4.9.8.1 Laser Sensors for Range, Time of Flight

Chapter Contents (Back)
Range Sensor. LIDAR. LADAR. Laser Range Finders. Sensors, Lasers. Depth Sensor. Time of Flight Sensor.
See also Calibration -- Lidar, Laser Scanner, Depth Sensor, Scanner Error Analysis.
See also Single-Photon Imaging, Single Photon. Not really from a scanner:
See also Point Cloud Generation, Point Cloud Synthesis.

Perceptron,
1981.
WWW Link. Vendor, Laser Scanner. Industrial laser Scanners. General non-contact vision and metrology.

3shape,
2000.
WWW Link. Vendor, Range Sensor. Denmark. 3-D scanners and CAD Sortware. Dental models, tools for hearing aid shells, 3d printing.

Faro Technologies,
2001.
WWW Link. Vendor, Laser Scanner. Industrial laser Scanners.

GKS Inspection Services,
Laser Design, Inc. 2007 Laser mensuration systems.
WWW Link. Vendor, Laser Scanner.

Polehemus, Laser Scanner,
2005.
WWW Link. Vendor, Laser Scanner. Also does eye and motion tracking.

3D Digital Corp,
2007.
WWW Link. Vendor, Laser Scanner. Laser scanner systems. Dental models, shoes.

3D Shape GmbH,
2007.
WWW Link. Vendor, Laser Scanner. Face scanner, creation of 3D models.

Acuity Laser Measurement,
2005.
WWW Link. Vendor, Laser Scanner. Laser rangefinders and scanners.

Advanced Simulation Technologies Ltd.,
Advanced SimTech, 2007.
WWW Link. Vendor, Laser Scanner. Vendor, Laser Scan Data. Forensic Analysis. Laser scanning and analysis services, especially accident investigations.

Leica GeoSystems HDS,
2003.
HTML Version. Vendor, Laser Scanner. Several laser scanner products.

Konica Minolta 3-D,
1997.
WWW Link. Vendor, Laser Scanner. Scanners and models.

Neptec,
1990.
WWW Link. Vendor, Laser Scanner. Space based systems (Space Shuttle).

Direct Dimensions,
1995.
HTML Version. Vendor, Laser Scanner. Vendor, 3D Models. Scanners. Architectural models. Object models.

Virtek Vision International Inc.,
2007.
WWW Link. Vendor, Laser Scanner. Scanners. 3-D models. Object models.

Veoldyne LiDAR,
1983.
WWW Link. Vendor, Laser Scanner. 360 degree high frame rate laser sensor. Used in a lot of vehicle programs. Company Primarily involved in acoustics.

NVision, Inc.,
2005.
WWW Link. Vendor, Range Sensor. Vendor, CAD. Laser scanners, including hand held scanner. Reverse engineering and inspection software.

Advanced Seientific Concepts,
1987.
WWW Link. Vendor, Laser Scanner. Small, real-time sensor, small area covered

ISPRS Terrestrial laser scanning and 3D imaging Datasets,
2008.
HTML Version. Dataset, 3-D Data. 3-D datasets for large scale objects. Sanmarina Byzantine church and Golden Buddha.

Jarvis, R.A.,
A Laser Time-of-Flight Range Scanner for Robotic Vision,
PAMI(5), No. 5, September 1983, pp. 505-512. Implementation and results of a laser scanner. BibRef 8309

Mallinson, R.B.[Richard B.],
Laser altimeter and probe height sensor,
US_Patent4,373,805, Feb 15, 1983
WWW Link. BibRef 8302

Bohlander, P.[Peter], Hippler, H.P.[Heinz-Peter],
Apparatus for the determination of the position of a surface,
US_Patent4,453,083, Jun 5, 1984
WWW Link. BibRef 8406

Rioux, M.,
Laser Range Finder Based on Synchronized Scanners,
AppOpt(23), No. 21, November 1984, pp. 3837-3855 BibRef 8411

Rioux, M.[Marc],
Three dimensional imaging device,
US_Patent5,018,854, May 28, 1991
WWW Link. BibRef 9105

Baribeau, R., Rioux, M.,
Influence of Speckle on Laser Range Finders,
AppOpt(30), No. 20, 1991, pp. 2873-2878. BibRef 9100

Carrihill, B.[Brian], Hummel, R.A.[Robert A.],
Experiments with the Intensity Ratio Data Sensor,
CVGIP(32), No. 3, December 1985, pp. 337-358.
Elsevier DOI Depth with a plane of light illumination using the ratio of intensity. BibRef 8512

Lambeth, D.N.[David N.],
Rangefinder device with focused elongated light source,
US_Patent4,494,868, Jan 22, 1985
WWW Link. BibRef 8501

Bastuscheck, C.M., Schwartz, J.T.,
Experimental Implementation of a Ratio Image Depth Sensor,
T3DMP86(1-12). BibRef 8600

Bastuscheck, C.M.,
Techniques for Real-Time Generation of Range Images,
CVPR89(262-268).
IEEE DOI BibRef 8900

Corby, Jr., N.R.[Nelson R.],
Integrated range and luminance camera,
US_Patent4,687,326, Aug 18, 1987
WWW Link. BibRef 8708

Kobayashi, T.[Takao],
Method and apparatus for measuring distance by laser beam,
US_Patent4,729,653, Mar 8, 1988
WWW Link. BibRef 8803

Case, S.K.[Steven K.], Keil, R.E.[Robert E.], Konicek, J.[John],
Laser probe for determining distance,
US_Patent4,733,969, Mar 29, 1988
WWW Link. BibRef 8803

Case, S.K.[Steven K.], Keil, R.E.[Robert E.], Jalkio, J.A.[Jeffrey A.],
Point and line range sensors,
US_Patent4,891,772, Jan 2, 1990
WWW Link. BibRef 9001

Scott, M.W.,
Range Imaging Laser Radar,
US_Patent4,935,616, 1990.
WWW Link. BibRef 9000

Tsikos, C.J.[Constantine J.],
Laser range imaging system based on projective geometry,
US_Patent4,979,815, Dec 25, 1990
WWW Link. BibRef 9012

Saint-Marc, P., Jezouin, J.L., Medioni, G.,
A Versatile PC-Based Range Finding System,
RA(7), No. 2, April 1991, pp. 250-256. BibRef 9104 USC Computer Vision BibRef
Earlier: A2, A1, A3:
Building an Accurate Range Finder with off the Shelf Components,
CVPR88(195-200).
IEEE DOI Computation required with one camera and plane of light. BibRef

Hebert, M.[Martial], Krotkov, E.[Eric],
3D Measurements from Imaging Laser Radars: How Good Are They?,
IVC(10), No. 3, April 1992, pp. 170-178.
Elsevier DOI BibRef 9204
Earlier: IROS91(359-364). Amplitude-modulated continuous-wave laser radars. BibRef

Kaman, C.H.[Charles H.], Ulich, B.L.[Bobby L.], Mayerjak, R.[Robert], Schafer, G.[George],
Imaging lidar system,
US_Patent5,231,401, Jul 27, 1993
WWW Link. Pulsed laser BibRef 9307

Carmer, D.C., and Peterson, L.M.,
Laser Radar in Robotics,
PIEEE(84), 1996, pp. 299-320. BibRef 9600

Jones, P.R.M., Rioux, M.,
Three-Dimensional Surface Anthropometry: Applications to the Human-Body,
OptLas(28), No. 2, 1997, pp. 89-117. 9708
BibRef

Rioux, M.,
Color 3-D Electronic Imaging of the Surface of the Human-Body,
OptLas(28), No. 2, 1997, pp. 119-135. 9708
BibRef

Jelalian, A.V.,
Special Issue on Laser-Radar,
PIEEE(84), No. 2, February 1996, pp. 99-102. BibRef 9602

Osche, G.R., Young, D.S.,
Imaging Laser-Radar in the Near and Far-Infrared,
PIEEE(84), No. 2, February 1996, pp. 103-125. BibRef 9602

Babbitt, W.R.[W. Randall], Bell, J.A.[John A.], Capron, B.A.[Barbara A.], de Groot, P.J.[Peter J.], Hagman, R.L.[Ronald L.], McGarvey, J.A.[John A.], Sherman, W.D.[William D.], Sjoholm, P.F.[Paul F.],
Method and apparatus for measuring distance to a target,
US_Patent5,589,928, Dec 31, 1996
WWW Link. BibRef 9612

Greer, D.R., Fung, I., Shapiro, J.H.,
Maximum-Likelihood Multiresolution Laser-Radar Range Imaging,
IP(6), No. 1, January 1997, pp. 36-46.
IEEE DOI 9703
BibRef

Linney, A.D., Campos, J., Richards, R.,
Noncontact Anthropometry Using Projected Laser Line Distortion: Three-Dimensional Graphic Visualization and Applications,
OptLas(28), No. 2, 1997, pp. 137-155. 9708
BibRef

Pargas, R.P., Staples, N.J., Davis, J.S.,
Automatic-Measurement Extraction for Apparel from a Three-Dimensional Body Scan,
OptLas(28), No. 2, 1997, pp. 157-172. 9708
BibRef

Ackermann, F.[Friedrich],
Airborne laser scanning: Present status and future expectations,
PandRS(54), No. 2-3, July 1999, pp. 64-67. Issue Overview. BibRef 9907

Wehr, A.[Aloysius], Lohr, U.[Uwe],
Airborne laser scanning: An introduction and overview,
PandRS(54), No. 2-3, July 1999, pp. 68-82. BibRef 9907

Baltsavias, E.P.[Emmanuel P.],
A comparison between photogrammetry and laser scanning,
PandRS(54), No. 2-3, July 1999, pp. 83-94. BibRef 9907

Albamont, J.[James], Goshtasby, A.[Ardeshir],
A range scanner with a virtual laser,
IVC(21), No. 3, March 2003, pp. 271-284.
Elsevier DOI 0301
BibRef

Koh, I.S.[Il-Suek], Wang, F.N.[Fei-Nian], Sarabandi, K.,
Estimation of coherent field attenuation through dense foliage including multiple scattering,
GeoRS(41), No. 5, May 2003, pp. 1132-1135.
IEEE Abstract. 0307
BibRef

Zagorchev, L.[Lyubomir], Goshtasby, A.[Ardeshir],
A paintbrush laser range scanner,
CVIU(101), No. 2, February 2005, pp. 65-86.
Elsevier DOI 0512
BibRef

Goren, D.P.[David P.], Katz, J.[Joseph], Bergstein, L.[Leonard],
Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions,
JASP(2005), No. 10, 2005, pp. 1617-1623.
WWW Link. 0603
BibRef

Wallace, A.M., Sung, R.C.W., Buller, G.S., Harkins, R.D., Warburton, R.E., Lamb, R.A.,
Detecting and characterising returns in a pulsed ladar system,
VISP(153), No. 2, April 2006, pp. 160-172.
DOI Link 0604
BibRef

Medina, A.[Antonio], Gayá, F.[Francisco], del Pozo, F.[Francisco],
Compact laser radar and three-dimensional camera,
JOSA-A(23), No. 4, April 2006, pp. 800-805.
WWW Link. 0610
BibRef

Jutzi, B.[Boris], Stilla, U.[Uwe],
Range determination with waveform recording laser systems using a Wiener Filter,
PandRS(61), No. 2, November 2006, pp. 95-107.
Elsevier DOI 0703
Award, ISPRS. Laser scanning, Waveform analysis, Signal processing, Feature extraction BibRef

Hernandez-Marin, S.[Sergio], Wallace, A.M.[Andrew M.], Gibson, G.J.[Gavin J.],
Bayesian Analysis of Lidar Signals with Multiple Returns,
PAMI(29), No. 12, December 2007, pp. 2170-2180.
IEEE DOI 0711
BibRef
Earlier:
Spatial modelling of multi-layered LiDAR images using reversible jump MCMC,
BMVC07(xx-yy).
PDF File. 0709
BibRef
Earlier:
Creating Multi-layered 3D Images Using Reversible Jump MCMC Algorithms,
ISVC06(II: 405-416).
Springer DOI 0611
Multiple returns from laser scanner to get multiple layers. Markov chain Monte Carlo. BibRef

Hernandez-Marin, S.[Sergio], Wallace, A.M.[Andrew M.], Gibson, G.J.[Gavin J.],
Multilayered 3D LiDAR Image Construction Using Spatial Models in a Bayesian Framework,
PAMI(30), No. 6, June 2008, pp. 1028-1040.
IEEE DOI 0804
BibRef

Froehlich, C.[Christoph], Mettenleiter, M.[Markus], Zebandt, M.[Martin],
Laser measurement system,
US_Patent7,190,465, Mar 13, 2007
WWW Link. BibRef 0703

Kirchhof, M.[Michael], Jutzi, B.[Boris], Stilla, U.[Uwe],
Iterative processing of laser scanning data by full waveform analysis,
PandRS(63), No. 1, January 2008, pp. 99-114.
Elsevier DOI 0711
Laser scanning, Waveform analysis, Feature extraction BibRef

Banno, A.[Atsuhiko], Masuda, T., Oishi, T., Ikeuchi, K.[Katsushi],
Flying Laser Range Sensor for Large-Scale Site-Modeling and Its Applications in Bayon Digital Archival Project,
IJCV(78), No. 2-3, July 2008, pp. 207-222.
Springer DOI 0803
BibRef

Banno, A.[Atsuhiko], Ikeuchi, K.[Katsushi],
Determination of motion parameters of a moving range sensor approximated by polynomials for rectification of distorted 3D data,
MVA(22), No. 6, November 2011, pp. 889-897.
WWW Link. 1110
BibRef

Banno, A.[Atsuhiko], Ikeuchi, K.[Katsushi],
Shape Rectification of 3D Data Obtained by a Moving Range Sensor by using Image Sequences,
DACO08(13-32). 0812
BibRef
Earlier:
Shape Recovery of 3D Data Obtained from a Moving Range Sensor by Using Image Sequences,
ICCV05(I: 792-799).
IEEE DOI 0510
BibRef

Banno, A.[Atsuhiko], Hasegawa, K.[Kazuhide], Ikeuchi, K.[Katsushi],
Recovery of Distorted Shapes Obtained from the Flying Laser Range Sensor for Large-Scale Cultural Heritages,
CREST05(50-57).
WWW Link. 0505
BibRef

Masuda, T.[Tomohito], Hirota, Y.[Yuichiro], Nishino, K.[Ko], Ikeuchi, K.[Katsushi],
Distortion Correction of Range Data Obtained from Floating Laser Range Sensor using Parameterized Deformation Registration,
CREST05(73-78).
WWW Link. 0505
BibRef

Hasegawa, K.[Kazuhide], Hirota, Y.[Yuichiro], Ogawara, K.[Koichi], Kurazume, R.[Ryo], Ikeuchi, K.[Katsuhsi],
Flying Laser Range Sensor: A Novel Aerial Sensing System for Large-scale Heritage,
CREST05(28-33).
WWW Link. 0505
BibRef

Shao, Y.C.[Yi-Chen], Chen, L.C.[Liang-Chien],
Automated Searching of Ground Points from Airborne Lidar Data Using a Climbing and Sliding Method,
PhEngRS(74), No. 5, May 2008, pp. 625-636.
WWW Link. 0804
A new slope-based filtering method, climbing-and-sliding, to select ground points from lidar point clouds for terrain modeling. BibRef

Ono, S.[Shintaro], Matsui, K.[Ken], Ikeuchi, K.[Katsushi],
The Climbing Sensor: 3D Modeling of Narrow Areas by Using Space-Time Analysis,
DACO08(33-48). 0812
BibRef

Mallet, C.[Clement], Bretar, F.[Frederic],
Full-waveform topographic lidar: State-of-the-art,
PandRS(64), No. 1, January 2009, pp. 1-16.
Elsevier DOI 0804
Lidar systems, Full-waveform data, Literature survey, Waveform analysis, Signal processing BibRef

Wang, Y.F.[Yan-Fei], Zhang, J.Z.[Jian-Zhong], Roncat, A.[Andreas], Künzer, C.[Claudia], Wagner, W.[Wolfgang],
Regularizing method for the determination of the backscatter cross section in lidar data,
JOSA-A(26), No. 5, May 2009, pp. 1071-1079.
WWW Link. 0905
BibRef

Roncat, A.[Andreas], Bergauer, G.[Gunther], Pfeifer, N.[Norbert],
B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,
PandRS(66), No. 4, July 2011, pp. 418-428.
Elsevier DOI 1107
BibRef
Earlier:
Retrieval of the Backscatter Cross-Section in Full-Waveform Lidar Data using B-Splines,
PCVIA10(B:137).
PDF File. 1009
Laser scanning, Full-waveform, Deconvolution, Linear estimation BibRef

Wagner, W., Roncat, A., Melzer, T., Ullrich, A.,
Waveform Analysis Techniques in Airborne Laser Scanning,
Laser07(413).
PDF File. 0709
Keynote Talk BibRef

Yao, W., Stilla, U.,
Mutual Enhancement of Weak Laser Pulses for Point Cloud Enrichment Based on Full-Waveform Analysis,
GeoRS(48), No. 9, September 2010, pp. 3571-3579.
IEEE DOI 1008
BibRef

Bohme, M.[Martin], Haker, M.[Martin], Martinetz, T.[Thomas], Barth, E.[Erhardt],
Shading constraint improves accuracy of time-of-flight measurements,
CVIU(114), No. 12, December 2010, pp. 1329-1335.
Elsevier DOI 1011
BibRef
Earlier: TOF-CV08(1-6).
IEEE DOI 0806
Time-of-flight camera, Range map, Range sensor, Shading constraint; Shape from shading, Probabilistic image model BibRef

Kolb, A.[Andreas], Barth, E.[Erhardt], Koch, R.[Reinhard],
ToF-sensors: New dimensions for realism and interactivity,
TOF-CV08(1-6).
IEEE DOI 0806
BibRef

Glastre, W.[Wilfried], Jacquin, O.[Olivier], Hugon, O.[Olivier], de Chatellus, H.G.[Hugues Guillet], Lacot, E.[Eric],
Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors,
JOSA-A(29), No. 8, August 2012, pp. 1639-1647.
WWW Link. 1208
BibRef

Guilleme, P.[Pierre], Lacot, E.[Eric], Jacquin, O.[Olivier], Glastre, W.[Wilfried], Hugon, O.[Olivier], de Chatellus, H.G.[Hugues Guillet],
Laser optical feedback imaging controlled by an electronic feedback loop,
JOSA-A(30), No. 11, November 2013, pp. 2205-2215.
DOI Link 1311
Laser sensors, Interferometric imaging BibRef

Ussyshkin, V., Theriault, L.,
Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping,
RS(3), No. 3, March 2011, pp. 416-434.
DOI Link 1203
BibRef

Ussyshkin, V.[Valerie],
Enhanced discrete return technology for 3D vegetation mapping,
SPIE(Newsroom), June 13, 2011
DOI Link 1106
New airborne light detection and ranging sensors may bridge the niche applications of discrete return and full waveform technologies. Multiple discrete returns for forest mapping. BibRef

Mao, X., Inoue, D., Kato, S., Kagami, M.,
Amplitude-Modulated Laser Radar for Range and Speed Measurement in Car Applications,
ITS(13), No. 1, March 2012, pp. 408-413.
IEEE DOI 1203
BibRef

Mao, X., Inoue, D., Matsubara, H., Kagami, M.,
Demonstration of In-Car Doppler Laser Radar at 1.55 mu-m for Range and Speed Measurement,
ITS(14), No. 2, 2013, pp. 599-607.
IEEE DOI 1307
Doppler effect, Laser radar, Amplitude modulation BibRef

Adams, T., Beets, P., Parrish, C.,
Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape,
RS(4), No. 3, March 2012, pp. 682-702;.
DOI Link 1204
BibRef

Dal Mutto, C.[Carlo], Zanuttigh, P.[Pietro], Cortelazzo, G.M.[Guido M.],
Time-of-Flight Cameras and Microsoft Kinect™,
Springer2012, ISBN: 978-1-4614-3806-9
WWW Link.

1205
BibRef

Zhang, Z.Y.[Zheng-You],
Microsoft Kinect Sensor and Its Effect,
MultMedMag(19), No. 1, January-March 2012, pp. 4-10.
IEEE DOI 1202
Award, Best Department Article, 2015. BibRef

Piatti, D., Rinaudo, F.,
SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras: Tests and Comparison,
RS(4), No. 4, April 2012, pp. 1069-1089.
DOI Link 1202
BibRef

Osorio, M.F., Salazar, A., Prieto, F., Boulanger, P., Figueroa, P.,
Three-dimensional digitization of highly reflective and transparent objects using multi-wavelength range sensing,
MVA(23), No. 4, July 2012, pp. 761-772.
WWW Link. 1206
BibRef

Schwartz, S.[Shimon], Wong, A.[Alexander], Clausi, D.A.[David A.],
Saliency-guided compressive sensing approach to efficient laser range measurement,
JVCIR(24), No. 2, February 2013, pp. 160-170.
Elsevier DOI 1302
BibRef
Earlier:
Multi-Scale Saliency-Guided Compressive Sensing Approach to Efficient Robotic Laser Range Measurements,
CRV12(1-8).
IEEE DOI 1207
Range measurement, Range data acquisition, Compressed sampling; Compressive sensing, 3-D data reconstruction, Laser measurements; Saliency, Sparse measurements model BibRef

Duong, H.V., Lefsky, M.A., Ramond, T., Weimer, C.,
The Electronically Steerable Flash Lidar: A Full Waveform Scanning System for Topographic and Ecosystem Structure Applications,
GeoRS(50), No. 11, November 2012, pp. 4809-4820.
IEEE DOI 1210
BibRef

Hansard, M., Lee, S., Choi, O., Horaud, R.,
Time-of-Flight Cameras: Principles, Methods and Applications,
Springer2013. ISBN: 978-1-4471-4657-5


WWW Link. 1211
Characterization, calibration, registration with stereo. BibRef

Lapchuk, A.[Anatoliy], Kryuchyn, A.[Andriy], Petrov, V.[Vyacheslav], Yurlov, V.[Victor], Klymenko, V.[Volodymyr],
Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements,
JOSA-A(30), No. 1, January 2013, pp. 22-31.
WWW Link. 1211
BibRef

Lapchuk, A., Kryuchyn, A., Petrov, V., Shyhovets, O.V., Pashkevich, G.A., Bogdan, O.V., Kononov, A., Klymenko, A.,
Optical schemes for speckle suppression by Barker code diffractive optical elements,
JOSA-A(30), No. 9, September 2013, pp. 1760-1767.
WWW Link. 1309
BibRef

Remondino, F.[Fabio], Stoppa, D.[David], (Eds.)
TOF Range-Imaging Cameras,
Springer2013. ISBN 978-3-642-27522-7.


Springer DOI 1304
BibRef

Traïche, M.[Mohammed], Kedadra, A.[Abdelkrim],
A dual lidar system for environmental studies,
SPIE(Newsroom), June 21, 2013
DOI Link 1308
A remote sensing system will help detect forest fires in northern Algeria, and monitor sand aerosols from the Sahara and cement plants in the Algiers metropolitan area. BibRef

Wu, S.H.[Song-Hua], Song, X.Q.[Xiao-Quan], Liu, B.Y.[Bing-Yi],
Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations,
RS(5), No. 11, 2013, pp. 6079-6095.
DOI Link 1312
BibRef

Lange, D., Tiana-Alsina, J., Saeed, U., Tomas, S., Rocadenbosch, F.,
Atmospheric Boundary Layer Height Monitoring Using a Kalman Filter and Backscatter Lidar Returns,
GeoRS(52), No. 8, August 2014, pp. 4717-4728.
IEEE DOI 1403
Aerosols BibRef

Lange, D., Rocadenbosch, F., Tiana-Alsina, J., Frasier, S.,
Atmospheric Boundary Layer Height Estimation Using a Kalman Filter and a Frequency-Modulated Continuous-Wave Radar,
GeoRS(53), No. 6, June 2015, pp. 3338-3349.
IEEE DOI 1503
atmospheric boundary layer BibRef

Apartsin, A., Cooper, L.N., Intrator, N.,
Time-of-Flight Estimation in the Presence of Outliers Part I: Single Echo Processing,
GeoRS(52), No. 6, June 2014, pp. 3382-3392.
IEEE DOI 1403
Bandwidth BibRef

Apartsin, A., Cooper, L.N., Intrator, N.,
Time-of-Flight Estimation in the Presence of Outliers. Part II: Multiple Echo Processing,
GeoRS(52), No. 7, July 2014, pp. 3843-3850.
IEEE DOI 1403
Correlation BibRef

Guaitiao, C.O., Hafner, M., Sobarzo, S.K., Riepl, S., Torres, S.N., Pedreros, F., Arias, L.,
Two-Color Satellite Laser Ranging Measurements at 10 Hz and 100 Hz at TIGO,
GeoRS(52), No. 8, August 2014, pp. 4707-4716.
IEEE DOI 1403
Crystals BibRef

Langmann, B., Weihs, W., Hartmann, K., Loffeld, O.,
Development and Investigation of a Long-Range Time-of-Flight and Color Imaging System,
Cyber(44), No. 8, August 2014, pp. 1372-1382.
IEEE DOI 1407
Cameras BibRef

Conte, G.[Gianpaolo], Rudol, P.[Piotr], Doherty, P.[Patrick],
Evaluation of a Light-weight Lidar and a Photogrammetric System for Unmanned Airborne Mapping Applications,
PFG(2014), No. 4, 2014, pp. 287-298.
DOI Link 1410
BibRef

Droeschel, D.[David], Holz, D.[Dirk], Behnke, S.[Sven],
Omnidirectional Perception for Lightweight MAVs using a Continuously Rotating 3D Laser,
PFG(2014), No. 5, 2014, pp. 451-464.
DOI Link 1411
BibRef

Droeschel, D., Schreiber, M., Behnke, S.,
Omnidirectional Perception for Lightweight UAVS Using a Continuously Rotating 3D Laser Scanner,
UAV-g13(107-112).
DOI Link 1311
BibRef

Castorena, J.[Juan], Creusere, C.D.[Charles D.],
Sampling of Time-Resolved Full-Waveform LIDAR Signals at Sub-Nyquist Rates,
GeoRS(53), No. 7, July 2015, pp. 3791-3802.
IEEE DOI 1503
BibRef
Earlier:
Random impulsive scan for lidar sampling,
ICIP12(365-368).
IEEE DOI 1302
Approximation methods BibRef

Eixmann, R., Gerding, M., Hoffner, J., Kopp, M.,
Lidars With Narrow FOV for Daylight Measurements,
GeoRS(53), No. 8, August 2015, pp. 4548-4553.
IEEE DOI 1506
atmospheric optics BibRef

Al-Temeemy, A.A.[Ali A.], Spencer, J.W.[Joseph W.],
Invariant chromatic descriptor for LADAR data processing,
MVA(26), No. 5, July 2015, pp. 649-660.
WWW Link. 1506
BibRef

Wang, C., Tseng, Y., Wang, C.,
A Wavelet-Based Echo Detector for Waveform LiDAR Data,
GeoRS(54), No. 2, February 2016, pp. 757-769.
IEEE DOI 1601
Detectors BibRef

Azadbakht, M.[Mohsen], Fraser, C.S.[Clive S.], Khoshelham, K.[Kourosh],
A Sparsity-Based Regularization Approach for Deconvolution of Full-Waveform Airborne Lidar Data,
RS(8), No. 8, 2016, pp. 648.
DOI Link 1609
BibRef

Bhandari, A., Raskar, R.,
Signal Processing for Time-of-Flight Imaging Sensors: An introduction to inverse problems in computational 3-D imaging,
SPMag(33), No. 5, September 2016, pp. 45-58.
IEEE DOI 1610
frequency-domain analysis BibRef

Gong, W.L.[Wen-Lin], Yu, H.[Hong], Zhao, C.Q.[Cheng-Qiang], Bo, Z.W.[Zun-Wang], Chen, M.L.[Ming-Liang], Xu, W.D.[Wen-Dong],
Improving the Imaging Quality of Ghost Imaging Lidar via Sparsity Constraint by Time-Resolved Technique,
RS(8), No. 12, 2016, pp. 991.
DOI Link 1612
obtain both the range information and spatial distribution of a remote target with the use of the measurements below the Nyquist limit BibRef

Church, P.[Philip], Matheson, J.[Justin], Roy, G.[Gilles],
Steerable LiDAR platform based on a 3D laser scanner using prisms,
SPIE(Newsroom), January 19, 2017
DOI Link 1703
Optical components move a high-resolution laser-scan pattern contained in a small field of view across a larger area, eliminating the need for heavy steering mechanisms on platforms such as helicopters. BibRef

Adam, A.[Amit], Dann, C.[Christoph], Yair, O.[Omer], Mazor, S.[Shai], Nowozin, S.[Sebastian],
Bayesian Time-of-Flight for Realtime Shape, Illumination and Albedo,
PAMI(39), No. 5, May 2017, pp. 851-864.
IEEE DOI 1704
Bayes methods. BibRef

Schober, M., Adam, A.[Amit], Yair, O.[Omer], Mazor, S.[Shai], Nowozin, S.[Sebastian],
Dynamic Time-of-Flight,
CVPR17(170-179)
IEEE DOI 1711
Bayes methods, Cameras, Computational modeling, Hidden Markov models, Mathematical model, Robustness BibRef

Shen, X.[Xiang], Li, Q.Q.[Qing-Quan], Wu, G.F.[Guo-Feng], Zhu, J.S.[Jia-Song],
Decomposition of LiDAR waveforms by B-spline-based modeling,
PandRS(128), No. 1, 2017, pp. 182-191.
Elsevier DOI 1706
Full waveform BibRef

Zhou, T.[Tan], Popescu, S.C.[Sorin C.], Krause, K.[Keith], Sheridan, R.D.[Ryan D.], Putman, E.[Eric],
Gold: A novel deconvolution algorithm with optimization for waveform LiDAR processing,
PandRS(129), No. 1, 2017, pp. 131-150.
Elsevier DOI 1706
Waveform LiDAR BibRef

Mountrakis, G.[Giorgos], Li, Y.G.[Yu-Guang],
A linearly approximated iterative Gaussian decomposition method for waveform LiDAR processing,
PandRS(129), No. 1, 2017, pp. 200-211.
Elsevier DOI 1706
Full-waveform BibRef

Eldada, L.[Louay],
LiDAR for Autonomous Vehicles: The future of 3D Sensing and Perception,
SPIE(Newsroom), May 2, 2017
DOI Link 1706
Survey of techniques. BibRef

Riquelme, A.J.[Adrián J.], Ferrer, B.[Belén], Mas, D.[David],
Use of High-Quality and Common Commercial Mirrors for Scanning Close-Range Surfaces Using 3D Laser Scanners: A Laboratory Experiment,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link 1712
BibRef

Wang, C.L.[Cheng-Long], Mei, X.D.[Xiao-Dong], Pan, L.[Long], Wang, P.W.[Peng-Wei], Li, W.[Wang], Gao, X.[Xin], Bo, Z.W.[Zun-Wang], Chen, M.L.[Ming-Liang], Gong, W.L.[Wen-Lin], Han, S.S.[Shen-Sheng],
Airborne Near Infrared Three-Dimensional Ghost Imaging LiDAR via Sparsity Constraint,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Zhou, T.[Tan], Popescu, S.[Sorin], Malambo, L.[Lonesome], Zhao, K.G.[Kai-Guang], Krause, K.[Keith],
From LiDAR Waveforms to Hyper Point Clouds: A Novel Data Product to Characterize Vegetation Structure,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Song, S.[Shalei], Wang, B.[Binhui], Gong, W.[Wei], Chen, Z.W.[Zhen-Wei], Lin, X.[Xin], Sun, J.[Jia], Shi, S.[Shuo],
A new waveform decomposition method for multispectral LiDAR,
PandRS(149), 2019, pp. 40-49.
Elsevier DOI 1903
Full waveform, Multispectral LiDAR, Gaussian decomposition, Parameters extraction BibRef

Keyser, C.K., Martin, R.K., Nguyen, P.K., Adams, A.M.,
Single-Pulse Mueller Matrix LiDAR Polarimeter: Modeling and Demonstration,
GeoRS(57), No. 6, June 2019, pp. 3296-3307.
IEEE DOI 1906
Laser radar, Receivers, Detectors, Measurement by laser beam, Electrooptic modulators, Optical transmitters, Laser beams, target detection BibRef

Chen, B.[Bowen], Shi, S.[Shuo], Gong, W.[Wei], Sun, J.[Jia], Chen, B.[Biwu], Du, L.[Lin], Yang, J.[Jian], Guo, K.[Kuanghui], Zhao, X.[Xingmin],
True-Color Three-Dimensional Imaging and Target Classification BASED on Hyperspectral LiDAR,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Greeley, A.P., Neumann, T.A., Kurtz, N.T., Markus, T., Martino, A.J.,
Characterizing the System Impulse Response Function From Photon-Counting LiDAR Data,
GeoRS(57), No. 9, September 2019, pp. 6542-6551.
IEEE DOI 1909
Photonics, Measurement by laser beam, Shape, Histograms, Surface emitting lasers, Rough surfaces, Surface roughness, photoncounting BibRef

Roberts, K.C.[Kevin C.], Lindsay, J.B.[John B.], Berg, A.A.[Aaron A.],
An Analysis of Ground-Point Classifiers for Terrestrial LiDAR,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Nan, Y.M.[Ya-Ming], Feng, Z.H.[Zhi-Hui], Liu, E.[Enhai], Li, B.C.[Bin-Cheng],
Iterative Pointing Angle Calibration Method for the Spaceborne Photon-Counting Laser Altimeter Based on Small-Range Terrain Matching,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Zhou, T.[Tan], Popescu, S.[Sorin],
waveformlidar: An R Package for Waveform LiDAR Processing and Analysis,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
Code, LIDAR Processing. BibRef

Alsolami, I., Heidrich, W.,
Imaging With SPADs and DMDs: Seeing Through Diffraction-Photons,
IP(29), No. , 2020, pp. 1440-1449.
IEEE DOI 1911
Photonics, Lighting, Imaging, Mirrors, Spatial resolution, Logic gates, Time-of-flight, SPAD, DMD, computational imaging BibRef

Hofer, L.R., Jones, L.W., Goedert, J.L., Dragone, R.V.,
Hermite-Gaussian mode detection via convolution neural networks,
JOSA-A(36), No. 6, June 2019, pp. 936-943.
DOI Link 1912
Diode lasers, Free space optics, Laser beams, Optical networks, Stochastic gradient descent, Tunable diode lasers BibRef

Alsadik, B.[Bashar],
Ideal Angular Orientation of Selected 64-Channel Multi Beam Lidars for Mobile Mapping Systems,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Noraky, J., Sze, V.,
Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging,
CirSysVideo(30), No. 6, June 2020, pp. 1524-1534.
IEEE DOI 2006
BibRef
Earlier:
Depth Estimation of Non-Rigid Objects for Time-Of-Flight Imaging,
ICIP18(2925-2929)
IEEE DOI 1809
BibRef
Earlier:
Low power depth estimation for time-of-flight imaging,
ICIP17(2114-2118)
IEEE DOI 1803
Cameras, Optical imaging, Optical sensors, Robot sensing systems, Estimation, Time-of-flight camera, RGB-D. Estimation, Robot sensing systems, Approximation algorithms, 3D motion estimation. augmented reality, image colour analysis, image sensors, low-power electronics, robots, battery life, time-of-flight camera BibRef

Noraky, J.,
Algorithms and Systems for Low Power Time-of-Flight Imaging,
ICIP19(3023-3024)
IEEE DOI 1910
BibRef

Chen, Y., Ren, J., Cheng, X., Qian, K., Wang, L., Gu, J.,
Very Power Efficient Neural Time-of-Flight,
WACV20(2246-2255)
IEEE DOI 2006
Cameras, Lighting, Pipelines, Noise measurement, Robot sensing systems, Signal to noise ratio BibRef

Sterenczak, K.[Krzysztof], Laurin, G.V.[Gaia Vaglio], Chirici, G.[Gherardo], Coomes, D.A.[David A.], Dalponte, M.[Michele], Latifi, H.[Hooman], Puletti, N.[Nicola],
Global Airborne Laser Scanning Data Providers Database (GlobALS): A New Tool for Monitoring Ecosystems and Biodiversity,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Li, Y., Ibanez-Guzman, J.,
Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems,
SPMag(37), No. 4, July 2020, pp. 50-61.
IEEE DOI 2007
Laser radar, Measurement by laser beam, Vertical cavity surface emitting lasers, Laser beams, Autonomous vehicles BibRef

Rueda-Chacon, H., Florez-Ospina, J.F., Lau, D.L., Arce, G.R.,
Snapshot Compressive ToF+Spectral Imaging via Optimized Color-Coded Apertures,
PAMI(42), No. 10, October 2020, pp. 2346-2360.
IEEE DOI 2009
Apertures, Cameras, Lenses, Image coding, Optical imaging, Compressive spectral imaging, MS+D BibRef

Nguyen, X.T., Kim, H., Lee, H.J.,
An Efficient Sampling Algorithm With a K-NN Expanding Operator for Depth Data Acquisition in a LiDAR System,
CirSysVideo(30), No. 12, December 2020, pp. 4700-4714.
IEEE DOI 2012
Compressive and non-uniform sampling, compressive sensing, depth data acquisition, light detection and ranging (LiDAR), sparse representation BibRef

Yan, S.Y.[Shi-Yu], Yang, G.H.[Guo-Hui], Li, Q.Y.[Qing-Yan], Zhang, B.[Bin], Wang, Y.[Yu], Zhang, Y.[Yu], Wang, C.H.[Chun-Hui],
Distance-Intensity Image Strategy for Pulsed LiDAR Based on the Double-Scale Intensity-Weighted Centroid Algorithm,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Tian, B.[Bokun], Zhang, X.L.[Xiao-Ling], Li, L.[Liang], Pu, L.[Ling], Pu, L.M.[Li-Ming], Shi, J.[Jun], Wei, S.J.[Shun-Jun],
Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Kim, G.Z.[Gun-Zung], Ashraf, I.[Imran], Eom, J.[Jeongsook], Park, Y.[Yongwan],
Concurrent Firing Light Detection and Ranging System for Autonomous Vehicles,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
Lidar with 128 channels. BibRef

Li, F.Q.[Feng-Qiang], Willomitzer, F.[Florian], Balaji, M.M.[Muralidhar Madabhushi], Rangarajan, P.[Prasanna], Cossairt, O.[Oliver],
Exploiting Wavelength Diversity for High Resolution Time-of-Flight 3D Imaging,
PAMI(43), No. 7, July 2021, pp. 2193-2205.
IEEE DOI 2106
Sensors, Optical interferometry, Image resolution, Frequency measurement, Wavelength measurement, optical interferometry BibRef

Zhao, Y.Y.[Yong-Yi], Raghuram, A.[Ankit], Kim, H.K.[Hyun K.], Hielscher, A.H.[Andreas H.], Robinson, J.T.[Jacob T.], Veeraraghavan, A.[Ashok],
High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography,
PAMI(43), No. 7, July 2021, pp. 2206-2219.
IEEE DOI 2106
US Department of Transportation, Imaging, Photonics, Spatial resolution, Scattering, Detectors, Optical imaging, fluorescence imaging BibRef

Cremons, D.R.[Daniel R.], Sun, X.L.[Xiao-Li], Abshire, J.B.[James B.], Mazarico, E.[Erwan],
Small PN-Code Lidar for Asteroid and Comet Missions: Receiver Processing and Performance Simulations,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Chen, P.[Peng], Jamet, C.[Cédric], Mao, Z.H.[Zhi-Hua], Pan, D.[Delu],
OLE: A Novel Oceanic Lidar Emulator,
GeoRS(59), No. 11, November 2021, pp. 9730-9744.
IEEE DOI 2111
Laser radar, Scattering, Photonics, Receivers, Mathematical model, Analytical models, Indexes, Light detection and ranging (lidar), stratified water BibRef

Liu, C.[Chang], Xu, L.J.[Li-Jun], Si, L.[Lin], Li, X.L.[Xiao-Lu], Li, D.[Duan], Huang, J.B.[Jian-Bin], He, Y.T.[Yun-Tao],
A Robust Deconvolution Method of Airborne LiDAR Waveforms for Dense Point Clouds Generation in Forest,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI 2112
Deconvolution, Laser radar, Forestry, Lasers, Vegetation, Splines (mathematics), full waveform light detection and ranging (LiDAR) BibRef

Qian, L.Y.[Li-Yong], Wu, D.C.[De-Cheng], Liu, D.[Dong], Song, S.L.[Sha-Lei], Shi, S.[Shuo], Gong, W.[Wei], Wang, L.[Le],
Parameter Simulation and Design of an Airborne Hyperspectral Imaging LiDAR System,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Yan, S.Y.[Shi-Yu], Yang, G.H.[Guo-Hui], Li, Q.Y.[Qing-Yan], Wang, Y.[Yue], Wang, C.H.[Chun-Hui],
Research of Distance-Intensity Imaging Algorithm for Pulsed LiDAR Based on Pulse Width Correction,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Kim, G.[Gunzung], Eom, J.[Jeongsook], Park, Y.[Yongwan],
Alien Pulse Rejection in Concurrent Firing LIDAR,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Vacek, P.[Patrik], Jašek, O.[Otakar], Zimmermann, K.[Karel], Svoboda, T.[Tomáš],
Learning to Predict Lidar Intensities,
ITS(23), No. 4, April 2022, pp. 3556-3564.
IEEE DOI 2204
Simulate LiDAR data. Laser radar, Cameras, Sensors, Games, Computational modeling, Automobiles, Robotics, simulation, sensor development, intelligent transportation systems BibRef

Zhang, Z.H.[Zhen-Hua], Chen, P.[Peng], Mao, Z.H.[Zhi-Hua],
SOLS: An Open-Source Spaceborne Oceanic Lidar Simulator,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Hansen, J.N.[Johannes N.], Hancock, S.[Steven], Prade, L.[Ludwig], Bonner, G.M.[Gerald M.], Chen, H.[Haochang], Davenport, I.[Ian], Jones, B.E.[Brynmor E.], Purslow, M.[Matthew],
Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System through the Use of Diode Lasers,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Xue, J.[Jiyu], Cao, Y.[Yunhua], Qu, T.[Tan], Wu, Z.[Zhensen], Li, Y.H.[Yan-Hui], Zhang, G.[Geng], Yang, K.[Kai],
Inverse Synthetic Aperture LiDAR Imaging of Rough Targets under Small Rotation Angles,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Tan, C.S.[Chang-Sheng], Kong, W.[Wei], Huang, G.[Genghua], Hou, J.[Jia], Jia, S.L.[Shao-Lei], Chen, T.[Tao], Shu, R.[Rong],
Design and Demonstration of a Novel Long-Range Photon-Counting 3D Imaging LiDAR with 32X32 Transceivers,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Yan, Z.Q.[Zhi-Qiang], Wang, H.Y.[Hong-Yuan], Liu, X.[Xiang], Ning, Q.H.[Qian-Hao], Lu, Y.[Yinxi],
Physics-Based TOF Imaging Simulation for Space Targets Based on Improved Path Tracing,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Ning, Q.[Qianhao], Wang, H.Y.[Hong-Yuan], Yan, Z.Q.[Zhi-Qiang], Liu, X.[Xiang], Lu, Y.[Yinxi],
Space-Based THz Radar Fly-Around Imaging Simulation for Space Targets Based on Improved Path Tracing,
RS(15), No. 16, 2023, pp. 4010.
DOI Link 2309
BibRef

Roriz, R.[Ricardo], Cabral, J.[Jorge], Gomes, T.[Tiago],
Automotive LiDAR Technology: A Survey,
ITS(23), No. 7, July 2022, pp. 6282-6297.
IEEE DOI 2207
Laser radar, Sensors, Automotive engineering, Autonomous vehicles, Automobiles, Wavelength measurement, Autonomous vehicles, LiDAR, ToF BibRef

Li, P.[Peng], Zhang, Y.T.[Ya-Ting], Yao, J.Q.[Jian-Quan],
Rapid Linear Frequency Swept Frequency-Modulated Continuous Wave Laser Source Using Iterative Pre-Distortion Algorithm,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Singer, N.[Nina], Asari, V.K.[Vijayan K.],
View-Agnostic Point Cloud Generation for Occlusion Reduction in Aerial Lidar,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Guo, R.[Rui], Jiang, Z.[Zheyi], Jin, Z.H.[Zhi-Han], Zhang, Z.[Zhao], Zhang, X.Y.[Xin-Yuan], Guo, L.[Liang], Hu, Y.H.[Yi-Hua],
Reflective Tomography Lidar Image Reconstruction for Long Distance Non-Cooperative Target,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Jin, L.Q.[Li-Qin], Mann, J.[Jakob], Sjöholm, M.[Mikael],
Investigating Suppression of Cloud Return with a Novel Optical Configuration of a Doppler Lidar,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Qi, B.L.[Bao-Ling], Wang, L.J.[Li-Jun], Guo, D.B.[Dong-Bin], Wang, C.H.[Chun-Hui],
Energy-Barycenter Based Waveform Centroid Algorithm for Pulse Lidar Ranging System,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Shu, D.W.[Dong Wook], Park, S.W.[Sung Woo], Kwon, J.[Junseok],
Wasserstein distributional harvesting for highly dense 3D point clouds,
PR(132), 2022, pp. 108978.
Elsevier DOI 2209
Sampled 3D points from a surface. 3D point cloud harvesting, Progressive sampling, Stochastic instance normalization BibRef

Xia, Y.H.[Yu-Hao], Xu, S.L.[Shi-Long], Fang, J.J.[Jia-Jie], Hou, A.[Ahui], Chen, Y.L.[You-Long], Zhang, X.Y.[Xin-Yuan], Hu, Y.H.[Yi-Hua],
A Novel Waveform Decomposition and Spectral Extraction Method for 101-Channel Hyperspectral LiDAR,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Bartoccioni, F.[Florent], Zablocki, É.[Éloi], Pérez, P.[Patrick], Cord, M.[Matthieu], Alahari, K.[Karteek],
LiDARTouch: Monocular metric depth estimation with a few-beam LiDAR,
CVIU(227), 2023, pp. 103601.
Elsevier DOI 2301
Depth estimation, Self-supervised, Minimal LiDAR, 3D scene understanding BibRef

Yan, L.[Li], Dai, J.C.[Ji-Cheng], Zhao, Y.H.[Ying-Hao], Chen, C.J.[Chang-Jun],
Real-Time 3D Mapping in Complex Environments Using a Spinning Actuated LiDAR System,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Qiao, X.[Xin], Ge, C.Y.[Chen-Yang], Deng, P.[Pengchao], Wei, H.[Hao], Poggi, M.[Matteo], Mattoccia, S.[Stefano],
Depth Restoration in Under-Display Time-of-Flight Imaging,
PAMI(45), No. 5, May 2023, pp. 5668-5683.
IEEE DOI 2304
Cameras, Image restoration, Noise reduction, Task analysis, Noise measurement, Imaging, Sensors, Time-of-flight, CNN BibRef

Wang, S.Y.[Shu-Yi], Mao, C.Y.[Cheng-Yang], Ma, Y.[Yang], Liu, J.Z.[Jin-Zhou], Yu, B.[Bin],
Examining the feasibility of current spiral curve design controls for LiDAR-based automated vehicles,
IET-ITS(17), No. 5, 2023, pp. 848-866.
DOI Link 2305
automated vehicle, available sight distance, LiDAR, spiral curve, virtual simulation BibRef

Agishev, R.[Ravil], Wang, Z.Z.[Zhen-Zhu], Liu, D.[Dong],
Designing CW Range-Resolved Environmental S-Lidars for Various Range Scales: From a Tabletop Test Bench to a 10 km Path,
RS(15), No. 13, 2023, pp. 3426.
DOI Link 2307
BibRef

Chen, Y.Q.[Yong-Qiang], Guo, S.[Shouchuan], He, Y.[Yan], Luo, Y.[Yuan], Chen, W.[Weibiao], Hu, S.[Shanjiang], Huang, Y.F.[Yi-Fan], Hou, C.H.[Chun-He], Su, S.[Sheng],
Simulation and Design of an Underwater Lidar System Using Non-Coaxial Optics and Multiple Detection Channels,
RS(15), No. 14, 2023, pp. 3618.
DOI Link 2307
BibRef

Wu, K.L.[Kai-Lan], Wu, J.G.[Jin-Gui], Peng, B.[Bo], Jia, J.J.[Jian-Jun], Luo, H.G.[Hong-Gang], Wang, Y.[Yun], Zheng, Y.C.[Yong-Chao], Yang, Y.C.[Yi-Chao], Lin, X.L.[Xu-Ling], Lau, Y.K.[Yun-Kau],
Tilt-to-Length Coupling Analysis of an Off-Axis Optical Bench Design for NGGM,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link 2308
Sensor design for GRACE follor-on mission. BibRef

Luo, Y.[Yaotao], Xie, D.H.[Dong-Hui], Qi, J.B.[Jian-Bo], Zhou, K.[Kun], Yan, G.J.[Guang-Jian], Mu, X.[Xihan],
LESS LiDAR: A Full-Waveform and Discrete-Return Multispectral LiDAR Simulator Based on Ray Tracing Algorithm,
RS(15), No. 18, 2023, pp. 4529.
DOI Link 2310
BibRef

Du, L.F.[Li-Fang], Zheng, H.R.[Hao-Ran], Xiao, C.L.[Chun-Lei], Cheng, X.[Xuewu], Wu, F.[Fang], Jiao, J.[Jing], Xun, Y.C.[Yu-Chang], Chen, Z.S.[Zhi-Shan], Wang, J.Q.[Ji-Qin], Yang, G.[Guotao],
The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers,
RS(15), No. 18, 2023, pp. 4566.
DOI Link 2310
BibRef

Watts, M.R.[Michael R.], Poulton, C.[Christopher], Byrd, M.[Matthew], Smolka, G.[Greg],
Lidar on a Chip Enters the Fast Lane: Sensors for Self-Driving Cars and Robots will be Tiny, Reliable, and Affordable,
Spectrum(60), No. 9, September 2023, pp. 38-43.
IEEE DOI 2310
BibRef

Liao, Y.P.[Yu-Peng], Shangguan, M.J.[Ming-Jia], Yang, Z.F.[Zhi-Feng], Lin, Z.[Zaifa], Wang, Y.L.[Yuan-Lun], Li, S.[Sihui],
GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar,
RS(15), No. 21, 2023, pp. 5245.
DOI Link 2311
BibRef

Lee, J.[Jongho], Gupta, M.[Mohit],
Mitigating AC and DC Interference in Multi-ToF-Camera Environments,
PAMI(45), No. 12, December 2023, pp. 15005-15017.
IEEE DOI 2311
BibRef

Wei, J.F.[Jun-Feng], Liu, L.[Linmei], Cheng, X.[Xuewu], Fan, Y.[Yi], Zhan, W.Q.[Wei-Qiang], Du, L.F.[Li-Fang], Xiong, W.[Wei], Lin, Z.X.[Zhao-Xiang], Yang, G.[Guotao],
Automation in Middle- and Upper-Atmosphere LIDAR Operations: A Maximum Rayleigh Altitude Prediction System Based on Night Sky Imagery,
RS(16), No. 3, 2024, pp. 536.
DOI Link 2402
BibRef


Achaibou, A.[Amina], Pla, F.[Filiberto], Calpe, J.[Javier],
IR-Guided Energy Optimization Framework for Depth Enhancement in Time of Flight Imaging,
CIARP23(I:646-660).
Springer DOI 2312
BibRef

Goudreault, F.[Félix], Scheuble, D.[Dominik], Bijelic, M.[Mario], Robidoux, N.[Nicolas], Heide, F.[Felix],
LiDAR-in-the-Loop Hyperparameter Optimization,
CVPR23(13404-13414)
IEEE DOI 2309
BibRef

Jeon, D.S.[Daniel S.], Meuleman, A.[Andréas], Baek, S.H.[Seung-Hwan], Kim, M.H.[Min H.],
Polarimetric iToF: Measuring High-Fidelity Depth Through Scattering Media,
CVPR23(12353-12362)
IEEE DOI 2309
BibRef

Yu, H.X.[Hong-Xing], Agarwala, S.[Samir], Herrmann, C.[Charles], Szeliski, R.[Richard], Snavely, N.[Noah], Wu, J.J.[Jia-Jun], Sun, D.Q.[De-Qing],
Accidental Light Probes,
CVPR23(12521-12530)
IEEE DOI 2309
BibRef

Kotwal, A.[Alankar], Levin, A.[Anat], Gkioulekas, I.[Ioannis],
Passive Micron-Scale Time-of-Flight with Sunlight Interferometry,
CVPR23(4139-4149)
IEEE DOI 2309
BibRef

Pediredla, A.[Adithya], Narasimhan, S.G.[Srinivasa G.], Chamanzar, M.[Maysamreza], Gkioulekas, I.[Ioannis],
Megahertz Light Steering Without Moving Parts,
CVPR23(1-12)
IEEE DOI 2309
BibRef

Li, J.[Jiaqu], Yue, T.[Tao], Zhao, S.[Sijie], Hu, X.M.[Xue-Mei],
Fisher Information Guidance for Learned Time-of-Flight Imaging,
CVPR22(16313-16322)
IEEE DOI 2210
Training, Photography, Neural networks, Imaging, Prototypes, Encoding, Pattern recognition, Computational photography, Low-level vision BibRef

Baek, S.H.[Seung-Hwan], Heide, F.[Felix],
All-photon Polarimetric Time-of-Flight Imaging,
CVPR22(17855-17864)
IEEE DOI 2210
Geometry, Surface reconstruction, Imaging, Modulation, Reflection, Sensor systems, Scattering parameters, Computational photography, Physics-based vision and shape-from-X BibRef

Spreafico, A., Chiabrando, F., Losè, L.T.[L. Teppati], Tonolo, F.G.[F. Giulio],
The iPad Pro Built-in Lidar Sensor: 3D Rapid Mapping Tests and Quality Assessment,
ISPRS21(B1-2021: 63-69).
DOI Link 2201
BibRef

Sasaya, T.[Tenta], Watanabe, W.[Wataru], Ono, T.[Toshiyuki],
Depth Correction for Time-Of-Flight Camera Using Depth Distortion Dependency on Pulse Width of Irradiated Light,
ICIP21(329-333)
IEEE DOI 2201
Radiation effects, Systematics, Pulse measurements, Image color analysis, Measurement uncertainty, Training data, neural network BibRef

Huang, Y.K.[Yu-Kai], Liu, Y.C.[Yueh-Cheng], Wu, T.H.[Tsung-Han], Su, H.T.[Hung-Ting], Chang, Y.C.[Yu-Cheng], Tsou, T.L.[Tsung-Lin], Wang, Y.A.[Yu-An], Hsu, W.H.[Winston H.],
S3: Learnable Sparse Signal Superdensity for Guided Depth Estimation,
CVPR21(16701-16711)
IEEE DOI 2111
Laser radar, Costs, Estimation, Robustness, Pattern recognition BibRef

Chugunov, I.[Ilya], Baek, S.H.[Seung-Hwan], Fu, Q.[Qiang], Heidrich, W.[Wolfgang], Heide, F.[Felix],
Mask-ToF: Learning Microlens Masks for Flying Pixel Correction in Time-of-Flight Imaging,
CVPR21(9112-9122)
IEEE DOI 2111
Optical imaging, Cameras, Throughput, Adaptive optics, Optical sensors, Relays BibRef

Pittaluga, F., Tasneem, Z., Folden, J., Tilmon, B., Chakrabarti, A., Koppal, S.J.,
Towards a MEMS-based Adaptive LIDAR,
3DV20(1216-1226)
IEEE DOI 2102
Laser radar, Mirrors, Receivers, Micromechanical devices, Optics, Laser beams, Robot sensing systems, LIDAR, Adaptive, Deep Learning BibRef

Jameela, M., Chen, L., Sit, A., Yoo, J., Verheggen, C., Sohn, G.,
Simulation-based Data Augmentation Using Physical Priors for Noise Filtering Deep Neural Network,
ISPRS20(B2:247-254).
DOI Link 2012
Noise filtering for improved LiDAR system. BibRef

Wang, B., Song, S., Gong, W., Shi, S., Chen, B., Yang, J., Du, L., Sun, J.,
High-precision Ranging Based on Multispectral Full-waveform Lidar,
ISPRS20(B3:547-551).
DOI Link 2012
BibRef

Guiotte, F., Rao, M.B., Lefèvre, S., Tang, P., Corpetti, T.,
Relation Network for Full-waveforms Lidar Classification,
ISPRS20(B3:515-520).
DOI Link 2012
BibRef

Vallet, J., Gressin, A., Clausen, P., Skaloud, J.,
Airborne and Mobile Lidar, Which Sensors for Which Application?,
ISPRS20(B1:397-405).
DOI Link 2012
BibRef

Maebashi, N., Kato, T., Abe, R., Wang, Y., Tachi, T., Kishimoto, N.,
Development of New Airborne Laser Scanning Method By Meandering Flight,
ISPRS20(B1:51-56).
DOI Link 2012
BibRef

Manivasagam, S., Wang, S., Wong, K., Zeng, W., Sazanovich, M., Tan, S., Yang, B., Ma, W., Urtasun, R.,
LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World,
CVPR20(11164-11173)
IEEE DOI 2008
Robot sensing systems, Laser radar, Solid modeling, Data models, Physics, Vehicle dynamics BibRef

Yang, Z., Chai, Y., Anguelov, D., Zhou, Y., Sun, P., Erhan, D., Rafferty, S., Kretzschmar, H.,
SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving,
CVPR20(11115-11124)
IEEE DOI 2008
Image reconstruction, Cameras, Laser radar, Autonomous vehicles, Training, Rendering (computer graphics) BibRef

Alqassab, A.N., Streeter, L., Cree, M.J., Lickfold, C.A., Farrow, V., Lim, S.H.,
Adaptation of Bidirectional Kalman Filter to Multi-Frequency Time-of-Flight Range Imaging,
IVCNZ19(1-6)
IEEE DOI 2004
cameras, discrete Fourier transforms, image capture, image sensors, Kalman filters, range measurements, bidirectional Kalman filter, multi-frequency BibRef

Lickfold, C.A., Streeter, L., Cree, M.J., Scott, J.B.,
Frequency Based Radial Velocity Estimation in Time-of-Flight Range Imaging,
IVCNZ19(1-6)
IEEE DOI 2004
Time-of-flight, range imaging, phase stepping, frequency stepping, radial motion, axial motion, velocity imaging, velocity measurement BibRef

Gruber, T., Julca-Aguilar, F., Bijelic, M., Heide, F.,
Gated2Depth: Real-Time Dense Lidar From Gated Images,
ICCV19(1506-1516)
IEEE DOI 2004
Code, LIDAR.
WWW Link. cameras, image resolution, image sampling, image sensors, optical radar, dense depth camera, learning depth, gated images, Real-time systems BibRef

Gutierrez-Barragan, F.[Felipe], Reza, S.A.[Syed Azer], Velten, A.[Andreas], Gupta, M.[Mohit],
Practical Coding Function Design for Time-Of-Flight Imaging,
CVPR19(1566-1574).
IEEE DOI 2002
BibRef

Teri, S.S., Musliman, I.A.,
Machine Learning in Big Lidar Data: a Review,
GGT19(641-644).
DOI Link 1912
BibRef

Fouladinejad, F., Matkan, A., Hajeb, M., Brakhasi, F.,
History and Applications of Space-borne Lidars,
SMPR19(407-414).
DOI Link 1912
BibRef

Salido-Monzú, D., Wieser, A.,
An Instrumental Basis for Multispectral Lidar With Spectrally-resolved Distance Measurements,
Laser19(1121-1126).
DOI Link 1912
BibRef

Bremer, M., Wichmann, V., Rutzinger, M., Zieher, T., Pfeiffer, J.,
Simulating Unmanned-aerial-vehicle Based Laser Scanning Data For Efficient Mission Planning in Complex Terrain,
Laser19(943-950).
DOI Link 1912
BibRef

Ortiz Arteaga, A., Scott, D., Boehm, J.,
Initial Investigation of a Low-cost Automotive Lidar System,
LC3D19(233-240).
DOI Link 1912
BibRef

Yang, J.Y.[Jing-Yu], Xu, W.Q.[Wen-Qiang], Ye, X.C.[Xin-Chen], Frossard, P.[Pascal], Li, K.[Kun],
Graph Based Non-Uniform Sampling and Reconstruction of Depth Maps,
ICIP19(2324-2328)
IEEE DOI 1910
Depth reconstruction, graph theory, nonuniform sampling BibRef

Noraky, J., Mathy, C., Cheng, A., Sze, V.,
Low Power Adaptive Time-of-Flight Imaging for Multiple Rigid Objects,
ICIP19(3517-3521)
IEEE DOI 1910
time-of-flight cameras, shot noise, depth estimation, motion estimation, low power BibRef

Streeter, L.,
Towards generalised time-of-flight range imaging at the edge of moving objects,
IVCNZ17(1-6)
IEEE DOI 1902
distance measurement, error correction, image coding, image sensors, motion measurement, multiframe process, error correction BibRef

Su, S., Heide, F., Wetzstein, G., Heidrich, W.,
Deep End-to-End Time-of-Flight Imaging,
CVPR18(6383-6392)
IEEE DOI 1812
Cameras, Phase measurement, Correlation, Image reconstruction, Frequency measurement, Pipelines BibRef

Xu, R., Nayar, S.K., Gupta, M.,
Trapping Light for Time of Flight,
CVPR18(6219-6227)
IEEE DOI 1812
Shape, Mirrors, Lattices, Cameras, Shape measurement BibRef

Boufounos, P.T.,
High-Resolution Lidar Using Random Demodulation,
ICIP18(36-40)
IEEE DOI 1809
Apertures, Modulation, Image reconstruction, Hardware, Optical sensors, Depth sensing, random demodulation, compressive LIDAR BibRef

Balaguer-Puig, M., Molada-Tebar, A., Marqués-Mateu, A., Lerma, J.L.,
Characterisation of Intensity Values On Terrestrial Laser Scanning For Recording Enhancement,
CIPA17(49-55).
DOI Link 1805
BibRef

Zimmermann, K.[Karel], Petrícek, T.[Tomáš], Šalanský, V.[Vojtech], Svoboda, T.[Thomáš],
Learning for Active 3D Mapping,
ICCV17(1548-1556)
IEEE DOI 1802
Individual control of depth-measurements, e.g. sloid state lidar. greedy algorithms, image reconstruction, learning (artificial intelligence), optical radar, optimisation, BibRef

Guidi, G., Gonizzi, S., Micoli, L.,
3d Capturing Performances Of Low-cost Range Sensors For Mass-market Applications,
ISPRS16(B5: 33-40).
DOI Link 1610
3D Metrology from Kinect and similar devices. BibRef

Honnungar, S., Holloway, J., Pediredla, A.K., Veeraraghavan, A., Mitra, K.,
Focal-sweep for large aperture time-of-flight cameras,
ICIP16(953-957)
IEEE DOI 1610
Apertures BibRef

Tommaselli, A.M.G., Torres, F.M.,
A Light-weight Laser Scanner For UAV Applications,
ISPRS16(B1: 711-715).
DOI Link 1610
BibRef

Wang, Y.[Yu], Ai, Y.[Yu], Hu, Y.[Yu], Wang, R.[RenLi],
Horizontal Position Optimal Solution Determination For The Satellite Laser Ranging Slope Model,
ISPRS16(B1: 127-131).
DOI Link 1610
BibRef

Lv, Y., Tong, X.H., Liu, S.J., Xie, H., Luan, K.F., Liu, J.,
Simulation Of Full-waveform Laser Altimeter Echowaveform,
ISPRS16(B1: 47-51).
DOI Link 1610
BibRef

Mitteta, M.A., Nouira, H., Roynard, X., Goulette, F., Deschaud, J.E.,
Experimental Assessment Of The Quanergy M8 Lidar Sensor,
ISPRS16(B5: 527-531).
DOI Link 1610
BibRef

Xuan, V.N.[Vinh Nguyen], Weihs, W., Loffeld, O.,
Illumination, phase step optimization and improvements in simultaneous multiple frequency measurement for Time-of-Flight sensors,
IC3D15(1-6)
IEEE DOI 1603
frequency measurement BibRef

Crabb, R.[Ryan], Manduchi, R.[Roberto],
Fast single-frequency time-of-flight range imaging,
CCD15(58-65)
IEEE DOI 1510
Approximation methods BibRef

Song, S.[Shuran], Lichtenberg, S.P.[Samuel P.], Xiao, J.X.[Jian-Xiong],
SUN RGB-D: A RGB-D scene understanding benchmark suite,
CVPR15(567-576)
IEEE DOI 1510
BibRef

Dou, M.S.[Ming-Song], Taylor, J.[Jonathan], Fuchs, H.[Henry], Fitzgibbon, A.W.[Andrew W.], Izadi, S.[Shahram],
3D scanning deformable objects with a single RGBD sensor,
CVPR15(493-501)
IEEE DOI 1510
Kinect. BibRef

Reshetouski, I.[Ilya], Manakov, A.[Alkhazur], Bandhari, A.[Ayush], Raskar, R.[Ramesh], Seidel, H.P.[Hans-Peter], Ihrke, I.[Ivo],
Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point,
CVPR13(89-96)
IEEE DOI 1309
analysis, geometry reconstruction, mirrors, time-of-flight BibRef

Djuricic, A., Jutzi, B.,
Supporting UAVS in Low Visibility Conditions by Multiple-Pulse Laser Scanning Devices,
Hannover13(93-98).
DOI Link 1308
BibRef

Choi, O.[Ouk], Lee, S.K.[Seung-Kyu],
Wide range stereo time-of-flight camera,
ICIP12(557-560).
IEEE DOI 1302
BibRef

Hakala, T., Suomalainen, J., Kaasalainen, S.,
Full Waveform Active Hyperspectral Lidar,
ISPRS12(XXXIX-B7:459-462).
DOI Link 1209
BibRef

Kukko, A., Kaartinen, H., Hyyppä, J., Chen, Y.,
Multiplatform Approach To Mobile Laser Scanning,
ISPRS12(XXXIX-B5:483-488).
DOI Link 1209
BibRef

Amini, A.S., Mozaffar, M.H.,
Producing A Linear Laser System for 3d Modelimg of Small Objects,
ISPRS12(XXXIX-B5:315-319).
DOI Link 1209
BibRef

Yang, R., Hua, X., Liu, J., Wu, H.,
Research on the Three Angular Resolution of Terrestrial Laser Scanning,
ISPRS12(XXXIX-B3:187-192).
DOI Link 1209
BibRef

Zhou, G., Yang, J., Li, X., Yang, X.,
Advances of Flash Lidar Development Onboard UAV,
ISPRS12(XXXIX-B3:193-198).
DOI Link 1209
BibRef

Yang, J.Z.[Jia-Zhi], Zhou, G.Q.[Guo-Qing], Yu, X.C.[Xin-Chen], Zhu, W.[Wei],
Design and Implementation of Power Supply of High-Power Diode Laser of LiDAR Onboard UAV,
ISIDF11(1-4).
IEEE DOI 1111
BibRef

Lenzen, F.[Frank], Schäfer, H.[Henrik], Garbe, C.[Christoph],
Denoising Time-Of-Flight Data with Adaptive Total Variation,
ISVC11(I: 337-346).
Springer DOI 1109
BibRef

Vock, D.[Dominik], Jungmichel, M.[Markus],
A Low Budget Mobile Laser Scanning Solution Using on Board Sensors and Field Bus Systems of Today's Consumer Automobiles,
Laser11(191-196).
DOI Link 1109
BibRef

Zhu, J.F.[Jun-Feng], Zhang, Z.X.[Zu-Xun], Hu, X.Y.[Xiang-Yun],
Analysis And Application Of Lidar Waveform Data Using A Progressive Waveform Decomposition Method,
Laser11(31-26).
DOI Link 1109
BibRef

Reynolds, M.[Malcolm], Dobos, J.[Jozef], Peel, L.[Leto], Weyrich, T.[Tim], Brostow, G.J.[Gabriel J.],
Capturing Time-of-Flight data with confidence,
CVPR11(945-952).
IEEE DOI 1106
BibRef

Breivik, G.M.[Goril M.], Thielemann, J.T.[Jens T.], Berge, A.[Asbjorn], Skotheim, O.[Oystein],
A motion based real-time foveation control loop for rapid and relevant 3D laser scanning,
ECVW11(28-35).
IEEE DOI 1106
BibRef

Kang, Y.S.[Yun-Suk], Ho, Y.S.[Yo-Sung],
Disparity map generation for color image using TOF depth camera,
3DTV11(1-4).
IEEE DOI 1105
BibRef

Godbaz, J.P.[John P.], Cree, M.J.[Michael J.], Dorrington, A.A.[Adrian A.],
Extending AMCW Lidar Depth-of-Field Using a Coded Aperture,
ACCV10(IV: 397-409).
Springer DOI 1011
BibRef

Stal, C.[Cornelis], de Maeyer, P.[Philippe], de Wulf, A.[Alain], Nuttens, T.[Timothy], Vanclooster, A.[Ann], van de Weghe, N.[Nico],
An Optimized Workflow for Processing Airborne Laserscan Data in a GIS-Based Environment,
GeoInfo10(xx-yy).
PDF File. 1011
BibRef

Kim, S.Y.[Sung-Yeol], Cho, J.H.[Ji-Ho], Koschan, A.F.[Andreas F.], Abidi, M.A.[Mongi A.],
Spatial and Temporal Enhancement of Depth Images Captured by a Time-of-Flight Depth Sensor,
ICPR10(2358-2361).
IEEE DOI 1008
BibRef

Tilch, S., Mautz, R.,
Development of a New Laser-based, Optical Indoor Positioning System,
CloseRange10(xx-yy).
PDF File. 1006
BibRef

Hegna, T., Pettersson, H., Grujic, K.,
Inexpensive 3-d Laser Scanner System Based On A Galvanometer Scan Head,
CloseRange10(xx-yy).
PDF File. 1006
BibRef

Ussyshkin, V.[Valerie], Theriault, L.[Livia], Sitar, M.[Michael], Pantovic, T.[Tatijana],
Altm ORION establishes a new standard in LiDAR data quality, accuracy and precision,
CGC10(90). 1006
BibRef

Chiabrando, F., Piatta, D., Rinaudo, F.,
Sr-4000 Tof Camera: Further Experimental Tests And First Applications To Metric Surveys,
CloseRange10(xx-yy).
PDF File. 1006
BibRef

Godbaz, J.P., Cree, M.J., Dorrington, A.A.,
Undue influence: Mitigating range-intensity coupling in AMCW 'flash' lidar using scene texture,
IVCNZ09(304-309).
IEEE DOI 0911
BibRef

Gong, F.Y.[Fa-Yun], Yu, Y.Z.[Yong-Zhi], Wang, X.Z.[Xuan-Ze],
System of a Probe for Two-Dimensional Micro-Angle Based on Invariant Light-Distance,
CISP09(1-4).
IEEE DOI 0910
Photoelectric detector. Laser detector, not so much range. BibRef

Dammann, J., Redman, B., Ruff, W.,
3D Image Reconstruction and Range-Doppler Tracking with Chirped AM Ladar Data,
AIPR06(4-4).
IEEE DOI 0610
BibRef

Cho, P., Anderson, H., Hatch, R., Ramaswami, P.,
Real-Time 3D Ladar Imaging,
AIPR06(5-5).
IEEE DOI 0610
BibRef

Linden, K.J., Neal, W.R., Waldman, J., Gatesman, A.J., Danylov, A.,
Terahertz laser based standoff imaging system,
AIPR05(7-14).
IEEE DOI 0510
BibRef

Lin, Y.C.[Yu-Ching], Mills, J.[Jon],
Integration of full-waveform information into the airborne laser scanning data filtering process,
Laser09(224). 0909
BibRef

Mallet, C.[Clément], Lafarge, F.[Florent], Bretar, F.[Frédéric], Roux, M.[Michel], Soergel, U.[Uwe], Heipke, C.[Christian],
A stochastic approach for modelling airborne lidar waveforms,
Laser09(201). 0909
BibRef

Mandlburger, G.[Gottfried], Otepka, J.[Johannes], Karel, W.[Wilfried], Wagner, W.[Wolfgang], Pfeifer, N.[Norbert],
Orientation and Processing of Airborne Laser Scanning data (OPALS): Concept and first results of a comprehensive ALS software,
Laser09(55). 0909
BibRef

Dong, H.[Hao], Sun, Y.Y.[Yi Yi], Bi, Z.H.[Zhao Hui],
Atmospheric ultraviolet transmission and Lidar returns,
IASP09(342-345).
IEEE DOI 0904
BibRef

Larkins, R.L., Cree, M.J., Dorrington, A.A., Godbaz, J.P.,
Surface projection for mixed pixel restoration,
IVCNZ09(431-436).
IEEE DOI 0911
BibRef

Godbaz, J.P., Cree, M.J., Dorrington, A.A.,
Mixed pixel return separation for a full-field ranger,
IVCNZ08(1-6).
IEEE DOI 0811
BibRef

Walkowski, F., Johnston, R.A., Price, N.B.,
Texture Mapping for the FastSCAN™ hand-held laser scanner,
IVCNZ08(1-6).
IEEE DOI 0811
BibRef

Haubner, N., Johnston, R.A., Price, N.B.,
Investigation of profile registration with application to the FastSCAN™ range of laser scanners,
IVCNZ08(1-6).
IEEE DOI 0811
BibRef

Zhang, A.W.[Ai-Wu], Hu, S.X.[Shao-Xing], Chen, Y.L.[Yu-Lin], Liu, H.Y.[Hai-Yun], Yang, F.[Fan], Liu, J.[Jia],
Fast Continuous 360 Degree Color 3D Laser Scanner,
ISPRS08(B1: 409 ff).
PDF File. 0807
BibRef

Li, Q.[Qi],
Decomposition of Airborne Laser Scanning Waveform Data Based on EM Algorithm,
ISPRS08(B1: 211 ff).
PDF File. 0807
BibRef

Roth, R.B., Thompson, J.,
Practial Application of Multiple Pulse in Air (MPiA) LIDAR in Large Area Surveys,
ISPRS08(B1: 183 ff).
PDF File. 0807
BibRef

Chan, D.[Derek], Buisman, H.[Hylke], Theobalt, C.[Christian], Thrun, S.[Sebastian],
A Noise-Aware Filter for Real-Time Depth Upsampling,
M2SFA208(xx-yy). 0810
BibRef

Schuon, S.[Sebastian], Theobalt, C.[Christian], Davis, J.[James], Thrun, S.[Sebastian],
LidarBoost: Depth superresolution for ToF 3D shape scanning,
CVPR09(343-350).
IEEE DOI 0906
BibRef
Earlier:
High-quality scanning using time-of-flight depth superresolution,
TOF-CV08(1-7).
IEEE DOI 0806
BibRef

Sturmer, M.[Michael], Penne, J.[Jochen], Hornegger, J.[Joachim],
Standardization of intensity-values acquired by Time-of-Flight-cameras,
TOF-CV08(1-6).
IEEE DOI 0806
BibRef

Stilla, U., Yao, W., Jutzi, B.,
Detection of Weak Laser Pulses by Full Waveform Stacking,
PIA07(25).
PDF File. 0711
BibRef

Fan, H.[Hua], Reading, I., Fang, Z.P.[Zhong-Ping],
Novel Optical Sensor for Precise Tilt Angle Measurement,
ICARCV06(1-4).
IEEE DOI 0612
Based on laser interference. BibRef

Jutzi, B.[Boris], Gross, H.[Hermann],
Normalization of Lidar Intensity Data Based on Range and Surface Incidence Angle,
Laser09(213). 0909
BibRef

Bretar, F., Chauve, A., Mallet, C., Jutzi, B.,
Managing Full Waveform LIDAR Data: A Challenging Task for the Forthcoming Years,
ISPRS08(B1: 415 ff).
PDF File. 0807
BibRef

Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Deseilligny, M.P., Puech, W.,
Processing Full-Waveform Lidar Data: Modelling Raw signals,
Laser07(102).
PDF File. 0709
BibRef

Duong, H., Lindenbergh, R., Pfeifer, N., Vosselman, G.,
Icesat Fullwaveform Altimetry Compared to Airborne Laser Altimetry over the Netherlands,
Laser07(108).
PDF File. 0709
BibRef

Lohani, B., Mishra, R.K.,
Generating Lidar Data in Laboratory: Lidar Simulator,
Laser07(264).
PDF File. 0709
BibRef

Pfeifer, N., Briese, C.,
Geometrical Aspects of Airborne and Terrestrial Laser Scanning,
Laser07(311).
WWW Link. 0709
BibRef

Wehr, A.,
Laser Scanning and Its Potential to Support 3D Panoramic Recording,
PanoPhot05(xx-yy).
PDF File. 0502
BibRef

Ahokas, E., Yu, X., Oksanen, J., Hyyppä, J., Kaartinen, H., Hyyppä, H.,
Optimization of the scanning angle for countrywide laser scanning,
Laser05(xx-yy).
PDF File. 0509
BibRef

Barber, D.M., Mills, J.P., Bryan, P.G.,
Maintaining momentum in terrestrial laser scanning: A UK case study,
Laser05(xx-yy).
PDF File. 0509

See also Geometric validation of a ground-based mobile laser scanning system. BibRef

Weise, T.[Thibaut], Leibe, B.[Bastian], Van Gool, L.J.[Luc J.],
Fast 3D Scanning with Automatic Motion Compensation,
CVPR07(1-8).
IEEE DOI 0706
BibRef

Furukawa, R.[Ryo], Kawasaki, H.[Hiroshi],
Self-Calibration of Multiple Laser Planes for 3D Scene Reconstruction,
3DPVT06(200-207).
IEEE DOI 0606

See also Shape Reconstruction and Camera Self-Calibration Using Cast Shadows and Scene Geometries.
See also Dense 3D Reconstruction with an Uncalibrated Stereo System using Coded Structured Light. BibRef

Lachat, E., Macher, H., Mittet, M.A., Landes, T., Grussenmeyer, P.,
First Experiences with Kinect V2 Sensor for Close Range 3D Modelling,
3D-Arch15(93-100).
DOI Link 1504
BibRef

Hanke, K., Grussenmeyer, P., Grimm-Pitzinger, A., Weinold, T.,
First experiences with the Trimble GX scanner,
IEVM06(xx-yy).
PDF File. 0609
BibRef

Gokturk, S.B.[S. Burak], Yalcin, H.[Hakan], Bamji, C.[Cyrus],
A Time-of-Flight Depth Sensor: System Description, Issues and Solutions,
Sensor3D04(35).
IEEE DOI 0406
BibRef

Colombo, C., Comanducci, D., del Bimbo, A.,
A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles,
CVS06(49).
IEEE DOI 0602
BibRef

Franca, J.G.D.M., Gazziro, M.A., Ide, A.N., Saito, J.H.,
A 3D Scanning System Based on Laser Triangulation and Variable Field of View,
ICIP05(I: 425-428).
IEEE DOI 0512
BibRef

Saito, T., Komatsu, T., Sunaga, S.I., Hashiguchi, M.,
Defect repair for range data observed with a laser range scanner,
ICIP03(III: 1037-1040).
IEEE DOI 0312
BibRef

Ullrich, A., Studnicka, N., Riegl, J., Orlandini, S.,
Long-range high-performance time-of-flight-based 3D imaging sensors,
3DPVT02(852-855).
IEEE DOI 0206
BibRef

Bornaz, L.[Leandro], Lingua, A.[Andrea], Rinaudo, F.[Fulvio],
Engineering and Environmental Applications of Laser Scanner Techniques,
PCV02(B: 40). 0305
BibRef

Elmqvist, M.[Magnus],
Ground Surface Estimation from Airborne Laser Scanner Data Using Active Shape Models,
PCV02(A: 114). 0305
BibRef

Stiene, S.[Stefan], Lingemann, K.[Kai], Nuchter, A.[Andreas], Hertzberg, J.[Joachim],
Contour-Based Object Detection in Range Images,
3DPVT06(168-175).
IEEE DOI 0606
BibRef

Surmann, H., Lingemann, K.[Kai], Nüchter, A.[Andreas], Hertzberg, J.[Joachim],
Fast Acquiring and Analysis of 3-D Laser Range Data,
VMV01(xx-yy).
PDF File. 0209
BibRef

Klinger, P., Spellenberg, B., Hermann, J.M., Hausler, G.,
In process 3D-sensing for laser material processing,
3DIM01(38-41).
IEEE DOI 0106
BibRef

Davis, J., Chen, X.,
A laser range scanner designed for minimum calibration complexity,
3DIM01(91-98).
IEEE DOI 0106
BibRef

Arana-Arejolaleiba, N., Briot, M., Ganibal, C., Nketsa, A., Prajoux, R.,
A 3D laser micro-sensor integrating control and data processing in an FPGA-based calculator,
3DIM01(107-114).
IEEE DOI 0106
BibRef

Lang, J., Pai, D.K.,
Bayesian estimation of distance and surface normal with a time-of-flight laser rangefinder,
3DIM99(109-117).
IEEE DOI 9910
BibRef

Zheng, J.Y.,
A Flexible Laser Range Sensor Based on Spatial-temporal Analysis,
ICPR00(Vol IV: 740-743).
IEEE DOI 0009
BibRef

Lamb, D.G., Baird, D.L., Greenspan, M.A.,
An automation system for industrial 3-D laser digitizing,
3DIM99(148-157).
IEEE DOI 9910
BibRef

Sato, Y.[Yukio], Ishikawa, T.[Tomoyuki], Otsuki, M.[Masaki],
Reconstruction of 3-D shape and texture by active rangefinding,
CIAP97(II: 270-275).
Springer DOI 9709
BibRef

Axelsson, P., Willen, E.,
Geometric Evaluation of Airborne Laser Scanner Data,
SSAB97(Photogrammetry) 9703
BibRef

Sato, Y., and Otsuki, M.,
Three-Dimensional Shape Reconstruction by Active Rangefinder,
CVPR93(142-147).
IEEE DOI Small laser range finder mounted on a robot arm. BibRef 9300

Sato, Y.[Yukio], and Otsuki, M.[Masaki],
3-D Model Reconstruction with Shape and Color by Active Rangefinding,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Gadagkar, H.P., Trivedi, M.M., and Lassiter, T.N.,
Versatile Multi-Modal System for Surface Profile Measurements Using a Wrist-Mounted Laser Device,
SPIE(1828), 1992, pp. 466-474. Sensor Fusion. BibRef 9200

Faugeras, O.D., and Pauchon, E.,
Measuring the Shape of 3-D Objects,
CVPR83(2-7). BibRef 8300

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Single-Photon Imaging, Single Photon .


Last update:Mar 16, 2024 at 20:36:19