Reveal,
2000.
Pedestrian Counting Systems.
WWW Link.
Vendor, Pedestrian Tracking.
Vendor, Surveillance.
Seki, H.[Hiroshi],
Method and apparatus for detecting the number of persons,
US_Patent5,121,201, Jun 9, 1992
WWW Link.
BibRef
9206
Suzuki, M.[Masato],
Inaba, H.[Hiromi],
Nakamura, K.[Kiyoshi],
Nakata, N.[Naofumi],
Yamani, H.[Hiroaki],
Oonuma, N.[Naoto],
Apparatus and methods for detecting number of people
waiting in an elevator hall using plural image processing
means with overlapping fields of view,
US_Patent5,298,697, Mar 29, 1994
WWW Link.
BibRef
9403
Suzuki, M.[Masato],
Inaba, H.[Hiromi],
Takenaga, H.[Hiroshi],
Yamazaki, M.[Masachika],
Oonuma, N.[Naoto],
Nakamura, N.[Niyoshi],
Sakai, Y.[Yoshio],
Yoneda, K.[Kenji],
Nakata, N.[Naofumi],
Kasai, S.[Syoji],
Image processing apparatus having apparatus for correcting
the image processing,
US_Patent5,182,776, Jan 26, 1993
WWW Link. Count people in elevator by background difference.
BibRef
9301
Bartolini, F.,
Cappellini, V.,
Mecocci, A.,
Counting People Getting in and out of a Bus by Real-Time
Image-Sequence Processing,
IVC(12), No. 1, January-February 1994, pp. 36-41.
Elsevier DOI
BibRef
9401
Mecocci, A.,
Bartolini, F.,
Cappellini, V.,
Image Sequence Analysis for Counting in Real Time People Getting in and
out of a Bus,
SP(35), No. 2, 1994, pp. 105-116.
BibRef
9400
Schofield, A.J.,
Mehta, P.A.,
Stonham, T.J.,
A System for Counting People in Video Images Using Neural Networks
to Identify the Background Scene,
PR(29), No. 8, August 1996, pp. 1421-1428.
Elsevier DOI
9608
BibRef
Khoudour, L.,
Duvieubourg, L.,
Deparis, J.P.,
Real-Time Pedestrian Counting by Active Linear Cameras,
JEI(5), No. 4, October 1996, pp. 452-459.
9709
BibRef
Huang, J.Z.[Jian-Zhong],
Florencio, D.A.F.[Dinei A.F.],
System and method for detecting and analyzing a queue,
US_Patent5,953,055, Sep 14, 1999
WWW Link.
BibRef
9909
And:
US_Patent6,195,121, Feb 27, 2001
WWW Link.
BibRef
Iketani, A.[Akihiko],
Nagai, A.[Atsushi],
Kuno, Y.[Yoshinori],
Shirai, Y.[Yoshiaki],
Real-Time Surveillance System Detecting Persons in Complex Scenes,
RealTimeImg(7), No. 5, October 2001, pp. 433-446.
DOI Link
0110
BibRef
Earlier:
Detecting Persons on Changing Background,
ICPR98(Vol I: 74-76).
IEEE DOI
9808
BibRef
Earlier:
A1, A3, Add
Shimada, N., A4 Only:
CIAP99(1112-1115).
IEEE DOI
9909
BibRef
Nagai, A.,
Kuno, Y.,
Shirai, Y.,
Surveillance system based on spatio-temporal information,
ICIP96(II: 593-596).
IEEE DOI
9610
BibRef
Albiol, A.,
Mora, I.,
Naranjo, V.,
Real-time High Density People Counter Using Morphological Tools,
ITS(2), No. 4, December 2001, pp. 204-218.
IEEE Abstract.
0402
BibRef
Earlier: A1, A3, A2:
ICPR00(Vol IV: 652-655).
IEEE DOI
0009
BibRef
Albiol, A.[Antonio],
Albiol, A.[Alberto],
Silla, J.[Julia],
Statistical video analysis for crowds counting,
ICIP09(2569-2572).
IEEE DOI
0911
BibRef
Lin, S.F.[Sheng-Fuu],
Chen, J.Y.[Jaw-Yeh],
Chao, H.X.[Hung-Xin],
Estimation of number of people in crowded scenes using perspective
transformation,
SMC-A(31), No. 6, November 2001, pp. 645-654.
IEEE Top Reference.
0202
BibRef
Seow, K.T.[Kiam Tian],
Pasquier, M.,
Supervising passenger land-transport systems,
ITS(5), No. 3, September 2004, pp. 165-176.
IEEE Abstract.
0501
BibRef
Pai, C.J.[Chia-Jung],
Tyan, H.R.[Hsiao-Rong],
Liang, Y.M.[Yu-Ming],
Liao, H.Y.M.[Hong-Yuan Mark],
Chen, S.W.[Sei-Wang],
Pedestrian detection and tracking at crossroads,
PR(37), No. 5, May 2004, pp. 1025-1034.
Elsevier DOI
0405
BibRef
Earlier:
ICIP03(II: 101-104).
IEEE DOI
0312
BibRef
Chen, D.Y.[Duan-Yu],
Cannons, K.,
Tyan, H.R.[Hsiao-Rong],
Shih, S.W.[Sheng-Wen],
Liao, H.Y.M.,
Spatiotemporal Motion Analysis for the Detection and Classification of
Moving Targets,
MultMed(10), No. 8, December 2008, pp. 1578-1591.
IEEE DOI
0905
BibRef
Su, C.W.[Chih-Wen],
Liao, H.Y.M.[Hong-Yuan Mark],
Liang, Y.M.[Yu-Ming],
Tyan, H.R.[Hsiao-Rong],
An RST-Tolerant Shape Descriptor for Object Detection,
ICPR10(766-769).
IEEE DOI
1008
Rotation, Scale, Translation.
BibRef
Hsieh, J.W.[Jun-Wei],
Hsu, Y.T.[Yung-Tai],
Liao, H.Y.M.,
Chen, C.C.A.[Chih-Chi-Ang],
Video-Based Human Movement Analysis and Its Application to Surveillance
Systems,
MultMed(10), No. 3, April 2008, pp. 372-384.
IEEE DOI
0905
BibRef
Munder, S.,
Gavrila, D.M.[Dariu M.],
An Experimental Study on Pedestrian Classification,
PAMI(28), No. 11, November 2006, pp. 1863-1868.
IEEE DOI
PDF File.
0609
Dataset available:
HTML Version.
Dataset, Pedestrians. DaimlerChrysler Res.
Investigate global versus local and adaptive versus nonadaptive features.
PCA coefficients, Haar wavelets, and local receptive fields (LRFs).
SVM, Neural Nets, K-NN classifiers.
Combination of SVMs with LRF features performs best.
And boosted cascade of Haar wavelets is close.
BibRef
Mählisch, M.,
Oberländer, M.,
Löhlein, O.,
Gavrila, D.M., and
Ritter, W.,
A Multiple Detector Approach to Low-Resolution FIR
Pedestrian Recognition,
IVS05(xx-yy).
PDF File.
BibRef
0500
Gavrila, D.M.[Dariu M.],
Giebel, J.,
Munder, S.,
Vision-based pedestrian detection: the PROTECTOR system,
IVS04(13-18).
IEEE DOI
0411
Although promising, not yet ready for prime time.
BibRef
Gavrila, D.M.,
Looking at people,
AVSBS07(1-1).
IEEE DOI
0709
BibRef
Munder, S.,
Schnorr, C.,
Gavrila, D.M.,
Pedestrian Detection and Tracking Using a Mixture of View-Based
Shape-Texture Models,
ITS(9), No. 2, June 2008, pp. 333-343.
IEEE DOI
0806
BibRef
Giebel, J.,
Gavrila, D.M.,
Schnörr, C.,
A Bayesian Framework for Multi-cue 3D Object Tracking,
ECCV04(Vol IV: 241-252).
Springer DOI
PDF File.
0405
Integrate object detection. Apply to pedestrians.
BibRef
Gavrila, D.M.[Dariu M.],
Sensor-based Pedestrian Protection,
IEEE_Int_Sys(16), No. 6, 2001, pp. 77-81.
PDF File.
BibRef
0100
Earlier:
Pedestrian Detection from a Moving Vehicle,
ECCV00(II: 37-49).
Springer DOI
0003
BibRef
Gavrila, D.M.,
Munder, S.,
Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle,
IJCV(73), No. 1, June 2007, pp. 41-59.
Springer DOI
0702
BibRef
Gavrila, D.M.[Dariu M.],
Philomin, V.,
Real-Time Object Detection for Smart Vehicles,
ICCV99(87-93).
IEEE DOI
PDF File.
BibRef
9900
Heikkilä, J.[Janne],
Silvén, O.[Olli],
A Real-Time System for Monitoring of Cyclists and Pedestrians,
IVC(22), No. 7, July 2004, pp. 563-570.
Elsevier DOI
0405
BibRef
Earlier:
VS99(xx-yy).
BibRef
Heikkila, J.[Janne],
Silven, O.[Olli],
Linear Motion Estimation for Image Sequence Based Accurate
3-D Measurements,
ICPR98(Vol II: 1247-1250).
IEEE DOI
9808
BibRef
Bird, N.D.,
Masoud, O.T.,
Papanikolopoulos, N.P.,
Isaacs, A.,
Detection of Loitering Individuals in Public Transportation Areas,
ITS(6), No. 2, June 2005, pp. 167-177.
IEEE Abstract.
0506
BibRef
Velastin, S.A.[Sergio A.],
Boghossian, B.,
Lo, B.,
Sun, J.,
Vicencio-Silva, M.A.,
PRISMATICA: Toward Ambient Intelligence in Public Transport
Environments,
SMC-A(35), No. 1, January 2005, pp. 164-182.
IEEE Abstract.
0501
BibRef
Black, J.,
Velastin, S.A.[Sergio A.],
Boghossian, B.[Boghos],
A real time surveillance system for metropolitan railways,
AVSBS05(189-194).
IEEE DOI
0602
BibRef
Nair, V.[Vinod],
Laprise, P.O.[Pierre-Olivier],
Clark, J.J.[James J.],
An FPGA-Based People Detection System,
JASP(2005), No. 7, 2005, pp. 1047-1061.
WWW Link.
0603
BibRef
Casas, J.R.,
Sitjes, A.P.,
Folch, P.P.,
Mutual feedback scheme for face detection and tracking aimed at density
estimation in demonstrations,
VISP(152), No. 3, June 2005, pp. 334-346.
DOI Link
0510
BibRef
Ramaswamy, A.[Arun],
Nelson, D.J.[Daniel J.],
Srinivasan, V.[Venugopal],
Methods and apparatus to count people appearing in an image,
US_Patent7,203,338, Apr 10, 2007
WWW Link.
BibRef
0704
Kilambi, P.[Prahlad],
Ribnick, E.[Evan],
Joshi, A.J.[Ajay J.],
Masoud, O.T.[Osama T.],
Papanikolopoulos, N.P.[Nikolaos P.],
Estimating pedestrian counts in groups,
CVIU(110), No. 1, April 2008, pp. 43-59.
Elsevier DOI
0804
Groups; Count estimation; Pedestrian tracking; Occlusions; Projection
BibRef
Ribnick, E.[Evan],
Atev, S.[Stefan],
Papanikolopoulos, N.P.[Nikolaos P.],
Estimating 3D Positions and Velocities of Projectiles from Monocular
Views,
PAMI(31), No. 5, May 2009, pp. 938-944.
IEEE DOI
0903
BibRef
Earlier: A1, A3, Only:
Estimating 3D Trajectories of Periodic Motions from Stationary
Monocular Views,
ECCV08(III: 546-559).
Springer DOI
0810
Localization based on apparent motion in monocular view.
BibRef
Ribnick, E.[Evan],
Sivalingam, R.[Ravishankar],
Papanikolopoulos, N.[Nikolaos],
Daniilidis, K.[Kostas],
Reconstructing and analyzing periodic human motion from stationary
monocular views,
CVIU(116), No. 7, July 2012, pp. 815-826.
Elsevier DOI
1202
Human motion; 3D reconstruction; Periodicity; Activity classification;
Gait analysis
BibRef
Xu, S.,
Duh, H.B.L.,
A Simulation of Bonding Effects and Their Impacts on Pedestrian
Dynamics,
ITS(11), No. 1, March 2010, pp. 153-161.
IEEE DOI
1003
BibRef
Gerónimo, D.[David],
Sappa, A.D.[Angel D.],
Ponsa, D.[Daniel],
López, A.M.[Antonio M.],
2D-3D-based on-board pedestrian detection system,
CVIU(114), No. 5, May 2010, pp. 583-595.
Elsevier DOI
1004
BibRef
Earlier: A1, A4, A3, A2:
Haar Wavelets and Edge Orientation Histograms for On-Board Pedestrian
Detection,
IbPRIA07(I: 418-425).
Springer DOI
0706
Pedestrian detection; Advanced Driver Assistance Systems; Horizon
line; Haar wavelets; Edge orientation histograms
BibRef
Gerónimo, D.[David],
López, A.M.[Antonio M.],
Sappa, A.D.[Angel D.],
Computer Vision Approaches to Pedestrian Detection:
Visible Spectrum Survey,
IbPRIA07(I: 547-554).
Springer DOI
0706
BibRef
Geronimo, D.[David],
Lopez, A.M.[Antonio M.],
Sappa, A.D.[Angel D.],
Graf, T.[Thorsten],
Survey of Pedestrian Detection for Advanced Driver Assistance Systems,
PAMI(32), No. 7, July 2010, pp. 1239-1258.
IEEE DOI
1006
Survey, Pedestrian Detection. Driver Assistance.
How to deal with the variations in appearance of pedestrians.
BibRef
Marin, J.[Javier],
Vazquez, D.[David],
Geronimo, D.[David],
Lopez, A.M.[Antonio M.],
Learning appearance in virtual scenarios for pedestrian detection,
CVPR10(137-144).
IEEE DOI
1006
BibRef
Hou, Y.L.,
Pang, G.K.H.,
People Counting and Human Detection in a Challenging Situation,
SMC-A(41), No. 1, January 2011, pp. 24-33.
IEEE DOI
1011
BibRef
Tan, B.[Ben],
Zhang, J.P.[Jun-Ping],
Wang, L.[Liang],
Semi-supervised Elastic net for pedestrian counting,
PR(44), No. 10-11, October-November 2011, pp. 2297-2304.
Elsevier DOI
1101
Semi-supervised regression; Elastic net; Pedestrian counting; Feature
selection; Statistical landscape features
BibRef
Fernandez Llorca, D.,
Milanes, V.,
Parra Alonso, I.,
Gavilan, M.,
Garcia Daza, I.,
Perez, J.,
Sotelo, M.Á.,
Autonomous Pedestrian Collision Avoidance Using a Fuzzy Steering
Controller,
ITS(12), No. 2, June 2011, pp. 390-401.
IEEE DOI
1101
BibRef
Yuan, X.[Xue],
Wei, X.Y.[Xue-Ye],
Song, Y.D.[Yong-Duan],
Pedestrian Detection for Counting Applications Using a Top-View Camera,
IEICE(E94-D), No. 6, June 2011, pp. 1269-1277.
WWW Link.
1101
BibRef
Damen, D.[Dima],
Hogg, D.C.[David C.],
Explaining Activities as Consistent Groups of Events:
A Bayesian Framework Using Attribute Multiset Grammars,
IJCV(98), No. 1, May 2012, pp. 83-102.
WWW Link.
1204
BibRef
Earlier:
Attribute Multiset Grammars for Global Explanations of Activities,
BMVC09(xx-yy).
PDF File.
0909
BibRef
And:
Recognizing linked events: Searching the space of feasible explanations,
CVPR09(927-934).
IEEE DOI
0906
See also Detecting Carried Objects from Sequences of Walking Pedestrians.
BibRef
Garcia-Bunster, G.,
Torres-Torriti, M.,
Oberli, C.,
Crowded pedestrian counting at bus stops from perspective
transformations of foreground areas,
IET-CV(6), No. 4, 2012, pp. 296-305.
DOI Link
1209
See also Performance Evaluation of UHF RFID Technologies for Real-Time Passenger Recognition in Intelligent Public Transportation Systems.
BibRef
Subburaman, V.B.[Venkatesh Bala],
Descamps, A.[Adrien],
Carincotte, C.[Cyril],
Counting People in the Crowd Using a Generic Head Detector,
AVSS12(470-475).
IEEE DOI
1211
BibRef
Budge, S.E.,
Sallay, J.A.,
Wang, Z.,
Gunther, J.H.,
People Matching for Transportation Planning Using Texel Camera Data for
Sequential Estimation,
SMCS(43), No. 3, May 2013, pp. 619-629.
IEEE DOI
1305
BibRef
Cherian, A.[Anoop],
Sra, S.[Suvrit],
Banerjee, A.[Arindam],
Papanikolopoulos, N.P.[Nikolaos P.],
Jensen-Bregman LogDet Divergence with Application to Efficient
Similarity Search for Covariance Matrices,
PAMI(35), No. 9, 2013, pp. 2161-2174.
IEEE DOI
1307
BibRef
Earlier:
Efficient similarity search for covariance matrices via the
Jensen-Bregman LogDet Divergence,
ICCV11(2399-2406).
IEEE DOI
1201
Covariance matrix as feature descriptors for people tracking, etc.
See also Efficient Nearest Neighbors via Robust Sparse Hashing.
BibRef
Cherian, A.[Anoop],
Sra, S.[Suvrit],
Riemannian Sparse Coding for Positive Definite Matrices,
ECCV14(III: 299-314).
Springer DOI
1408
BibRef
Cherian, A.[Anoop],
Morellas, V.[Vassilios],
Papanikolopoulos, N.P.[Nikolaos P.],
Bedros, S.J.[Saad J.],
Dirichlet process mixture models on symmetric positive definite
matrices for appearance clustering in video surveillance applications,
CVPR11(3417-3424).
IEEE DOI
1106
BibRef
Sivalingam, R.[Ravishankar],
Boley, D.L.[Daniel L.],
Morellas, V.[Vassilios],
Papanikolopoulos, N.P.[Nikolaos P.],
Tensor Sparse Coding for Positive Definite Matrices,
PAMI(36), No. 3, March 2014, pp. 592-605.
IEEE DOI
1403
BibRef
Earlier:
Positive definite dictionary learning for region covariances,
ICCV11(1013-1019).
IEEE DOI
1201
BibRef
Earlier:
Tensor Sparse Coding for Region Covariances,
ECCV10(IV: 722-735).
Springer DOI
1009
computer vision
BibRef
Sivalingam, R.,
Boley, D.,
Morellas, V.,
Papanikolopoulos, N.,
Tensor Dictionary Learning for Positive Definite Matrices,
IP(24), No. 11, November 2015, pp. 4592-4601.
IEEE DOI
1509
Covariance matrices
BibRef
Fehr, D.[Duc],
Sivalingam, R.[Ravishankar],
Morellas, V.[Vassilios],
Papanikolopoulos, N.P.[Nikolaos P.],
Lotfallah, O.[Osama],
Park, Y.C.[Young-Choon],
Counting People in Groups,
AVSBS09(152-157).
IEEE DOI
0909
BibRef
Maddalena, L.[Lucia],
Petrosino, A.[Alfredo],
Russo, F.[Francesco],
People counting by learning their appearance in a multi-view camera
environment,
PRL(36), No. 1, 2014, pp. 125-134.
Elsevier DOI
1312
Artificial neural network
BibRef
Reyes, F.,
Cipriano, A.,
On-line passenger estimation in a metro system using particle filter,
IET-ITS(8), No. 1, February 2014, pp. 1-8.
DOI Link
1406
digital simulation
BibRef
Liu, S.B.[Shao-Bo],
Lo, S.M.[Siu-Ming],
Ma, J.[Jian],
Wang, W.L.[Wei-Li],
An Agent-Based Microscopic Pedestrian Flow Simulation Model for
Pedestrian Traffic Problems,
ITS(15), No. 3, June 2014, pp. 992-1001.
IEEE DOI
1407
Adaptation models
BibRef
Wang, J.Q.[Jin-Qiao],
Fu, W.[Wei],
Liu, J.J.[Jing-Jing],
Lu, H.Q.[Han-Qing],
Spatiotemporal Group Context for Pedestrian Counting,
CirSysVideo(24), No. 9, September 2014, pp. 1620-1630.
IEEE DOI
1410
Markov processes
BibRef
Puyol, M.G.,
Bobkov, D.,
Robertson, P.,
Jost, T.,
Pedestrian Simultaneous Localization and Mapping in Multistory
Buildings Using Inertial Sensors,
ITS(15), No. 4, August 2014, pp. 1714-1727.
IEEE DOI
1410
autoregressive moving average processes
BibRef
Barabino, B.,
di Francesco, M.,
Mozzoni, S.,
An Offline Framework for Handling Automatic Passenger Counting Raw
Data,
ITS(15), No. 6, December 2014, pp. 2443-2456.
IEEE DOI
1412
data handling
BibRef
Barabino, B.,
di Francesco, M.,
Mozzoni, S.,
An Offline Framework for the Diagnosis of Time Reliability by
Automatic Vehicle Location Data,
ITS(18), No. 3, March 2017, pp. 583-594.
IEEE DOI
1703
Biological system modeling
BibRef
Islam, M.K.,
Vandebona, U.,
Dixit, V.V.,
Sharma, A.,
A Bulk Queue Model for the Evaluation of Impact of Headway Variations
and Passenger Waiting Behavior on Public Transit Performance,
ITS(15), No. 6, December 2014, pp. 2432-2442.
IEEE DOI
1412
Markov processes
BibRef
Islam, M.K.,
Vandebona, U.,
Dixit, V.V.,
Sharma, A.,
A Model to Evaluate the Impact of Headway Variation and Vehicle Size
on the Reliability of Public Transit,
ITS(16), No. 4, August 2015, pp. 1840-1850.
IEEE DOI
1508
Analytical models
BibRef
Chen, W.G.[Wei-Gang],
Wang, X.[Xun],
Wang, H.Y.[Hui-Yan],
Peng, H.Y.[Hao-Yu],
Hybrid approach using map-based estimation and class-specific Hough
forest for pedestrian counting and detection,
IET-IPR(8), No. 12, 2014, pp. 771-781.
DOI Link
1412
Hough transforms
BibRef
Tang, N.C.,
Lin, Y.Y.[Yen-Yu],
Weng, M.F.[Ming-Fang],
Liao, H.Y.M.,
Cross-Camera Knowledge Transfer for Multiview People Counting,
IP(24), No. 1, January 2015, pp. 80-93.
IEEE DOI
1502
feature extraction
BibRef
Zhang, S.S.[Shan-Shan],
Bauckhage, C.[Christian],
Cremers, A.B.[Armin B.],
Efficient Pedestrian Detection via Rectangular Features Based on a
Statistical Shape Model,
ITS(16), No. 2, April 2015, pp. 763-775.
IEEE DOI
1504
Computational modeling
BibRef
Earlier:
Informed Haar-Like Features Improve Pedestrian Detection,
CVPR14(947-954)
IEEE DOI
1409
BibRef
Zhang, S.S.[Shan-Shan],
Bauckhage, C.[Christian],
Klein, D.A.[Dominik A.],
Cremers, A.B.[Armin B.],
Exploring Human Vision Driven Features for Pedestrian Detection,
CirSysVideo(25), No. 10, October 2015, pp. 1709-1720.
IEEE DOI
1511
BibRef
Earlier: A1, A3, A2, A4:
Center-Surround Contrast Features for Pedestrian Detection,
ICPR14(2293-2298)
IEEE DOI
1412
Detectors
BibRef
Earlier: A1, A2, A3, A4:
Moving pedestrian detection based on motion segmentation,
WORV13(102-107)
IEEE DOI
1307
collision avoidance
BibRef
Iryo-Asano, M.,
Alhajyaseen, W.K.M.,
Nakamura, H.,
Analysis and Modeling of Pedestrian Crossing Behavior During the
Pedestrian Flashing Green Interval,
ITS(16), No. 2, April 2015, pp. 958-969.
IEEE DOI
1504
Analytical models
BibRef
Beecroft, M.,
Pangbourne, K.,
Personal security in travel by public transport:
The role of traveller information and associated technologies,
IET-ITS(9), No. 2, 2015, pp. 167-174.
DOI Link
1504
public transport
BibRef
Foroughi, H.[Homa],
Ray, N.[Nilanjan],
Zhang, H.[Hong],
Robust people counting using sparse representation and random
projection,
PR(48), No. 10, 2015, pp. 3038-3052.
Elsevier DOI
1507
People counting
BibRef
Li, H.,
Chan, E.C.L.,
Guo, X.,
Xiao, J.,
Wu, K.,
Ni, L.M.,
Wi-Counter:
Smartphone-Based People Counter Using Crowdsourced Wi-Fi Signal Data,
HMS(45), No. 4, August 2015, pp. 442-452.
IEEE DOI
1506
IEEE 802.11 Standards. Not vision based.
BibRef
Xia, W.[Wei],
Zhang, J.P.[Jun-Ping],
Kruger, U.[Uwe],
Semisupervised Pedestrian Counting With Temporal and Spatial
Consistencies,
ITS(16), No. 4, August 2015, pp. 1705-1715.
IEEE DOI
1508
Bismuth
BibRef
Shan, H.M.[Hong-Ming],
Zhang, J.P.[Jun-Ping],
Kruger, U.[Uwe],
Framework of Randomized Distribution Features for Visual
Representation and Categorization,
Cyber(49), No. 9, Sep. 2019, pp. 3599-3606.
IEEE DOI
1906
Kernel, Visualization, Measurement, Histograms,
Resource description framework, Feature extraction,
visual representation
BibRef
Mukherjee, S.[Satarupa],
Gil, S.[Stephani],
Ray, N.[Nilanjan],
Unique people count from monocular videos,
VC(31), No. 10, October 2015, pp. 1405-1417.
WWW Link.
1509
BibRef
Vera, P.[Pablo],
Monjaraz, S.[Sergio],
Salas, J.[Joaquín],
Counting pedestrians with a zenithal arrangement of depth cameras,
MVA(27), No. 2, February 2016, pp. 303-315.
WWW Link.
1602
BibRef
Chen, K.,
Kämäräinen, J.K.,
Pedestrian Density Analysis in Public Scenes With Spatiotemporal
Tensor Features,
ITS(17), No. 7, July 2016, pp. 1968-1977.
IEEE DOI
1608
feature extraction
BibRef
del Pizzo, L.[Luca],
Foggia, P.[Pasquale],
Greco, A.[Antonio],
Percannella, G.[Gennaro],
Vento, M.[Mario],
Counting people by RGB or depth overhead cameras,
PRL(81), No. 1, 2016, pp. 41-50.
Elsevier DOI
1609
People counting
BibRef
Zhang, N.Y.[Ning-Yu],
Chen, H.J.[Hua-Jun],
Chen, X.[Xi],
Chen, J.Y.[Jiao-Yan],
Forecasting Public Transit Use by Crowdsensing and Semantic
Trajectory Mining: Case Studies,
IJGI(5), No. 10, 2016, pp. 180.
DOI Link
1610
BibRef
Guo, Y.Y.[Yan-Yong],
Sayed, T.[Tarek],
Zaki, M.H.[Mohamed H.],
Automated analysis of pedestrian walking behaviour at a signalised
intersection in China,
IET-ITS(11), No. 1, February 2017, pp. 28-36.
DOI Link
1703
BibRef
Chen, K.,
Zhang, Z.,
Pedestrian Counting With Back-Propagated Information and Target Drift
Remedy,
SMCS(47), No. 4, April 2017, pp. 639-647.
IEEE DOI
1704
Cybernetics
BibRef
Niu, Q.[Qun],
Wu, H.F.[He-Feng],
Gao, C.Y.[Cheng-Ying],
Luo, X.N.[Xiao-Nan],
Laser-Based Bidirectional Pedestrian Counting via Height Map Guided
Regression and Voting,
SIViP(11), No. 5, July 2017, pp. 897-904.
WWW Link.
1706
BibRef
Bartin, B.[Bekir],
Ozbay, K.[Kaan],
Yang, H.[Hong],
Evaluation framework for mobile ticketing applications in public
transit: a case study,
IET-ITS(12), No. 9, November 2018, pp. 1166-1173.
DOI Link
1810
BibRef
Kieu, L.M.[Le Minh],
Cai, C.[Chen],
Stochastic collective model of public transport passenger arrival
process,
IET-ITS(12), No. 9, November 2018, pp. 1027-1035.
DOI Link
1810
BibRef
Rajan, P.[Purnima],
Ma, Y.M.[Yong-Ming],
Jedynak, B.[Bruno],
Cox Processes for Counting by Detection,
JMIV(61), No. 3, March 2019, pp. 380-393.
WWW Link.
1903
BibRef
Grippa, P.,
Schilcher, U.,
Bettstetter, C.,
On Access Control in Cabin-Based Transport Systems,
ITS(20), No. 6, June 2019, pp. 2149-2156.
IEEE DOI
1906
Boarding.
Access control, Queueing analysis, Numerical stability,
Stability criteria, Stochastic processes,
boarding
BibRef
Denman, S.,
Fookes, C.,
Yarlagadda, P.K.D.V.,
Sridharan, S.,
Scene Invariant Virtual Gates Using DNNs,
CirSysVideo(29), No. 9, September 2019, pp. 2637-2651.
IEEE DOI
1909
Optical imaging, Feature extraction,
Cameras, Estimation, Throughput, Logic gates, Person counting,
video surveillance
BibRef
Sun, S.,
Akhtar, N.,
Song, H.,
Zhang, C.,
Li, J.,
Mian, A.,
Benchmark Data and Method for Real-Time People Counting in Cluttered
Scenes Using Depth Sensors,
ITS(20), No. 10, October 2019, pp. 3599-3612.
IEEE DOI
1910
Videos, Cameras, Feature extraction, Trajectory, Head,
Real-time systems, Cluttered scenes,
RGB-D videos
BibRef
Tang, L.,
Zhao, Y.,
Cabrera, J.,
Ma, J.,
Tsui, K.L.,
Forecasting Short-Term Passenger Flow: An Empirical Study on Shenzhen
Metro,
ITS(20), No. 10, October 2019, pp. 3613-3622.
IEEE DOI
1910
Forecasting, Feature extraction, Predictive models, Transportation,
Monitoring, Meteorology, Support vector machines,
time series
BibRef
Cholakkal, H.[Hisham],
Sun, G.[Guolei],
Khan, F.S.[Fahad Shahbaz],
Shao, L.[Ling],
Object Counting and Instance Segmentation With Image-Level Supervision,
CVPR19(12389-12397).
IEEE DOI
2002
BibRef
Ricks, B.[Brian],
Dobson, A.[Andrew],
Krontiris, A.[Athanasios],
Bekris, K.[Kostas],
Kapadia, M.[Mubbasir],
Roberts, F.[Fred],
Generation of crowd arrival and destination locations/times in complex
transit facilities,
VC(36), No. 8, August 2020, pp. 1651-1661.
Springer DOI
2007
BibRef
Ospina, A.,
Torres, F.,
Countor: count without bells and whistles,
City20(2559-2565)
IEEE DOI
2008
Cameras, Task analysis, Inference algorithms, Target tracking,
Urban areas, Detectors
BibRef
Dwibedi, D.,
Aytar, Y.,
Tompson, J.,
Sermanet, P.,
Zisserman, A.,
Counting Out Time:
Class Agnostic Video Repetition Counting in the Wild,
CVPR20(10384-10393)
IEEE DOI
2008
Task analysis, Feature extraction, Training,
Predictive models, Training data
BibRef
Yang, J.[Jie],
He, W.Y.[Wen Yu],
Zhang, T.L.[Tian Lu],
Zhang, C.L.[Chun Lei],
Zeng, L.[Lu],
Nan, B.F.[Bing Fei],
Research on subway pedestrian detection algorithms based on SSD model,
IET-ITS(14), No. 11, November 2020, pp. 1491-1496.
DOI Link
2010
BibRef
Zhou, H.J.[Hui-Juan],
Liu, Y.[Yu],
Zhao, Y.[Yu],
Passenger inflow control with hierarchical coordination for overloaded
metro lines,
IET-ITS(14), No. 11, November 2020, pp. 1418-1425.
DOI Link
2010
BibRef
Liang, Y.,
Qian, X.,
Zhu, L.,
Towards Better Railway Service: Passengers Counting in Railway
Compartment,
CirSysVideo(31), No. 2, February 2021, pp. 439-451.
IEEE DOI
2102
Cameras, Rail transportation, Task analysis,
Proposals, Standards, Head, image processing
BibRef
Wang, P.F.[Peng-Fei],
Chen, X.W.[Xue-Wu],
Chen, J.X.[Jing-Xu],
Hua, M.Z.[Ming-Zhuang],
Pu, Z.Y.[Zi-Yuan],
A two-stage method for bus passenger load prediction using automatic
passenger counting data,
IET-ITS(15), No. 2, 2021, pp. 248-260.
DOI Link
2106
BibRef
Tang, Y.[Yi],
Liu, M.[Min],
Li, B.[Baopu],
Wang, Y.N.[Yao-Nan],
Ouyang, W.L.[Wan-Li],
OTP-NMS: Toward Optimal Threshold Prediction of NMS for Crowded
Pedestrian Detection,
IP(32), 2023, pp. 3176-3187.
IEEE DOI
2306
Estimation, Correlation, Proposals, Detectors, Task analysis,
Standards, Prediction algorithms, Pedestrian detection,
gradient estimation
BibRef
Jiang, N.[Nan],
Yang, L.Z.[Li-Zhong],
Yuen, R.K.K.[Richard Kwok Kit],
Zhai, C.J.[Chun-Jie],
Modeling the Pedestrian Flow Before Bottleneck Through Learning-Based
Method,
ITS(24), No. 7, July 2023, pp. 7035-7047.
IEEE DOI
2307
Behavioral sciences, Microscopy, Trajectory, Predictive models,
Neural networks, Computational modeling, Force, Pedestrian flow,
machine learning
BibRef
Gao, C.[Chao],
Liu, H.[Hao],
Huang, J.J.[Jia-Jin],
Wang, Z.[Zhen],
Li, X.H.[Xiang-Hua],
Li, X.L.[Xue-Long],
Regularized Spatial-Temporal Graph Convolutional Networks for Metro
Passenger Flow Prediction,
ITS(25), No. 9, September 2024, pp. 11241-11255.
IEEE DOI Code:
WWW Link.
2409
Predictive models, Mathematical models, Data models,
Convolutional neural networks, Noise measurement, Robustness,
passenger flow prediction
BibRef
Núñez, J.[Johnny],
Li, Z.[Zenjie],
Escalera, S.[Sergio],
Nasrollahi, K.[Kamal],
Identifying Loitering Behavior with Trajectory Analysis,
RWSurvil24(251-259)
IEEE DOI Code:
WWW Link.
2404
Radio frequency, Data privacy, Protocols, Annotations, Surveillance,
Solids, Public security
BibRef
Langer, T.[Tim],
Waschneck, B.[Bernd],
Partzsch, J.[Johannes],
Kelber, F.[Florian],
Mayr, C.[Christian],
Hardware-Efficient Ultrasonic Entrance Counting:
Comparing Different Machine Learning Approaches,
ICPR22(755-761)
IEEE DOI
2212
Energy consumption, Ultrasonic variables measurement,
Pulse measurements, Energy measurement, Smart Buildings
BibRef
Jiang, N.[Na],
Wen, X.S.[Xing-Sen],
Shi, Z.P.[Zhi-Ping],
DAPC: Domain Adaptation People Counting via Style-level Transfer
Learning and Scene-aware Estimation,
ICPR21(1067-1074)
IEEE DOI
2105
Image analysis, Surveillance, Transfer learning, Estimation,
Interference, Pattern recognition, Knowledge transfer,
scene-aware estimation
BibRef
Wallner, M.[Marco],
Steininger, D.[Daniel],
Widhalm, V.[Verena],
Schörghuber, M.[Matthias],
Beleznai, C.[Csaba],
RGB-D Railway Platform Monitoring and Scene Understanding for Enhanced
Passenger Safety,
RISS20(656-671).
Springer DOI
2103
BibRef
Pazzaglia, G.[Giulia],
Mameli, M.[Marco],
Rossi, L.[Luca],
Paolanti, M.[Marina],
Mancini, A.[Adriano],
Zingaretti, P.[Primo],
Frontoni, E.[Emanuele],
People Counting on Low Cost Embedded Hardware During the SARS-COV-2
Pandemic,
DEEPRETAIL20(521-533).
Springer DOI
2103
BibRef
Xie, J.[Jin],
Cholakkal, H.[Hisham],
Anwer, R.M.[Rao Muhammad],
Khan, F.S.[Fahad Shahbaz],
Pang, Y.W.[Yan-Wei],
Shao, L.[Ling],
Shah, M.[Mubarak],
Count- and Similarity-aware R-CNN for Pedestrian Detection,
ECCV20(XVII:88-104).
Springer DOI
2011
BibRef
Lejbølle, A.R.,
Krogh, B.,
Nasrollahi, K.,
Moeslund, T.B.,
One-To-One Person Re-Identification For Queue Time Estimation,
ICIP20(1706-1710)
IEEE DOI
2011
Probes, Cameras, Feature extraction, Time measurement, Airports,
Optimization, Queueing analysis, Re-identification,
Hungarian algorithm
BibRef
Liu, L.,
He, J.,
Hou, Y.,
Zhang, C.,
A Technology for Automatically Counting Bus Passenger Based on YOLOv2
and MIL Algorithm,
ICIVC20(166-170)
IEEE DOI
2009
Target tracking, Streaming media, Classification algorithms,
Real-time systems, Cameras, Object detection, Mathematical model,
passenger flow statistics
BibRef
Bai, S.,
He, Z.,
Qiao, Y.,
Hu, H.,
Wu, W.,
Yan, J.,
Adaptive Dilated Network With Self-Correction Supervision for
Counting,
CVPR20(4593-4602)
IEEE DOI
2008
Feature extraction, Convolution, Estimation, Adaptation models,
Labeling, Supervised learning, Gaussian mixture model
BibRef
Xiao, F.,
Liu, H.,
Lee, Y.J.,
Identity From Here, Pose From There: Self-Supervised Disentanglement
and Generation of Objects Using Unlabeled Videos,
ICCV19(7012-7021)
IEEE DOI
2004
image classification, unsupervised learning,
video signal processing, disentanglement loss, ID input,
Public transportation
BibRef
Turchini, F.[Francesco],
Bruni, M.[Matteo],
Baecchi, C.[Claudio],
Uricchio, T.[Tiberio],
del Bimbo, A.[Alberto],
Open Set Recognition for Unique Person Counting via Virtual Gates,
CIAP19(I:94-105).
Springer DOI
1909
BibRef
Yooyoung, Y.Y.[Yoo-Young],
Fiscus, J.[Jon],
Godil, A.[Afzal],
Joy, D.[David],
Delgado, A.[Andrew],
Golden, J.[Jim],
ActEV18: Human Activity Detection Evaluation for Extended Videos,
HADCV19(1-8)
IEEE DOI
1902
Artificial intelligence
BibRef
van Beeck, K.,
van Engeland, K.,
Vennekens, J.,
Goedemé, T.,
Abnormal behavior detection in LWIR surveillance of railway platforms,
AVSS17(1-6)
IEEE DOI
1806
feature extraction, image classification,
learning (artificial intelligence), pedestrians, railway safety,
Videos
BibRef
Farhood, H.,
He, X.,
Jia, W.,
Blumenstein, M.,
Li, H.,
Counting People Based on Linear, Weighted, and Local Random Forests,
DICTA17(1-7)
IEEE DOI
1804
closed circuit television, feature extraction,
image motion analysis, learning (artificial intelligence),
Videos
BibRef
Cohen, J.P.,
Boucher, G.,
Glastonbury, C.A.,
Lo, H.Z.,
Bengio, Y.,
Count-ception: Counting by Fully Convolutional Redundant Counting,
BioIm17(18-26)
IEEE DOI
1802
Digital images, Image segmentation, Kernel,
Predictive models, Training
BibRef
Velastin, S.A.[Sergio A.],
Gómez-Lira, D.A.[Diego A.],
People Detection and Pose Classification Inside a Moving Train Using
Computer Vision,
IVIC17(319-330).
Springer DOI
1711
BibRef
Soares, G.S.[Guilherme S.],
Machado, R.C.[Rubens C.],
Lotufo, R.A.[Roberto A.],
People-Flow Counting Using Depth Images for Embedded Processing,
ICIAR17(239-246).
Springer DOI
1706
BibRef
von Borstel, M.[Matthias],
Kandemir, M.[Melih],
Schmidt, P.[Philip],
Rao, M.K.[Madhavi K.],
Rajamani, K.[Kumar],
Hamprecht, F.A.[Fred A.],
Gaussian Process Density Counting from Weak Supervision,
ECCV16(I: 365-380).
Springer DOI
1611
cells and pedestrians
BibRef
Sourtzinos, P.[Panos],
Velastin, S.A.[Sergio A.],
Jara, M.[Miguel],
Zegers, P.[Pablo],
Makris, D.[Dimitrios],
People Counting in Videos by Fusing Temporal Cues from Spatial
Context-Aware Convolutional Neural Networks,
Crowd16(II: 655-667).
Springer DOI
1611
BibRef
Shimizu, M.,
Oizumi, J.,
Matsuoka, R.,
Takeda, H.,
Okukura, H.,
Ooya, A.,
Koike, A.,
Development Of A Novel System To Measure A Clearance Of A Passenger
Platform,
ISPRS16(B5: 573-580).
DOI Link
1610
BibRef
Wang, Y.,
Zou, Y.,
Fast visual object counting via example-based density estimation,
ICIP16(3653-3657)
IEEE DOI
1610
Estimation
BibRef
Kocamaz, M.K.,
Gong, J.,
Pires, B.R.,
Vision-based counting of pedestrians and cyclists,
WACV16(1-8)
IEEE DOI
1606
Cameras
BibRef
Hung, D.H.[Dao Huu],
Saito, H.,
Yamamoto, K.,
Sato, H.,
An omnidirectional vision system for bus safety surveillance,
AVSS15(1-6)
IEEE DOI
1511
cameras
BibRef
Cunha, P.[Pedro],
Moura, D.C.[Daniel C.],
A scalable and privacy preserving approach for counting pedestrians
in urban environment,
AVSS15(1-6)
IEEE DOI
1511
Cameras
BibRef
Segui, S.[Santi],
Pujol, O.[Oriol],
Vitria, J.[Jordi],
Learning to count with deep object features,
DeepLearn15(90-96)
IEEE DOI
1510
Accuracy. Counting, not detect and locate individual instances.
BibRef
Chen, S.[Sheng],
Fern, A.[Alan],
Todorovic, S.[Sinisa],
Person count localization in videos from noisy foreground and
detections,
CVPR15(1364-1372)
IEEE DOI
1510
BibRef
And:
Multi-object Tracking via Constrained Sequential Labeling,
CVPR14(1130-1137)
IEEE DOI
1409
constraint; multi-object tracking; sequential labeling
BibRef
Xu, J.S.[Jing-Song],
Wu, Q.A.[Qi-Ang],
Zhang, J.[Jian],
Silk, B.,
Ngo, G.T.[Gia Thuan],
Tang, Z.M.[Zhen-Min],
Efficient People Counting with Limited Manual Interferences,
DICTA14(1-6)
IEEE DOI
1502
feature extraction
BibRef
Hegner, R.[Robert],
Hartmann, A.[Andreas],
Niederberger, T.[Thomas],
Schuster, G.M.[Guido M],
Scalable, self-organizing 3D camera network for non-intrusive people
tracking and counting,
ICIP14(3405-3407)
IEEE DOI
1502
Calibration
BibRef
Yu, Z.J.[Zhong-Jie],
Gong, C.[Chen],
Yang, J.[Jie],
Bai, L.[Li],
Pedestrian counting based on spatial and temporal analysis,
ICIP14(2432-2436)
IEEE DOI
1502
Bandwidth
BibRef
Akai, R.[Ryota],
Nitta, N.[Naoko],
Babaguchi, N.[Noboru],
Real-Time People Counting across Spatially Adjacent Non-overlapping
Camera Views,
MMMod15(I: 71-82).
Springer DOI
1501
BibRef
Luo, J.[Jun],
Wang, J.Q.[Jin-Qiao],
Xu, H.Z.[Hua-Zhong],
Lu, H.Q.[Han-Qing],
A Real-Time People Counting Approach in Indoor Environment,
MMMod15(I: 214-223).
Springer DOI
1501
BibRef
Tabuchi, Y.[Yoshimune],
Takahashi, T.[Tomokazu],
Deguchi, D.[Daisuke],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Kurozumi, T.[Takayuki],
Kashino, K.[Kunio],
Spatial People Density Estimation from Multiple Viewpoints by Memory
Based Regression,
ICPR14(2209-2214)
IEEE DOI
1412
Cameras
BibRef
Mora-Colque, R.V.H.[Rensso V. H.],
Cámara-Chávez, G.[Guillermo],
Schwartz, W.R.[William Robson],
Detection of Groups of People in Surveillance Videos Based on
Spatio-Temporal Clues,
CIARP14(948-955).
Springer DOI
1411
BibRef
Topkaya, I.S.[Ibrahim Saygin],
Erdogan, H.[Hakan],
Porikli, F.M.[Fatih M.],
Counting people by clustering person detector outputs,
AVSS14(313-318)
IEEE DOI
1411
Clustering algorithms
BibRef
Ozer, B.[Burak],
Wolf, M.[Marilyn],
A Train Station Surveillance System: Challenges and Solutions,
ECVW14(652-657)
IEEE DOI
1409
gesture recognitionin; surveillance; tracking
BibRef
Chua, T.W.[Teck Wee],
Leman, K.[Karianto],
Gao, F.[Feng],
Hierarchical Audio-Visual Surveillance for Passenger Elevators,
MMMod14(II: 44-55).
Springer DOI
1405
BibRef
Hu, Y.[Yang],
Liao, S.C.[Sheng-Cai],
Yi, D.[Dong],
Lei, Z.[Zhen],
Li, S.Z.[Stan Z.],
Multi-camera Trajectory Mining: Database and Evaluation,
ICPR14(4684-4689)
IEEE DOI
1412
Cameras
BibRef
Noceti, N.[Nicoletta],
Odone, F.[Francesca],
Semi-supervised learning of sparse representations to recognize
people spatial orientation,
ICIP14(3382-3386)
IEEE DOI
1502
Accuracy
BibRef
Zini, L.[Luca],
Noceti, N.[Nicoletta],
Odone, F.[Francesca],
Precise people counting in real time,
ICIP13(3592-3596)
IEEE DOI
1402
people counting
BibRef
Jeong, C.Y.[Chi Yoon],
Choi, S.[SuGil],
Han, S.W.[Seung Wan],
A method for counting moving and stationary people by interest point
classification,
ICIP13(4545-4548)
IEEE DOI
1402
People counting
BibRef
Nitta, N.[Naoko],
Nakazaki, T.[Takayuki],
Nakamura, K.[Kazuaki],
Akai, R.[Ryota],
Babaguchi, N.[Noboru],
People counting across spatially disjoint cameras by flow estimation
between foreground regions,
AVSS13(414-419)
IEEE DOI
1311
Cameras
BibRef
Galcík, F.[František],
Gargalík, R.[Radoslav],
Real-Time Depth Map Based People Counting,
ACIVS13(330-341).
Springer DOI
1311
BibRef
Casola, V.[Valentina],
Esposito, M.[Mariana],
Flammini, F.[Francesco],
Mazzocca, N.[Nicola],
Performance Evaluation of Video Analytics for Surveillance On-Board
Trains,
ACIVS13(414-425).
Springer DOI
1311
BibRef
Zhu, L.[Lei],
Wong, K.H.[Kin-Hong],
Human Tracking and Counting Using the KINECT Range Sensor Based on
Adaboost and Kalman Filter,
ISVC13(II:582-591).
Springer DOI
1311
BibRef
Roncancio, H.[Henry],
Hernandes, A.C.[Andre Carmona],
Becker, M.[Marcelo],
Ceiling analysis of pedestrian recognition pipeline for an autonomous
car application,
WORV13(215-220)
IEEE DOI
1307
BibRef
Neumann, J.[Joachim],
Zao, M.Q.[Man-Qi],
Karatzoglou, A.[Alexandros],
Oliver, N.[Nuria],
Event Detection in Communication and Transportation Data,
IbPRIA13(827-838).
Springer DOI
1307
BibRef
Nguyen, N.H.[Ngoc Hung],
Hartley, R.I.,
Height Measurement for Humans in Motion Using a Camera:
A Comparison of Different Methods,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Lin, Y.J.[Yu-Jie],
Liu, N.[Ning],
Integrating bottom-up and top-down processes for accurate pedestrian
counting,
ICPR12(2508-2511).
WWW Link.
1302
BibRef
Li, J.W.[Jing-Wen],
Huang, L.[Lei],
Liu, C.P.[Chang-Ping],
People Counting across Multiple Cameras for Intelligent Video
Surveillance,
AVSS12(178-183).
IEEE DOI
1211
BibRef
Zhang, X.C.[Xu-Cong],
Yan, J.J.[Jun-Jie],
Feng, S.K.[Shi-Kun],
Lei, Z.[Zhen],
Yi, D.[Dong],
Li, S.Z.[Stan Z.],
Water Filling: Unsupervised People Counting via Vertical Kinect Sensor,
AVSS12(215-220).
IEEE DOI
1211
BibRef
Ogawa, M.[Masahiro],
Fukamachi, H.[Hideo],
Funayama, R.J.[Ryu-Ji],
Kindo, T.[Toshiki],
CYKLS: Detect Pedestrian's Dart Focusing on an Appearance Change,
CVVT12(II: 556-565).
Springer DOI
1210
Driver assistance
BibRef
Hsieh, J.W.[Jun-Wei],
Fang, F.J.[Fu-Jiang],
Lin, G.J.[Guo-Jin],
Wang, Y.S.[Yu-Shi],
Template Matching and Monte Carlo Markova Chain for People Counting
under Occlusions,
MMMod12(761-771).
Springer DOI
1201
BibRef
Mukherjee, S.[Satarupa],
Saha, B.N.[Baidya-Nath],
Jamal, I.[Iqbal],
Leclerc, R.[Richard],
Ray, N.[Nilanjan],
Anovel framework for automatic passenger counting,
ICIP11(2969-2972).
IEEE DOI
1201
BibRef
Li, J.W.[Jing-Wen],
Huang, L.[Lei],
Liu, C.P.[Chang-Ping],
Online adaptive learning for multi-camera people counting,
ICPR12(3415-3418).
WWW Link.
1302
BibRef
Earlier:
Robust people counting in video surveillance: Dataset and system,
AVSBS11(54-59).
IEEE DOI
1111
BibRef
Rosner, M.[Marcin],
Intelligent crossing sensor and vehicle detector,
AVSBS11(535).
IEEE DOI
1111
AVSS 2011 demo session:
BibRef
Leoputra, W.S.,
Venkatesh, S.,
Tan, T.[Tele],
Pedestrian detection for mobile bus surveillance,
ICARCV08(726-732).
IEEE DOI
1109
BibRef
And:
Passenger monitoring in moving bus video,
ICARCV08(719-725).
IEEE DOI
1109
BibRef
Lovell, B.C.,
Chen, S.,
Bigdeli, A.,
Berglund, E.,
Sanderson, C.,
On intelligent surveillance systems and face recognition for mass
transport security,
ICARCV08(713-718).
IEEE DOI
1109
BibRef
Déniz-Suárez, O.[Oscar],
Castrillón-Santana, M.[Modesto],
Lorenzo-Navarro, J.[Javier],
Bueno, G.[Gloria],
Hernández, M.[Mario],
Fast Classification in Incrementally Growing Spaces,
IbPRIA11(305-312).
Springer DOI
1106
BibRef
Hernández-Sosa, D.[Daniel],
Castrillón-Santana, M.[Modesto],
Lorenzo-Navarro, J.[Javier],
Multi-sensor People Counting,
IbPRIA11(321-328).
Springer DOI
1106
BibRef
Elmarhomy, A.[Ahmed],
Karungaru, S.[Stephen],
Terada, K.[Kenji],
A method for counting passersby using time-space image,
FCV11(1-5).
IEEE DOI
1102
BibRef
Patzold, M.,
Sikora, T.,
Real-time person counting by propagating networks flows,
AVSBS11(66-70).
IEEE DOI
1111
BibRef
Benabbas, Y.[Yassine],
Ihaddadene, N.[Nacim],
Yahiaoui, T.,
Urruty, T.,
Djeraba, C.[Chabane],
Spatio-Temporal Optical Flow Analysis for People Counting,
AVSS10(212-217).
IEEE DOI
1009
BibRef
Merad, D.[Djamel],
Aziz, K.E.[Kheir Eddine],
Thome, N.[Nicolas],
Fast People Counting Using Head Detection From Skeleton Graph,
AVSS10(151-156).
IEEE DOI
1009
BibRef
And:
AVSS10(233-240).
IEEE DOI
1009
See also Person Re-identification Using Appearance Classification.
BibRef
Gasparini, L.,
Manduchi, R.,
Gottardi, M.,
An Ultra-Low-Power Contrast-Based Integrated Camera Node and its
Application as a People Counter,
AVSS10(547-554).
IEEE DOI
1009
BibRef
Miller, P.,
Liu, W.R.[Wei-Ru],
Fowler, C.,
Zhou, H.Y.[Hui-Yu],
Shen, J.L.[Jia-Li],
Ma, J.B.[Jian-Bing],
Zhang, J.G.[Jian-Guo],
Yan, W.Q.[Wei-Qi],
McLaughlin, K.,
Sezer, S.,
Intelligent Sensor Information System For Public Transport:
To Safely Go ...,
AVSS10(533-538).
IEEE DOI
1009
BibRef
Szczot, M.[Magdalena],
Dannenmann, I.[Iris],
Lohlein, O.[Otto],
Incorporating Lane Estimation as Context Source in Pedestrian
Recognition Task,
ICPR10(2628-2631).
IEEE DOI
1008
BibRef
Pham, Q.C.[Quoc-Cuong],
Lapeyronnie, A.[Agnes],
Baudry, C.[Christelle],
Lucat, L.[Laurent],
Sayd, P.[Patrick],
Ambellouis, S.[Sebastien],
Sodoyer, D.[David],
Flancquart, A.[Amaury],
Barcelo, A.C.[Alain-Claude],
Heer, F.[Frederic],
Ganansia, F.[Fabrice],
Delcourt, V.[Vincent],
Audio-video surveillance system for public transportation,
IPTA10(47-53).
IEEE DOI
1007
BibRef
Kembhavi, A.[Aniruddha],
Yeh, T.[Tom],
Davis, L.S.[Larry S.],
Why Did the Person Cross the Road (There)? Scene Understanding Using
Probabilistic Logic Models and Common Sense Reasoning,
ECCV10(II: 693-706).
Springer DOI
1009
BibRef
Schraml, S.[Stephan],
Belbachir, A.N.[Ahmed Nabil],
A spatio-temporal clustering method using real-time motion analysis on
event-based 3D vision,
VAM10(57-63).
IEEE DOI
1006
BibRef
Schraml, S.[Stephan],
Belbachir, A.N.[Ahmed Nabil],
Brandle, N.,
A real-time pedestrian classification method for event-based dynamic
stereo vision,
ECVW10(93-99).
IEEE DOI
1006
BibRef
Belbachir, A.N.,
Schraml, S.,
Brandle, N.,
Real-time classification of pedestrians and cyclists for intelligent
counting of non-motorized traffic,
SISM10(45-50).
IEEE DOI
1006
BibRef
Leung, V.,
Orwell, J.[James],
Velastin, S.A.[Sergio A.],
Performance Evaluation of Tracking for Public Transport Surveillance,
BMVA(2010), No. 6, 2010, pp. 1-12.
PDF File.
1209
BibRef
Earlier:
Performance evaluation of re-acquisition methods for public transport
surveillance,
ICARCV08(705-712).
IEEE DOI
1109
BibRef
Cao, Y.Z.[Yu-Zhen],
Chen, L.S.[Lu-Shi],
Jia, S.[Shuo],
An Image Based Detection of Pedestrian Crossing,
CISP09(1-5).
IEEE DOI
0910
BibRef
Antic, B.[Borislav],
Letic, D.[Dragan],
Culibrk, D.[Dubravko],
Crnojevic, V.[Vladimir],
K-means based segmentation for real-time zenithal people counting,
ICIP09(2565-2568).
IEEE DOI
0911
BibRef
Terabayashi, K.[Kenji],
Hashimoto, Y.[Yuki],
Umeda, K.[Kazunori],
Measurement of Pedestrian Groups Using Subtraction Stereo,
ISVC09(II: 538-549).
Springer DOI
0911
BibRef
Zu, K.[Keju],
Liu, F.Q.[Fu-Qiang],
Li, Z.P.[Zhi-Peng],
Counting Pedestrian in Crowded Subway Scene,
CISP09(1-4).
IEEE DOI
0910
BibRef
Lu-Ling,
Mu, P.[Ping'an],
Dai, S.G.[Shu-Guang],
Research of Object Tracking Algorithm Applied in Passenger Flow
Statistics in Public Traffic,
CISP09(1-3).
IEEE DOI
0910
BibRef
Ma, J.B.[Jian-Bing],
Liu, W.[Weiru],
Miller, P.[Paul],
Yan, W.Q.[Wei-Qi],
Event Composition with Imperfect Information for Bus Surveillance,
AVSBS09(382-387).
IEEE DOI
0909
BibRef
Zhao, X.[Xi],
Delleandrea, E.[Emmanuel],
Chen, L.M.[Li-Ming],
A People Counting System Based on Face Detection and Tracking in a
Video,
AVSBS09(67-72).
IEEE DOI
0909
BibRef
Cong, Y.[Yang],
Gong, H.F.[Hai-Feng],
Zhu, S.C.[Song-Chun],
Tang, Y.D.[Yan-Dong],
Flow mosaicking:
Real-time pedestrian counting without scene-specific learning,
CVPR09(1093-1100).
IEEE DOI
0906
BibRef
Fascioli, A.[Alessandra],
Fedriga, R.I.[Rean Isabella],
Ghidoni, S.[Stefano],
Vision-based monitoring of pedestrian crossings,
CIAP07(566-574).
IEEE DOI
0709
BibRef
Bertozzi, M.,
Broggi, A.,
Fascioli, A.,
Tibaldi, A.,
Chapuis, R.,
Chausse, F.,
Pedestrian localization and tracking system with Kalman filtering,
IVS04(584-589).
IEEE DOI
0411
BibRef
Naturel, X.[Xavier],
Odobez, J.M.[Jean-Marc],
Detecting queues at vending machines: A statistical layered approach,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Carter, N.L.[Nicholas L.],
Ferryman, J.M.[James M.],
The SAFEE On-Board Threat Detection System,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Arai, H.[Hiroyuki],
Miyagawa, I.[Isao],
Koike, H.[Hideki],
Haseyama, M.[Miki],
Estimating the number of people in a video sequence via geometrical
model,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Li, M.[Min],
Zhang, Z.X.[Zhao-Xiang],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Robust visual tracking based on simplified biologically inspired
features,
ICIP09(4113-4116).
IEEE DOI
0911
BibRef
Yahiaoui, T.[Tarek],
Meurie, C.[Cyril],
Khoudour, L.[Louahdi],
Cabestaing, F.[François],
A People Counting System Based on Dense and Close Stereovision,
ICISP08(59-66).
Springer DOI
0807
BibRef
Teixeira, T.,
Savvides, A.,
Lightweight People Counting and Localizing in Indoor Spaces Using
Camera Sensor Nodes,
ICDSC07(36-43).
IEEE DOI
0709
BibRef
Lee, G.G.[Gwang-Gook],
Kim, B.S.[Byeoung-Su],
Kim, W.Y.[Whoi-Yul],
Automatic Estimation of Pedestrian Flow,
ICDSC07(291-296).
IEEE DOI
0709
BibRef
Katz, I.[Itai],
Aghajan, H.[Hamid],
Multiple camera-based chamfer matching for pedestrian detection,
ICDSC08(1-5).
IEEE DOI
0809
BibRef
Kong, S.[Suyu],
Bhuyan, M.K.,
Sanderson, C.,
Lovell, B.C.[Brian C.],
Tracking of persons for video surveillance of unattended environments,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kong, S.[Suyu],
Sanderson, C.,
Lovell, B.C.[Brian C.],
Classifying and tracking multiple persons for proactive surveillance of
mass transport systems,
AVSBS07(159-163).
IEEE DOI
0709
BibRef
Valle, J.D.,
Oliveira, L.E.S.,
Koerich, A.L.,
Britto, A.S.,
People Counting in Low Density Video Sequences,
PSIVT07(737-748).
Springer DOI
0712
BibRef
Chee, B.C.[Boon Chong],
Lazarescu, M.[Mihai],
Tan, T.L.[Te-Le],
Detection and Monitoring of Passengers on a Bus by Video Surveillance,
CIAP07(143-148).
IEEE DOI
0709
BibRef
Septian, H.,
Tao, J.[Ji],
Tan, Y.P.[Yap-Peng],
People Counting by Video Segmentation and Tracking,
ICARCV06(1-4).
IEEE DOI
0612
BibRef
Park, H.H.[Hyun Hee],
Lee, H.G.[Hyung Gu],
Noh, S.I.[Seung-In],
Kim, J.H.[Jai-Hie],
Development of a Block-Based Real-Time People Counting System,
SSPR06(366-374).
Springer DOI
0608
BibRef
Celik, H.,
Hanjalic, A.,
Hendriks, E.A.,
Towards a Robust Solution to People Counting,
ICIP06(2401-2404).
IEEE DOI
0610
BibRef
Park, S.H.[Sang-Ho],
Trivedi, M.M.[Mohan M.],
Analysis and query of person-vehicle interactions in homography domain,
VSSN06(101-110).
WWW Link.
0701
See also Two-stage Multi-view Analysis Framework for Human Activity and Interactions, A.
BibRef
Ploetner, J.[Jeffrey],
Trivedi, M.M.[Mohan M.],
A multimodal approach for dynamic event capture of vehicles and
pedestrians,
VSSN06(203-210).
WWW Link.
0701
BibRef
Steinbach, S.[Stephan],
Rabaud, V.[Vincent],
Belongie, S.J.[Serge J.],
Soylent Grid: It's Made of People,
ICV07(1-7).
IEEE DOI
0710
BibRef
Gray, D.[Douglas],
Tao, H.[Hai],
Viewpoint Invariant Pedestrian Recognition with an Ensemble of
Localized Features,
ECCV08(I: 262-275).
Springer DOI
0810
BibRef
Jung, H.G.[Ho Gi],
Lee, Y.H.[Yun Hee],
Yoon, P.J.[Pal Joo],
Hwang, I.Y.[In Yong],
Kim, J.H.[Jai-Hie],
Sensor Fusion Based Obstacle Detection/Classification for Active
Pedestrian Protection System,
ISVC06(II: 294-305).
Springer DOI
0611
BibRef
Lim, J.S.[Jong Seok],
Kim, W.H.[Wook Hyun],
Detection and Tracking Multiple Pedestrians from a Moving Camera,
ISVC05(527-534).
Springer DOI
0512
BibRef
Bovyrin, A.,
Rodyushkin, K.,
Human height prediction and roads estimation for advanced video
surveillance systems,
AVSBS05(219-223).
IEEE DOI
0602
Pedestrian surveillance.
BibRef
Cavallaro, A.[Andrea],
Event Detection in Underground Stations Using Multiple Heterogeneous
Surveillance Cameras,
ISVC05(535-542).
Springer DOI
0512
BibRef
Liu, X.,
Tu, P.H.,
Rittscher, J.,
Perera, A.,
Krahnstoever, N.O.,
Detecting and counting people in surveillance applications,
AVSBS05(306-311).
IEEE DOI
0602
BibRef
Spirito, M.,
Regazzoni, C.S.,
Marcenaro, L.,
Automatic detection of dangerous events for underground surveillance,
AVSBS05(195-200).
IEEE DOI
0602
BibRef
Regazzoni, C.S.[Carlo S.],
Emphatic human interaction analysis for cognitive environments,
ARTEMIS10(1-2).
DOI Link
1111
BibRef
Sacchi, C.,
Regazzoni, C.S.,
Vernazza, G.,
A neural network-based image processing system for detection of vandal
acts in unmanned railway environments,
CIAP01(529-534).
IEEE DOI
0210
BibRef
Seyve, C.,
Metro railway security algorithms with realworld experience adapted to
the RATP dataset,
AVSBS05(177-182).
IEEE DOI
0602
BibRef
Shashua, A.,
Gdalyahu, Y.,
Hayun, G.,
Pedestrian detection for driving assistance systems:
Single-frame classification and system level performance,
IVS04(1-6).
IEEE DOI
0411
BibRef
Tons, M.,
Doerfler, R.,
Meinecke, M.M.,
Obojski, M.A.,
Radar sensors and sensor platform used for pedestrian protection in the
EC-funded project SAVE-U,
IVS04(813-818).
IEEE DOI
0411
BibRef
Sakamoto, Y.,
Aoki, M.,
Street model with multiple movable panels for pedestrian environment
analysis,
IVS04(790-795).
IEEE DOI
0411
BibRef
Kim, J.W.[Jae-Won],
Choi, K.S.[Kang-Sun],
Choi, B.D.[Byeong-Doo],
Lee, J.Y.[Jae-Yong],
Ko, S.J.[Sung-Jea],
Real-Time System for Counting the Number of Passing People Using a
Single Camera,
DAGM03(466-473).
Springer DOI
0310
BibRef
Bescos, J.,
Menendez, J.M.,
Garcia, N.,
DCT based segmentation applied to a scalable zenithal people counter,
ICIP03(III: 1005-1008).
IEEE DOI
0312
BibRef
Pece, A.E.C.,
From Cluster Tracking to People Counting,
PETS02(9-17).
0207
BibRef
Paragios, N.[Nikos],
Ramesh, V.[Visvanathan],
A MRF-based Approach for Real-Time Subway Monitoring,
CVPR01(I:1034-1040).
IEEE DOI
0110
Pedestrian monitoring.
BibRef
Shao, H.[Hui],
Li, L.Y.[Li-Yuan],
Xiao, P.[Ping],
Leung, M.K.H.[Maylor K. H.],
ELEVIEW An Active Elevator Video Surveillance System,
HUMO00(67-72).
IEEE Top Reference.
0010
BibRef
Beymer, D.J.[David J.],
Person Counting Using Stereo,
HUMO00(127-134).
IEEE Top Reference.
0010
BibRef
Yoshida, D.[Daisuke],
Terada, K.[Kenji],
Oe, S.[Shun'ichiro],
Yamaguchi, J.[Jun'ichi],
A method of Counting the Passing People by using the Stereo Images,
ICIP99(II:338-342).
IEEE DOI
BibRef
9900
Terada, K.,
Kurokawa, N.,
A Method of Counting the Passing People by Using the Method
of the Template Matching,
MVA98(xx-yy).
BibRef
9800
Aubert, D.,
Passengers queue length measurement,
CIAP99(1132-1135).
IEEE DOI
9909
BibRef
Prassler, E.,
Scholz, J.,
Elfes, A.,
Tracking People in a Railway Station during Rush-Hour,
CVS99(162 ff.).
Springer DOI
0209
BibRef
Tsuchikawa, M.,
Sato, A.,
Koike, H.,
Tomono, A.,
A Moving Object Extraction Method Robust Against
Illumination Level Changes for a Pedestrian Counting System,
SCV95(563-568).
IEEE DOI
Application, Counting. Nippon Telegraph and Telephone Corp.
Subtraction texhnique. Over a long sequence.
BibRef
9500
Sato, A.,
Mase, K.,
Tomono, A.,
Ishii, K.,
Pedestrian Counting System Robust Against Illumination Changes,
SPIE(2094), 1993, pp. XX-YY.
BibRef
9300
Remagnino, P.,
Baumberg, A.M.,
Grove, T.,
Hogg, D.C.,
Tan, T.N.,
Worrall, A.D.,
Baker, K.D.,
An Integrated Traffic and Pedestrian Model-Based Vision System,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Rossi, M., and
Bozzoli, A.,
Tracking and Counting Moving People,
ICIP94(III: 212-216).
IEEE DOI
9411
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Counting People, Crowds, Crowd Counting .