Galata, A.[Aphrodite],
Johnson, N.[Neil],
Hogg, D.C.[David C.],
Learning Variable-Length Markov Models of Behavior,
CVIU(81), No. 3, March 2001, pp. 398-413.
DOI Link
0001
BibRef
Earlier:
Learning Structured Behavior Models using Variable Length Markov Models,
MPeople99(xx-yy).
BibRef
And:
Learning Behaviour Models of Human Activities,
BMVC99(Modelling Human Behaviour).
PDF File.
BibRef
Earlier: A2, A1, A3:
The Acquisition and Use of Interaction Behaviour Models,
CVPR98(866-871).
IEEE DOI
BibRef
Hu, W.,
Xie, D.,
Tan, T.N.[Tie-Niu],
Maybank, S.J.[Steve J.],
Learning Activity Patterns Using Fuzzy Self-Organizing Neural Network,
SMC-B(34), No. 3, June 2004, pp. 1618-1626.
IEEE Abstract.
0407
BibRef
Hu, W.M.[Wei-Ming],
Xie, D.[Dan],
Fu, Z.Y.[Zhou-Yu],
Zeng, W.R.[Wen-Rong],
Maybank, S.J.[Steve J.],
Semantic-Based Surveillance Video Retrieval,
IP(16), No. 4, April 2007, pp. 1168-1181.
IEEE DOI
0704
See also Survey on Visual Content-Based Video Indexing and Retrieval, A.
BibRef
Huang, K.Q.[Kai-Qi],
Wang, S.,
Tan, T.N.[Tie-Niu],
Maybank, S.J.[Steve J.],
Human Behavior Analysis Based on a New Motion Descriptor,
CirSysVideo(19), No. 12, December 2009, pp. 1830-1840.
IEEE DOI
0912
BibRef
Oliver, N.M.[Nuria M.],
Garg, A.[Ashutosh],
Horvitz, E.J.[Eric J.],
Layered representations for learning and inferring office activity from
multiple sensory channels,
CVIU(96), No. 2, November 2004, pp. 163-180.
Elsevier DOI
0410
BibRef
Favier, P.A.[Pierre-Alexandre],
de Loor, P.[Pierre],
From Decision to Action: Intentionality, A Guide for the Specification
of Intelligent Agent's Behavior,
IJIG(6), No. 1, January 2006, pp. 87-99.
0601
BibRef
Gueguen, L.[Lionel],
Datcu, M.[Mihai],
Image Time-Series Data Mining Based on the Information-Bottleneck
Principle,
GeoRS(45), No. 4, April 2007, pp. 827-838.
IEEE DOI
0704
BibRef
Mokhber, A.[Arash],
Achard, C.[Catherine],
Milgram, M.[Maurice],
Recognition of human behavior by space-time silhouette characterization,
PRL(29), No. 1, 1 January 2008, pp. 81-89.
Elsevier DOI
0711
Behavior recognition; Action recognition; Motion analysis
BibRef
Achard, C.[Catherine],
Qu, X.T.[Xing-Tai],
Mokhber, A.[Arash],
Milgram, M.[Maurice],
A novel approach for recognition of human actions with semi-global
features,
MVA(19), No. 1, January 2008, pp. 27-34.
Springer DOI
0801
BibRef
Earlier:
Action Recognition with Semi-global Characteristics and Hidden Markov
Models,
ACIVS07(274-284).
Springer DOI
0708
BibRef
Earlier: A3, A1, A4, A2:
Combined Classifiers for Action Recognition,
IWICPAS06(27-34).
Springer DOI
0608
BibRef
Earlier: A3, A1, A2, A4:
Action Recognition with Global Features,
CVHCI05(110).
Springer DOI
0601
BibRef
Oh, S.M.[Sang Min],
Rehg, J.M.[James M.],
Balch, T.[Tucker],
Dellaert, F.[Frank],
Learning and Inferring Motion Patterns using Parametric Segmental
Switching Linear Dynamic Systems,
IJCV(77), No. 1-3, May 2008, pp. 103-124.
Springer DOI
0803
BibRef
Earlier:
Learning and Inference in Parametric Switching Linear Dynamical Systems,
ICCV05(II: 1161-1168).
IEEE DOI
0510
BibRef
And: A1, A2, A4, Only:
Parameterized Duration Mmodeling for Switching Linear Dynamic Systems,
CVPR06(II: 1694-1700).
IEEE DOI
0606
Bee dances.
for learning parameterized motions.
BibRef
Xie, L.,
Sundaram, H.,
Campbell, M.,
Event Mining in Multimedia Streams,
PIEEE(96), No. 4, April 2008, pp. 623-647.
IEEE DOI
0804
BibRef
Jung, C.R.,
Hennemann, L.,
Musse, S.R.,
Event Detection Using Trajectory Clustering and 4-D Histograms,
CirSysVideo(18), No. 11, November 2008, pp. 1565-1575.
IEEE DOI
0811
BibRef
Yuan, J.,
Meng, J.,
Wu, Y.,
Luo, J.,
Mining Recurring Events Through Forest Growing,
CirSysVideo(18), No. 11, November 2008, pp. 1597-1607.
IEEE DOI
0811
BibRef
Lymberopoulos, D.,
Teixeira, T.,
Savvides, A.,
Macroscopic Human Behavior Interpretation Using Distributed Imager and
Other Sensors,
PIEEE(96), No. 10, October 2008, pp. 1657-1677.
IEEE DOI
0811
BibRef
Chin, T.J.[Tat-Jun],
Suter, D.[David],
Out-of-Sample Extrapolation of Learned Manifolds,
PAMI(30), No. 9, September 2008, pp. 1547-1556.
IEEE DOI
0808
BibRef
Chin, T.J.[Tat-Jun],
Wang, L.[Liang],
Schindler, K.[Konrad],
Suter, D.[David],
Extrapolating Learned Manifolds for Human Activity Recognition,
ICIP07(I: 381-384).
IEEE DOI
0709
BibRef
Wang, L.[Liang],
Suter, D.[David],
Recognizing Human Activities from Silhouettes: Motion Subspace and
Factorial Discriminative Graphical Model,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Zhou, H.[Hang],
Wang, L.[Liang],
Suter, D.[David],
Human action recognition by feature-reduced Gaussian process
classification,
PRL(30), No. 12, 1 September 2009, pp. 1059-1066,.
Elsevier DOI
0909
BibRef
Earlier:
Human motion recognition using Gaussian Processes classification,
ICPR08(1-4).
IEEE DOI
0812
Human action recognition; Characteristic-based descriptor; Gaussian
process classification; Spectral feature reduction
BibRef
Wang, L.[Liang],
Zhou, H.[Hang],
Low, S.C.[Sui-Chien],
Leckie, C.[Christopher],
Action recognition via multi-feature fusion and Gaussian process
classification,
WACV09(1-6).
IEEE DOI
0912
BibRef
Wang, X.G.[Xiao-Gang],
Ma, X.X.[Xiao-Xu],
Grimson, W.E.L.[W. Eric L.],
Unsupervised Activity Perception in Crowded and Complicated Scenes
Using Hierarchical Bayesian Models,
PAMI(31), No. 3, March 2009, pp. 539-555.
IEEE DOI
0902
BibRef
Earlier:
Unsupervised Activity Perception by Hierarchical Bayesian Models,
CVPR07(1-8).
IEEE DOI
0706
Anomaly Detection. Unsupervised learning in crowded environments (stations, shopping malls,
traffic).
Atomic activities modeled as distibutions over low level features.
Then distributions over atomic activities.
Three Bayesian Mixture models:
Latent Dirichlet Allocation, Hierarchical Dirichlet Processes
and dual Hierarchical Dirchlet Processes.
Discover and summarize atomic activities. Sebment long video into different
interactions, segment motions into different activities. Detect abnormality.
Support high-level queries.
BibRef
Wang, X.G.[Xiao-Gang],
Ma, K.T.[Keng Teck],
Ng, G.W.[Gee-Wah],
Grimson, W.E.L.[W. Eric L.],
Trajectory Analysis and Semantic Region Modeling Using Nonparametric
Hierarchical Bayesian Models,
IJCV(95), No. 3, December 2011, pp. 287-312.
WWW Link.
1109
BibRef
Earlier:
Trajectory analysis and semantic region modeling using a nonparametric
Bayesian model,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And:
CSAIL-2008-015, June 2008.
WWW Link. Dual Hierarchical Dirichlet Processes (Dual-HDP)
Treat trajectories as documents and observation is word in the document.
Cluster trajectories, abnormal ones have few other members of the cluster.
See also Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models.
BibRef
Wang, X.G.[Xiao-Gang],
Tieu, K.[Kinh],
Grimson, W.E.L.[W. Eric L.],
Correspondence-Free Activity Analysis and Scene Modeling in Multiple
Camera Views,
PAMI(32), No. 1, January 2010, pp. 56-71.
IEEE DOI
0912
BibRef
Earlier:
Correspondence-free multi-camera activity analysis and scene modeling,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And:
Learning Semantic Scene Models by Trajectory Analysis,
ECCV06(III: 110-123).
Springer DOI
0608
BibRef
And:
CSAIL-2006-008, February 2006.
WWW Link. Segment using long-term trajectories.
Multiple, synchronized, uncalibrated, stationary cameras.
Motion patterns. Tracked independently.
Group trajectories across views. Model paths in multiple views.
Detect abnormal paths.
BibRef
Brdiczka, O.[Oliver],
Crowley, J.L.[James L.],
Reignier, P.[Patrick],
Learning Situation Models in a Smart Home,
SMC-B(39), No. 1, February 2009, pp. 56-63.
IEEE DOI
0902
BibRef
Brdiczka, O.[Oliver],
Yuen, P.C.[Pong C.],
Zaidenberg, S.[Sofia],
Reignier, P.[Patrick],
Crowley, J.L.[James L.],
Automatic Acquisition of Context Models and its Application to Video
Surveillance,
ICPR06(I: 1175-1178).
IEEE DOI
0609
BibRef
Veeraraghavan, A.[Ashok],
Srinivasan, M.[Mandyam],
Roy-Chowdhury, A.K.[Amit K.],
Chellappa, R.[Rama],
Rate-Invariant Recognition of Humans and Their Activities,
IP(18), No. 6, June 2009, pp. 1326-1339.
IEEE DOI
0905
Model based approach to actions, capture variations due to rate of execution.
BibRef
Patino, J.L.[Jose Luis],
Benhadda, H.,
Corvee, E.,
Brémond, F.[Francois],
Thonnat, M.[Monique],
Extraction of activity patterns on large video recordings,
IET-CV(2), No. 2, June 2008, pp. 108-128.
DOI Link
0905
BibRef
Pusiol, G.[Guido],
Bremond, F.[Francois],
Thonnat, M.[Monique],
Trajectory Based Activity Discovery,
AVSS10(270-277).
IEEE DOI
1009
BibRef
Earlier:
Trajectory based Primitive Events for learning and recognizing activity,
THEMIS09(1081-1088).
IEEE DOI
0910
BibRef
Thonnat, M.[Monique],
Brémond, F.[Francois],
Pusiol, G.[Guido],
Patino, J.L.[Jose Luis],
Optimizing trajectories clustering for activity recognition,
MLMotion08(xx-yy).
0810
BibRef
Gui, L.[Laura],
Thiran, J.P.[Jean-Philippe],
Paragios, N.[Nikos],
Cooperative Object Segmentation and Behavior Inference in Image
Sequences,
IJCV(84), No. 2, August 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Earlier:
Joint Object Segmentation and Behavior Classification in Image
Sequences,
CVPR07(1-8).
IEEE DOI
0706
BibRef
And:
A Variational Framework for the Simultaneous Segmentation and Object
Behavior Classification of Image Sequences,
SSVM07(652-664).
Springer DOI
0705
BibRef
Saleemi, I.[Imran],
Shafique, K.[Khurram],
Shah, M.[Mubarak],
Probabilistic Modeling of Scene Dynamics for Applications in Visual
Surveillance,
PAMI(31), No. 8, August 2009, pp. 1472-1485.
IEEE DOI
0906
Model and learn activity from static camera. Generate likely paths to
improve object detection and tracking.
BibRef
Veeraraghavan, H.[Harini],
Papanikolopoulos, N.P.[Nikolaos P.],
Learning to Recognize Video-Based Spatiotemporal Events,
ITS(10), No. 4, December 2009, pp. 628-638.
IEEE DOI
0912
BibRef
Veeraraghavan, H.[Harini],
Papanikolopoulos, N.P.[Nikolaos P.],
Schrater, P.[Paul],
Learning Dynamic Event Descriptions in Image Sequences,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Husz, Z.L.[Zsolt L.],
Wallace, A.M.[Andrew M.],
Green, P.R.[Patrick R.],
Behavioural Analysis with Movement Cluster Model for Concurrent Actions,
JIVP(2011), No. 2011, pp. xx-yy.
DOI Link
1101
BibRef
Earlier:
Human activity recognition with action primitives,
AVSBS07(330-335).
IEEE DOI
0709
See also Tracking With a Hierarchical Partitioned Particle Filter and Movement Modelling.
BibRef
Faruquie, T.A.[Tanveer A.],
Banerjee, S.[Subhashis],
Kalra, P.K.[Prem K.],
Latent topic model-based group activity discovery,
VC(27), No. 12, December 2011, pp. 1071-1082.
WWW Link.
1112
BibRef
Earlier: A1, A3, A2:
Time based Activity Inference using Latent Dirichlet Allocation,
BMVC09(xx-yy).
PDF File.
0909
Optic flow vectors. Group activities.
BibRef
Faruquie, T.A.[Tanveer A.],
Banerjee, S.[Subhashis],
Kalra, P.K.[Prem K.],
Unsupervised Discovery of Activities and Their Temporal Behaviour,
AVSS12(100-105).
IEEE DOI
1211
BibRef
Earlier:
Unsupervised discovery of activity correlations using latent topic
models,
ICCVGIP10(25-32).
DOI Link
1111
BibRef
Choudhary, A.[Ayesha],
Faruquie, T.A.[Tanveer A.],
Banerjee, S.[Subhashis],
Chaudhury, S.[Santanu],
Discovering Activities and Their Temporal Significance,
AVSS12(240-245).
IEEE DOI
1211
BibRef
Zhang, Z.[Zhong],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhou, W.[Wen],
Liu, S.[Shuang],
Action Recognition Using Context-Constrained Linear Coding,
SPLetters(19), No. 7, July 2012, pp. 439-442.
IEEE DOI
1206
BibRef
Earlier:
Human Action Recognition with Attribute Regularization,
AVSS12(112-117).
IEEE DOI
1211
BibRef
Zhang, Z.[Zhong],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhou, W.[Wen],
Liu, S.[Shuang],
Cross-View Action Recognition Using Contextual Maximum Margin
Clustering,
CirSysVideo(24), No. 10, October 2014, pp. 1663-1668.
IEEE DOI
1411
gesture recognition
BibRef
Zhou, W.[Wen],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhang, Z.[Zhong],
Shao, Y.X.[Yun-Xue],
Modeling Interactions between Low-Level and High-Level Features for
Human Action Recognition,
IEICE(E96-D), No. 12, December 2013, pp. 2896-2899.
WWW Link.
1312
BibRef
Zhou, W.[Wen],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhang, Z.[Zhong],
Human action recognition using weighted pooling,
IET-CV(8), No. 6, 2014, pp. 579-587.
DOI Link
1502
gesture recognition
See also Cross-view face recognition via structured dictionary based domain shift.
BibRef
Zhang, Z.[Zhong],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhou, W.[Wen],
Liu, S.[Shuang],
Contextual Fisher kernels for human action recognition,
ICPR12(437-440).
WWW Link.
1302
BibRef
Zhou, W.[Wen],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhang, Z.[Zhong],
Ma, L.[Long],
Human action recognition by bagging data dependent representation,
ICPR12(3120-3123).
WWW Link.
1302
BibRef
Zhang, Z.[Zhong],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhou, W.[Wen],
Liu, S.[Shuang],
Shi, C.Z.[Cun-Zhao],
Cross-View Action Recognition via a Continuous Virtual Path,
CVPR13(2690-2697)
IEEE DOI
1309
BibRef
Zhou, W.[Wen],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhang, Z.[Zhong],
Action recognition via structured codebook construction,
SP:IC(29), No. 4, 2014, pp. 546-555.
Elsevier DOI
1404
Action recognition
BibRef
An, G.Y.[Gao-Yun],
Zheng, Z.X.[Zhen-Xing],
Wu, D.P.[Da-Peng],
Zhou, W.[Wen],
Deep spectral feature pyramid in the frequency domain for long-term
action recognition,
JVCIR(64), 2019, pp. 102650.
Elsevier DOI
1911
Action recognition, Deep learning, Spectral feature, Video classification
BibRef
Duan, L.X.[Li-Xin],
Xu, D.[Dong],
Tsang, I.W.H.[Ivor Wai-Hung],
Luo, J.B.[Jie-Bo],
Visual Event Recognition in Videos by Learning from Web Data,
PAMI(34), No. 9, September 2012, pp. 1667-1680.
IEEE DOI
1208
BibRef
Earlier:
CVPR10(1959-1966).
IEEE DOI Video of talk:
WWW Link.
1006
Award, CVPR, Student.
BibRef
Chen, L.[Lin],
Duan, L.X.[Li-Xin],
Xu, D.[Dong],
Event Recognition in Videos by Learning from Heterogeneous Web
Sources,
CVPR13(2666-2673)
IEEE DOI
1309
Domain Adaptation; Event Recognition
BibRef
Wu, X.X.[Xin-Xiao],
Wang, R.Q.[Rui-Qi],
Hou, J.Y.[Jing-Yi],
Lin, H.X.[Han-Xi],
Luo, J.B.[Jie-Bo],
Spatial-Temporal Relation Reasoning for Action Prediction in Videos,
IJCV(129), No. 5, May 2021, pp. 1484-1505.
Springer DOI
2105
BibRef
Wu, X.X.[Xin-Xiao],
Xu, D.[Dong],
Duan, L.X.[Li-Xin],
Luo, J.B.[Jie-Bo],
Action recognition using context and appearance distribution features,
CVPR11(489-496).
IEEE DOI
1106
BibRef
Yi, S.[Sheng],
Krim, H.[Hamid],
Norris, L.K.[Larry K.],
Human Activity as a Manifold-Valued Random Process,
IP(21), No. 8, August 2012, pp. 3416-3428.
IEEE DOI
1208
BibRef
Earlier:
A invertible dimension reduction of curves on a manifold,
ITCVPR11(1378-1385).
IEEE DOI
1201
BibRef
And:
Human Activity Modeling as Brownian Motion on Shape Manifold,
SSVM11(628-639).
Springer DOI
1201
BibRef
Earlier:
Human Activity Modeling On Shape Manifold,
3DOR11(105-112)
DOI Link
1301
BibRef
Yi, S.[Sheng],
Krim, H.[Hamid],
Subspace Learning of Dynamics on a Shape Manifold:
A Generative Modeling Approach,
IP(23), No. 11, November 2014, pp. 4907-4919.
IEEE DOI
1410
Equations
BibRef
Bian, X.[Xiao],
Krim, H.[Hamid],
Optimal Operator Space Pursuit:
A Framework for Video Sequence Data Analysis,
ACCV12(II:760-769).
Springer DOI
1304
video based human activity classification
BibRef
Castrodad, A.[Alexey],
Sapiro, G.[Guillermo],
Sparse Modeling of Human Actions from Motion Imagery,
IJCV(100), No. 1, October 2012, pp. 1-15.
WWW Link.
1208
BibRef
Junejo, I.N.[Imran N.],
Al Aghbari, Z.[Zaher],
Using SAX representation for human action recognition,
JVCIR(23), No. 6, August 2012, pp. 853-861.
Elsevier DOI
1208
Action recognition; Pattern recognition; Image
understanding; SAX representation; Data mining; Intelligent systems;
Video surveillance
BibRef
Junejo, I.N.[Imran N.],
Junejo, K.N.[Khurrum Nazir],
Al Aghbari, Z.[Zaher],
Silhouette-based human action recognition using SAX-Shapes,
VC(30), No. 3, March 2014, pp. 259-269.
WWW Link.
1403
BibRef
San Miguel, J.C.[Juan C.],
Martínez, J.M.[José M.],
A semantic-based probabilistic approach for real-time video event
recognition,
CVIU(116), No. 9, September 2012, pp. 937-952.
Elsevier DOI
1208
Video event detection; Semantic video analysis; Bayes Network; Petri
Net; Low-level uncertainty
See also Rejection based multipath reconstruction for background estimation in video sequences with stationary objects.
BibRef
San Miguel, J.C.[Juan C.],
Martínez, J.M.[José M.],
A semantic-guided and self-configurable framework for video analysis,
MVA(24), No. 3, April 2013, pp. 493-512.
WWW Link.
1303
See also Standalone evaluation of deterministic video tracking.
BibRef
San Miguel, J.C.[Juan Carlos],
Martinez, J.M.[José M.],
Garcia, Á.[Álvaro],
An Ontology for Event Detection and its Application in Surveillance
Video,
AVSBS09(220-225).
IEEE DOI
0909
BibRef
Weinshall, D.[Daphna],
Zweig, A.[Alon],
Hermansky, H.[Hynek],
Kombrink, S.[Stefan],
Ohl, F.W.[Frank W.],
Anemüller, J.[Jörn],
Bach, J.H.[Jörg-Hendrik],
Van Gool, L.J.[Luc J.],
Nater, F.[Fabian],
Pajdla, T.[Tomas],
Havlena, M.[Michal],
Pavel, M.[Misha],
Beyond Novelty Detection: Incongruent Events, When General and Specific
Classifiers Disagree,
PAMI(34), No. 10, October 2012, pp. 1886-1901.
IEEE DOI
1208
Unexpected stimuli with machine learning.
Label hierarchy. Find events that do not fit.
BibRef
Noceti, N.[Nicoletta],
Odone, F.[Francesca],
Learning common behaviors from large sets of unlabeled temporal series,
IVC(30), No. 11, November 2012, pp. 875-895.
Elsevier DOI
1211
BibRef
And:
Unsupervised Video Surveillance,
VS10(84-93).
Springer DOI
1109
Behavior analysis; Temporal series clustering; Anomaly detection;
Unsupervised learning
BibRef
Noceti, N.[Nicoletta],
Caputo, B.[Barbara],
Castellini, C.[Claudio],
Baldassarre, L.[Luca],
Barla, A.[Annalisa],
Rosasco, L.[Lorenzo],
Odone, F.[Francesca],
Sandini, G.[Giulio],
Towards a Theoretical Framework for Learning Multi-modal Patterns for
Embodied Agents,
CIAP09(239-248).
Springer DOI
0909
BibRef
Noceti, N.[Nicoletta],
Santoro, M.[Matteo],
Odone, F.[Francesca],
Unsupervised learning of behavioural patterns for video-surveillance,
MLMotion08(xx-yy).
0810
BibRef
Noceti, N.[Nicoletta],
Balduzzi, L.[Luigi],
What Epipolar Geometry Can Do for Video-Surveillance,
CIAP13(I:442-451).
Springer DOI
1311
matching moving objects between multiple views
BibRef
Fu, W.[Wei],
Wang, J.Q.[Jin-Qiao],
Lu, H.Q.[Han-Qing],
Ma, S.D.[Song-De],
Dynamic scene understanding by improved sparse topical coding,
PR(46), No. 7, July 2013, pp. 1841-1850.
Elsevier DOI
1303
Motion patterns; Sparse topical coding; Scene understanding
BibRef
Fu, W.[Wei],
Wang, J.Q.[Jin-Qiao],
Zhao, C.Y.[Chao-Yang],
Lu, H.Q.[Han-Qing],
Ma, S.D.[Song-De],
Object-centered narratives for video surveillance,
ICIP12(29-32).
IEEE DOI
1302
BibRef
Roggen, D.[Daniel],
Töster, G.[Gerhard],
Lukowicz, P.,
Ferscha, A.,
Millán, J.D.[José Del_R.],
Chavarriaga, R.[Ricardo],
Opportunistic Human Activity and Context Recognition,
Computer(46), No. 2, February 2013, pp. 36-45.
IEEE DOI
1303
BibRef
Ohnishi, N.[Naoya],
Imiya, A.[Atsushi],
Appearance-based navigation and homing for autonomous mobile robot,
IVC(31), No. 6-7, June-July 2013, pp. 511-532.
Elsevier DOI
1306
BibRef
Earlier:
Visual Navigation of Mobile Robot Using Optical Flow and Visual
Potential Field,
RobVis08(412-426).
Springer DOI
0802
BibRef
Earlier:
Combination of supervised and unsupervised methods for navigation path
mining,
MLMotion08(xx-yy).
0810
BibRef
Earlier:
Corridor Navigation and Obstacle Avoidance using Visual Potential for
Mobile Robot,
CRV07(131-138).
IEEE DOI
0705
Visual navigation; Visual homing; Nonholonomic mobile robot;
Visual potential; Optical flow; Dominant plane
BibRef
Ohnishi, N.[Naoya],
Imiya, A.[Atsushi],
Dominant plane detection from optical flow for robot navigation,
PRL(27), No. 9, July 2006, pp. 1009-1021.
Elsevier DOI
0605
Dominant plane detection; Affine transformation
BibRef
Ohnishi, N.[Naoya],
Imiya, A.[Atsushi],
Independent Component Analysis of Layer Optical Flow and Its
Application,
BVAI07(171-180).
Springer DOI
0710
BibRef
And:
Model-Based Plane-Segmentation Using Optical Flow and Dominant Plane,
MIRAGE07(295-306).
Springer DOI
0703
BibRef
Imiya, A.[Atsushi],
Yamada, D.[Daisuke],
Voting Method for Stable Range Optical Flow Computation,
PSIVT06(332-341).
Springer DOI
0612
BibRef
Trinh, V.C.,
Gonzalez, A.J.,
Discovering Contexts from Observed Human Performance,
HMS(43), No. 4, 2013, pp. 359-370.
IEEE DOI
1307
behavioural sciences computing
BibRef
Zhen, X.T.[Xian-Tong],
Shao, L.[Ling],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
Embedding Motion and Structure Features for Action Recognition,
CirSysVideo(23), No. 7, 2013, pp. 1182-1190.
IEEE DOI
1307
Gabor filters
See also Learning Discriminative Key Poses for Action Recognition.
BibRef
Shao, L.[Ling],
Jones, S.,
Li, X.L.[Xue-Long],
Efficient Search and Localization of Human Actions in Video Databases,
CirSysVideo(24), No. 3, March 2014, pp. 504-512.
IEEE DOI
1404
image motion analysis
BibRef
Aztiria, A.,
Augusto, J.C.,
Basagoiti, R.,
Izaguirre, A.,
Cook, D.J.,
Learning Frequent Behaviors of the Users in Intelligent Environments,
SMCS(43), No. 6, 2013, pp. 1265-1278.
IEEE DOI
1311
Ambient intelligence
BibRef
Ben Aoun, N.[Najib],
Mejdoub, M.[Mahmoud],
Ben Amar, C.[Chokri],
Graph-based approach for human action recognition using
spatio-temporal features,
JVCIR(25), No. 2, 2014, pp. 329-338.
Elsevier DOI
1402
Human action recognition
BibRef
Sekma, M.[Manel],
Mejdoub, M.[Mahmoud],
Ben Amar, C.[Chokri],
Human action recognition based on multi-layer Fisher vector encoding
method,
PRL(65), No. 1, 2015, pp. 37-43.
Elsevier DOI
1511
BibRef
Earlier:
Human Action Recognition Using Temporal Segmentation and Accordion
Representation,
CAIP13(II:563-570).
Springer DOI
1311
Human action recognition
BibRef
Sekma, M.[Manel],
Mejdoub, M.[Mahmoud],
Ben Amar, C.[Chokri],
Bag of Graphs with Geometric Relationships Among Trajectories for
Better Human Action Recognition,
CIAP15(I:85-96).
Springer DOI
1511
BibRef
Ben Aoun, N.[Najib],
Elghazel, H.[Haytham],
Hacid, M.S.[Mohand-Said],
Ben Amar, C.[Chokri],
Graph Aggregation Based Image Modeling and Indexing for Video
Annotation,
CAIP11(II: 324-331).
Springer DOI
1109
BibRef
Wali, A.[Ali],
Ben Aoun, N.[Najib],
Karray, H.[Hichem],
Ben Amar, C.[Chokri],
Alimi, A.M.[Adel M.],
A New System for Event Detection from Video Surveillance Sequences,
ACIVS10(II: 110-120).
Springer DOI
1012
BibRef
Wali, A.,
Alimi, A.M.,
Incremental Learning Approach for Events Detection from Large Video
Dataset,
AVSS10(555-560).
IEEE DOI
1009
BibRef
Burghouts, G.J.,
Schutte, K.,
Bouma, H.,
den Hollander, R.J.M.,
Selection of negative samples and two-stage combination of multiple
features for action detection in thousands of videos,
MVA(25), No. 1, January 2014, pp. 85-98.
Springer DOI
1402
BibRef
Cuzzolin, F.[Fabio],
Sapienza, M.[Michael],
Learning Pullback HMM Distances,
PAMI(36), No. 7, July 2014, pp. 1483-1489.
IEEE DOI
1407
Covariance matrices
BibRef
Sapienza, M.[Michael],
Cuzzolin, F.[Fabio],
Torr, P.H.S.[Philip H.S.],
Learning Discriminative Space-Time Action Parts from Weakly Labelled
Videos,
IJCV(110), No. 1, October 2014, pp. 30-47.
Springer DOI
1410
BibRef
Earlier:
Learning discriminative space-time actions from weakly labelled videos,
BMVC12(123).
DOI Link
1301
BibRef
Singh, G.[Gurkirt],
Saha, S.[Suman],
Cuzzolin, F.[Fabio],
TraMNet: Transition Matrix Network for Efficient Action Tube Proposals,
ACCV18(VI:420-437).
Springer DOI
1906
BibRef
Singh, G.[Gurkirt],
Cuzzolin, F.[Fabio],
Recurrent Convolutions for Causal 3D CNNs,
HVU19(1456-1465)
IEEE DOI
2004
convolutional neural nets, image reconstruction,
image representation, image resolution, image sequences,
Causal reasoning
BibRef
Saha, S.[Suman],
Singh, G.[Gurkirt],
Sapienza, M.[Michael],
Torr, P.H.S.[Philip H.S.],
Cuzzolin, F.[Fabio],
Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Jetley, S.[Saumya],
Cuzzolin, F.[Fabio],
3D Activity Recognition Using Motion History and Binary Shape Templates,
Gait14(I: 129-144).
Springer DOI
1504
BibRef
Fernando, B.[Basura],
Gould, S.[Stephen],
Discriminatively Learned Hierarchical Rank Pooling Networks,
IJCV(124), No. 3, September 2017, pp. 335-355.
Springer DOI
1708
BibRef
Fernando, B.[Basura],
Anderson, P.[Peter],
Hutter, M.[Marcus],
Gould, S.[Stephen],
Discriminative Hierarchical Rank Pooling for Activity Recognition,
CVPR16(1924-1932)
IEEE DOI
1612
BibRef
de Rosa, R.[Rocco],
Gori, I.[Ilaria],
Cuzzolin, F.[Fabio],
Cesa-Bianchi, N.[Nicolò],
Active Incremental Recognition of Human Activities in a Streaming
Context,
PRL(99), No. 1, 2017, pp. 48-56.
Elsevier DOI
1710
BibRef
Earlier: A1, A4, A2, A3:
Online Action Recognition via Nonparametric Incremental Learning,
BMVC14(xx-yy).
HTML Version.
1410
Activity recognition
BibRef
Mazloom, M.,
Gavves, E.[Efstratios],
Snoek, C.G.M.[Cees G.M.],
Conceptlets: Selective Semantics for Classifying Video Events,
MultMed(16), No. 8, December 2014, pp. 2214-2228.
IEEE DOI
1502
feature extraction
BibRef
Hussein, N.,
Gavves, E.[Efstratios],
Smeulders, A.W.M.[Arnold W.M.],
Unified Embedding and Metric Learning for Zero-Exemplar Event
Detection,
CVPR17(2087-2096)
IEEE DOI
1711
Detectors, Event detection, Measurement, Semantics, Videos, Visualization
BibRef
Mazloom, M.,
Li, X.,
Snoek, C.G.M.[Cees G. M.],
TagBook: A Semantic Video Representation Without Supervision for
Event Detection,
MultMed(18), No. 7, July 2016, pp. 1378-1388.
IEEE DOI
1608
image representation
BibRef
Li, Z.Y.[Zhen-Yang],
Gavrilyuk, K.[Kirill],
Gavves, E.[Efstratios],
Jain, M.[Mihir],
Snoek, C.G.M.[Cees G.M.],
VideoLSTM convolves, attends and flows for action recognition,
CVIU(166), No. 1, 2018, pp. 41-50.
Elsevier DOI
1712
Action recognition
BibRef
Kooij, J.F.P.[Julian F.P.],
Englebienne, G.[Gwenn],
Gavrila, D.M.[Dariu M.],
Identifying multiple objects from their appearance in inaccurate
detections,
CVIU(136), No. 1, 2015, pp. 103-116.
Elsevier DOI
1506
BibRef
Earlier:
A Non-parametric Hierarchical Model to Discover Behavior Dynamics from
Tracks,
ECCV12(VI: 270-283).
Springer DOI
1210
Object recognition. Keep track of multiple objects in video.
BibRef
Kooij, J.F.P.[Julian F.P.],
Englebienne, G.[Gwenn],
Gavrila, D.M.[Dariu M.],
Mixture of Switching Linear Dynamics to Discover Behavior Patterns in
Object Tracks,
PAMI(38), No. 2, February 2016, pp. 322-334.
IEEE DOI
1601
Dynamics
BibRef
Elloumi, S.,
Cosar, S.,
Pusiol, G.,
Bremond, F.,
Thonnat, M.,
Unsupervised discovery of human activities from long-time videos,
IET-CV(9), No. 4, 2015, pp. 522-530.
DOI Link
1509
feature extraction
BibRef
Murthy, O.V.R.[O.V. Ramana],
Goecke, R.[Roland],
Ordered trajectories for human action recognition with large number
of classes,
IVC(42), No. 1, 2015, pp. 22-34.
Elsevier DOI
1509
Action recognition
BibRef
Earlier:
The Influence of Temporal Information on Human Action Recognition
with Large Number of Classes,
DICTA14(1-8)
IEEE DOI
1502
BibRef
Earlier:
Ordered Trajectories for Large Scale Human Action Recognition,
THUMOS13(412-419)
IEEE DOI
1403
object recognition.
image representation
See also Injury Mechanism Classification in Soccer Videos.
BibRef
Fanaeepour, M.[Maryam],
Kulik, L.[Lars],
Tanin, E.[Egemen],
Rubinstein, B.I.P.[Benjamin I.P.],
The CASE histogram:
Privacy-aware processing of trajectory data using aggregates,
GeoInfo(19), No. 4, October 2015, pp. 747-798.
IEEE DOI
1511
Location based services, process the data, but hide identity.
BibRef
Zhang, G.[Guopeng],
Piccardi, M.,
Structural SVM with Partial Ranking for Activity Segmentation and
Classification,
SPLetters(22), No. 12, December 2015, pp. 2344-2348.
IEEE DOI
1512
image classification
BibRef
Wang, H.[Heng],
Oneata, D.[Dan],
Verbeek, J.[Jakob],
Schmid, C.[Cordelia],
A Robust and Efficient Video Representation for Action Recognition,
IJCV(119), No. 3, September 2016, pp. 219-238.
Springer DOI
1608
BibRef
Earlier: A2, A3, A4, Only:
Efficient Action Localization with Approximately Normalized Fisher
Vectors,
CVPR14(2545-2552)
IEEE DOI
1409
BibRef
Earlier: A2, A3, A4, Only:
Action and Event Recognition with Fisher Vectors on a Compact Feature
Set,
ICCV13(1817-1824)
IEEE DOI
1403
Fisher vectors
See also Segmentation Driven Object Detection with Fisher Vectors.
BibRef
Rohrbach, M.[Marcus],
Rohrbach, A.[Anna],
Regneri, M.[Michaela],
Amin, S.[Sikandar],
Andriluka, M.[Mykhaylo],
Pinkal, M.[Manfred],
Schiele, B.[Bernt],
Recognizing Fine-Grained and Composite Activities Using Hand-Centric
Features and Script Data,
IJCV(119), No. 3, September 2016, pp. 346-373.
Springer DOI
1608
BibRef
Earlier: A1, A3, A5, A4, A6, A7, Only:
Script Data for Attribute-Based Recognition of Composite Activities,
ECCV12(I: 144-157).
Springer DOI
1210
BibRef
Peng, X.J.[Xiao-Jiang],
Wang, L.M.[Li-Min],
Wang, X.X.[Xing-Xing],
Qiao, Y.[Yu],
Bag of visual words and fusion methods for action recognition:
Comprehensive study and good practice,
CVIU(150), No. 1, 2016, pp. 109-125.
Elsevier DOI
1608
Action recognition
BibRef
Peng, X.J.[Xiao-Jiang],
Wang, L.M.[Li-Min],
Cai, Z.W.[Zhuo-Wei],
Qiao, Y.[Yu],
Action and Gesture Temporal Spotting with Super Vector Representation,
ChaLearn14(518-527).
Springer DOI
1504
BibRef
Peng, X.J.[Xiao-Jiang],
Wang, L.M.[Li-Min],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
A Joint Evaluation of Dictionary Learning and Feature Encoding for
Action Recognition,
ICPR14(2607-2612)
IEEE DOI
1412
BibRef
And:
Boosting VLAD with Supervised Dictionary Learning and High-Order
Statistics,
ECCV14(III: 660-674).
Springer DOI
1408
Accuracy
BibRef
Cai, Z.W.[Zhuo-Wei],
Wang, L.M.[Li-Min],
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Multi-view Super Vector for Action Recognition,
CVPR14(596-603)
IEEE DOI
1409
action recognition
BibRef
Liu, J.Y.[Jing-Yu],
Huang, Y.Z.[Yong-Zhen],
Peng, X.J.[Xiao-Jiang],
Wang, L.[Liang],
Multi-view descriptor mining via codeword net for action recognition,
ICIP15(793-797)
IEEE DOI
1512
BoVW; action recognition; codeword net; multi-view descriptor mining
BibRef
Zhen, X.T.[Xian-Tong],
Shao, L.[Ling],
Maybank, S.J.[Stephen J.],
Chellappa, R.[Rama],
Handcrafted vs. learned representations for human action recognition,
IVC(55, Part 2), No. 1, 2016, pp. 39-41.
Elsevier DOI
1612
BibRef
Zhu, F.[Fan],
Shao, L.[Ling],
Xie, J.[Jin],
Fang, Y.[Yi],
From handcrafted to learned representations for human action
recognition: A survey,
IVC(55, Part 2), No. 1, 2016, pp. 42-52.
Elsevier DOI
1612
Human action recognition
BibRef
Li, S.[Shuohao],
Zhang, J.[Jun],
Guo, Q.A.[Qi-Ang],
Lei, J.[Jun],
Tu, D.[Dan],
Generating image descriptions with multidirectional 2D long short-term
memory,
IET-CV(11), No. 1, February 2017, pp. 104-111.
DOI Link
1703
BibRef
Earlier:
Generating video description with Long-Short Term Memory,
ICIVC16(73-78)
IEEE DOI
1610
computer vision
BibRef
Lei, J.[Jun],
Li, G.,
Li, S.[Shuohao],
Tu, D.[Dan],
Guo, Q.A.[Qi-Ang],
Continuous action recognition based on hybrid CNN-LDCRF model,
ICIVC16(63-69)
IEEE DOI
1610
feature selection
BibRef
Li, Q.[Qing],
Qiu, Z.F.[Zhao-Fan],
Yao, T.[Ting],
Mei, T.[Tao],
Rui, Y.[Yong],
Luo, J.B.[Jie-Bo],
Learning hierarchical video representation for action recognition,
MultInfoRetr(6), No. 1, March 2017, pp. 85-98.
Springer DOI
1704
BibRef
Gilbert, A.[Andrew],
Bowden, R.[Richard],
Image and video mining through online learning,
CVIU(158), No. 1, 2017, pp. 72-84.
Elsevier DOI
1704
BibRef
Earlier:
iGroup: Weakly supervised image and video grouping,
ICCV11(2166-2173).
IEEE DOI
1201
BibRef
And:
Push and Pull: Iterative grouping of media,
BMVC11(xx-yy).
HTML Version.
1110
Action recognition.
sub activities withing the scene.
BibRef
Ahmad, K.[Kashif],
Conci, N.[Nicola],
de Natale, F.G.B.[Francesco G.B.],
A saliency-based approach to event recognition,
SP:IC(60), No. 1, 2018, pp. 42-51.
Elsevier DOI
1712
Event recognition
BibRef
Hu, C.Y.[Chun-Yu],
Chen, Y.Q.[Yi-Qiang],
Hu, L.S.[Li-Sha],
Peng, X.H.[Xiao-Hui],
A novel random forests based class incremental learning method for
activity recognition,
PR(78), 2018, pp. 277-290.
Elsevier DOI
1804
Class incremental learning, Activity recognition, Random forests
BibRef
Plötz, T.,
Guan, Y.,
Deep Learning for Human Activity Recognition in Mobile Computing,
Computer(51), No. 5, May 2018, pp. 50-59.
IEEE DOI
1806
Analytical models, Computational modeling, Data mining,
Data models, Feature extraction, Machine learning,
pattern recognition
BibRef
Dong, X.J.[Xiang-Jun],
Gong, Y.S.[Yong-Shun],
Cao, L.B.[Long-Bing],
F-NSP+: A fast negative sequential patterns mining method with
self-adaptive data storage,
PR(84), 2018, pp. 13-27.
Elsevier DOI
1809
Nonoccurring behavior analysis, Sequential patterns,
Negative sequential patterns, Bitmap
BibRef
Jacoby, A.R.,
Pattichis, M.S.,
Celedón-Pattichis, S.,
López Leiva, C.,
Context-Sensitive Human Activity Classification in Collaborative
Learning Environments,
Southwest18(1-4)
IEEE DOI
1809
Writing, Keyboards, Feature extraction, Image color analysis,
Neural networks, Collaborative work, Monitoring,
context-based methods
BibRef
Chen, Y.,
Wang, J.,
Bai, Y.,
Castañón, G.,
Saligrama, V.,
Probabilistic Semantic Retrieval for Surveillance Videos With
Activity Graphs,
MultMed(21), No. 3, March 2019, pp. 704-716.
IEEE DOI
1903
graph theory, image retrieval, information retrieval,
learning (artificial intelligence), object detection,
subgraph matching
BibRef
Xu, H.J.[Hui-Juan],
Das, A.[Abir],
Saenko, K.[Kate],
Two-Stream Region Convolutional 3D Network for Temporal Activity
Detection,
PAMI(41), No. 10, October 2019, pp. 2319-2332.
IEEE DOI
1909
BibRef
Earlier:
R-C3D: Region Convolutional 3D Network for Temporal Activity
Detection,
ICCV17(5794-5803)
IEEE DOI
1802
Proposals, Feature extraction, Streaming media, Training,
hard mining.
convolution, image classification,
image motion analysis, learning (artificial intelligence),
BibRef
Liao, Z.K.[Zhong-Ke],
Hu, H.F.[Hai-Feng],
Zhang, J.X.[Jun-Xuan],
Yin, C.[Chang],
Residual attention unit for action recognition,
CVIU(189), 2019, pp. 102821.
Elsevier DOI
1911
Action recognition, Residual learning, Attention, Background motion
BibRef
Xu, W.,
Miao, Z.,
Yu, J.,
Ji, Q.,
Deep Reinforcement Learning for Weak Human Activity Localization,
IP(29), 2020, pp. 1522-1535.
IEEE DOI
1911
Reinforcement learning, Proposals, Video sequences, Training,
Feature extraction, Task analysis, Computational modeling,
weak supervision
BibRef
Feichtenhofer, C.[Christoph],
Pinz, A.[Axel],
Wildes, R.P.[Richard P.],
Zisserman, A.[Andrew],
Deep Insights into Convolutional Networks for Video Recognition,
IJCV(128), No. 2, February 2020, pp. 420-437.
Springer DOI
2002
BibRef
Earlier: A2, A4, A3, A1:
What have We Learned from Deep Representations for Action
Recognition?,
CVPR18(7844-7853)
IEEE DOI
1812
Visualization, Spatiotemporal phenomena, Optimization,
Computational modeling, Optical imaging, Optical network units, Generators
BibRef
Han, X.X.[Xin-Xin],
Ye, J.[Jian],
Luo, J.[Jia],
Zhou, H.Y.[Hai-Ying],
The Effect of Axis-Wise Triaxial Acceleration Data Fusion in CNN-Based
Human Activity Recognition,
IEICE(E103-D), No. 4, April 2020, pp. 813-824.
WWW Link.
2004
BibRef
Tang, Y.,
Wei, Y.,
Yu, X.,
Lu, J.,
Zhou, J.,
Graph Interaction Networks for Relation Transfer in Human Activity
Videos,
CirSysVideo(30), No. 9, September 2020, pp. 2872-2886.
IEEE DOI
2009
Videos, Task analysis, Activity recognition, Feature extraction,
Knowledge transfer, Knowledge engineering, Convolution,
transfer learning
BibRef
Wu, H.N.[Huai-Ning],
Online Learning Human Behavior for a Class of Human-in-the-Loop
Systems via Adaptive Inverse Optimal Control,
HMS(52), No. 5, October 2022, pp. 1004-1014.
IEEE DOI
2209
Optimal control, Adaptive systems, Cost function, Task analysis,
Linear matrix inequalities, Symmetric matrices, Trajectory,
linear quadratic regulator (LQR)
BibRef
Li, Y.L.[Yong-Lu],
Liu, X.P.[Xin-Peng],
Wu, X.Q.[Xiao-Qian],
Li, Y.Z.[Yi-Zhuo],
Qiu, Z.Y.[Zuo-Yu],
Xu, L.[Liang],
Xu, Y.[Yue],
Fang, H.S.[Hao-Shu],
Lu, C.W.[Ce-Wu],
HAKE: A Knowledge Engine Foundation for Human Activity Understanding,
PAMI(45), No. 7, July 2023, pp. 8494-8506.
IEEE DOI
2306
Cognition, Semantics, Visualization, Object recognition,
Knowledge based systems, Task analysis, Programming,
neural-symbolic reasoning
BibRef
Panev, S.[Stanislav],
Kim, E.[Emily],
Namburu, S.A.S.[Sai Abhishek Si],
Nikolova, D.[Desislava],
de Melo, C.[Celso],
de la Torre, F.[Fernando],
Hodgins, J.K.[Jessica K.],
Exploring the Impact of Rendering Method and Motion Quality on Model
Performance when Using Multi-view Synthetic Data for Action
Recognition,
WACV24(4580-4590)
IEEE DOI Code:
WWW Link.
2404
Training, Computational modeling, Training data,
Rendering (computer graphics), Cameras, Data models, Robustness
BibRef
Zhao, M.J.[Ming-Jun],
Yu, Y.K.[Ya-Kun],
Wang, X.L.[Xiao-Li],
Yang, L.[Lei],
Niu, D.[Di],
Search-Map-Search: A Frame Selection Paradigm for Action Recognition,
CVPR23(10627-10636)
IEEE DOI
2309
select frames to ues for training.
BibRef
Agrawal, T.[Tanay],
Balazia, M.[Michal],
Müller, P.[Philipp],
Brémond, F.[François],
Multimodal Vision Transformers with Forced Attention for Behavior
Analysis,
WACV23(3381-3391)
IEEE DOI
2302
Analytical models, Visualization, Face recognition,
Memory management, Transformers, Feature extraction,
Biomedical/healthcare/medicine
BibRef
Li, S.W.[Sheng-Wang],
Yu, P.S.[Peng-Shuai],
Xu, Y.F.[Yun-Feng],
Zhang, J.W.[Jing-Wei],
A Review of Research on Human Behavior Recognition Methods Based on
Deep Learning,
ICRVC22(108-112)
IEEE DOI
2301
Deep learning, Image recognition, Face recognition, Surveillance,
Virtual reality, Smart homes, Human behavior recognition,
human behavior recognition dataset
BibRef
Kakamu, Y.[Yoshiki],
Hotta, K.[Kazuhiro],
Predicting Human Behavior Using 3D Loop ResNet,
ICPR22(3259-3264)
IEEE DOI
2212
Medical services, Feature extraction,
Behavioral sciences, Task analysis, Action recognition
BibRef
Tran, H.[Hung],
Le, V.[Vuong],
Venkatesh, S.[Svetha],
Tran, T.[Truyen],
Persistent-Transient Duality in Human Behavior Modeling,
Precognition22(2527-2530)
IEEE DOI
2210
Computational modeling, Dynamics, Neural networks,
Switches, Predictive models
BibRef
Xu, Y.H.[Ying-Hao],
Wei, F.Y.[Fang-Yun],
Sun, X.[Xiao],
Yang, C.[Ceyuan],
Shen, Y.J.[Yu-Jun],
Dai, B.[Bo],
Zhou, B.[Bolei],
Lin, S.[Stephen],
Cross-Model Pseudo-Labeling for Semi-Supervised Action Recognition,
CVPR22(2949-2958)
IEEE DOI
2210
Training, Protocols, Costs, Predictive models,
Semisupervised learning, Data models, Pattern recognition,
Self- semi- meta- unsupervised learning
BibRef
Duan, H.D.[Hao-Dong],
Zhao, N.X.[Nan-Xuan],
Chen, K.[Kai],
Lin, D.[Dahua],
TransRank: Self-supervised Video Representation Learning via
Ranking-based Transformation Recognition,
CVPR22(2990-3000)
IEEE DOI
2210
Representation learning, Codes, Self-supervised learning,
Pattern recognition, Noise measurement, Task analysis,
Self- semi- meta- unsupervised learning
BibRef
Jin, Y.[Yang],
Zhu, L.C.[Lin-Chao],
Mu, Y.D.[Ya-Dong],
Complex Video Action Reasoning via Learnable Markov Logic Network,
CVPR22(3232-3241)
IEEE DOI
2210
Training, Location awareness, Visualization,
Reinforcement learning, Markov processes, Predictive models,
Explainable computer vision
BibRef
Xiao, J.F.[Jun-Fei],
Jing, L.L.[Long-Long],
Zhang, L.[Lin],
He, J.[Ju],
She, Q.[Qi],
Zhou, Z.W.[Zong-Wei],
Yuille, A.L.[Alan L.],
Li, Y.W.[Ying-Wei],
Learning from Temporal Gradient for Semi-supervised Action
Recognition,
CVPR22(3242-3252)
IEEE DOI
2210
Deep learning, Codes, Neural networks, Dynamics,
Semisupervised learning, Feature extraction, Video analysis and understanding
BibRef
Chen, H.,
Chirikjian, G.S.,
Curvature: A signature for Action Recognition in Video Sequences,
Diff-CVML20(3752-3759)
IEEE DOI
2008
Video sequences, Vegetation, Forestry, Data models,
Feature extraction, Calculus, Histograms
BibRef
Sun, J.,
Jiang, Q.,
Lu, C.,
Recursive Social Behavior Graph for Trajectory Prediction,
CVPR20(657-666)
IEEE DOI
2008
Trajectory, Task analysis, Force, Recurrent neural networks,
Forecasting, Predictive models
BibRef
Price, W.,
Damen, D.[Dima],
Retro-Actions: Learning 'Close' by Time-Reversing 'Open' Videos,
MDALC19(1371-1380)
IEEE DOI
2004
learning (artificial intelligence), object recognition,
video signal processing, Something-Something dataset,
arrow of time
BibRef
Abu Farha, Y.,
Gall, J.,
Uncertainty-Aware Anticipation of Activities,
HBU19(1197-1204)
IEEE DOI
2004
learning (artificial intelligence), statistical distributions,
multimodal future activities, predicted time horizon,
Long term Prediction
BibRef
Wang, X.H.[Xiong-Hui],
Hu, J.F.[Jian-Fang],
Lai, J.H.[Jian-Huang],
Zhang, J.G.[Jian-Guo],
Zheng, W.S.[Wei-Shi],
Progressive Teacher-Student Learning for Early Action Prediction,
CVPR19(3551-3560).
IEEE DOI
2002
BibRef
Mehrasa, N.[Nazanin],
Jyothi, A.A.[Akash Abdu],
Durand, T.[Thibaut],
He, J.W.[Jia-Wei],
Sigal, L.[Leonid],
Mori, G.[Greg],
A Variational Auto-Encoder Model for Stochastic Point Processes,
CVPR19(3160-3169).
IEEE DOI
2002
model for action sequences.
BibRef
Zhang, Y.[Yubo],
Tokmakov, P.[Pavel],
Hebert, M.[Martial],
Schmid, C.[Cordelia],
A Structured Model for Action Detection,
CVPR19(9967-9976).
IEEE DOI
2002
BibRef
Zhang, D.[Da],
Dai, X.Y.[Xi-Yang],
Wang, Y.F.[Yuan-Fang],
Dynamic Temporal Pyramid Network: A Closer Look at Multi-scale Modeling
for Activity Detection,
ACCV18(IV:712-728).
Springer DOI
1906
BibRef
Rosenfeld, A.[Amir],
Ullman, S.[Shimon],
Action Classification via Concepts and Attributes,
ICPR18(1499-1505)
IEEE DOI
1812
Training, Feature extraction, Visualization, Semantics,
Support vector machines, Task analysis, Detectors
BibRef
Rueda, F.M.,
Fink, G.A.[Gernot A.],
Learning Attribute Representation for Human Activity Recognition,
ICPR18(523-528)
IEEE DOI
1812
Task analysis, Feature extraction, Foot,
Activity recognition, Time series analysis
BibRef
Li, L.,
Zhang, Z.,
Huang, Y.,
Wang, L.,
Deep Temporal Feature Encoding for Action Recognition,
ICPR18(1109-1114)
IEEE DOI
1812
Encoding, Feature extraction, Training, Task analysis, Aggregates, Silicon
BibRef
Zhu, J.,
Zhu, Z.,
Zou, W.,
End-to-end Video-level Representation Learning for Action Recognition,
ICPR18(645-650)
IEEE DOI
1812
Streaming media, Training, Optical imaging, Adaptation models,
Aggregates, Kinetic theory, Pattern recognition
BibRef
Zhu, Y.,
Long, Y.,
Guan, Y.,
Newsam, S.,
Shao, L.,
Towards Universal Representation for Unseen Action Recognition,
CVPR18(9436-9445)
IEEE DOI
1812
Semantics, Visualization, Training, Pipelines, Kernel,
Feature extraction, Encoding
BibRef
Sironi, A.,
Brambilla, M.,
Bourdis, N.,
Lagorce, X.,
Benosman, R.,
HATS: Histograms of Averaged Time Surfaces for Robust Event-Based
Object Classification,
CVPR18(1731-1740)
IEEE DOI
1812
Cameras,
Feature extraction, Robot vision systems, Standards, Detectors
BibRef
Panagiotakis, C.[Costas],
Karvounas, G.,
Argyros, A.A.[Antonis A.],
Unsupervised Detection of Periodic Segments in Videos,
ICIP18(923-927)
IEEE DOI
1809
Videos, Motion segmentation, Time series analysis, YouTube, Animals,
Visualization, periodicity detection,
temporal video segmentation
BibRef
Ahmad, K.,
Mekhalfi, M.L.,
Conci, N.,
Boato, G.,
Melgani, F.,
de Natale, F.G.B.,
A pool of deep models for event recognition,
ICIP17(2886-2890)
IEEE DOI
1803
Computational modeling,
Feature extraction, Image recognition, Pipelines, Task analysis,
score-level fusion
BibRef
Doermann, D.,
IOD-CNN: Integrating object detection networks for event recognition,
ICIP17(875-879)
IEEE DOI
1803
Image recognition, Object detection,
Search problems, Task analysis, Testing, Training, CNN architecture,
object detection
BibRef
Batabyal, T.,
DDT: Decentralized event Detection and Tracking using an ensemble of
vertex-reinforced walks on a graph,
Southwest18(145-148)
IEEE DOI
1809
Topology, Event detection, Spatiotemporal phenomena,
Time series analysis, Market research, Bipartite graph,
graph structure
BibRef
Batabyal, T.,
Sarkar, R.,
Acton, S.T.,
GraDED: A graph-based parametric dictionary learning algorithm for
event detection,
ICIP17(1797-1801)
IEEE DOI
1803
Cameras, Coherence, Dictionaries, Event detection,
Heuristic algorithms, Laplace equations, Machine learning,
graph theory
BibRef
Chen, S.,
Ma, B.,
Luo, P.,
Generalized pooling pyramid with hierarchical dictionary sparse
coding for event and object recognition,
ICIP17(2349-2353)
IEEE DOI
1803
Dictionaries, Encoding, Image coding, Image recognition,
Object recognition, Task analysis, Training
BibRef
Qi, S.,
Huang, S.,
Wei, P.,
Zhu, S.C.,
Predicting Human Activities Using Stochastic Grammar,
ICCV17(1173-1181)
IEEE DOI
1802
grammars, graph theory, inference mechanisms, object detection,
prediction theory, stochastic processes, video signal processing,
Videos
BibRef
Gao, Z.N.[Zhan-Ning],
Hua, G.[Gang],
Zhang, D.Q.[Dong-Qing],
Jojic, N.[Nebojsa],
Wang, L.[Le],
Xue, J.R.[Jian-Ru],
Zheng, N.N.[Nan-Ning],
ER3:
A Unified Framework for Event Retrieval, Recognition and Recounting,
CVPR17(2107-2116)
IEEE DOI
1711
Remove redundant features.
Cognition, Feature extraction, Layout,
Neural networks, Pattern, recognition
BibRef
Kato, T.[Tomoya],
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Motion Language of Stereo Image Sequence,
CVVT17(1211-1218)
IEEE DOI
1709
Histograms, Image sequences, Integrated optics.
Represent temporal changes around autonomous robot.
BibRef
Kim, Y.J.[Yong-Joong],
Kim, Y.[Yong_Hyun],
Ahn, J.[Ju_Hyun],
Kim, D.[Dai_Jin],
Integrating hidden Markov models based on Mixture-of-Templates and
k-NN2 ensemble for activity recognition,
ICPR16(1636-1641)
IEEE DOI
1705
Accelerometers, Activity recognition, Feature extraction,
Gyroscopes, Hidden Markov models, Training
BibRef
Gonzales, C.[Christophe],
Romdhane, R.[Rim],
Dubuisson, S.[Séverine],
Video Event Detection Based Non-stationary Bayesian Networks,
ACIVS16(419-430).
Springer DOI
1611
BibRef
Xu, K.,
Qin, Z.,
Wang, G.,
Human activities prediction by learning combinatorial sparse
representations,
ICIP16(724-728)
IEEE DOI
1610
Dictionaries
BibRef
Kular, D.[Dalwinder],
Ribeiro, E.[Eraldo],
Analyzing Activities in Videos Using Latent Dirichlet Allocation and
Granger Causality,
ISVC15(I: 647-656).
Springer DOI
1601
BibRef
Yang, H.,
Yuan, C.F.[Chun-Feng],
Xing, J.,
Hu, W.M.[Wei-Ming],
Diversity encouraging ensemble of convolutional networks for high
performance action recognition,
ICIP17(2846-2850)
IEEE DOI
1803
Acceleration, Optimization, Schedules, Speech recognition, Training,
Videos, Action Recognition, Convolutional Neural Network, Diversity Encouraging Ensemble
BibRef
Yang, S.[Shuang],
Yuan, C.F.[Chun-Feng],
Wu, B.X.[Bao-Xin],
Hu, W.M.[Wei-Ming],
Wang, F.S.[Fang-Shi],
Multi-feature max-margin hierarchical Bayesian model for action
recognition,
CVPR15(1610-1618)
IEEE DOI
1510
BibRef
Seib, V.[Viktor],
Wojke, N.[Nicolai],
Knauf, M.[Malte],
Paulus, D.[Dietrich],
Detecting Fine-Grained Affordances with an Anthropomorphic Agent Model,
Affordance14(413-419).
Springer DOI
1504
BibRef
Taralova, E.H.[Ekaterina H.],
de la Torre, F.[Fernando],
Hebert, M.[Martial],
Motion Words for Videos,
ECCV14(I: 725-740).
Springer DOI
1408
activity recognition in videos. Features over voxels.
BibRef
Wang, L.[Ling],
Sahbi, H.[Hichem],
Nonlinear Cross-View Sample Enrichment for Action Recognition,
TASKCV14(47-62).
Springer DOI
1504
BibRef
Earlier:
Directed Acyclic Graph Kernels for Action Recognition,
ICCV13(3168-3175)
IEEE DOI
1403
BibRef
Xu, H.J.[Hui-Juan],
Li, B.Y.[Bo-Yang],
Ramanishka, V.[Vasili],
Sigal, L.[Leonid],
Saenko, K.[Kate],
Joint Event Detection and Description in Continuous Video Streams,
WACV19(396-405)
IEEE DOI
1904
BibRef
And:
HADCV19(25-26)
IEEE DOI
1902
feature extraction, image motion analysis,
image representation, image segmentation, object detection,
Context modeling.
Proposals, Training, Visualization,
Streaming media, Context modeling, Event detection
BibRef
Bettadapura, V.[Vinay],
Schindler, G.[Grant],
Ploetz, T.[Thomas],
Essa, I.A.[Irfan A.],
Augmenting Bag-of-Words: Data-Driven Discovery of Temporal and
Structural Information for Activity Recognition,
CVPR13(2619-2626)
IEEE DOI
1309
Activity Recognition
BibRef
Wang, Z.H.[Zhen-Hua],
Shi, Q.F.[Qin-Feng],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Bilinear Programming for Human Activity Recognition with Unknown MRF
Graphs,
CVPR13(1690-1697)
IEEE DOI
1309
BibRef
Cao, Y.[Yu],
Barrett, D.P.[Daniel P.],
Barbu, A.[Andrei],
Narayanaswamy, S.[Siddharth],
Yu, H.N.[Hao-Nan],
Michaux, A.[Aaron],
Lin, Y.W.[Yue-Wei],
Dickinson, S.J.[Sven J.],
Siskind, J.M.[Jeffrey Mark],
Wang, S.[Song],
Recognize Human Activities from Partially Observed Videos,
CVPR13(2658-2665)
IEEE DOI
1309
BibRef
Jin, Y.[Yohan],
Prabhakaran, B.[Balakrishnan],
Content Based 3D Human Document Retrieval Using Latent Semantic
Mapping,
HAU3D13(550-557)
IEEE DOI
1309
3D human motion; human motion document; latent semantic indexing
Textual representation of human motion for use in retrieval.
BibRef
Can, E.F.[Ethem F.],
Manmatha, R.,
Formulating Action Recognition as a Ranking Problem,
ActionSim13(251-256)
IEEE DOI
1309
ASLAN, Action recognition, HMDB, ranking;svm-rank, video retrieval
BibRef
Chikhaoui, B.[Belkacem],
Wang, S.R.[Sheng-Rui],
Pigot, H.[Helene],
A new statistical model for activity discovery and recognition in
pervasive environments,
ICPR12(3435-3438).
WWW Link.
1302
BibRef
Broilo, M.[Mattia],
Boato, G.[Giulia],
de Natale, F.G.B.[Francesco G.B.],
Content-based synchronization for multiple photos galleries,
ICIP12(1945-1948).
IEEE DOI
1302
BibRef
Dao, M.S.[Minh-Son],
Boato, G.[Giulia],
DeNatale, F.G.B.[Francesco G.B.],
Discovering inherent event taxonomies from social media collections,
ICMR12(48).
DOI Link
1301
Large collections.
BibRef
Tu, P.[Peter],
Sebastian, T.[Thomas],
Gao, D.[Dashan],
Action Recognition from Experience,
AVSS12(124-129).
IEEE DOI
1211
BibRef
Zhang, Y.M.[Yi-Meng],
Liu, X.M.[Xiao-Ming],
Chang, M.C.[Ming-Ching],
Ge, W.[Weina],
Chen, T.H.[Tsu-Han],
Spatio-Temporal Phrases for Activity Recognition,
ECCV12(III: 707-721).
Springer DOI
1210
BibRef
Kitani, K.M.[Kris M.],
Ziebart, B.D.[Brian D.],
Bagnell, J.A.[James Andrew],
Hebert, M.[Martial],
Activity Forecasting,
ECCV12(IV: 201-214).
Springer DOI
1210
Award, ECCV, HM.
BibRef
Feuerhake, U.,
Prediction of Individual's Movement Based On Interesting Places,
AnnalsPRS(I-2), No. 2012, pp. 31-36.
DOI Link
1209
BibRef
Varadarajan, J.[Jagannadan],
Emonet, R.[Remi],
Odobez, J.M.[Jean-Marc],
Bridging the past, present and future:
Modeling scene activities from event relationships and global rules,
CVPR12(2096-2103).
IEEE DOI
1208
BibRef
Song, Y.[Yale],
Morency, L.P.[Louis-Philippe],
Davis, R.[Randall],
Action Recognition by Hierarchical Sequence Summarization,
CVPR13(3562-3569)
IEEE DOI
1309
BibRef
Earlier:
Multi-view latent variable discriminative models for action recognition,
CVPR12(2120-2127).
IEEE DOI
1208
Action Recognition; Conditional Random Fields; Hierarchical Model
BibRef
Sadanand, S.[Sreemanananth],
Corso, J.J.[Jason J.],
Action bank: A high-level representation of activity in video,
CVPR12(1234-1241).
IEEE DOI
1208
BibRef
Hughes, M.C.[Michael C.],
Sudderth, E.B.[Erik B.],
Nonparametric discovery of activity patterns from video collections,
POCV12(25-32).
IEEE DOI
1207
BibRef
Kumar, B.G.V.[B. G. Vijay],
Patras, I.[Ioannis],
Supervised dictionary learning for action localization,
FG13(1-8)
IEEE DOI
1309
BibRef
Earlier:
Learning codebook weights for action detection,
LSVSM12(27-32).
IEEE DOI
1207
Hough transforms
BibRef
Sochman, J.[Jan],
Hogg, D.C.[David C.],
Who knows who: Inverting the Social Force Model for finding groups,
SISM11(830-837).
IEEE DOI
1201
Automatically determine from motion trajectories.
BibRef
Ogawara, K.[Koichi],
Tanabe, Y.[Yasufumi],
Kurazume, R.[Ryo],
Hasegawa, T.[Tsutomu],
Detecting Frequent Patterns in Video Using Partly Locality Sensitive
Hashing,
VECTaR10(287-296).
Springer DOI
1109
BibRef
Zen, G.[Gloria],
Ricci, E.[Elisa],
Messelodi, S.[Stefano],
Sebe, N.[Nicu],
Sorting Atomic Activities for Discovering Spatio-temporal Patterns in
Dynamic Scenes,
CIAP11(I: 207-216).
Springer DOI
1109
BibRef
Chen, C.C.[Chia-Chih],
Aggarwal, J.K.,
Modeling human activities as speech,
CVPR11(3425-3432).
IEEE DOI
1106
BibRef
Kulkarni, K.[Kaustubh],
Boyer, E.[Edmond],
Horaud, R.[Radu],
Kale, A.[Amit],
An Unsupervised Framework for Action Recognition Using Actemes,
ACCV10(IV: 592-605).
Springer DOI
1011
BibRef
Daldoss, M.,
Piotto, N.,
Conci, N.[Nicola],
de Natale, F.G.B.[Francesco G.B.],
Learning and matching human activities using regular expressions,
ICIP10(4681-4684).
IEEE DOI
1009
BibRef
Ukita, N.[Norimichi],
Kotera, A.[Akihito],
Kidode, M.[Masatsugu],
Behavior Recognition with HMM and Feature Analysis using a Wide-view
Camera and a PTZ camera,
MVA09(235-).
PDF File.
0905
BibRef
Sankaranarayanan, K.[Karthik],
Davis, J.W.[James W.],
Object association across PTZ cameras using logistic MIL,
CVPR11(3433-3440).
IEEE DOI
1106
Multiple Instance Learning.
BibRef
Sankaranarayanan, K.[Karthik],
Davis, J.W.[James W.],
One-Class Multiple Instance Learning and Applications to Target
Tracking,
ACCV12(III:126-139).
Springer DOI
1304
BibRef
Earlier:
Attention-Based Target Localization Using Multiple Instance Learning,
ISVC10(I: 381-392).
Springer DOI
1011
BibRef
And:
Learning Directed Intention-driven Activities using Co-Clustering,
AVSS10(400-407).
IEEE DOI
1009
BibRef
Patino, L.[Luis],
Ferryman, J.M.[James M.],
Beleznai, C.,
Abnormal behaviour detection on queue analysis from stereo cameras,
AVSS15(1-6)
IEEE DOI
1511
behavioural sciences computing
BibRef
Patino, L.[Luis],
Ferryman, J.M.[James M.],
Meeting detection in video through semantic analysis,
AVSS15(1-6)
IEEE DOI
1511
BibRef
Earlier:
Multicamera trajectory analysis for semantic behaviour
characterisation,
AVSS14(369-374)
IEEE DOI
1411
Cameras
image motion analysis.
BibRef
Patino, L.[Luis],
Evans, M.[Murray],
Ferryman, J.M.[James M.],
Bremond, F.[François],
Thonnat, M.[Monique],
Unsupervised Activity Extraction on Long-Term Video Recordings
Employing Soft Computing Relations,
CVS11(91-100).
Springer DOI
1109
BibRef
Pusiol, G.[Guido],
Bremond, F.[Francois],
Thonnat, M.[Monique],
Unsupervised Discovery, Modeling, and Analysis of Long Term Activities,
CVS11(101-111).
Springer DOI
1109
BibRef
Patino, L.[Luis],
Bremond, F.[Francois],
Thonnat, M.[Monique],
Online Learning of Activities from Video,
AVSS12(234-239).
IEEE DOI
1211
BibRef
Patino, L.[Luis],
Bremond, F.[François],
Evans, M.[Murray],
Shahrokni, A.,
Ferryman, J.M.[James M.],
Video Activity Extraction and Reporting with Incremental Unsupervised
Learning,
AVSS10(511-518).
IEEE DOI
1009
BibRef
Zhao, L.[Liyue],
Wang, X.[Xi],
Sukthankar, G.[Gita],
Sukthankar, R.[Rahul],
Motif Discovery and Feature Selection for CRF-based Activity
Recognition,
ICPR10(3826-3829).
IEEE DOI
1008
BibRef
Venkatesha, S.[Sharath],
Turk, M.A.[Matthew A.],
Human Activity Recognition Using Local Shape Descriptors,
ICPR10(3704-3707).
IEEE DOI
1008
BibRef
Nater, F.[Fabian],
Grabner, H.[Helmut],
Van Gool, L.J.[Luc J.],
Temporal Relations in Videos for Unsupervised Activity Analysis,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Earlier:
Exploiting simple hierarchies for unsupervised human behavior analysis,
CVPR10(2014-2021).
IEEE DOI
1006
BibRef
Kuettel, D.[Daniel],
Breitenstein, M.D.[Michael D.],
Van Gool, L.J.[Luc J.],
Ferrari, V.[Vittorio],
What's going on? Discovering spatio-temporal dependencies in dynamic
scenes,
CVPR10(1951-1958).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Wang, P.[Ping],
Abowd, G.D.[Gregory D.],
Rehg, J.M.[James M.],
Quasi-periodic Event Analysis for Social Game Retrieval,
ICCV09(112-119).
IEEE DOI
0909
BibRef
Scovanner, P.[Paul],
Tappen, M.F.[Marshall F.],
Learning pedestrian dynamics from the real world,
ICCV09(381-388).
IEEE DOI
0909
BibRef
Yi, S.[Sheng],
Krim, H.[Hamid],
Capturing human activity by a curve,
ICIP09(3561-3564).
IEEE DOI
0911
BibRef
Vargas-Govea, B.[Blanca],
Morales, E.F.[Eduardo F.],
Learning Relational Grammars from Sequences of Actions,
CIARP09(892-900).
Springer DOI
0911
BibRef
Zhu, P.F.[Peng-Fei],
Hu, W.M.[Wei-Ming],
Li, L.[Li],
Wei, Q.D.[Qing-Di],
Human Activity Recognition Based on R Transform and Fourier Mellin
Transform,
ISVC09(II: 631-640).
Springer DOI
0911
BibRef
Zúñiga, M.[Marcos],
Brémond, F.[François],
Thonnat, M.[Monique],
Incremental Video Event Learning,
CVS09(403-414).
Springer DOI
0910
BibRef
Gomez-Romero, J.[Juan],
Patricio, M.A.[Miguel A.],
Garcia, J.[Jesús],
Molina, J.M.[José M.],
Context-Based Reasoning Using Ontologies to Adapt Visual Tracking in
Surveillance,
AVSBS09(226-231).
IEEE DOI
0909
BibRef
Zhang, T.Z.[Tian-Zhu],
Lu, H.Q.[Han-Qing],
Li, S.Z.[Stan Z.],
Learning semantic scene models by object classification and trajectory
clustering,
CVPR09(1940-1947).
IEEE DOI
0906
Learning activity models.
BibRef
Joshi, D.[Dhiraj],
Luo, J.B.[Jie-Bo],
Inferring generic activities and events from image content and bags of
geo-tags,
CIVR08(37-46).
0807
BibRef
de la Torre-Frade, F.[Fernando],
Hodgins, J.K.[Jessica K.],
Bargteil, A.W.[Adam W.],
Artal, X.M.[Xavier Martin],
Macey, J.C.[Justin C.],
Collado I Castells, A.[Alexandre], and
Beltran, J.[Josep],
Guide to the Carnegie Mellon University Multimodal Activity
(CMU-MMAC) Database,
CMU-RI-TR-08-22, April, 2008.
WWW Link.
Dataset, Activity Recognition.
BibRef
0804
Lau, M.[Manfred],
Bar-Joseph, Z.[Ziv],
Kuffner, J.[James],
Modeling Variation in Motion Data,
CMU-CS-08-118, April 2008.
HTML Version.
BibRef
0804
Vail, D.L.[Douglas L.],
Conditional Random Fields for Activity Recognition,
CMU-CS-08-119, April 2008.
BibRef
0804
Ph.D.Thesis, April 2008.
HTML Version.
BibRef
Resendiz, E.[Esther],
Ahuja, N.[Narendra],
A unified model for activity recognition from video sequences,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Gupta, S.I.K.[Sun-Il Kumar],
Kumar, Y.S.[Y. Senthil],
Ramakrishnan, K.R.,
Learning Feature Trajectories Using Gabor Filter Bank for Human
Activity Segmentation and Recognition,
ICCVGIP08(111-118).
IEEE DOI
0812
BibRef
Azough, A.[Ahmed],
Delteil, A.[Alexandre],
de Marchi, F.[Fabien],
Hacid, M.S.[Mohand Said],
Intuitive event modeling for personalized behavior monitoring,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Nater, F.[Fabian],
Tommasi, T.[Tatiana],
Grabner, H.[Helmut],
Van Gool, L.J.[Luc J.],
Caputo, B.[Barbara],
Transferring activities: Updating human behavior analysis,
VS11(1737-1744).
IEEE DOI
1201
BibRef
Bader, B.W.[Brett W.],
Puretskiy, A.A.[Andrey A.],
Berry, M.W.[Michael W.],
Scenario Discovery Using Nonnegative Tensor Factorization,
CIARP08(791-805).
Springer DOI
0809
BibRef
Farhadi, A.[Ali],
Tabrizi, M.K.[Mostafa Kamali],
Learning to Recognize Activities from the Wrong View Point,
ECCV08(I: 154-166).
Springer DOI
0810
BibRef
Tran, D.[Du],
Sorokin, A.[Alexander],
Human Activity Recognition with Metric Learning,
ECCV08(I: 548-561).
Springer DOI
0810
BibRef
Wang, X.Z.[Xiao-Zhe],
Wang, L.[Liang],
Wirth, A.[Anthony],
Pattern discovery in motion time series via structure-based spectral
clustering,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Baak, A.[Andreas],
Rosenhahn, B.[Bodo],
Müller, M.[Meinard],
Seidel, H.P.[Hans-Peter],
Stabilizing Motion Tracking Using Retrieved Motion Priors,
ICCV09(1428-1435).
IEEE DOI
PDF File.
0909
BibRef
Müller, M.[Meinard],
Demuth, B.[Bastian],
Rosenhahn, B.[Bodo],
An Evolutionary Approach for Learning Motion Class Patterns,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Li, H.P.[He-Ping],
Hu, Z.Y.[Zhan-Yi],
Wu, Y.H.[Yi-Hong],
Wu, F.C.[Fu-Chao],
MAPACo-Training: A Novel Online Learning Algorithm of Behavior Models,
ACCV07(I: 472-481).
Springer DOI
0711
BibRef
Wong, S.F.[Shu-Fai],
Cipolla, R.[Roberto],
Extracting Spatiotemporal Interest Points using Global Information,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Wong, S.F.[Shu-Fai],
Kim, T.K.[Tae-Kyun],
Cipolla, R.[Roberto],
Learning Motion Categories using both Semantic and Structural
Information,
CVPR07(1-6).
IEEE DOI
0706
Human actions, expressions, gestures.
BibRef
Meessen, J.[Jerome],
Desurmont, X.[Xavier],
Delaigle, J.F.[Jean-Francois],
de Vleeschouwer, C.[Christophe],
Macq, B.[Benoit],
Progressive Learning for Interactive Surveillance Scenes Retrieval,
VS07(1-8).
IEEE DOI
0706
See also Remote Interactive Browsing of Video Surveillance Content Based on JPEG 2000.
BibRef
Zhang, Z.[Zhang],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Wang, L.S.[Liang-Sheng],
Trajectory Series Analysis based Event Rule Induction for Visual
Surveillance,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Lee, J.Y.[Jae Young],
Hoff, W.A.[William A.],
Activity Identification Utilizing Data Mining Techniques,
Motion07(12-12).
IEEE DOI
0702
BibRef
Naftel, A.,
Anwar, F.B.[Fahad Bin],
Visual Recognition of Manual Tasks Using Object Motion Trajectories,
AVSBS06(69-69).
IEEE DOI
0611
BibRef
Khalid, S.[Shehzad],
Naftel, A.[Andrew],
Classifying spatiotemporal object trajectories using unsupervised
learning of basis function coefficients,
VSSN05(45-52).
WWW Link.
0511
BibRef
Wang, H.B.[Hong-Bin],
Miller, P.,
Culverhouse, P.F.,
Discovering the Local Co-occurring Patterns in Visual Categorization,
AVSBS06(6-6).
IEEE DOI
0611
BibRef
Bauer, D.[Dietmar],
Brandle, N.[Norbert],
Seer, S.[Stefan],
Pflugfelder, R.[Roman],
Finding Highly Frequented Paths in Video Sequences,
ICPR06(I: 387-391).
IEEE DOI
0609
BibRef
Guha, P.[Prithwijit],
Mukerjee, A.[Amitabha],
Unsupervised Language Learning for Discovered Visual Concepts,
ACCV12(IV:524-537).
Springer DOI
1304
BibRef
Guha, P.[Prithwijit],
Mukerjee, A.[Amitabha],
Venkatesh, K.S.,
Spatio-temporal Discovery: Appearance + Behavior = Agent,
ICCVGIP06(516-527).
Springer DOI
0612
BibRef
Guha, P.[Prithwijit],
Mukerjee, A.[Amitabha],
Venkatesh, K.S.,
Activity Discovery Using Compressed Suffix Trees,
CIAP11(II: 69-78).
Springer DOI
1109
BibRef
Guha, P.[Prithwijit],
Mukerjee, A.[Amitabha],
Venkatesh, K.S.,
Mitra, P.[Pabitra],
Activity Discovery from Surveillance Videos,
ICPR06(I: 433-436).
IEEE DOI
0609
BibRef
Ogata, T.[Takehito],
Christmas, W.J.[William J.],
Kittler, J.V.[Josef V.],
Ishikawa, S.[Seiji],
Improving human activity detection by combining multi-dimensional
motion descriptors with boosting,
ICPR06(I: 295-298).
IEEE DOI
0609
BibRef
Lublinerman, R.[Roberto],
Ozay, N.[Necmiye],
Zarpalas, D.[Dimitrios],
Camps, O.I.[Octavia I.],
Activity Recognition from Silhouettes using Linear Systems and Model
(In)validation Techniques,
ICPR06(I: 347-350).
IEEE DOI
0609
BibRef
Bremond, F.[Francois],
Scene Understanding and Activity Recognition,
VS08(xx-yy).
0810
BibRef
Toshev, A.[Alexander],
Bremond, F.[Francois],
Thonnat, M.[Monique],
An APRIORI-based Method for Frequent Composite Event Discovery in
Videos,
CVS06(10).
IEEE DOI
0602
BibRef
Moënne-Loccoz, N.[Nicolas],
Brémond, F.[François],
Thonnat, M.[Monique],
Recurrent Bayesian Network for the Recognition of Human Behaviors from
Video,
CVS03(68 ff).
Springer DOI
0306
BibRef
Vu, V.T.[Van-Thinh],
Brémond, F.[François],
Thonnat, M.[Monique],
Automatic Video Interpretation: A Recognition Algorithm for Temporal
Scenarios Based on Pre-compiled Scenario Models,
CVS03(523 ff).
Springer DOI
0306
BibRef
And:
Automatic Video Interpretation:
A Novel Algorithm for Temporal Scenario Recognition,
IJCAI03(xx-yy).
Joint Conference on Artificial Intelligence, Acapulco,
Mexico, 9-15 August 2003
BibRef
Earlier:
Human Behaviour Visualisation and Simulation for Automatic Video
Understanding,
WSCG02(485).
HTML Version.
0209
Specify the characters involved in a scenario, the sub-scenarios and
the constraints combining the sub-scenarios.
BibRef
Zhang, Z.[Zhang],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Comparison of Similarity Measures for Trajectory Clustering in Outdoor
Surveillance Scenes,
ICPR06(III: 1135-1138).
IEEE DOI
0609
BibRef
Shimoide, A.[Alan],
Yoon, I.[Ilmi],
Fuse, M.[Megumi],
Beale, H.C.[Holly C.],
Singh, R.[Rahul],
Automated Behavioral Phenotype Detection and Analysis Using Color-Based
Motion Tracking,
CRV05(370-377).
IEEE DOI
0505
BibRef
Lv, F.J.[Feng-Jun],
Nevatia, R.[Ramakant],
Single View Human Action Recognition using Key Pose Matching and
Viterbi Path Searching,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Recognition and Segmentation of 3-D Human Action Using HMM and
Multi-class AdaBoost,
ECCV06(IV: 359-372).
Springer DOI
0608
BibRef
Wu, B.,
Singh, V.K.,
Kuo, C.H.,
Zhang, L.,
Lee, S.C.,
Nevatia, R.,
CLEAR'07 Evaluation of USC Human Tracking System for Surveillance
Videos,
MTPH07(xx-yy).
Springer DOI
0705
BibRef
Lv, F.J.[Feng-Jun],
Kang, J.M.[Jin-Man],
Nevatia, R.[Ram],
Cohen, I.[Isaac],
Medioni, G.[Gerard],
Automatic Tracking and Labeling of Human Activities in a Video Sequence,
PETS04(xx-yy).
PDF File.
BibRef
0400
Lv, F.J.[Feng-Jun],
Nevatia, R.[Ramakant],
Lee, M.W.[Mun Wai],
3D Human Action Recognition Using Spatio-temporal Motion Templates,
CVHCI05(120).
Springer DOI
0601
BibRef
Pla, F.[Filiberto],
Ribeiro, P.[Pedro],
Santos-Victor, J.[José],
Bernardino, A.[Alexandre],
Extracting Motion Features for Visual Human Activity Representation,
IbPRIA05(I:537).
Springer DOI
0509
BibRef
Ganesh, S.[Sumitra],
Bajcsy, R.[Ruzena],
Recognition of Human Actions using an Optimal Control Based Motor Model,
WACV08(1-6).
IEEE DOI
0801
BibRef
Jung, S.H.[Sang-Hack],
Bajcsy, R.[Ruzena],
Learning Physical Activities in Immersive Virtual Environments,
CVS06(5).
IEEE DOI
0602
BibRef
Nguyen, N.T.[Nam T.],
Phung, D.Q.[Dinh Q.],
Venkatesh, S.[Svetha],
Bui, H.H.[Hung H.],
Learning and Detecting Activities from Movement Trajectories Using the
Hierarchical Hidden Markov Models,
CVPR05(II: 955-960).
IEEE DOI
0507
BibRef
Nguyen, N.T.,
Venkatesh, S.,
Discovery of Activity Structures using the Hierarchical Hidden Markov
Model,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Connolly, C.I.[Christopher I.],
Burns, J.B.[J. Brian],
Bui, H.H.[Hung H.],
Recovering Social Networks From Massive Track Datasets,
WACV08(1-8).
IEEE DOI
0801
BibRef
Nguyen, N.T.,
Bui, H.H.,
Venkatesh, S.,
West, G.A.W.,
Recognising and monitoring high-level behaviours in complex spatial
environments,
CVPR03(II: 620-625).
IEEE DOI
0307
BibRef
Nguyen, N.T.,
Venkatesh, S.,
West, G.A.W.,
Bui, H.H.,
Hierarchical monitoring of people's behaviors in complex environments
using multiple cameras,
ICPR02(I: 13-16).
IEEE DOI
0211
BibRef
Duong, T.V.[Thi V.],
Phung, D.Q.[Dinh Q.],
Bui, H.H.[Hung H.],
Venkatesh, S.[Svetha],
Human Behavior Recognition with Generic Exponential Family Duration
Modeling in the Hidden Semi-Markov Model,
ICPR06(III: 202-207).
IEEE DOI
0609
BibRef
Earlier: A1, A3, A2, A4:
Activity Recognition and Abnormality Detection with the Switching
Hidden Semi-Markov Model,
CVPR05(I: 838-845).
IEEE DOI
0507
BibRef
Ren, J.C.,
Orwell, J.,
Jones, G.A.,
Learning Surveillance Tracking Models for the Self-Calibrated Ground
Plane,
BMVC02(Poster Session).
0208
BibRef
Wechsler, H.,
Duric, Z.,
Li, F.Y.[Fa-Yin],
Hierarchical interpretation of human activities using competitive
learning,
ICPR02(II: 338-341).
IEEE DOI
0211
BibRef
Menendez, J.,
Velastin, S.A.[Sergio A.],
A Method for Obtaining Neural Network Training Sets in Video Sequences,
VS00(xx-yy).
0102
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human Activities, Interacting with Objects .