Murray, M.P.,
Gait as a Total Pattern of Movement,
Am. J. Physical Medicine(46), No. 1, 1967, pp. 290-329.
BibRef
6700
Hogg, D.C.[David C.],
Model-Based Vision: A Program to See a Walking Person,
IVC(1), No. 1, February 1983, pp. 5-20.
Elsevier DOI Track human motion.
BibRef
8302
Proffitt, D.R., and
Bertenthal, B.I.,
Recovering Connectivity from Moving Point-Light Displays,
MU88(297-328).
BibRef
8800
Earlier:
Converging Approaches to Extracting Structure from Motion:
Psychophysical and Computational Investigations of Recovering
Connectivity from Moving Point-Light Displays,
CAIA84(232-238).
What is the minimal stimulus for perception of form (human based).
BibRef
Rashid, R.F.,
Toward a System for the Interpretation of Moving Light Display,
PAMI(2), No. 6, November 1980, pp. 574-581.
Tracking.
BibRef
8011
And:
Lights: A System for the Interpretation of Moving Light Displays,
Ph.D.Thesis (CS), Univ. of Rochester, 1980.
BibRef
Earlier:
Lights: A Study in Motion,
DARPAN79(57-68).
Moving Light Displays. The standard moving light analysis system.
BibRef
Gu, H.S.,
Shirai, Y.,
Asada, M.,
MDL-Based Segmentation and Motion Modeling in a
Long Image Sequence of Scene with Multiple Independently Moving-Objects,
PAMI(18), No. 1, January 1996, pp. 58-64.
IEEE DOI
BibRef
9601
Earlier:
MDL-Based Spatiotemporal Segmentation from Motion in a
Long Image Sequence,
CVPR94(448-453).
IEEE DOI
Walking Motion.
BibRef
Gu, H.S.,
MDL-Based Segmentation and Motion Modeling in Scenes with Multiple
Independently Moving Objects,
Ph.D.1994,
BibRef
9400
Osaka Univ.
BibRef
Chen, H.J.,
Shirai, Y.,
Detecting Multiple Image Motions by Exploiting Temporal Coherence of
Apparent Motion over a Long Image Sequence,
CVPR94(899-902).
IEEE DOI
Walking Motion.
BibRef
9400
Yeasin, M.[Mohammed],
Chaudhuri, S.[Subhasis],
Development of an Automated Image Processing System for Kinematic
Analysis of Human Gait,
RealTimeImg(6), No. 1, February 2000, pp. 55-67.
0003
See also Visual understanding of dynamic hand gestures.
BibRef
Chang, C.C.,
Tsai, W.H.,
Vision-Based Tracking and Interpretation of Human Leg Movement for
Virtual Reality Applications,
CirSysVideo(11), No. 1, January 2001, pp. 9-24.
IEEE Top Reference.
0101
BibRef
Giese, M.A.[Martin A.],
Dynamic Neural Field Theory for Motion Perception,
KluwerOctober 1998, ISBN 0-7923-8300-1.
WWW Link.
BibRef
9810
Giese, M.A.[Martin A.],
Poggio, T.[Tomaso],
Morphable Models for the Analysis and Synthesis of Complex Motion
Patterns,
IJCV(38), No. 1, June 2000, pp. 59-73.
DOI Link
0006
BibRef
Earlier:
Quantification and Classification of Locomotion Patterns by
Spatio-Temporal Morphable Models,
VS00(xx-yy).
0102
BibRef
Dockstader, S.L.,
Berg, M.J.,
Tekalp, A.M.,
Stochastic kinematic modeling and feature extraction for gait analysis,
IP(12), No. 8, August 2003, pp. 962-976.
IEEE DOI
0308
See also On the Tracking of Articulated and Occluded Video Object Motion.
BibRef
Dockstader, S.L.,
Imennov, N.S.,
Berg, M.J.,
Tekalp, A.M.,
Fault-tolerant tracking for gait analysis,
ICIP03(II: 89-92).
IEEE DOI
0312
BibRef
Dockstader, S.L.[Shiloh L.],
Imennov, N.S.,
Prediction for Human Motion Tracking Failures,
IP(15), No. 2, February 2006, pp. 411-421.
IEEE DOI
0602
BibRef
Dockstader, S.L.,
Imennov, N.S.,
Tekalp, A.M.,
Markov-based failure prediction for human motion analysis,
ICCV03(1283-1288).
IEEE DOI
0311
BibRef
Dockstader, S.I.,
Bergkessel, K.A.,
Tekalp, A.M.,
Feature extraction for the analysis of gait and human motion,
ICPR02(I: 5-8).
IEEE DOI
0211
BibRef
Robledo Vega, I.[Isidro],
Sarkar, S.[Sudeep],
Statistical motion model based on the change of feature relationships:
Human gait-based recognition,
PAMI(25), No. 10, October 2003, pp. 1323-1328.
IEEE Abstract.
0310
BibRef
Earlier:
Experiments on gait analysis by exploiting nonstationarity in the
distribution of feature relationships,
ICPR02(I: 1-4).
IEEE DOI
0211
BibRef
Earlier: A2, A1:
Discrimination of Motion Based on Traces in the Space of Probability
Functions over Feature Relations,
CVPR01(I:976-983).
IEEE DOI
0110
Walking motion recognition from change in relational statistics
of features.
BibRef
Moustakas, K.[Konstantinos],
Tzovaras, D.[Dimitrios],
Stavropoulos, G.,
Gait Recognition Using Geometric Features and Soft Biometrics,
SPLetters(17), No. 4, April 2010, pp. 367-370.
IEEE DOI
1003
BibRef
Argyropoulos, S.,
Tzovaras, D.,
Ioannidis, D.,
Strintzis, M.G.,
Gait authentication using distributed source coding,
ICIP08(3108-3111).
IEEE DOI
0810
BibRef
Gonzàlez, J.[Jordi],
Varona, J.[Javier],
Roca, F.X.[F. Xavier],
Villanueva, J.J.[Juan J.],
A Comparison Framework for Walking Performances using aSpaces,
ELCVIA(5), No. 3, 2005, pp. 105-116.
DOI Link
0506
BibRef
Earlier:
Analysis of Human Walking Based on aSpaces,
AMDO04(177-188).
Springer DOI
0505
BibRef
Earlier: A2, A1, A3, A4:
iTrack: Image-based Probabilistic Tracking of People,
ICPR00(Vol III: 1110-1113).
IEEE DOI
0009
BibRef
Fernandez, C.[Carles],
Baiget, P.[Pau],
Roca, F.X.[F. Xavier],
Gonzàlez, J.[Jordi],
Augmenting video surveillance footage with virtual agents for
incremental event evaluation,
PRL(32), No. 6, 15 April 2011, pp. 878-889.
Elsevier DOI
1103
BibRef
Earlier: A2, A3, A4, Only:
Autonomous Virtual Agents for Performance Evaluation of Tracking
Algorithms,
AMDO08(xx-yy).
Springer DOI
0807
Human behavior analysis; Smart video surveillance; Benchmarking; Ontologies
BibRef
Mazzaro, M.C.[Maria Cecilla],
Sznaier, M.[Mario],
Camps, O.I.[Octavia I.],
A Model (In)Validation Approach to Gait Classification,
PAMI(27), No. 11, November 2005, pp. 1820-1825.
IEEE DOI
0510
Nominal model with noise and uncertainity.
BibRef
Mazzaro, M.C.,
Sznaier, M.,
Camps, O.I.,
Soatto, S.,
Bissacco, A.,
A model (In)validation approach to gait recognition,
3DPVT02(700-703).
0206
BibRef
Xu, D.,
Yan, S.,
Tao, D.,
Zhang, L.,
Li, X.,
Zhang, H.J.,
Human Gait Recognition With Matrix Representation,
CirSysVideo(16), No. 7, July 2006, pp. 896-903.
IEEE DOI
0608
BibRef
Xu, D.,
Yan, S.C.[Shui-Cheng],
Tao, D.C.[Da-Cheng],
Lin, S.,
Zhang, H.J.,
Marginal Fisher Analysis and Its Variants for Human Gait Recognition
and Content-Based Image Retrieval,
IP(16), No. 11, November 2007, pp. 2811-2821.
IEEE DOI
0709
See also Face Recognition: A Generalized Marginal Fisher Analysis Approach.
BibRef
Boulgouris, N.V.[Nikolaos V.],
Plataniotis, K.N.[Konstantinos N.],
Hatzinakos, D.[Dimitrios],
Gait recognition using linear time normalization,
PR(39), No. 5, May 2006, pp. 969-979.
Elsevier DOI
0604
BibRef
Earlier:
An angular transform of gait sequences for gait assisted recognition,
ICIP04(II: 857-860).
IEEE DOI
0505
Angular analysis; Time normalization; Recognition; Verification
BibRef
Lu, H.P.[Hai-Ping],
Plataniotis, K.N.,
Venetsanopoulos, A.N.,
Boosting Discriminant Learners for Gait Recognition Using MPCA Features,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
0911
BibRef
Earlier:
A Layered Deformable Model for Gait Analysis,
FGR06(249-256).
IEEE DOI
0604
BibRef
And:
Multilinear Principal Component Analysis of Tensor Objects for
Recognition,
ICPR06(II: 776-779).
IEEE DOI
0609
BibRef
Boulgouris, N.V.[Nikolaos V.],
Chi, Z.X.,
Gait Recognition Using Radon Transform and Linear Discriminant Analysis,
IP(16), No. 3, March 2007, pp. 731-740.
IEEE DOI
0703
BibRef
Earlier:
Gait Representation and Recognition Based on Radon Transform,
ICIP06(2665-2668).
IEEE DOI
0610
BibRef
Boulgouris, N.V.[Nikolaos V.],
Chi, Z.W.X.[Zhi-Wei X.],
Human gait recognition based on matching of body components,
PR(40), No. 6, June 2007, pp. 1763-1770.
Elsevier DOI
0704
BibRef
And:
Gait Recognition Based on Human Body Components,
ICIP07(I: 353-356).
IEEE DOI
0709
Human gait; Recognition; Verification
BibRef
Huang, X.X.[Xia-Xi],
Boulgouris, N.V.[Nikolaos V.],
Gait Recognition With Shifted Energy Image and Structural Feature
Extraction,
IP(21), No. 4, April 2012, pp. 2256-2268.
IEEE DOI
1204
BibRef
Earlier:
Gait recognition using Linear Discriminant Analysis with artificial
walking conditions,
ICIP10(2461-2464).
IEEE DOI
1009
BibRef
Boulgouris, N.V.,
Huang, X.X.,
Gait Recognition Using HMMs and Dual Discriminative Observations for
Sub-Dynamics Analysis,
IP(22), No. 9, 2013, pp. 3636-3647.
IEEE DOI
1309
Gait; biometrics; recognition; surveillance
BibRef
Bissacco, A.[Alessandro],
Chiuso, A.[Alessandro],
Soatto, S.[Stefano],
Classification and Recognition of Dynamical Models:
The Role of Phase, Independent Components, Kernels and Optimal Transport,
PAMI(29), No. 11, November 2007, pp. 1958-1972.
IEEE DOI
0711
Extend classification to handle periodic modes.
BibRef
Bissacco, A.[Alessandro],
Soatto, S.[Stefano],
Hybrid Dynamical Models of Human Motion for the Recognition of Human
Gaits,
IJCV(85), No. 1, October 2009, pp. xx-yy.
Springer DOI
0907
BibRef
Earlier:
On the Blind Classification of Time Series,
CVPR07(1-7).
IEEE DOI
0706
BibRef
Earlier:
Classifying Human Dynamics Without Contact Forces,
CVPR06(II: 1678-1685).
IEEE DOI
0606
Blind: input is not really known. Classify gait.
BibRef
Bissacco, A.,
Chiuso, A.,
Ma, Y.,
Soatto, S.,
Recognition of Human Gaits,
CVPR01(II:52-57).
IEEE DOI
PS File.
0110
BibRef
Bissacco, A.[Alessandro],
Modeling and Learning Contact Dynamics in Human Motion,
CVPR05(I: 421-428).
IEEE DOI
0507
BibRef
Bissacco, A.[Alessandro],
Yang, M.H.[Ming-Hsuan],
Soatto, S.[Stefano],
Fast Human Pose Estimation using Appearance and Motion via
Multi-Dimensional Boosting Regression,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Chan, K.L.,
Video-based Gait Analysis By Silhouette Chamfer Distance And Kalman
Filter,
IJIG(8), No. 3, July 2008, pp. 383-418.
0807
See also Detection of swimmer using dense optical flow motion map and intensity information.
BibRef
Chen, C.,
Liang, J.,
Zhao, H.,
Hu, H.,
Tian, J.,
Factorial HMM and Parallel HMM for Gait Recognition,
SMC-C(38), No. 1, January 2008, pp. 114-123.
IEEE DOI
0901
BibRef
Barnich, O.[Olivier],
van Droogenbroeck, M.[Marc],
Frontal-view gait recognition by intra- and inter-frame rectangle size
distribution,
PRL(30), No. 10, 15 July 2009, pp. 893-901.
Elsevier DOI
0906
Gait recognition; Mathematical morphology; Histogram; Motion
detection; Shape analysis
BibRef
Chen, C.H.[Chang-Hong],
Liang, J.M.[Ji-Min],
Zhao, H.[Heng],
Hu, H.H.[Hai-Hong],
Tian, J.[Jie],
Frame difference energy image for gait recognition with incomplete
silhouettes,
PRL(30), No. 11, 1 August 2009, pp. 977-984,.
Elsevier DOI
0909
Gait recognition; Incomplete silhouettes; Frame difference energy
image; Hidden Markov model
BibRef
Chen, C.H.[Chang-Hong],
Liang, J.M.[Ji-Min],
Hu, H.H.[Hai-Hong],
Jiao, L.C.[Li-Cheng],
Yang, X.[Xin],
Factorial Hidden Markov Models for Gait Recognition,
ICB07(124-133).
Springer DOI
0708
BibRef
Chen, C.H.[Chang-Hong],
Liang, J.M.[Ji-Min],
Zhu, X.C.[Xiu-Chang],
Gait recognition based on improved dynamic Bayesian networks,
PR(44), No. 4, April 2011, pp. 988-995.
Elsevier DOI
1101
BibRef
Earlier:
Logistic dynamic texture model for human activity and gait recognition,
ICIP10(2473-2476).
IEEE DOI
1009
Gait recognition; Improved dynamic Bayesian networks; Layered time
series model; Logistic dynamic texture model; Hidden Markov model
BibRef
Makihara, Y.S.[Yasu-Shi],
Sagawa, R.[Ryusuke],
Mukaigawa, Y.[Yasuhiro],
Echigo, T.[Tomio],
Yagi, Y.S.[Yasu-Shi],
Gait Identification Considering Body Tilt by Walking Direction Changes,
ELCVIA(8), No. 1, July 2009, pp. xx-yy.
DOI Link
0909
BibRef
Earlier:
Adaptation to Walking Direction Changes for Gait Identification,
ICPR06(II: 96-99).
IEEE DOI
0609
BibRef
Earlier:
Which Reference View is Effective for Gait Identification Using a View
Transformation Model?,
Biometrics06(45).
IEEE DOI
0609
BibRef
And:
Gait Recognition Using a View Transformation Model in the Frequency
Domain,
ECCV06(III: 151-163).
Springer DOI
0608
BibRef
Echigo, T.[Tomio],
Maeda, J.J.[Jun-Ji],
Nakano, H.[Hiroki],
Method for classifying an object in a moving picture,
US_Patent6,606,412, Aug 12, 2003
WWW Link.
BibRef
0308
Hossain, M.A.[M. Altab],
Makihara, Y.S.[Yasu-Shi],
Wang, J.Q.[Jun-Qiu],
Yagi, Y.S.[Yasu-Shi],
Clothing-invariant gait identification using part-based clothing
categorization and adaptive weight control,
PR(43), No. 6, June 2010, pp. 2281-2291.
Elsevier DOI
1003
BibRef
Earlier:
Clothes-invariant gait identification using part-based adaptive weight
control,
ICPR08(1-4).
IEEE DOI
0812
Gait identification; Clothing-invariant; Part-based; Adaptive weight
control; Biometrics
BibRef
Wang, J.Q.[Jun-Qiu],
Yagi, Y.S.[Yasu-Shi],
Makihara, Y.S.[Yasu-Shi],
People Tracking and Segmentation Using Efficient Shape Sequences
Matching,
ACCV09(II: 204-213).
Springer DOI
0909
BibRef
Earlier: A1, A3, A2:
People tracking and segmentation using spatiotemporal shape constraints,
VNBA08(31-38).
DOI Link
1208
Tracking and segmentation algorithm for gait recognition.
BibRef
Tsuji, A.[Akira],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Silhouette transformation based on walking speed for gait
identification,
CVPR10(717-722).
IEEE DOI
1006
BibRef
Li, X.[Xiang],
Makihara, Y.S.[Yasu-Shi],
Xu, C.[Chi],
Yagi, Y.S.[Yasu-Shi],
End-to-end Model-based Gait Recognition using Synchronized Multi-view
Pose Constraint,
HTCV21(4089-4098)
IEEE DOI
2112
Training, Legged locomotion, Shape,
Fitting, Synchronization, n/a
BibRef
Sugiura, K.[Kazushige],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Omnidirectional Gait Identification by Tilt Normalization and Azimuth
View Transformation,
OMNIVIS08(xx-yy).
0810
BibRef
And:
Gait Identification Based on Multi-view Observations Using
Omnidirectional Camera,
ACCV07(I: 452-461).
Springer DOI
0711
BibRef
Fihl, P.[Preben],
Moeslund, T.B.[Thomas B.],
Invariant gait continuum based on the duty-factor,
SIViP(3), No. 4, December 2009, pp. xx-yy.
Springer DOI
0911
BibRef
Earlier:
Invariant Classification of Gait Types,
CRV08(179-185).
IEEE DOI
0805
BibRef
Earlier:
Classification of gait types based on the duty-factor,
AVSBS07(318-323).
IEEE DOI
0709
BibRef
Kim, D.H.[Dae-Hee],
Paik, J.K.[Joon-Ki],
Gait recognition using active shape model and motion prediction,
IET-CV(4), No. 1, March 2010, pp. 25-36.
DOI Link
1001
BibRef
Cho, W.[Woon],
Kim, T.K.[Tae-Kyung],
Paik, J.K.[Joon-Ki],
Gait Recognition Using Active Shape Models,
ACIVS07(384-394).
Springer DOI
0708
BibRef
Kim, D.H.[Dong-Hyeon],
Kim, D.H.[Dae-Hee],
Paik, J.K.[Joon-Ki],
Model-Based Gait Recognition Using Multiple Feature Detection,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Maik, V.,
Paik, D.T.,
Lim, J.,
Park, K.,
Paik, J.,
Hierarchical pose classification based on human physiology for
behaviour analysis,
IET-CV(4), No. 1, March 2010, pp. 12-24.
DOI Link
1001
BibRef
Ekinci, M.[Murat],
Aykut, M.[Murat],
Improved gait recognition by multiple-projections normalization,
MVA(21), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
BibRef
Earlier: A1 Only:
Gait Recognition Using Multiple Projections,
FGR06(517-522).
IEEE DOI
0604
Silhouette represented by 4 1-D features - difference between bounding
box and silhouette.
BibRef
Ekinci, M.[Murat],
Gedikli, E.[Eyup],
A Novel Approach on Silhouette Based Human Motion Analysis for Gait
Recognition,
ISVC05(219-226).
Springer DOI
0512
BibRef
Trivino, G.[Gracian],
Alvarez-Alvarez, A.[Alberto],
Bailador, G.[Gonzalo],
Application of the computational theory of perceptions to human gait
pattern recognition,
PR(43), No. 7, July 2010, pp. 2572-2581.
Elsevier DOI
1003
Gait recognition; Fuzzy logic; Fuzzy finite state machine;
Computational theory of perceptions; Authentication
BibRef
Xue, Z.J.[Zhao-Jun],
Ming, D.[Dong],
Song, W.[Wei],
Wan, B.K.[Bai-Kun],
Jin, S.J.[Shi-Jiu],
Infrared gait recognition based on wavelet transform and support vector
machine,
PR(43), No. 8, August 2010, pp. 2904-2910.
Elsevier DOI
1006
Gait recognition; Infrared thermal imaging; Wavelet transform; Support
vector machine; Feature extraction
BibRef
Bashir, K.[Khalid],
Xiang, T.[Tao],
Gong, S.G.[Shao-Gang],
Gait recognition without subject cooperation,
PRL(31), No. 13, 1 October 2010, pp. 2052-2060.
Elsevier DOI
1003
BibRef
And:
Cross-view Gait Recognition Using Correlation Strength,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Earlier:
Gait Representation Using Flow Fields,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Earlier:
Feature Selection for Gait Recognition without Subject Cooperation,
BMVC08(xx-yy).
PDF File.
0809
Biometrics; Gait recognition; Gait Energy Image; Feature selection;
Adaptive Component and Discriminant Analysis
BibRef
Nizami, I.F.[Imran Fareed],
Hong, S.J.[Sung-Jun],
Lee, H.S.[Hee-Sung],
Lee, B.Y.[Byung-Yun],
Kim, E.T.[Eun-Tai],
Automatic gait recognition based on probabilistic approach,
IJIST(20), No. 4, December 2010, pp. 400-408.
DOI Link
1011
BibRef
Nassar, H.[Hamed],
El-Taweel, G.[Ghada],
Mahmoud, E.[Eman],
A Novel Feature Extraction Scheme For Human Gait Recognition,
IJIG(10), No. 4, October 2010, pp. 575-587.
DOI Link
1101
BibRef
Xu, D.,
Huang, Y.,
Zeng, Z.,
Xu, X.,
Human Gait Recognition Using Patch Distribution Feature and
Locality-Constrained Group Sparse Representation,
IP(21), No. 1, January 2012, pp. 316-326.
IEEE DOI
1112
BibRef
Zheng, S.[Shuai],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Tao, D.C.[Da-Cheng],
A cascade fusion scheme for gait and cumulative foot pressure image
recognition,
PR(45), No. 10, October 2012, pp. 3603-3610.
Elsevier DOI
1206
BibRef
Earlier: A1, A2, A3, Only:
Evaluation framework on translation-invariant representation for
cumulative foot pressure image,
ICIP11(201-204).
IEEE DOI
1201
Gait; Foot pressure image; Human recognition
BibRef
Ryu, J.[Jegoon],
Kamata, S.I.[Sei-Ichiro],
Ahrary, A.[Alireza],
SSM-HPC: Front View Gait Recognition Using Spherical Space Model with
Human Point Clouds,
IEICE(E95-D), No. 7, July 2012, pp. 1969-1978.
WWW Link.
1208
BibRef
Ryu, J.[Jegoon],
Kamata, S.I.[Sei-Ichiro],
Front view gait recognition using Spherical Space Model with Human
Point Clouds,
ICIP11(3209-3212).
IEEE DOI
1201
BibRef
Vahidpour, M.,
Sarabandi, K.,
Millimeter-Wave Doppler Spectrum and Polarimetric Response of Walking
Bodies,
GeoRS(50), No. 7, July 2012, pp. 2866-2879.
IEEE DOI
1208
BibRef
Vondrak, M.[Marek],
Sigal, L.[Leonid],
Jenkins, O.C.[Odest Chadwicke],
Dynamical Simulation Priors for Human Motion Tracking,
PAMI(35), No. 1, January 2013, pp. 52-65.
IEEE DOI
1212
BibRef
Earlier:
Physical simulation for probabilistic motion tracking,
CVPR08(1-8).
IEEE DOI
0806
Impose physical feasibility.
BibRef
Lee, C.P.[Chin Poo],
Tan, A.W.C.[Alan W.C.],
Tan, S.C.A.[Shing Chi-Ang],
Gait recognition via optimally interpolated deformable contours,
PRL(34), No. 6, 15 April 2013, pp. 663-669.
Elsevier DOI
1303
Gait recognition; Fourier descriptor; Shape interpolation
BibRef
Lee, C.P.[Chin Poo],
Tan, A.W.C.[Alan W.C.],
Tan, S.C.A.[Shing Chi-Ang],
Gait recognition with Transient Binary Patterns,
JVCIR(33), No. 1, 2015, pp. 69-77.
Elsevier DOI
1512
Gait recognition
BibRef
Lee, C.P.[Chin Poo],
Tan, A.W.C.[Alan W.C.],
Tan, S.C.A.[Shing Chi-Ang],
Time-sliced averaged motion history image for gait recognition,
JVCIR(25), No. 5, 2014, pp. 822-826.
Elsevier DOI
1406
Gait
BibRef
Dupuis, Y.,
Savatier, X.,
Vasseur, P.,
Feature subset selection applied to model-free gait recognition,
IVC(31), No. 8, August 2013, pp. 580-591.
Elsevier DOI
1306
Feature selection; Gait recognition; Model-free; Panoramic;
Random forest
BibRef
Maki, A.[Atsuto],
Perbet, F.[Frank],
Stenger, B.[Björn],
Cipolla, R.[Roberto],
Detecting bipedal motion from correlated probabilistic trajectories,
PRL(34), No. 15, 2013, pp. 1808-1818.
Elsevier DOI
1309
Motion
BibRef
He, R.[Ran],
Zheng, W.S.[Wei-Shi],
Tan, T.N.[Tie-Niu],
Sun, Z.A.[Zhen-An],
Half-Quadratic-Based Iterative Minimization for Robust Sparse
Representation,
PAMI(36), No. 2, February 2014, pp. 261-275.
IEEE DOI
1402
computer vision
BibRef
He, R.[Ran],
Zhang, Y.Y.[Ying-Ya],
Sun, Z.A.[Zhen-An],
Yin, Q.Y.[Qi-Yue],
Robust Subspace Clustering With Complex Noise,
IP(24), No. 11, November 2015, pp. 4001-4013.
IEEE DOI
1509
computer vision
BibRef
Zhang, Y.Y.[Ying-Ya],
Sun, Z.A.[Zhen-An],
He, R.[Ran],
Tan, T.N.[Tie-Niu],
Robust Subspace Clustering via Half-Quadratic Minimization,
ICCV13(3096-3103)
IEEE DOI
1403
BibRef
And:
Robust Low-Rank Representation via Correntropy,
ACPR13(461-465)
IEEE DOI
1408
iterative methods
BibRef
Zheng, S.[Shuai],
Zhang, J.G.[Jun-Ge],
Huang, K.Q.[Kai-Qi],
He, R.[Ran],
Tan, T.N.[Tie-Niu],
Robust View Transformation Model for Gait Recognition,
ICIP11(2073-2076).
IEEE DOI
1201
BibRef
Steinicke, F., Visell, Y., Campos, J., Lécuyer, A., (Eds.)
Guan, Y.[Yu],
Sun, Y.L.[Yun-Lian],
Li, C.T.[Chang-Tsun],
Tistarelli, M.,
Human gait identification from extremely low-quality videos:
An enhanced classifier ensemble method,
IET-Bio(3), No. 2, June 2014, pp. 84-93.
DOI Link
1407
BibRef
Iwashita, Y.[Yumi],
Ogawara, K.[Koichi],
Kurazume, R.[Ryo],
Identification of people walking along curved trajectories,
PRL(48), No. 1, 2014, pp. 60-69.
Elsevier DOI
1410
BibRef
Earlier: A1, A3, A2:
Expanding gait identification methods from straight to curved
trajectories,
WACV13(193-199).
IEEE DOI
1303
Gait
BibRef
Lai, Z.H.[Zhi-Hui],
Xu, Y.[Yong],
Jin, Z.[Zhong],
Zhang, D.,
Human Gait Recognition via Sparse Discriminant Projection Learning,
CirSysVideo(24), No. 10, October 2014, pp. 1651-1662.
IEEE DOI
1411
feature extraction
BibRef
Ngo, T.T.[Trung Thanh],
Makihara, Y.S.[Yasu-Shi],
Nagahara, H.[Hajime],
Mukaigawa, Y.[Yasuhiro],
Yagi, Y.S.[Yasu-Shi],
Similar gait action recognition using an inertial sensor,
PR(48), No. 4, 2015, pp. 1289-1301.
Elsevier DOI
1502
BibRef
Earlier:
Inertial-sensor-based walking action recognition using robust step
detection and inter-class relationships,
ICPR12(3811-3814).
WWW Link.
1302
Gait action recognition
BibRef
Whytock, T.[Tenika],
Belyaev, A.[Alexander],
Robertson, N.M.[Neil M.],
On covariate factor detection and removal for robust gait recognition,
MVA(26), No. 5, July 2015, pp. 661-674.
WWW Link.
1506
BibRef
Guan, Y.,
Li, C.,
Roli, F.,
On Reducing the Effect of Covariate Factors in Gait Recognition:
A Classifier Ensemble Method,
PAMI(37), No. 7, July 2015, pp. 1521-1528.
IEEE DOI
1506
Analytical models
BibRef
Muramatsu, D.,
Makihara, Y.,
Yagi, Y.,
Cross-view gait recognition by fusion of multiple transformation
consistency measures,
IET-Bio(4), No. 2, 2015, pp. 62-73.
DOI Link
1507
calibration
BibRef
Muramatsu, D.,
Makihara, Y.,
Yagi, Y.,
View Transformation Model Incorporating Quality Measures for
Cross-View Gait Recognition,
Cyber(46), No. 7, July 2016, pp. 1602-1615.
IEEE DOI
1606
Accuracy
BibRef
Chattopadhyay, P.[Pratik],
Sural, S.[Shamik],
Mukherjee, J.[Jayanta],
Frontal gait recognition from occluded scenes,
PRL(63), No. 1, 2015, pp. 9-15.
Elsevier DOI
1508
BibRef
Earlier:
Exploiting Pose Information for Gait Recognition from Depth Streams,
CDC4CV14(341-355).
Springer DOI
1504
Frontal gait recognition
See also Information fusion from multiple cameras for gait-based re-identification and recognition.
BibRef
Zhang, Y.T.[Yu-Ting],
Pan, G.[Gang],
Jia, K.[Kui],
Lu, M.L.[Min-Long],
Wang, Y.M.[Yue-Ming],
Wu, Z.H.[Zhao-Hui],
Accelerometer-Based Gait Recognition by Sparse Representation of
Signature Points With Clusters,
Cyber(45), No. 9, September 2015, pp. 1864-1875.
IEEE DOI
1509
accelerometers
BibRef
Marín-Jiménez, M.J.[Manuel J.],
Castro, F.M.[Francisco M.],
Carmona-Poyato, Á.[Ángel],
Guil, N.[Nicolás],
On how to improve tracklet-based gait recognition systems,
PRL(68, Part 1), No. 1, 2015, pp. 103-110.
Elsevier DOI
1512
Gait recognition
BibRef
Castro, F.M.[Francisco M.],
Delgado-Escaño, R.[Rubén],
Hernández-García, R.[Ruber],
Marín-Jiménez, M.J.[Manuel J.],
Guil, N.[Nicolás],
AttenGait: Gait recognition with attention and rich modalities,
PR(148), 2024, pp. 110171.
Elsevier DOI Code:
WWW Link.
2402
Gait, Optical flow, Deep learning, Attention, Biometrics
BibRef
Xing, X.L.[Xiang-Lei],
Wang, K.[Kejun],
Yan, T.[Tao],
Lv, Z.W.[Zhuo-Wen],
Complete canonical correlation analysis with application to
multi-view gait recognition,
PR(50), No. 1, 2016, pp. 107-117.
Elsevier DOI
1512
Canonical correlation analysis
BibRef
Rida, I.,
Jiang, X.,
Marcialis, G.L.,
Human Body Part Selection by Group Lasso of Motion for Model-Free
Gait Recognition,
SPLetters(23), No. 1, January 2016, pp. 154-158.
IEEE DOI
1601
Clothing
BibRef
Guan, S.,
Gray, H.A.,
Keynejad, F.,
Pandy, M.G.,
Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint
Motion During Overground Gait,
MedImg(35), No. 1, January 2016, pp. 326-336.
IEEE DOI
1601
Bones
BibRef
Shi, J.L.[Jin-Long],
Sun, Z.X.[Zheng-Xing],
Large-scale three-dimensional measurement based on LED marker tracking,
VC(32), No. 2, February 2016, pp. 179-190.
WWW Link.
1602
BibRef
Nangtin, P.[Prasit],
Kumhom, P.[Pinit],
Chamnongthai, K.[Kosin],
Gait identification with partial occlusion using six modules and
consideration of occluded module exclusion,
JVCIR(36), No. 1, 2016, pp. 107-121.
Elsevier DOI
1603
Gait identification
BibRef
Sung, Y.,
Chung, W.,
Hierarchical Sample-Based Joint Probabilistic Data Association Filter
for Following Human Legs Using a Mobile Robot in a Cluttered
Environment,
HMS(46), No. 3, June 2016, pp. 340-349.
IEEE DOI
1605
Estimation
BibRef
Lao, S.H.[Shi-Hong],
Wang, D.[Dong],
li, F.[Fu],
Zhang, H.H.[Hai-Hong],
Human running detection: Benchmark and baseline,
CVIU(153), No. 1, 2016, pp. 143-150.
Elsevier DOI
1612
Running detection
BibRef
Van Nguyen, L.,
La, H.M.,
Real-Time Human Foot Motion Localization Algorithm With Dynamic Speed,
HMS(46), No. 6, December 2016, pp. 822-833.
IEEE DOI
1612
Kalman filters
BibRef
Ortells, J.[Javier],
Mollineda, R.A.[Ramón A.],
Mederos, B.[Boris],
Martín-Félez, R.[Raúl],
Gait recognition from corrupted silhouettes:
A robust statistical approach,
MVA(28), No. 1-2, February 2017, pp. 15-33.
Springer DOI
1702
BibRef
Balazia, M.[Michal],
Plataniotis, K.N.[Konstantinos N.],
Human gait recognition from motion capture data in signature poses,
IET-Bio(6), No. 2, March 2017, pp. 129-137.
DOI Link
1703
BibRef
Balazia, M.[Michal],
Hlavácková-Schindler, K.[Katerina],
Sojka, P.[Petr],
Plant, C.[Claudia],
Interpretable Gait Recognition by Granger Causality,
ICPR22(1069-1075)
IEEE DOI
2212
Measurement, Analytical models,
Neural networks, Video surveillance, Skeleton, Motion capture
BibRef
Balazia, M.[Michal],
Sojka, P.[Petr],
Walker-Independent Features for Gait Recognition from Motion Capture
Data,
SSSPR16(310-321).
Springer DOI
1611
BibRef
Chhatrala, R.[Risil],
Jadhav, D.V.[Dattatray V.],
Multilinear Laplacian discriminant analysis for gait recognition,
IET-CV(11), No. 2, March 2017, pp. 153-160.
DOI Link
1703
BibRef
Ryu, J.[Jaehwan],
Lee, B.H.[Byeong-Hyeon],
Kim, D.H.[Deok-Hwan],
sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and
Slope Feature Extraction Algorithm,
SPLetters(24), No. 7, July 2017, pp. 929-932.
IEEE DOI
1706
Feature extraction, Legged locomotion, Motion detection, Muscles,
Reactive power, Signal processing algorithms, Timing,
Electromyography (EMG), feature extraction, gait recognition,
human-computer interaction, locomotion, mode
BibRef
Verlekar, T.T.[Tanmay T.],
Correia, P.L.[Paulo L.],
Soares, L.D.[Luís D.],
View-invariant gait recognition system using a gait energy image
decomposition method,
IET-Bio(6), No. 4, July 2017, pp. 299-306.
DOI Link
1707
BibRef
Verlekar, T.T.[Tanmay Tulsidas],
Soares, L.D.[Luís Ducla],
Correia, P.L.[Paulo Lobato],
Gait recognition in the wild using shadow silhouettes,
IVC(76), 2018, pp. 1-13.
Elsevier DOI
1808
Shadow biometrics, Gait recognition, Biometric recognition, View invariant
BibRef
Lishani, A.O.[Ait O.],
Boubchir, L.[Larbi],
Khalifa, E.[Emad],
Bouridane, A.[Ahmed],
Human gait recognition based on Haralick features,
SIViP(11), No. 6, September 2017, pp. 1123-1130.
Springer DOI
1708
BibRef
Isaac, E.R.H.P.,
Elias, S.,
Rajagopalan, S.,
Easwarakumar, K.S.,
View-Invariant Gait Recognition Through Genetic Template Segmentation,
SPLetters(24), No. 8, August 2017, pp. 1188-1192.
IEEE DOI
1708
gait analysis, genetic algorithms, image recognition,
image segmentation, active energy image template,
boundary selection process, gait energy image template,
gait entropy image template, genetic algorithm,
genetic template segmentation,
template-based model-free approach,
view-invariant gait recognition, Biological cells, Clothing,
Feature extraction, Gait recognition, Genetic algorithms, Genetics,
Legged locomotion, Biometrics, gait recognition,
genetic algorithms (GAs), linear, discriminant, analysis, (LDA)
BibRef
Chaurasia, P.,
Yogarajah, P.,
Condell, J.V.[Joan V.],
Prasad, G.[Girijesh],
Fusion of Random Walk and Discrete Fourier Spectrum Methods for Gait
Recognition,
HMS(47), No. 6, December 2017, pp. 751-762.
IEEE DOI
1712
Clothing, Data mining, Discrete Fourier transforms,
Feature extraction, Fourier transforms, Gait recognition,
random walk (RW)
BibRef
Zou, Q.,
Ni, L.,
Wang, Q.,
Li, Q.,
Wang, S.,
Robust Gait Recognition by Integrating Inertial and RGBD Sensors,
Cyber(48), No. 4, April 2018, pp. 1136-1150.
IEEE DOI
1804
Feature extraction, Gait recognition, Hidden Markov models,
Image color analysis, Legged locomotion, Sensors, Trajectory,
person identification
BibRef
Medikonda, J.[Jeevan],
Madasu, H.[Hanmandlu],
Ketan, P.B.[Panigrahi Bijaya],
Information set based features for the speed invariant gait recognition,
IET-Bio(7), No. 3, May 2018, pp. 269-277.
DOI Link
1804
BibRef
Jia, N.[Ning],
Sanchez, V.[Victor],
Li, C.T.[Chang-Tsun],
On view-invariant gait recognition: a feature selection solution,
IET-Bio(7), No. 4, July 2018, pp. 287-295.
DOI Link
1807
BibRef
Zhang, Z.,
Chen, J.,
Wu, Q.,
Shao, L.,
GII Representation-Based Cross-View Gait Recognition by
Discriminative Projection With List-Wise Constraints,
Cyber(48), No. 10, October 2018, pp. 2935-2947.
IEEE DOI
1809
Gait recognition, Cameras, Feature extraction, Robustness,
Correlation, Probes, Databases, Cross-view gait recognition,
list-wise constraints
BibRef
Khan, M.H.,
Farid, M.S.,
Zahoor, M.,
Grzegorzek, M.,
Cross- View Gait Recognition Using Non-Linear View Transformations of
Spatiotemporal Features,
ICIP18(773-777)
IEEE DOI
1809
Spatiotemporal phenomena, Gait recognition,
Support vector machines, Training,
view transformation
BibRef
Rida, I.[Imad],
Almaadeed, N.[Noor],
Almaadeed, S.[Somaya],
Robust gait recognition: a comprehensive survey,
IET-Bio(8), No. 1, January 2019, pp. 14-28.
DOI Link
1901
Survey, Gait Analysis.
BibRef
Wang, M.[Mo],
Wang, X.[Xin'an],
Fan, Z.C.[Zhuo-Chen],
Chen, F.[Fei],
Zhang, S.[Sixu],
Peng, C.[Chen],
Research on feature extraction algorithm for plantar pressure image
and gait analysis in stroke patients,
JVCIR(58), 2019, pp. 525-531.
Elsevier DOI
1901
Plantar pressure, Feature extraction, Image denoising,
Clustering analysis, Gait analysis
BibRef
Ghaeminia, M.H.[Mohammad H.],
Shokouhi, S.B.[Shahriar B.],
On the selection of spatiotemporal filtering with classifier ensemble
method for effective gait recognition,
SIViP(13), No. 1, February 2019, pp. 43-51.
WWW Link.
1901
BibRef
Bandera, J.P.[Juan Pedro],
Marfil, R.[Rebeca],
Romero-Garcés, A.[Adrián],
Voilmy, D.[Dimitri],
A new paradigm for autonomous human motion description and
evaluation: Application to the Get Up & Go test use case,
PRL(118), 2019, pp. 51-60.
Elsevier DOI
1902
Human motion analysis, Socially assistive robots, Gait analysis
BibRef
Ben, X.[Xianye],
Zhang, P.[Peng],
Lai, Z.H.[Zhi-Hui],
Yan, R.[Rui],
Zhai, X.L.[Xin-Liang],
Meng, W.X.[Wei-Xiao],
A general tensor representation framework for cross-view gait
recognition,
PR(90), 2019, pp. 87-98.
Elsevier DOI
1903
Gait recognition, Cross-view gait, Tensor representation, Framework
BibRef
Zhang, P.[Peng],
Xu, J.S.[Jing-Song],
Wu, Q.[Qiang],
Huang, Y.[Yan],
Ben, X.[Xianye],
Learning Spatial-Temporal Representations Over Walking Tracklet for
Long-Term Person Re-Identification in the Wild,
MultMed(23), 2021, pp. 3562-3576.
IEEE DOI
2110
Skeleton, Tracking, Image color analysis, Cameras, Streaming media,
Trajectory, dataset collection
BibRef
Behera, P.K.[Pravat Kumar],
Mandava, R.K.[Ravi Kumar],
Vundavilli, P.R.[Pandu Ranga],
Push recovery system and balancing of a biped robot on steadily
increasing slope of an inclined plane,
IJCVR(9), No. 1, 2019, pp. 70-89.
DOI Link
1903
BibRef
Rashwan, H.A.[Hatem A.],
García, M.Á.[Miguel Ángel],
Chambon, S.[Sylvie],
Puig, D.[Domenec],
Gait representation and recognition from temporal co-occurrence of flow
fields,
MVA(30), No. 1, February 2019, pp. 139-152.
Springer DOI
1904
BibRef
Khan, M.H.[Muhammad Hassan],
Farid, M.S.[Muhammad Shahid],
Grzegorzek, M.[Marcin],
Spatiotemporal features of human motion for gait recognition,
SIViP(13), No. 2, March 2019, pp. 369-377.
Springer DOI
1904
BibRef
Ben, X.,
Gong, C.,
Zhang, P.,
Jia, X.,
Wu, Q.,
Meng, W.,
Coupled Patch Alignment for Matching Cross-View Gaits,
IP(28), No. 6, June 2019, pp. 3142-3157.
IEEE DOI
1905
Gait recognition, Cameras,
Feature extraction, Optimization, Probes, Clothing,
multi-dimensional patch alignment
BibRef
Wang, Q.[Qu],
Ye, L.L.[Lang-Lang],
Luo, H.Y.[Hai-Yong],
Men, A.D.[Ai-Dong],
Zhao, F.[Fang],
Ou, C.H.[Chang-Hai],
Pedestrian Walking Distance Estimation Based on Smartphone Mode
Recognition,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Liao, R.J.[Ri-Jun],
Yu, S.Q.[Shi-Qi],
An, W.Z.[Wei-Zhi],
Huang, Y.Z.[Yong-Zhen],
A model-based gait recognition method with body pose and human prior
knowledge,
PR(98), 2020, pp. 107069.
Elsevier DOI
1911
Gait recognition, Human body pose, Spatio-temporal feature,
BibRef
Hou, S.H.[Sai-Hui],
Cao, C.S.[Chun-Shui],
Liu, X.[Xu],
Huang, Y.Z.[Yong-Zhen],
Gait Lateral Network: Learning Discriminative and Compact
Representations for Gait Recognition,
ECCV20(IX:382-398).
Springer DOI
2011
BibRef
Truong, C.[Charles],
Barrois-Müller, R.[Rémi],
Moreau, T.[Thomas],
Provost, C.[Clément],
Vienne-Jumeau, A.[Aliénor],
Moreau, A.[Albane],
Vidal, P.P.[Pierre-Paul],
Vayatis, N.[Nicolas],
Buffat, S.[Stéphane],
Yelnik, A.[Alain],
Ricard, D.[Damien],
Oudre, L.[Laurent],
A Data Set for the Study of Human Locomotion with Inertial
Measurements Units,
IPOL(9), 2019, pp. 381-390.
DOI Link
1911
Dataset, Gait. Data set of 1020 multivariate gait signals collected with two inertial
measurement units, from 230 subjects undergoing a fixed protocol:
standing still, walking 10 m, turning around, walking back and
stopping. In total, 8.5~h of gait time series are distributed.
BibRef
Hirose, Y.[Yuki],
Nakamura, K.[Kazuaki],
Nitta, N.[Naoko],
Babaguchi, N.[Noboru],
Discrimination between Genuine and Cloned Gait Silhouette Videos via
Autoencoder-Based Training Data Generation,
IEICE(E102-D), No. 12, December 2019, pp. 2535-2546.
WWW Link.
1912
BibRef
de Marsico, M.[Maria],
Mecca, A.[Alessio],
A Survey on Gait Recognition via Wearable Sensors,
Surveys(52), No. 4, September 2019, pp. Article No 86.
DOI Link
1912
Survey, Gait.
BibRef
Dai, S.J.[Shi-Jie],
Wang, R.[Rui],
Zhang, H.[Huibo],
A gait skeleton model extraction method based on the fusion between
vision and tactility,
VC(35), No. 12, December 2018, pp. 1713-1723.
WWW Link.
1912
BibRef
Wu, Q.T.[Qing-Tian],
Zhou, Y.M.[Yi-Min],
Wu, X.Y.[Xin-Yu],
Liang, G.Y.[Guo-Yuan],
Ou, Y.S.[Yong-Sheng],
Sun, T.F.[Tian-Fu],
Real-time running detection system for UAV imagery based on optical
flow and deep convolutional networks,
IET-ITS(14), No. 5, May 2020, pp. 278-287.
DOI Link
2005
BibRef
Kusakunniran, W.[Worapan],
Review of gait recognition approaches and their challenges on view
changes,
IET-Bio(9), No. 6, November 2020, pp. 238-250.
DOI Link
2010
Survey, Gait.
BibRef
Wu, H.,
Tian, J.,
Fu, Y.,
Li, B.,
Li, X.,
Condition-Aware Comparison Scheme for Gait Recognition,
IP(30), 2021, pp. 2734-2744.
IEEE DOI
2102
Feature extraction, Gait recognition, Adaptation models,
Data models, Shape, Legged locomotion, Geometry, Gait recognition,
geometry-guided data augmentation
BibRef
Iwamura, M.[Masakazu],
Mori, S.[Shunsuke],
Nakamura, K.[Koichiro],
Tanoue, T.[Takuya],
Utsumi, Y.[Yuzuko],
Makihara, Y.S.[Yasu-Shi],
Muramatsu, D.[Daigo],
Kise, K.[Koichi],
Yagi, Y.S.[Yasu-Shi],
Individuality-Preserving Silhouette Extraction for Gait Recognition and
Its Speedup,
IEICE(E104-D), No. 7, July 2021, pp. 992-1001.
WWW Link.
2107
BibRef
Amsaprabhaa, M.,
Nancy Jane, Y.,
Khanna Nehemiah, H.,
A survey on spatio-temporal framework for kinematic gait analysis in
RGB videos,
JVCIR(79), 2021, pp. 103218.
Elsevier DOI
2109
Survey, Gait. Human gait recognition, Spatio-temporal features,
Gait databases, Gait recognition representation,
Gait prediction
BibRef
Hasan, M.M.[Md Mahedi],
Mustafa, H.A.[Hossen Asiful],
Learning view-invariant features using stacked autoencoder for
skeleton-based gait recognition,
IET-CV(15), No. 7, 2021, pp. 527-545.
DOI Link
2109
BibRef
Wen, J.Q.[Jun-Qin],
Wang, X.[Xiuhui],
Gait recognition based on sparse linear subspace,
IET-IPR(15), No. 12, 2021, pp. 2761-2769.
DOI Link
2109
BibRef
Tan, X.W.[Xiao-Wei],
Zhang, B.[Bi],
Liu, G.J.[Guang-Jun],
Zhao, X.G.[Xin-Gang],
Zhao, Y.W.[Yi-Wen],
Phase Variable Based Recognition of Human Locomotor Activities Across
Diverse Gait Patterns,
HMS(51), No. 6, December 2021, pp. 684-695.
IEEE DOI
2112
Activity recognition, Classification algorithms,
Gait recognition, Patient monitoring, Legged locomotion,
phase
BibRef
Gao, S.[Shuo],
Yun, J.[Jing],
Zhao, Y.[Yumeng],
Liu, L.M.[Li-Min],
Gait-D: Skeleton-based gait feature decomposition for gait
recognition,
IET-CV(16), No. 2, 2022, pp. 111-125.
DOI Link
2202
biometrics, convolutional neural nets, feature extraction,
pose estimation, video signal processing
BibRef
Liu, X.K.[Xiao-Kai],
You, Z.Y.[Zhao-Yang],
He, Y.X.[Yu-Xiang],
Bi, S.[Sheng],
Wang, J.[Jie],
Symmetry-Driven hyper feature GCN for skeleton-based gait recognition,
PR(125), 2022, pp. 108520.
Elsevier DOI
2203
Dynamics of skeleton, Gait recognition,
Graph convolutional networks, Symmetric interaction pattern, Hyper feature
BibRef
Li, H.K.[Hua-Kang],
Qiu, Y.[Yidan],
Zhao, H.M.[Hui-Min],
Zhan, J.[Jin],
Chen, R.J.[Rong-Jun],
Wei, T.J.[Tuan-Jie],
Huang, Z.H.[Zhi-Hui],
GaitSlice:
A gait recognition model based on spatio-temporal slice features,
PR(124), 2022, pp. 108453.
Elsevier DOI
2203
Gait recognition, Key frame, Cross-view, Attention mechanism,
Slice feature, GaitSlice
BibRef
Han, F.[Feng],
Li, X.J.[Xue-Jian],
Zhao, J.[Jian],
Shen, F.[Furao],
A unified perspective of classification-based loss and distance-based
loss for cross-view gait recognition,
PR(125), 2022, pp. 108519.
Elsevier DOI
2203
Biometrics, Gait recognition, Metric learning,
Angular softmax loss function, Triplet loss function
BibRef
Song, X.[Xu],
Huang, Y.[Yan],
Huang, Y.[Yan],
Shan, C.F.[Cai-Feng],
Wang, J.L.[Ji-Long],
Chen, Y.[Yu],
Distilled light GaitSet: Towards scalable gait recognition,
PRL(157), 2022, pp. 27-34.
Elsevier DOI
2205
Gait recognition, Lightweight network, Knowledge distillation
BibRef
Qin, H.[Hao],
Chen, Z.[Zhenxue],
Guo, Q.Q.[Qing-Qiang],
Wu, Q.M.J.[Q. M. Jonathan],
Lu, M.X.[Meng-Xu],
RPNet: Gait Recognition With Relationships Between Each Body-Parts,
CirSysVideo(32), No. 5, May 2022, pp. 2990-3000.
IEEE DOI
2205
Feature extraction, Gait recognition, Legged locomotion,
Data models, Analytical models, Convolutional neural networks,
different scale blocks
BibRef
Yao, L.X.[Ling-Xiang],
Kusakunniran, W.[Worapan],
Wu, Q.[Qiang],
Xu, J.S.[Jing-Song],
Zhang, J.[Jian],
Collaborative Feature Learning for Gait Recognition Under Cloth
Changes,
CirSysVideo(32), No. 6, June 2022, pp. 3615-3629.
IEEE DOI
2206
Feature extraction, Gait recognition, Clothing, Skeleton,
Transformers, Visualization, Legged locomotion, Gait recognition, deep learning
BibRef
Wang, Y.X.[Yan-Xiang],
Zhang, X.[Xian],
Shen, Y.R.[Yi-Ran],
Du, B.[Bowen],
Zhao, G.R.[Guang-Rong],
Cui, L.Z.[Li-Zhen],
Wen, H.K.[Hong-Kai],
Event-Stream Representation for Human Gaits Identification Using Deep
Neural Networks,
PAMI(44), No. 7, July 2022, pp. 3436-3449.
IEEE DOI
2206
Sensors, Voltage control, Feature extraction, Cameras, Task analysis,
Gait recognition, Convolution, Gait recognition,
graph-based convolutional networks
BibRef
Wang, Y.X.[Yan-Xiang],
Du, B.[Bowen],
Shen, Y.R.[Yi-Ran],
Wu, K.[Kai],
Zhao, G.R.[Guang-Rong],
Sun, J.G.[Jian-Guo],
Wen, H.K.[Hong-Kai],
EV-Gait: Event-Based Robust Gait Recognition Using Dynamic Vision
Sensors,
CVPR19(6351-6360).
IEEE DOI
2002
BibRef
Wang, L.K.[Li-Kai],
Chen, J.Y.[Jin-Yan],
Liu, Y.X.[Yu-Xin],
Frame-level refinement networks for skeleton-based gait recognition,
CVIU(222), 2022, pp. 103500.
Elsevier DOI
2209
Gait recognition, Graph convolution, Frame-level refinement
BibRef
He, Z.[Ziwen],
Wang, W.[Wei],
Dong, J.[Jing],
Tan, T.N.[Tie-Niu],
Temporal sparse adversarial attack on sequence-based gait recognition,
PR(133), 2023, pp. 109028.
Elsevier DOI
2210
Adversarial attack, Gait recognition, Temporal sparsity
BibRef
Parashar, A.[Anubha],
Parashar, A.[Apoorva],
Shekhawat, R.S.[Rajveer Singh],
A robust covariate-invariant gait recognition based on pose features,
IET-Bio(11), No. 6, 2022, pp. 601-613.
DOI Link
2212
biometrics, covariates, deep learning, gait recognition, pose estimation
BibRef
Shi, X.[Xin],
Wang, Z.[Zhelong],
Zhao, H.Y.[Hong-Yu],
Qiu, S.[Sen],
Liu, R.[Ruichen],
Lin, F.[Fang],
Tang, K.[Kai],
Threshold-Free Phase Segmentation and Zero Velocity Detection for
Gait Analysis Using Foot-Mounted Inertial Sensors,
HMS(53), No. 1, February 2023, pp. 176-186.
IEEE DOI
2301
Micromechanical devices, Inertial sensors, Estimation, Quaternions, Manuals,
Man-machine systems, Labeling, Gait analysis, zero velocity updates (ZUPT)
BibRef
Shehata, A.[Allam],
Makihara, Y.S.[Yasu-Shi],
Muramatsu, D.[Daigo],
Ahad, M.A.R.[Md Atiqur Rahman],
Yagi, Y.S.[Yasu-Shi],
Annotator-dependent uncertainty-aware estimation of gait relative
attributes,
PR(136), 2023, pp. 109197.
Elsevier DOI
2301
Gait relative attribute, Relative label distribution,
Relative score distribution, Annotator's uncertainty, Transition matrix
BibRef
Li, X.[Xiang],
Makihara, Y.S.[Yasu-Shi],
Xu, C.[Chi],
Yagi, Y.S.[Yasu-Shi],
Yu, S.Q.[Shi-Qi],
Ren, M.W.[Ming-Wu],
End-to-end Model-based Gait Recognition,
ACCV20(III:3-20).
Springer DOI
2103
BibRef
Song, C.F.[Chun-Feng],
Huang, Y.Z.[Yong-Zhen],
Wang, W.N.[Wei-Ning],
Wang, L.[Liang],
CASIA-E: A Large Comprehensive Dataset for Gait Recognition,
PAMI(45), No. 3, March 2023, pp. 2801-2815.
IEEE DOI
2302
Dataset, Gait Recognition. Videos, Gait recognition, Legged locomotion, Face recognition,
Training, Lighting, Benchmark testing, Deep learning, gait dataset,
soft biometrics
BibRef
Yao, L.X.[Ling-Xiang],
Kusakunniran, W.[Worapan],
Zhang, P.[Peng],
Wu, Q.[Qiang],
Zhang, J.[Jian],
Improving Disentangled Representation Learning for Gait Recognition
Using Group Supervision,
MultMed(25), 2023, pp. 4187-4198.
IEEE DOI
2310
BibRef
Fan, C.[Chao],
Hou, S.[Saihui],
Wang, J.[Jilong],
Huang, Y.Z.[Yong-Zhen],
Yu, S.Q.[Shi-Qi],
Learning Gait Representation From Massive Unlabelled Walking Videos:
A Benchmark,
PAMI(45), No. 12, December 2023, pp. 14920-14937.
IEEE DOI
2311
BibRef
Chen, Y.F.[Yi-Fan],
Li, X.L.[Xue-Long],
Gait feature learning via spatio-temporal two-branch networks,
PR(147), 2024, pp. 110090.
Elsevier DOI
2312
Gait recognition, Spatio-temporal gait feature, Convolutional neural networks
BibRef
Sezavar, A.[Ahmadreza],
Atta, R.[Randa],
Ghanbari, M.[Mohammed],
DCapsNet: Deep capsule network for human activity and gait
recognition with smartphone sensors,
PR(147), 2024, pp. 110054.
Elsevier DOI
2312
Gait recognition, Human activity recognition, Capsule network,
Smartphone sensors
BibRef
Vijayvargiya, A.[Ankit],
Kumar, R.[Rajesh],
Sharma, P.[Parul],
PC-GNN: Pearson Correlation-Based Graph Neural Network for
Recognition of Human Lower Limb Activity Using sEMG Signal,
HMS(53), No. 6, December 2023, pp. 945-954.
IEEE DOI
2312
BibRef
Deng, M.Q.[Mu-Qing],
Fan, Z.Y.[Zhu-Yao],
Lin, P.[Peng],
Feng, X.R.[Xiao-Reng],
Human Gait Recognition Based on Frontal-View Sequences Using Gait
Dynamics and Deep Learning,
MultMed(26), 2024, pp. 117-126.
IEEE DOI
2401
BibRef
Li, A.[Aoqi],
Hou, S.[Saihui],
Cai, Q.Y.[Qing-Yuan],
Fu, Y.[Yang],
Huang, Y.Z.[Yong-Zhen],
Gait Recognition With Drones: A Benchmark,
MultMed(26), 2024, pp. 3530-3540.
IEEE DOI
2402
Gait recognition, Drones, Cameras, Task analysis, Feature extraction,
Probes, Gait recognition, drones, high vertical views
BibRef
Wang, R.S.[Run-Sheng],
Shi, Y.X.[Yu-Xuan],
Ling, H.[Hefei],
Li, Z.Y.[Zong-Yi],
Zhao, C.X.[Cheng-Xin],
Wei, B.[Bohao],
Li, H.[He],
Li, P.[Ping],
Gait Recognition With Multi-Level Skeleton-Guided Refinement,
MultMed(26), 2024, pp. 4515-4526.
IEEE DOI
2403
Feature extraction, Bones, Joints, Visualization, Heating systems,
Gait recognition, Semantics, Gait recognition, multi-modality
BibRef
Hodossy, B.K.[Balint K.],
Guez, A.S.[Annika S.],
Jing, S.[Shibo],
Huo, W.G.[Wei-Guang],
Vaidyanathan, R.[Ravi],
Farina, D.[Dario],
Leveraging High-Density EMG to Investigate Bipolar Electrode
Placement for Gait Prediction Models,
HMS(54), No. 2, April 2024, pp. 192-201.
IEEE DOI
2404
Electrodes, Muscles, Measurement, Predictive models, Knee,
Electromyography, Standards, signal processing
BibRef
Huo, W.[Wei],
Wang, K.[Ke],
Tang, J.[Jun],
Wang, N.[Nian],
Liang, D.[Dong],
GaitSCM: Causal representation learning for gait recognition,
CVIU(243), 2024, pp. 103995.
Elsevier DOI Code:
WWW Link.
2405
Gait recognition, Global and local feature extractor,
Disentangled representation learning, Causal representation learning
BibRef
Hou, S.H.[Sai-Hui],
Huang, P.J.[Pan-Jian],
Liu, X.[Xu],
Cao, C.S.[Chun-Shui],
Huang, Y.Z.[Yong-Zhen],
Cloth-Imbalanced Gait Recognition via Hallucination,
CirSysVideo(34), No. 7, July 2024, pp. 5665-5676.
IEEE DOI
2407
Tail, Headphones, Gait recognition, Feature extraction, Training,
Benchmark testing, cross-clothes hallucination
BibRef
Wang, Z.Y.[Zheng-You],
Du, C.Y.[Cheng-Yu],
Zhang, Y.P.[Yun-Peng],
Bai, J.[Jing],
Zhuang, S.[Shanna],
EM-Gait: Gait recognition using motion excitation and feature
embedding self-attention,
JVCIR(103), 2024, pp. 104266.
Elsevier DOI
2409
Gait recognition, Motion excitation, Embedding self-attention,
Identity recognition
BibRef
Hua, C.S.[Chun-Sheng],
Zhang, H.[Hao],
Li, J.[Jia],
Pan, Y.J.[Ying-Jie],
Continuous-dilated temporal and inter-frame motion excitation feature
learning for gait recognition,
IET-CV(18), No. 6, 2024, pp. 788-800.
DOI Link
2409
gait analysis, image motion analysis, spatiotemporal phenomena
BibRef
Hu, Y.C.[Yu-Chen],
Chen, Z.[Zhenxue],
Liu, C.Y.[Cheng-Yun],
Liang, T.[Tian],
Lu, D.[Dan],
SAFLFusionGait: Gait recognition network with separate attention and
different granularity feature learnability fusion,
JVCIR(104), 2024, pp. 104284.
Elsevier DOI
2411
Gait recognition, Convolutional neural network (CNN),
Deep learning, Feature fusion, Supervised learning
BibRef
Peng, G.Z.[Guo-Zhen],
Li, R.[Rui],
Li, A.[Annan],
Wang, Y.H.[Yun-Hong],
Synthesis Pyramid Pooling: A Strong Pooling Method for Gait
Recognition in the Wild,
SPLetters(31), 2024, pp. 3159-3163.
IEEE DOI
2411
Data mining, Pedestrians, Gait recognition, Aggregates, Vectors,
Feature extraction, Legged locomotion, Face recognition, Cameras,
synthesis pyramid pooling
BibRef
He, W.T.[Wen-Tao],
Ren, J.F.[Jian-Feng],
Bai, R.B.[Rui-Bin],
Jiang, X.D.[Xu-Dong],
Radar gait recognition using Dual-branch Swin Transformer with
Asymmetric Attention Fusion,
PR(159), 2025, pp. 111101.
Elsevier DOI Code:
WWW Link.
2412
Micro-Doppler signature, Radar gait recognition, Spectrogram,
Cadence velocity diagram, Asymmetric Attention Fusion
BibRef
Junaid, M.I.[Mohammad Iman],
Prakash, A.J.[Allam Jaya],
Ari, S.[Samit],
Human gait recognition using joint spatiotemporal modulation in deep
convolutional neural networks,
JVCIR(105), 2024, pp. 104322.
Elsevier DOI
2501
Convolutional neural network (CNN), Gait recognition,
Joint learning, Spatial modulation, Temporal modulation
BibRef
Fu, Y.[Yang],
Hou, S.[Saihui],
Meng, S.[Shibei],
Hu, X.C.[Xue-Cai],
Cao, C.[Chunshui],
Liu, X.[Xu],
Huang, Y.Z.[Yong-Zhen],
Cut Out the Middleman: Revisiting Pose-based Gait Recognition,
ECCV24(XXXI: 112-128).
Springer DOI
2412
BibRef
Thapar, D.[Daksh],
Chaudhari, J.[Jayesh],
Manchanda, S.[Sunny],
Nigam, A.[Aditya],
Arora, C.[Chetan],
Gaitw: Enhancing Gait Recognition in the Wild Using Dynamic Information,
ACCV24(I: 24-43).
Springer DOI
2412
BibRef
Ma, K.[Kang],
Fu, Y.[Ying],
Cao, C.S.[Chun-Shui],
Hou, S.H.[Sai-Hui],
Huang, Y.Z.[Yong-Zhen],
Zheng, D.Z.[De-Zhi],
Learning Visual Prompt for Gait Recognition,
CVPR24(593-603)
IEEE DOI
2410
Deep learning, Visualization, Pedestrians, Limiting, Dynamics,
Feature extraction, Transformers
BibRef
Catruna, A.[Andy],
Cosma, A.[Adrian],
Radoi, E.[Emilian],
GaitPT: Skeletons are All You Need for Gait Recognition,
FG24(1-10)
IEEE DOI Code:
WWW Link.
2408
Legged locomotion, Accuracy, Pose estimation, Transformers,
Feature extraction, Skeleton, Robustness
BibRef
Liao, R.[Rijun],
Li, Z.[Zhu],
Bhattacharyya, S.S.[Shuvra S.],
York, G.[George],
View DiffGait: View Pyramid Diffusion for Gait Recognition,
FG24(1-9)
IEEE DOI
2408
Face recognition, Gaussian noise, Noise reduction,
Diffusion processes, Transforms, Gesture recognition,
View Noise Removing
BibRef
Catruna, A.[Andy],
Cosma, A.[Adrian],
Radoi, E.[Emilian],
The Paradox of Motion: Evidence for Spurious Correlations in
Skeleton-Based Gait Recognition Models,
FG24(1-9)
IEEE DOI
2408
Legged locomotion, Degradation, Analytical models, Correlation,
Accuracy, Face recognition, Gesture recognition
BibRef
Niculae, A.[Andrei],
Catruna, A.[Andy],
Cosma, A.[Adrian],
Rosner, D.[Daniel],
Radoi, E.[Emilian],
Gait Recognition from Highly Compressed Videos,
FG24(1-7)
IEEE DOI
2408
Analytical models, Surveillance, Pose estimation, Pipelines,
Video compression, Data models, Noise measurement
BibRef
Chivereanu, R.[Radu],
Cosma, A.[Adrian],
Catruna, A.[Andy],
Rughinis, R.[Razvan],
Radoi, E.[Emilian],
Aligning Actions and Walking to LLM-Generated Textual Descriptions,
FG24(1-7)
IEEE DOI Code:
WWW Link.
2408
Legged locomotion, Large language models, Gesture recognition,
Footwear, Linguistics, Data augmentation, Skeleton
BibRef
Habib, G.[Gavriel],
Barzilay, N.[Noa],
Shimshi, O.[Or],
Ben-Ari, R.[Rami],
Darshan, N.[Nir],
Watch Where You Head: A View-biased Domain Gap in Gait Recognition
and Unsupervised Adaptation,
WACV24(6097-6107)
IEEE DOI
2404
Legged locomotion, Adaptation models, Computational modeling,
Task analysis, Gait recognition, Algorithms, Biometrics, face, gesture
BibRef
Gupta, A.[Ayush],
Chellappa, R.[Rama],
You Can Run but not Hide: Improving Gait Recognition with Intrinsic
Occlusion Type Awareness,
WACV24(5881-5890)
IEEE DOI
2404
Detectors, Feature extraction, Data mining, Task analysis,
Gait recognition, Videos, Algorithms, Biometrics, face, gesture
BibRef
Guo, H.J.[Hong-Ji],
Ji, Q.[Qiang],
Physics-Augmented Autoencoder for 3D Skeleton-Based Gait Recognition,
ICCV23(19570-19581)
IEEE DOI
2401
BibRef
Wang, L.[Lei],
Liu, B.[Bo],
Liang, F.F.[Fang-Fang],
Wang, B.[Bincheng],
Hierarchical Spatio-Temporal Representation Learning for Gait
Recognition,
ICCV23(19582-19592)
IEEE DOI Code:
WWW Link.
2401
BibRef
Xu, C.[Chi],
Tsuji, S.[Shogo],
Makihara, Y.S.[Yasu-Shi],
Li, X.[Xiang],
Yagi, Y.S.[Yasu-Shi],
Occluded Gait Recognition via Silhouette Registration Guided by
Automated Occlusion Degree Estimation,
AMFG23(3191-3201)
IEEE DOI
2401
BibRef
Ma, K.[Kang],
Fu, Y.[Ying],
Zheng, D.[Dezhi],
Peng, Y.J.[Yun-Jie],
Cao, C.[Chunshui],
Huang, Y.Z.[Yong-Zhen],
Fine-grained Unsupervised Domain Adaptation for Gait Recognition,
ICCV23(11279-11288)
IEEE DOI
2401
BibRef
Wang, M.[Ming],
Guo, X.D.[Xian-Da],
Lin, B.B.[Bei-Bei],
Yang, T.[Tian],
Zhu, Z.[Zheng],
Li, L.C.[Lin-Cheng],
Zhang, S.L.[Shun-Li],
Yu, X.[Xin],
DyGait: Exploiting Dynamic Representations for High-performance Gait
Recognition,
ICCV23(13378-13387)
IEEE DOI
2401
BibRef
Fu, Y.[Yang],
Meng, S.[Shibei],
Hou, S.[Saihui],
Hu, X.C.[Xue-Cai],
Huang, Y.Z.[Yong-Zhen],
GPGait: Generalized Pose-based Gait Recognition,
ICCV23(19538-19547)
IEEE DOI Code:
WWW Link.
2401
BibRef
Yu, H.[Hao],
Liang, Y.C.[Yu-Chen],
Liu, Y.H.[Yue-Hu],
Zhang, C.[Chi],
Reuse Non-Terrain Policies for Learning Terrain-Adaptive Humanoid
Locomotion Skills,
ICIP23(695-699)
IEEE DOI
2312
BibRef
Wang, L.[Lei],
Liu, B.[Bo],
Wang, B.C.[Bin-Cheng],
Yu, F.Q.[Fu-Qiang],
GAITMM: Multi-Granularity Motion Sequence Learning for Gait
Recognition,
ICIP23(845-849)
IEEE DOI
2312
BibRef
Xu, C.[Chi],
Makihara, Y.S.[Yasu-Shi],
Li, X.[Xiang],
Yagi, Y.S.[Yasu-Shi],
Gait Recognition from Fisheye Images,
Biometrics23(1030-1040)
IEEE DOI
2309
BibRef
Fan, C.[Chao],
Liang, J.H.[Jun-Hao],
Shen, C.[Chuanfu],
Hou, S.[Saihui],
Huang, Y.Z.[Yong-Zhen],
Yu, S.Q.[Shi-Qi],
OpenGait: Revisiting Gait Recognition Toward Better Practicality,
CVPR23(9707-9716)
IEEE DOI
2309
BibRef
Cui, Y.F.[Yu-Feng],
Kang, Y.[Yimei],
Multi-modal Gait Recognition via Effective Spatial-Temporal Feature
Fusion,
CVPR23(17949-17957)
IEEE DOI
2309
BibRef
Dou, H.Z.[Huan-Zhang],
Zhang, P.Y.[Peng-Yi],
Su, W.[Wei],
Yu, Y.L.[Yun-Long],
Lin, Y.[Yining],
Li, X.[Xi],
GaitGCI: Generative Counterfactual Intervention for Gait Recognition,
CVPR23(5578-5588)
IEEE DOI
2309
BibRef
Das, D.[Dhritimaan],
Agarwal, A.[Ayush],
Chattopadhyay, P.[Pratik],
Gait Recognition from Occluded Sequences in Surveillance Sites,
RealWorld22(703-719).
Springer DOI
2304
BibRef
Zhu, H.D.[Hai-Dong],
Zheng, Z.H.[Zhao-Heng],
Nevatia, R.[Ram],
Gait Recognition Using 3-D Human Body Shape Inference,
WACV23(909-918)
IEEE DOI
2302
Training, Legged locomotion, Shape, Clothing, Cameras, Task analysis,
Algorithms: Biometrics, face, gesture, body pose
BibRef
Segundo, M.P.[Mauricio Pamplona],
Hill, C.[Cole],
Sarkar, S.[Sudeep],
Long range gait matching using 3D body fitting with gait-specific
motion constraints,
LongRange23(603-612)
IEEE DOI
2302
Legged locomotion, Deformable models, Training, Solid modeling, Shape, Fitting
BibRef
Chen, L.[Lu],
Wei, Q.[Qing],
Zhang, Z.T.[Zhi-Tong],
Chang, X.[Xu],
Wei, X.J.[Xiao-Jian],
An, H.L.[Hong-Lei],
Learning to Walk on Low Friction Terrain by Reinforcement Learning,
ICRVC22(355-359)
IEEE DOI
2301
Legged locomotion, Training, Friction, Reinforcement learning,
Robustness, Nonlinear dynamical systems, legged robot, low friction
BibRef
Li, Z.Q.[Zi-Qiong],
Li, Y.R.[Yan-Ran],
Yu, S.Q.[Shi-Qi],
FedGait: A Benchmark for Federated Gait Recognition,
ICPR22(1371-1377)
IEEE DOI
2212
Training, Privacy, Data privacy, Machine learning algorithms,
Federated learning, Satellite broadcasting, Benchmark testing
BibRef
Hsu, H.M.[Hung-Min],
Wang, Y.Z.[Yi-Zhou],
Yang, C.Y.[Cheng-Yen],
Hwang, J.N.[Jenq-Neng],
Thuc, H.L.U.[Hoang Le Uyen],
Kim, K.J.[Kwang-Ju],
GAITTAKE: Gait Recognition by Temporal Attention and Keypoint-Guided
Embedding,
ICIP22(2546-2550)
IEEE DOI
2211
Legged locomotion, Image recognition, Shape, Fuses, Forensics,
Pose estimation, Benchmark testing, Gait Recognition, Human Pose Estimation
BibRef
Teepe, T.[Torben],
Gilg, J.[Johannes],
Herzog, F.[Fabian],
Hörmann, S.[Stefan],
Rigoll, G.[Gerhard],
Towards a Deeper Understanding of Skeleton-based Gait Recognition,
Biometrics22(1568-1576)
IEEE DOI
2210
Training, Visualization, Pose estimation,
Performance gain, Feature extraction
BibRef
Chai, T.R.[Tian-Rui],
Li, A.[Annan],
Zhang, S.X.[Shao-Xiong],
Li, Z.L.[Zi-Long],
Wang, Y.H.[Yun-Hong],
Lagrange Motion Analysis and View Embeddings for Improved Gait
Recognition,
CVPR22(20217-20226)
IEEE DOI
2210
Legged locomotion, Representation learning, Visualization, Shape,
Mathematical models, Biometrics,
Representation learning
BibRef
Huang, X.H.[Xiao-Hu],
Zhu, D.W.[Duo-Wang],
Wang, H.[Hao],
Wang, X.G.[Xing-Gang],
Yang, B.[Bo],
He, B.T.[Bo-Tao],
Liu, W.Y.[Wen-Yu],
Feng, B.[Bin],
Context-Sensitive Temporal Feature Learning for Gait Recognition,
ICCV21(12889-12898)
IEEE DOI
2203
Representation learning, Legged locomotion, Adaptation models,
Codes, Convolution, Aggregates, Action and behavior recognition,
Gestures and body pose
BibRef
Zhu, Z.[Zheng],
Guo, X.D.[Xian-Da],
Yang, T.[Tian],
Huang, J.J.[Jun-Jie],
Deng, J.K.[Jian-Kang],
Huang, G.[Guan],
Du, D.L.[Da-Long],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Gait Recognition in the Wild: A Benchmark,
ICCV21(14769-14779)
IEEE DOI
2203
Dataset, Gait Recognition.
WWW Link. Biometrics, Datasets and evaluation, Emergency Reviewer
BibRef
Huang, Z.[Zhen],
Xue, D.X.[Di-Xiu],
Shen, X.[Xu],
Tian, X.M.[Xin-Mei],
Li, H.Q.[Hou-Qiang],
Huang, J.Q.[Jian-Qiang],
Hua, X.S.[Xian-Sheng],
3D Local Convolutional Neural Networks for Gait Recognition,
ICCV21(14900-14909)
IEEE DOI
2203
Torso, Legged locomotion, Convolutional codes, Solid modeling, Shape,
Spatiotemporal phenomena, Biometrics,
Recognition and classification
BibRef
Wang, M.[Ming],
Lin, B.B.[Bei-Bei],
Guo, X.D.[Xian-Da],
Li, L.C.[Lin-Cheng],
Zhu, Z.[Zheng],
Sun, J.D.[Jian-De],
Zhang, S.L.[Shun-Li],
Liu, Y.[Yu],
Yu, X.[Xin],
Gaitstrip: Gait Recognition via Effective Strip-based Feature
Representations and Multi-level Framework,
ACCV22(IV:711-727).
Springer DOI
2307
BibRef
Lin, B.B.[Bei-Bei],
Zhang, S.L.[Shun-Li],
Yu, X.[Xin],
Gait Recognition via Effective Global-Local Feature Representation
and Local Temporal Aggregation,
ICCV21(14628-14636)
IEEE DOI
2203
Visualization, Convolution, Aggregates, Feature extraction,
Data mining, Biometrics,
BibRef
Lin, B.B.[Bei-Bei],
Zhang, S.L.[Shun-Li],
Liu, Y.[Yu],
Qin, S.D.[Sheng-Di],
Multi-Scale Temporal Information Extractor for Gait Recognition,
ICIP21(2998-3002)
IEEE DOI
2201
Image recognition, Aggregates, Feature extraction, Data mining,
Convolutional neural networks, Gait recognition,
Combined loss function
BibRef
Chai, T.R.[Tian-Rui],
Mei, X.Y.[Xin-Yu],
Li, A.[Annan],
Wang, Y.H.[Yun-Hong],
Silhouette-Based View-Embeddings for Gait Recognition Under Multiple
Views,
ICIP21(2319-2323)
IEEE DOI
2201
Training, Image recognition, Refining, Estimation,
Gait recognition, silhouette-based,
multi-task
BibRef
Su, J.R.[Jing-Ran],
Zhao, Y.[Yang],
Li, X.L.[Xue-Long],
Progressive Spatio-Temporal Feature Extraction Model for Gait
Recognition,
ICIP21(1004-1008)
IEEE DOI
2201
Adaptation models, Image recognition, Fuses,
Biological system modeling, Feature extraction,
spatiotemporal feature extraction
BibRef
Chen, Y.F.[Yi-Fan],
Zhao, Y.[Yang],
Li, X.L.[Xue-Long],
Effective Gait Feature Extraction Using Temporal Fusion and Spatial
Partial,
ICIP21(1244-1248)
IEEE DOI
2201
Legged locomotion, Emotion recognition, Image recognition, Fuses,
Feature extraction, Finite element analysis, Gait Recognition,
Fine-grained Feature Extraction
BibRef
Delgado-Escaño, R.[Rubén],
Castro, F.M.[Francisco M.],
Guil, N.[Nicolás],
Kalogeiton, V.[Vicky],
Marín-Jiménez, M.J.[Manuel J.],
Multimodal Gait Recognition Under Missing Modalities,
ICIP21(3003-3007)
IEEE DOI
2201
Image processing, Logic gates, Sensors, Gait recognition, Optical flow
BibRef
Zhang, S.X.[Shao-Xiong],
Wang, Y.H.[Yun-Hong],
Li, A.[Annan],
Cross-View Gait Recognition with Deep Universal Linear Embeddings,
CVPR21(9091-9100)
IEEE DOI
2111
Legged locomotion, Visualization, Linear approximation,
Feature extraction, Solids, Nonlinear dynamical systems, Task analysis
BibRef
Yu, J.,
Xia, C.,
Xie, J.,
Zhang, H.,
Research on Feature Importance of Gait Mechanomyography Signal Based
on Random Forest,
CVIDL20(191-196)
IEEE DOI
2102
accelerometers, biomechanics, electromyography, feature extraction,
gait analysis, medical signal processing, muscle, random forest
BibRef
Fan, C.,
Peng, Y.,
Cao, C.,
Liu, X.,
Hou, S.,
Chi, J.,
Huang, Y.,
Li, Q.,
He, Z.,
GaitPart: Temporal Part-Based Model for Gait Recognition,
CVPR20(14213-14221)
IEEE DOI
2008
Feature extraction, Convolution, Gait recognition,
Biological system modeling, Task analysis, Kernel, Legged locomotion
BibRef
Hosni, N.,
Amor, B.B.,
A Geometric ConvNet on 3D Shape Manifold for Gait Recognition,
Diff-CVML20(3725-3734)
IEEE DOI
2008
Pattern recognition
BibRef
Mangalam, K.,
Adeli, E.,
Lee, K.,
Gaidon, A.,
Niebles, J.C.,
Disentangling Human Dynamics for Pedestrian Locomotion Forecasting
with Noisy Supervision,
WACV20(2773-2782)
IEEE DOI
2006
Forecasting, Trajectory, Noise measurement, Task analysis,
Predictive models, Vehicle dynamics, Dynamics
BibRef
Pandey, N.,
Abdulla, W.,
Salcic, Z.,
Multi-view Gait recognition using sparse representation,
IVCNZ19(1-6)
IEEE DOI
2004
feature extraction, gait analysis, image motion analysis,
image representation, minimisation, minimization,
biometrics
BibRef
Kato, H.[Hirotaka],
Hirayama, T.[Takatsugu],
Ide, I.[Ichiro],
Doman, K.[Keisuke],
Kawanishi, Y.[Yasutomo],
Deguchi, D.[Daisuke],
Murase, H.[Hiroshi],
More-natural Mimetic Words Generation for Fine-grained Gait Description,
MMMod20(II:214-225).
Springer DOI
2003
BibRef
Nouredanesh, M.[Mina],
Li, A.W.[Aaron W.],
Godfrey, A.[Alan],
Hoey, J.[Jesse],
Tung, J.[James],
Chasing Feet in the Wild: A Proposed Egocentric Motion-Aware Gait
Assessment Tool,
ACVR18(VI:176-192).
Springer DOI
1905
BibRef
Dehzangi, O.,
Sahu, V.,
IMU-Based Robust Human Activity Recognition using Feature Analysis,
Extraction, and Reduction,
ICPR18(1402-1407)
IEEE DOI
1812
Feature extraction, Legged locomotion, Activity recognition,
Accelerometers, Dimensionality reduction, Kernel, Generalization.
BibRef
Narváez, F.[Fabián],
Árbito, F.[Fernando],
Proaño, R.[Ricardo],
A Quaternion-Based Method to IMU-to-Body Alignment for Gait Analysis,
DHM18(217-231).
Springer DOI
1807
BibRef
Evans, M.,
Colyer, S.,
Cosker, D.,
Salo, A.,
Foot Contact Timings and Step Length for Sprint Training,
WACV18(1652-1660)
IEEE DOI
1806
gait analysis, motion measurement, sport,
biomechanics, coaching staff, computer vision based approach,
Tracking
BibRef
Liu, D.[Dan],
Ye, M.[Mao],
Li, X.D.[Xu-Dong],
Zhang, F.[Feng],
Lin, L.[Lan],
Memory-based Gait Recognition,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Yao, L.,
Kusakunniran, W.,
Wu, Q.,
Zhang, J.,
Tang, Z.,
Robust Gait Recognition under Unconstrained Environments Using Hybrid
Descriptions,
DICTA17(1-7)
IEEE DOI
1804
clothing, feature extraction, gait analysis, image motion analysis,
image sequences, video signal processing, Gait Energy Image,
Videos
BibRef
Matsumoto, R.,
Yoshimura, H.,
Nishiyama, M.,
Iwai, Y.,
Feature extraction using gaze of participants for classifying gender
of pedestrians in images,
ICIP17(3545-3549)
IEEE DOI
1803
Atmospheric measurements, Feature extraction, Kernel,
Particle measurements, Task analysis, Training, Visualization,
Gender
BibRef
Kato, H.,
Hirayama, T.,
Kawanishi, Y.,
Doman, K.,
Ide, I.,
Deguchi, D.,
Murase, H.,
Toward Describing Human Gaits by Onomatopoeias,
AMFG17(1573-1580)
IEEE DOI
1802
Computational modeling, Feature extraction, Kinetic theory,
Legged locomotion, Videos, Visualization
BibRef
Yeoh, T.[Tze_Wei],
Aguirre, H.E.[Hernán E.],
Tanaka, K.[Kiyoshi],
Stacked Progressive Auto-Encoders for Clothing-Invariant Gait
Recognition,
CAIP17(II: 151-161).
Springer DOI
1708
BibRef
Yu, S.,
Wang, Q.[Qing],
Shen, L.L.[Lin-Lin],
Huang, Y.Z.[Yong-Zhen],
View invariant gait recognition using only one uniform model,
ICPR16(889-894)
IEEE DOI
1705
Computational modeling, Feature extraction, Gait recognition,
Legged locomotion, Probes, Training, Transforms
BibRef
Matin, A.,
Paul, J.,
Sayeed, T.,
Segment based co-factor detection and elimination for effective gait
recognition,
IVPR17(1-5)
IEEE DOI
1704
Databases
BibRef
Kellokumpu, V.[Vili],
Särkiniemi, M.[Markus],
Zhao, G.Y.[Guo-Ying],
Affective Gait Recognition and Baseline Evaluation from Real World
Samples,
SFBA16(I: 567-575).
Springer DOI
1704
BibRef
Binsaadoon, A.G.[Amer G.],
El-Alfy, E.S.M.[El-Sayed M.],
Multi-Kernel Fuzzy-Based Local Gabor Patterns for Gait Recognition,
ISVC16(I: 790-799).
Springer DOI
1701
BibRef
Manikashani, P.[Peyman],
Boyd, J.E.[Jeffrey E.],
A Phase-Entrained Particle Filter for Audio-Locomotion
Synchronization,
CRV16(242-249)
IEEE DOI
1612
gait analysis; particle filter; sonification; syncrhonization
BibRef
Liang, G.,
Li, Q.,
Kang, X.,
Pedestrian detection via a leg-driven physiology framework,
ICIP16(2926-2930)
IEEE DOI
1610
Context
BibRef
Lai, C.Y.[Cheng-Yuan],
McMahan, R.P.,
Hall, J.,
March-and-Reach: A realistic ladder climbing technique,
3DUI15(15-18)
IEEE DOI
1511
gait analysis
BibRef
Yeoh, T.W.[Tze Wei],
Zapotecas-Martínez, S.[Saúl],
Akimoto, Y.[Youhei],
Aguirre, H.E.[Hernán E.],
Tanaka, K.[Kiyoshi],
Feature Selection in Gait Classification Using Geometric PSO Assisted
by SVM,
CAIP15(II:566-578).
Springer DOI
1511
BibRef
Kappel, M.[Moritz],
Golyanik, V.[Vladislav],
Elgharib, M.[Mohamed],
Henningson, J.O.[Jann-Ole],
Seidel, H.P.[Hans-Peter],
Castillo, S.[Susana],
Theobalt, C.[Christian],
Magnor, M.[Marcus],
High-Fidelity Neural Human Motion Transfer from Monocular Video,
CVPR21(1541-1550)
IEEE DOI
2111
Deep learning, Visualization, Codes, Shape,
Image synthesis, Clothing
BibRef
Alldieck, T.[Thiemo],
Kassubeck, M.[Marc],
Wandt, B.[Bastian],
Rosenhahn, B.[Bodo],
Magnor, M.[Marcus],
Optical Flow-Based 3D Human Motion Estimation from Monocular Video,
GCPR17(347-360).
Springer DOI
1711
BibRef
Zell, P.[Petrissa],
Wandt, B.[Bastian],
Rosenhahn, B.[Bodo],
Joint 3D Human Motion Capture and Physical Analysis from Monocular
Videos,
Cognition17(17-26)
IEEE DOI
1709
BibRef
Earlier: A1, A3, Only:
A Physics-Based Statistical Model for Human Gait Analysis,
GCPR15(169-180).
Springer DOI
1511
Cameras, Computational modeling, Optimization, Solid modeling,
Torque.
BibRef
Iwashita, Y.[Yumi],
Sakano, H.[Hitoshi],
Kurazume, R.[Ryo],
Gait Recognition Robust to Speed Transition Using Mutual Subspace
Method,
CIAP15(I:141-149).
Springer DOI
1511
BibRef
Derlatka, M.[Marcin],
Bogdan, M.[Mariusz],
Fusion of Static and Dynamic Parameters at Decision Level in Human Gait
Recognition,
PReMI15(515-524).
Springer DOI
1511
BibRef
Rida, I.[Imad],
Bouridane, A.[Ahmed],
Marcialis, G.L.[Gian Luca],
Tuveri, P.[Pierluigi],
Improved Human Gait Recognition,
CIAP15(II:119-129).
Springer DOI
1511
BibRef
Makihara, Y.,
Mansur, A.,
Muramatsu, D.,
Uddin, Z.,
Yagi, Y.,
Multi-view discriminant analysis with tensor representation and its
application to cross-view gait recognition,
FG15(1-8)
IEEE DOI
1508
gait analysis
BibRef
Kondo, T.,
Kato, K.,
Yamamoto, K.,
A proposal of ambient light estimation methods for skin region
detection,
FCV15(1-6)
IEEE DOI
1506
gait analysis
BibRef
Pu, R.[Rui],
Wang, Y.H.[Yun-Hong],
2-D Structure-Based Gait Recognition in Video Using Incremental GMM-HMM,
Gait14(I: 58-70).
Springer DOI
1504
BibRef
Wang, T.[Ting],
Dune, C.[Claire],
Merlet, J.P.[Jean-Pierre],
Gorce, P.[Philippe],
Sacco, G.[Guillaume],
Robert, P.[Philippe],
Turpin, J.M.[Jean-Michel],
Teboul, B.[Bernard],
Marteu, A.[Audrey],
Guerin, O.[Olivier],
A New Application of Smart Walker for Quantitative Analysis of Human
Walking,
ACVR14(464-480).
Springer DOI
1504
BibRef
Derbel, A.,
Chetouani, A.,
Treuillet, S.,
Emile, B.,
Mansouri, N.,
Ben Jemaa, Y.[Yousra],
Interest lower body point's detection for markerless gait analysis,
IPTA14(1-6)
IEEE DOI
1503
computer vision
BibRef
Tafazzoli, F.[Faezeh],
Bebis, G.N.[George N.],
Louis, S.[Sushil],
Hussain, M.[Muhammad],
Improving Human Gait Recognition Using Feature Selection,
ISVC14(II: 830-840).
Springer DOI
1501
BibRef
de Cann, B.[Brian],
Ross, A.[Arun],
Culp, M.[Mark],
On Clustering Human Gait Patterns,
ICPR14(1794-1799)
IEEE DOI
1412
Clustering algorithms
BibRef
Deng, X.M.[Xiao-Ming],
Xia, S.H.[Shi-Hong],
Wang, W.Z.[Wen-Zhong],
Wang, Z.Q.[Zhao-Qi],
Chang, L.[Liang],
Wang, H.A.[Hong-An],
Automatic Gait Motion Capture with Missing-Marker Fillings,
ICPR14(2507-2512)
IEEE DOI
1412
Cameras
BibRef
Yang, Y.Z.[Ya-Zhou],
Tu, D.[Dan],
Li, G.H.[Guo-Hui],
Gait Recognition Using Flow Histogram Energy Image,
ICPR14(444-449)
IEEE DOI
1412
Computer vision
BibRef
Okada, T.,
Yamazoe, H.,
Mitsugami, I.,
Yagi, Y.,
Preliminary Analysis of Gait Changes That Correspond to Gaze
Directions,
ACPR13(788-792)
IEEE DOI
1408
gait analysis
BibRef
Sengupta, S.,
Halder, U.,
Panda, R.,
Chowdhury, A.S.,
A frequency domain approach to silhouette based gait recognition,
NCVPRIPG13(1-4)
IEEE DOI
1408
Fourier transforms
BibRef
Deepak, N.A.,
Hariharan, R.,
Sinha, U.N.,
Analysing gait sequences using Latent Dirichlet Allocation for
certain human actions,
NCVPRIPG13(1-4)
IEEE DOI
1408
gait analysis
BibRef
Nakazawa, M.,
Mitsugami, I.,
Yamazoe, H.,
Yagi, Y.,
Distinguishing Pedestrians Facing to the Front and the Side by Gait
Observation,
ACPR13(486-490)
IEEE DOI
1408
gait analysis
BibRef
Lombardi, S.[Stephen],
Nishino, K.[Ko],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Two-Point Gait: Decoupling Gait from Body Shape,
ICCV13(1041-1048)
IEEE DOI
1403
Gait Recognition
BibRef
Jeevan, M.,
Jain, N.[Neha],
Hanmandlu, M.,
Chetty, G.[Girija],
Gait recognition based on gait pal and pal entropy image,
ICIP13(4195-4199)
IEEE DOI
1402
Gait Pal and Pal Entropy Image (GPPE);Gait Recognition
BibRef
Yang, C.[Cheng],
Ugbolue, U.[Ukadike],
Carse, B.[Bruce],
Stankovic, V.[Vladimir],
Stankovic, L.[Lina],
Rowe, P.[Philip],
Multiple marker tracking in a single-camera system for gait analysis,
ICIP13(3128-3131)
IEEE DOI
1402
Gait analysis; Marker tracking; bStructural-Similarity
BibRef
Derbel, A.[Ahmed],
Mansouri, N.[Nabila],
Ben Jemaa, Y.[Yousra],
Emile, B.[Bruno],
Treuillet, S.[Sylvie],
Comparative Study between Spatio/Temporal Descriptors for Pedestrians
Recognition by Gait,
ICIAR13(35-42).
Springer DOI
1307
BibRef
Derbel, A.[Ahmed],
Ben Jemaa, Y.[Yousra],
Canals, R.,
Emile, B.[Bruno],
Treuillet, S.[Sylvie],
Ben Hamadou, A.,
Comparative study between color texture and shape descriptors for
multi-camera pedestrians identification,
IPTA12(313-318)
IEEE DOI
1503
cameras
BibRef
Chaubey, H.,
Hanmandlu, M.,
Vasikarla, S.,
Enhanced view invariant gait recognition using feature level fusion,
AIPR14(1-5)
IEEE DOI
1504
gait analysis
BibRef
Kochhar, A.,
Gupta, D.,
Hanmandlu, M.,
Vasikarla, S.,
Novel features for silhouette based gait recognition systems,
AIPR12(1-6)
IEEE DOI
1307
feature extraction
BibRef
Lorenzo, J.O.[Javier Ortells],
Martín-Félez, R.[Raúl],
Cárdenas, R.A.M.[Ramón A. Mollineda],
A Complexity Measure of Gait Perception,
IbPRIA13(492-499).
Springer DOI
1307
BibRef
Jung, D.U.[Da-Un],
Oh, W.G.[Wean Geun],
Choi, J.S.[Jong-Soo],
Model-based gait tracking method:
A review of recent development gesture interaction,
FCV13(250-253).
IEEE DOI
1304
BibRef
Schuldhaus, D.[Dominik],
Kugler, P.[Patrick],
Jensen, U.[Ulf],
Eskofier, B.[Bjoern],
Schlarb, H.[Heiko],
Leible, M.[Magnus],
Classification of surfaces and inclinations during outdoor running
using shoe-mounted inertial sensors,
ICPR12(2258-2261).
WWW Link.
1302
Other sensors. not images.
BibRef
Zhu, Y.Y.[Ying-Ying],
Valmadre, J.[Jack],
Lucey, S.[Simon],
Camera-less articulated trajectory reconstruction,
ICPR12(841-844).
WWW Link.
1302
Given 2D projections of articulated structure
BibRef
Martin-Felez, R.[Raul],
Orteils, J.[Javier],
Mollineda, R.A.[Ramon A.],
Exploring the effects of video length on gait recognition,
ICPR12(3411-3414).
WWW Link.
1302
BibRef
Liu, Y.S.[Yu-Shu],
Zhang, J.P.[Jun-Ping],
Wang, C.[Chen],
Wang, L.[Liang],
Multiple HOG templates for gait recognition,
ICPR12(2930-2933).
WWW Link.
1302
BibRef
Li, Y.[Yanan],
Yin, Y.L.[Yi-Long],
Liu, L.[Lili],
Pang, S.H.[Shao-Hua],
Yu, Q.H.[Qiu-Hong],
Semi-supervised Gait Recognition Based on Self-Training,
AVSS12(288-293).
IEEE DOI
1211
BibRef
Kolawole, A.[Akintola],
Tavakkoli, A.[Alireza],
A Novel Gait Recognition System Based on Hidden Markov Models,
ISVC12(II: 125-134).
Springer DOI
1209
BibRef
Lin, H.W.[Hung-Wei],
Hu, M.C.[Min-Chun],
Wu, J.L.[Ja-Ling],
Gait-Based Action Recognition via Accelerated Minimum Incremental
Coding Length Classifier,
MMMod12(266-276).
Springer DOI
1201
BibRef
Harle, R.[Robert],
Cameron, J.[Jonathan],
Lasenby, J.[Joan],
Foot Contact Detection for Sprint Training,
VECTaR10(297-306).
Springer DOI
1109
BibRef
Zhang, Z.[Zheng],
Seah, H.S.[Hock Soon],
Real-time tracking of unconstrained full-body motion using Niching
Swarm Filtering combined with local optimization,
HAU3D11(23-28).
IEEE DOI
1106
BibRef
Ishikawa, E.[Eri],
Karungaru, S.[Stephen],
Terada, K.[Kenji],
Gait features extraction method using image processing,
FCV11(1-6).
IEEE DOI
1102
BibRef
Watanabe, Y.[Yoshihiro],
Hatanaka, T.[Tetsuo],
Komuro, T.[Takashi],
Ishikawa, M.[Masatoshi],
Human gait estimation using a wearable camera,
WACV11(276-281).
IEEE DOI
1101
BibRef
Kotsia, I.[Irene],
Patras, I.[Ioannis],
Exploring the Similarities of Neighboring Spatiotemporal Points for
Action Pair Matching,
ACCV12(III:624-635).
Springer DOI
1304
BibRef
And:
Support tensor action spotting,
ICIP12(1397-1400).
IEEE DOI
1302
BibRef
Earlier:
Relative Margin Support Tensor Machines for gait and action recognition,
CIVR10(446-453).
DOI Link
1007
See also Support tucker machines.
See also Higher rank Support Tensor Machines for visual recognition.
BibRef
Olivier, A.H.[Anne-Hélène],
Kulpa, R.[Richard],
Pettré, J.[Julien],
Crétual, A.[Armel],
A Velocity-Curvature Space Approach for Walking Motions Analysis,
MIG09(104-115).
Springer DOI
0911
BibRef
Zhang, Y.Y.[Yuan-Yuan],
Yang, N.[Niqing],
Li, W.[Wei],
Wu, X.J.[Xiao-Juan],
Ruan, Q.Q.[Qiu-Qi],
Gait Recognition Using Procrustes Shape Analysis and Shape Context,
ACCV09(III: 256-265).
Springer DOI
0909
BibRef
Tahmoush, D.,
Silvious, J.,
Remote detection of humans and animals,
AIPR09(1-8).
IEEE DOI
0910
BibRef
Ng, H.[Hu],
Tan, W.H.[Wooi-Haw],
Tong, H.L.[Hau-Lee],
Abdullah, J.[Junaidi],
Komiya, R.[Ryoichi],
Extraction and Classification of Human Gait Features,
IVIC09(596-606).
Springer DOI
0911
BibRef
Dadashi, F.,
Araabi, B.N.,
Soltanian-Zadeh, H.,
Gait Recognition Using Wavelet Packet Silhouette Representation and
Transductive Support Vector Machines,
CISP09(1-5).
IEEE DOI
0910
BibRef
Lawson, W.[Wallace],
Duric, Z.[Zoran],
Analyzing Human Gait Using Patterns of Translation and Rotation,
ICIAR09(408-417).
Springer DOI
0907
BibRef
Lawson, W.[Wallace],
Duric, Z.[Zoran],
Wechsler, H.[Harry],
Gait Analysis using Independent Components of image motion,
FG08(1-6).
IEEE DOI
0809
BibRef
Tanaka, H.,
Wu, X.,
Arai, H.,
Koike, H.,
Modeling timing structures in gait image sequences using bottom-up
clustering,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Lee, T.K.M.[Tracey K. M.],
Belkhatir, M.,
Lee, P.A.,
Sanei, S.,
Fronto-normal gait incorporating accurate practical looming
compensation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Wu, C.C.[Chun-Chih],
Medina, J.[Jose],
Zordan, V.B.[Victor B.],
Simple Steps for Simply Stepping,
ISVC08(I: 97-106).
Springer DOI
0812
Animating stepping motion.
BibRef
Lawson, W.[Wallace],
Wechsler, H.[Harry],
Comparative Assessment of ICA Architectures for Gait Recognition,
BTAS07(1-5).
IEEE DOI
0709
BibRef
Romero-Moreno, M.,
Martínez-Trinidad, J.F.[J. Francisco],
Carrasco-Ochoa, J.A.,
Gait Recognition Based on Silhouette, Contour and Classifier Ensembles,
CIARP08(527-534).
Springer DOI
0809
BibRef
Ding, T.[Tao],
A robust identification approach to gait recognition,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Srivastava, S.[Shruti],
Sural, S.[Shamik],
Human Gait Recognition Using Temporal Slices,
PReMI07(592-599).
Springer DOI
0712
BibRef
Memisoglu, A.[Aydemir],
Gudukbay, U.[Ugur],
Ozguc, B.[Bulent],
Motion Control for Realistic Walking Behavior using Inverse Kinematics,
3DTV07(1-4).
IEEE DOI
0705
BibRef
Lee, S.K.[Seung-Kyu],
Liu, Y.X.[Yan-Xi],
Collins, R.T.[Robert T.],
Shape Variation-Based Frieze Pattern for Robust Gait Recognition,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Suk, H.I.[Heung-Il],
Sin, B.K.[Bong-Kee],
HMM-Based Gait Recognition with Human Profiles,
SSPR06(596-603).
Springer DOI
0608
BibRef
Emoto, M.,
Hayashi, A.,
Suematsu, N.,
Iwata, K.,
View Independent Gait Identification Using a Particle Filter,
AVSBS06(74-74).
IEEE DOI
0611
BibRef
Ran, Y.[Yang],
Chellappa, R.[Rama],
Zheng, Q.F.[Qin-Fen],
Finding Gait in Space and Time,
ICPR06(IV: 586-589).
IEEE DOI
0609
BibRef
Chai, Y.M.[Yan-Mei],
Wang, Q.[Qing],
Jia, J.P.[Jing-Ping],
Zhao, R.C.[Rong-Chun],
A Novel Gait Recognition Method Via Fusing Shape and Kinematics
Features,
ISVC06(I: 80-89).
Springer DOI
0611
BibRef
Earlier:
A Novel Human Gait Recognition Method by Segmenting and Extracting the
Region Variance Feature,
ICPR06(IV: 425-428).
IEEE DOI
0609
BibRef
Hu, S.,
Buxton, B.F.,
Using Temporal Coherence for Gait Pose Estimation From a Monocular
Camera View,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Fusco, N.[Nicolas],
Nicolas, G.[Guillaume],
Multon, F.[Franck],
Crétual, A.[Armel],
Simulation of Hemiplegic Subjects' Locomotion,
GW05(236-247).
Springer DOI
0505
BibRef
Das, S.R.,
Wilson, R.C.,
Lazarewicz, M.T.,
Finkel, L.H.,
Gait Recognition by Two-Stage Principal Component Analysis,
FGR06(579-584).
IEEE DOI
0604
BibRef
Zhao, G.Y.[Guo-Ying],
Cui, L.[Li],
Li, H.[Hua],
Combining Wavelet Velocity Moments and Reflective Symmetry for Gait
Recognition,
IWBRS05(205).
Springer DOI
0601
BibRef
Zhao, G.Y.[Guo-Ying],
Chen, R.[Rui],
Liu, G.Y.[Guo-Yi],
Li, H.[Hua],
Amplitude spectrum-based gait recognition,
AFGR04(23-28).
IEEE DOI
0411
BibRef
Chai, Y.M.[Yan-Mei],
Ren, J.C.[Jin-Chang],
Zhao, R.C.[Rong-Chun],
Jia, J.P.[Jing-Ping],
Automatic Gait Recognition using Dynamic Variance Features,
FGR06(475-480).
IEEE DOI
0604
BibRef
Yang, H.D.[Hee-Deok],
Sin, B.K.[Bong-Kee],
Lee, S.W.[Seong-Whan],
Automatic Pedestrian Detection and Tracking for Real-Time Video
Surveillance,
AVBPA03(242-250).
Springer DOI
0310
BibRef
Ye, B.[Bo],
Wen, Y.[Yumei],
A New Gait Recognition Method Based on Body Contour,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Lie, A.S.[Agus Santoso],
Shimomoto, R.[Ryo],
Sakaguchi, S.[Shohei],
Ishimura, T.[Toshiyuki],
Enokida, S.[Shuichi],
Wada, T.[Tomohito],
Ejima, T.[Toshiaki],
Gait Recognition Using Spectral Features of Foot Motion,
AVBPA05(767).
Springer DOI
0509
BibRef
Lie, A.S.[Agus Santoso],
Enokida, S.[Shuichi],
Wada, T.[Tomohito],
Ejima, T.[Toshiaki],
Magnitude and Phase Spectra of Foot Motion for Gait Recognition,
CAIP05(390).
Springer DOI
0509
BibRef
Fei, H.,
Reid, I.D.[Ian D.],
Dynamic Classifier for Non-rigid Human motion analysis,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Roy Chowdhury, A.K.[Amit K.],
A Measure of Deformability of Shapes, with Applications to Human Motion
Analysis,
CVPR05(I: 398-404).
IEEE DOI
0507
BibRef
Cabo, J.M.,
Salgado, L.,
Cabrera, J.,
Adaptive segmentation for gymnastic exercises based on change detection
over multiresolution combined differences,
ICIP04(I: 337-340).
IEEE DOI
0505
BibRef
Buades, J.M.,
Perales, F.J.,
Gonzalez, M.,
Aguiló, A.,
Martinez, P.,
Human Body Analysis with Biomechanics Criteria,
AMDO04(239-248).
Springer DOI
0505
BibRef
Tanawongsuwan, R.[Rawesak],
Bobick, A.[Aaron],
Performance Analysis of Time-Distance Gait Parameters under Different
Speeds,
AVBPA03(715-724).
Springer DOI
0310
BibRef
Calow, R.[Roman],
Michaelis, B.[Bernd],
Al-Hamadi, A.[Ayoub],
Solutions for Model-Based Analysis of Human Gait,
DAGM03(540-547).
Springer DOI
0310
See also New Multi-camera Based Facial Expression Analysis Concept, A.
BibRef
Davis, J.W.[James W.],
Visual Categorization of Children and Adult Walking Styles,
AVBPA01(295).
Springer DOI
0310
BibRef
Davis, J.W.,
Taylor, S.R.,
Analysis and recognition of walking movements,
ICPR02(I: 315-318).
IEEE DOI
0211
BibRef
Tassone, E.,
West, G.A.W.,
Venkatesh, S.,
Temporal PDMs for gait classification,
ICPR02(II: 1065-1068).
IEEE DOI
0211
BibRef
Meyer, D.,
Posl, J.,
Niemann, H.,
Gait Classification with HMMS for Trajectories of
Body Parts Extracted by Mixture Densities,
BMVC98(459-468).
PS File.
BibRef
9800
Denzler, J.[Joachim],
Niemann, H.[Heinrich],
Real-time pedestrian tracking in natural scenes,
CAIP97(42-49).
Springer DOI
9709
BibRef
Meyer, D.,
Denzler, J.[Joachim],
Niemann, H.[Heinrich],
Model Based Extraction of Articulated Objects in
Image Sequences for Gait Analysis,
ICIP97(III: 78-81).
IEEE DOI
PS File.
BibRef
9700
Cheng, J.C., and
Moura, J.,
Tracking Human Walking in Dynamic Scenes,
ICIP97(I: 137-140).
IEEE DOI
BibRef
9700
Geiger, D.,
Liu, T.L.[Tyng-Luh],
Recognizing articulated objects with information theoretic methods,
AFGR96(45-50).
IEEE DOI
9610
BibRef
Qian, R.J., and
Huang, T.S.,
Motion Analysis of Articulated Objects with
Applications to Human Ambulatory Patterns,
DARPA92(549-553).
BibRef
9200
And:
Motion Analysis of Human Ambulatory Patterns,
ICPR92(I:220-223).
IEEE DOI
Motion, Walking.
BibRef
Niyogi, S.A.,
Spatiotemporal junction analysis for motion boundary detection,
ICIP95(III: 468-471).
IEEE DOI
9510
BibRef
Niyogi, S.A.,
Adelson, E.H.,
Analyzing and Recognizing Walking Figures in XYT,
CVPR94(469-474).
IEEE DOI
BibRef
9400
And:
Vismod-223, 1993.
PS File.
BibRef
And:
Analyzing Gait with Spatiotemporal Surfaces,
Vismod-290, 1994.
PS File.
Walking Motion.
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Walking, Gait Recognition, Neural Networks, CNN, Learning .