15.1.2 Active Vision, Visual Attention

Chapter Contents (Back)
Planning. Attention. Visual Attention. Saliency. Active Vision, Attention.
See also Human Attention, Gaze, Eye Tracking.

James, W.,
The Principles of Psychology,
HoltNew York, 1890. Initial discussion of attention mechanisms. BibRef 9000

Srinivasan, M.V., Thathachar, M.A.L., Deekshatulu, B.L.,
A Probabilistic Hypothesis for the Prediction of Visual Fixations,
SMC(5), 1975, pp. 431-437. BibRef 7500

Leavers, V.F.,
Preattentive Computer Vision: Towards a 2-Stage Computer Vision System for the Extraction of Qualitative Descriptors and the Cues for Focus of Attention,
IVC(12), No. 9, November 1994, pp. 583-599.
Elsevier DOI BibRef 9411

Pretlove, J.R.G., Parker, G.A.,
The Surrey Attentive Robot Vision System,
PRAI(7), No. 1, February 1993, 1993, pp. 89-107. BibRef 9302
Earlier:
Lightweight Camera Head for Robotic-Based Binocular Stereo Vision: An Integrated Engineering Approach,
SPIE(1708), 1992, pp. 62-75. BibRef

Sakane, S., Kuruma, T., Omata, T., Sato, T.,
Planning Focus of Attention for Multifingered Hand with Consideration of Time-Varying Aspects,
CVIU(61), No. 3, May 1995, pp. 445-453.
DOI Link BibRef 9505

Tsotsos, J.K.[John K.], Culhane, S.M.[Scan M.], Wai, W.Y.K.[Winky Yan Kei], Lai, Y.Z.[Yu-Zhong], Davis, N.[Neal], Nuflo, F.[Fernando],
Modeling Visual-Attention Via Selective Tuning,
AI(78), No. 1-2, October 1995, pp. 507-545.
Elsevier DOI BibRef 9510

Culhane, S.M.[Scan M.], Tsotsos, J.K.[John K.],
An Attentional Prototype for Early Vision,
ECCV92(551-560).
Springer DOI BibRef 9200
Earlier:
A Prototype for Data-Driven Visual Attention,
ICPR92(I:36-40).
IEEE DOI BibRef

Concepcion, V.[Vicente], Wechsler, H.[Harry],
Detection and Localization of Objects in Time-varying Imagery Using Attention, Representation and Memory Pyramids,
PR(29), No. 9, September 1996, pp. 1543-1557.
Elsevier DOI BibRef 9609
Earlier:
Multiresolution attention and associative memory systems for time-varying imagery,
ICPR94(A:840-842).
IEEE DOI 9410
BibRef

Pau, L.F.,
An Intelligent Camera for Active Vision,
PRAI(10), No. 1, 1996, pp. 33-42. BibRef 9600

Sela, G., Levine, M.D.,
Real-Time Attention for Robotic Vision,
RealTimeImg(3), No. 3, June 1997, pp. 173-194. 9708
BibRef

Baluja, S.[Shumeet], Pomerleau, D.A.[Dean A.],
Dynamic Relevance: Vision-Based Focus of Attention Using Artificial Neural Networks,
AI(97), No. 1-2, December 1997, pp. 381-395.
Elsevier DOI 9801
BibRef

Itti, L.[Laurent], Koch, C.[Cristof], Niebur, E.[Ernst],
A Model of Saliency-Based Visual Attention for Rapid Scene Analysis,
PAMI(20), No. 11, November 1998, pp. 1254-1259.
IEEE DOI 9811
Attention mechanism based on neuronal structures. BibRef

Itti, L.[Laurent], Koch, C.[Christof],
Saliency-Based Search Mechanism for Overt and Covert Shifts of Visual Attention,
Vision Research(40), Nos. 10-12, 2000, pp. 1489-1506. BibRef 0001
Earlier:
Learning to Detect Salient Objects in Natural Scenes Using Visual Attention,
DARPA98(1201-1206). BibRef

Itti, L.[Laurent],
Automatic Foveation for Video Compression Using a Neurobiological Model of Visual Attention,
IP(13), No. 10, October 2004, pp. 1304-1318.
IEEE DOI 0410
BibRef

Alvarez, J.R.S.[J.R. Serra], Subirana-Vilanova, J.B.[J. Brian],
Texture frame curves and regions of attention using adaptive non-cartesian networks,
PR(32), No. 3, March 1999, pp. 503-515.
Elsevier DOI BibRef 9903

Stough, T.M., Brodley, C.E.,
Focusing attention on objects of interest using multiple matched filters,
IP(10), No. 3, March 2001, pp. 419-426.
IEEE DOI 0104
BibRef

Cantoni, V.[Virginio], Marinaro, M.[Maria], Petrosino, A.[Alfredo],
Visual Attention Mechanisms,
KluwerDecember 2002, ISBN 0-306-47427-1.
WWW Link. BibRef 0212

Bozma, H.I., Çakiroglu, G., Soyer, Ç.,
Biologically inspired Cartesian and non-Cartesian filters for attentional sequences,
PRL(24), No. 9-10, June 2003, pp. 1261-1274.
Elsevier DOI 0304
BibRef

Ouerhani, N.[Nabil], Hügli, H.[Heinz],
Real-Time visual attention on a massively parallel SIMD architecture,
RealTimeImg(9), No. 3, June 2003, pp. 189-196.
Elsevier DOI 0310
BibRef

Ouerhani, N., Bracamonte, J., Hugli, H., Ansorge, M., Pellandini, F.,
Adaptive color image compression based on visual attention,
CIAP01(416-421).
IEEE DOI 0210
BibRef

Ouerhani, N., Hügli, H., Burgi, P.Y., Ruedi, P.F.,
A Real Time Implementation of the Saliency-Based Model of Visual Attention on a SIMD Architecture,
DAGM02(282 ff.).
Springer DOI 0303
BibRef

Ouerhani, N.[Nabil], von Wartburg, R.[Roman], Hugli, H.[Heinz],
Empirical Validation of the Saliency-based Model of Visual Attention,
ELCVIA(3), No. 1, 2004, pp. 13-24.
DOI Link 0402
BibRef

Ouerhani, N.[Nabil], Bur, A.[Alexandre], Hügli, H.[Heinz],
Linear vs. Nonlinear Feature Combination for Saliency Computation: A Comparison with Human Vision,
DAGM06(314-323).
Springer DOI 0610
BibRef

Frintrop, S.[Simone], Rome, E.[Erich], Nuchter, A.[Andreas], Surmann, H.[Hartmut],
A Bimodal Laser-Based Attention System,
CVIU(100), No. 1-2, October-November 2005, pp. 124-151.
Elsevier DOI 0510
BibRef

Frintrop, S.[Simone], Backer, G.[Gerriet], Rome, E.[Erich],
Goal-Directed Search with a Top-Down Modulated Computational Attention System,
DAGM05(117).
Springer DOI 0509
BibRef

Frintrop, S.[Simone], Rome, E.[Erich], Nüchter, A.[Andreas], Surmann, H.[Hartmut],
An Attentive, Multi-modal Laser 'Eye',
CVS03(202 ff).
Springer DOI 0306
BibRef

Frintrop, S.[Simone],
VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search,
Springer2006, BibRef 0600 LNCS3899. ISBN: 3-540-32759-2.
Springer DOI From the thesis. BibRef

Draper, B.A.[Bruce A.], Lionelle, A.[Albert],
Evaluation of selective attention under similarity transformations,
CVIU(100), No. 1-2, October-November 2005, pp. 152-171.
Elsevier DOI 0510
BibRef

Williams, T.J., Draper, B.A.,
An Evaluation of Motion in Artificial Selective Attention,
AttenPerf05(III: 85-85).
IEEE DOI 0507
BibRef

Heinke, D.[Dietmar], Humphreys, G.W.[Glyn W.],
Selective Attention for Identification Model: Simulating visual neglect,
CVIU(100), No. 1-2, October-November 2005, pp. 172-197.
Elsevier DOI 0510
BibRef

Backhaus, A., Heinke, D.[Dietmar], Humphreys, G.W.[Glyn W.],
Contextual Learning in the Selective Attention for Identification model (CL-SAIM): Modeling contextual cueing in visual search tasks,
AttenPerf05(III: 87-87).
IEEE DOI 0507
BibRef

Jost, T.[Timothee], Ouerhani, N.[Nabil], von Wartburg, R.[Roman], Muri, R.[Rene], Hugli, H.[Heinz],
Assessing the contribution of color in visual attention,
CVIU(100), No. 1-2, October-November 2005, pp. 107-123.
Elsevier DOI 0510
BibRef

Hamker, F.H.[Fred H.],
The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision,
CVIU(100), No. 1-2, October-November 2005, pp. 64-106.
Elsevier DOI 0510
BibRef

Walther, D.B.[Dirk B.], Rutishauser, U.[Ueli], Koch, C.[Christof], Perona, P.[Pietro],
Selective visual attention enables learning and recognition of multiple objects in cluttered scenes,
CVIU(100), No. 1-2, October-November 2005, pp. 41-63.
Elsevier DOI 0510
BibRef

Avraham, T.[Tamar], Lindenbaum, M.[Michael],
Attention-Based Dynamic Visual Search Using Inner-Scene Similarity: Algorithms and Bounds,
PAMI(28), No. 2, February 2006, pp. 251-264.
IEEE DOI 0601
BibRef
Earlier:
Dynamic Visual Search Using Inner-Scene Similarity: Algorithms and Inherent Limitations,
ECCV04(Vol II: 58-70).
Springer DOI 0405
Visually similar are more likely the same thing. BibRef

Avraham, T.[Tamar], Lindenbaum, M.[Michael],
Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling,
PAMI(32), No. 4, April 2010, pp. 693-708.
IEEE DOI 1003
Allocate resources based on importance. Bottom-up attention model, probability that a part of the image is of interest. BibRef

Horaud, R.[Radu], Knossow, D.[David], Michaelis, M.[Markus],
Camera cooperation for achieving visual attention,
MVA(16), No. 6, 2006, pp. 330-342.
Springer DOI 0603
BibRef

López, M.T.[María T.], Fernández-Caballero, A.[Antonio], Fernández, M.A.[Miguel A.], Mira, J.[José], Delgado, A.E.[Ana E.],
Motion features to enhance scene segmentation in active visual attention,
PRL(27), No. 5, 1 April 2006, pp. 469-478.
Elsevier DOI 0604
Permanency memories; Segmentation; Feature extraction BibRef

Lopez, M.T.[Maria T.], Fernandez, M.A.[Miguel A.], Fernandez-Caballero, A.[Antonio], Mira, J.[Jose], Delgado, A.E.[Ana E.],
Dynamic visual attention model in image sequences,
IVC(25), No. 5, 1 May 2007, pp. 597-613.
Elsevier DOI 0703
Dynamic visual attention; Motion; Segmentation; Feature extraction; Feature integration BibRef

Machrouh, J.[Joseph], Tarroux, P.[Philippe],
Attentional Mechanisms for Interactive Image Exploration,
JASP(2005), No. 14, 2005, pp. 2391-2396.
WWW Link. 0603
BibRef

Le Meur, O.[Olivier], Le Callet, P.[Patrick], Barba, D.[Dominique], and Thoreau, D.[Dominique],
A Coherent Computational Approach to Model Bottom-Up Visual Attention,
PAMI(28), No. 5, May 2006, pp. 802-817.
IEEE DOI 0604
BibRef
Earlier:
Performance assessment of a visual attention system entirely based on a human vision modeling,
ICIP04(IV: 2327-2330).
IEEE DOI 0505
BibRef
And: A1, A4, A2, A3:
A Spatio-Temporal Model of the Selective Human Visual Attention,
ICIP05(III: 1188-1191).
IEEE DOI 0512
Uses current views on HVS models of attention. Contrast sensitivity functions, perceptual decomposition, visual masking, and center-surround interactions are used. Compares with:
See also Model of Saliency-Based Visual Attention for Rapid Scene Analysis, A. BibRef

Le Meur, O.[Olivier], Castellan, X., Le Callet, P.[Patrick], Barba, D.[Dominique],
Efficient Saliency-Based Repurposing Method,
ICIP06(421-424).
IEEE DOI 0610
BibRef

Stentiford, F.[Fred],
Attention-based similarity,
PR(40), No. 3, March 2007, pp. 771-783.
Elsevier DOI 0611
Visual attention; Similarity; Shape; Image retrieval; CBIR BibRef

Shic, F.[Frederick], Scassellati, B.[Brian],
A Behavioral Analysis of Computational Models of Visual Attention,
IJCV(73), No. 2, June 2007, pp. 159-177.
Springer DOI 0702
Quantative analysis of attention models. BibRef

Dong, L.[Le], Izquierdo, E.[Ebroul],
A Biologically Inspired System for Classification of Natural Images,
CirSysVideo(17), No. 5, May 2007, pp. 590-603.
IEEE DOI 0705
Visual attention model. BibRef

Rothenstein, A.L.[Albert L.], Tsotsos, J.K.[John K.],
Attention links sensing to recognition,
IVC(26), No. 1, 1 January 2008, pp. 114-126.
Elsevier DOI 0711
Cognitive vision; Attention; Recognition; Selective tuning BibRef

Hu, Y.Q.[Yi-Qun], Rajan, D.[Deepu], Chia, L.T.[Liang-Tien],
Detection of visual attention regions in images using robust subspace analysis,
JVCIR(19), No. 3, April 2008, pp. 199-216.
Elsevier DOI 0803
Visual attention; Subspace analysis; Saliency; GPCA; Scale-space; Clustering; Least square estimation BibRef

Bermudez-Contreras, E., Buxton, H., Spier, E.,
Attention can improve a simple model for object recognition,
IVC(26), No. 6, 1 June 2008, pp. 776-787.
Elsevier DOI 0804
Object recognition; HMAX; Foveation; Attention; Active vision; Visual cortex; Translation invariance; Scale invariance BibRef

Aziz, M.Z.[Muhammad Zaheer], Mertsching, B.[Bärbel],
Fast and Robust Generation of Feature Maps for Region-Based Visual Attention,
IP(17), No. 5, May 2008, pp. 633-644.
IEEE DOI 0804
BibRef
And:
Visual Search in Static and Dynamic Scenes Using Fine-Grain Top-Down Visual Attention,
CVS08(xx-yy).
Springer DOI 0805
BibRef

Aziz, M.Z.[Muhammad Zaheer], Mertsching, B.[Bärbel],
Fast Depth Saliency from Stereo for Region-Based Artificial Visual Attention,
ACIVS10(I: 367-378).
Springer DOI 1012
BibRef

Aziz, M.Z.[M. Zaheer], Mertsching, B.[Barbel], Salah, M., Shafik, E.N., Stemmer, R.[Ralf],
Evaluation of Visual Attention Models for Robots,
CVS06(20).
IEEE DOI 0602
BibRef

Lang, C.Y.[Cong-Yan], Xu, D.[De], Li, N.[Ning],
Modeling Bottom-Up Visual Attention for Color Images,
IEICE(E91-D), No. 3, March 2008, pp. 869-872.
DOI Link 0803
BibRef

Sevilmis, T.[Tarkan], Bastan, M.[Muhammet], Güdükbay, U.[Ugur], Ulusoy, Ö.[Özgür],
Automatic detection of salient objects and spatial relations in videos for a video database system,
IVC(26), No. 10, 1 October 2008, pp. 1384-1396.
Elsevier DOI 0804
Multimedia databases; Salient object detection and tracking; Camera focus estimation; Object labeling; Knowledge-base construction; Spatio-temporal queries BibRef

Lee, S.J.[Seung-Jin], Kim, K.[Kwanho], Kim, J.Y.[Joo-Young], Kim, M.S.[Min-Su], Yoo, H.J.[Hoi-Jun],
Familiarity based unified visual attention model for fast and robust object recognition,
PR(43), No. 3, March 2010, pp. 1116-1128.
Elsevier DOI 1001
Visual attention; Object recognition; Scene analysis BibRef

Abdollahian, G.[Golnaz], Taskiran, C.M., Pizlo, Z.[Zygmunt], Delp, E.J.[Edward J.],
Camera Motion-Based Analysis of User Generated Video,
MultMed(12), No. 1, January 2010, pp. 28-41.
IEEE DOI 1001
BibRef

Abdollahian, G.[Golnaz], Pizlo, Z.[Zygmunt], Delp, E.J.[Edward J.],
A study on the effect of camera motion on human visual attention,
ICIP08(693-696).
IEEE DOI 0810
BibRef

Zhang, W.[Wei], Wu, Q.M.J.[Q. M. Jonathan], Wang, G.H.[Guang-Hui], Yin, H.,
An Adaptive Computational Model for Salient Object Detection,
MultMed(12), No. 4, 2010, pp. 300-316.
IEEE DOI 1006
BibRef
Earlier:
Adaptive semantic Bayesian framework for image attention,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Zhang, W.[Wei], Wu, Q.M.J.[Q. M. Jonathan], Wang, G.H.[Guang-Hui], You, X.,
Tracking and Pairing Vehicle Headlight in Night Scenes,
ITS(13), No. 1, March 2012, pp. 140-153.
IEEE DOI 1203
BibRef
Earlier: A1, A2, A3, Only:
Vehicle Headlights Detection Using Markov Random Fields,
ACCV09(I: 169-179).
Springer DOI 0909
BibRef

Borji, A.[Ali], Ahmadabadi, M.N.[Majid Nili], Araabi, B.N.[Babak Nadjar], Hamidi, M.[Mandana],
Online learning of task-driven object-based visual attention control,
IVC(28), No. 7, July 2010, pp. 1130-1145.
Elsevier DOI 1006
BibRef
Earlier: A1, A3, A2, Only:
Learning top-down feature based attention control,
ViA08(xx-yy). 0810
Task-driven attention; Object-based attention; Top-down attention; Saliency-based model; Reinforcement learning; State space discretization BibRef

Borji, A.[Ali], Ahmadabadi, M.N.[Majid N.], Araabi, B.N.[Babak N.],
Cost-sensitive learning of top-down modulation for attentional control,
MVA(22), No. 1, January 2011, pp. 61-76.
WWW Link. 1101
BibRef

Begum, M., Karray, F., Mann, G.K.I.[George K.I.], Gosine, R.G.[Raymond G.],
A Probabilistic Model of Overt Visual Attention for Cognitive Robots,
SMC-B(40), No. 5, October 2010, pp. 1305-1318.
IEEE DOI 1003
BibRef

Yu, Y., Mann, G.K.I.[George K.I.], Gosine, R.G.[Raymond G.],
An Object-Based Visual Attention Model for Robotic Applications,
SMC-B(40), No. 5, October 2010, pp. 1398-1412.
IEEE DOI 1003
BibRef

de Silva, O., Mann, G.K.I.[George K.I.], Gosine, R.G.[Raymond G.],
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer,
WORV13(171-176)
IEEE DOI 1307
Kalman filters BibRef

Lee, W.F., Huang, T.H., Yeh, S.L., Chen, H.H.,
Learning-Based Prediction of Visual Attention for Video Signals,
IP(20), No. 11, November 2011, pp. 3028-3038.
IEEE DOI 1110
BibRef

Leborán, V., Garcia-Diaz, A.[Antón], Fdez-Vidal, X.R.[Xosé R.], Pardo, X.M.[Xosé M.],
Dynamic Whitening Saliency,
PAMI(39), No. 5, May 2017, pp. 893-907.
IEEE DOI 1704
Adaptation models BibRef

Garcia-Diaz, A.[Antón], Fdez-Vidal, X.R.[Xosé R.], Pardo, X.M.[Xosé M.], Dosil, R.[Raquel],
Decorrelation and Distinctiveness Provide with Human-Like Saliency,
ACIVS09(343-354).
Springer DOI 0909
BibRef
And:
Saliency Based on Decorrelation and Distinctiveness of Local Responses,
CAIP09(261-268).
Springer DOI 0909
Distinctiveness BibRef

Amano, K.[Kinjiro], Foster, D.H.[David H.], Mould, M.S.[Matthew S.], Oakley, J.P.[John P.],
Visual search in natural scenes explained by local color properties,
JOSA-A(29), No. 2, February 2012, pp. A194-A199.
WWW Link. 1202
BibRef

Dozal, L.[León], Olague, G.[Gustavo], Clemente, E.[Eddie], Sánchez, M.[Marco],
Evolving Visual Attention Programs through EVO Features,
EvoIASP12(326-335).
Springer DOI 1204
BibRef

Borji, A.[Ali], Itti, L.[Laurent],
State-of-the-Art in Visual Attention Modeling,
PAMI(35), No. 1, January 2013, pp. 185-207.
IEEE DOI 1212
BibRef
Earlier:
Exploiting local and global patch rarities for saliency detection,
CVPR12(478-485).
IEEE DOI 1208
BibRef

Borji, A.[Ali], Itti, L.[Laurent],
Human vs. Computer in Scene and Object Recognition,
CVPR14(113-120)
IEEE DOI 1409
computer vision BibRef

Borji, A.[Ali], Sihite, D.N.[Dicky N.], Itti, L.[Laurent],
What/Where to Look Next? Modeling Top-Down Visual Attention in Complex Interactive Environments,
SMCS(44), No. 5, May 2014, pp. 523-538.
IEEE DOI 1405
BibRef
Earlier:
Probabilistic learning of task-specific visual attention,
CVPR12(470-477).
IEEE DOI 1208
BibRef
Earlier:
Computational Modeling of Top-down Visual Attention in Interactive Environments,
BMVC11(xx-yy).
HTML Version. 1110
behavioural sciences computing BibRef

Peters, R.J.[Robert J.], Itti, L.[Laurent],
Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention,
CVPR07(1-8).
IEEE DOI 0706
Attention selection. BibRef

Lin, Y.W.[Yue-Wei], Tang, Y.Y.[Yuan Yan], Fang, B.[Bin], Shang, Z.W.[Zhao-Wei], Huang, Y.H.[Yong-Hui], Wang, S.[Song],
A Visual-Attention Model Using Earth Mover's Distance-Based Saliency Measurement and Nonlinear Feature Combination,
PAMI(35), No. 2, February 2013, pp. 314-328.
IEEE DOI 1301
for dynamic and static saliency maps. BibRef

Ge, S.S.[Shuzhi Sam], He, H.S.[Hong-Sheng], Zhang, Z.C.[Zheng-Chen],
Bottom-up saliency detection for attention determination,
MVA(24), No. 1, January 2013, pp. 103-116.
WWW Link. 1301
BibRef

Li, H.L.[Hong-Liang], Xu, L.F.[Lin-Feng], Liu, G.H.[Guang-Hui],
Two-layer average-to-peak ratio based saliency detection,
SP:IC(28), No. 1, January 2013, pp. 55-68.
Elsevier DOI 1301
Visual saliency; Attention model; Region detection BibRef

Hou, W.L.[Wei-Long], Gao, X.[Xinbo], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long],
Visual saliency detection using information divergence,
PR(46), No. 10, October 2013, pp. 2658-2669.
Elsevier DOI 1306
Visual attention; Saliency detection; Independent component analysis; Bayesian surprise model BibRef

Lang, C.Y.[Cong-Yan], Feng, J.S.[Jia-Shi], Liu, G.C.[Guang-Can], Tang, J.H.[Jin-Hui], Yan, S.C.[Shui-Cheng], Luo, J.B.[Jie-Bo],
Improving Bottom-up Saliency Detection by Looking into Neighbors,
CirSysVideo(23), No. 6, 2013, pp. 1016-1028.
IEEE DOI constrained nuclear norm; saliency detection; visual attention 1307
BibRef

Gu, X.D.[Xiao-Dong], Fang, Y.[Yu], Wang, Y.Y.[Yuan-Yuan],
Attention Selection Using Global Topological Properties Based on Pulse Coupled Neural Network,
CVIU(117), No. 10, 2013, pp. 1400-1411.
Elsevier DOI 1309
Topological properties
See also Image Thinning Using Pulse Coupled Neural Network. BibRef

Le Callet, P., Niebur, E.,
Visual Attention and Applications in Multimedia Technologies,
PIEEE(101), No. 9, 2013, pp. 2058-2067.
IEEE DOI 1309
Image analysis BibRef

Gray, R., Spence, C., Ho, C., Tan, H.Z.,
Efficient Multimodal Cuing of Spatial Attention,
PIEEE(101), No. 9, 2013, pp. 2113-2122.
IEEE DOI 1309
Human factors BibRef

Xu, L.F.[Lin-Feng], Zeng, L.Y.[Liao-Yuan], Wang, Z.N.[Zheng-Ning],
Learning a Saliency Map for Fixation Prediction,
IEICE(E96-D), No. 10, October 2013, pp. 2294-2297.
WWW Link. 1310
BibRef

Nguyen, T.V., Ni, B.B.[Bing-Bing], Liu, H.R.[Hai-Rong], Xia, W.[Wei], Luo, J.B.[Jie-Bo], Kankanhalli, M., Yan, S.C.[Shui-Cheng],
Image Re-Attentionizing,
MultMed(15), No. 8, December 2013, pp. 1910-1919.
IEEE DOI 1402
Markov processes. Attract human attention. BibRef

Nguyen, T.V.[Tam V.], Zhao, Q.[Qi], Yan, S.C.[Shui-Cheng],
Attentive Systems: A Survey,
IJCV(126), No. 1, January 2018, pp. 86-110.
Springer DOI 1801
Survey, Attention. BibRef

Andrushia, A.D.[A. Diana], Thangarajan, R., Sebastian, G.[Greeshma],
Performance analysis on visual attention using spiking and oscillatory neural model,
IJCVR(3), No. 3, 2013, pp. 293-307.
DOI Link 1402
BibRef

Wang, W.N.[Wei-Ning], Cai, D.[Dong], Xu, X.M.[Xiang-Min], Liew, A.W.C.[Alan Wee-Chung],
Visual saliency detection based on region descriptors and prior knowledge,
SP:IC(29), No. 3, 2014, pp. 424-433.
Elsevier DOI 1403
Visual saliency BibRef

Kim, H., Lee, S.H.[Sang-Hoon], Bovik, A.C.,
Saliency Prediction on Stereoscopic Videos,
IP(23), No. 4, April 2014, pp. 1476-1490.
IEEE DOI 1404
image sensors. Lowlevel features and high-level scenes in videos. BibRef

Arnay, R.[Rafael], Acosta, L.[Leopoldo],
Contour-based focus of attention mechanism to speed up object detection and labeling in 3D scenes,
IVC(32), No. 5, 2014, pp. 303-320.
Elsevier DOI 1404
3D contour-based features BibRef

Luo, Y., Jiang, M., Wong, Y., Zhao, Q.,
Multi-Camera Saliency,
PAMI(37), No. 10, October 2015, pp. 2057-2070.
IEEE DOI 1509
Cameras BibRef

Jiang, M.[Ming], Xu, J.[Juan], Zhao, Q.[Qi],
Saliency in Crowd,
ECCV14(VII: 17-32).
Springer DOI 1408
where people look in a crowded scene. BibRef

Shen, C.Y.[Cheng-Yao], Zhao, Q.[Qi],
Webpage Saliency,
ECCV14(VII: 33-46).
Springer DOI 1408
BibRef

Qiao, H., Xi, X., Li, Y., Wu, W., Li, F.,
Biologically Inspired Visual Model With Preliminary Cognition and Active Attention Adjustment,
Cyber(45), No. 11, November 2015, pp. 2612-2624.
IEEE DOI 1511
Biological system modeling BibRef

Qiao, H., Li, Y., Li, F., Xi, X., Wu, W.,
Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning,
Cyber(46), No. 10, October 2016, pp. 2335-2347.
IEEE DOI 1610
cognition BibRef

Engelke, U.[Ulrich], Le Callet, P.[Patrick],
Perceived interest and overt visual attention in natural images,
SP:IC(39, Part B), No. 1, 2015, pp. 386-404.
Elsevier DOI 1512
Overt visual attention BibRef

Hirayama, T.[Takatsugu], Ohira, T.[Toshiya], Mase, K.[Kenji],
Top-Down Visual Attention Estimation Using Spatially Localized Activation Based on Linear Separability of Visual Features,
IEICE(E98-D), No. 12, December 2015, pp. 2308-2316.
WWW Link. 1601
BibRef

Zhang, L., Li, X., Nie, L., Yang, Y., Xia, Y.,
Weakly Supervised Human Fixations Prediction,
Cyber(46), No. 1, January 2016, pp. 258-269.
IEEE DOI 1601
Computational modeling BibRef

Mateescu, V.A., Bajic, I.V.,
Visual Attention Retargeting,
MultMedMag(23), No. 1, January 2016, pp. 82-91.
IEEE DOI 1603
Computational modeling BibRef

Wang, J., Borji, A., Kuo, C.C.J.[C. C. Jay], Itti, L.,
Learning a Combined Model of Visual Saliency for Fixation Prediction,
IP(25), No. 4, April 2016, pp. 1566-1579.
IEEE DOI 1604
image fusion BibRef

Feng, M., Borji, A., Lu, H.,
Fixation prediction with a combined model of bottom-up saliency and vanishing point,
WACV16(1-7)
IEEE DOI 1511
Computational modeling BibRef

Gide, M.S.[Milind S.], Karam, L.J.[Lina J.],
A Locally Weighted Fixation Density-Based Metric for Assessing the Quality of Visual Saliency Predictions,
IP(25), No. 8, August 2016, pp. 3852-3861.
IEEE DOI 1608
image processing BibRef

Lahrache, S., El Ouazzani, R., El Qadi, A.,
Bag-of-features for image memorability evaluation,
IET-CV(10), No. 6, 2016, pp. 577-584.
DOI Link 1609
computer vision BibRef

Duffner, S.[Stefan], Garcia, C.[Christophe],
Visual Focus of Attention Estimation With Unsupervised Incremental Learning,
CirSysVideo(26), No. 12, December 2016, pp. 2264-2272.
IEEE DOI 1612
BibRef
Earlier:
Unsupervised online learning of visual focus of attention,
AVSS13(25-30)
IEEE DOI 1311
Clustering algorithms BibRef

Gao, G.Y.[Guang-Yu], Han, C.[Cen], Ma, K.[Kun], Liu, C.H.[Chi Harold], Ding, G.Y.[Gang-Yi], Liu, E.[Erwu],
Optimal feature combination analysis for crowd saliency prediction,
JVCIR(50), No. 1, 2018, pp. 1-8.
Elsevier DOI 1712
Predicting where people look at in crowd scene. Crowd, Saliency, Random forest, Visual attention, Face detection BibRef

Wang, W., Shen, J.,
Deep Visual Attention Prediction,
IP(27), No. 5, May 2018, pp. 2368-2378.
IEEE DOI 1804
learning (artificial intelligence), neural nets, object detection, CNN-based attention models, saliency detection BibRef

Zheng, Z., Zhao, H., Swanson, A.R., Weitlauf, A.S., Warren, Z.E., Sarkar, N.,
Design, Development, and Evaluation of a Noninvasive Autonomous Robot-Mediated Joint Attention Intervention System for Young Children With ASD,
HMS(48), No. 2, April 2018, pp. 125-135.
IEEE DOI 1804
Cameras, Head, Monitoring, Protocols, Robot kinematics, Robot sensing systems, robot-assisted intervention BibRef

Alshawi, T.[Tariq], Long, Z.L.[Zhi-Ling], Al Regib, G.[Ghassan],
Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection,
IP(27), No. 6, June 2018, pp. 2818-2827.
IEEE DOI 1804
estimation theory, image colour analysis, image motion analysis, object detection, spatiotemporal phenomena, visual attention BibRef

Liu, Q., Yang, Y., Li, P., Li, B.,
A robust 3D visual saliency computation model for human fixation prediction of stereoscopic videos,
VCIP17(1-4)
IEEE DOI 1804
feature extraction, image colour analysis, image fusion, image motion analysis, image resolution, image texture, Saliency Computational Model BibRef

Assens, M.[Marc], Giro-i-Nieto, X.[Xavier], McGuinness, K.[Kevin], O'Connor, N.E.[Noel E.],
Scanpath and saliency prediction on 360 degree images,
SP:IC(69), 2018, pp. 8-14.
Elsevier DOI 1811
BibRef
Earlier:
SaltiNet: Scan-Path Prediction on 360 Degree Images Using Saliency Volumes,
Egocentric17(2331-2338)
IEEE DOI 1802
Code, Saliency.
WWW Link. Deep learning, Machine learning, Saliency, Scanpath, Visual attention. Biological system modeling, Computational modeling, Observers, Predictive models, Training, Visualization BibRef

Cyr, A.[André], Thériault, F.[Frédéric],
Bio-inspired visual attention process using spiking neural networks controlling a camera,
IJCVR(9), No. 1, 2019, pp. 39-55.
DOI Link 1903
BibRef

Fang, Y., Zhang, C., Huang, H., Lei, J.,
Visual Attention Prediction for Stereoscopic Video by Multi-Module Fully Convolutional Network,
IP(28), No. 11, November 2019, pp. 5253-5265.
IEEE DOI 1909
Visualization, Stereo image processing, Feature extraction, Computational modeling, Object detection, fully convolutional network BibRef

Tünnermann, J.[Jan], Born, C.[Christian], Mertsching, B.[Bärbel],
Saliency From Growing Neural Gas: Learning Pre-Attentional Structures for a Flexible Attention System,
IP(28), No. 11, November 2019, pp. 5296-5307.
IEEE DOI 1909
Task analysis, Biological system modeling, Modeling, Image color analysis, Visualization, Object detection, Saliency, growing neural gas BibRef

Mahdi, A.[Ali], Qin, J.[Jun],
An extensive evaluation of deep features of convolutional neural networks for saliency prediction of human visual attention,
JVCIR(65), 2019, pp. 102662.
Elsevier DOI 1912
Convolutional neural networks, Feature maps, Human fixation prediction, Saliency map, Transfer learning BibRef

Min, X., Zhai, G., Zhou, J., Zhang, X., Yang, X., Guan, X.,
A Multimodal Saliency Model for Videos With High Audio-Visual Correspondence,
IP(29), 2020, pp. 3805-3819.
IEEE DOI 2002
Audio-visual attention, visual attention, multimodal, saliency, attention fusion BibRef

Zanca, D.[Dario], Melacci, S.[Stefano], Gori, M.[Marco],
Gravitational Laws of Focus of Attention,
PAMI(42), No. 12, December 2020, pp. 2983-2995.
IEEE DOI 2011
Visualization, Computational modeling, Mathematical model, Task analysis, Brightness, Predictive modeling, Gravity, gravitational laws BibRef

Li, K., Wu, Z., Peng, K.C., Ernst, J., Fu, Y.,
Guided Attention Inference Network,
PAMI(42), No. 12, December 2020, pp. 2996-3010.
IEEE DOI 2011
BibRef
Earlier:
Tell Me Where to Look: Guided Attention Inference Network,
CVPR18(9215-9223)
IEEE DOI 1812
Neural networks, Semantics, Visualization, Image segmentation, Supervised learning, Training data, biased data. Task analysis, Training BibRef

Jiang, L.[Lai], Xu, M.[Mai], Wang, Z.L.[Zu-Lin], Sigal, L.[Leonid],
DeepVS2.0: A Saliency-Structured Deep Learning Method for Predicting Dynamic Visual Attention,
IJCV(129), No. 1, January 2021, pp. 203-224.
Springer DOI 2101
BibRef

Khandelwal, S., Sigal, L.,
AttentionRNN: A Structured Spatial Attention Mechanism,
ICCV19(3424-3433)
IEEE DOI 2004
convolutional neural nets, feedforward neural nets, learning (artificial intelligence), Computational modeling BibRef

Yuan, Y.[Yuan], Ning, H.L.[Hai-Long], Lu, X.Q.[Xiao-Qiang],
Bio-Inspired Representation Learning for Visual Attention Prediction,
Cyber(51), No. 7, July 2021, pp. 3562-3575.
IEEE DOI 2106
Feature extraction, Semantics, Visualization, Object detection, Cybernetics, Deep learning, Bio-inspired, visual attention prediction (VAP) BibRef

Lai, Q.X.[Qiu-Xia], Khan, S.[Salman], Nie, Y.W.[Yong-Wei], Sun, H.[Hanqiu], Shen, J.B.[Jian-Bing], Shao, L.[Ling],
Understanding More About Human and Machine Attention in Deep Neural Networks,
MultMed(23), 2021, pp. 2086-2099.
IEEE DOI 2107
Task analysis, Visualization, Neural networks, Object segmentation, Image recognition, Reliability, deep learning BibRef

Shi, X.[Xiang], Yang, Y.[You], Liu, Q.[Qiong],
I Understand You: Blind 3D Human Attention Inference from the Perspective of Third-Person,
IP(30), 2021, pp. 6212-6225.
IEEE DOI 2107
Feature extraction, Estimation, Faces, Solid modeling, Visualization, Cameras, Human attention inference, scene understanding, Long-Short-Term-Memory (LSTM) BibRef

Li, A.[Aoqi], Chen, Z.Z.[Zhen-Zhong],
Semantic meaning modulates object importance in human fixation prediction,
JVCIR(79), 2021, pp. 103206.
Elsevier DOI 2109
Visual attention, Image saliency, Semantic attributes, Object importance BibRef

Cheng, D.Q.[De-Qiang], Liu, R.H.[Rui-Hang], Li, J.H.[Jia-Han], Liang, S.[Song], Kou, Q.Q.[Qi-Qi], Zhao, K.[Kai],
Activity guided multi-scales collaboration based on scaled-CNN for saliency prediction,
IVC(114), 2021, pp. 104267.
Elsevier DOI 2109
Saliency prediction, Convolutional neural networks, Human eye fixations, Deep learning BibRef

Nan, Z.X.[Zhi-Xiong], Jiang, J.J.[Jing-Jing], Gao, X.F.[Xiao-Feng], Zhou, S.P.[San-Ping], Zuo, W.L.[Wei-Liang], Wei, P.[Ping], Zheng, N.N.[Nan-Ning],
Predicting Task-Driven Attention via Integrating Bottom-Up Stimulus and Top-Down Guidance,
IP(30), 2021, pp. 8293-8305.
IEEE DOI 2110
Task analysis, Predictive models, Feature extraction, Image color analysis, Visualization, Computer architecture, task-driven BibRef

Xia, C.[Chen], Han, J.W.[Jun-Wei], Zhang, D.W.[Ding-Wen],
Evaluation of Saccadic Scanpath Prediction: Subjective Assessment Database and Recurrent Neural Network Based Metric,
PAMI(43), No. 12, December 2021, pp. 4378-4395.
IEEE DOI 2112
Measurement, Predictive models, Visualization, Feature extraction, Computational modeling, Visual databases, Visual attention, semantic hashing BibRef

Beelders, T.[Tanya], Dollman, G.[Gavin],
Virtual Prospecting in Paleontology Using a Drone-Based Orthomosaic Map: An Eye Movement Analysis,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Zhang, H.[Hao], Peng, G.Q.[Guo-Qin], Wu, Z.C.[Zhi-Chao], Gong, J.[Jian], Xu, D.[Dan], Shi, H.Z.[Hong-Zhen],
MAM: A multipath attention mechanism for image recognition,
IET-IPR(16), No. 3, 2022, pp. 691-702.
DOI Link 2202
BibRef

Long, X.[Xiang], de Melo, G.[Gerard], He, D.L.[Dong-Liang], Li, F.[Fu], Chi, Z.Z.[Zhi-Zhen], Wen, S.[Shilei], Gan, C.[Chuang],
Purely Attention Based Local Feature Integration for Video Classification,
PAMI(44), No. 4, April 2022, pp. 2140-2154.
IEEE DOI 2203
Feature extraction, Convolution, Computational modeling, Plugs, Task analysis, Video classification, action recognition, computer vision BibRef

Long, X., Gan, C., de Melo, G., Wu, J., Liu, X., Wen, S.,
Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification,
CVPR18(7834-7843)
IEEE DOI 1812
Feature extraction, Task analysis, Recurrent neural networks, Computational modeling, Optical imaging, Optical network units BibRef

Ding, G.Q.[Guan-Qun], Imamoglu, N.[Nevrez], Caglayan, A.[Ali], Murakawa, M.[Masahiro], Nakamura, R.[Ryosuke],
SalFBNet: Learning pseudo-saliency distribution via feedback convolutional networks,
IVC(120), 2022, pp. 104395.
Elsevier DOI 2204
Better learn distinguishable eye-fixation-based features. Feedback networks, Human gaze, Pseudo-saliency, Selective fixation and non-fixation error BibRef

Lateef, F.[Fahad], Kas, M.[Mohamed], Ruichek, Y.[Yassine],
Saliency Heat-Map as Visual Attention for Autonomous Driving Using Generative Adversarial Network (GAN),
ITS(23), No. 6, June 2022, pp. 5360-5373.
IEEE DOI 2206
Visualization, Vehicles, Generative adversarial networks, Computational modeling, Autonomous vehicles, Predictive models, scene understanding BibRef

Zhu, Y.C.[Yu-Cheng], Zhai, G.T.[Guang-Tao], Yang, Y.[Yiwei], Duan, H.Y.[Hui-Yu], Min, X.K.[Xiong-Kuo], Yang, X.K.[Xiao-Kang],
Viewing Behavior Supported Visual Saliency Predictor for 360 Degree Videos,
CirSysVideo(32), No. 7, July 2022, pp. 4188-4201.
IEEE DOI 2207
Visualization, Videos, Feature extraction, Head, Predictive models, Solid modeling, Magnetic heads, Virtual reality, visual attention, head and eye movement BibRef

Li, T.[Tao], Ma, J.W.[Jin-Wen],
Attention Mechanism Based Mixture of Gaussian Processes,
PRL(161), 2022, pp. 130-136.
Elsevier DOI 2209
Gaussian processes, Attention, Mixture model BibRef

Gomez, T.[Tristan], Ling, S.[Suiyi], Fréour, T.[Thomas], Mouchère, H.[Harold],
BR-NPA: A non-parametric high-resolution attention model to improve the interpretability of attention,
PR(132), 2022, pp. 108927.
Elsevier DOI 2209
Deep learning, Interpretability, Spatial attention, Resolution, Non-parametric BibRef

Veiga, T.[Tiago], Renoux, J.[Jennifer],
From Reactive to Active Sensing: A Survey on Information Gathering in Decision-Theoretic Planning,
Surveys(55), No. 13s, July 2023, pp. xx-yy.
DOI Link 2309
information gathering, Decision-theoretic planning, active sensing BibRef

Ma, Y.W.[Yi-Wei], Ji, J.Y.[Jia-Yi], Sun, X.S.[Xiao-Shuai], Zhou, Y.[Yiyi], Wu, Y.J.[Yong-Jian], Huang, F.Y.[Fei-Yue], Ji, R.R.[Rong-Rong],
Knowing What it is: Semantic-Enhanced Dual Attention Transformer,
MultMed(25), 2023, pp. 3723-3736.
IEEE DOI Code:
WWW Link. 2310
BibRef

Lu, E.H.C.[Eric Hsueh-Chan], Lin, Y.R.[You-Ru],
A Self-Attention Model for Next Location Prediction Based on Semantic Mining,
IJGI(12), No. 10, 2023, pp. 420.
DOI Link 2311
BibRef

Wang, S.[Shuo], Wu, Z.H.[Zhi-Hao], Hu, X.B.[Xiao-Bo], Lin, Y.F.[You-Fang], Lv, K.[Kai],
Skill-Based Hierarchical Reinforcement Learning for Target Visual Navigation,
MultMed(25), 2023, pp. 8920-8932.
IEEE DOI 2312
find a target object. BibRef

Ge, C.J.[Chong-Jian], Song, Y.B.[Yi-Bing], Ma, C.[Chao], Qi, Y.[Yuankai], Luo, P.[Ping],
Rethinking Attentive Object Detection via Neural Attention Learning,
IP(33), 2024, pp. 1726-1739.
IEEE DOI 2403
Object detection, Proposals, Detectors, Training, Visualization, Convolutional neural networks, Head, Object detection, neural attention learning BibRef

Han, G.[Gaoge], Huang, S.L.[Shao-Li], Zhao, F.[Fang], Tang, J.L.[Jing-Lei],
SIAM: A parameter-free, Spatial Intersection Attention Module,
PR(153), 2024, pp. 110509.
Elsevier DOI 2405
3-D attention module, Parameter-free, Convolutional neural networks BibRef

Bai, X.[Xiao], Zhang, P.C.[Peng-Cheng], Yu, X.H.[Xiao-Han], Zheng, J.[Jin], Hancock, E.R.[Edwin R.], Zhou, J.[Jun], Gu, L.[Lin],
Learning From Human Attention for Attribute-Assisted Visual Recognition,
PAMI(46), No. 12, December 2024, pp. 11152-11167.
IEEE DOI 2411
Use attention/gaze in recognition. Feature extraction, Visualization, Prototypes, Data models, Location awareness, Adaptation models, Zero-shot learning, zero-shot learning BibRef


Chen, X.Y.[Xian-Yu], Jiang, M.[Ming], Zhao, Q.[Qi],
Beyond Average: Individualized Visual Scanpath Prediction,
CVPR24(25420-25431)
IEEE DOI 2410
Measurement, Visualization, Adaptation models, Navigation, Semantics, Observers, Scanpath prediction, Individualized scanpath, Eye-Tracking BibRef

Yang, Z.B.[Zhi-Bo], Mondal, S.[Sounak], Ahn, S.[Seoyoung], Xue, R.[Ruoyu], Zelinsky, G.[Gregory], Hoai, M.[Minh], Samaras, D.[Dimitris],
Unifying Top-Down and Bottom-Up Scanpath Prediction Using Transformers,
CVPR24(1683-1693)
IEEE DOI Code:
WWW Link. 2410
Solid modeling, Visualization, Computational modeling, Computer architecture, Predictive models, Transformers, Retina, Free Viewing BibRef

Kerkouri, M.A.[Mohamed Amine], Tliba, M.[Marouane], Chetouani, A.[Aladine], Bruno, A.[Alessandro],
An Inter-Observer Consistent Deep Adversarial Training for Visual Scanpath Prediction,
ICIP23(2595-2599)
IEEE DOI 2312
BibRef

Shi, B.F.[Bai-Feng], Darrell, T.J.[Trevor J.], Wang, X.[Xin],
Top-Down Visual Attention from Analysis by Synthesis,
CVPR23(2102-2112)
IEEE DOI 2309
BibRef

Mondal, S.[Sounak], Yang, Z.B.[Zhi-Bo], Ahn, S.[Seoyoung], Samaras, D.[Dimitris], Zelinsky, G.[Gregory], Hoai, M.[Minh],
Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention,
CVPR23(1441-1450)
IEEE DOI 2309
BibRef

Paula, B.[Beatriz], Moreno, P.[Plinio],
Learning to Search for and Detect Objects in Foveal Images Using Deep Learning,
IbPRIA23(223-237).
Springer DOI 2307
Evaluate fixation points. BibRef

Zhong, S.S.[Shan-Shan], Wen, W.[Wushao], Qin, J.H.[Jing-Hui],
SPEM: Self-adaptive Pooling Enhanced Attention Module for Image Recognition,
MMMod23(II: 41-53).
Springer DOI 2304
BibRef

Kadner, F.[Florian], Thomas, T.[Tobias], Hoppe, D.[David], Rothkopf, C.A.[Constantin A.],
Improving saliency models' predictions of the next fixation with humans' intrinsic cost of gaze shifts,
WACV23(2103-2113)
IEEE DOI 2302
Costs, Heuristic algorithms, Computational modeling, Decision making, Predictive models, Benchmark testing, Applications: Psychology and cognitive science BibRef

Wang, H.Y.[Han-Yu], Gupta, K.[Kamal], Davis, L.S.[Larry S.], Shrivastava, A.[Abhinav],
Neural Space-Filling Curves,
ECCV22(VII:418-434).
Springer DOI 2211

WWW Link. To get a good scan order. BibRef

Zhang, K.[Kepei], Lu, M.Q.[Mei-Qi], Lu, Z.[Zheng], Zhang, X.T.[Xue-Tao],
Scanpath Prediction Via Semantic Representation of the Scene,
ICIP22(1976-1980)
IEEE DOI 2211
Object instances and backgrounds in scenes, and uses the attention mechanism to learn the semantic correlation between objects. Visualization, Image segmentation, Graphical models, Correlation, Semantics, Reinforcement learning, Predictive models, Inverse Reinforcement Learning BibRef

Xu, Y.X.[Yu-Xiao], Huo, Y.K.[Yong-Kai], Song, Y.[Yukai],
Panoramic Viewport Prediction Relying on Emotional Attention Map,
ICIP22(1751-1755)
IEEE DOI 2211
Visualization, Estimation, Immersive experience, Predictive models, Benchmark testing, Trajectory, Panoramic video, Emotional attention BibRef

Petryk, S.[Suzanne], Dunlap, L.[Lisa], Nasseri, K.[Keyan], Gonzalez, J.[Joseph], Darrell, T.J.[Trevor J.], Rohrbach, A.[Anna],
On Guiding Visual Attention with Language Specification,
CVPR22(18071-18081)
IEEE DOI 2210
Visualization, Image recognition, Training data, Feature extraction, Numerical models, Visual reasoning BibRef

Chen, Q.[Qiang], Wu, Q.[Qiman], Wang, J.[Jian], Hu, Q.H.[Qing-Hao], Hu, T.[Tao], Ding, E.[Errui], Cheng, J.[Jian], Wang, J.D.[Jing-Dong],
MixFormer: Mixing Features across Windows and Dimensions,
CVPR22(5239-5249)
IEEE DOI 2210
Code, Attention.
WWW Link. Couplings, Codes, Convolution, Bidirectional control, Transformers, Pattern recognition, Recognition: detection, categorization, retrieval BibRef

Long, F.C.[Fu-Chen], Qiu, Z.F.[Zhao-Fan], Pan, Y.W.[Ying-Wei], Yao, T.[Ting], Luo, J.B.[Jie-Bo], Mei, T.[Tao],
Stand-Alone Inter-Frame Attention in Video Models,
CVPR22(3182-3191)
IEEE DOI 2210
Code, Attention.
WWW Link. Convolutional codes, Weight measurement, Deep learning, Solid modeling, Computational modeling, Transformers, Video analysis and understanding BibRef

Arar, M.[Moab], Shamir, A.[Ariel], Bermano, A.H.[Amit H.],
Learned Queries for Efficient Local Attention,
CVPR22(10831-10842)
IEEE DOI 2210
Convolutional codes, Image synthesis, Memory management, Transformers, Complexity theory, retrieval, Recognition: detection BibRef

Yang, Z.B.[Zhi-Bo], Mondal, S.[Sounak], Ahn, S.[Seoyoung], Zelinsky, G.[Gregory], Hoai, M.[Minh], Samaras, D.[Dimitris],
Target-Absent Human Attention,
ECCV22(IV:52-68).
Springer DOI 2211
BibRef

Chen, Y.P.[Yu-Pei], Yang, Z.B.[Zhi-Bo], Chakraborty, S.[Souradeep], Mondal, S.[Sounak], Ahn, S.[Seoyoung], Samaras, D.[Dimitris], Hoai, M.[Minh], Zelinsky, G.[Gregory],
Characterizing Target-absent Human Attention,
Gaze22(5027-5036)
IEEE DOI 2210
Conferences, Object detection, Machine learning, Detectors, Predictive models, Behavioral sciences BibRef

Jha, A.[Abhishek], Seifi, S.[Soroush], Tuytelaars, T.[Tinne],
SimGlim: Simplifying glimpse based active visual reconstruction,
WACV23(269-278)
IEEE DOI 2302
BibRef
Earlier: A2, A1, A3:
Glimpse-Attend-and-Explore: Self-Attention for Active Visual Exploration,
ICCV21(16117-16126)
IEEE DOI 2203
Visualization, Reconstruction algorithms, Predictive models, Transformers, Data models, Task analysis, image and video synthesis. Representation learning, Adaptation models, Uncertainty, Reinforcement learning, grouping and shape BibRef

Leyva, R.[Roberto], Sanchez, V.[Victor],
Video Memorability Prediction Via Late Fusion of Deep Multi-Modal Features,
ICIP21(2488-2492)
IEEE DOI 2201
Visualization, Fuses, Social networking (online), Computational modeling, Neural networks, Feature extraction, fusion BibRef

Chen, Q.P.[Qi-Pin], Shi, Z.Y.[Zhen-Yu], Zuo, Z.[Zhen], Fu, J.M.[Jin-Miao], Sun, Y.[Yi],
Two-Stream Hybrid Attention Network for Multimodal Classification,
ICIP21(359-363)
IEEE DOI 2201
Image processing, multimodal classification, hybrid attention mechanism BibRef

Martins, P.H.[Pedro Henrique], Niculae, V.[Vlad], Marinho, Z.[Zita], Martins, A.F.T.[André F. T.],
Sparse and Structured Visual Attention,
ICIP21(379-383)
IEEE DOI 2201
Visualization, Image processing, Knowledge discovery, Task analysis, Attention, Structured Sparsity, Total Variation BibRef

Farinhas, A.[António], Martins, A.F.T.[André F. T.], Aguiar, P.M.Q.[Pedro M. Q.],
Multimodal Continuous Visual Attention Mechanisms,
VIPriors21(1047-1056)
IEEE DOI 2112
Jacobian matrices, Visualization, Shape, Computational modeling, Neural networks, MIMICs BibRef

Siegfried, R.[Rémy], Odobez, J.M.[Jean-Marc],
Visual Focus of Attention Estimation in 3D Scene with an Arbitrary Number of Targets,
Gaze21(3147-3155)
IEEE DOI 2109
Deep learning, Training, Visualization, TV, Estimation, Usability BibRef

Shen, Z.R.[Zhuo-Ran], Zhang, M.Y.[Ming-Yuan], Zhao, H.Y.[Hai-Yu], Yi, S.[Shuai], Li, H.S.[Hong-Sheng],
Efficient Attention: Attention with Linear Complexities,
WACV21(3530-3538)
IEEE DOI 2106
Computational modeling, Memory management, Estimation, Object detection, Detectors BibRef

Dai, Y.M.[Yi-Mian], Oehmcke, S.[Stefan], Gieseke, F.[Fabian], Wu, Y.Q.[Yi-Quan], Barnard, K.[Kobus],
Attention as Activation,
ICPR21(9156-9163)
IEEE DOI 2105
Aggregates, Performance gain BibRef

Krishna, O.[Onkar], Irie, G.[Go], Kawanishi, T.[Takahito], Kashino, K.[Kunio], Aizawa, K.[Kiyoharu],
Translating Adult's Focus of Attention to Elderly's,
ICPR21(563-568)
IEEE DOI 2105
Training, Legged locomotion, Computational modeling, Senior citizens, Estimation, Predictive models, Observers BibRef

Efremova, N., Hajimirza, N., Bassett, D., Thomaz, F.,
Understanding consumer attention on mobile devices,
FG20(919-919)
IEEE DOI 2102
Mobile handsets, Social networking (online), Generators, Visualization, Webcams, Glass, Face recognition, attention, mobile BibRef

Ajmal, A.[Aisha], Al-Sahaf, H.[Harith], Hollitt, C.[Christopher],
Salient Motion Features for Visual Attention Models,
IVCNZ20(1-6)
IEEE DOI 2012
Visualization, Image color analysis, Computational modeling, Estimation, Color, Feature extraction, Optical flow, HSV BibRef

Mejjati, Y.A.[Youssef A.], Gomez, C.F.[Celso F.], Kim, K.I.[Kwang In], Shechtman, E.[Eli], Bylinskii, Z.[Zoya],
Look Here! A Parametric Learning Based Approach to Redirect Visual Attention,
ECCV20(XXIII:343-361).
Springer DOI 2011
BibRef

Uzkent, B., Ermon, S.,
Learning When and Where to Zoom With Deep Reinforcement Learning,
CVPR20(12342-12351)
IEEE DOI 2008
Task analysis, Spatial resolution, Training, Random variables, Satellites BibRef

Yang, Z., Huang, L., Chen, Y., Wei, Z., Ahn, S., Zelinsky, G., Samaras, D., Hoai, M.,
Predicting Goal-Directed Human Attention Using Inverse Reinforcement Learning,
CVPR20(190-199)
IEEE DOI 2008
Visualization, Task analysis, Predictive models, Search problems, Learning (artificial intelligence), Computational modeling, Context modeling BibRef

Wang, L.Z.[Le-Zi], Wu, Z.Y.[Zi-Yan], Karanam, S.[Srikrishna], Peng, K.C.[Kuan-Chuan], Singh, R.V.[Rajat Vikram], Liu, B.[Bo], Metaxas, D.N.[Dimitris N.],
Sharpen Focus: Learning With Attention Separability and Consistency,
ICCV19(512-521)
IEEE DOI 2004
feature extraction, image classification, image representation, learning (artificial intelligence), neural nets, Benchmark testing BibRef

Abolghasemi, P.[Pooya], Mazaheri, A.[Amir], Shah, M.[Mubarak], Boloni, L.[Ladislau],
Pay Attention! - Robustifying a Deep Visuomotor Policy Through Task-Focused Visual Attention,
CVPR19(4249-4257).
IEEE DOI 2002
BibRef

Liu, X.H.[Xi-Hui], Wang, Z.H.[Zi-Hao], Shao, J.[Jing], Wang, X.G.[Xiao-Gang], Li, H.S.[Hong-Sheng],
Improving Referring Expression Grounding With Cross-Modal Attention-Guided Erasing,
CVPR19(1950-1959).
IEEE DOI 2002
BibRef

Guo, H.[Hao], Zheng, K.[Kang], Fan, X.C.[Xiao-Chuan], Yu, H.K.[Hong-Kai], Wang, S.[Song],
Visual Attention Consistency Under Image Transforms for Multi-Label Image Classification,
CVPR19(729-739).
IEEE DOI 2002
BibRef

Cuculo, V.[Vittorio], d'Amelio, A.[Alessandro], Grossi, G.[Giuliano], Lanzarotti, R.[Raffaella],
Worldly Eyes on Video: Learnt vs. Reactive Deployment of Attention to Dynamic Stimuli,
CIAP19(I:128-138).
Springer DOI 1909
BibRef

Leonardi, M.[Marco], Celona, L.[Luigi], Napoletano, P.[Paolo], Bianco, S.[Simone], Schettini, R.[Raimondo], Manessi, F.[Franco], Rozza, A.[Alessandro],
Image Memorability Using Diverse Visual Features and Soft Attention,
CIAP19(II:171-180).
Springer DOI 1909
BibRef

Fajtl, J., Argyriou, V., Monekosso, D., Remagnino, P.,
AMNet: Memorability Estimation with Attention,
CVPR18(6363-6372)
IEEE DOI 1812
Visualization, Feature extraction, Estimation, Task analysis, Neural networks, Training BibRef

Wloka, C., Kotseruba, I., Tsotsos, J.K.,
Active Fixation Control to Predict Saccade Sequences,
CVPR18(3184-3193)
IEEE DOI 1812
Visualization, Computational modeling, Retina, Predictive models, Streaming media BibRef

Adeli, H., Zelinsky, G.,
Deep-BCN: Deep Networks Meet Biased Competition to Create a Brain-Inspired Model of Attention Control,
Cognitive18(2013-201310)
IEEE DOI 1812
Visualization, Brain modeling, Computational modeling, Object detection, Search problems BibRef

Fan, H.Q.[Hao-Qi], Zhou, J.T.[Jia-Tong],
Stacked Latent Attention for Multimodal Reasoning,
CVPR18(1072-1080)
IEEE DOI 1812
Cognition, Task analysis, Computational modeling, Visualization, Computer architecture, Stacking, Knowledge discovery BibRef

Wei, P., Liu, Y., Shu, T., Zheng, N., Zhu, S.,
Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks,
CVPR18(6801-6809)
IEEE DOI 1812
Task analysis, Videos, Feature extraction, Skeleton, Bridges BibRef

Palenichka, R.[Roman], Falcon, R.[Rafael], Abielmona, R.[Rami], Petriu, E.[Emil],
A Computational Model of Multi-scale Spatiotemporal Attention in Video Data,
ICIAR18(125-135).
Springer DOI 1807
BibRef

Li, A., Chen, Z.,
Individual trait oriented scanpath prediction for visual attention analysis,
ICIP17(3745-3749)
IEEE DOI 1803
Computational modeling, Kernel, Mathematical model, Observers, Predictive models, Semantics, Visualization, individuality, visual attention BibRef

Weibel, J.B., Tan, H.L., Lu, S.,
An integrated approach to visual attention modelling using spatial-temporal saliency and objectness,
ICIP17(440-444)
IEEE DOI 1803
Computational modeling, Histograms, Integrated optics, Optical imaging, Sun, Visualization BibRef

Kümmerer, M., Wallis, T.S.A., Gatys, L.A., Bethge, M.,
Understanding Low- and High-Level Contributions to Fixation Prediction,
ICCV17(4799-4808)
IEEE DOI 1802
feature extraction, image classification, neural nets, object detection, object recognition, Predictive models BibRef

Li, Z., Yang, Y., Liu, X., Zhou, F., Wen, S., Xu, W.,
Dynamic Computational Time for Visual Attention,
CEFR-LCV17(1199-1209)
IEEE DOI 1802
Adaptation models, Computational modeling, Image recognition, Neural networks, Random access memory, Training, Visualization BibRef

Gorji, S.[Siavash], Clark, J.J.[James J.],
Going from Image to Video Saliency: Augmenting Image Salience with Dynamic Attentional Push,
CVPR18(7501-7511)
IEEE DOI 1812
BibRef
Earlier:
Attentional Push: A Deep Convolutional Network for Augmenting Image Salience with Shared Attention Modeling in Social Scenes,
CVPR17(3472-3481)
IEEE DOI 1711
Visualization, Computational modeling, Spatiotemporal phenomena, Color, Dynamics, Fuses, Optical imaging. Feature extraction, Head, Neural networks, Predictive models, Training BibRef

Kahou, S.E.[Samira Ebrahimi], Michalski, V.[Vincent], Memisevic, R.[Roland], Pal, C.[Christopher], Vincent, P.[Pascal],
RATM: Recurrent Attentive Tracking Model,
MotionRep17(1613-1622)
IEEE DOI 1709
Computational modeling, Feature extraction, Proposals, Recurrent neural networks, Standards, Training BibRef

Wang, J., Tavakoli, H.R.[Hamed R.], Laaksonen, J.[Jorma],
Fixation Prediction in Videos Using Unsupervised Hierarchical Features,
DeepLearn-T17(2225-2232)
IEEE DOI 1709
BibRef
Earlier: A2, A3, Only:
Bottom-Up Fixation Prediction Using Unsupervised Hierarchical Models,
Assist16(I: 287-302).
Springer DOI 1704
Computational modeling, Estimation, Feature extraction, Predictive models, Training, Videos, Visualization BibRef

Chen, J.Z.[Jia-Zhong], Li, Y.Z.[Yi-Zhang], Fan, Y.B.[Ye-Bin], Wu, W.M.[Wei-Min], Wang, X.[Xian], Cao, H.[Hua], Chen, Y.[Yang],
Investigation of mobile surroundings for visual attention based on image perception model,
VCIP16(1-4)
IEEE DOI 1701
Estimation BibRef

Rahman, I.M.H., Hollitt, C., Zhang, M.,
A dynamic feature map integration approach for predicting human fixation,
ICVNZ16(1-6)
IEEE DOI 1701
Computational modeling BibRef

Wei, Q., Zhai, G., Hu, C., Min, X.,
Visual attention analysis and prediction on human faces with mole,
VCIP16(1-4)
IEEE DOI 1701
Computational modeling BibRef

Thomas, C.[Christopher], Kovashka, A.[Adriana], Chiarulli, D.[Donald], Levitan, S.[Steven],
A Visual Attention Algorithm Designed for Coupled Oscillator Acceleration,
ECVW16(828-836)
IEEE DOI 1612
BibRef

Shih, K.J.[Kevin J.], Singh, S.[Saurabh], Hoiem, D.[Derek],
Where to Look: Focus Regions for Visual Question Answering,
CVPR16(4613-4621)
IEEE DOI 1612
BibRef

Rai, Y., Le Callet, P., Cheung, G.,
Quantifying the relation between perceived interest and visual salience during free viewing using trellis based optimization,
IVMSP16(1-5)
IEEE DOI 1608
Hidden Markov models BibRef

Li, Y., Guo, X., Wang, H.,
Spatio-temporal quality pooling adaptive to distortion distribution and visual attention,
VCIP15(1-4)
IEEE DOI 1605
Adaptation models BibRef

Khosla, A.[Aditya], Raju, A.S.[Akhil S.], Torralba, A.B.[Antonio B.], Oliva, A.[Aude],
Understanding and Predicting Image Memorability at a Large Scale,
ICCV15(2390-2398)
IEEE DOI 1602
Dataset, Memorability.
WWW Link. Benchmark testing BibRef

Dubey, R., Peterson, J., Khosla, A., Yang, M.H., Ghanem, B.,
What Makes an Object Memorable?,
ICCV15(1089-1097)
IEEE DOI 1602
Computer vision BibRef

Cao, C.S.[Chun-Shui], Liu, X.M.[Xian-Ming], Yang, Y.[Yi], Yu, Y.N.[Yi-Nan], Wang, J.[Jiang], Wang, Z.L.[Zi-Lei], Huang, Y.Z.[Yong-Zhen], Wang, L.[Liang], Huang, C.[Chang], Xu, W.[Wei], Ramanan, D.[Deva], Huang, T.S.[Thomas S.],
Look and Think Twice: Capturing Top-Down Visual Attention with Feedback Convolutional Neural Networks,
ICCV15(2956-2964)
IEEE DOI 1602
Biological neural networks BibRef

Healy, G.F.[Graham F.], Gurrin, C.[Cathal], Smeaton, A.F.[Alan F.],
Informed Perspectives on Human Annotation Using Neural Signals,
MMMod16(II: 315-327).
Springer DOI 1601
Understanding how p[eople do it. BibRef

Elafoudi, G.[Georgia], Stankovic, V.[Vladimir], Stankovic, L.[Lina], Pappusetti, D.[Deepti], Kalva, H.[Hari],
Evaluation of Signal Processing Methods for Attention Assessment in Visual Content Interaction,
QoEM15(580-588).
Springer DOI 1511
BibRef

Amengual, X.[Xesca], Bosch, A.[Anna], de la Rosa, J.L.[Josep Lluís],
Review of Methods to Predict Social Image Interestingness and Memorability,
CAIP15(I:64-76).
Springer DOI 1511
BibRef

Boukhechba, M.[Mehdi], Bouzouane, A.[Abdenour], Bouchard, B.[Bruno], Gouin-Vallerand, C.[Charles], Giroux, S.[Sylvain],
Online Prediction of People's Next Point-of-Interest: Concept Drift Support,
HBUI15(97-116).
Springer DOI 1511
BibRef

Sattar, H.[Hosnieh], Muller, S.[Sabine], Fritz, M.[Mario], Bulling, A.[Andreas],
Prediction of search targets from fixations in open-world settings,
CVPR15(981-990)
IEEE DOI 1510
BibRef

Zhao, J.P.[Jia-Ping], Siagian, C.[Christian], Itti, L.[Laurent],
Fixation bank: Learning to reweight fixation candidates,
CVPR15(3174-3182)
IEEE DOI 1510
BibRef

Ma, B., Zhou, J., Gu, X., Wang, M., Zhang, Y., Guo, X.,
A new approach to create 3D fixation density maps for stereoscopic images,
3DTV-CON15(1-4)
IEEE DOI 1508
Accuracy BibRef

Li, D.[Duo], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang],
Ultra high definition video saliency database,
VCIP14(97-100)
IEEE DOI 1504
video databases BibRef

Tünnermann, J.[Jan], Born, C.[Christian], Mertsching, B.[Bärbel],
Integrating Object Affordances with Artificial Visual Attention,
Affordance14(427-437).
Springer DOI 1504
BibRef

Sato, Y.,
Sensing, predicting, and utilizing human visual attention,
IPTA14(1-1)
IEEE DOI 1503
calibration BibRef

Yamazaki, Y.[Yasuyuki], Hino, H.[Hideitsu], Fukui, K.[Kazuhiro],
Sensing Visual Attention by Sequential Patterns,
ICPR14(483-488)
IEEE DOI 1412
Dictionaries BibRef

Razavian, A.S.[Ali S.], Aghazadeh, O.[Omid], Sullivan, J.[Josephine], Carlsson, S.[Stefan],
Estimating Attention in Exhibitions Using Wearable Cameras,
ICPR14(2691-2696)
IEEE DOI 1412
Cameras BibRef

Karayev, S.[Sergey], Trentacoste, M.[Matthew], Han, H.[Helen], Agarwala, A.[Aseem], Darrell, T.J.[Trevor J.], Hertzmann, A.[Aaron], Winnemoeller, H.[Holger],
Recognizing Image Style,
BMVC14(xx-yy).
HTML Version. 1410
BibRef

Mancas, M.[Matei], Le Meur, O.[Olivier],
Memorability of natural scenes: The role of attention,
ICIP13(196-200)
IEEE DOI 1402
Computational modeling BibRef

Karthikeyan, S., Jagadeesh, V.[Vignesh], Manjunath, B.S.,
Learning top down scene context for visual attention modeling in natural images,
ICIP13(211-215)
IEEE DOI 1402
Computational modeling BibRef

Nakashima, Y.[Yuta], Yokoya, N.[Naokazu],
Inferring what the videographer wanted to capture,
ICIP13(191-195)
IEEE DOI 1402
Cameras BibRef

Ngo, A.C.L.[Anh Cat Le], Ang, L.M.[Li-Minn], Qiu, G.P.[Guo-Ping], Seng, K.P.[Kah Phooi],
Multi-scale visual attention & saliency modelling with decision theory,
ICIP13(216-220)
IEEE DOI 1402
Educational institutions BibRef

Gilani, S.O.[Syed Omer], Subramanian, R.[Ramanathan], Hua, H.[Huang], Winkler, S.[Stefan], Yen, S.C.[Shih-Cheng],
Impact of image appeal on visual attention during photo triaging,
ICIP13(231-235)
IEEE DOI 1402
Cameras BibRef

Roffo, G.[Giorgio], Cristani, M.[Marco], Bazzani, L., Minh, H.Q.[Ha Quang], Murino, V.[Vittorio],
Trusting Skype: Learning the Way People Chat for Fast User Recognition and Verification,
SocialInter13(748-754)
IEEE DOI 1403
Hilbert spaces BibRef

Roffo, G.[Giorgio], Segalin, C.[Cristina], Vinciarelli, A.[Alessandro], Murino, V.[Vittorio], Cristani, M.[Marco],
Reading between the turns: Statistical modeling for identity recognition and verification in chats,
AVSS13(99-104)
IEEE DOI 1311
Correlation BibRef

Roffo, G.[Giorgio], Cristani, M.[Marco], Pollick, F.[Frank], Segalin, C.[Cristina], Murino, V.[Vittorio],
Statistical Analysis of Visual Attentional Patterns for Video Surveillance,
CIARP13(II:520-527).
Springer DOI 1311
BibRef

Zhou, C.L.[Chang-Le], Chen, J.W.[Jia-Wei], Yao, J.L.[Jin-Liang],
A visual attention model for dynamic scenes based on motion features,
ICARCV12(1396-1401).
IEEE DOI 1304
BibRef

Riche, N.[Nicolas], Mancas, M.[Matei], Culibrk, D.[Dubravko], Crnojevic, V.[Vladimir], Gosselin, B.[Bernard],
Dynamic Saliency Models and Human Attention: A Comparative Study on Videos,
ACCV12(III:586-598).
Springer DOI 1304
BibRef

Dave, A.[Akshat], Dubey, R.[Rachit], Ghanem, B.[Bernard],
Do humans fixate on interest points?,
ICPR12(2784-2787).
WWW Link. 1302
BibRef

Huang, T.H.[Tai-Hsiang], Yang, Y.H.[Yung-Hao], Liao, H.I.[Hsin-I], Yeh, S.L.[Su-Ling], Chen, H.H.[Homer H.],
Directing visual attention by subliminal cues,
ICIP12(1081-1084).
IEEE DOI 1302
BibRef

Lu, Y.[Yao], Zhang, W.[Wei], Jin, C.[Cheng], Xue, X.Y.[Xiang-Yang],
Learning attention map from images,
CVPR12(1067-1074).
IEEE DOI 1208
BibRef

Lee, W.F.[Wen-Fu], Huang, T.H.[Tai-Hsiang], Yeh, S.L.[Su-Ling], Chen, H.H.[Homer H.],
Fusion of visual attention cues by machine learning,
ICIP11(3301-3304).
IEEE DOI 1201
BibRef

da Silva, M.P.[Matthieur Perreira], Courboulay, V.[Vincent], Estraillier, P.[Pascal],
Image complexity measure based on visual attention,
ICIP11(3281-3284).
IEEE DOI 1201
BibRef

Fernandez-Carbajales, V., Garcia, M.A., Martinez, J.M.,
Improving the efficiency and accuracy of visual attention,
AVSBS11(349-354).
IEEE DOI 1111
BibRef

da Silva, M.P.[Matthieu Perreira], Courboulay, V.[Vincent], Estraillier, P.[Pascal],
Objective validation of a dynamical and plausible computational model of visual attention,
EUVIP11(223-228).
IEEE DOI 1110
BibRef

Guo, H.[Hairu], Wang, X.J.[Xiao-Jie], Zhong, Y.X.[Yi-Xin], Bi, S.[Song],
An Improved SalBayes Model with GMM,
CAIP11(II: 356-363).
Springer DOI 1109
Visual attention model. BibRef

Aziz, M.Z.[M. Zaheer], Mertsching, B.[Barbel],
Pre-attentive detection of depth saliency using stereo vision,
AIPR10(1-7).
IEEE DOI 1010
Quick estimation of depth for survival. Visual attention to select where it matters. BibRef

Skurikhin, A.N.[Alexei N.],
Visual attention based detection of signs of anthropogenic activities in satellite imagery,
AIPR10(1-8).
IEEE DOI 1010
BibRef

Liu, H.Y.[Hui-Ying], Huang, Q.M.[Qing-Ming], Jiang, S.Q.[Shu-Qiang],
Attention Based Album Slideshow,
PSIVT10(370-375).
IEEE DOI 1011
Display time based on expected attention. BibRef

Chikkerur, S.[Sharat], Poggio, T.[Tomaso], Serre, T.[Thomas],
Attentive processing improves object recognition,
CSAIL(TR-2009-046). 2009-10-02
WWW Link. 1101
Multiple objects at once is easy for people. BibRef

Meyers, E.[Ethan], Embark, H.[Hamdy], Freiwald, W.[Winrich], Serre, T.[Thomas], Kreiman, G.[Gabriel], Poggio, T.[Tomaso],
Examining high level neural representations of cluttered scenes,
CSAIL(TR-2010-034). 2010-07-29
WWW Link. 1101
BibRef

Poggio, T.[Tomaso], Serre, T.[Thomas], Tan, C.[Cheston], Chikkerur, S.[Sharat],
An integrated model of visual attention using shape-based features,
CSAIL(TR-2009-029). 2009-06-20
WWW Link. 1101
Visual attention. Bayesian network. BibRef

Guo, W.[Wen], Xu, C.S.[Chang-Shen], Ma, S.D.[Song-De], Xu, M.[Min],
Visual attention based small object segmentation in natual images,
ICIP10(1565-1568).
IEEE DOI 1009
BibRef

Chen, H.T.[Hwann-Tzong],
Preattentive co-saliency detection,
ICIP10(1117-1120).
IEEE DOI 1009
BibRef

Akman, O.[Oytun], Jonker, P.P.[Pieter P.],
Exploitation of 3D Information for Directing Visual Attention and Object Recognition,
MVA09(50-).
PDF File. 0905
BibRef

Chevallier, S.[Sylvain], Cuperlier, N.[Nicolas], Gaussier, P.[Philippe],
Efficient Neural Models for Visual Attention,
ICCVG10(I: 257-264).
Springer DOI 1009
BibRef

Wei, L.S.[Long-Sheng], Sang, N.[Nong], Wang, Y.H.[Yue-Huan],
A spatiotemporal saliency model of visual attention based on maximum entropy,
CGC10(49).
PDF File. 1006
BibRef

Cao, Y.[Yang], Zhang, L.Q.[Li-Qing],
A Novel Hierarchical Model of Attention: Maximizing Information Acquisition,
ACCV09(I: 224-233).
Springer DOI 0909
BibRef

Dong, L.G.[Li-Geng], Di, H.J.[Hui-Jun], Tao, L.M.[Lin-Mi], Xu, G.Y.[Guang-You], Oliver, P.[Patrick],
Visual Focus of Attention Recognition in the Ambient Kitchen,
ACCV09(III: 548-559).
Springer DOI 0909
BibRef

Judd, T.[Tilke], Ehinger, K.[Krista], Durand, F.[Fredo], Torralba, A.B.[Antonio B.],
Learning to predict where humans look,
ICCV09(2106-2113).
IEEE DOI 0909
BibRef

Atsumi, M.[Masayasu],
Object Categorization in Context Based on Probabilistic Learning of Classification Tree with Boosted Features and Co-occurrence Structure,
ISVC13(I:416-426).
Springer DOI 1310
BibRef
Earlier:
Probabilistic Learning of Visual Object Composition from Attended Segments,
ISVC10(II: 696-705).
Springer DOI 1011
BibRef
Earlier:
A Probabilistic Model of Visual Attention and Perceptual Organization for Constructive Object Recognition,
ISVC09(II: 778-787).
Springer DOI 0911
BibRef

Zhang, J.[Jing], Zhuo, L.[Li], Gao, J.J.[Jing-Jing], Liu, Z.X.[Zhi-Xing],
A Study of Top-Down Visual Attention Model Based on Similarity Distance,

CISP09,
(1-5).
IEEE DOI 0910
BibRef

Zeng, M.[Ming], Li, Y.F.[You-Fu], Meng, Q.H.[Qing-Hao], Qiu, X.J.[Xin-Jie],
Integrating Perceptual Properties of the HVS into the Computational Model of Visual Attention,
CISP09(1-4).
IEEE DOI 0910
BibRef

Schankin, A.[Andrea], Stursberg, O.[Olaf], Schubö, A.[Anna],
The Role of Implicit Context Information in Guiding Visual-Spatial Attention,
CogVis08(93-106).
Springer DOI 0805
BibRef

Milanova, M.[Mariofanna], Rubin, S.[Stuart], Kountchev, R.[Roumen], Todorov, V.[Vladimir], Kountcheva, R.[Roumiana],
Combined visual attention model for video sequences,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Larson, E.C.[Eric C.], Vu, C.[Cuong], Chandler, D.M.[Damon M.],
Can visual fixation patterns improve image fidelity assessment?,
ICIP08(2572-2575).
IEEE DOI 0810
BibRef

Raj, R.G.[Raghu G.], Bovik, A.C.[Alan C.], Cormack, L.K.[Lawrence K.],
Fixation selection by maximization of texure and contrast information,
ICIP08(697-700).
IEEE DOI 0810
BibRef

Chapuis, R.[Roland], Chausse, F.[Frederic], Trujillo, N.[Noel],
Progressive Focusing: A Top Down Attentional Vision System,
ISVC08(I: 468-477).
Springer DOI 0812
BibRef

Erkent, O., Aydin, I.B.[I. Bozma],
Color Based Saccades for Attention Control,
ViA08(xx-yy). 0810
BibRef

Kimura, A.[Akisato], Pang, D.[Derek], Takeuchi, T.[Tatsuto], Yamato, J.J.[Jun-Ji], Kashino, K.[Kunio],
Dynamic Markov random fields for stochastic modeling of visual attention,
ICPR08(1-5).
IEEE DOI 0812
BibRef
And: A2, A1, A3, A4, A5:
A stochastic model of selective visual attention with a dynamic Bayesian network,
ICME08(1073-1076);
WWW Link. Bayes nets. BibRef

Leung, C., Kimura, A.[Akisato], Takeuchi, T.[Tatsuto], Kashino, K.[Kunio],
A computational model of saliency depletion/recovery phenomena for the salient region extraction of videos,
ICME07(300-303).
WWW Link. Video processing, visual attention, early human visual system, saliency depletion, inhibition of return, neural adaptation. BibRef 0700

Rebhan, S.[Sven], Richter, A.[Andreas], Eggert, J.[Julian],
Demand-Driven Visual Information Acquisition,
CVS09(124-133).
Springer DOI 0910
BibRef

Rebhan, S.[Sven], Röhrbein, F.[Florian], Eggert, J.[Julian], Körner, E.[Edgar],
Attention Modulation Using Short- and Long-Term Knowledge,
CVS08(xx-yy).
Springer DOI 0805
BibRef

Chevallier, S.[Sylvain], Tarroux, P.[Philippe],
Covert Attention with a Spiking Neural Network,
CVS08(xx-yy).
Springer DOI 0805
BibRef

Su, S.L.[Sara L.], Durand, F.[Fredo], Agrawala, M.[Maneesh],
De-Emphasis of Distracting Image Regions Using Texture Power Maps,
CSAIL-2005-025, April 2005.
WWW Link. BibRef 0504

Zhang, S.J.[Shi-Jie], Stentiford, F.[Fred],
Motion Detection using a Model of Visual Attention,
ICIP07(III: 513-516).
IEEE DOI 0709
BibRef

Vintila, F.D., Tsotsos, J.K.[John K.],
Motion Estimation Using a General Purpose Neural Network Simulator for Visual Attention,
WACV07(19-19).
IEEE DOI 0702
BibRef

Pereira, E.T.[Eanes T.], Gomes, H.M.[Herman M.],
Guiding a Bottom-Up Visual Attention Mechanism to Locate Specific Image Regions Using a Distributed Genetic Optimization,
CIARP06(257-266).
Springer DOI 0611
BibRef

Shilston, R., Stentiford, F.,
An Attention Based Focus Control System,
ICIP06(425-428).
IEEE DOI 0610
BibRef

Orabona, F., Metta, G., Sandini, G.,
Object-based Visual Attention: a Model for a Behaving Robot,
AttenPerf05(III: 89-89).
IEEE DOI 0507
BibRef

Bonaiuto, J.J., Itti, L.,
Combining attention and recognition for rapid scene analysis,
AttenPerf05(III: 90-90).
IEEE DOI 0507
BibRef

Raj, R.G.[Raghu G.], Bovik, A.C.[Alan C.], Geisler, W.S.[Wilson S.],
Non-Stationarity Detection in Natural Images,
ICIP07(III: 305-308).
IEEE DOI 0709
BibRef

Raj, R.G., Geisler, W.S., Frazor, R.A., Bovik, A.C.,
Natural Contrast Statistics and the Selection of Visual Fixations,
ICIP05(III: 1152-1155).
IEEE DOI 0512
BibRef

Pittore, M., Cappello, M., Ancona, M., Scagliola, N.,
Role of Image Recognition in Defining the User's Focus of Attention in 3G Phone Applications: The Agamemnon Experience,
ICIP05(III: 1012-1015).
IEEE DOI 0512
BibRef

Bernardino, A.[Alexandre], Santos-Victor, J.[José],
A Real-Time Gabor Primal Sketch for Visual Attention,
IbPRIA05(I:335).
Springer DOI 0509
BibRef

Han, J.W.[Jun-Wei], Ngan, K.N.[King N.], Li, M.J.[Ming-Jing], Zhang, H.J.[Hong-Jiang],
Towards unsupervised attention object extraction by integrating visual attention and object growing,
ICIP04(II: 941-944).
IEEE DOI 0505
BibRef

Schneider, R.[Robert], Riesenhuber, M.[Maximilian],
On the difficulty of feature-based attentional modulations in visual object recognition: A modeling study.,
MIT AIM-2004-004, January 14, 2004.
WWW Link. 0501
BibRef

Oliva, A., Torralba, A.B., Castelhano, M.S., Henderson, J.M.,
Top-down control of visual attention in object detection,
ICIP03(I: 253-256).
IEEE DOI 0312
BibRef

Bruce, N.D.B., Jernigan, M.E.,
Evolutionary design of context-free attentional operators,
ICIP03(I: 429-432).
IEEE DOI 0312
BibRef

Nuchter, A., Surmann, H., Hertzberg, J.,
Automatic model refinement for 3D reconstruction with mobile robots,
3DIM03(394-401).
IEEE DOI 0311
BibRef

Koike, T.[Takahiko], Saiki, J.[Jun],
Stochastic Guided Search Model for Search Asymmetries in Visual Search Tasks,
BMCV02(408 ff.).
Springer DOI 0303
BibRef

Park, S.J.[Sang-Jae], Shin, J.K.[Jang-Kyoo], Lee, M.H.[Min-Ho],
Biologically Inspired Saliency Map Model for Bottom-up Visual Attention,
BMCV02(418 ff.).
Springer DOI 0303
BibRef

Sun, Y.[Yaoru], Fisher, R.B.[Robert B.],
Hierarchical Selectivity for Object-Based Visual Attention,
BMCV02(427 ff.).
Springer DOI 0303
BibRef

Navalpakkam, V.[Vidhya], Itti, L.[Laurent],
An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed,
CVPR06(II: 2049-2056).
IEEE DOI 0606
BibRef
Earlier:
A Goal Oriented Attention Guidance Model,
BMCV02(453 ff.).
Springer DOI 0303
BibRef

Ramström, O.[Ola], Christensen, H.I.[Henrik I.],
Visual Attention Using Game Theory,
BMCV02(462 ff.).
Springer DOI 0303
BibRef

Rutishauser, U., Walther, D., Koch, C., Perona, P.,
Is bottom-up attention useful for object recognition?,
CVPR04(II: 37-44).
IEEE DOI 0408
BibRef

Walther, D.B.[Dirk B.], Itti, L.[Laurent], Riesenhuber, M.[Maximilian], Poggio, T.[Tomaso], Koch, C.[Christof],
Attentional Selection for Object Recognition: A Gentle Way,
BMCV02(472 ff.).
Springer DOI 0303
BibRef

Cheoi, K., Lee, Y.,
A Feature-Driven Attention Module for an Active Vision System,
DAGM02(583 ff.).
Springer DOI 0303
BibRef

Backer, G., Mertsching, B.,
Evaluation of Attentional Control in Active Vision Systems Using a 3D Simulation Framework,
WSCG02(32).
HTML Version. 0209
BibRef

Ouerhani, N.[Nabil], Hügli, H.[Heinz],
Computing Visual Attention from Scene Depth,
ICPR00(Vol I: 375-378).
IEEE DOI 0009
BibRef

Matsuyama, T., Hiura, S., Wada, T., Murase, K., Yoshioka, A.,
Dynamic Memory: Architecture for Real Time Integration of Visual Perception, Camera Action, and Network Communication,
CVPR00(II: 728-735).
IEEE DOI 0005
BibRef

Ahrns, I.[Ingo], Neumann, H.[Heiko],
Space-Variant Dynamic Neural Fields for Visual Attention,
CVPR99(II: 313-318).
IEEE DOI BibRef 9900

Gallet, O., Gaussier, P., Cocquerez, J.P.,
A model of the visual attention to speed up image analysis,
ICIP98(I: 246-250).
IEEE DOI 9810
BibRef

Pessoa, L.[Luiz], Exel, S.[Sergio],
Attentive Visual Recognition,
ICPR98(Vol I: 690-692).
IEEE DOI 9808
BibRef

Westlius, C.J.[Carl-Johan], Westin, C.F.[Carl-Fredrik], and Knutsson, H.[Hans],
Attention Control for Robot Vision,
CVPR96(726-733).
IEEE DOI BibRef 9600

Grove, T.D., and Fisher, R.B.,
Attention in Iconic Object Matching,
BMVC96(Model Fitting, Matching, Recognition). 9608
BibRef
And: DAINo. 819, July 1996. BibRef EdinburghUniversity of Edinburgh. BibRef

Takacs, B., Wechsler, H.,
Attention and Pattern Detection Using Sensory and Reactive Control Mechanisms,
ICPR96(IV: 19-23).
IEEE DOI 9608
(George Mason Univ., USA) BibRef

Gribble, W.S.,
Slow Visual Search in a Fast-Changing World,
SCV95(515-520).
IEEE DOI University of Texas at Austin. BibRef 9500

Abbott, A.L., Zheng, B.,
Active Fixation Using Attentional Shifts, Affine Resampling, and Multiresolution Search,
ICCV95(1002-1008).
IEEE DOI BibRef 9500

Clark, J.J., Ferrier, N.J.,
Modal Control of an Attentive Vision System,
ICCV88(514-523).
IEEE DOI BibRef 8800

Milanese, R., Wechsler, H., Gil, S., Bost, J.M., Pun, T.,
Integration of Bottom-Up and Top-Down Cues for Visual Attention Using Non-Linear Relaxation,
CVPR94(781-785).
IEEE DOI BibRef 9400

Grimson, W.E.L., Klanderman, G., O'Donnell, P.A., and Ratan, A.L.[A. Lakshmi],
An Active Visual Attention System to 'Play Where's Waldo',
ARPA94(II:1059-1065). BibRef 9400

Ratan, A.L.[Aparna Lakshmi],
The Role of Fixation and Visual Attention in Object Recognition,
MIT AI-TR-1529, July 1995.
WWW Link. BibRef 9507

Burt, P.J.,
Attention Mechanisms for Vision in a Dynamic World,
ICPR88(II: 977-987).
IEEE DOI BibRef 8800

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Human Attention, Gaze, Eye Tracking .


Last update:Nov 26, 2024 at 16:40:19