared Video using Multinomial
Pattern Matching,
OTCBVS06(127).
IEEE DOI
0609
BibRef
Lee, D.[Deaho],
Park, Y.T.[Young-Tae],
Robust vehicle detection based on shadow classification,
ICPR06(III: 1167-1170).
IEEE DOI
0609
BibRef
Cheng, H.[Hong],
Zheng, N.N.[Nan-Ning],
Sun, C.[Chong],
Boosted Gabor Features Applied to Vehicle Detection,
ICPR06(I: 662-666).
IEEE DOI
0609
BibRef
Gronwall, C.,
Anderson, P.,
Gustafsson, F.[Fredrik],
Least Squares Fitting Articulated Objects,
SafeSecur05(III: 116-116).
IEEE DOI
0507
Vehicles.
BibRef
Nowak, E.,
Jurie, F.,
Vehicle Categorization: Parts for Speed and Accuracy,
PETS05(277-283).
IEEE DOI
0602
BibRef
Wang, Y.K.[Yuan-Kai],
Chen, S.H.[Shao-Hua],
Robust vehicle detection approach,
AVSBS05(117-122).
IEEE DOI
0602
BibRef
Ma, X.X.[Xiao-Xu],
Grimson, W.E.L.[W. Eric L.],
Edge-Based Rich Representation for Vehicle Classification,
ICCV05(II: 1185-1192).
IEEE DOI
0510
BibRef
Hilario, C.[Cristina],
Collado, J.M.[Juan Manuel],
Armingol, J.M.[José Maria],
de la Escalera, A.[Arturo],
Multi-resolution Image Analysis for Vehicle Detection,
IbPRIA05(I:579).
Springer DOI
0509
BibRef
Baek, N.[Nakhoon],
Kim, K.J.[Ku-Jin],
Hong, M.[Manpyo],
Vehicle Area Segmentation Using Grid-Based Feature Values,
CAIP05(464).
Springer DOI
0509
BibRef
Yalcin, H.[Hulya],
Hebert, M.[Martial],
Collins, R.T.[Robert T.],
Black, M.J.[Michael J.],
A Flow-Based Approach to Vehicle Detection and Background Mosaicking in
Airborne Video,
CVPR05(II: 1202).
IEEE DOI
0507
BibRef
And: A1, A3, A4, A2:
CMU-RI-TR-05-11, March, 2005.
WWW Link.
BibRef
Izri, S.[Sonia],
Brassart, E.[Eric],
Delahoche, L.[Laurent],
Marhic, B.[Bruno],
Clérentin, A.[Arnaud],
Detection of Vehicles in a Motorway Environment by Means of Telemetric
and Visual Data,
ICIAR04(II: 471-480).
Springer DOI
0409
BibRef
Zhao, Y.N.[Ying-Nan],
Yang, J.Y.[Jing-Yu],
Weighted features for infrared vehicle verification based on Gabor
filters,
ICARCV04(I: 671-675).
IEEE DOI
0412
BibRef
Kurata, R.,
Watanabe, H.,
Tohno, M.,
Ishii, T.,
Oouchi, H.,
Evaluation of the detection characteristics of road sensors under
poor-visibility conditions,
IVS04(538-543).
IEEE DOI
0411
Detect vehicles.
BibRef
Hirahara, K.,
Ikeuchi, K.,
Extraction of vehicle image from panoramic street-image,
IVS04(756-761).
IEEE DOI
0411
BibRef
Chu, J.W.[Jiang-Wei],
Jin, L.S.[Li-Sheng],
Guo, L.[Lie],
Libibing,
Wang, R.B.[Rong-Ben],
Study on method of detecting preceding vehicle based on monocular
camera,
IVS04(750-755).
IEEE DOI
0411
BibRef
Funck, S.,
Mohler, N.,
Oertel, W.,
Determining car-park occupancy from single images,
IVS04(325-328).
IEEE DOI
0411
BibRef
Broggi, A.,
Cerri, P.,
Antonello, P.C.,
Multi-resolution vehicle detection using artificial vision,
IVS04(310-314).
IEEE DOI
0411
BibRef
Hoffman, C.,
Dang, T.,
Stiller, C.,
Vehicle detection fusing 2D visual features,
IVS04(280-285).
IEEE DOI
0411
BibRef
Takizawa, H.,
Yamada, K.,
Ito, T.,
Vehicles detection using sensor fusion,
IVS04(238-243).
IEEE DOI
0411
BibRef
Huang, C.L.[Chung-Lin],
Liao, W.C.[Wen-Chieh],
A vision-based vehicle identification system,
ICPR04(IV: 364-367).
IEEE DOI
0409
BibRef
Zhu, Z.F.[Zhen-Feng],
Zhao, Y.[Yao],
Lu, H.Q.[Han-Qing],
Sequential Architecture for Efficient Car Detection,
VS07(1-8).
IEEE DOI
0706
BibRef
Yang, H.,
Lou, J.,
Sun, H.,
Hu, W.,
Tan, T.,
Efficient and Robust Vehicle Localization,
ICIP01(II: 355-358).
IEEE DOI
0108
BibRef
Cucchiara, R.,
Piccardi, M.,
Prati, A.,
Scarabottolo, N.,
Real-time detection of moving vehicles,
CIAP99(618-623).
IEEE DOI
9909
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Nighttime Vehicle Detection and Recognition .