Klausmann, P.,
Kroschel, K.,
Willersinn, D.,
Performance prediction of vehicle detection algorithms,
PR(32), No. 12, December 1999, pp. 2063-2065.
Elsevier DOI
BibRef
9912
Tang, G.Y.,
Huang, T.S.,
Using the Creation Machine to Locate Airplanes on Aerial Photos,
PR(12), No. 6, 1980, pp. 431-441.
Elsevier DOI
BibRef
8000
Solka, J.L.,
Marchette, D.J.,
Wallet, B.C.,
Irwin, V.L., and
Rogers, G.W.,
Identification of Man-Made Regions in
Unmanned Aerial Vehicle Imagery and Videos,
PAMI(20), No. 8, August 1998, pp. 852-857.
IEEE DOI Statistical classification to find regions of interest in such data.
BibRef
9808
Trivedi, M.M.[Mohan M.], and
Harlow, C.A.[Charles A.],
Identification of Unique Objects in High Resolution Aerial Images,
OptEng(24), No. 3, May-June 1985, pp. 502-506.
BibRef
8505
Trivedi, M.M., and
Harlow, C.A.,
Incorporating Spectral and Spatial Knowledge in the
Identification of Unique Objects in High Resolution Aerial Images,
SPIE(485), May 1984, pp. 214-219.
BibRef
8405
Trivedi, M.M.,
Bokil, A.,
Takla, M.,
Maksymonko, G.B., and
Broach, T.,
Analysis of High Resolution Imagery for Object Detection,
SPIE(1099), March 1989.
BibRef
8903
Trivedi, M.M.,
Object Detection Using Their Multispectral Characteristics,
SPIE(754), January 1987. pp. xx.
BibRef
8701
Shirvaikar, M.V., and
Trivedi, M.M.,
Design and Evaluation of a Multistage Object Detection Approach,
SPIE(1293), Applications of AI VIII, Orlando, FL,
April 1990, pp. 14-22.
BibRef
9004
Trivedi, M.M.[Mohan M.],
Object Detection in High Resolution Multispectral Images,
SPIE(933), Multispectral Image Processing and Enhancement,
Orlando, FL, April 1988, pp. 8-14.
Pyramids.
BibRef
8804
Trivedi, M.M.,
Harlow, C.A.,
Cress, D.H., and
Chen, C.,
Detection of Objects in High Resolution Multispectral Aerial Images,
SPIE(548), Applications of Artificial Intelligence II, Arlington, VA,
April 1985, pp. 258-262.
BibRef
8504
Moon, H.K.[Han-Kyu],
Chellappa, R.,
Rosenfeld, A.,
Performance Analysis of a Simple Vehicle Detction Algorithm,
IVC(20), No. 1, January 2002, pp. 1-13.
Elsevier DOI
0201
BibRef
Earlier:
UMD--TR4045, August 1999.
Empirical Evaluation.
Vehicle Counting.
WWW Link.
BibRef
Burlina, P.,
Parameswaran, V.,
Chellappa, R.,
Sensitivity Analysis and Learning Strategies for
Context-Based Vehicle Detection Algorithms,
DARPA97(577-584).
BibRef
9700
Rajagopalan, A.N.[Ambasamudram N.],
Chellappa, R.[Rama],
Higher-Order-Statistics-Based Detection of Vehicles in Still Images,
JOSA-A(18), No. 12, December 2001, pp. 3037-3048.
WWW Link.
0201
BibRef
Earlier:
UMD--TR4189, September 2000.
WWW Link.
BibRef
Rajagopalan, A.N.,
Burlina, P.,
Chellappa, R.,
Higher Order Statistical Learning for Vehicle Detection in Images,
ICCV99(1204-1209).
IEEE DOI
BibRef
9900
Zhao, T.[Tao],
Nevatia, R.[Ram],
Car Detection in Low Resolution Aerial Images,
IVC(21), No. 8, August 2003, pp. 693-703.
Elsevier DOI
0307
BibRef
Earlier:
ICCV01(I: 710-717).
IEEE DOI
0106
BibRef
USC Computer VisionUse a simple generic 3-D model of the car. Match edge features.
BibRef
Howard, D.[Daniel],
Roberts, S.C.[Simon C.],
Ryan, C.[Conor],
Pragmatic Genetic Programming strategy for the problem of vehicle
detection in airborne reconnaissance,
PRL(27), No. 11, August 2006, pp. 1275-1288.
Elsevier DOI Genetic Programming; Method of stages; Discrete Fourier transform
0606
BibRef
Pegler, K.[Kevin],
Colemen, D.[David],
Pelot, R.[Ronald],
Keller, C.P.[C. Peter],
An Enhanced Spatio-spectral Template for Automatic Small Recreational
Vessel Detection,
PhEngRS(73), No. 1, January 2007, pp. 79-88.
WWW Link.
0704
The utility of an enhanced spatio-spectral template used in
conjunction with Ikonos imagery to detect small recreational vessels.
BibRef
Jin, X.Y.[Xiao-Ying],
Davis, C.H.[Curt H.],
Vehicle detection from high-resolution satellite imagery using
morphological shared-weight neural networks,
IVC(25), No. 9, 1 September 2007, pp. 1422-1431.
Elsevier DOI
0707
Vehicle detection; High-resolution satellite imagery; Neural networks;
Feature extraction; IKONOS
BibRef
Xiong, Z.[Zhen],
Zhang, Y.[Yun],
An Initial Study on Vehicle Information Extraction from Single Pass
QuickBird Satellite Imagery,
PhEngRS(74), No. 11, November 2008, pp. 1401-1412.
WWW Link.
0804
A direct location algorithm to calculate vehicle's ground position
from its image position based on a Digital Elevation Model.
See also Novel Interest-Point-Matching Algorithm for High-Resolution Satellite Images, A.
BibRef
Eikvil, L.[Line],
Aurdal, L.[Lars],
Koren, H.[Hans],
Classification-based vehicle detection in high-resolution satellite
images,
PandRS(64), No. 1, January 2009, pp. 65-72.
Elsevier DOI
0804
Quickbird; Vehicle detection; Classification
BibRef
Yue, Z.F.[Zhan-Feng],
Guarino, D.[David],
Chellappa, R.[Rama],
Moving Object Verification in Airborne Video Sequences,
CirSysVideo(19), No. 1, January 2009, pp. 77-89.
IEEE DOI
0902
BibRef
Earlier: A1, A3, A2:
Moving Object Verification from Airborne Video,
CVS06(29).
IEEE DOI
0602
BibRef
Holt, A.C.[Ashley C.],
Seto, E.Y.W.[Edmund Y.W.],
Rivard, T.[Tom],
Gong, P.[Peng],
Object-based Detection and Classification of Vehicles from
High-resolution Aerial Photography,
PhEngRS(75), No. 7, July 2009, pp. 871-897.
WWW Link.
0910
An object-based classification technique to extract vehicle volumes
and vehicle type distributions from aerial photos sampled throughout a
large metropolitan area.
BibRef
Chang, W.C.,
Cho, C.W.,
Online Boosting for Vehicle Detection,
SMC-B(40), No. 3, June 2010, pp. 892-902.
IEEE DOI
1006
BibRef
Cao, X.B.[Xian-Bin],
Wu, C.,
Lan, J.H.[Jin-He],
Yan, P.K.[Ping-Kun],
Li, X.L.[Xue-Long],
Vehicle Detection and Motion Analysis in Low-Altitude Airborne Video
Under Urban Environment,
CirSysVideo(21), No. 10, October 2011, pp. 1522-1533.
IEEE DOI
1110
BibRef
Earlier: A1, A3, A4, A5:
KLT Feature Based Vehicle Detection and Tracking in Airborne Videos,
ICIG11(673-678).
IEEE DOI
1109
BibRef
Cao, X.B.[Xian-Bin],
Lin, R.J.[Ren-Jun],
Yan, P.K.[Ping-Kun],
Li, X.L.[Xue-Long],
Visual Attention Accelerated Vehicle Detection in Low-Altitude Airborne
Video of Urban Environment,
CirSysVideo(22), No. 3, March 2012, pp. 366-378.
IEEE DOI
1203
BibRef
Earlier:
Accelerating Vehicle Detection in Low-Altitude Airborne Urban Video,
ICIG11(648-653).
IEEE DOI
1109
BibRef
Xia, Y.J.[Ying-Jie],
Zhang, L.M.[Lu-Ming],
Liu, Z.G.[Zhen-Guang],
Nie, L.Q.[Li-Qiang],
Li, X.L.[Xue-Long],
Weakly Supervised Multimodal Kernel for Categorizing Aerial
Photographs,
IP(26), No. 8, August 2017, pp. 3748-3758.
IEEE DOI
1707
binary codes, colour photography, cryptography,
feature extraction, image matching, support vector machines,
aerial photograph categorization, binary codes,
graphlet number extraction, graphlet-to-graphlet matching,
hash-based graphlet, high-level semantic cue encoding,
image kernel, local image patches, multiclass SVM,
BibRef
Bai, X.[Xueru],
Zhou, F.[Feng],
Xing, M.D.[Meng-Dao],
Bao, Z.[Zheng],
A Novel Method for Imaging of Group Targets Moving in a Formation,
GeoRS(50), No. 1, January 2012, pp. 221-231.
IEEE DOI
1201
See also Sparse Subband Imaging of Space Targets in High-Speed Motion.
BibRef
Bai, X.,
Xing, M.,
Zhou, F.,
Lu, G.,
Bao, Z.,
Imaging of Micromotion Targets With Rotating Parts Based on
Empirical-Mode Decomposition,
GeoRS(46), No. 11, November 2008, pp. 3514-3523.
IEEE DOI
0812
BibRef
Cheng, H.Y.,
Weng, C.C.,
Chen, Y.Y.,
Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian
Networks,
IP(21), No. 4, April 2012, pp. 2152-2159.
IEEE DOI
1204
BibRef
Frolind, P.O.,
Gustavsson, A.,
Lundberg, M.,
Ulander, L.M.H.,
Circular-Aperture VHF-Band Synthetic Aperture Radar for Detection of
Vehicles in Forest Concealment,
GeoRS(50), No. 4, April 2012, pp. 1329-1339.
IEEE DOI
1204
BibRef
Cao, X.B.[Xian-Bin],
Lan, J.H.[Jin-He],
Yan, P.K.[Ping-Kun],
Li, X.L.[Xue-Long],
Vehicle detection and tracking in airborne videos by multi-motion layer
analysis,
MVA(23), No. 5, September 2012, pp. 921-935.
WWW Link.
1208
BibRef
Cao, X.B.[Xian-Bin],
Wu, C.X.[Chang-Xia],
Yan, P.K.[Ping-Kun],
Li, X.L.[Xue-Long],
Linear SVM classification using boosting HOG features for vehicle
detection in low-altitude airborne videos,
ICIP11(2421-2424).
IEEE DOI
1201
BibRef
Schindler, K.,
An Overview and Comparison of Smooth Labeling Methods for Land-Cover
Classification,
GeoRS(50), No. 11, November 2012, pp. 4534-4545.
IEEE DOI
1210
BibRef
Tokarczyk, P.,
Montoya, J.,
Schindler, K.,
An Evaluation of Feature Learning Methods for High Resolution Image
Classification,
AnnalsPRS(I-3), No. 2012, pp. 389-394.
DOI Link
1209
Lots of small (urban) objects.
BibRef
Butler, P.[Patrick],
Ramakrishnan, N.[Naren],
Nsoesie, E.O.[Elaine O.],
Brownstein, J.S.[John S.],
Satellite Imagery Analysis:
What Can Hospital Parking Lots Tell Us about a Disease Outbreak?,
Computer(47), No. 4, April 2014, pp. 94-97.
IEEE DOI
1405
Data mining
BibRef
Jabbar, S.[Sana],
Akbar, A.[Ali],
Zafar, S.[Saima],
Quddoos, M.[Muhammad],
Hussain, M.[Majid],
VISTA: achieving cumulative VIsion through energy efficient
Silhouette recognition of mobile Targets through collAboration of
visual sensor nodes,
JIVP(2014), No. 1, 2014, pp. 32.
DOI Link
1407
BibRef
Moranduzzo, T.,
Melgani, F.,
Detecting Cars in UAV Images With a Catalog-Based Approach,
GeoRS(52), No. 10, October 2014, pp. 6356-6367.
IEEE DOI
1407
Catalogs
BibRef
Bazi, Y.,
Melgani, F.,
Convolutional SVM Networks for Object Detection in UAV Imagery,
GeoRS(56), No. 6, June 2018, pp. 3107-3118.
IEEE DOI
1806
Feature extraction, Object detection, Remote sensing,
Spatial resolution, Standards, Support vector machines, Training,
unmanned aerial vehicle (UAV) platforms
BibRef
Mekhalfi, M.L.[Mohamed Lamine],
Bejiga, M.B.[Mesay Belete],
Soresina, D.[Davide],
Melgani, F.[Farid],
Demir, B.[Begüm],
Capsule Networks for Object Detection in UAV Imagery,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Gao, F.[Feng],
Li, B.[Bo],
Xu, Q.Z.[Qi-Zhi],
Zhong, C.[Chen],
Moving Vehicle Information Extraction from Single-Pass WorldView-2
Imagery Based on ERGAS-SNS Analysis,
RS(6), No. 7, 2014, pp. 6500-6523.
DOI Link
1408
BibRef
Zhang, J.X.[Ji-Xian],
Duan, M.[Minyan],
Yan, Q.[Qin],
Lin, X.G.[Xiang-Guo],
Automatic Vehicle Extraction from Airborne LiDAR Data Using an
Object-Based Point Cloud Analysis Method,
RS(6), No. 9, 2014, pp. 8405-8423.
DOI Link
1410
BibRef
Zhang, X.P.[Xue-Pan],
Liao, G.S.[Gui-Sheng],
Zhu, S.Q.[Sheng-Qi],
Zeng, C.[Cao],
Shu, Y.X.[Yu-Xiang],
Geometry-Information-Aided Efficient Radial Velocity Estimation for
Moving Target Imaging and Location Based on Radon Transform,
GeoRS(53), No. 2, February 2015, pp. 1105-1117.
IEEE DOI
1411
Radon transforms
BibRef
Börcs, A.[Attila],
Benedek, C.[Csaba],
Extraction of Vehicle Groups in Airborne Lidar Point Clouds With
Two-Level Point Processes,
GeoRS(53), No. 3, March 2015, pp. 1475-1489.
IEEE DOI
1412
BibRef
Earlier:
A Marked Point Process Model For Vehicle Detection In Aerial Lidar
Point Clouds,
AnnalsPRS(I-3), No. 2012, pp. 93-98.
DOI Link
1209
feature extraction
See also Detection of soldering defects in Printed Circuit Boards with Hierarchical Marked Point Processes.
BibRef
Taoufiq, S.[Salma],
Nagy, B.[Balázs],
Benedek, C.[Csaba],
HierarchyNet: Hierarchical CNN-Based Urban Building Classification,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zováthi, Ö.[Örkény],
Nagy, B.[Balázs],
Benedek, C.[Csaba],
Exploitation of Dense MLS City Maps for 3d Object Detection,
ICIAR20(I:393-403).
Springer DOI
2007
BibRef
Börcs, A.[Attila],
Nagy, B.[Balázs],
Baticz, M.[Milán],
Benedek, C.[Csaba],
A Model-Based Approach for Fast Vehicle Detection in Continuously
Streamed Urban LIDAR Point Clouds,
AutoSystems14(413-425).
Springer DOI
1504
BibRef
Börcs, A.[Attila],
Nagy, B.[Balázs],
Benedek, C.[Csaba],
Fast 3-D Urban Object Detection on Streaming Point Clouds,
CVRoads14(628-639).
Springer DOI
1504
BibRef
Janney, P.[Pranam],
Booth, D.[David],
Pose-invariant vehicle identification in aerial electro-optical imagery,
MVA(26), No. 5, July 2015, pp. 575-591.
WWW Link.
1506
BibRef
Dickson, C.N.[Christopher N.],
Wallace, A.M.[Andrew M.],
Kitchin, M.[Matthew],
Connor, B.[Barry],
Long-wave infrared polarimetric cluster-based vehicle detection,
JOSA-A(32), No. 12, December 2015, pp. 2307-2315.
DOI Link
1601
Pattern recognition; Polarimetric imaging
BibRef
Razakarivony, S.[Sebastien],
Jurie, F.[Frederic],
Vehicle detection in aerial imagery:
A small target detection
benchmark,
JVCIR(34), No. 1, 2016, pp. 187-203.
Elsevier DOI
1601
Detection
BibRef
Chen, Z.Y.[Zi-Yi],
Wang, C.[Cheng],
Wen, C.L.[Cheng-Lu],
Teng, X.H.[Xiu-Hua],
Chen, Y.P.[Yi-Ping],
Guan, H.Y.[Hai-Yan],
Luo, H.[Huan],
Cao, L.J.[Liu-Juan],
Li, J.,
Vehicle Detection in High-Resolution Aerial Images via Sparse
Representation and Superpixels,
GeoRS(54), No. 1, January 2016, pp. 103-116.
IEEE DOI
1601
feature extraction
BibRef
Chen, Z.Y.[Zi-Yi],
Wang, C.[Cheng],
Luo, H.[Huan],
Wang, H.,
Chen, Y.P.[Yi-Ping],
Wen, C.L.[Cheng-Lu],
Yu, Y.,
Cao, L.J.[Liu-Juan],
Li, J.,
Vehicle Detection in High-Resolution Aerial Images Based on Fast
Sparse Representation Classification and Multiorder Feature,
ITS(17), No. 8, August 2016, pp. 2296-2309.
IEEE DOI
1608
Dictionaries
BibRef
Yu, Y.T.[Yong-Tao],
Guan, H.Y.[Hai-Yan],
Zai, D.W.[Da-Wei],
Ji, Z.[Zheng],
Rotation-and-scale-invariant airplane detection in high-resolution
satellite images based on deep-Hough-forests,
PandRS(112), No. 1, 2016, pp. 50-64.
Elsevier DOI
1602
Airplane detection
BibRef
Cao, Y.T.[Yu-Tian],
Wang, G.[Gang],
Yan, D.M.[Dong-Mei],
Zhao, Z.M.[Zhong-Ming],
Two Algorithms for the Detection and Tracking of Moving Vehicle
Targets in Aerial Infrared Image Sequences,
RS(8), No. 1, 2016, pp. 28.
DOI Link
1602
BibRef
Razakarivony, S.[Sebastien],
Jurie, F.[Frederic],
A novel target detection algorithm combining foreground and background
manifold-based models,
MVA(27), No. 3, April 2016, pp. 363-375.
Springer DOI
1604
Vehicles in aerial images.
BibRef
Cao, L.J.[Liu-Juan],
Luo, F.[Feng],
Chen, L.[Li],
Sheng, Y.[Yihan],
Wang, H.B.[Hai-Bin],
Wang, C.[Cheng],
Ji, R.R.[Rong-Rong],
Weakly supervised vehicle detection in satellite images via
multi-instance discriminative learning,
PR(64), No. 1, 2017, pp. 417-424.
Elsevier DOI
1701
Multiple instance learning
BibRef
Sheng, Y.,
Cao, L.,
Wang, C.,
Li, J.,
Weakly Supervised Vehicle Detection in Satellite Images via Multiple
Instance Ranking,
ICPR18(2765-2770)
IEEE DOI
1812
Proposals, Vehicle detection, Satellites, Feature extraction,
Remote sensing, Detectors, Task analysis
BibRef
Ammour, N.[Nassim],
Al Hichri, H.[Haikel],
Bazi, Y.[Yakoub],
Benjdira, B.[Bilel],
Alajlan, N.[Naif],
Zuair, M.[Mansour],
Deep Learning Approach for Car Detection in UAV Imagery,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Al Rahhal, M.M.[Mohamad M.],
Bazi, Y.[Yakoub],
Abdullah, T.[Taghreed],
Mekhalfi, M.L.[Mohamed L.],
Al Hichri, H.[Haikel],
Zuair, M.[Mansour],
Learning a Multi-Branch Neural Network from Multiple Sources for
Knowledge Adaptation in Remote Sensing Imagery,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Audebert, N.[Nicolas],
Le Saux, B.[Bertrand],
Lefčvre, S.[Sébastien],
Segment-before-Detect: Vehicle Detection and Classification through
Semantic Segmentation of Aerial Images,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Li, F.[Feimo],
Li, S.X.[Shu-Xiao],
Zhu, C.F.[Cheng-Fei],
Lan, X.S.[Xiao-Song],
Chang, H.X.[Hong-Xing],
Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and
Categorization in High Resolution Aerial Images,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
And:
Class-imbalance aware CNN extension for high resolution aerial image
based vehicle localization and categorization,
ICIVC17(761-765)
IEEE DOI
1708
class-imbalance, convolutional neural network,
high resolution aerial image, vehicle categorization, vehicle, detection
BibRef
El Mikaty, M.,
Stathaki, T.,
Detection of Cars in High-Resolution Aerial Images of Complex Urban
Environments,
GeoRS(55), No. 10, October 2017, pp. 5913-5924.
IEEE DOI
1710
object detection, image descriptors, urban environments,
Roads, automatic target recognition
BibRef
Koga, Y.[Yohei],
Miyazaki, H.[Hiroyuki],
Shibasaki, R.[Ryosuke],
A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard
Example Mining,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Schilling, H.[Hendrik],
Bulatov, D.[Dimitri],
Middelmann, W.[Wolfgang],
Object-based detection of vehicles using combined optical and
elevation data,
PandRS(136), 2018, pp. 85-105.
Elsevier DOI
1802
Vehicle detection, Object-based classification, Data fusion,
Elevation data, Random forest, High-resolution,
Cluster analysis
BibRef
Chen, Z.[Zhong],
Zhang, T.[Ting],
Ouyang, C.[Chao],
End-to-End Airplane Detection Using Transfer Learning in Remote
Sensing Images,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Bashmal, L.[Laila],
Bazi, Y.[Yakoub],
Al Hichri, H.[Haikel],
Al Rahhal, M.M.[Mohamad M.],
Ammour, N.[Nassim],
Alajlan, N.[Naif],
Siamese-GAN: Learning Invariant Representations for Aerial Vehicle
Image Categorization,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
generative adversarial networks (GANs).
BibRef
Yang, C.X.[Chen-Xi],
Li, W.J.[Wen-Jing],
Lin, Z.Y.[Zhi-Yong],
Vehicle Object Detection in Remote Sensing Imagery Based on
Multi-Perspective Convolutional Neural Network,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Mou, L.,
Zhu, X.X.,
Vehicle Instance Segmentation From Aerial Image and Video Using a
Multitask Learning Residual Fully Convolutional Network,
GeoRS(56), No. 11, November 2018, pp. 6699-6711.
IEEE DOI
1811
Image segmentation, Semantics, Feature extraction,
Vehicle detection, Remote sensing, Task analysis, Object detection,
vehicle detection
BibRef
Solmaz, B.[Berkan],
Gundogdu, E.[Erhan],
Yucesoy, V.[Veysel],
Koç, A.[Aykut],
Alatan, A.A.[Abdullah Aydin],
Fine-grained recognition of maritime vessels and land vehicles by deep
feature embedding,
IET-CV(12), No. 8, December 2018, pp. 1121-1132.
DOI Link
1812
BibRef
Chaari, L.[Lotfi],
A Bayesian grouplet transform,
SIViP(13), No. 5, July 2019, pp. 871-878.
WWW Link.
1906
BibRef
Gharbi, W.[Walma],
Chaari, L.[Lotfi],
Benazza-Benyahia, A.[Amel],
Bayesian Vehicle Detection Using Optical Remote Sensing Images,
ACIVS18(258-269).
Springer DOI
1810
BibRef
Cao, S.[Shuang],
Yu, Y.T.[Yong-Tao],
Guan, H.Y.[Hai-Yan],
Peng, D.F.[Dai-Feng],
Yan, W.Q.[Wan-Qian],
Affine-Function Transformation-Based Object Matching for Vehicle
Detection from Unmanned Aerial Vehicle Imagery,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Sommer, L.W.[Lars Wilko],
Schuchert, T.[Tobias],
Beyerer, J.[Jürgen],
Comprehensive Analysis of Deep Learning-Based Vehicle Detection in
Aerial Images,
CirSysVideo(29), No. 9, September 2019, pp. 2733-2747.
IEEE DOI
1909
BibRef
Earlier:
Fast Deep Vehicle Detection in Aerial Images,
WACV17(311-319)
IEEE DOI
1609
BibRef
Earlier:
A comprehensive study on object proposals methods for vehicle
detection in aerial images,
PRRS16(1-6)
IEEE DOI
1704
Vehicle detection, Machine learning,
Image edge detection, Detectors, Image segmentation,
deep learning.
Computational efficiency, Detectors, Image edge detection,
Image segmentation, Proposals, image classification
BibRef
Sommer, L.W.[Lars Wilko],
Schumann, A.,
Schuchert, T.[Tobias],
Beyerer, J.[Jürgen],
Multi Feature Deconvolutional Faster R-CNN for Precise Vehicle
Detection in Aerial Imagery,
WACV18(635-642)
IEEE DOI
1806
deconvolution, image classification,
learning (artificial intelligence), neural nets,
Training
BibRef
Zheng, K.[Kun],
Wei, M.F.[Meng-Fei],
Sun, G.M.[Guang-Min],
Anas, B.[Bilal],
Li, Y.[Yu],
Using Vehicle Synthesis Generative Adversarial Networks to Improve
Vehicle Detection in Remote Sensing Images,
IJGI(8), No. 9, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Tao, C.,
Mi, L.,
Li, Y.,
Qi, J.,
Xiao, Y.,
Zhang, J.,
Scene Context-Driven Vehicle Detection in High-Resolution Aerial
Images,
GeoRS(57), No. 10, October 2019, pp. 7339-7351.
IEEE DOI
1910
feature extraction, geophysical image processing,
image classification, image resolution, image segmentation,
vehicle detection
BibRef
Zhang, J.P.[Jun-Peng],
Jia, X.P.[Xiu-Ping],
Hu, J.K.[Jian-Kun],
Local Region Proposing for Frame-Based Vehicle Detection in Satellite
Videos,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Feng, J.[Jie],
Zeng, D.[Dening],
Jia, X.P.[Xiu-Ping],
Zhang, X.R.[Xiang-Rong],
Li, J.[Jie],
Liang, Y.P.[Yu-Ping],
Jiao, L.C.[Li-Cheng],
Cross-frame keypoint-based and spatial motion information-guided
networks for moving vehicle detection and tracking in satellite
videos,
PandRS(177), 2021, pp. 116-130.
Elsevier DOI
2106
Deep learning, Keypoint-based detection,
Moving vehicle detection, Multi-object tracking, Satellite videos
BibRef
Shao, J.,
Du, B.,
Wu, C.,
Zhang, L.,
Tracking Objects From Satellite Videos: A Velocity Feature Based
Correlation Filter,
GeoRS(57), No. 10, October 2019, pp. 7860-7871.
IEEE DOI
1910
feature extraction, image colour analysis, image filtering,
image representation, image sequences, object detection,
velocity feature
BibRef
Yang, Z.,
Liu, Y.,
Liu, L.,
Tang, X.,
Xie, J.,
Gao, X.,
Detecting Small Objects in Urban Settings Using SlimNet Model,
GeoRS(57), No. 11, November 2019, pp. 8445-8457.
IEEE DOI
1911
Feature extraction, Licenses, Urban areas, Deep learning,
Object detection, Roads, urban element detection (UED)
BibRef
Zhang, X.[Xunxun],
Zhu, X.[Xu],
An Efficient and Scene-Adaptive Algorithm for Vehicle Detection in
Aerial Images Using an Improved YOLOv3 Framework,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Xie, W.Y.[Wei-Ying],
Yang, J.[Jian],
Li, Y.S.[Yun-Song],
Lei, J.[Jie],
Zhong, J.P.[Jia-Ping],
Li, J.J.[Jiao-Jiao],
Discriminative Feature Learning Constrained Unsupervised Network for
Cloud Detection in Remote Sensing Imagery,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Xu, C.Y.[Chun-Yan],
Li, C.Z.[Cheng-Zheng],
Cui, Z.[Zhen],
Zhang, T.[Tong],
Yang, J.[Jian],
Hierarchical Semantic Propagation for Object Detection in Remote
Sensing Imagery,
GeoRS(58), No. 6, June 2020, pp. 4353-4364.
IEEE DOI
2005
Hierarchical semantic propagation (HSP), object detection,
remote sensing imagery
BibRef
Li, C.Z.[Cheng-Zheng],
Xu, C.Y.[Chun-Yan],
Cui, Z.[Zhen],
Wang, D.[Dan],
Zhang, T.[Tong],
Yang, J.[Jian],
Feature-Attentioned Object Detection in Remote Sensing Imagery,
ICIP19(3886-3890)
IEEE DOI
1910
Object detection, remote sensing, aerial and satellite imagery,
feature attention
BibRef
Koga, Y.[Yohei],
Miyazaki, H.[Hiroyuki],
Shibasaki, R.[Ryosuke],
A Method for Vehicle Detection in High-Resolution Satellite Images
that Uses a Region-Based Object Detector and Unsupervised Domain
Adaptation,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
And:
Correction:
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Gao, X.[Xin],
Ram, S.[Sundaresh],
Rodríguez, J.J.[Jeffrey J.],
A post-processing scheme for the performance improvement of vehicle
detection in wide-area aerial imagery,
SIViP(14), No. 3, April 2020, pp. 625-633.
Springer DOI
2004
BibRef
And:
Correction: (Corrects the author list.)
SIViP(14), No. 3, April 2020, pp. 635.
Springer DOI
2004
BibRef
Yu, H.Y.[Hong-Yang],
Li, G.R.[Guo-Rong],
Zhang, W.G.[Wei-Gang],
Huang, Q.M.[Qing-Ming],
Du, D.W.[Da-Wei],
Tian, Q.[Qi],
Sebe, N.[Nicu],
The Unmanned Aerial Vehicle Benchmark: Object Detection, Tracking and
Baseline,
IJCV(128), No. 5, May 2020, pp. 1141-1159.
Springer DOI
2005
BibRef
Liang, X.[Xi],
Zhang, J.[Jing],
Zhuo, L.[Li],
Li, Y.Z.[Yu-Zhao],
Tian, Q.[Qi],
Small Object Detection in Unmanned Aerial Vehicle Images Using
Feature Fusion and Scaling-Based Single Shot Detector With Spatial
Context Analysis,
CirSysVideo(30), No. 6, June 2020, pp. 1758-1770.
IEEE DOI
2006
Object detection, Feature extraction, Detectors,
Unmanned aerial vehicles, Deconvolution, Photography,
spatial context analysis
BibRef
Du, D.W.[Da-Wei],
Qi, Y.K.[Yuan-Kai],
Yu, H.Y.[Hong-Yang],
Yang, Y.F.[Yi-Fan],
Duan, K.W.[Kai-Wen],
Li, G.R.[Guo-Rong],
Zhang, W.G.[Wei-Gang],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking,
ECCV18(X: 375-391).
Springer DOI
1810
BibRef
Zhang, W.[Wang],
Liu, C.S.[Chun-Sheng],
Chang, F.[Faliang],
Song, Y.[Ye],
Multi-Scale and Occlusion Aware Network for Vehicle Detection and
Segmentation on UAV Aerial Images,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Luo, X.[Xin],
Tian, X.Y.[Xiao-Yue],
Zhang, H.J.[Hui-Jie],
Hou, W.M.[Wei-Min],
Leng, G.[Geng],
Xu, W.B.[Wen-Bo],
Jia, H.T.[Hai-Tao],
He, X.X.[Xi-Xu],
Wang, M.[Meng],
Zhang, J.[Jian],
Fast Automatic Vehicle Detection in UAV Images Using Convolutional
Neural Networks,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Papp, A.[Adam],
Pegoraro, J.[Julian],
Bauer, D.[Daniel],
Taupe, P.[Philip],
Wiesmeyr, C.[Christoph],
Kriechbaum-Zabini, A.[Andreas],
Automatic Annotation of Hyperspectral Images and Spectral Signal
Classification of People and Vehicles in Areas of Dense Vegetation
with Deep Learning,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Wu, X.[Xin],
Li, W.[Wei],
Hong, D.F.[Dan-Feng],
Tian, J.J.[Jiao-Jiao],
Tao, R.[Ran],
Du, Q.[Qian],
Vehicle detection of multi-source remote sensing data using active
fine-tuning network,
PandRS(167), 2020, pp. 39-53.
Elsevier DOI
2008
Multi-source, Vehicle detection,
Optical remote sensing imagery, Fine-tuning, Segmentation,
Active classification network
BibRef
Yang, J.X.[Jian-Xiu],
Xie, X.M.[Xue-Mei],
Shi, G.M.[Guang-Ming],
Yang, W.Z.[Wen-Zhe],
A Feature-Enhanced Anchor-Free Network for UAV Vehicle Detection,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Gu, Y.,
Wang, T.,
Jin, X.,
Gao, G.,
Detection of Event of Interest for Satellite Video Understanding,
GeoRS(58), No. 11, November 2020, pp. 7860-7871.
IEEE DOI
2011
Satellites, Feature extraction, Trajectory, Data mining,
Event detection, Automobiles, Training, Event detection,
video understanding
BibRef
Sun, P.[Peng],
Zheng, Y.B.[Yong-Bin],
Zhou, Z.T.[Zong-Tan],
Xu, W.Y.[Wan-Ying],
Ren, Q.A.[Qi-Ang],
R4 Det: Refined single-stage detector with feature recursion and
refinement for rotating object detection in aerial images,
IVC(103), 2020, pp. 104036.
Elsevier DOI
2011
Rotating object detection in aerial images and videos,
Single-stage detector, A novel encoder-decoder architecture,
Feature refinement
BibRef
Li, J.[Jie],
Zhang, S.[Sheng],
Han, K.[Kai],
Yuan, X.[Xia],
Zhao, C.X.[Chun-Xia],
Liu, Y.[Yu],
Real-time keypoints detection for autonomous recovery of the unmanned
ground vehicle,
IET-IPR(14), No. 17, 24 December 2020, pp. 4690-4700.
DOI Link
2104
BibRef
Weber, I.[Immanuel],
Bongartz, J.[Jens],
Roscher, R.[Ribana],
Artificial and beneficial: Exploiting artificial images for aerial
vehicle detection,
PandRS(175), 2021, pp. 158-170.
Elsevier DOI
2105
Object detection, Deep learning, Data generation, Multi-source learning
BibRef
Shen, J.Q.[Jia-Quan],
Liu, N.Z.[Ning-Zhong],
Sun, H.[Han],
Vehicle detection in aerial images based on lightweight deep
convolutional network,
IET-IPR(15), No. 2, 2021, pp. 479-491.
DOI Link
2106
BibRef
Shen, J.Q.[Jia-Quan],
Zhou, W.C.[Wang-Cheng],
Liu, N.Z.[Ning-Zhong],
Sun, H.[Han],
Li, D.[Deguang],
Zhang, Y.X.[Yong-Xin],
An Anchor-Free Lightweight Deep Convolutional Network for Vehicle
Detection in Aerial Images,
ITS(23), No. 12, December 2022, pp. 24330-24342.
IEEE DOI
2212
Feature extraction, Object detection, Computational modeling,
Convolution, Training, Detection algorithms, Predictive models,
lightweight convolution network
BibRef
Ming, Q.[Qi],
Miao, L.J.[Ling-Juan],
Zhou, Z.Q.[Zhi-Qiang],
Song, J.J.[Jun-Jie],
Yang, X.[Xue],
Sparse Label Assignment for Oriented Object Detection in Aerial
Images,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
Aircraft, ships, etc.
BibRef
Dong, Y.P.[Yun-Peng],
Xie, X.Z.[Xiao-Zhu],
An, Z.[Zhe],
Qu, Z.Y.[Zhi-Yu],
Miao, L.J.[Ling-Juan],
Zhou, Z.Q.[Zhi-Qiang],
NMS-Free Oriented Object Detection Based on Channel Expansion and
Dynamic Label Assignment in UAV Aerial Images,
RS(15), No. 21, 2023, pp. 5079.
DOI Link
2311
BibRef
Li, X.[Xungen],
Men, F.F.[Fei-Fei],
Lv, S.S.[Shuai-Shuai],
Jiang, X.[Xiao],
Pan, M.[Mian],
Ma, Q.[Qi],
Yu, H.B.[Hai-Bin],
Vehicle Detection in Very-High-Resolution Remote Sensing Images Based
on an Anchor-Free Detection Model with a More Precise Foveal Area,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Liu, E.[Enhai],
Zheng, Y.[Yu],
Pan, B.[Bin],
Xu, X.[Xia],
Shi, Z.W.[Zhen-Wei],
DCL-Net: Augmenting the Capability of Classification and Localization
for Remote Sensing Object Detection,
GeoRS(59), No. 9, September 2021, pp. 7933-7944.
IEEE DOI
2109
Convolution, Location awareness, Remote sensing, Feature extraction,
Kernel, Object detection, Couplings, remote sensing object detection
BibRef
Zhang, R.Q.[Rui-Qian],
Newsam, S.[Shawn],
Shao, Z.F.[Zhen-Feng],
Huang, X.[Xiao],
Wang, J.M.[Jia-Ming],
Li, D.R.[De-Ren],
Multi-scale adversarial network for vehicle detection in UAV imagery,
PandRS(180), 2021, pp. 283-295.
Elsevier DOI
2109
Vehicle detection, UAV imagery, Multi-scale structure,
Adversarial network, Domain adaptation
BibRef
Koay, H.V.[Hong Vin],
Chuah, J.H.[Joon Huang],
Chow, C.O.[Chee-Onn],
Chang, Y.L.[Yang-Lang],
Yong, K.K.[Keh Kok],
YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images
with Low-Cost Edge Devices,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yu, L.J.[Li-Jian],
Zhi, X.[Xiyang],
Hu, J.M.[Jian-Ming],
Jiang, S.[Shikai],
Zhang, W.[Wei],
Chen, W.B.[Wen-Bin],
Small-Sized Vehicle Detection in Remote Sensing Image Based on
Keypoint Detection,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sun, M.Y.[Ming-Yuan],
Zhang, H.C.[Hao-Chun],
Huang, Z.L.[Zi-Liang],
Luo, Y.Q.[Yue-Qi],
Li, Y.Y.[Yi-Yi],
Road infrared target detection with I-YOLO,
IET-IPR(16), No. 1, 2022, pp. 92-101.
DOI Link
2112
deep learning, image processing, infrared image, target detection
BibRef
Yao, X.[Xin],
Shi, X.R.[Xiao-Ran],
Li, Y.X.[Ya-Xin],
Wang, L.[Li],
Wang, H.[Han],
Ren, S.J.[Shi-Jie],
Zhou, F.[Feng],
GMT-WGAN: An Adversarial Sample Expansion Method for Ground Moving
Targets Classification,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Liu, J.H.[Jia-Hang],
Yang, D.H.[Dong-Hao],
Hu, F.[Fei],
Multiscale Object Detection in Remote Sensing Images Combined with
Multi-Receptive-Field Features and Relation-Connected Attention,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Li, Q.Y.[Qing-Yun],
Chen, Y.S.[Yu-Shi],
Zeng, Y.[Ying],
Transformer with Transfer CNN for Remote-Sensing-Image Object
Detection,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chalavadi, V.[Vishnu],
Jeripothula, P.[Prudviraj],
Datla, R.[Rajeshreddy],
Babu, C.S.[C. Sobhan],
Mohan, C.K.[C. Krishna],
mSODANet: A network for multi-scale object detection in aerial images
using hierarchical dilated convolutions,
PR(126), 2022, pp. 108548.
Elsevier DOI
2204
Multi-scale object detection, Contextual features,
Dilated convolutions, Aerial images
BibRef
Zhou, L.M.[Li-Ming],
Rao, X.H.[Xiao-Han],
Li, Y.H.[Ya-Hui],
Zuo, X.Y.[Xian-Yu],
Qiao, B.J.[Bao-Jun],
Lin, Y.H.[Ying-Hao],
A Lightweight Object Detection Method in Aerial Images Based on Dense
Feature Fusion Path Aggregation Network,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Liu, F.F.[Fan-Fan],
Zhao, W.Z.[Wen-Zhe],
Zhou, G.Y.[Guang-Yao],
Zhao, L.J.[Liang-Jin],
Wei, H.R.[Hao-Ran],
SR-Net: Saliency Region Representation Network for Vehicle Detection
in Remote Sensing Images,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Zhu, S.J.[Sheng-Jie],
Liu, J.H.[Jing-Hong],
Tian, Y.[Yang],
Zuo, Y.J.[Yu-Jia],
Liu, C.L.[Cheng-Long],
Rapid Vehicle Detection in Aerial Images under the Complex Background
of Dense Urban Areas,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Guo, Y.[Yinong],
Wu, C.[Chen],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Density Map-based vehicle counting in remote sensing images with
limited resolution,
PandRS(189), 2022, pp. 201-217.
Elsevier DOI
2206
Vehicle Counting, Density Estimation, Remote Sensing, CNNs, GF-2
BibRef
Zhu, X.[Xuan],
Liang, B.B.[Bin-Bin],
Fu, D.[Daoyong],
Huang, G.X.[Guo-Xin],
Yang, F.[Fan],
Li, W.[Wei],
Airport small object detection based on feature enhancement,
IET-IPR(16), No. 11, 2022, pp. 2863-2874.
DOI Link
2208
BibRef
Lę, H.Â.[Hoŕng-Ân],
Zhang, H.[Heng],
Pham, M.T.[Minh-Tan],
Lefčvre, S.[Sébastien],
Mutual Guidance Meets Supervised Contrastive Learning:
Vehicle Detection in Remote Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zou, M.L.[Mu-Lan],
Jin, G.H.[Guang-Hu],
Li, L.[Liang],
He, Z.H.[Zhi-Hua],
A Robust Dual-Platform GMTI Method against Nonuniform Clutter,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
ground moving-target indication.
BibRef
Ni, H.[Huan],
Chanussot, J.[Jocelyn],
Niu, X.N.[Xiao-Nan],
Tang, H.[Hong],
Guan, H.Y.[Hai-Yan],
Reverse Difference Network for Highlighting Small Objects in Aerial
Images,
IJGI(11), No. 9, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ma, W.X.[Wei-Xuan],
Zhu, S.[Sa],
A Multifeature-Assisted Road and Vehicle Detection Method Based on
Monocular Depth Estimation and Refined U-V Disparity Mapping,
ITS(23), No. 9, September 2022, pp. 16763-16772.
IEEE DOI
2209
Roads, Estimation, Vehicle detection, Feature extraction, Cameras,
Detection algorithms, Computational modeling, Deep learning,
road and vehicle detection
BibRef
Sun, Y.M.[Yi-Ming],
Cao, B.[Bing],
Zhu, P.F.[Peng-Fei],
Hu, Q.H.[Qing-Hua],
Drone-Based RGB-Infrared Cross-Modality Vehicle Detection Via
Uncertainty-Aware Learning,
CirSysVideo(32), No. 10, October 2022, pp. 6700-6713.
IEEE DOI
2210
Vehicle detection, Object detection, Uncertainty, Drones,
Surveillance, Lighting, Sun, Cross-modality, uncertainty-aware
BibRef
Stateczny, A.[Andrzej],
Kiran, G.U.[Goru Uday],
Bindu, G.[Garikapati],
Chythanya, K.R.[Kanegonda Ravi],
Swamy, K.A.[Kondru Ayyappa],
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for
Remote Sensing Object Detection,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lang, K.Q.[Kai-Qi],
Yang, M.Y.[Ming-Yu],
Wang, H.[Hao],
Wang, H.Y.[Han-Yu],
Wang, Z.L.[Zi-Long],
Zhang, J.Z.[Jing-Zhong],
Shen, H.H.[Hong-Hai],
Improved One-Stage Detectors with Neck Attention Block for Object
Detection in Remote Sensing,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ge, Z.[Zuhao],
Qi, L.[Lizhe],
Wang, Y.Z.[Yu-Zheng],
Sun, Y.Q.[Yun-Quan],
Zoom-and-Reasoning: Joint Foreground Zoom and Visual-Semantic
Reasoning Detection Network for Aerial Images,
SPLetters(29), 2022, pp. 2572-2576.
IEEE DOI
2301
Cognition, Detectors, Visualization, Semantics, Feature extraction,
Object detection, Pipelines, Aerial object detection,
graph convolutional network
BibRef
Chen, R.[Renxi],
Ferreira, V.G.[Vagner G.],
Li, X.H.[Xin-Hui],
Detecting Moving Vehicles from Satellite-Based Videos by Tracklet
Feature Classification,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Hou, L.P.[Li-Ping],
Lu, K.[Ke],
Yang, X.[Xue],
Li, Y.Q.[Yu-Qiu],
Xue, J.[Jian],
G-Rep: Gaussian Representation for Arbitrary-Oriented Object
Detection,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Feng, J.[Jie],
Liang, Y.P.[Yu-Ping],
Zhang, X.R.[Xiang-Rong],
Zhang, J.P.[Jun-Peng],
Jiao, L.C.[Li-Cheng],
SDANet: Semantic-Embedded Density Adaptive Network for Moving Vehicle
Detection in Satellite Videos,
IP(32), 2023, pp. 1788-1801.
IEEE DOI
2303
Videos, Satellites, Detectors, Feature extraction, Object detection,
Roads, Kernel, Anchor-free detector, moving object detection,
weakly supervised learning
BibRef
Kong, X.H.[Xiang-Hui],
Zhang, Y.[Yan],
Tu, S.T.[Shang-Tan],
Xu, C.[Chang],
Yang, W.[Wen],
Vehicle Detection in High-Resolution Aerial Images with Parallel RPN
and Density-Assigner,
RS(15), No. 6, 2023, pp. 1659.
DOI Link
2304
BibRef
Zhang, H.H.[Hai-Han],
Xie, C.[Chun],
Toriya, H.[Hisatoshi],
Shishido, H.[Hidehiko],
Kitahara, I.[Itaru],
Vehicle Localization in a Completed City-Scale 3D Scene Using Aerial
Images and an On-Board Stereo Camera,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Chen, L.[Lulu],
Zhao, Y.Q.[Yong-Qiang],
Kong, S.G.[Seong G.],
SFA-guided mosaic transformer for tracking small objects in snapshot
spectral imaging,
PandRS(204), 2023, pp. 223-236.
Elsevier DOI
2310
Small object tracking, Snapshot spectral imaging,
Spectral filter array, Mosaic transformer,
Multi-layer feature aggregation
BibRef
Alajmi, M.[Masoud],
Alamro, H.[Hayam],
Al-Mutiri, F.[Fuad],
Aljebreen, M.[Mohammed],
Othman, K.M.[Kamal M.],
Sayed, A.[Ahmed],
Exploiting Remote Sensing Imagery for Vehicle Detection and
Classification Using an Artificial Intelligence Technique,
RS(15), No. 18, 2023, pp. 4600.
DOI Link
2310
BibRef
Zhu, H.[Hong],
Lv, Y.[Yanan],
Meng, J.[Jian],
Liu, Y.X.[Yu-Xuan],
Hu, L.[Liuru],
Yao, J.Q.[Jia-Qi],
Lu, X.H.X.[Xiong-Han-Xuan],
Vehicle Detection in Multisource Remote Sensing Images Based on
Edge-Preserving Super-Resolution Reconstruction,
RS(15), No. 17, 2023, pp. 4281.
DOI Link
2310
BibRef
Wang, X.B.[Xia-Bin],
Yan, Y.[Ye],
Sun, H.[Haohui],
Zhu, D.[Dekang],
Dense-and-Similar Object detection in aerial images,
PRL(176), 2023, pp. 153-159.
Elsevier DOI
2312
Dense and small object, Similar object, Confusion categories,
Object detection, Aerial images
BibRef
Sheehan, A.[Annalisa],
Beddows, A.[Andrew],
Green, D.C.[David C.],
Beevers, S.[Sean],
City Scale Traffic Monitoring Using WorldView Satellite Imagery and
Deep Learning: A Case Study of Barcelona,
RS(15), No. 24, 2023, pp. 5709.
DOI Link
2401
BibRef
Zhang, G.Q.[Guo-Qing],
Zheng, C.[Chen],
Ye, Z.[Zhonglin],
Transformer-Based Feature Compensation Network for Aerial Photography
Person and Ground Object Recognition,
RS(16), No. 2, 2024, pp. 268.
DOI Link
2402
BibRef
Guan, X.[Xin],
Dong, Y.F.[Yi-Fan],
Tan, W.X.[Wei-Xian],
Su, Y.[Yun],
Huang, P.P.[Ping-Ping],
A Parameter-Free Pixel Correlation-Based Attention Module for Remote
Sensing Object Detection,
RS(16), No. 2, 2024, pp. 312.
DOI Link
2402
BibRef
Ying, Z.[Zilu],
Zhou, J.H.[Jian-Hong],
Zhai, Y.[Yikui],
Quan, H.[Hao],
Li, W.[Wenba],
Genovese, A.[Angelo],
Piuri, V.[Vincenzo],
Scotti, F.[Fabio],
Large-Scale High-Altitude UAV-Based Vehicle Detection via Pyramid
Dual Pooling Attention Path Aggregation Network,
ITS(25), No. 10, October 2024, pp. 14426-14444.
IEEE DOI Code:
WWW Link.
2410
Vehicle detection, Autonomous aerial vehicles, Meters, Feature extraction,
Task analysis, Urban areas, Spatial resolution, attention mechanism
BibRef
Yu, C.R.[Cheng-Rui],
Jiang, X.N.[Xiao-Nan],
Wu, F.[Fanlu],
Fu, Y.[Yao],
Pei, J.[Junyan],
Zhang, Y.[Yu],
Li, X.Z.[Xiang-Zhi],
Fu, T.J.[Tian-Jiao],
A Multi-Scale Feature Fusion Based Lightweight Vehicle Target
Detection Network on Aerial Optical Images,
RS(16), No. 19, 2024, pp. 3637.
DOI Link
2410
BibRef
Wang, Z.Y.[Zi-Yang],
Liu, Z.W.[Zhi-Wen],
Xu, G.[Gen],
Cheng, S.Y.[Si-Yuan],
Object Detection in UAV Aerial Images Based on Improved YOLOv7-tiny,
CVIDL23(370-374)
IEEE DOI
2403
Deep learning, Head, Object detection, Interference,
Autonomous aerial vehicles, Feature extraction, Transformers, feature fusion
BibRef
Wang, N.[Ning],
Jia, Y.[Yinshan],
Research on Vehicle Object Detection Based on Deep Learning,
CVIDL23(412-415)
IEEE DOI
2403
Deep learning, Performance evaluation, Convolution,
Computational modeling, Neural networks, Object detection, YOLO
BibRef
Liu, S.[Shuo],
Zou, H.X.[Huan-Xin],
Huang, Y.[Yazhe],
Cao, X.[Xu],
He, S.T.[Shi-Tian],
Li, M.L.[Mei-Lin],
Zhang, Y.Q.[Yu-Qing],
ERF-RTMDet: An Improved Small Object Detection Method in Remote
Sensing Images,
RS(15), No. 23, 2023, pp. 5575.
DOI Link
2312
BibRef
Negin, F.[Farhood],
Tabejamaat, M.[Mohsen],
Fraisse, R.[Renaud],
Bremond, F.[Francois],
Transforming Temporal Embeddings to Keypoint Heatmaps for Detection
of Tiny Vehicles in Wide Area Motion Imagery (WAMI) Sequences,
EarthVision22(1431-1440)
IEEE DOI
2210
Heating systems, Shape, Object detection, Detectors,
Gaussian distribution, Transformers, Search problems
BibRef
Wang, S.[Shan],
Zhang, Y.[Yanhao],
Perincherry, A.[Akhil],
Vora, A.[Ankit],
Li, H.D.[Hong-Dong],
View Consistent Purification for Accurate Cross-View Localization,
ICCV23(8163-8172)
IEEE DOI
2401
BibRef
Xia, Z.M.[Zi-Min],
Shi, Y.[Yujiao],
Li, H.D.[Hong-Dong],
Kooij, J.F.P.[Julian F. P.],
Adapting Fine-grained Cross-view Localization to Areas Without Fine
Ground Truth,
ECCV24(XXXI: 397-415).
Springer DOI
2412
BibRef
Wang, S.[Shan],
Nguyen, C.[Chuong],
Liu, J.W.[Jia-Wei],
Zhang, Y.[Yanhao],
Muthu, S.[Sundaram],
Maken, F.A.[Fahira Afzal],
Zhang, K.[Kaihao],
Li, H.D.[Hong-Dong],
View from Above: Orthogonal-View Aware Cross-View Localization,
CVPR24(14843-14852)
IEEE DOI Code:
WWW Link.
2410
Location awareness, Visualization,
Simultaneous localization and mapping, Image databases,
Domain alignment
BibRef
Shi, Y.J.[Yu-Jiao],
Yu, X.[Xin],
Wang, S.[Shan],
Li, H.D.[Hong-Dong],
Cvlnet: Cross-view Semantic Correspondence Learning for Video-based
Camera Localization,
ACCV22(I:123-141).
Springer DOI
2307
BibRef
Shi, Y.J.[Yu-Jiao],
Li, H.D.[Hong-Dong],
Beyond Cross-view Image Retrieval: Highly Accurate Vehicle
Localization Using Satellite Image,
CVPR22(16989-16999)
IEEE DOI
2210
Location awareness, Geometry, Tracking loops, Satellites,
Simultaneous localization and mapping, Image retrieval, Robot vision
BibRef
Makrigiorgis, R.[Rafael],
Hadjittoouli, N.[Nicolas],
Kyrkou, C.[Christos],
Theocharides, T.[Theocharis],
AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial
Camera-based Road Traffic Monitoring,
WACV22(3431-3440)
IEEE DOI
2202
Image segmentation, Roads, Vehicle detection, Urban areas, Pipelines,
Streaming media, Autonomous aerial vehicles,
Vision Systems and Applications
BibRef
Yu, D.Y.[Da-Yang],
Zhang, R.[Rong],
Qin, S.[Shan],
Cascade Saliency Attention Network for Object Detection in Remote
Sensing Images,
ICPR21(217-223)
IEEE DOI
2105
Image segmentation, Merging, Interference, Object detection,
Detectors, Task analysis
BibRef
Chung, H.S.[Hyun-Seung],
Nam, W.J.[Woo-Jeoung],
Lee, S.W.[Seong-Whan],
Rotation Invariant Aerial Image Retrieval with Group Convolutional
Metric Learning,
ICPR21(6431-6438)
IEEE DOI
2105
Measurement, Training, Visualization, Convolution, Databases,
Image retrieval, Merging
BibRef
Xia, G.S.[Gui-Song],
Bai, X.[Xiang],
Ding, J.[Jian],
Zhu, Z.[Zhen],
Belongie, S.[Serge],
Luo, J.B.[Jie-Bo],
Datcu, M.[Mihai],
Pelillo, M.[Marcello],
Zhang, L.P.[Liang-Pei],
DOTA: A Large-Scale Dataset for Object Detection in Aerial Images,
CVPR18(3974-3983)
IEEE DOI
1812
Dataset, Vehicle Detection.
WWW Link. Object detection, Earth, Sports, Sensors,
Marine vehicles, Image sensors
BibRef
Kumdakci, H.[Hilmi],
Öngün, C.[Cihan],
Temizel, A.[Alptekin],
Generative Data Augmentation for Vehicle Detection in Aerial Images,
WAAMI20(19-31).
Springer DOI
2103
BibRef
Gao, H.B.[Hao-Bo],
Li, X.[Xin],
Vehicle Detection in High Resolution Image Based on Deep Learning,
ISPRS20(B3:49-54).
DOI Link
2012
BibRef
Song, W.,
Li, S.,
Chang, T.,
Hao, A.,
Zhao, Q.,
Qin, H.,
Cross-View Contextual Relation Transferred Network for Unsupervised
Vehicle Tracking in Drone Videos,
WACV20(1696-1705)
IEEE DOI
2006
Target tracking, Videos, Task analysis, Drones,
Context modeling, Training
BibRef
Zhang, X.D.[Xin-Di],
Izquierdo, E.[Ebroul],
Chandramouli, K.[Krishna],
Dense and Small Object Detection in UAV Vision Based on Cascade
Network,
VisDrone19(118-126)
IEEE DOI
2004
Infrastructure maintenance.
autonomous aerial vehicles, mobile robots, object detection,
remotely operated vehicles, robot vision, surveillance, UAV
BibRef
Pi, Z.,
Lian, Y.,
Chen, X.,
Wu, Y.,
Li, Y.,
Jiao, L.,
A Novel Spatial and Temporal Context-Aware Approach for Drone-Based
Video Object Detection,
VisDrone19(179-188)
IEEE DOI
2004
autonomous aerial vehicles, object detection, object tracking,
remotely operated vehicles, video signal processing, tracking
BibRef
Bahmanyar, R.,
Azimi, S.M.,
Reinartz, P.,
Multiple Vehicles and People Tracking in Aerial Imagery Using Stack of
Micro Single-Object-Tracking CNNs,
SMPR19(163-170).
DOI Link
1912
BibRef
Mandal, M.,
Shah, M.,
Meena, P.,
Vipparthi, S.K.,
SSSDET: Simple Short and Shallow Network for Resource Efficient
Vehicle Detection in Aerial Scenes,
ICIP19(3098-3102)
IEEE DOI
1910
aerial scene, vehicle detection, deep learning, real-time, remote sensing
BibRef
Azimi, S.M.[Seyed Majid],
Vig, E.[Eleonora],
Bahmanyar, R.[Reza],
Körner, M.[Marco],
Reinartz, P.[Peter],
Towards Multi-class Object Detection in Unconstrained Remote Sensing
Imagery,
ACCV18(III:150-165).
Springer DOI
1906
BibRef
Azimi, S.M.[Seyed Majid],
ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded
UAV Imagery,
CVUAV18(II:88-99).
Springer DOI
1905
BibRef
Krajewski, R.,
Moers, T.,
Eckstein, L.,
VeGAN: Using GANs for Augmentation in Latent Space to Improve the
Semantic Segmentation of Vehicles in Images From an Aerial
Perspective,
WACV19(1440-1448)
IEEE DOI
1904
autonomous aerial vehicles, image representation, image sampling,
image segmentation, neural nets, object detection,
Training data
BibRef
Dhawale, A.,
Shankar, K.S.,
Michael, N.,
Fast Monte-Carlo Localization on Aerial Vehicles Using Approximate
Continuous Belief Representations,
CVPR18(5851-5859)
IEEE DOI
1812
Cameras, Robot sensing systems,
Real-time systems, Computational modeling,
Pose estimation
BibRef
Schulter, S.[Samuel],
Zhai, M.[Menghua],
Jacobs, N.[Nathan],
Chandraker, M.[Manmohan],
Learning to Look around Objects for Top-View Representations of Outdoor
Scenes,
ECCV18(XV: 815-831).
Springer DOI
1810
BibRef
Tan, Y.,
Xu, Y.,
Das, S.,
Chaudhry, A.,
Vehicle Detection and Classification in Aerial Imagery,
ICIP18(86-90)
IEEE DOI
1809
Vehicle detection, Proposals, Heating systems, Training,
Feature extraction, Noise measurement, Streaming media, CNN
BibRef
Yang, M.Y.[Michael Ying],
Liao, W.T.[Wen-Tong],
Li, X.B.[Xin-Bo],
Rosenhahn, B.[Bodo],
Deep Learning for Vehicle Detection in Aerial Images,
ICIP18(3079-3083)
IEEE DOI
1809
Proposals, Feature extraction, Training, Vehicle detection,
Detectors, Entropy, Convolutional neural networks,
ITCVD dataset
BibRef
Zhao, J.[Jiao],
Han, J.[Jing],
Feng, C.[Chen],
Yao, J.[Jian],
A Systematic Scheme for Automatic Airplane Detection from
High-Resolution Remote Sensing Images,
PSIVTWS17(465-478).
Springer DOI
1806
BibRef
Sommer, L.,
Schmidt, N.,
Schumann, A.,
Beyerer, J.,
Search Area Reduction Fast-RCNN for Fast Vehicle Detection in Large
Aerial Imagery,
ICIP18(3054-3058)
IEEE DOI
1809
Proposals, Vehicle detection, Feature extraction, Object detection,
Training, Machine learning, Search problems, Object Detection,
Aerial Imagery
BibRef
Sommer, L.,
Nie, K.,
Schumann, A.,
Schuchert, T.,
Beyerer, J.,
Semantic labeling for improved vehicle detection in aerial imagery,
AVSS17(1-6)
IEEE DOI
1806
BibRef
And: A2, A1, A3, A5, Only:
Semantic Labeling Based Vehicle Detection in Aerial Imagery,
WACV18(626-634)
IEEE DOI
1806
learning (artificial intelligence), object detection,
traffic engineering computing, aerial imagery, deep learning,
Vegetation.
disasters, image representation,
Faster R-CNN, Task analysis
BibRef
Poostchi, M.,
Palaniappan, K.,
Seetharaman, G.,
Spatial pyramid context-aware moving vehicle detection and tracking
in urban aerial imagery,
AVSS17(1-6)
IEEE DOI
1806
image colour analysis, image fusion, image motion analysis,
object detection, object tracking, target tracking,
Visualization
BibRef
Terrail, J.O.D.,
Jurie, F.,
On the use of deep neural networks for the detection of small
vehicles in ortho-images,
ICIP17(4212-4216)
IEEE DOI
1803
Automobiles, Benchmark testing, Heating systems, Image resolution,
Proposals, Task analysis, Training, aerial-imagery, deep-learning,
target detection
BibRef
Logoglu, K.B.,
Lezki, H.,
Yucel, M.K.,
Ozturk, A.,
Kucukkomurler, A.,
Karagoz, B.,
Erdem, A.,
Erdem, E.,
Feature-Based Efficient Moving Object Detection for Low-Altitude
Aerial Platforms,
CVUAV17(2119-2128)
IEEE DOI
1802
Cameras, Graphics processing units, Object detection,
Optical imaging, Pipelines, Real-time systems, Unmanned aerial vehicles
BibRef
Dahmane, M.,
Foucher, S.,
Beaulieu, M.,
Bouroubi, Y.,
Benoit, M.,
The Potential of Deep Features for Small Object Class Identification in
Very High Resolution Remote Sensing Imagery,
ICIAR17(569-577).
Springer DOI
1706
Cars in very high resolution Pleiades imagery.
BibRef
Kamenetsky, D.,
Sherrah, J.[Jamie],
Aerial Car Detection and Urban Understanding,
DICTA15(1-8)
IEEE DOI
1603
Fourier analysis
See also Pedestrian Multiple Hypothesis Tracker Fusing Head and Body Detections, A.
BibRef
Papachristos, C.[Christos],
Tzoumanikas, D.[Dimos],
Alexis, K.[Kostas],
Tzes, A.[Anthony],
Autonomous Robotic Aerial Tracking, Avoidance, and Seeking of a Mobile
Human Subject,
ISVC15(I: 444-454).
Springer DOI
1601
BibRef
Arandjelovic, O.,
Automatic vehicle tracking and recognition from aerial image
sequences,
AVSS15(1-6)
IEEE DOI
1511
image sequences
BibRef
Teutsch, M.[Michael],
Kruger, W.[Wolfgang],
Robust and fast detection of moving vehicles in aerial videos using
sliding windows,
CVVT15(26-34)
IEEE DOI
1510
Cameras
BibRef
Fehlmann, S.,
Pontecorvo, C.,
Booth, D.M.,
Janney, P.,
Christie, R.,
Redding, N.J.,
Royce, M.,
Fiebig, M.,
Fusion of Multiple Sensor Data to Recognise Moving Objects in Wide
Area Motion Imagery,
DICTA14(1-8)
IEEE DOI
1502
Based on vehicle recognition.
image fusion
BibRef
Desai, A.[Alok],
Lee, D.J.[Dah-Jye],
Zhang, M.[Meng],
Using Accurate Feature Matching for Unmanned Aerial Vehicle Ground
Object Tracking,
ISVC14(I: 435-444).
Springer DOI
1501
BibRef
Bhaskar, H.[Harish],
Dias, J.[Jorge],
Seneviratne, L.[Lakmal],
Al-Mualla, M.[Mohammed],
micro-UAV Based Dynamic Target Tracking for
Surveillance and Exploration,
ISVC14(I: 445-456).
Springer DOI
1501
BibRef
Climent-Pérez, P.[Pau],
Lazaridis, G.[Georgios],
Hummel, G.[Georg],
Russ, M.[Martin],
Monekosso, D.N.[Dorothy N.],
Remagnino, P.[Paolo],
Telemetry-Based Search Window Correction for Airborne Tracking,
ISVC14(I: 457-466).
Springer DOI
1501
BibRef
Cruz, G.[Gonçalo],
Bernardino, A.[Alexandre],
Image Saliency Applied to Infrared Images for Unmanned Maritime
Monitoring,
CVS15(511-522).
Springer DOI
1507
BibRef
Marques, J.S.[Jorge S.],
Bernardino, A.[Alexandre],
Cruz, G.[Goncalo],
Bento, M.[Maria],
An algorithm for the detection of vessels in aerial images,
AVSS14(295-300)
IEEE DOI
1411
Cameras
BibRef
Teutsch, M.[Michael],
Kruger, W.[Wolfgang],
Beyerer, J.[Jurgen],
Evaluation of object segmentation to improve moving vehicle detection
in aerial videos,
AVSS14(265-270)
IEEE DOI
1411
Feature extraction
BibRef
Chen, X.Y.[Xue-Yun],
Xiang, S.M.[Shi-Ming],
Liu, C.L.[Cheng-Lin],
Pan, C.H.[Chun-Hong],
Vehicle Detection in Satellite Images by Parallel Deep Convolutional
Neural Networks,
ACPR13(181-185)
IEEE DOI
1408
convolution
BibRef
Matzen, K.[Kevin],
Snavely, N.[Noah],
NYC3DCars: A Dataset of 3D Vehicles in Geographic Context,
ICCV13(761-768)
IEEE DOI
1403
Dataset, Vehicles. 3D models; geography; object detection; structure from motion
BibRef
Leister, W.,
Tuermer, S.,
Reinartz, P.,
Hoffmann, K.H.,
Stilla, U.,
Validation of Vehicle Candidate Areas in Aerial Images Using Color
Co-Occurrence Histograms,
SSG13(139-144).
DOI Link
1402
BibRef
Krüger, T.,
Nowak, S.,
Matthaei, J.,
Bestmann, U.,
Single-Layer Laser Scanner for Detection and Localization of Unmanned
Swarm Members,
UAV-g13(229-234).
DOI Link
1311
BibRef
Máttyus, G.,
Near Real-Time Automatic Marine Vessel Detection on Optical Satellite
Images,
Hannover13(233-237).
DOI Link
1308
BibRef
Chan, M.T.,
Weed, C.,
Vessel detection in video with dynamic maritime background,
AIPR12(1-5)
IEEE DOI
1307
geometry
BibRef
Frias-Velazquez, A.[Andres],
Ortiz, C.[Carlos],
Pizurica, A.[Aleksandra],
Philips, W.[Wilfried],
Cerda, G.[Gustavo],
Object identification by using orthonormal circus functions from the
trace transform,
ICIP12(2153-2156).
IEEE DOI
1302
salient information from trace transform signatures.
BibRef
Chen, L.[Long],
Jiang, Z.G.[Zhi-Guo],
Yang, J.L.[Jun-Li],
Ma, Y.B.[Yi-Bing],
A coarse-to-fine approach for vehicles detection from aerial images,
CVRS12(221-225).
IEEE DOI
1302
BibRef
Zhou, M.,
Tang, L.L.,
Li, C.R.,
Peng, Z.,
Li, J.M.,
A Recognition Method for Airplane Targets Using 3D Point Cloud Data,
ISPRS12(XXXIX-B3:199-203).
DOI Link
1209
BibRef
Wei, Y.,
Yao, W.,
Wu, J.,
Schmitt, M.,
Stilla, U.,
Adaboost-based Feature Relevance Assessment in Fusing LIDAR and Image
Data for Classification of Trees and Vehicles in Urban Scenes,
AnnalsPRS(I-7), No. 2012, pp. 323-328.
DOI Link
1209
BibRef
Mishra, R.K.,
Automatic Moving Vehicle's Information Extraction From One-pass
Worldview-2 Satellite Imagery,
ISPRS12(XXXIX-B7:323-328).
DOI Link
1209
BibRef
Guilmart, C.,
Herbin, S.,
Perez, P.,
Context-driven moving object detection in aerial scenes with user input,
ICIP11(1781-1784).
IEEE DOI
1201
BibRef
Li, W.[Wei],
Xiang, S.M.[Shi-Ming],
Wang, H.B.[Hai-Bo],
Pan, C.H.[Chun-Hong],
Robust airplane detection in satellite images,
ICIP11(2821-2824).
IEEE DOI
1201
BibRef
Sadlier, D.A.,
Ferguson, P.,
Conaire, C.O.,
O'Connor, N.E.,
Doyle, K.,
Image-based vehicle indexing for a seaport transportation surveillance
system,
AVSBS11(367-372).
IEEE DOI
1111
BibRef
Diegert, C.[Carl],
A combinatorial method for tracing objects using semantics of their
shape,
AIPR10(1-4).
IEEE DOI
1010
Vehicles in Overhead Imaging Research Dataset
BibRef
Yang, B.[Bo],
Sharma, P.[Pramod],
Nevatia, R.[Ram],
Vehicle detection from low quality aerial LIDAR data,
WACV11(541-548).
IEEE DOI
1101
See also Efficient incremental learning of boosted classifiers for object detection.
BibRef
Artese, G.[Giuseppe],
Improvement of a procedure for vehicle detection and tracking by base
frame updating and Kalman filter,
PCVIA10(A:55).
PDF File.
1009
BibRef
Tuermer, S.[Sebastian],
Leitloff, J.[Jens],
Reinartz, P.[Peter],
Stilla, U.[Uwe],
Evaluation of selected features for car detection in aerial images,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Earlier:
Automatic vehicle detection in aerial image sequences of urban areas
using 3D HoG features,
PCVIA10(B:50).
PDF File.
1009
BibRef
Ozcanli, O.C.[Ozge Can],
Mundy, J.L.[Joseph L.],
Vehicle Recognition as Changes in Satellite Imagery,
ICPR10(3336-3339).
IEEE DOI
1008
BibRef
Khan, S.M.[Saad M.],
Cheng, H.[Hui],
Matthies, D.[Dennis],
Sawhney, H.S.[Harpreet S.],
3D model based vehicle classification in aerial imagery,
CVPR10(1681-1687).
IEEE DOI
1006
BibRef
Xiao, J.J.[Jiang-Jian],
Cheng, H.[Hui],
Sawhney, H.S.[Harpreet S.],
Han, F.[Feng],
Vehicle detection and tracking in wide field-of-view aerial video,
CVPR10(679-684).
IEEE DOI
1006
See also Robust Video Georegistration.
BibRef
Tolba, H.,
Elgerzawy, A.,
Comparative Experiments to Evaluate a CHMM-Based Identification
Approach to Naval Targets,
WSSIP09(1-4).
IEEE DOI
0906
See also Comparative Study to Evaluate a Text-Independent Speaker Identification Engine for Arabic Speakers Using a CHMM-Based Approach, A.
BibRef
Kuo, C.H.[Cheng-Hao],
Nevatia, R.[Ramakant],
Robust multi-view car detection using unsupervised sub-categorization,
WACV09(1-8).
IEEE DOI
0912
BibRef
Prokaj, J.[Jan],
Medioni, G.[Gerard],
3-D model based vehicle recognition,
WACV09(1-7).
IEEE DOI
0912
BibRef
Hutter, M.,
Brewer, N.,
Matching 2-D ellipses to 3-D circles with application to vehicle pose
identification,
IVCNZ09(153-158).
IEEE DOI
0911
BibRef
Perconti, P.,
Hilger, J.,
Loew, M.,
Vehicle detection approaches using the NVESD Sensor Fusion Testbed,
AIPR03(56-61).
IEEE DOI
0310
BibRef
Wheeler, F.W.,
Hoogs, A.J.,
Moving Vehicle Registration and Super-Resolution,
AIPR07(101-107).
IEEE DOI
0710
BibRef
Tongphu, S.[Suwan],
Thongsak, N.[Naddao],
Dailey, M.N.[Matthew N.],
Rapid Detection of Many Object Instances,
ACIVS09(434-444).
Springer DOI
0909
Car detection with small training set. Sliding window using discrete features
of window.
BibRef
Choi, J.Y.[Jae-Young],
Yang, Y.K.[Young-Kyu],
Vehicle Detection from Aerial Images Using Local Shape Information,
PSIVT09(227-236).
Springer DOI
0901
BibRef
Kluckner, S.[Stefan],
Pacher, G.[Georg],
Grabner, H.[Helmut],
Bischof, H.[Horst],
Bauer, J.[Joachim],
A 3D Teacher for Car Detection in Aerial Images,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Auclair, A.[Adrien],
Cohen, L.D.[Laurent D.],
Vincent, N.[Nicole],
A Robust Approach for 3D Cars Reconstruction,
SCIA07(183-192).
Springer DOI
0706
BibRef
Piriyakumar Douglas, A.L.,
Prasad, M.,
Sunil Gowtham, B.,
Kalyansundar, A.,
Swaminathan, V.,
Chattopadhyay, R.,
An Efficient DSP Implementation of Real-Time Stationary Vehicle
Detection by Smart Camera at Outdoor Conditions,
ICIP06(3273-3276).
IEEE DOI
0610
BibRef
Hinz, S.[Stefan],
Wiedemann, C.[Christian],
Vehicle Detection in Aerial Images Using Generic Features,
Grouping, and Context,
DAGM01(xx-yy).
WWW Link.
BibRef
0100
Hermiston, K.,
Booth, D.M.,
Pose Estimation and Recognition of Ground Vehicles in
Aerial Reconnaissance Imagery,
ICPR98(Vol I: 578-582).
IEEE DOI
9808
BibRef
Booth, D.M.,
Radford, C.J.,
The detection of vehicles in airborne downward looking infrared
linescan imagery,
ICPR94(A:769-772).
IEEE DOI
9410
BibRef
Ruskone, R.,
Guigues, L.,
Airault, S.,
Jamet, O.,
Vehicle Detection on Aerial Images: A Structural Approach,
ICPR96(III: 900-904).
IEEE DOI
9608
(Laboratoire MATIS, F)
Use shadows for cars and trees.
BibRef
Cox, K.C.,
Roman, G.C.,
Ball, W.E.,
Laine, A.F.,
Rapid Search for Spherical Objects in Aerial Photographs,
CVPR88(905-910).
IEEE DOI
BibRef
8800
Raudseps, J.G.,
Automatic Detection of Vehicles in Aerial Photographs of Highways,
IJCAI71(Paper 9).
BibRef
7100
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
ATR - Oriented Objects, Vehicles, Aerial Images .