FCVID: Fudan-Columbia Video Dataset,
WWW Link.
Dataset, Activity Recognition. 90,000+ videos, manually annotated for 239 categories.
Human activities.
Stauffer, C.[Chris],
Grimson, W.E.L.[W. Eric L.],
Learning Patterns of Activity Using Real-Time Tracking,
PAMI(22), No. 8, August 2000, pp. 747-757.
IEEE DOI
0010
Using the 24 hour data from tracking motion, learn the different patterns,
especially to see things that don't fit.
Motion segmentation uses adaptive background subtraction with an updated model.
Objects are not recognized, but identity is maintained throught the track.
BibRef
Stauffer, C.[Chris],
Automated Audio-visual Activity Analysis,
CSAIL-2005-057, September 2005.
WWW Link.
BibRef
0509
Gong, S.G.[Shao-Gang],
Ng, J.[Jeffrey],
Sherrah, J.[Jamie],
On the semantics of visual behaviour, structured events and
trajectories of human action,
IVC(20), No. 12, October 2002, pp. 873-888.
Elsevier DOI
0210
BibRef
Ng, J.,
Gong, S.G.[Shao-Gang],
On the binding mechanism of synchronised visual events,
Motion02(112-117).
IEEE DOI
0303
BibRef
Kawanaka, D.[Daiki],
Okatani, T.[Takayuki],
Deguchi, K.[Koichiro],
HHMM Based Recognition of Human Activity,
IEICE(E89-D), No. 7, July 2006, pp. 2180-2185.
DOI Link
0607
BibRef
Robertson, N.M.[Neil M.],
Reid, I.D.[Ian D.],
A general method for human activity recognition in video,
CVIU(103), No. 2-3, November-December 2006, pp. 232-248.
Elsevier DOI
0611
BibRef
Earlier:
Behaviour Understanding in Video: A Combined Method,
ICCV05(I: 808-815).
IEEE DOI
0510
Visual surveillance; Human activity recognition; Video annotation
BibRef
Robertson, N.M.[Neil M.],
Reid, I.D.[Ian D.],
Automatic Reasoning about Causal Events in Surveillance Video,
JIVP(2011), No. 2011, pp. xx-yy.
DOI Link
1103
BibRef
Hsieh, J.W.[Jun-Wei],
Hsu, Y.T.[Yung-Tai],
Boosted string representation and its application to video surveillance,
PR(41), No. 10, October 2008, pp. 3078-3091.
Elsevier DOI
0808
Behavior analysis; Centroid contexts; String matching; Boosting algorithm
BibRef
Lin, W.,
Sun, M.T.,
Poovendran, R.,
Zhang, Z.,
Activity Recognition Using a Combination of Category Components and
Local Models for Video Surveillance,
CirSysVideo(18), No. 8, August 2008, pp. 1128-1139.
IEEE DOI
0809
See also Group Event Detection With a Varying Number of Group Members for Video Surveillance.
BibRef
Shen, J.,
Tao, D.,
Li, X.,
Modality Mixture Projections for Semantic Video Event Detection,
CirSysVideo(18), No. 11, November 2008, pp. 1587-1596.
IEEE DOI
0811
BibRef
Duong, T.V.[Thi V.],
Phung, D.Q.[Dinh Q.],
Bui, H.H.[Hung H.],
Venkatesh, S.[Svetha],
Efficient duration and hierarchical modeling for human activity
recognition,
AI(173), No. 7-8, May 2009, pp. 830-856.
Elsevier DOI
0904
Duration modeling; Coxian; Hidden semi-Markov model; Human activity
recognition; Smart surveillance
BibRef
Kim, Y.,
Ling, H.,
Human Activity Classification Based on Micro-Doppler Signatures Using a
Support Vector Machine,
GeoRS(47), No. 5, May 2009, pp. 1328-1337.
IEEE DOI
0904
BibRef
Qian, H.M.[Hui-Min],
Mao, Y.B.[Yao-Bin],
Xiang, W.B.[Wen-Bo],
Wang, Z.Q.[Zhi-Quan],
Recognition of human activities using SVM multi-class classifier,
PRL(31), No. 2, 15 January 2010, pp. 100-111.
Elsevier DOI
1001
Human activity recognition; Background subtraction; CCMEI; Support
vector machine; Decision tree classifier
BibRef
Benabbas, Y.[Yassine],
Ihaddadene, N.[Nacim],
Djeraba, C.[Chaabane],
Motion Pattern Extraction and Event Detection for Automatic Visual
Surveillance,
JIVP(2011), No. 2011, pp. xx-yy.
DOI Link
1103
BibRef
Benabbas, Y.[Yassine],
Lablack, A.[Adel],
Ihaddadene, N.[Nacim],
Djeraba, C.[Chabane],
Action Recognition Using Direction Models of Motion,
ICPR10(4295-4298).
IEEE DOI
1008
BibRef
Siirtola, P.[Pekka],
Koskimäki, H.[Heli],
Huikari, V.[Ville],
Laurinen, P.[Perttu],
Röning, J.[Juha],
Improving the classification accuracy of streaming data using SAX
similarity features,
PRL(32), No. 13, 1 October 2011, pp. 1659-1668.
Elsevier DOI
1109
Activity recognition; Classification; Symbolic dynamics; SAX
BibRef
Mandal, B.[Bappaditya],
Eng, H.L.[How-Lung],
Regularized Discriminant Analysis for Holistic Human Activity
Recognition,
IEEE_Int_Sys(27), No. 1, January-February 2012, pp. 21-31.
IEEE DOI
1203
BibRef
Iosifidis, A.[Alexandros],
Tefas, A.[Anastasios],
Nikolaidis, N.[Nikolaos],
Pitas, I.[Ioannis],
Multi-View Human Movement Recognition Based on Fuzzy Distances and
Linear Discriminant Analysis,
CVIU(116), No. 3, March 2012, pp. 347-360.
Elsevier DOI
1201
Activity recognition; Multi-view dynemes; Fuzzy vector quantization;
Linear discriminant analysis
See also Combining Fuzzy Vector Quantization With Linear Discriminant Analysis for Continuous Human Movement Recognition.
BibRef
Kulkarni, K.[Kuldeep],
Turaga, P.K.[Pavan K.],
Reconstruction-Free Action Inference from Compressive Imagers,
PAMI(38), No. 4, April 2016, pp. 772-784.
IEEE DOI
1603
BibRef
Earlier:
Recurrence textures for human activity recognition from compressive
cameras,
ICIP12(1417-1420).
IEEE DOI
1302
BibRef
Beaudry, C.[Cyrille],
Péteri, R.[Renaud],
Mascarilla, L.[Laurent],
An efficient and sparse approach for large scale human action
recognition in videos,
MVA(27), No. 4, May 2016, pp. 529-543.
WWW Link.
1605
BibRef
Earlier:
Human activity recognition in the semantic simplex of elementary
actions,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Earlier:
Action recognition in videos using frequency analysis of critical
point trajectories,
ICIP14(1445-1449)
IEEE DOI
1502
Estimation
BibRef
Iosifidis, A.[Alexandros],
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Gabbouj, M.[Moncef],
Big Media Data Analysis,
SP:IC(59), No. 1, 2017, pp. 105-108.
Elsevier DOI
1711
Big Media Data.
BibRef
Mademlis, I.,
Tefas, A.,
Pitas, I.,
Summarization of human activity videos using a salient dictionary,
ICIP17(625-629)
IEEE DOI
1803
Clustering algorithms, Dictionaries, Feature extraction,
Optimization, Semantics, Videos, Visualization,
Video Summarization
BibRef
Cao, G.Q.[Guan-Qun],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Multi-View Nonparametric Discriminant Analysis for Image Retrieval
and Recognition,
SPLetters(24), No. 10, October 2017, pp. 1537-1541.
IEEE DOI
1710
Gaussian distribution, image retrieval,
nonparametric statistics, optimisation,
Gaussian distribution assumption,
multiview class structures,
optimization criterion, zero-shot recognition,
Gaussian distribution,
Laplace equations,
BibRef
Cao, G.Q.[Guan-Qun],
Iosifidis, A.[Alexandros],
Chen, K.,
Gabbouj, M.[Moncef],
Generalized Multi-View Embedding for Visual Recognition and
Cross-Modal Retrieval,
Cyber(48), No. 9, September 2018, pp. 2542-2555.
IEEE DOI
1809
feature extraction, graph theory, image recognition,
image retrieval, learning (artificial intelligence),
visual recognition
BibRef
Iosifidis, A.[Alexandros],
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Class-Specific Reference Discriminant Analysis With Application in
Human Behavior Analysis,
HMS(45), No. 3, June 2015, pp. 315-326.
IEEE DOI
1506
BibRef
Earlier:
Semi-supervised Classification of Human Actions Based on Neural
Networks,
ICPR14(1336-1341)
IEEE DOI
1412
Accuracy; Databases; Neurons; Optimization; Training; Training data; Vectors.
Face recognition
See also Multi-View Human Movement Recognition Based on Fuzzy Distances and Linear Discriminant Analysis.
BibRef
Iosifidis, A.[Alexandros],
Tefas, A.[Anastastios],
Pitas, I.[Ioannis],
Kernel Reference Discriminant Analysis,
PRL(49), No. 1, 2014, pp. 85-91.
Elsevier DOI
1410
Kernel Discriminant Analysis
BibRef
Holte, M.B.,
Moeslund, T.B.,
Nikolaidis, N.,
Pitas, I.,
3D Human Action Recognition for Multi-view Camera Systems,
3DIMPVT11(342-349).
IEEE DOI
1109
BibRef
Lu, S.Y.[Shi-Yang],
Zhang, J.[Jian],
Wang, Z.Y.[Zhi-Yong],
Feng, D.D.[David Dagan],
Fast human action classification and VOI localization with enhanced
sparse coding,
JVCIR(24), No. 2, February 2013, pp. 127-136.
Elsevier DOI
1302
Human action classification; Localization; Sparse coding; Volume of
Interest (VOI)
BibRef
Yao, T.T.[Ting-Ting],
Wang, Z.Y.[Zhi-Yong],
Xie, Z.[Zhao],
Gao, J.[Jun],
Feng, D.D.[David Dagan],
Learning universal multiview dictionary for human action recognition,
PR(64), No. 1, 2017, pp. 236-244.
Elsevier DOI
1701
Dictionary learning
BibRef
Chakraborty, B.[Bhaskar],
Gonzŕlez, J.[Jordi],
Roca, F.X.[F. Xavier],
Large scale continuous visual event recognition using max-margin
Hough transformation framework,
CVIU(117), No. 10, 2013, pp. 1356-1368.
Elsevier DOI
1309
Continuous visual event
BibRef
Melfi, R.[Roberto],
Kondra, S.[Shripad],
Petrosino, A.[Alfredo],
Human activity modeling by spatio temporal textural appearance,
PRL(34), No. 15, 2013, pp. 1990-1994.
Elsevier DOI
1309
Human action modeling
BibRef
Wang, H.R.[Hao-Ran],
Yuan, C.F.[Chun-Feng],
Hu, W.M.[Wei-Ming],
Ling, H.B.[Hai-Bin],
Yang, W.K.[Wan-Kou],
Sun, C.Y.[Chang-Yin],
Action Recognition Using Nonnegative Action Component Representation
and Sparse Basis Selection,
IP(23), No. 2, February 2014, pp. 570-581.
IEEE DOI
1402
graph theory
BibRef
Chen, H.S.[Hsuan-Sheng],
Tsai, W.J.[Wen-Jiin],
A framework for video event classification by modeling temporal
context of multimodal features using HMM,
JVCIR(25), No. 2, 2014, pp. 285-295.
Elsevier DOI
1402
Multimedia system
BibRef
Myers, G.K.[Gregory K.],
Nallapati, R.[Ramesh],
van Hout, J.[Julien],
Pancoast, S.[Stephanie],
Nevatia, R.[Ramakant],
Sun, C.[Chen],
Habibian, A.[Amirhossein],
Koelma, D.C.[Dennis C.],
van de Sande, K.E.A.[Koen E. A.],
Smeulders, A.W.M.[Arnold W. M.],
Snoek, C.G.M.[Cees G. M.],
Evaluating multimedia features and fusion for example-based event
detection,
MVA(25), No. 1, January 2014, pp. 17-32.
Springer DOI
1402
Overview of large project.
BibRef
Kovvuri, R.[Rama],
Nevatia, R.[Ram],
Snoek, C.G.M.[Cees G. M.],
Segment-based models for event detection and recounting,
ICPR16(3868-3873)
IEEE DOI
1705
Computational modeling, Detectors, Dictionaries,
Hidden Markov models, Semantics, Testing, Training
BibRef
Chen, K.[Kan],
Kovvuri, R.[Rama],
Gao, J.Y.[Ji-Yang],
Nevatia, R.[Ram],
MSRC: multimodal spatial regression with semantic context for phrase
grounding,
MultInfoRetr(8), No. 1, March 2018, pp. 17-28.
Springer DOI
1802
BibRef
Earlier: A1, A2, A4, Only:
Query-Guided Regression Network with Context Policy for Phrase
Grounding,
ICCV17(824-832)
IEEE DOI
1802
document image processing, learning (artificial intelligence),
query processing, regression analysis, Context Policy Network,
Localize the object based on query phrases.
BibRef
Kovvuri, R.[Rama],
Nevatia, R.[Ram],
PIRC Net: Using Proposal Indexing, Relationships and Context for Phrase
Grounding,
ACCV18(IV:451-467).
Springer DOI
1906
BibRef
Agharwal, A.[Arnav],
Kovvuri, R.[Rama],
Nevatia, R.[Ram],
Snoek, C.G.M.[Cees G. M.],
Tag-based video retrieval by embedding semantic content in a
continuous word space,
WACV16(1-8)
IEEE DOI
1511
event retrieval in unconstrained web videos.
Detectors
BibRef
Habibian, A.[Amirhossein],
Snoek, C.G.M.[Cees G.M.],
Recommendations for recognizing video events by concept vocabularies,
CVIU(124), No. 1, 2014, pp. 110-122.
Elsevier DOI
1406
Event recognition
BibRef
Habibian, A.[Amirhossein],
Mensink, T.,
Snoek, C.G.M.[Cees G.M.],
Video2vec Embeddings Recognize Events When Examples Are Scarce,
PAMI(39), No. 10, October 2017, pp. 2089-2103.
IEEE DOI
1709
Correlation, Feature extraction, NIST, Semantics, Training, Vehicles,
Visualization, Event recognition, representation learning,
semantic, video, representation
BibRef
Oh, S.M.[Sang-Min],
McCloskey, S.[Scott],
Kim, I.[Ilseo],
Vahdat, A.[Arash],
Cannons, K.J.[Kevin J.],
Hajimirsadeghi, H.[Hossein],
Mori, G.[Greg],
Perera, A.G.A.[A. G. Amitha],
Pandey, M.[Megha],
Corso, J.J.[Jason J.],
Multimedia event detection with multimodal feature fusion and temporal
concept localization,
MVA(25), No. 1, January 2014, pp. 49-69.
Springer DOI
1402
BibRef
Streib, K.[Kevin],
Davis, J.W.[James W.],
Summarizing high-level scene behavior,
MVA(25), No. 1, January 2014, pp. 229-244.
Springer DOI
1402
Both optical flow and trajectories to summarize.
See also Exploiting Multiple Cameras for Environmental Pathlets.
BibRef
O'Malley, M.K.,
Purkayastha, S.N.,
Howie, N.,
Byrne, M.D.,
Identifying Successful Motor Task Completion via Motion-Based
Performance Metrics,
HMS(44), No. 1, February 2014, pp. 139-145.
IEEE DOI
1403
control engineering computing
BibRef
Lin, W.Y.,
Chen, Y.Z.,
Wu, J.,
Wang, H.,
Sheng, B.,
Li, H.X.,
A New Network-Based Algorithm for Human Activity Recognition in
Videos,
CirSysVideo(24), No. 5, May 2014, pp. 826-841.
IEEE DOI
1405
Correlation
BibRef
Chen, Y.Z.[Yuan-Zhe],
Lin, W.Y.[Wei-Yao],
Li, H.X.[Hong-Xiang],
Luo, H.Z.[Hang-Zai],
Tao, Y.[Yisi],
Liu, D.H.[Dong-Hua],
A new package-group-transmission-based algorithm for human activity
recognition in videos,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Kwak, S.[Suha],
Han, B.H.[Bo-Hyung],
Han, J.H.[Joon Hee],
On-Line Video Event Detection by Constraint Flow,
PAMI(36), No. 6, June 2014, pp. 1174-1186.
IEEE DOI
1406
BibRef
Earlier:
Multi-agent Event Detection: Localization and Role Assignment,
CVPR13(2682-2689)
IEEE DOI
1309
Event detection.
activity detection; video event detection
BibRef
Ferrer, G.[Gonzalo],
Sanfeliu, A.[Alberto],
Bayesian Human Motion Intentionality Prediction in urban environments,
PRL(44), No. 1, 2014, pp. 134-140.
Elsevier DOI
1407
Human motion prediction
BibRef
Fouhey, D.F.[David F.],
Delaitre, V.[Vincent],
Gupta, A.[Abhinav],
Efros, A.A.[Alexei A.],
Laptev, I.[Ivan],
Sivic, J.[Josef],
People Watching: Human Actions as a Cue for Single View Geometry,
IJCV(110), No. 1, December 2014, pp. 259-274.
Springer DOI
1411
BibRef
Earlier:
ECCV12(V: 732-745).
Springer DOI
1210
BibRef
Delaitre, V.[Vincent],
Fouhey, D.F.[David F.],
Laptev, I.[Ivan],
Sivic, J.[Josef],
Gupta, A.[Abhinav],
Efros, A.A.[Alexei A.],
Scene Semantics from Long-Term Observation of People,
ECCV12(VI: 284-298).
Springer DOI
1210
BibRef
Yu, G.[Gang],
Yuan, J.S.[Jun-Song],
Liu, Z.C.[Zi-Cheng],
Propagative Hough Voting for Human Activity Detection and Recognition,
CirSysVideo(25), No. 1, January 2015, pp. 87-98.
IEEE DOI
1502
BibRef
Earlier:
Propagative Hough Voting for Human Activity Recognition,
ECCV12(III: 693-706).
Springer DOI
1210
feature extraction
BibRef
Yang, D.Q.[Ding-Qi],
Zhang, D.Q.[Da-Qing],
Zheng, V.W.,
Yu, Z.Y.[Zhi-Yong],
Modeling User Activity Preference by Leveraging User Spatial Temporal
Characteristics in LBSNs,
SMCS(45), No. 1, January 2015, pp. 129-142.
IEEE DOI
1502
mobile computing. Tracking info not image based.
BibRef
Baxter, R.H.[Rolf H.],
Robertson, N.M.[Neil M.],
Lane, D.M.[David M.],
Human behaviour recognition in data-scarce domains,
PR(48), No. 8, 2015, pp. 2377-2393.
Elsevier DOI
1505
Behavior recognition
BibRef
Chuang, C.H.[Chi-Hung],
Hsieh, J.W.[Jun-Wei],
Chiang, H.F.[Hui-Fen],
Chiou, Y.D.[Yi-Da],
Human movement analysis around a view circle using time-order
similarity distributions,
JVCIR(30), No. 1, 2015, pp. 22-34.
Elsevier DOI
1507
Video surveillance
BibRef
Jiang, Y.G.,
Dai, Q.,
Mei, T.,
Rui, Y.,
Chang, S.F.,
Super Fast Event Recognition in Internet Videos,
MultMed(17), No. 8, August 2015, pp. 1174-1186.
IEEE DOI
1506
Feature extraction
BibRef
Lee, K.[Kyuhwa],
Ognibene, D.,
Chang, H.J.[Hyung Jin],
Kim, T.K.[Tae-Kyun],
Demiris, Y.,
STARE: Spatio-Temporal Attention Relocation for Multiple Structured
Activities Detection,
IP(24), No. 12, December 2015, pp. 5916-5927.
IEEE DOI
1512
computer vision
BibRef
Anirudh, R.[Rushil],
Turaga, P.K.[Pavan K.],
Geometry-Based Symbolic Approximation for Fast Sequence Matching on
Manifolds,
IJCV(116), No. 2, January 2016, pp. 161-173.
Springer DOI
1602
BibRef
Arai, A.[Ayumi],
Fan, Z.[Zipei],
Matekenya, D.[Dunstan],
Shibasaki, R.[Ryosuke],
Comparative Perspective of Human Behavior Patterns to Uncover
Ownership Bias among Mobile Phone Users,
IJGI(5), No. 6, 2016, pp. 85.
DOI Link
1608
BibRef
Barrett, D.P.[Daniel Paul],
Barbu, A.[Andrei],
Siddharth, N.,
Siskind, J.M.[Jeffrey Mark],
Saying What You're Looking For: Linguistics Meets Video Search,
PAMI(38), No. 10, October 2016, pp. 2069-2081.
IEEE DOI
1609
BibRef
Earlier: A3, A2, A4, Only:
Seeing What You're Told:
Sentence-Guided Activity Recognition in Video,
CVPR14(732-739)
IEEE DOI
1409
Detectors.
Text (language) guided analysis.
BibRef
Barrett, D.P.[Daniel Paul],
Siskind, J.M.[Jeffrey Mark],
Action Recognition by Time Series of Retinotopic Appearance and
Motion Features,
CirSysVideo(26), No. 12, December 2016, pp. 2250-2263.
IEEE DOI
1612
Computational modeling
BibRef
Guo, Y.[Yanan],
Tao, D.P.[Da-Peng],
Cheng, J.[Jun],
Dougherty, A.[Alan],
Li, Y.T.[Yao-Tang],
Yue, K.[Kun],
Zhang, B.[Bob],
Tensor Manifold Discriminant Projections for Acceleration-Based Human
Activity Recognition,
MultMed(18), No. 10, October 2016, pp. 1977-1987.
IEEE DOI
1610
feature extraction
BibRef
de Souza, F.D.M.[Fillipe D. M.],
Sarkar, S.[Sudeep],
Srivastava, A.[Anuj],
Su, J.Y.[Jing-Yong],
Spatially Coherent Interpretations of Videos Using Pattern Theory,
IJCV(121), No. 1, January 2017, pp. 5-25.
Springer DOI
1702
BibRef
Earlier:
Temporally coherent interpretations for long videos using pattern
theory,
CVPR15(1229-1237)
IEEE DOI
1510
BibRef
Earlier:
Pattern Theory-Based Interpretation of Activities,
ICPR14(106-111)
IEEE DOI
1412
BibRef
Aakur, S.N.[Sathyanarayanan N.],
Sarkar, S.[Sudeep],
A Perceptual Prediction Framework for Self Supervised Event
Segmentation,
CVPR19(1197-1206).
IEEE DOI
2002
BibRef
Aakur, S.N.[Sathyanarayanan N.],
de Souza, F.D.M.[Fillipe D. M.],
Sarkar, S.[Sudeep],
Going Deeper With Semantics: Video Activity Interpretation Using
Semantic Contextualization,
WACV19(190-199)
IEEE DOI
1904
BibRef
Earlier:
Towards a Knowledge-Based Approach for Generating Video Descriptions,
CRV17(24-31)
IEEE DOI
1804
common-sense reasoning, knowledge based systems,
semantic networks, video signal processing, Knowledge based systems.
hidden Markov models, learning (artificial intelligence), Semantic coherence
BibRef
Azhar, F.,
Li, C.T.,
Hierarchical Relaxed Partitioning System for Activity Recognition,
Cyber(47), No. 3, March 2017, pp. 784-795.
IEEE DOI
1702
Computational modeling
BibRef
Wang, L.,
Zhao, X.,
Si, Y.,
Cao, L.,
Liu, Y.,
Context-Associative Hierarchical Memory Model for Human Activity
Recognition and Prediction,
MultMed(19), No. 3, March 2017, pp. 646-659.
IEEE DOI
1702
Computational modeling
BibRef
Wang, B.Y.[Bo-Yue],
Hu, Y.L.[Yong-Li],
Gao, J.B.[Jun-Bin],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
Laplacian LRR on Product Grassmann Manifolds for Human Activity
Clustering in Multicamera Video Surveillance,
CirSysVideo(27), No. 3, March 2017, pp. 554-566.
IEEE DOI
1703
LRR: Low Rank Representation.
Cameras
BibRef
Hu, Y.L.[Yong-Li],
Luo, C.C.[Cui-Cui],
Gao, J.B.[Jun-Bin],
Wang, B.Y.[Bo-Yue],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
Shareability-Exclusivity Representation on Product Grassmann
Manifolds for Multi-camera video clustering,
JVCIR(84), 2022, pp. 103457.
Elsevier DOI
2204
Multi-camera video clustering, Grassmann manifolds, Product Grassmann manifolds
BibRef
Lai, S.F.[Shao-Fan],
Zheng, W.S.[Wei-Shi],
Hu, J.F.[Jian-Fang],
Zhang, J.G.[Jian-Guo],
Global-Local Temporal Saliency Action Prediction,
IP(27), No. 5, May 2018, pp. 2272-2285.
IEEE DOI
1804
Action from partial observation.
Sequence as a whole and individual parts.
feature extraction, image motion analysis, image sequences,
learning (artificial intelligence), video signal processing,
gapfilling
BibRef
Qin, Z.[Zhen],
Shelton, C.R.[Christian R.],
Event Detection in Continuous Video:
An Inference in Point Process Approach,
IP(26), No. 12, December 2017, pp. 5680-5691.
IEEE DOI
1710
high-level semantic events,
Inference algorithms, Semantics,
BibRef
Wu, C.X.[Chen-Xia],
Zhang, J.[Jiemi],
Sener, O.,
Selman, B.,
Savarese, S.[Silvio],
Saxena, A.[Ashutosh],
Watch-n-Patch: Unsupervised Learning of Actions and Relations,
PAMI(40), No. 2, February 2018, pp. 467-481.
IEEE DOI
1801
BibRef
Earlier: A1, A2, A5, A6, Only:
Watch-n-patch: Unsupervised understanding of actions and relations,
CVPR15(4362-4370)
IEEE DOI
1510
Bayes methods, Dairy products,
Hidden Markov models, Microwave FETs, Robots, Skeleton,
robot application
BibRef
Georgakis, C.[Christos],
Panagakis, Y.[Yannis],
Pantic, M.[Maja],
Dynamic Behavior Analysis via Structured Rank Minimization,
IJCV(126), No. 2-4, April 2018, pp. 333-357.
Springer DOI
1804
Experiments on 3 distinct dynamic behavior analysis tasks,
conflict intensity prediction, prediction of valence and arousal,
and tracklet matching.
BibRef
Akhtar, Z.,
Falk, T.H.,
Visual Nonverbal Behavior Analysis: The Path Forward,
MultMedMag(25), No. 2, April 2018, pp. 47-60.
IEEE DOI
1808
Visualization, Signal processing, Multimedia communication,
Social factors, Human computer interaction, multimedia,
multimodal
BibRef
Jordao, A.[Artur],
Torres, L.A.B.[Leonardo Antônio Borges],
Schwartz, W.R.[William Robson],
Novel approaches to human activity recognition based on accelerometer
data,
SIViP(12), No. 7, October 2018, pp. 1387-1394.
Springer DOI
1809
BibRef
Igor, L.O.B.[L.O. Bastos],
de Melo, V.H.C.[Victor H.C.],
Schwartz, W.R.[William Robson],
Bubblenet: A Disperse Recurrent Structure To Recognize Activities,
ICIP20(2216-2220)
IEEE DOI
2011
Videos, Activity recognition,
Feature extraction, Employment,
Dispersed recurrent layer
BibRef
Naqvi, S.M.A.[Syed Moeen Ali],
Yoon, M.[Myung_Keun],
Finding Widespread Events with Simple Bitmaps,
IEICE(E101-D), No. 12, December 2018, pp. 3246-3248.
WWW Link.
1812
BibRef
Marfil, R.[Rebeca],
Dias, J.[Jorge],
Bandera, A.[Antonio],
Azzopardi, G.[George],
Cooperative and Social Robots: Understanding Human Activities and
Intentions,
PRL(118), 2019, pp. 1-2.
Elsevier DOI
1902
BibRef
Menda, K.[Kunal],
Chen, Y.C.[Yi-Chun],
Grana, J.[Justin],
Bono, J.W.[James W.],
Tracey, B.D.[Brendan D.],
Kochenderfer, M.J.[Mykel J.],
Wolpert, D.[David],
Deep Reinforcement Learning for Event-Driven Multi-Agent Decision
Processes,
ITS(20), No. 4, April 2019, pp. 1259-1268.
IEEE DOI
1904
Aerospace electronics, Aircraft,
Learning (artificial intelligence), Computational modeling,
multi-agent systems
BibRef
Ren, Z.[Zheng],
Jiang, B.[Bin],
Seipel, S.[Stefan],
Capturing and Characterizing Human Activities Using Building
Locations in America,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Jelodar, A.B.,
Paulius, D.,
Sun, Y.,
Long Activity Video Understanding Using Functional Object-Oriented
Network,
MultMed(21), No. 7, July 2019, pp. 1813-1824.
IEEE DOI
1906
Knowledge representation, Knowledge based systems,
Object oriented modeling, Activity recognition, Pipelines,
video knowledge representation
BibRef
Wei, Y.W.[Yin-Wei],
Wang, X.[Xiang],
Guan, W.L.[Wei-Li],
Nie, L.Q.[Li-Qiang],
Lin, Z.C.[Zhou-Chen],
Chen, B.Q.[Bao-Quan],
Neural Multimodal Cooperative Learning Toward Micro-Video
Understanding,
IP(29), No. 1, 2020, pp. 1-14.
IEEE DOI
1910
A few seconds of video.
feature extraction, image representation,
learning (artificial intelligence), video signal processing,
consistency and complementarity
BibRef
Liu, B.L.[Bang-Li],
Cai, H.B.[Hai-Bin],
Ju, Z.J.[Zhao-Jie],
Liu, H.H.[Hong-Hai],
Multi-stage adaptive regression for online activity recognition,
PR(98), 2020, pp. 107053.
Elsevier DOI
1911
Online activity recognition, Interaction recognition,
Partial observation, Adaptive regression
BibRef
Li, C.L.[Chang-Lin],
Li, Z.H.[Zhi-Hui],
Ge, Z.Y.[Zong-Yuan],
Li, M.J.[Ming-Jie],
Knowledge driven temporal activity localization,
JVCIR(64), 2019, pp. 102628.
Elsevier DOI
1911
Temporal activity detection, Knowledge constraints, Reasoning module
BibRef
Vishwakarma, D.K.[Dinesh Kumar],
Dhiman, C.[Chhavi],
A unified model for human activity recognition using spatial
distribution of gradients and difference of Gaussian kernel,
VC(35), No. 11, November 2018, pp. 1595-1613.
WWW Link.
1911
BibRef
Zunino, A.[Andrea],
Cavazza, J.[Jacopo],
Volpi, R.[Riccardo],
Morerio, P.[Pietro],
Cavallo, A.[Andrea],
Becchio, C.[Cristina],
Murino, V.[Vittorio],
Predicting Intentions from Motion:
The Subject-Adversarial Adaptation Approach,
IJCV(128), No. 1, January 2020, pp. 220-239.
Springer DOI
2002
What will happen next.
BibRef
Zunino, A.[Andrea],
Cavazza, J.[Jacopo],
Koul, A.[Atesh],
Cavallo, A.[Andrea],
Becchio, C.[Cristina],
Murino, V.[Vittorio],
What Will I Do Next? The Intention from Motion Experiment,
Cognition17(1-8)
IEEE DOI
1709
Activity recognition, Ear, Grasping, Kinematics,
Videos
BibRef
Zunino, A.[Andrea],
Cavazza, J.[Jacopo],
Murino, V.[Vittorio],
Revisiting Human Action Recognition: Personalization vs. Generalization,
CIAP17(I:469-480).
Springer DOI
1711
BibRef
Gammulle, H.[Harshala],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Fine-grained action segmentation using the semi-supervised action GAN,
PR(98), 2020, pp. 107039.
Elsevier DOI
1911
Human action segmentation, Generative adversarial networks, Context modelling
BibRef
Gammulle, H.[Harshala],
Fernando, T.[Tharindu],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Coupled Generative Adversarial Network for Continuous Fine-Grained
Action Segmentation,
WACV19(200-209)
IEEE DOI
1904
BibRef
Earlier: A2, A3, A4, A5, Only:
Task Specific Visual Saliency Prediction with Memory Augmented
Conditional Generative Adversarial Networks,
WACV18(1539-1548)
IEEE DOI
1806
feature extraction, image recognition, image representation,
image segmentation, image sequences,
Couplings.
image classification,
image representation, learning (artificial intelligence),
Visualization.
BibRef
Gammulle, H.[Harshala],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Hierarchical Attention Network for Action Segmentation,
PRL(131), 2020, pp. 442-448.
Elsevier DOI
2004
BibRef
And:
Multi-level Sequence GAN for Group Activity Recognition,
ACCV18(I:331-346).
Springer DOI
1906
BibRef
And:
Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition,
WACV17(177-186)
IEEE DOI
1609
Databases, Feature extraction, Neural networks,
Support vector machines, Training, Video, sequences
See also Hessian-Based Affine Adaptation of Salient Local Image Features.
See also Efficient and Robust System for Multiperson Event Detection in Real-World Indoor Surveillance Scenes, An.
BibRef
Gammulle, H.[Harshala],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Predicting the Future: A Jointly Learnt Model for Action Anticipation,
ICCV19(5561-5570)
IEEE DOI
2004
feature extraction, image motion analysis,
image representation, learning (artificial intelligence),
Generative adversarial networks
BibRef
Umakanthan, S.[Sabanadesan],
Denman, S.[Simon],
Fookes, C.[Clinton],
Sridharan, S.[Sridha],
Class-specific sparse codes for representing activities,
ICIP15(4902-4906)
IEEE DOI
1512
Activity representation; bag-of-words; sparse codes
BibRef
Zhang, J.,
Shen, F.,
Xu, X.,
Shen, H.T.,
Temporal Reasoning Graph for Activity Recognition,
IP(29), 2020, pp. 5491-5506.
IEEE DOI
2005
Feature extraction, Activity recognition, Convolution, Semantics,
Video sequences, temporal reasoning,
activity recognition
BibRef
Dang, L.M.[L. Minh],
Min, K.[Kyungbok],
Wang, H.X.[Han-Xiang],
Piran, M.J.[M. Jalil],
Lee, C.H.[Cheol Hee],
Moon, H.[Hyeonjoon],
Sensor-based and vision-based human activity recognition:
A comprehensive survey,
PR(108), 2020, pp. 107561.
Elsevier DOI
2008
Human activity recognition, Action recognition, Sensors, Vision,
Human-centric sensing, Deep learning, Context-awareness
BibRef
Riahi, M.[Mohammadreza],
Eslami, M.[Mohammad],
Safavi, S.H.[Seyed Hamid],
Torkamani-Azar, F.[Farah],
Human activity recognition using improved dynamic image,
IET-IPR(14), No. 13, November 2020, pp. 3223-3231.
DOI Link
2012
Get the action information from the first few frames.
BibRef
Liu, X.L.[Xiao-Li],
Li, Z.B.[Zhi-Bin],
Deeply fusing multi-model quality-aware features for sophisticated
human activity understanding,
SP:IC(84), 2020, pp. 115809.
Elsevier DOI
2004
Human action recognition, Image quality correlation,
Multi-channel feature fusion, Video retrieval
BibRef
Sikder, N.[Niloy],
Nahid, A.A.[Abdullah-Al],
KU-HAR: An open dataset for heterogeneous human activity recognition,
PRL(146), 2021, pp. 46-54.
Elsevier DOI
2105
BibRef
Zhao, J.,
Deng, F.,
He, H.,
Chen, J.,
Local Domain Adaptation for Cross-Domain Activity Recognition,
HMS(51), No. 1, February 2021, pp. 12-21.
IEEE DOI
2101
Legged locomotion, Activity recognition, Training, Sensors,
Gyroscopes, Computational modeling, Ubiquitous computing, wearable sensor
BibRef
Wei, Z.J.[Zi-Jun],
Wang, B.Y.[Bo-Yu],
Hoai, M.[Minh],
Zhang, J.M.[Jian-Ming],
Shen, X.H.[Xiao-Hui],
Lin, Z.[Zhe],
Mech, R.[Radomír],
Samaras, D.[Dimitris],
Sequence-to-Segments Networks for Detecting Segments in Videos,
PAMI(43), No. 3, March 2021, pp. 1009-1021.
IEEE DOI
2102
Videos, Proposals, Decoding, Time series analysis, Task analysis,
Segment detection,
video temporal action proposal
BibRef
Sun, Y.[Yan],
Hare, J.S.[Jonathon S.],
Nixon, M.S.[Mark S.],
On parameterizing higher-order motion for behaviour recognition,
PR(112), 2021, pp. 107710.
Elsevier DOI
2102
Motion analysis, Higher-order motion, Acceleration, Jerk, Snap
BibRef
Synakowski, S.[Stuart],
Feng, Q.L.[Qian-Li],
Martinez, A.[Aleix],
Adding Knowledge to Unsupervised Algorithms for the Recognition of
Intent,
IJCV(129), No. 4, April 2021, pp. 942-959.
Springer DOI
2104
Was the action intentional?
BibRef
Nath, C.D.[Chayanika D.],
Hazarika, S.M.[Shyamanta M.],
Activity recognition in video sequences over qualitative abstracts of
a diagram-based representation schema,
JVCIR(76), 2021, pp. 103061.
Elsevier DOI
2104
Cognitive vision, Video analysis, Activity recognition,
Qualitative spatial and temporal reasoning, Diagrammatic reasoning
BibRef
Kasnesis, P.[Panagiotis],
Chatzigeorgiou, C.[Christos],
Patrikakis, C.Z.[Charalampos Z.],
Rangoussi, M.[Maria],
Modality-wise relational reasoning for one-shot sensor-based activity
recognition,
PRL(146), 2021, pp. 90-99.
Elsevier DOI
2105
Deep learning, One-shot learning, Human activity recognition,
Relational reasoning, Self-attention
BibRef
Psaltis, A.[Athanasios],
Patrikakis, C.Z.[Charalampos Z.],
Daras, P.[Petros],
Deep Multi-modal Representation Schemes for Federated 3d Human Action
Recognition,
DSC22(334-352).
Springer DOI
2304
BibRef
Kumaran, N.[Natarajan],
Reddy, U.S.[Uyyala Srinivasulu],
Classification of human activity detection based on an intelligent
regression model in video sequences,
IET-IPR(15), No. 1, 2021, pp. 65-76.
DOI Link
2106
BibRef
Li, W.Q.[Wei-Qi],
Wang, J.M.[Jian-Ming],
Liang, J.Y.[Jia-Yu],
Jin, G.H.[Guang-Hao],
Chung, T.S.[Tae-Sun],
Online dense activity detection,
IET-CV(15), No. 5, 2021, pp. 323-333.
DOI Link
2107
BibRef
Gu, F.Q.[Fu-Qiang],
Chung, M.H.[Mu-Huan],
Chignell, M.[Mark],
Valaee, S.[Shahrokh],
Zhou, B.D.[Bao-Ding],
Liu, X.[Xue],
A Survey on Deep Learning for Human Activity Recognition,
Surveys(54), No. 8, October 2021, pp. xx-yy.
DOI Link
2110
Survey, Human Activity. deep models, deep learning, Machine learning, mobile sensing,
activity recognition
BibRef
Kahatapitiya, K.[Kumara],
Ryoo, M.S.[Michael S.],
Coarse-Fine Networks for Temporal Activity Detection in Videos,
CVPR21(8381-8390)
IEEE DOI
2111
Location awareness, Codes, Fuses, Dynamics,
Feature extraction
BibRef
Chen, L.F.[Li-Fei],
Wu, H.Y.[Hai-Yan],
Kang, W.X.[Wen-Xuan],
Wang, S.R.[Sheng-Rui],
Symbolic sequence representation with Markovian state optimization,
PR(131), 2022, pp. 108849.
Elsevier DOI
2208
Sequence representation, Hidden Markov model, State clustering,
Hierarchical model selection, Activity recognition
BibRef
Yu, W.J.[Wei-Jiang],
Wang, H.F.[Hao-Fan],
Li, G.H.[Guo-Hao],
Xiao, N.[Nong],
Ghanem, B.[Bernard],
Knowledge-Aware Global Reasoning for Situation Recognition,
PAMI(45), No. 7, July 2023, pp. 8621-8633.
IEEE DOI
2306
activity happening (salient action) in an image and the nouns of all
associated semantic roles playing in the activity.
Cognition, Task analysis, Visualization, Correlation, Semantics,
Nanoelectromechanical systems, Image edge detection,
situation recognition
BibRef
Heilbron, F.C.[Fabian Caba],
Escorcia, V.[Victor],
Ghanem, B.[Bernard],
Niebles, J.C.[Juan Carlos],
ActivityNet:
A large-scale video benchmark for human activity understanding,
CVPR15(961-970)
IEEE DOI
1510
BibRef
Bourbakis, N.[Nikolaos],
Angeleas, A.[Anargyros],
A Synergistic Formal-Statistical Model for Recognizing Complex Human
Activities,
HMS(54), No. 3, June 2024, pp. 229-237.
IEEE DOI
2405
Foot, Symbols, Image segmentation, Grammar, Reviews, Legged locomotion,
Turning, Complex activity, human activity recognition,
human pose estimation
BibRef
Jung, G.[Gyuwon],
Park, S.[Sangjun],
Ma, E.Y.[Eun-Yeol],
Kim, H.[Heeyoung],
Lee, U.[Uichin],
Tutorial on Matching-based Causal Analysis of Human Behaviors Using
Smartphone Sensor Data,
Surveys(56), No. 9, April 2024, pp. 236.
DOI Link
2405
Smartphone sensor data, causal inference, human behavior, observational study
BibRef
Yang, X.S.[Xiao-Shan],
Xiong, B.C.[Bao-Chen],
Huang, Y.[Yi],
Xu, C.S.[Chang-Sheng],
Cross-Modal Federated Human Activity Recognition,
PAMI(46), No. 8, August 2024, pp. 5345-5361.
IEEE DOI
2407
Human activity recognition, Task analysis, Videos, Data models,
Servers, Federated learning, Feature extraction,
human activity recognition
BibRef
Ye, X.Z.[Xiao-Zhou],
Wang, K.I.K.[Kevin I-Kai],
Deep generative domain adaptation with temporal relation attention
mechanism for cross-user activity recognition,
PR(156), 2024, pp. 110811.
Elsevier DOI
2408
Human activity recognition, Deep domain adaptation, Data out-of-distribution,
Temporal relation knowledge, Time series classification
BibRef
Djenouri, Y.[Youcef],
Belbachir, A.N.[Ahmed Nabil],
A Hybrid Visual Transformer for Efficient Deep Human Activity
Recognition,
NIVT23(721-730)
IEEE DOI
2401
BibRef
Lu, A.[Andrew],
Lin, X.D.[Xu-Dong],
Niu, Y.[Yulei],
Chang, S.F.[Shih-Fu],
In Defense of Structural Symbolic Representation for Video
Event-Relation Prediction,
L3D-IVU23(4940-4950)
IEEE DOI
2309
BibRef
Tang, Y.S.[Yan-Song],
Liu, J.P.[Jin-Peng],
Liu, A.[Aoyang],
Yang, B.[Bin],
Dai, W.X.[Wen-Xun],
Rao, Y.M.[Yong-Ming],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Li, X.[Xiu],
FLAG3D: A 3D Fitness Activity Dataset with Language Instruction,
CVPR23(22106-22117)
IEEE DOI
2309
BibRef
Wang, S.Z.[Sheng-Zhi],
Xiao, S.[Shuo],
Wang, Y.[Yu],
Jiang, H.F.[Hai-Feng],
Zhang, G.[Guopeng],
A Deep Dilated Convolutional Self-attention Model for Multimodal
Human Activity Recognition,
ICPR22(791-797)
IEEE DOI
2212
Deep learning, Convolution, Multimodal sensors, Benchmark testing,
Feature extraction, Ubiquitous computing, Human activity recognition
BibRef
Qian, Y.C.[Yi-Cheng],
Luo, W.X.[Wei-Xin],
Lian, D.Z.[Dong-Ze],
Tang, X.[Xu],
Zhao, P.L.[Pei-Lin],
Gao, S.H.[Sheng-Hua],
SVIP: Sequence VerIfication for Procedures in Videos,
CVPR22(19858-19870)
IEEE DOI
2210
Measurement, Codes, Annotations, Transformers, Character recognition,
Task analysis, Action and event recognition,
Video analysis and understanding
BibRef
Liu, C.H.[Chun-Hui],
Li, X.Y.[Xin-Yu],
Chen, H.[Hao],
Modolo, D.[Davide],
Tighe, J.[Joseph],
Selective Feature Compression for Efficient Activity Recognition
Inference,
ICCV21(13608-13617)
IEEE DOI
2203
Computational modeling, Crops, Activity recognition, Task analysis,
Kernel, Videos, Action and behavior recognition,
Video analysis and understanding
BibRef
Sayed, S.[Saif],
Athitsos, V.[Vassilis],
Cross Your Body: a Cognitive Assessment System for Children,
ISVC21(II:97-109).
Springer DOI
2112
BibRef
Zhang, Y.Y.[Yan-Yi],
Li, X.Y.[Xin-Yu],
Marsic, I.[Ivan],
Multi-Label Activity Recognition using Activity-specific Features and
Activity Correlations,
CVPR21(14620-14630)
IEEE DOI
2111
Visualization, Correlation, Codes,
Activity recognition, Feature extraction
BibRef
Tseng, A.[Albert],
Sun, J.J.[Jennifer J.],
Yue, Y.S.[Yi-Song],
Automatic Synthesis of Diverse Weak Supervision Sources for Behavior
Analysis,
CVPR22(2201-2210)
IEEE DOI
2210
Training, Costs, Limiting, Annotations, Scalability,
Behavioral sciences, Pattern recognition, Behavior analysis
BibRef
Sun, J.J.[Jennifer J.],
Kennedy, A.[Ann],
Zhan, E.[Eric],
Anderson, D.J.[David J.],
Yue, Y.S.[Yi-Song],
Perona, P.[Pietro],
Task Programming: Learning Data Efficient Behavior Representations,
CVPR21(2875-2884)
IEEE DOI
2111
Training, Video tracking, Annotations, Programming, Tools, Mice, Trajectory
BibRef
Ben-Shabat, Y.Z.[Yi-Zhak],
Yu, X.[Xin],
Saleh, F.[Fatemeh],
Campbell, D.[Dylan],
Rodriguez-Opazo, C.[Cristian],
Li, H.D.[Hong-Dong],
Gould, S.[Stephen],
The IKEA ASM Dataset: Understanding People Assembling Furniture
through Actions, Objects and Pose,
WACV21(846-858)
IEEE DOI
WWW Link.
2106
Dataset, Activity Recognition. Deep learning, Annotations,
Pose estimation, Object segmentation, Benchmark testing
BibRef
Corona, K.[Kellie],
Osterdahl, K.[Katie],
Collins, R.[Roderic],
Hoogs, A.J.[Anthony J.],
MEVA: A Large-Scale Multiview, Multimodal Video Dataset for Activity
Detection,
WACV21(1059-1067)
IEEE DOI
2106
Dataset, Activity Detection. Solid modeling, Visualization,
Annotations, NIST, Cameras
See also Multiview Extended Video with Activities.
BibRef
Godil, A.[Afzal],
Lee, Y.Y.[Yoo-Young],
Fiscus, J.[Jon],
Delgado, A.[Andrew],
Godard, E.[Eliot],
Chocot, B.[Baptiste],
Diduch, L.[Lukas],
Golden, J.[Jim],
Zhang, J.[Jesse],
2020 Sequestered Data Evaluation for Known Activities in Extended
Video: Summary and Results,
WACVW21(51-59) Activity Detection
IEEE DOI
2105
Measurement, System performance, NIST,
Safety, Task analysis
BibRef
Zhang, C.Y.[Chen-Yang],
Tian, Z.Q.[Zhi-Qiang],
Song, J.Y.[Jing-Yi],
Zheng, Y.Y.[Yao-Yue],
Xu, B.[Bo],
Construction worker hardhat-wearing detection based on an improved
BiFPN,
ICPR21(8600-8607)
IEEE DOI
2105
Training, Personal protective equipment, Deep learning, Fuses,
Semantics, Production, Object detection
BibRef
Tang, H.[Haowen],
Wei, P.[Ping],
Li, H.[Huan],
Zheng, N.N.[Nan-Ning],
Inferring Tasks and Fluents in Videos by Learning Causal Relations,
ICPR21(7566-7572)
IEEE DOI
2105
Support vector machines, Collaboration, Search problems,
Task analysis, Videos
BibRef
Qasim, T.[Tehreem],
Fisher, R.B.[Robert B.],
Bhatti, N.[Naeem],
Ground-truthing Large Human Behavior Monitoring Datasets,
ICPR21(2763-2770)
IEEE DOI
2105
Image analysis, Video sequences, Manuals, Pattern recognition,
Labeling, Convolutional neural networks, Task analysis
BibRef
Hosono, T.[Takashi],
Sawada, K.[Kiyohito],
Sun, Y.Q.[Yong-Qing],
Hayase, K.[Kazuya],
Shimamura, J.[Jun],
Activity Normalization for Activity Detection in Surveillance Videos,
ICIP20(1386-1390)
IEEE DOI
2011
Proposals, Videos, Automobiles, Surveillance, Histograms, Cameras,
Object detection, Activity detection, surveillance videos,
data normalization
BibRef
Chen, S.X.[Shao-Xiang],
Jiang, W.H.[Wen-Hao],
Liu, W.[Wei],
Jiang, Y.G.[Yu-Gang],
Learning Modality Interaction for Temporal Sentence Localization and
Event Captioning in Videos,
ECCV20(IV:333-351).
Springer DOI
2011
BibRef
Zhao, H.[He],
Wildes, R.P.[Richard P.],
On Diverse Asynchronous Activity Anticipation,
ECCV20(XXIX: 781-799).
Springer DOI
2010
BibRef
Cruz, R.S.,
Cherian, A.,
Fernando, B.,
Campbell, D.,
Gould, S.,
Inferring Temporal Compositions of Actions Using Probabilistic
Automata,
CICV20(1514-1522)
IEEE DOI
2008
Videos, Probabilistic logic, Task analysis, Automata,
Pattern recognition, Natural languages, Training data
BibRef
Li, Y.,
Xu, L.,
Liu, X.,
Huang, X.,
Xu, Y.,
Wang, S.,
Fang, H.,
Ma, Z.,
Chen, M.,
Lu, C.,
PaStaNet: Toward Human Activity Knowledge Engine,
CVPR20(379-388)
IEEE DOI
2008
Semantics, Head, Feature extraction, Engines,
Knowledge based systems, Task analysis, Crowdsourcing
BibRef
Jaiswal, M.[Mayoore],
Liu, F.[Frank],
Jagannathan, A.[Anupama],
Gattiker, A.[Anne],
Hwang, I.[Inseok],
Lee, J.H.[Jin-Ho],
Tong, M.[Matthew],
Dureja, S.[Sahil],
Shah, S.[Soham],
Hofstee, P.[Peter],
Chen, V.[Valerie],
Paul, S.[Suvadip],
Feris, R.S.[Rogerio S.],
Video-Text Compliance: Activity Verification Based on Natural
Language Instructions,
HVU19(1503-1512)
IEEE DOI
2004
Does the action correspond to the text description.
data privacy, gesture recognition, natural language processing,
text analysis, video signal processing, auto augmentation
BibRef
Zhai, Y.H.[Yuan-Hao],
Liu, Z.[Ziyi],
Wu, Z.Y.[Zhen-Yu],
Wu, Y.[Yi],
Zhou, C.L.[Chun-Luan],
Doermann, D.[David],
Yuan, J.S.[Jun-Song],
Hua, G.[Gang],
SOAR: Scene-debiasing Open-set Action Recognition,
ICCV23(10210-10220)
IEEE DOI
2401
BibRef
Yu, T.[Tan],
Ren, Z.[Zhou],
Li, Y.C.[Yun-Cheng],
Yan, E.X.[En-Xu],
Xu, N.[Ning],
Yuan, J.S.[Jun-Song],
Temporal Structure Mining for Weakly Supervised Action Detection,
ICCV19(5521-5530)
IEEE DOI
2004
Consider the whole sequence and the relation of sequential actions.
data mining, image segmentation, video signal processing,
weakly supervised action detection, Visualization
BibRef
Zhu, X.Q.[Xin-Qi],
Xu, C.[Chang],
Hui, L.W.[Lang-Wen],
Lu, C.W.[Ce-Wu],
Tao, D.C.[Da-Cheng],
Approximated Bilinear Modules for Temporal Modeling,
ICCV19(3493-3502)
IEEE DOI
2004
Code, Convolutional Neural Networks.
WWW Link. Fine-grained models.
convolutional neural nets, feature extraction,
image classification, image representation, inference mechanisms,
Image recognition
BibRef
Baptista-Ríos, M.,
López-Sastre, R.J.,
Caba-Heilbron, F.,
van Gemert, J.C.,
Acevedo-Rodríguez, F.J.,
Maldonado-Bascón, S.,
The Instantaneous Accuracy: a Novel Metric for the Problem of Online
Human Behaviour Recognition in Untrimmed Videos,
HBU19(1282-1284)
IEEE DOI
2004
behavioural sciences computing, object detection,
object recognition, video signal processing, untrimmed videos
BibRef
Yao, L.[Li],
Qian, Y.[Ying],
Novel Activities Detection Algorithm in Extended Videos,
HADCV19(9-15)
IEEE DOI
1902
Videos, Target tracking, Object detection, Object tracking,
Feature extraction
BibRef
Thomanek, R.[Rico],
Roschke, C.[Christian],
Platte, B.[Benny],
Manthey, R.[Robert],
Rolletschke, T.[Tony],
Heinzig, M.[Manuel],
Vodel, M.[Matthias],
Zimmer, F.[Frank],
Eibl, M.[Maximilian],
A Scalable System Architecture for Activity Detection with Simple
Heuristics,
HADCV19(27-34)
IEEE DOI
1902
Streaming media, Tracking, Task analysis, Object detection,
Distributed databases, Cameras
BibRef
Zhang, C.[Can],
Zou, Y.X.[Yue-Xian],
Chen, G.[Guang],
Hierarchical Temporal Pooling for Efficient Online Action Recognition,
MMMod19(I:471-482).
Springer DOI
1901
BibRef
Chen, G.[Guang],
Zou, Y.X.[Yue-Xian],
Zhang, C.[Can],
STMP: Spatial Temporal Multi-level Proposal Network for Activity
Detection,
MMMod19(I:29-41).
Springer DOI
1901
BibRef
Bhattacharyya, A.[Apratim],
Schiele, B.[Bernt],
Fritz, M.[Mario],
Accurate and Diverse Sampling of Sequences Based on a 'Best of Many'
Sample Objective,
CVPR18(8485-8493)
IEEE DOI
1812
Predictive models, Training, Task analysis, Trajectory,
Image sequences, Data models, Recurrent neural networks
BibRef
Cherian, A.[Anoop],
Sra, S.[Suvrit],
Gould, S.[Stephen],
Hartley, R.I.[Richard I.],
Non-linear Temporal Subspace Representations for Activity Recognition,
CVPR18(2197-2206)
IEEE DOI
1812
Kernel, Hilbert space, Manifolds,
Principal component analysis, Optimization, Feature extraction
BibRef
Paul, S.[Sujoy],
Roy, S.[Sourya],
Roy-Chowdhury, A.K.[Amit K.],
W-TALC: Weakly-Supervised Temporal Activity Localization and
Classification,
ECCV18(II: 588-607).
Springer DOI
1810
BibRef
Käse, N.,
Babaee, M.,
Rigoll, G.,
Multi-view human activity recognition using motion frequency,
ICIP17(3963-3967)
IEEE DOI
1803
Activity recognition, Cameras, Databases, Feature extraction,
motion frequency
BibRef
Dai, X.Y.[Xi-Yang],
Singh, B.[Bharat],
Ng, J.Y.H.[Joe Yue-Hei],
Davis, L.S.[Larry S.],
TAN: Temporal Aggregation Network for Dense Multi-Label Action
Recognition,
WACV19(151-160)
IEEE DOI
1904
convolution, feature extraction, image recognition,
image representation, TAN, dense multilabel action recognition,
Stacking
See also FASON: First and Second Order Information Fusion Network for Texture Recognition.
BibRef
Dai, X.Y.[Xi-Yang],
Singh, B.[Bharat],
Zhang, G.,
Davis, L.S.[Larry S.],
Chen, Y.Q.,
Temporal Context Network for Activity Localization in Videos,
ICCV17(5727-5736)
IEEE DOI
1802
convolution, feature extraction, gesture recognition,
image classification, image motion analysis,
Videos
BibRef
Xu, M.Z.[Ming-Ze],
Fan, C.Y.[Chen-You],
Wang, Y.C.[Yu-Chen],
Ryoo, M.S.[Michael S.],
Crandall, D.J.[David J.],
Joint Person Segmentation and Identification in Synchronized First- and
Third-Person Videos,
ECCV18(I: 656-672).
Springer DOI
1810
BibRef
Fan, C.Y.[Chen-You],
Lee, J.[Jangwon],
Xu, M.Z.[Ming-Ze],
Singh, K.K.[Krishna Kumar],
Lee, Y.J.[Yong Jae],
Crandall, D.J.[David J.],
Ryoo, M.S.[Michael S.],
Identifying First-Person Camera Wearers in Third-Person Videos,
CVPR17(4734-4742)
IEEE DOI
1711
Activity recognition, Cameras, Network architecture, Trajectory,
Videos, Visualization
BibRef
Cherian, A.[Anoop],
Fernando, B.,
Harandi, M.,
Gould, S.[Stephen],
Generalized Rank Pooling for Activity Recognition,
CVPR17(1581-1590)
IEEE DOI
1711
Activity recognition, Computational modeling,
Integrated circuit modeling, Manifolds, Optimization, Standards,
Video, sequences
BibRef
Ho, S.B.[Seng-Beng],
The Role of Synchronic Causal Conditions in Visual Knowledge Learning,
Cognition17(9-16)
IEEE DOI
1709
Correlation, Encoding, Problem-solving, Psychology,
Visualization, Weapons
BibRef
Lei, J.[Jun],
Li, G.H.[Guo-Hui],
Zhang, J.[Jun],
Li, S.H.[Shuo-Hao],
Wang, F.L.[Feng-Lei],
Continuous action recognition with weakly labelling videos,
MVA17(242-245)
DOI Link
1708
Feature extraction, Labeling, Organizations, Supervised learning,
Training, Videos, Visualization.
Order of action labels, not location.
BibRef
Kataoka, H.[Hirokatsu],
Miyashita, Y.[Yudai],
Hayashi, M.[Masaki],
Iwata, K.[Kenji],
Satoh, Y.[Yutaka],
Recognition of Transitional Action for Short-Term Action Prediction
using Discriminative Temporal CNN Feature,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Khelalef, A.[Aziz],
Ababsa, F.[Fakhreddine],
Benoudjit, N.[Nabil],
A Simple Human Activity Recognition Technique Using DCT,
ACIVS16(37-46).
Springer DOI
1611
BibRef
Kataoka, H.[Hirokatsu],
Iwata, K.[Kenji],
Satoh, Y.[Yutaka],
Hayashi, M.,
Aoki, Y.[Yoshimitsu],
Ilic, S.[Slobodan],
Dominant Codewords Selection with Topic Model for Action Recognition,
ChaLearn16(770-777)
IEEE DOI
1612
BibRef
Hasan, M.[Mahmudul],
Choi, J.H.[Jong-Hyun],
Neumann, J.[Jan],
Roy-Chowdhury, A.K.[Amit K.],
Davis, L.S.[Larry S.],
Learning Temporal Regularity in Video Sequences,
CVPR16(733-742)
IEEE DOI
1612
BibRef
Su, Y.C.[Yu-Chuan],
Grauman, K.[Kristen],
Leaving Some Stones Unturned: Dynamic Feature Prioritization for
Activity Detection in Streaming Video,
ECCV16(VII: 783-800).
Springer DOI
1611
BibRef
Watagawa, M.,
Shinoda, T.,
Hasegawa, K.,
Estimating The Amount Of Ship Recycling Activity Using Remote Sensing
Application,
ISPRS16(B8: 1195-1200).
DOI Link
1610
BibRef
Yan, W.Q.[Wei Qi],
Liu, F.[Feng],
Event Analogy Based Privacy Preservation in Visual Surveillance,
VSWS15(357-368).
Springer DOI
1603
BibRef
Timofte, R.[Radu],
Rothe, R.,
Van Gool, L.J.,
Seven Ways to Improve Example-Based Single Image Super Resolution,
CVPR16(1865-1873)
IEEE DOI
1612
BibRef
Rothe, R.,
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
DLDR: Deep Linear Discriminative Retrieval for Cultural Event
Classification from a Single Image,
ChaLearnDec15(295-302)
IEEE DOI
1602
Agriculture
BibRef
Liu, M.,
Liu, X.,
Li, Y.,
Chen, X.,
Hauptmann, A.G.,
Shan, S.,
Exploiting Feature Hierarchies with Convolutional Neural Networks for
Cultural Event Recognition,
ChaLearnDec15(274-279)
IEEE DOI
1602
Cultural differences
BibRef
Wei, X.S.,
Gao, B.B.,
Wu, J.,
Deep Spatial Pyramid Ensemble for Cultural Event Recognition,
ChaLearnDec15(280-286)
IEEE DOI
1602
Cultural differences
BibRef
Wu, T.,
Gurram, P.,
Rao, R.M.,
Bajwa, W.U.,
Clustering-aware structure-constrained low-rank representation model
for learning human action attributes,
IVMSP16(1-5)
IEEE DOI
1608
BibRef
Earlier:
Hierarchical Union-of-Subspaces Model for Human Activity
Summarization,
VidSum15(1053-1061)
IEEE DOI
1602
Clustering algorithms
BibRef
Batabyal, T.[Tamal],
Acton, S.T.[Scott T.],
Vaccari, A.[Andrea],
UGrAD: A graph-theoretic framework for classification of activity
with complementary graph boundary detection,
ICIP16(1339-1343)
IEEE DOI
1610
Bipartite graph
BibRef
Earlier: A1, A3, A2:
LaWeCo: Active region detection in non-uniformly sampled data using
Laplacian-weighted covariance,
Southwest16(129-132)
IEEE DOI
1605
BibRef
And: A1, A3, A2:
UGraSP: A unified framework for activity recognition and person
identification using graph signal processing,
ICIP15(3270-3274)
IEEE DOI
1512
Covariance matrices.
Adjacency Matrix
BibRef
Avgerinakis, K.[Konstantinos],
Adam, K.[Katerina],
Briassouli, A.[Alexia],
Kompatsiaris, Y.F.[Yi-Fannis],
Moving camera human activity localization and recognition with
motionplanes and multiple homographies,
ICIP15(2085-2089)
IEEE DOI
1512
activity localization; activity recognition; homography; motionplanes
BibRef
Stephens, K.,
Bors, A.G.,
Human group activity recognition based on modelling moving regions
interdependencies,
ICPR16(2115-2120)
IEEE DOI
1705
BibRef
And:
Group activity recognition on outdoor scenes,
AVSS16(59-65)
IEEE DOI
1611
BibRef
And:
Grouping multi-vector streaklines for human activity identification,
IVMSP16(1-5)
IEEE DOI
1608
BibRef
And:
Observing human activities using movement modelling,
AVSS15(1-6)
IEEE DOI
1511
Activity recognition, Cameras, Computational modeling, Estimation,
Manuals, Mathematical model, Tracking,
Group Activity Identification, Motion Segmentation, Streaklines.
Computational modeling.
Cameras.
Gaussian processes
BibRef
Martinel, N.[Niki],
Avola, D.[Danilo],
Piciarelli, C.[Claudio],
Micheloni, C.[Christian],
Vernier, M.[Marco],
Cinque, L.[Luigi],
Foresti, G.L.[Gian Luca],
Selection of Temporal Features for Event Detection in Smart Security,
CIAP15(II:609-619).
Springer DOI
1511
BibRef
Salvador, A.[Amaia],
Manchon-Vizuete, D.[Daniel],
Calafell, A.[Andrea],
Giro-i-Nieto, X.[Xavier],
Zeppelzauer, M.[Matthias],
Cultural Event recognition with visual ConvNets and temporal models,
ChaLearn15(36-44)
IEEE DOI
1510
Computational modeling
BibRef
Park, S.[Sungheon],
Kwak, N.[Nojun],
Cultural event recognition by subregion classification with
convolutional neural network,
ChaLearn15(45-50)
IEEE DOI
1510
Accuracy
BibRef
Kwon, H.[Heeyoung],
Yun, K.[Kiwon],
Hoai, M.[Minh],
Samaras, D.[Dimitris],
Recognizing cultural events in images:
A study of image categorization models,
ChaLearn15(51-57)
IEEE DOI
1510
Cultural differences
BibRef
Liang, J.W.[Jing-Wei],
Fadili, J.[Jalal],
Peyré, G.[Gabriel],
Luke, R.[Russell],
Activity Identification and Local Linear Convergence of
Douglas-Rachford/ADMM under Partial Smoothness,
SSVM15(642-653).
Springer DOI
1506
BibRef
Kuehne, H.[Hilde],
Arslan, A.[Ali],
Serre, T.[Thomas],
The Language of Actions: Recovering the Syntax and Semantics of
Goal-Directed Human Activities,
CVPR14(780-787)
IEEE DOI
1409
BibRef
Adeli-Mosabbeb, E.[Ehsan],
Cabral, R.S.[Ricardo S.],
de la Torre, F.[Fernando],
Fathy, M.[Mahmood],
Multi-label Discriminative Weakly-Supervised Human Activity Recognition
and Localization,
ACCV14(V: 241-258).
Springer DOI
1504
BibRef
Chakraborty, A.[Anirban],
Roy-Chowdhury, A.K.[Amit K.],
Context-Aware Activity Forecasting,
ACCV14(V: 21-36).
Springer DOI
1504
BibRef
Killedar, D.,
Sasi, S.,
Human activity detection using sparse representation,
AIPR14(1-5)
IEEE DOI
1504
feature extraction
BibRef
Lan, T.[Tian],
Chen, L.[Lei],
Deng, Z.W.[Zhi-Wei],
Zhou, G.T.[Guang-Tong],
Mori, G.[Greg],
Learning Action Primitives for Multi-level Video Event Understanding,
Re-Id14(95-110).
Springer DOI
1504
BibRef
Singh, B.,
Han, X.,
Wu, Z.,
Morariu, V.I.[Vlad I.],
Davis, L.S.[Larry S.],
Selecting Relevant Web Trained Concepts for Automated Event Retrieval,
ICCV15(4561-4569)
IEEE DOI
1602
Calibration
BibRef
Lee, H.T.[Hyung-Tae],
Morariu, V.I.[Vlad I.],
Davis, L.S.[Larry S.],
Clauselets:
Leveraging Temporally Related Actions for Video Event Analysis,
WACV15(1161-1168)
IEEE DOI
1503
Sets of concurrent actions and their temporal relationships.
BibRef
Khoualed, S.[Samir],
Chateau, T.[Thierry],
Castellan, U.[Umberto],
Samir, C.[Chafik],
An augmented representation of activity in video using
semantic-context information,
ICIP14(4171-4175)
IEEE DOI
1502
Accuracy
BibRef
Alemdar, H.[Hande],
van Kasteren, T.L.,
Niessen, M.E.,
Merentitis, A.,
Ersoy, C.[Cem],
A Unified Model for Human Behavior Modeling Using a Hierarchy with a
Variable Number of States,
ICPR14(3804-3809)
IEEE DOI
1412
Bayes methods
BibRef
Nguyen, T.[Thuong],
Gupta, S.I.[Sun-Il],
Venkatesh, S.[Svetha],
Phung, D.Q.[Dinh Q.],
A Bayesian Nonparametric Framework for Activity Recognition Using
Accelerometer Data,
ICPR14(2017-2022)
IEEE DOI
1412
Accelerometers
BibRef
Hammoud, R.I.[Riad I.],
Sahin, C.S.[Cem S.],
Blasch, E.P.[Erik P.],
Rhodes, B.J.[Bradley J.],
Multi-source Multi-modal Activity Recognition in Aerial Video
Surveillance,
PBVS14(237-244)
IEEE DOI
1409
FMV exploitation
BibRef
Shankar, S.[Sukrit],
Badrinarayanan, V.[Vijay],
Cipolla, R.[Roberto],
Part Bricolage: Flow-Assisted Part-Based Graphs for Detecting
Activities in Videos,
ECCV14(VI: 586-601).
Springer DOI
1408
BibRef
Nitta, N.[Naoko],
Kumihashi, Y.[Yusuke],
Kato, T.[Tomochika],
Babaguchi, N.[Noboru],
Real-World Event Detection Using Flickr Images,
MMMod14(II: 307-314).
Springer DOI
1405
BibRef
Hsieh, Y.H.[Yung-Huan],
Hidayati, S.C.[Shintami C.],
Cheng, W.H.[Wen-Huang],
Hu, M.C.[Min-Chun],
Hua, K.L.[Kai-Lung],
Who's the Best Charades Player? Mining Iconic Movement of Semantic
Concepts,
MMMod14(I: 231-241).
Springer DOI
1405
BibRef
Zafeiriou, L.[Lazaros],
Antonakos, E.[Epameinondas],
Zafeiriou, S.P.[Stefanos P.],
Pantic, M.[Maja],
Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences,
CVPR16(3382-3390)
IEEE DOI
1612
BibRef
Earlier:
Joint Unsupervised Face Alignment and Behaviour Analysis,
ECCV14(IV: 167-183).
Springer DOI
1408
BibRef
Zafeiriou, L.[Lazaros],
Nicolaou, M.A.[Mihalis A.],
Zafeiriou, S.P.[Stefanos P.],
Nikitidis, S.[Symeon],
Pantic, M.[Maja],
Learning Slow Features for Behaviour Analysis,
ICCV13(2840-2847)
IEEE DOI
1403
Component Analysis; Slow Feature Analysis
See also Slow Feature Analysis for Human Action Recognition.
See also Incremental Slow Feature Analysis with Indefinite Kernel for Online Temporal Video Segmentation.
BibRef
Douze, M.[Matthijs],
Revaud, J.[Jerome],
Schmid, C.[Cordelia],
Jegou, H.[Herve],
Stable Hyper-pooling and Query Expansion for Event Detection,
ICCV13(1825-1832)
IEEE DOI
1403
See also Compact Video Description for Copy Detection with Precise Temporal Alignment.
BibRef
Fang, X.Y.[Xiao-Yu],
Xia, Z.W.[Zi-Wei],
Su, C.[Chi],
Xu, T.[Teng],
Tian, Y.H.[Yong-Hong],
Wang, Y.W.[Yao-Wei],
Huang, T.J.[Tie-Jun],
A system based on sequence learning for event detection in
surveillance video,
ICIP13(3587-3591)
IEEE DOI
1402
Event detection;sequence learning;surveillance
BibRef
Codella, N.C.E.[Noel C.E.],
Hua, G.[Gang],
Cao, L.L.[Liang-Liang],
Merler, M.[Michele],
Gong, L.G.[Lei-Guang],
Hill, M.[Matt],
Smith, J.R.[John R.],
Large-scale video event classification using dynamic temporal pyramid
matching of visual semantics,
ICIP13(2877-2881)
IEEE DOI
1402
event; pyramid; semantics; temporal; video
BibRef
Gopalan, R.[Raghuraman],
Joint Sparsity-Based Representation and Analysis of Unconstrained
Activities,
CVPR13(2738-2745)
IEEE DOI
1309
BibRef
Gao, J.,
Sun, C.,
Yang, Z.,
Nevatia, R.,
TALL: Temporal Activity Localization via Language Query,
ICCV17(5277-5285)
IEEE DOI
1802
image representation, image retrieval,
natural language processing, regression analysis, text analysis,
Visualization
BibRef
Sun, C.[Chen],
Nevatia, R.[Ram],
DISCOVER: Discovering Important Segments for Classification of Video
Events and Recounting,
CVPR14(2569-2576)
IEEE DOI
1409
BibRef
Earlier:
Semantic Aware Video Transcription Using Random Forest Classifiers,
ECCV14(I: 772-786).
Springer DOI
1408
BibRef
Earlier:
ACTIVE: Activity Concept Transitions in Video Event Classification,
ICCV13(913-920)
IEEE DOI
1403
BibRef
And:
Large-scale web video event classification by use of Fisher Vectors,
WACV13(15-22).
IEEE DOI
1303
event classification; event recounting; latent svm
BibRef
Sun, Q.R.[Qian-Ru],
Liu, H.[Hong],
Inferring Ongoing Human Activities Based on Recurrent Self-Organizing
Map Trajectory,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Earlier:
Action Disambiguation Analysis Using Normalized Google-Like Distance
Correlogram,
ACCV12(III:425-437).
Springer DOI
1304
BibRef
Xu, Z.[Zhen],
Qing, L.Y.[Lai-Yun],
Miao, J.[Jun],
Activity Auto-Completion:
Predicting Human Activities from Partial Videos,
ICCV15(3191-3199)
IEEE DOI
1602
Detectors
BibRef
Meng, L.X.[Ling-Xun],
Qing, L.Y.[Lai-Yun],
Yang, P.[Peng],
Miao, J.[Jun],
Chen, X.L.[Xi-Lin],
Metaxas, D.N.[Dimitris N.],
Activity recognition based on semantic spatial relation,
ICPR12(609-612).
WWW Link.
1302
BibRef
Tao, S.[Shuai],
Kudo, M.[Mineichi],
Nonaka, H.[Hidetoshi],
Toyama, J.[Jun],
Camera view usage of binary infrared sensors for activity recognition,
ICPR12(1759-1762).
WWW Link.
1302
BibRef
Li, K.[Kang],
Fu, Y.[Yun],
ARMA-HMM: A new approach for early recognition of human activity,
ICPR12(1779-1782).
WWW Link.
1302
BibRef
Tu, P.[Peter],
Gao, D.[Dashan],
Yu, T.[Ting],
Yao, Y.[Yi],
Action based video summarization for convenience stores,
ICIP12(45-48).
IEEE DOI
1302
BibRef
Cullen, D.[Daniel],
Konrad, J.[Janusz],
Little, T.D.C.,
Detection and Summarization of Salient Events in Coastal Environments,
AVSS12(7-12).
IEEE DOI
1211
BibRef
Walker, J.[Jacob],
Gupta, A.[Abhinav],
Hebert, M.[Martial],
Patch to the Future: Unsupervised Visual Prediction,
CVPR14(3302-3309)
IEEE DOI
1409
Activity Forecasting; Prediction
mid-level visual elements and temporal modeling.
BibRef
Odobez, J.M.[Jean-Marc],
Carincotte, C.[Cyril],
Emonet, R.[Rémi],
Jouneau, E.[Erwan],
Zaidenberg, S.[Sofia],
Ravera, B.[Bertrand],
Bremond, F.[Francois],
Grifoni, A.[Andrea],
Unsupervised Activity Analysis and Monitoring Algorithms for Effective
Surveillance Systems,
ECCVDemos12(III: 675-678).
Springer DOI
1210
BibRef
Stottinger, J.[Julian],
Uijlings, J.R.R.[Jasper R. R.],
Pandey, A.K.[Anand K.],
Sebe, N.[Nicu],
Giunchiglia, F.[Fausto],
(Unseen) event recognition via semantic compositionality,
CVPR12(3061-3068).
IEEE DOI
1208
High level events built from image level events
BibRef
Rahman, T.,
Xu, B.,
Sigal, L.,
Watch, Listen and Tell:
Multi-Modal Weakly Supervised Dense Event Captioning,
ICCV19(8907-8916)
IEEE DOI
2004
audio signal processing, audio-visual systems,
feature extraction, gesture recognition, image classification,
Mel frequency cepstral coefficient
BibRef
Bajaj, M.,
Wang, L.,
Sigal, L.,
G3raphGround: Graph-Based Language Grounding,
ICCV19(4280-4289)
IEEE DOI
2004
graph theory, image capture, image representation,
image segmentation, natural language processing, neural nets, Encoding
BibRef
Lan, T.[Tian],
Sigal, L.[Leonid],
Mori, G.[Greg],
Social roles in hierarchical models for human activity recognition,
CVPR12(1354-1361).
IEEE DOI
1208
BibRef
Hassan, E.[Ehtesham],
Chaudhury, S.[Santanu],
Gopal, M,
Garg, V.[Vikram],
A hybrid framework for event detection using multi-modal features,
VECTaR11(1510-1515).
IEEE DOI
1201
See also Annotating Dance Posture Images Using Multi Kernel Feature Combination.
BibRef
Wang, J.[Jing],
Xu, Z.J.[Zhi-Jie],
Video event detection based on over-segmented STV regions,
VECTaR11(1464-1471).
IEEE DOI
1201
BibRef
Al Ghamdi, M.[Manal],
Zhang, L.[Lei],
Gotoh, Y.[Yoshihiko],
Spatio-temporal SIFT and Its Application to Human Action Classification,
VECTaR12(I: 301-310).
Springer DOI
1210
BibRef
Khan, M.U.G.[Muhammad Usman Ghani],
Zhang, L.[Lei],
Gotoh, Y.[Yoshihiko],
Human Focused Video Description,
VECTaR11(1480-1487).
IEEE DOI
1201
BibRef
Zhang, J.G.[Jian-Gen],
Hu, W.Z.[Wen-Ze],
Yao, B.[Benjamin],
Wang, Y.T.[Yong-Tian],
Zhu, S.C.[Song-Chun],
Inferring social roles in long timespan video sequence,
VECTaR11(1456-1463).
IEEE DOI
1201
BibRef
Mitarai, Y.[Yusuke],
Matsugu, M.[Masakazu],
Visual Code-Sentences: A New Video Representation Based on Image
Descriptor Sequences,
VECTaR12(I: 321-331).
Springer DOI
1210
BibRef
Matsugu, M.[Masakazu],
Yamanaka, M.[Masao],
Sugiyama, M.[Masashi],
Detection of activities and events without explicit categorization,
VECTaR11(1532-1539).
IEEE DOI
1201
BibRef
Kaloskampis, I.[Ioannis],
Hicks, Y.A.[Yulia A.],
Marshall, D.[David],
Automatic analysis of composite activities in video sequences using Key
Action Discovery and hierarchical graphical models,
ARTEMIS11(890-897).
IEEE DOI
1201
BibRef
Malgireddy, M.R.[Manavender R.],
Nwogu, I.[Ifeoma],
Govindaraju, V.[Venu],
A temporal Bayesian model for classifying, detecting and localizing
activities in video sequences,
Gesture12(43-48).
IEEE DOI
1207
BibRef
Earlier:
A generative framework to investigate the underlying patterns in human
activities,
VECTaR11(1472-1479).
IEEE DOI
1201
BibRef
Shariat, S.[Shahriar],
Pavlovic, V.[Vladimir],
A New Adaptive Segmental Matching Measure for Human Activity
Recognition,
ICCV13(3583-3590)
IEEE DOI
1403
BibRef
Earlier:
Isotonic CCA for sequence alignment and activity recognition,
ICCV11(2572-2578).
IEEE DOI
1201
Activity Recognition; Segmentation and Matching; Time-series alignment
BibRef
Ding, L.[Lei],
Yilmaz, A.[Alper],
Inferring social relations from visual concepts,
ICCV11(699-706).
IEEE DOI
1201
BibRef
Li, J.,
Lei, P.,
Todorovic, S.[Sinisa],
Weakly Supervised Energy-Based Learning for Action Segmentation,
ICCV19(6242-6250)
IEEE DOI
2004
hidden Markov models, image motion analysis, image segmentation,
image sequences, learning (artificial intelligence),
Logic gates
BibRef
Lei, P.[Peng],
Todorovic, S.[Sinisa],
Temporal Deformable Residual Networks for Action Segmentation in
Videos,
CVPR18(6742-6751)
IEEE DOI
1812
Convolution, Videos, Hidden Markov models, Feature extraction,
Computational modeling, Deformable models
BibRef
Lei, P.[Peng],
Todorovic, S.[Sinisa],
Recurrent Temporal Deep Field for Semantic Video Labeling,
ECCV16(V: 302-317).
Springer DOI
1611
BibRef
Amer, M.R.[Mohamed Rabie],
Lei, P.[Peng],
Todorovic, S.[Sinisa],
HiRF: Hierarchical Random Field for Collective Activity Recognition in
Videos,
ECCV14(VI: 572-585).
Springer DOI
1408
BibRef
Todorovic, S.[Sinisa],
Human Activities as Stochastic Kronecker Graphs,
ECCV12(II: 130-143).
Springer DOI
1210
BibRef
Aggarwal, J.K.[Jake K.],
Recognition of Human Activities,
IWCIA11(1-4).
Springer DOI
1105
BibRef
Ryoo, M.S.,
Human activity prediction: Early recognition of ongoing activities from
streaming videos,
ICCV11(1036-1043).
IEEE DOI
1201
BibRef
Ryoo, M.S.,
Interactive learning of human activities using active video composition,
SIG11(672-679).
IEEE DOI
1201
BibRef
Ryoo, M.S.,
Yu, W.[Wonpil],
One video is sufficient? Human activity recognition using active video
composition,
WMVC11(634-641).
IEEE DOI
1101
BibRef
Sicre, R.[Ronan],
Nicolas, H.[Henri],
Human Behaviour Analysis and Event Recognition at a Point of Sale,
PSIVT10(127-132).
IEEE DOI
1011
BibRef
Earlier:
Human Behavior Analysis at a Point of Sale,
ISVC10(III: 635-644).
Springer DOI
1011
BibRef
Wang, Y.W.[Yao-Wei],
Tian, Y.H.[Yong-Hong],
Duan, L.Y.[Ling-Yu],
Hu, Z.P.[Zhi-Peng],
Jia, G.C.[Guo-Chen],
ESUR: A system for Events detection in SURveillance video,
ICIP10(2317-2320).
IEEE DOI
1009
BibRef
Cheng, Y.[Yu],
Fan, Q.F.[Quan-Fu],
Pankanti, S.[Sharath],
Choudhary, A.[Alok],
Temporal Sequence Modeling for Video Event Detection,
CVPR14(2235-2242)
IEEE DOI
1409
BibRef
Ding, L.[Lei],
Fan, Q.F.[Quan-Fu],
Pankanti, S.[Sharath],
An integer programming approach to visual compliance,
ICIP10(1461-1464).
IEEE DOI
1009
Surveillance for business policies.
BibRef
Kihl, O,
Tremblais, B,
Augereau, B,
Khoudeir, M,
Human activities discrimination with motion approximation in polynomial
bases,
ICIP10(2469-2472).
IEEE DOI
1009
BibRef
Mo, H.C.[Hao-Cheng],
Leou, J.J.[Jin-Jang],
Lin, C.S.[Cheng-Shian],
Human Behavior Analysis Using Multiple 2D Features and Multicategory
Support Vector Machine,
MVA09(46-).
PDF File.
0905
BibRef
Wang, J.[Jing],
Xu, Z.J.[Zhi-Jie],
O'Grady, M.[Michael],
Head Curve Matching and Graffiti Detection,
BMVCWS10(xx-yy).
HTML Version.
1009
Video surveillance, head detection for graffiti.
BibRef
Sadek, S.[Samy],
Al-Hamadi, A.[Ayoub],
Michaelis, B.[Bernd],
Sayed, U.[Usama],
Human Activity Recognition: A Scheme Using Multiple Cues,
ISVC10(II: 574-583).
Springer DOI
1011
BibRef
Sadek, S.[Samy],
Al-Hamadi, A.[Ayoub],
Michaelis, B.[Bernd],
Sayed, U.[Usama],
An SVM approach for activity recognition based on chord-length-function
shape features,
ICIP12(765-768).
IEEE DOI
1302
BibRef
Bakheet, S.[Samy],
Al-Hamadi, A.[Ayoub],
Michaelis, B.[Bernd],
Sayed, U.[Usama],
Toward Robust Action Retrieval in Video,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Chaudhry, R.[Rizwan],
Ivanov, Y.[Yuri],
Fast Approximate Nearest Neighbor Methods for Non-Euclidean Manifolds
with Applications to Human Activity Analysis in Videos,
ECCV10(II: 735-748).
Springer DOI
1009
BibRef
Lin, D.[Dahua],
Kapoor, A.[Ashish],
Hua, G.[Gang],
Baker, S.[Simon],
Joint People, Event, and Location Recognition in Personal Photo
Collections Using Cross-Domain Context,
ECCV10(I: 243-256).
Springer DOI
1009
BibRef
Yin, J.[Jun],
Meng, Y.[Yan],
Human activity recognition in video using a hierarchical probabilistic
latent model,
CVPR4HB10(15-20).
IEEE DOI
1006
BibRef
Prabhakar, K.[Karthir],
Oh, S.M.[Sang-Min],
Wang, P.[Ping],
Abowd, G.D.[Gregory D.],
Rehg, J.M.[James M.],
Temporal causality for the analysis of visual events,
CVPR10(1967-1974).
IEEE DOI
1006
BibRef
Oh, S.M.[Sang-Min],
Hoogs, A.J.[Anthony J.],
Unsupervised Learning of Activities in Video Using Scene Context,
ICPR10(3579-3582).
IEEE DOI
1008
BibRef
Oh, S.M.[Sang-Min],
Hoogs, A.J.[Anthony J.],
Turek, M.W.[Matthew W.],
Collins, R.[Roderic],
Content-Based Retrieval of Functional Objects in Video Using Scene
Context,
ECCV10(I: 549-562).
Springer DOI
1009
BibRef
Turek, M.W.[Matthew W.],
Hoogs, A.J.[Anthony J.],
Collins, R.[Roderic],
Unsupervised Learning of Functional Categories in Video Scenes,
ECCV10(II: 664-677).
Springer DOI
1009
BibRef
Kaufhold, J.[John],
Collins, R.[Roderic],
Hoogs, A.J.[Anthony J.],
Rondot, P.[Pascale],
Recognition and Segmentation of Scene Content using Region-Based
Classification,
ICPR06(I: 755-760).
IEEE DOI
0609
BibRef
Fernández-Caballero, A.[Antonio],
Castillo, J.C.[José Carlos],
Rodríguez-Sánchez, J.M.[José María],
A Proposal for Local and Global Human Activities Identification,
AMDO10(78-87).
Springer DOI
1007
BibRef
Liu, Y.[Yang],
Li, X.[Xi],
Hu, W.M.[Wei-Ming],
Semi-supervised Trajectory Learning Using a Multi-Scale Key Point Based
Trajectory Representation,
ICPR10(3525-3528).
IEEE DOI
1008
BibRef
Zhao, H.Y.[Hai-Yong],
Liu, Z.J.[Zhi-Jing],
Shape-Based Human Activity Recognition Using Edit Distance,
CISP09(1-4).
IEEE DOI
0910
BibRef
Cilla, R.[Rodrigo],
Patricio, M.A.[Miguel A.],
Berlanga, A.[Antonio],
Molina, J.M.[José M.],
Creating Human Activity Recognition Systems Using Pareto-based
Multiobjective Optimization,
AVSBS09(37-42).
IEEE DOI
0909
BibRef
Chuang, J.H.[Jen-Hui],
Lee, C.W.[Chun-Wei],
Lo, K.H.[Kuo-Hua],
Human activity analysis based on a torso-less representation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Morris, B.T.[Brendan T.],
Trivedi, M.M.[Mohan M.],
An adaptive scene description for activity analysis in surveillance
video,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhao, Z.P.[Zhi-Peng],
Elgammal, A.M.[Ahmed M.],
Human activity recognition from frame's spatiotemporal representation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Herrera, A.,
Beck, A.,
Bell, D.,
Miller, P.,
Wu, Q.,
Yan, W.,
Behaviour Analysis and Prediction in Image Sequences Using Rough Sets,
IMVIP08(71-76).
IEEE DOI
0809
BibRef
Jain, V.[Vidit],
Singhal, A.[Amit],
Luo, J.B.[Jie-Bo],
Selective hidden random fields:
Exploiting domain-specific saliency for event classification,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Seo, Y., and
Sycara, K.,
Combining multiple hypotheses for identifying human activities,
CMU-RI-TR-06-31, May, 2006.
WWW Link.
BibRef
0605
Colombo, C.[Carlo],
Comanducci, D.[Dario],
del Bimbo, A.[Alberto],
Behavior monitoring through automatic analysis of video sequences,
CIVR07(288-293).
DOI Link
0707
BibRef
And:
Compact representation and probabilistic classification of human
actions in videos,
AVSBS07(342-346).
IEEE DOI
0709
BibRef
Wu, J.X.[Jian-Xin],
Osuntogun, A.[Adebola],
Choudhury, T.[Tanzeem],
Philipose, M.[Matthai],
Rehg, J.M.[James M.],
A Scalable Approach to Activity Recognition based on Object Use,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Tavakkoli, A.[Alireza],
Kelley, R.[Richard],
King, C.[Christopher],
Nicolescu, M.[Mircea],
Nicolescu, M.[Monica],
Bebis, G.N.[George N.],
A Visual Tracking Framework for Intent Recognition in Videos,
ISVC08(I: 450-459).
Springer DOI
0812
BibRef
Earlier:
A Vision-Based Architecture for Intent Recognition,
ISVC07(II: 173-182).
Springer DOI
0711
BibRef
Moreno, P.[Plinio],
Ribeiro, P.C.[Pedro Canotilho],
Santos-Victor, J.[José],
Feature Selection for Tracker-Less Human Activity Recognition,
ICIAR11(I: 152-160).
Springer DOI
1106
See also Feature Set Search Space for FuzzyBoost Learning.
See also Improving the SIFT descriptor with smooth derivative filters.
BibRef
Ribeiro, P.C.[Pedro Canotilho],
Moreno, P.[Plinio],
Santos-Victor, J.[José],
Boosting with Temporal Consistent Learners:
An Application to Human Activity Recognition,
ISVC07(I: 464-475).
Springer DOI
0711
BibRef
Biswas, R.[Rahul],
Thrun, S.[Sebastian],
Fujimura, K.[Kikuo],
Recognizing Activities with Multiple Cues,
HUMO07(255-270).
Springer DOI
0710
BibRef
Ning, H.Z.[Hua-Zhong],
Hu, Y.X.[Yu-Xiao],
Huang, T.S.[Thomas S.],
Searching Human Behaviors using Spatial-Temporal Words,
ICIP07(VI: 337-340).
IEEE DOI
0709
BibRef
Thurau, C.[Christian],
Behavior Histograms for Action Recognition and Human Detection,
HUMO07(299-312).
Springer DOI
0710
BibRef
Thurau, C.[Christian],
Hlavác, V.[Václav],
n-Grams of Action Primitives for Recognizing Human Behavior,
CAIP07(93-100).
Springer DOI
0708
BibRef
Watanabe, K.,
Izumi, K.,
Shibayama, K.,
Kamohara, K.,
An Approach to Estimating Human Behaviors by Using an Active Vision
Head,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Carter, N.L.[Nicholas L.],
Young, D.[David],
Ferryman, J.M.[James M.],
A Combined Bayesian Markovian Approach for Behaviour Recognition,
ICPR06(I: 761-764).
IEEE DOI
0609
BibRef
And:
Supplementing Markov Chains with Additional Features for Behavioural
Analysis,
AVSBS06(65-65).
IEEE DOI
0611
BibRef
Yi, W.L.[Wei-Lie],
Ballard, D.H.,
Behavior Recognition in Human Object Interactions with a Task Model,
AVSBS06(64-64).
IEEE DOI
0611
BibRef
Li, H.P.[He-Ping],
Hu, Z.Y.[Zhan-Yi],
Wu, Y.H.[Yi-Hong],
Wu, F.C.[Fu-Chao],
Behavior Modeling and Recognition Based on Space-Time Image Features,
ICPR06(I: 243-246).
IEEE DOI
0609
BibRef
Xu, J.Y.[Jian-Yun],
Sung, A.H.[Andrew H.],
Liu, Q.Z.[Qing-Zhong],
Tree Based Behavior Monitoring for Adaptive Fraud Detection,
ICPR06(I: 1208-1211).
IEEE DOI
0609
BibRef
Tran, D.T.[Dung T.],
Phung, D.Q.[Dinh Q.],
A probabilistic model with parsinomious representation for sensor
fusion in recognizing activity in pervasive environment,
ICPR06(III: 168-172).
IEEE DOI
0609
BibRef
Ebadollahi, S.[Shahram],
Xie, L.X.[Le-Xing],
Abreu, A.[Andres],
Podlaseck, M.[Mark],
Chang, S.F.[Shih-Fu],
Smith, J.R.[John R.],
Exploring the Dynamics of Visual Events in the Multi-dimensional
Semantic Concept Space,
CIVR06(503-505).
Springer DOI
0607
BibRef
Kitani, K.M.,
Sato, Y.,
Sugimoto, A.,
Recovering the Basic Structure of Human Activities from a Video-Based
Symbol String,
Motion07(9-9).
IEEE DOI
0702
BibRef
Earlier:
Deleted Interpolation Using a Hierarchical Bayesian Grammar Network for
Recognizing Human Activity,
PETS05(239-246).
IEEE DOI
0602
BibRef
Zou, X.T.[Xiao-Tao],
Bhanu, B.[Bir],
Human Activity Classification Based on Gait Energy Image and
Coevolutionary Genetic Programming,
ICPR06(III: 556-559).
IEEE DOI
0609
BibRef
Zou, X.T.[Xiao-Tao],
Bhanu, B.,
Tracking Humans using Multi-modal Fusion,
OTCBVS05(III: 4-4).
IEEE DOI
0507
BibRef
Bhanu, B.[Bir],
Zou, X.T.[Xiao-Tao],
Moving Humans Detection Based on Multi-Modal Sensor Fusion,
OTCBVS04(136).
IEEE DOI
0502
BibRef
Jenkins, O.C.[Odest Chadwicke],
Gonzalez, G.[German],
Loper, M.[Matthew],
Dynamical Motion Vocabularies for Kinematic Tracking and Activity
Recognition,
V4HCI06(147).
IEEE DOI
0609
BibRef
Dollar, P.,
Rabaud, V.,
Cottrell, G.W.,
Belongie, S.J.,
Behavior recognition via sparse spatio-temporal features,
PETS05(65-72).
IEEE DOI
0602
BibRef
Vincze, M.[Markus],
Ponweiser, W.[Wolfgang],
Zillich, M.[Michael],
Contextual Coordination in a Cognitive Vision System for Symbolic
Activity Interpretation,
CVS06(12).
IEEE DOI
0602
BibRef
Sukthankar, G.,
Activity Recognition for Physically-Embodied Agent Teams,
CMU-RI-TR-05-44, October, 2005.
WWW Link.
BibRef
0510
Min, J.H.[Jung-Hye],
Kasturi, R.,
Activity recognition based on multiple motion trajectories,
ICPR04(IV: 199-202).
IEEE DOI
0409
BibRef
Chomat, O.[Olivier],
Crowley, J.L.[James L.],
A Probabilistic Sensor for the Perception of Activities,
AFGR00(314-319).
IEEE DOI
0003
BibRef
Earlier:
Probabilistic Recognition of Activity Using Local Appearance,
CVPR99(II: 104-109).
IEEE DOI
BibRef
Chomat, O.[Olivier],
Martin, J.[Jirtme],
Crowley, J.L.[James L.],
A Probabilistic Sensor for the Perception and the Recognition of
Activities,
ECCV00(I: 487-503).
Springer DOI
0003
BibRef
Eagle, N.[Nathan], and
Pentland, A.P.[Alex P.],
Eigenbehaviors: Identifying Structure in Routine,
Vismod-TR601, September 2006
PDF File.
BibRef
0609
Davis, L.S.[Larry S.],
Chellappa, R.[Rama],
Yacoob, Y.[Yaser],
Zheng, Q.F.[Qin-Fen],
Visual Surveillance and Monitoring of Human and Vehicular Activity,
DARPA97(19-2).
BibRef
9700
Pentland, A.P.[Alex P.],
Liu, A.[Andrew],
Modeling and Prediction of Human Behavior,
DARPA97(201 206).
BibRef
9700
And:
Vismod--433, 1997.
PS File.
BibRef
Goddard, N.,
Human Activity Recognition,
MBR97(Chapter 7)
Pittsburgh Supercomputing Center
BibRef
9700
Sun, X.D.[Xin-Ding],
Chen, C.W.[Ching-Wei],
Manjunath, B.S.,
Probabilistic motion parameter models for human activity recognition,
ICPR02(I: 443-446).
IEEE DOI
0211
BibRef
Sun, X.D.[Xin-Ding],
Manjunath, B.S.,
Panoramic capturing and recognition of human activity,
ICIP02(II: 813-816).
IEEE DOI
0210
BibRef
Ali, A.[Anjum],
Aggarwal, J.K.,
Segmentation and Recognition of Continuous Human Activity,
EventVideo01(28-35).
IEEE DOI
0106
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Complex Human Activity Recognition .