Fernández, C.[Carles],
Baiget, P.[Pau],
Roca, F.X.[Francesc Xavier],
Gonzŕlez, J.[Jordi],
Interpretation of complex situations in a semantic-based surveillance
framework,
SP:IC(23), No. 7, August 2008, pp. 554-569.
Elsevier DOI
0804
BibRef
Earlier: A2, A1, A3, A4:
Automatic Learning of Conceptual Knowledge in Image Sequences for Human
Behavior Interpretation,
IbPRIA07(I: 507-514).
Springer DOI
0706
Cognitive vision system; Situation analysis; Applied ontologies
BibRef
Rowe, D.[Daniel],
Gonzŕlez, J.[Jordi],
Pedersoli, M.,
Villanueva, J.J.[Juan J.],
On tracking inside groups,
MVA(21), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
Detection feeds 2 level tracking. Track several through mergers and splits.
BibRef
Rowe, D.[Daniel],
Gonzalez, J.[Jordi],
Huerta, I.[Ivan],
Villanueva, J.J.[Juan J.],
On Reasoning over Tracking Events,
SCIA07(502-511).
Springer DOI
0706
See also Probabilistic Image-Based Tracking: Improving Particle Filtering.
BibRef
Rius, I.[Ignasi],
Rowe, D.[Daniel],
Gonzŕlez, J.[Jordi],
Roca, F.X.[F. Xavier],
A 3D Dynamic Model of Human Actions for Probabilistic Image Tracking,
IbPRIA05(I:529).
Springer DOI
0509
BibRef
Fernández, C.[Carles],
Gonzŕlez, J.[Jordi],
Roca, F.X.[F. Xavier],
Automatic Learning of Background Semantics in Generic Surveilled Scenes,
ECCV10(II: 678-692).
Springer DOI
1009
BibRef
Zhang, Z.[Zhang],
Tan, T.N.[Tie-Niu],
Huang, K.Q.[Kai-Qi],
An Extended Grammar System for Learning and Recognizing Complex Visual
Events,
PAMI(33), No. 2, February 2011, pp. 240-255.
IEEE DOI
1101
BibRef
Earlier: A1, A3, A2:
Complex Activity Representation and Recognition by Extended Stochastic
Grammar,
ACCV06(I:150-159).
Springer DOI
0601
BibRef
Earlier: A1, A3, A2:
Multi-thread Parsing for Recognizing Complex Events in Videos,
ECCV08(III: 738-751).
Springer DOI
0810
Extended grammar for complex parallel events.
See also Practical Camera Calibration From Moving Objects for Traffic Scene Surveillance.
BibRef
Xin, L.[Lun],
Tan, T.N.[Tie-Niu],
Semi-supervised Learning on Semantic Manifold for Event Analysis in
Dynamic Scenes,
VS07(1-8).
IEEE DOI
0706
BibRef
Xin, L.[Lun],
Tan, T.N.[Tie-Niu],
From Motion Patterns to Visual Concepts for Event Analysis in Dynamic
Scenes,
ACCV06(I:826-835).
Springer DOI
0601
BibRef
Earlier:
Ontology-based hierarchical conceptual model for semantic
representation of events in dynamic scenes,
PETS05(57-64).
IEEE DOI
0602
BibRef
Bandouch, J.[Jan],
Jenkins, O.C.[Odest Chadwicke],
Beetz, M.[Michael],
A Self-Training Approach for Visual Tracking and Recognition of Complex
Human Activity Patterns,
IJCV(99), No. 2, September 2012, pp. 166-189.
WWW Link.
1205
Markerless human motion capture, Probabilistic state estimation,
Self-trained models of human motion, Activity recognition
BibRef
Nayak, N.M.[Nandita M.],
Zhu, Y.Y.[Ying-Ying],
Roy-Chowdhury, A.K.[Amit K.],
Vector field analysis for multi-object behavior modeling,
IVC(31), No. 6-7, June-July 2013, pp. 460-472.
Elsevier DOI
1306
Optical flow; Helmholtz decomposition; Complex activity
recognition
BibRef
Nayak, N.M.[Nandita M.],
Kamal, A.T.[Ahmed Tashrif],
Roy-Chowdhury, A.K.[Amit K.],
Vector field analysis for motion pattern identification in video,
ICIP11(2089-2092).
IEEE DOI
1201
BibRef
Nayak, N.M.[Nandita M.],
Roy-Chowdhury, A.K.[Amit K.],
Learning a sparse dictionary of video structure for activity modeling,
ICIP14(4892-4896)
IEEE DOI
1502
Computer vision
BibRef
Nayak, N.M.[Nandita M.],
Song, B.[Bi],
Roy-Chowdhury, A.K.[Amit K.],
Dynamic modeling of streaklines for motion pattern analysis in video,
MLVMA11(39-46).
IEEE DOI
1106
Flow based model. Trajectories as streaks.
BibRef
Zhu, Y.Y.[Ying-Ying],
Nayak, N.M.[Nandita M.],
Roy-Chowdhury, A.K.[Amit K.],
Context-Aware Activity Modeling Using Hierarchical Conditional Random
Fields,
PAMI(37), No. 7, July 2015, pp. 1360-1372.
IEEE DOI
1506
BibRef
Earlier:
Context-Aware Modeling and Recognition of Activities in Video,
CVPR13(2491-2498)
IEEE DOI
1309
Context
BibRef
Kamishima, Y.[Yusuke],
Inoue, N.[Nakamasa],
Shinoda, K.[Koichi],
Event detection in consumer videos using GMM supervectors and SVMs,
JIVP(2013), No. 1, 2013, pp. 51.
DOI Link
1309
BibRef
Kamishima, Y.[Yusuke],
Inoue, N.[Nakamasa],
Shinoda, K.[Koichi],
Sato, S.[Shunsuke],
Multimedia event detection using GMM supervectors and SVMS,
ICIP12(3089-3092).
IEEE DOI
1302
complex event in consumer video.
BibRef
Tong, W.[Wei],
Yang, Y.[Yi],
Jiang, L.[Lu],
Yu, S.I.[Shoou-I],
Lan, Z.Z.[Zhen-Zhong],
Ma, Z.G.[Zhi-Gang],
Sze, W.[Waito],
Younessian, E.[Ehsan],
Hauptmann, A.G.[Alexander G.],
E-LAMP: integration of innovative ideas for multimedia event detection,
MVA(25), No. 1, January 2014, pp. 5-15.
Springer DOI
1402
BibRef
Wang, S.[Sen],
Ma, Z.G.[Zhi-Gang],
Yang, Y.[Yi],
Li, X.[Xue],
Pang, C.Y.[Chao-Yi],
Hauptmann, A.G.,
Semi-Supervised Multiple Feature Analysis for Action Recognition,
MultMed(16), No. 2, February 2014, pp. 289-298.
IEEE DOI
1404
feature extraction
BibRef
Xu, Z.W.[Zhong-Wen],
Tsang, I.W.[Ivor W.],
Yang, Y.[Yi],
Ma, Z.G.[Zhi-Gang],
Hauptmann, A.G.[Alexander G.],
Event Detection Using Multi-level Relevance Labels and Multiple
Features,
CVPR14(97-104)
IEEE DOI
1409
BibRef
Yang, Y.[Yi],
Ma, Z.G.[Zhi-Gang],
Xu, Z.W.[Zhong-Wen],
Yan, S.C.[Shui-Cheng],
Hauptmann, A.G.[Alexander G.],
How Related Exemplars Help Complex Event Detection in Web Videos?,
ICCV13(2104-2111)
IEEE DOI
1403
BibRef
Ma, Z.G.[Zhi-Gang],
Yang, Y.[Yi],
Nie, F.P.[Fei-Ping],
Sebe, N.[Nicu],
Yan, S.C.[Shui-Cheng],
Hauptmann, A.G.[Alexander G.],
Harnessing Lab Knowledge for Real-World Action Recognition,
IJCV(109), No. 1-2, August 2014, pp. 60-73.
Springer DOI
1407
human action recognition. Domain transfer from lab videos to real
world data.
BibRef
Zhu, L.C.[Lin-Chao],
Xu, Z.W.[Zhong-Wen],
Yang, Y.[Yi],
Hauptmann, A.G.[Alexander G.],
Uncovering the Temporal Context for Video Question Answering,
IJCV(124), No. 3, September 2017, pp. 409-421.
Springer DOI
1708
BibRef
Zhu, L.C.[Lin-Chao],
Xu, Z.W.[Zhong-Wen],
Yang, Y.[Yi],
Bidirectional Multirate Reconstruction for Temporal Modeling in
Videos,
CVPR17(1339-1348)
IEEE DOI
1711
Feature extraction, Logic gates, Optical imaging, Video sequences,
Videos, Visualization
BibRef
Xu, Z.W.[Zhong-Wen],
Yang, Y.[Yi],
Tsang, I.[Ivor],
Sebe, N.[Nicu],
Hauptmann, A.G.[Alexander G.],
Feature Weighting via Optimal Thresholding for Video Analysis,
ICCV13(3440-3447)
IEEE DOI
1403
BibRef
Ma, Z.G.[Zhi-Gang],
Yang, Y.[Yi],
Xu, Z.W.[Zhong-Wen],
Yan, S.C.[Shui-Cheng],
Sebe, N.[Nicu],
Hauptmann, A.G.[Alexander G.],
Complex Event Detection via Multi-source Video Attributes,
CVPR13(2627-2633)
IEEE DOI
1309
BibRef
Lan, Z.Z.[Zhen-Zhong],
Bao, L.[Lei],
Yu, S.I.[Shoou-I],
Liu, W.[Wei],
Hauptmann, A.G.[Alexander G.],
Double Fusion for Multimedia Event Detection,
MMMod12(173-185).
Springer DOI
1201
BibRef
Yan, Y.,
Yang, Y.,
Meng, D.,
Liu, G.,
Tong, W.,
Hauptmann, A.G.[Alexander G.],
Sebe, N.[Nicu],
Event Oriented Dictionary Learning for Complex Event Detection,
IP(24), No. 6, June 2015, pp. 1867-1878.
IEEE DOI
1504
Dictionaries
BibRef
Wang, L.M.[Li-Min],
Qiao, Y.[Yu],
Tang, X.[Xiaoou],
Latent Hierarchical Model of Temporal Structure for Complex Activity
Classification,
IP(23), No. 2, February 2014, pp. 810-822.
IEEE DOI
1402
image classification
BibRef
Li, K.[Kang],
Fu, Y.[Yun],
Prediction of Human Activity by Discovering Temporal Sequence
Patterns,
PAMI(36), No. 8, August 2014, pp. 1644-1657.
IEEE DOI
1407
Context
BibRef
Li, K.[Kang],
Hu, J.[Jie],
Fu, Y.[Yun],
Modeling Complex Temporal Composition of Actionlets for Activity
Prediction,
ECCV12(I: 286-299).
Springer DOI
1210
BibRef
Bhattacharya, S.,
Mehran, R.[Ramin],
Sukthankar, R.,
Shah, M.[Mubarak],
Classification of Cinematographic Shots Using Lie Algebra and its
Application to Complex Event Recognition,
MultMed(16), No. 3, April 2014, pp. 686-696.
IEEE DOI
1405
Lie algebras
BibRef
Borzeshi, E.Z.[Ehsan Zare],
Dehghan, A.[Afshin],
Piccardi, M.[Massimo],
Shah, M.[Mubarak],
Complex event recognition by latent temporal models of concepts,
ICIP14(2373-2377)
IEEE DOI
1502
Decoding
BibRef
Vo, N.N.[Nam N.],
Bobick, A.F.[Aaron F.],
Sequential Interval Network for parsing complex structured activity,
CVIU(143), No. 1, 2016, pp. 147-158.
Elsevier DOI
1601
Activity parsing
BibRef
Stein, S.[Sebastian],
McKenna, S.J.[Stephen J.],
Recognising complex activities with histograms of relative tracklets,
CVIU(154), No. 1, 2017, pp. 82-93.
Elsevier DOI
1612
Activity recognition
BibRef
Li, W.X.[Wei-Xin],
Vasconcelos, N.M.[Nuno M.],
Complex Activity Recognition Via Attribute Dynamics,
IJCV(122), No. 2, April 2017, pp. 334-370.
Springer DOI
1704
BibRef
Li, W.X.[Wei-Xin],
Yu, Q.[Qian],
Divakaran, A.[Ajay],
Vasconcelos, N.M.[Nuno M.],
Dynamic Pooling for Complex Event Recognition,
ICCV13(2728-2735)
IEEE DOI
1403
activity recognition; complex event; pooling; video analysis
BibRef
Li, W.X.[Wei-Xin],
Yu, Q.[Qian],
Sawhney, H.[Harpreet],
Vasconcelos, N.M.[Nuno M.],
Recognizing Activities via Bag of Words for Attribute Dynamics,
CVPR13(2587-2594)
IEEE DOI
1309
activity recognition; attribute; bag-of-words; dynamics
BibRef
Liu, L.[Li],
Wang, S.[Shu],
Su, G.X.[Guo-Xin],
Huang, Z.G.[Zi-Gang],
Liu, M.[Ming],
Towards complex activity recognition using a Bayesian network-based
probabilistic generative framework,
PR(68), No. 1, 2017, pp. 295-309.
Elsevier DOI
1704
Activity recognition
BibRef
Liu, L.[Li],
Wang, S.[Shu],
Hu, B.[Bin],
Qiong, Q.Y.[Qing-Yu],
Wen, J.H.[Jun-Hao],
Rosenblum, D.S.[David S.],
Learning structures of interval-based Bayesian networks in
probabilistic generative model for human complex activity recognition,
PR(81), 2018, pp. 545-561.
Elsevier DOI
1806
Complex activity recognition, Structure learning,
Bayesian network, Interval, Probabilistic generative model,
American Sign Language dataset
BibRef
Qi, S.Y.[Si-Yuan],
Jia, B.X.[Bao-Xiong],
Huang, S.Y.[Si-Yuan],
Wei, P.[Ping],
Zhu, S.C.[Song-Chun],
A Generalized Earley Parser for Human Activity Parsing and Prediction,
PAMI(43), No. 8, August 2021, pp. 2538-2554.
IEEE DOI
2107
Grammar, Hidden Markov models, Prediction algorithms, Videos,
Computational modeling, Probabilistic logic, Task analysis,
grammar parser
BibRef
Ma, L.[Lei],
Zheng, Y.H.[Yu-Hui],
Zhang, Z.[Zhao],
Yao, Y.Z.[Ya-Zhou],
Fan, X.J.[Xi-Jian],
Ye, Q.L.[Qiao-Lin],
Motion Stimulation for Compositional Action Recognition,
CirSysVideo(33), No. 5, May 2023, pp. 2061-2074.
IEEE DOI
2305
Feature extraction, Cognition, Computational modeling,
Visualization, Task analysis, Dynamics, Detectors,
action-centric excitation
BibRef
Khare, M.[Manish],
Recognition of Human Activities in Daubechies Complex Wavelet Domain,
CIAP19(II:357-366).
Springer DOI
1909
BibRef
Hussein, N.[Noureldien],
Gavves, E.[Efstratios],
Smeulders, A.W.M.[Arnold W.M.],
Timeception for Complex Action Recognition,
CVPR19(254-263).
IEEE DOI
2002
BibRef
Sener, F.,
Yao, A.,
Unsupervised Learning and Segmentation of Complex Activities from
Video,
CVPR18(8368-8376)
IEEE DOI
1812
Visualization, Hidden Markov models, Video sequences,
Task analysis, Unsupervised learning, Recurrent neural networks
BibRef
Liu, B.B.[Bing-Bin],
Yeung, S.[Serena],
Chou, E.[Edward],
Huang, D.A.[De-An],
Fei-Fei, L.[Li],
Niebles, J.C.[Juan Carlos],
Temporal Modular Networks for Retrieving Complex Compositional
Activities in Videos,
ECCV18(III: 569-586).
Springer DOI
1810
BibRef
Cruz, R.S.,
Fernando, B.,
Cherian, A.,
Gould, S.,
Neural Algebra of Classifiers,
WACV18(729-737)
IEEE DOI
1806
Recognize unseen complex concepts from simple visual primitives.
Boolean algebra, image classification, neural nets,
boolean algebra operations, classifier, complex visual concept,
Visualization
BibRef
Keshavarz, S.,
Saleemi, I.,
Atia, G.,
Exploiting probabilistic relationships between action concepts for
complex event classification,
ICIP17(1572-1576)
IEEE DOI
1803
Bayes methods, Detectors, Histograms, Support vector machines,
Training, Videos, Visualization, Bayesian Network,
Statistical learning
BibRef
Ahsan, U.[Unaiza],
Sun, C.,
Hays, J.,
Essa, I.A.[Irfan A.],
Complex Event Recognition from Images with Few Training Examples,
WACV17(669-678)
IEEE DOI
1609
Encyclopedias, Feature extraction, Flickr, Image recognition,
Image segmentation, Training, Visualization
BibRef
Li, W.,
Fritz, M.,
Recognition of ongoing complex activities by sequence prediction over
a hierarchical label space,
WACV16(1-9)
IEEE DOI
1511
Object recognition
BibRef
Bhattacharya, S.[Subhabrata],
Kalayeh, M.M.[Mahdi M.],
Sukthankar, R.[Rahul],
Shah, M.[Mubarak],
Recognition of Complex Events:
Exploiting Temporal Dynamics between Underlying Concepts,
CVPR14(2243-2250)
IEEE DOI
1409
Complex Event Recognition
BibRef
Clawson, K.M.[Kathy M.],
Jing, M.[Min],
Scotney, B.W.[Bryan W.],
Wang, H.[Hui],
Liu, J.[Jun],
Human Action Recognition in Video via Fused Optical Flow and Moment
Features:
Towards a Hierarchical Approach to Complex Scenario Recognition,
MMMod14(II: 104-115).
Springer DOI
1405
BibRef
Phan, S.[Sang],
Le, D.D.[Duy-Dinh],
Satoh, S.[Shin'ichi],
Sum-max video pooling for complex event recognition,
ICIP14(1026-1030)
IEEE DOI
1502
Aggregates
BibRef
Tang, K.[Kevin],
Yao, B.P.[Bang-Peng],
Fei-Fei, L.[Li],
Koller, D.[Daphne],
Combining the Right Features for Complex Event Recognition,
ICCV13(2696-2703)
IEEE DOI
1403
Complex Event Recognition; Feature Combination
BibRef
Yang, Y.[Yang],
Shah, M.[Mubarak],
Complex Events Detection Using Data-Driven Concepts,
ECCV12(III: 722-735).
Springer DOI
1210
Video:
WWW Link.
BibRef
Tang, K.[Kevin],
Fei-Fei, L.[Li],
Koller, D.[Daphne],
Learning latent temporal structure for complex event detection,
CVPR12(1250-1257).
IEEE DOI
1208
BibRef
Zen, G.[Gloria],
Ricci, E.[Elisa],
Earth mover's prototypes: A convex learning approach for discovering
activity patterns in dynamic scenes,
CVPR11(3225-3232).
IEEE DOI
1106
Automatically discover spatio-temporal patterns in complex dynamic scenes.
BibRef
Laxton, B.[Benjamin],
Lim, J.W.[Jong-Woo],
Kriegman, D.[David],
Leveraging temporal, contextual and ordering constraints for
recognizing complex activities in video,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Kam, A.H.,
Ann, T.K.[Toh Kar],
Lung, E.H.[Eng How],
Yun, Y.W.[Yau Wei],
Wang, J.X.[Jun-Xian],
Automated recognition of highly complex human behavior,
ICPR04(IV: 327-330).
IEEE DOI
0409
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Depth Based, Human Activity Recognition .