Cover, T.M., and
Hart, P.E.,
Nearest Neighbor Pattern Classification,
IT(13), No. 1, January 1967, pp. 21-27.
BibRef
6701
Cover, T.M.,
Estimation by the Nearest-Neighbor Rule,
IT(14), No. 1, January, 1968, pp. 50-55.
BibRef
6801
Hart, P.E.,
The Condensed Nearest Neighbor Rule,
IT(14), No. 5, May 1968, pp. 515-516.
BibRef
6805
Gates, G.W.,
The Reduced Nearest Neighbor Rule,
IT(18), No. 5, May 1972, pp. 431-433.
BibRef
7205
Friedman, J.H.,
Baskett, F., and
Shustek, L.J.,
An Algorithm for Finding Nearest Neighbor,
TC(24), October 1975, pp. 1000-1006.
BibRef
7510
Dudani, S.A.,
The Distance-Weighted k-Nearest-Neighbor Rule,
SMC(6), No. 4, April 1976, pp. 325-327.
BibRef
7604
Yunck, T.P.,
A Technique to Identify Nearest Neighbors,
SMC(6), No. 10, October 1976, pp. 678-683.
BibRef
7610
Devijver, P.A.[Pierre A.],
A note on ties in voting with the k-NN rule,
PR(10), No. 4, 1978, pp. 297-298.
Elsevier DOI
0309
BibRef
Dasarathy, B.,
White, L.J.[Lee J.],
A characterization of nearest-neighbor rule decision surfaces and a new
approach to generate them,
PR(10), No. 1, 1978, pp. 41-46.
Elsevier DOI
0309
BibRef
Mack, Y.P., and
Rosenblatt, M.,
Multivariate k-Nearest Neighbor Density Estimates,
J. Multivariate Analysis(9), 1979, pp. 1-15.
BibRef
7900
Srihari, S.N.[Sargur N.],
Snabb, T.[Thomas],
White, L.J.[Lee J.],
An algorithm for determining identity of nearest-neighbor and potential
function decision rules,
PR(12), No. 5, 1980, pp. 293-299.
Elsevier DOI
0309
BibRef
Koplowitz, J.[Jack],
Brown, T.A.[Thomas A.],
On the relation of performance to editing in nearest neighbor rules,
PR(13), No. 3, 1981, pp. 251-255.
Elsevier DOI
0309
BibRef
Short, R., and
Fukanaga, K.,
The Optimal Distance Measure for Nearest Neighbor Classification,
IT(27), 1981, pp. 622-627.
BibRef
8100
Earlier:
A New Nearest Neighbor Distance Measure,
ICPR80(81-86).
BibRef
Fukunaga, K., and
Hostetler, L.D.,
The Estimation of the Gradient of a Density Function, with
Applications in Pattern Recognition,
IT(21), No. 1, January 1975, pp. 32-40.
A Hill-Climbing algorithm for the Estimate the mode of a density function.
Mean-Shift.
BibRef
7501
Fukunaga, K., and
Hostetler, L.D.,
K-Nearest-Neighbor Bayes Risk Estimation,
IT(21), No. 5, May 1975, pp. 258-293.
Bayes.
BibRef
7505
Fukunaga, K., and
Flick, T.E.,
An Optimal Global Nearest Neighbor Metric,
PAMI(6), No. 3, May, 1984, pp. 314-318.
See also Classification Error for a Very Large Number of Classes.
BibRef
8405
Fukunaga, K., and
Flick, T.E.,
The 2-NN Rule for More Accurate NN Risk Estimation,
PAMI(7), No. 1, January 1985, pp. 107-112.
BibRef
8501
Fukunaga, K., and
Flick, T.E.,
A Test of the Gaussian-ness of a Data Set Using Clustering,
PAMI(8), No. 2, March 1986, pp. 240-247.
BibRef
8603
Fukunaga, K., and
Hummels, D.M.,
Bias of Nearest Neighbor Error Estimates,
PAMI(9), No. 1, January 1987, pp. 103-112.
BibRef
8701
Fukunaga, K., and
Hummels, D.M.,
Bayes Error Estimation Using Parzen and K-NN Procedures,
PAMI(9), No. 5, September 1987, pp. 634-643.
BibRef
8709
Fukunaga, K., and
Hummels, D.M.,
Leave-One-Out Procedures for Nonparametric Error Estimates,
PAMI(11), No. 4, April 1989, pp. 421-423.
IEEE DOI
BibRef
8904
Goin, J.E.,
Classification Bias of the K-Nearest Neighbor Algorithm,
PAMI(6), No. 3, May, 1984, pp. 379-381.
BibRef
8405
Katajainen, J.[Jyrki],
Nevalainen, O.S.[Olli S.],
Computing relative neighbourhood graphs in the plane,
PR(19), No. 3, 1986, pp. 221-228.
Elsevier DOI
0309
BibRef
Loizou, G., and
Maybank, S.J.,
The Nearest Neighbor and the Bayes Error Rates,
PAMI(9), No. 2, March 1987, pp. 254-262.
BibRef
8703
Mazzola, S.,
A K-nearest neighbor-based method for the restoration of damaged images,
PR(23), No. 1-2, 1990, pp. 179-184.
Elsevier DOI
0401
BibRef
Myles, J.P.,
Hand, D.J.,
The Multi-Class Metric Problem in Nearest Neighbour Discrimination
Rules,
PR(23), No. 11, 1990, pp. 1291-1297.
Elsevier DOI
BibRef
9000
Patrick, E.A.[Edward A.],
The outcome advisor®,
PR(23), No. 12, 1990, pp. 1427-1439.
Elsevier DOI
0401
An outgrowth of statistical pattern recognition and the
Patrick-Fisher Generalized K-nearest Neighbor Decision Rule.
BibRef
Weiss, S.M.,
Small Sample Error Rate Estimation for K-NN Classifiers,
PAMI(13), No. 3, March 1991, pp. 285-289.
IEEE DOI
BibRef
9103
Buturovic, L.J.,
Improving k-nearest neighbor density and error estimates,
PR(26), No. 4, April 1993, pp. 611-616.
Elsevier DOI
0401
BibRef
Buturovic, L.J.,
Markovic, M.Z.,
Improving k-nearest neighbor Bayes error estimates,
ICPR92(II:470-473).
IEEE DOI
9208
BibRef
Smith, S.P.,
Threshold Validity for Mutual Neighborhood Clustering,
PAMI(15), No. 1, January 1993, pp. 89-92.
IEEE DOI Analysis of some of the problems in clustering.
BibRef
9301
Hattori, K.[Kazuo],
Torii, Y.[Yasunobu],
Effective algorithms for the nearest neighbor method in the clustering
problem,
PR(26), No. 5, May 1993, pp. 741-746.
Elsevier DOI
0401
BibRef
Hastie, T.,
Tibshirani, R.,
Discriminant Adaptive Nearest-Neighbor Classification,
PAMI(18), No. 6, June 1996, pp. 607-616.
IEEE DOI
9607
BibRef
Zakarauskas, P.,
Ozard, J.M.,
Complexity Analysis for Partitioning
Nearest-Neighbor Searching Algorithms,
PAMI(18), No. 6, June 1996, pp. 663-668.
IEEE DOI
9607
BibRef
Lu, G.W.,
Yu, F.T.S.,
Pattern-Classification Using a Joint Transform Correlator Based
Nearest-Neighbor Classifier,
OptEng(35), No. 8, August 1996, pp. 2162-2170.
9609
BibRef
Hamamoto, Y.,
Uchimura, S.,
Tomita, S.,
A Bootstrap Technique for Nearest-Neighbor Classifier Design,
PAMI(19), No. 1, January 1997, pp. 73-79.
IEEE DOI
9702
BibRef
Dasarathy, B.V.,
Nearest Unlike Neighbor (NUN):
An Aid to Decision Confidence Estimation,
OptEng(34), No. 9, September 1995, pp. 2785-2792.
BibRef
9509
Earlier:
Fuzzy Understanding of Neighborhoods with
Nearest Unlike Neighbor Sets,
SPIE(2493), Application of Fuzzy Logic Technology II, April 1995,
pp. 34-43.
BibRef
Dasarathy, B.V.,
Minimal Consistent Subset (MCS) Identification
for Optimal Nearest Neighbor Decision Systems Design,
SMC(24), No. 3, March 1994, pp. 511-517.
BibRef
9403
Dasarathy, B.V., and
Sheela, B.V.,
A Composite Classifier System
Design: Concepts and Methodology,
PIEEE(67), No. 5, May 1979, pp. 708-713.
BibRef
7905
Earlier:
Design of Composite Classifier
Systems in Imperfectly Supervised Environments,
PRIP79(71-78).
BibRef
Dasarathy, B.V.,
There Goes the Neighborhood: An ALIEN Identification Approach to
Recognition in Partially Exposed Environments,
ICPR80(91-93).
BibRef
8000
Stoica, I.,
A Time-Optimal Multiple-Query Nearest-Neighbor Algorithm on Meshes with
Multiple Broadcasting,
PRAI(9), 1995, pp. 663-677.
BibRef
9500
Vidal Ruiz, E.,
An Algorithm for Finding Nearest Neighbors in (Approximately)
Constant Time,
PRL(4), 1986, pp. 145-157.
BibRef
8600
Zeng, G.,
Dubes, R.C.,
A Test for Spatial Randomness Based on K-NN Distances,
PRL(3), 1985, pp. 85-91.
BibRef
8500
Zeng, G.Z.[Guang-Zhou],
Dubes, R.C.[Richard C.],
A comparison of tests for randomness,
PR(18), No. 2, 1985, pp. 191-198.
Elsevier DOI
0309
This paper compares five distance-based statistics (Hopkins,
Cox-Lewis, Eberhardt and two T-square statistics) which reflect the
degree to which a set of d-dimensional points is random.
BibRef
Miller, G.L.,
Teng, S.H.,
Thurston, W.,
Vavasis, S.A.,
Separators for Sphere-Packings and Nearest-Neighbor Graphs,
JACM(44), No. 1, January 1997, pp. 1-29.
9704
BibRef
van der Heiden, R.,
Groen, F.C.A.,
The Box-Cox Metric for Nearest-Neighbor Classification Improvement,
PR(30), No. 2, February 1997, pp. 273-279.
Elsevier DOI
9704
BibRef
And:
Correction:
PR(30), No. 7, July 1997, pp. 1251-1251.
BibRef
Decaestecker, C.[Christine],
Finding Prototypes for Nearest-Neighbor Classification by
Means of Gradient Descent and Deterministic Annealing,
PR(30), No. 2, February 1997, pp. 281-288.
Elsevier DOI
9704
BibRef
Paget, R.,
Longstaff, I.D.,
Extracting the Cliques from a Neighborhood System,
VISP(144), No. 3, June 1997, pp. 168-170.
9708
BibRef
Salvador-Sanchez, J.[Jose],
Pla, F.[Filiberto],
Ferri, F.J.[Francesc J.],
Prototype Selection for the Nearest-Neighbor Rule
Through Proximity Graphs,
PRL(18), No. 6, June 1997, pp. 507-513.
9710
BibRef
Earlier:
Using Geometric Information in Prototype Selection for the
Nearest Neighbour Rule,
BMVC96(Poster Session 1).
9608
Universitat Jaume I and Universitat de Valencia
BibRef
Salvador-Sanchez, J.[Jose],
Pla, F.[Filiberto],
Ferri, F.J.[Francesc J.],
Improving the k-NCN classification rule through heuristic modifications,
PRL(19), No. 13, November 1998, pp. 1165-1170.
BibRef
9811
Jozwik, A.,
Serpico, S.,
Roli, F.,
A Parallel Network of Modified 1-NN and K-NN Classifiers:
Application to Remote Sensing Image Classification,
PRL(19), No. 1, January 1998, pp. 57-62.
9807
BibRef
Chen, Z.M.[Zhen-Min],
van Ness, J.W.[John W.],
Characterizations of Nearest and Farthest Neighbor
Algorithms by Clustering Admissibility Conditions,
PR(31), No. 10, October 1998, pp. 1573-1578.
Elsevier DOI
9808
BibRef
Chen, Z.M.[Zhen-Min],
van Ness, J.W.[John W.],
Space-contracting, space-dilating, and positive admissible clustering
algorithms,
PR(27), No. 6, June 1994, pp. 853-857.
Elsevier DOI
0401
BibRef
Lipowezky, U.[Uri],
Selection of the optimal prototype subset for 1-NN classification,
PRL(19), No. 10, 31 August 1998, pp. 907-918.
BibRef
9808
Hattori, K.[Kazuo],
Takahashi, M.[Masahito],
A new nearest-neighbor rule in the pattern classification problem,
PR(32), No. 3, March 1999, pp. 425-432.
Elsevier DOI
BibRef
9903
Ricci, F.[Francesco],
Avesani, P.[Paolo],
Data Compression and Local Metrics for Nearest Neighbor Classification,
PAMI(21), No. 4, April 1999, pp. 380-384.
IEEE DOI
BibRef
9904
Bermejo, S.[Sergio],
Cabestany, J.[Joan],
Adaptive soft k-nearest-neighbour classifiers,
PR(33), No. 12, December 2000, pp. 1999-2005.
Elsevier DOI
0008
BibRef
And:
Abstract:
PR(32), No. 12, December 1999, pp. 2077-2079.
Elsevier DOI
BibRef
Hattori, K.[Kazuo],
Takahashi, M.[Masahito],
A new edited k-nearest neighbor rule in the pattern classification
problem,
PR(33), No. 3, March 2000, pp. 521-528.
Elsevier DOI
0001
BibRef
Kuncheva, L.I.[Ludmila I.],
Jain, L.C.[Lakhmi C.],
Nearest neighbor classifier: Simultaneous editing and feature selection,
PRL(20), No. 11-13, November 1999, pp. 1149-1156.
0001
BibRef
Ferrari, A.,
Borgatti, M.,
Guerrieri, R.,
A complete system for NN classification based on a VLSI array processor,
PR(33), No. 12, December 2000, pp. 2083-2093.
Elsevier DOI
0008
BibRef
Earlier:
A VLSI Array Processor Accelerator for K-NN Classification,
ICPR96(IV: 723-727).
IEEE DOI
9608
(Univ. di Bologna, I)
BibRef
Li, S.Z.[Stan Z.],
Chan, K.L.[Kap Luk],
Wang, C.L.[Chang-Liang],
Performance Evaluation of the Nearest Feature Line Method in Image
Classification and Retrieval,
PAMI(22), No. 11, November 2000, pp. 1335-1339.
IEEE DOI
0012
Retrieval.
BibRef
Zhou, Z.,
Li, S.Z.,
Chan, K.L.,
A Theoretical Justification of Nearest Feature Line Method,
ICPR00(Vol II: 759-762).
IEEE DOI
0009
BibRef
Paredes, R.[Roberto],
Vidal, E.[Enrique],
A class-dependent weighted dissimilarity measure for nearest neighbor
classification problems,
PRL(21), No. 12, November 2000, pp. 1027-1036.
0011
BibRef
Paredes, R.[Roberto],
Vidal, E.[Enrique],
Learning prototypes and distances: A prototype reduction technique
based on nearest neighbor error minimization,
PR(39), No. 2, February 2006, pp. 180-188.
Elsevier DOI
0512
BibRef
Earlier:
ICPR04(III: 442-445).
IEEE DOI
0409
BibRef
Earlier:
Weighting Prototypes: A New Editing Approach,
ICPR00(Vol II: 25-28).
IEEE DOI
0009
BibRef
Paredes, R.[Roberto],
Vidal, E.[Enrique],
Learning Weighted Metrics to Minimize Nearest-Neighbor Classification
Error,
PAMI(28), No. 7, July 2006, pp. 1100-1110.
IEEE DOI
0606
BibRef
Villegas, M.[Mauricio],
Paredes, R.[Roberto],
Score Fusion by Maximizing the Area under the ROC Curve,
IbPRIA09(473-480).
Springer DOI
0906
BibRef
Earlier:
Simultaneous learning of a discriminative projection and prototypes for
Nearest-Neighbor classification,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Liu, C.L.[Cheng-Lin],
Nakagawa, M.[Masaki],
Evaluation of prototype learning algorithms for nearest-neighbor
classifier in application to handwritten character recognition,
PR(34), No. 3, March 2001, pp. 601-615.
Elsevier DOI
0101
Evaluation.
Handwritten Characters.
BibRef
Pal, N.R.,
Ghosh, S.,
Some classification algorithms integrating Dempster-Shafer theory of
evidence with the rank nearest neighbor rules,
SMC-A(31), No. 1, January 2001, pp. 59-66.
IEEE Top Reference.
0104
BibRef
Singh, S.[Sameer],
Haddon, J.[John],
Markou, M.[Markos],
Nearest-neighbour classifiers in natural scene analysis,
PR(34), No. 8, August 2001, pp. 1601-1612.
Elsevier DOI
0105
BibRef
Nock, R.[Richard],
Sebban, M.[Marc],
An improved bound on the finite-sample risk of the
nearest neighbor rule,
PRL(22), No. 3-4, March 2001, pp. 407-412.
Elsevier DOI
0105
BibRef
Huang, Y.S.,
Chiang, C.C.,
Shieh, J.W.,
Grimson, W.E.L.,
Prototype optimization for nearest-neighbor classification,
PR(35), No. 6, June 2002, pp. 1237-1245.
Elsevier DOI
0203
BibRef
Earlier:
Constructing Optimized Prototypes for Nearest Neighbor Classifiers,
ICPR00(Vol II: 17-20).
IEEE DOI
0009
BibRef
Wu, Y.Q.[Ying-Quan],
Ianakiev, K.[Krassimir],
Govindaraju, V.[Venu],
Improved k-nearest neighbor classification,
PR(35), No. 10, October 2002, pp. 2311-2318.
Elsevier DOI
0206
BibRef
Ho, S.Y.[Shinn-Ying],
Liu, C.C.[Chia-Cheng],
Liu, S.[Soundy],
Design of an optimal nearest neighbor classifier using an intelligent
genetic algorithm,
PRL(23), No. 13, November 2002, pp. 1495-1503.
Elsevier DOI
0206
BibRef
Huang, X.L.[Xiao-Lu],
Zhu, Q.M.[Qiu-Ming],
A pseudo-nearest-neighbor approach for missing data recovery on
Gaussian random data sets,
PRL(23), No. 13, November 2002, pp. 1613-1622.
Elsevier DOI
0206
BibRef
Domeniconi, C.[Carlotta],
Peng, J.[Jing],
Gunopulos, D.[Dimitrios],
Locally Adaptive Metric Nearest-Neighbor Classification,
PAMI(24), No. 9, September 2002, pp. 1281-1285.
IEEE Abstract.
0209
BibRef
Earlier:
Adaptive Metric Nearest Neighbor Classification,
CVPR00(I: 517-522).
IEEE DOI
0005
BibRef
Domeniconi, C.,
Yan, B.[Bojun],
Nearest neighbor ensemble,
ICPR04(I: 228-231).
IEEE DOI
0409
BibRef
Zhang, P.,
Peng, J.,
Domeniconi, C.,
Kernel Pooled Local Subspaces for Classification,
SMC-B(35), No. 3, June 2005, pp. 489-502.
IEEE DOI
0508
BibRef
Yu, G.X.[Guo-Xian],
Zhang, G.J.[Guo-Ji],
Domeniconi, C.[Carlotta],
Yu, Z.W.[Zhi-Wen],
You, J.[Jane],
Semi-supervised classification based on random subspace dimensionality
reduction,
PR(45), No. 3, March 2012, pp. 1119-1135.
Elsevier DOI
1111
Graph construction; Semi-supervised classification; Random subspaces;
Dimensionality reduction; Ensembles of classifiers
BibRef
Peng, J.[Jing],
Heisterkamp, D.R.,
Dai, H.K.,
Adaptive quasiconformal kernel nearest neighbor classification,
PAMI(26), No. 5, May 2004, pp. 656-661.
IEEE Abstract.
0404
BibRef
Earlier:
Adaptive kernel metric nearest neighbor classification,
ICPR02(III: 33-36).
IEEE DOI
0211
BibRef
Martínez Hinarejos, C.D.,
Juan, A.,
Casacuberta, F.,
Median strings for k-nearest neighbour classification,
PRL(24), No. 1-3, January 2003, pp. 173-181.
Elsevier DOI
0211
BibRef
d'Haes, W.[Wim],
van Dyck, D.[Dirk],
Rodet, X.[Xavier],
PCA-based branch and bound search algorithms for computing K nearest
neighbors,
PRL(24), No. 9-10, June 2003, pp. 1437-1451.
Elsevier DOI
0304
BibRef
Kudo, M.[Mineichi],
Masuyama, N.[Naoto],
Toyama, J.[Jun],
Shimbo, M.[Masaru],
Simple termination conditions for k-nearest neighbor method,
PRL(24), No. 9-10, June 2003, pp. 1203-1213.
Elsevier DOI
0304
BibRef
Toyama, J.[Jun],
Kudo, M.[Mineichi],
Imai, H.[Hideyuki],
Probably correct k-nearest neighbor search in high dimensions,
PR(43), No. 4, April 2010, pp. 1361-1372.
Elsevier DOI
1002
Pattern recognition; The k-nearest neighbor method; Probably correct
algorithm; PAC framework
BibRef
Bressan, M.[Marco],
Vitrià, J.[Jordi],
Nonparametric discriminant analysis and nearest neighbor classification,
PRL(24), No. 15, November 2003, pp. 2743-2749.
Elsevier DOI
0308
BibRef
Masip, D.[David],
Vitrià, J.[Jordi],
Boosted discriminant projections for nearest neighbor classification,
PR(39), No. 2, February 2006, pp. 164-170.
Elsevier DOI
0512
BibRef
Pujol, O.[Oriol],
Masip, D.[David],
Geometry-Based Ensembles:
Toward a Structural Characterization of the Classification Boundary,
PAMI(31), No. 6, June 2009, pp. 1140-1146.
IEEE DOI
0904
Discriminative learning based on piece-wise linear approximation for
non-linear boundaries between clusters.
BibRef
Yen, C.W.[Chen-Wen],
Young, C.N.[Chieh-Neng],
Nagurka, M.L.[Mark L.],
A vector quantization method for nearest neighbor classifier design,
PRL(25), No. 6, 19 April 2004, pp. 725-731.
Elsevier DOI
0405
BibRef
Yang, C.Y.[Chan-Yun],
Chou, J.J.[Jui-Jen],
A comparative evaluation approach for the classification of rotifers
with modified non-parametric kNN,
IVC(23), No. 4, 1 April 2005, pp. 427-439.
Elsevier DOI
0501
BibRef
Prudent, Y.,
Ennaji, A.,
A K Nearest Classifier design,
ELCVIA(5), No. 2, 2005, pp. 58-71.
DOI Link
0506
BibRef
And:
A topology based multi-classifier system,
ICDAR05(II: 670-674).
IEEE DOI
0508
BibRef
Lozano, M.[Manuel],
Martínez Sotoca, J.[José],
Salvador Sánchez, J.,
Pla, F.,
Pekalska, E.,
Duin, R.P.W.,
Experimental study on prototype optimisation algorithms for
prototype-based classification in vector spaces,
PR(39), No. 10, October 2006, pp. 1827-1838.
Elsevier DOI
0606
Dissimilarity representation; Prototype selection; Adaptive condensing;
EM algorithm; Normal density based classifier; Nearest neighbour rule
BibRef
Veenman, C.J.[Cor J.],
Tax, D.M.J.[David M. J.],
LESS: A Model-Based Classifier for Sparse Subspaces,
PAMI(27), No. 9, September 2005, pp. 1496-1500.
IEEE DOI
0508
BibRef
Earlier:
A Weighted Nearest Mean Classifier for Sparse Subspaces,
CVPR05(II: 1171-1176).
IEEE DOI
0507
BibRef
Veenman, C.J.[Cor J.],
Reinders, M.J.T.[Marcel J.T.],
The Nearest Subclass Classifier: A Compromise between the Nearest Mean
and Nearest Neighbor Classifier,
PAMI(27), No. 9, September 2005, pp. 1417-1429.
IEEE DOI
0508
BibRef
Ghosh, A.K.,
Chaudhuri, P.,
Murthy, C.A.,
On Visualization and Aggregation of Nearest Neighbor Classifiers,
PAMI(27), No. 10, October 2005, pp. 1592-1602.
IEEE DOI
0509
In K-NN classifier, find the optimal K.
BibRef
Ghosh, A.K.,
Chaudhuri, P.,
Murthy, C.A.,
Multiscale Classification Using Nearest Neighbor Density Estimates,
SMC-B(36), No. 5, October 2006, pp. 1139-1148.
IEEE DOI
0609
BibRef
Wang, J.G.[Ji-Gang],
Neskovic, P.[Predrag],
Cooper, L.N.[Leon N.],
Neighborhood size selection in the k-nearest-neighbor rule using
statistical confidence,
PR(39), No. 3, March 2006, pp. 417-423.
Elsevier DOI
0601
BibRef
Chi, M.M.[Ming-Min],
Bruzzone, L.[Lorenzo],
An ensemble-driven k-NN approach to ill-posed classification problems,
PRL(27), No. 4, March 2006, pp. 301-307.
Elsevier DOI
0602
Ill-posed classification problems; Semisupervised classification;
Semilabeled samples; Ensemble methods;
Automatic classification; Remote sensing
BibRef
Bruzzone, L.[Lorenzo],
Chi, M.,
Marconcini, M.,
A Novel Transductive SVM for Semisupervised Classification of
Remote-Sensing Images,
GeoRS(44), No. 11, November 2006, pp. 3363-3373.
IEEE DOI
0611
BibRef
Chi, M.,
Bruzzone, L.,
Semisupervised Classification of Hyperspectral Images by SVMs Optimized
in the Primal,
GeoRS(45), No. 6, June 2007, pp. 1870-1880.
IEEE DOI
0706
BibRef
Inamdar, S.,
Bovolo, F.,
Bruzzone, L.[Lorenzo],
Chaudhuri, S.,
Multidimensional Probability Density Function Matching for
Preprocessing of Multitemporal Remote Sensing Images,
GeoRS(46), No. 4, April 2008, pp. 1243-1252.
IEEE DOI
0803
BibRef
Yang, C.[Chen],
Bruzzone, L.[Lorenzo],
Sun, F.,
Lu, L.J.[Lai-Jun],
Guan, R.C.[Ren-Chu],
Liang, Y.C.,
A Fuzzy-Statistics-Based Affinity Propagation Technique for Clustering
in Multispectral Images,
GeoRS(48), No. 6, June 2010, pp. 2647-2659.
IEEE DOI
1006
See also Fuzzy-Statistics-Based Principal Component Analysis (FS-PCA) Method for Multispectral Image Enhancement and Display, A.
BibRef
Yang, C.[Chen],
Bruzzone, L.[Lorenzo],
Guan, R.C.[Ren-Chu],
Lu, L.J.[Lai-Jun],
Liang, Y.C.,
Incremental and Decremental Affinity Propagation for Semisupervised
Clustering in Multispectral Images,
GeoRS(51), No. 3, March 2013, pp. 1666-1679.
IEEE DOI
1303
BibRef
Yang, C.[Chen],
Tan, Y.L.[Yu-Lei],
Bruzzone, L.[Lorenzo],
Lu, L.J.[Lai-Jun],
Guan, R.C.[Ren-Chu],
Discriminative Feature Metric Learning in the Affinity Propagation
Model for Band Selection in Hyperspectral Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Yang, C.[Chen],
Bruzzone, L.[Lorenzo],
Zhao, H.,
Tan, Y.[Yulei],
Guan, R.C.[Ren-Chu],
Superpixel-Based Unsupervised Band Selection for Classification of
Hyperspectral Images,
GeoRS(56), No. 12, December 2018, pp. 7230-7245.
IEEE DOI
1812
Hyperspectral imaging, Clustering algorithms, Image segmentation,
Redundancy, Correlation, Dimensionality reduction,
superpixel
BibRef
Zhao, H.[Haishi],
Bruzzone, L.[Lorenzo],
Guan, R.[Renchu],
Zhou, F.F.[Feng-Feng],
Yang, C.[Chen],
Spectral-Spatial Genetic Algorithm-Based Unsupervised Band Selection
for Hyperspectral Image Classification,
GeoRS(59), No. 11, November 2021, pp. 9616-9632.
IEEE DOI
2111
Genetic algorithms, Biological cells, Hyperspectral imaging,
Redundancy, Task analysis, Optimization, Genetics,
remote sensing superpixels
BibRef
Muezzinoglu, M.K.[Mehmet K.],
Zurada, J.M.[Jacek M.],
RBF-based neurodynamic nearest neighbor classification in real pattern
space,
PR(39), No. 5, May 2006, pp. 747-760.
Elsevier DOI Neurodynamics; Associative memory; Radial basis functions
0604
BibRef
Wang, H.[Hui],
Nearest Neighbors by Neighborhood Counting,
PAMI(28), No. 6, June 2006, pp. 942-953.
IEEE DOI
0605
BibRef
Wang, H.[Hui],
Neighborhood Counting Measure and Minimum Risk Metric,
PAMI(32), No. 4, April 2010, pp. 766-768.
IEEE DOI
1003
NCM based on counting all common neighborhoods in a data space.
Address comments in:
See also About Neighborhood Counting Measure Metric and Minimum Risk Metric.
BibRef
Argentini, A.[Andrea],
Blanzieri, E.[Enrico],
About Neighborhood Counting Measure Metric and Minimum Risk Metric,
PAMI(32), No. 4, April 2010, pp. 763-765.
IEEE DOI
1003
Comments on:
See also Nearest Neighbors by Neighborhood Counting. relating to efficiency of minimum risk metric.
BibRef
Huang, C.C.[Chi-Chun],
A novel gray-based reduced NN classification method,
PR(39), No. 11, November 2006, pp. 1979-1986.
Elsevier DOI
0608
Gray-based reduced NN classification method; Instance pruning;
Gray relational structure; Instance-based learning; Pattern classification
BibRef
Zhou, C.Y.[Chang Yin],
Chen, Y.Q.[Yan Qiu],
Improving nearest neighbor classification with cam weighted distance,
PR(39), No. 4, April 2006, pp. 635-645.
Elsevier DOI
0604
Cam distribution
BibRef
Gao, Q.B.[Qing-Bin],
Wang, Z.Z.[Zheng-Zhi],
Center-based nearest neighbor classifier,
PR(40), No. 1, January 2007, pp. 346-349.
Elsevier DOI
0611
Nearest feature line; Centered-based nearest neighbor; Computational biology
BibRef
Wang, J.G.[Ji-Gang],
Neskovic, P.[Predrag],
Cooper, L.N.[Leon N.],
Improving nearest neighbor rule with a simple adaptive distance measure,
PRL(28), No. 2, 15 January 2007, pp. 207-213.
Elsevier DOI
0611
Adaptive distance measure; Adaptive metric; Generalization error
BibRef
Fayed, H.A.[Hatem A.],
Hashem, S.R.[Sherif R.],
Atiya, A.F.[Amir F.],
Self-generating prototypes for pattern classification,
PR(40), No. 5, May 2007, pp. 1498-1509.
Elsevier DOI
0702
Prototype classifiers; Nearest neighbor; Learning vector quantization;
Self-generating neural trees; Gaussian mixture models
BibRef
Lin, D.[Dan],
Zhang, R.[Rui],
Zhou, A.[Aoying],
Indexing Fast Moving Objects for kNN Queries Based on Nearest Landmarks,
GeoInfo(10), No. 4, December 2006, pp. 423-445.
Springer DOI
0703
BibRef
Li, X.R.[Xiang-Ru],
Hu, Z.Y.[Zhan-Yi],
Wu, F.C.[Fu-Chao],
A note on the convergence of the mean shift,
PR(40), No. 6, June 2007, pp. 1756-1762.
Elsevier DOI
0704
Mean shift; Convergence; Local structure; Computer vision
See also Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, The.
BibRef
Manocha, S.,
Girolami, M.A.,
An empirical analysis of the probabilistic K-nearest neighbour
classifier,
PRL(28), No. 13, 1 October 2007, pp. 1818-1824.
Elsevier DOI
0709
K-nearest neighbour; Non-parametric classification;
Bayesian classification; Monte Carlo estimation
BibRef
Cui, J.T.[Jiang-Tao],
Zhou, S.S.[Shui-Sheng],
Sun, J.D.[Jun-Ding],
Efficient high-dimensional indexing by sorting principal component,
PRL(28), No. 16, December 2007, pp. 2412-2418.
Elsevier DOI
0711
High-dimensional indexing; Vector approximation;
k-Nearest neighbor search; Principal component sorting; B+-tree
BibRef
Cui, J.T.[Jiang-Tao],
An, Z.Y.[Zhi-Yong],
Guo, Y.[Yong],
Zhou, S.S.[Shui-Sheng],
Efficient nearest neighbor query based on extended B+-tree in
high-dimensional space,
PRL(31), No. 12, 1 September 2010, pp. 1740-1748.
Elsevier DOI
1008
k-Nearest neighbor search; High-dimensional indexing; One-dimensional
mapping; Principal Component Analysis
BibRef
Samet, H.[Hanan],
K-Nearest Neighbor Finding Using MaxNearestDist,
PAMI(30), No. 2, February 2008, pp. 243-252.
IEEE DOI
0712
BibRef
Earlier:
Depth-first K-nearest neighbor finding using the MaxNearestDist
estimator,
CIAP03(486-491).
IEEE DOI
0310
BibRef
Blanzieri, E.,
Melgani, F.,
Nearest Neighbor Classification of Remote Sensing Images With the
Maximal Margin Principle,
GeoRS(46), No. 6, June 2008, pp. 1804-1811.
IEEE DOI
0711
BibRef
Samaniego, L.,
Bardossy, A.,
Schulz, K.,
Supervised Classification of Remotely Sensed Imagery Using a Modified
k-NN Technique,
GeoRS(46), No. 7, July 2008, pp. 2112-2125.
IEEE DOI
0806
BibRef
Samaniego, L.,
Schulz, K.,
Supervised Classification of Agricultural Land Cover Using a Modified
k-NN Technique (MNN) and Landsat Remote Sensing Imagery,
RS(1), No. 4, December 2009, pp. 875-895.
DOI Link
1203
BibRef
Babu, V.S.[V. Suresh],
Viswanath, P.,
Rough-fuzzy weighted k-nearest leader classifier for large data sets,
PR(42), No. 9, September 2009, pp. 1719-1731.
Elsevier DOI
0905
BibRef
Earlier:
Weighted k-Nearest Leader Classifier for Large Data Sets,
PReMI07(17-24).
Springer DOI
0712
k-NNC; Rough-fuzzy sets; Leaders-subleaders; Bayes classifier and RF-wk-NLC
BibRef
Li, Y.[Yun],
Lu, B.L.[Bao-Liang],
Feature selection based on loss-margin of nearest neighbor
classification,
PR(42), No. 9, September 2009, pp. 1914-1921.
Elsevier DOI
0905
BibRef
Earlier:
Feature Selection for Identifying Critical Variables of Principal
Components Based on K-Nearest Neighbor Rule,
Visual07(193-204).
Springer DOI
0706
Feature selection; Loss function; Margin; Energy-based model
BibRef
Cervantes, A.,
Galvan, I.M.,
Isasi, P.,
AMPSO: A New Particle Swarm Method for Nearest Neighborhood
Classification,
SMC-B(39), No. 5, October 2009, pp. 1082-1091.
IEEE DOI
0906
BibRef
Kondo, K.[Kazuki],
Hotta, S.[Seiji],
Color Image Classification Using Block Matching and Learning,
IEICE(E92-D), No. 7, July 2009, pp. 1484-1487.
WWW Link.
0907
BibRef
And:
Color Image Classification Using Locally Linear Manifolds and Learning,
MVA09(203-).
PDF File.
0905
partition into blocks, classification based on block evaluation.
BibRef
Kikuchi, K.[Kei],
Hotta, S.[Seiji],
Voting Based Video Classification Using Clustering and Learning,
MVA09(227-).
PDF File.
0905
BibRef
Mary-Huard, T.[Tristan],
Robin, S.[Stephane],
Tailored Aggregation for Classification,
PAMI(31), No. 11, November 2009, pp. 2098-2105.
IEEE DOI
0910
Improve kNN classification.
BibRef
Yu, C.[Cui],
Zhang, R.[Rui],
Huang, Y.C.[Yao-Chun],
Xiong, H.[Hui],
High-dimensional kNN joins with incremental updates,
GeoInfo(14), No. 1, January 2010, pp. xx-yy.
Springer DOI
1001
BibRef
Marchiori, E.[Elena],
Class Conditional Nearest Neighbor for Large Margin Instance Selection,
PAMI(32), No. 2, February 2010, pp. 364-370.
IEEE DOI
1001
To improve NN techniques.
BibRef
Lee, H.S.[Hee-Sung],
Hong, S.J.[Sung-Jun],
Nizami, I.F.[Imran Fareed],
Kim, E.T.[Eun-Tai],
An efficient design of a nearest neighbor classifier for various-scale
problems,
PRL(31), No. 9, 1 July 2010, pp. 1020-1027.
Elsevier DOI
1004
Genetic algorithm; Nearest neighbor; Editing for the NN; Feature selection
BibRef
Ding, J.D.[Jun-Di],
Ma, R.N.[Ru-Ning],
Yang, J.Y.[Jing-Yu],
Chen, S.C.[Song-Can],
A tree-structured framework for purifying 'complex' clusters with
structural roles of individual data,
PR(43), No. 11, November 2010, pp. 3753-3767.
Elsevier DOI
1008
Clustering; Image segmentation; k-neighborhood; Reverse
k-neighborhood; Structural objects; Symmetric neighborhood
BibRef
Shibata, T.[Tomoyuki],
Wada, T.[Toshikazu],
K-D Decision Tree:
An Accelerated and Memory Efficient Nearest Neighbor Classifier,
IEICE(E93-D), No. 7, July 2010, pp. 1670-1681.
WWW Link.
1008
BibRef
Shibata, T.[Tomoyuki],
Kubota, S.[Susumu],
Ito, S.[Satoshi],
Large Margin Discriminant Hashing for Fast k-Nearest Neighbor
Classification,
ICPR10(1015-1018).
IEEE DOI
1008
BibRef
Shibata, T.[Tomoyuki],
Yamaguchi, O.[Osamu],
Local Fisher Discriminant Component Hashing for Fast Nearest Neighbor
Classification,
SSPR08(339-349).
Springer DOI
0812
BibRef
Yang, H.L.,
Crawford, M.M.,
Spectral and Spatial Proximity-Based Manifold Alignment for
Multitemporal Hyperspectral Image Classification,
GeoRS(54), No. 1, January 2016, pp. 51-64.
IEEE DOI
1601
geophysical image processing
BibRef
Khelifi, F.,
Jiang, J.,
K-NN Regression to Improve Statistical Feature Extraction for
Texture Retrieval,
IP(20), No. 1, January 2011, pp. 293-298.
IEEE DOI
1101
BibRef
Triguero, I.[Isaac],
Garcia, S.[Salvador],
Herrera, F.[Francisco],
Differential evolution for optimizing the positioning of prototypes in
nearest neighbor classification,
PR(44), No. 4, April 2011, pp. 901-916.
Elsevier DOI
1101
Differential evolution; Prototype generation; Prototype selection;
Evolutionary algorithms; Classification
BibRef
Triguero, I.[Isaac],
Derrac, J.,
Garcia, S.[Salvador],
Herrera, F.[Francisco],
A Taxonomy and Experimental Study on Prototype Generation for Nearest
Neighbor Classification,
SMC-C(42), No. 1, January 2012, pp. 86-100.
IEEE DOI
1112
BibRef
Garcia, S.[Salvador],
Derrac, J.[Joaquin],
Cano, J.[Jose],
Herrera, F.[Francisco],
Prototype Selection for Nearest Neighbor Classification: Taxonomy and
Empirical Study,
PAMI(34), No. 3, March 2012, pp. 417-435.
IEEE DOI
1201
BibRef
Derrac, J.[Joaquin],
Triguero, I.[Isaac],
Garcia, S.[Salvador],
Herrera, F.[Francisco],
Integrating Instance Selection, Instance Weighting, and Feature
Weighting for Nearest Neighbor Classifiers by Coevolutionary Algorithms,
SMC-B(42), No. 5, October 2012, pp. 1383-1397.
IEEE DOI
1209
BibRef
Wang, Z.X.[Zheng-Xiang],
Hu, Y.Q.[Yi-Qun],
Chia, L.T.[Liang-Tien],
Improved learning of I2C distance and accelerating the neighborhood
search for image classification,
PR(44), No. 10-11, October-November 2011, pp. 2384-2394.
Elsevier DOI
1101
Image-to-class distance; Distance learning; Image classification;
Nearest-neighbor classification
BibRef
Uchida, Y.[Yusuke],
Takagi, K.[Koichi],
Kawada, R.[Ryoichi],
Quantization-Based Approximate Nearest Neighbor Search with Optimized
Multiple Residual Codebooks,
IEICE(E94-D), No. 7, July 2011, pp. 1510-1514.
WWW Link.
1107
BibRef
Neo, T.K.C.[Toh Koon Charlie],
Ventura, D.[Dan],
A direct boosting algorithm for the k-nearest neighbor classifier via
local warping of the distance metric,
PRL(33), No. 1, 1 January 2012, pp. 92-102.
Elsevier DOI
1112
Classification; k-NN; Boosting; Distance measures
BibRef
Bhattacharya, G.[Gautam],
Ghosh, K.[Koushik],
Chowdhury, A.S.[Ananda S.],
An affinity-based new local distance function and similarity measure
for kNN algorithm,
PRL(33), No. 3, 1 February 2012, pp. 356-363.
Elsevier DOI
1201
kNN; Affinity function; Similarity measure
BibRef
Bhattacharya, G.[Gautam],
Ghosh, K.[Koushik],
Chowdhury, A.S.[Ananda S.],
Outlier detection using neighborhood rank difference,
PRL(60-61), No. 1, 2015, pp. 24-31.
Elsevier DOI
1506
Outlier
BibRef
Bhattacharya, G.[Gautam],
Ghosh, K.[Koushik],
Chowdhury, A.S.[Ananda S.],
Granger Causality Driven AHP for Feature Weighted kNN,
PR(66), No. 1, 2017, pp. 425-436.
Elsevier DOI
1704
BibRef
Earlier:
Test Point Specific k Estimation for kNN Classifier,
ICPR14(1478-1483)
IEEE DOI
1412
KNN Classification.
Accuracy
BibRef
Song, Q.B.[Qin-Bao],
Wang, G.T.[Guang-Tao],
Wang, C.[Chao],
Automatic recommendation of classification algorithms based on data set
characteristics,
PR(45), No. 7, July 2012, pp. 2672-2689.
Elsevier DOI
1203
Classification algorithm automatic recommendation; Classification;
Data set characteristics extraction; Algorithm performance; k-Nearest
Neighbors
BibRef
Ghosh, A.K.[Anil K.],
A probabilistic approach for semi-supervised nearest neighbor
classification,
PRL(33), No. 9, 1 July 2012, pp. 1127-1133.
Elsevier DOI
1202
Bayesian model averaging; Cross-validation; Likelihood function; Markov
Chain Monte Carlo; Misclassification rate; Transductive learning
BibRef
Pal, A.K.[Arnab K.],
Mondal, P.K.[Pronoy K.],
Ghosh, A.K.[Anil K.],
High dimensional nearest neighbor classification based on mean
absolute differences of inter-point distances,
PRL(74), No. 1, 2016, pp. 1-8.
Elsevier DOI
1604
Bayes risk
BibRef
Zhang, N.[Nan],
Yang, J.[Jian],
Qian, J.J.[Jian-Jun],
Component-based global k-NN classifier for small sample size problems,
PRL(33), No. 13, 1 October 2012, pp. 1689-1694.
Elsevier DOI
1208
k-NN classifier; LRC; SRC; Tikhonov regularization; Pattern
classification
BibRef
Sáez, J.A.[José A.],
Luengo, J.[Julián],
Herrera, F.[Francisco],
Predicting noise filtering efficacy with data complexity measures for
nearest neighbor classification,
PR(46), No. 1, January 2013, pp. 355-364.
Elsevier DOI
1209
Classification; Noisy data; Noise filtering; Data complexity measures;
Nearest neighbor
BibRef
Sáez, J.A.[José A.],
Derrac, J.[Joaquín],
Luengo, J.[Julián],
Herrera, F.[Francisco],
Statistical computation of feature weighting schemes through data
estimation for nearest neighbor classifiers,
PR(47), No. 12, 2014, pp. 3941-3948.
Elsevier DOI
1410
Feature weighting
BibRef
Nock, R.[Richard],
Piro, P.[Paolo],
Nielsen, F.[Frank],
Ali, W.B.H.[Wafa Bel Haj],
Barlaud, M.[Michel],
Boosting k-NN for Categorization of Natural Scenes,
IJCV(100), No. 3, December 2012, pp. 294-314.
WWW Link.
1210
BibRef
Earlier: A2, A1, A3, A5, Only:
Multi-class Leveraged k-NN for Image Classification,
ACCV10(III: 67-81).
Springer DOI
1011
See also Boosting Bayesian MAP Classification.
BibRef
Ali, W.B.H.[Wafa Bel Haj],
Nock, R.[Richard],
Barlaud, M.[Michel],
Boosting Stochastic Newton with Entropy Constraint for Large-Scale
Image Classification,
ICPR14(232-237)
IEEE DOI
1412
Accuracy;Boosting;Convergence;Entropy;Minimization;Training;Vectors
BibRef
Mateos-García, D.[Daniel],
García-Gutiérrez, J.[Jorge],
Riquelme-Santos, J.C.[José C.],
On the evolutionary optimization of k-NN by label-dependent feature
weighting,
PRL(33), No. 16, 1 December 2012, pp. 2232-2238.
Elsevier DOI
1210
Feature weighting; Evolutionary computation; Label dependency
BibRef
Trzcinski, T.[Tomasz],
Lepetit, V.[Vincent],
Fua, P.[Pascal],
Thick boundaries in binary space and their influence on
nearest-neighbor search,
PRL(33), No. 16, 1 December 2012, pp. 2173-2180.
Elsevier DOI
1210
Approximate nearest neighbor search; Binary vectors; Locality sensitive
hashing; Hierarchical k-means
BibRef
Barranquero, J.[Jose],
González, P.[Pablo],
Díez, J.[Jorge],
del Coz, J.J.[Juan José],
On the study of nearest neighbor algorithms for prevalence estimation
in binary problems,
PR(46), No. 2, February 2013, pp. 472-482.
Elsevier DOI
1210
Quantification; Prevalence estimation; Nearest neighbor; Methodology
BibRef
Liu, Z.G.[Zhun-Ga],
Pan, Q.[Quan],
Dezert, J.[Jean],
A new belief-based K-nearest neighbor classification method,
PR(46), No. 3, March 2013, pp. 834-844.
Elsevier DOI
1212
K-nearest neighbor; Data classification; Belief functions; DST; Credal
classification
BibRef
Liu, Z.G.[Zhun-Ga],
Pan, Q.[Quan],
Dezert, J.[Jean],
Martin, A.[Arnaud],
Adaptive imputation of missing values for incomplete pattern
classification,
PR(52), No. 1, 2016, pp. 85-95.
Elsevier DOI
1601
Belief function
BibRef
Liu, Z.G.[Zhun-Ga],
Pan, Q.[Quan],
Dezert, J.[Jean],
Mercier, G.[Grégoire],
Credal classification rule for uncertain data based on belief
functions,
PR(47), No. 7, 2014, pp. 2532-2541.
Elsevier DOI
1404
Credal classification
BibRef
Waqas, J.[Jadoon],
Yi, Z.[Zhang],
Zhang, L.[Lei],
Collaborative neighbor representation based classification using
L_2-minimization approach,
PRL(34), No. 2, 15 January 2013, pp. 201-208.
Elsevier DOI
1212
Sparse representation; Collaborative representation; Pattern
classification; Nearest neighbor representation; Face recognition
BibRef
Cai, S.,
Zhang, L.,
Zuo, W.,
Feng, X.,
A Probabilistic Collaborative Representation Based Approach for
Pattern Classification,
CVPR16(2950-2959)
IEEE DOI
1612
BibRef
Acha, B.,
Serrano, C.,
Fondon, I.,
Gomez-Cia, T.,
Burn Depth Analysis Using Multidimensional Scaling Applied to
Psychophysical Experiment Data,
MedImg(32), No. 6, 2013, pp. 1111-1120.
IEEE DOI
1307
k-nearest neighbor (k-NN) classifier
BibRef
Pelillo, M.[Marcello],
Alhazen and the nearest neighbor rule,
PRL(38), No. 1, 2014, pp. 34-37.
Elsevier DOI
1402
Alhazen
BibRef
Wells, J.R.[Jonathan R.],
Ting, K.M.[Kai Ming],
Washio, T.[Takashi],
LiNearN: A new approach to nearest neighbour density estimator,
PR(47), No. 8, 2014, pp. 2702-2720.
Elsevier DOI
1405
k-nearest neighbour
BibRef
Shen, X.H.[Xiao-Hui],
Lin, Z.[Zhe],
Brandt, J.[Jonathan],
Wu, Y.[Ying],
Spatially-Constrained Similarity Measure for Large-Scale Object
Retrieval,
PAMI(36), No. 6, June 2014, pp. 1229-1241.
IEEE DOI
1406
Feature extraction
BibRef
Shen, X.H.[Xiao-Hui],
Lin, Z.[Zhe],
Brandt, J.[Jonathan],
Avidan, S.[Shai],
Wu, Y.[Ying],
Object retrieval and localization with spatially-constrained similarity
measure and k-NN re-ranking,
CVPR12(3013-3020).
IEEE DOI
1208
BibRef
Vikjord, V.V.[Vidar V.],
Jenssen, R.[Robert],
Information theoretic clustering using a k-nearest neighbors approach,
PR(47), No. 9, 2014, pp. 3070-3081.
Elsevier DOI
1406
Clustering
BibRef
Li, Z.S.[Zi-Sheng],
Ding, G.[Guofu],
Li, R.[Rong],
Qin, S.F.[Sheng-Feng],
A new extracting algorithm of k nearest neighbors searching for point
clouds,
PRL(49), No. 1, 2014, pp. 162-170.
Elsevier DOI
1410
kNN searching algorithm
BibRef
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Iterative Nearest Neighbors,
PR(48), No. 1, 2015, pp. 60-72.
Elsevier DOI
1410
BibRef
Earlier:
Iterative Nearest Neighbors for classification and dimensionality
reduction,
CVPR12(2456-2463).
IEEE DOI
1208
Iterative Nearest Neighbors
See also Adaptive and Weighted Collaborative Representations for image classification.
BibRef
Timofte, R.[Radu],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Naive Bayes Image Classification: Beyond Nearest Neighbors,
ACCV12(I:689-703).
Springer DOI
1304
BibRef
Rematas, K.[Konstantinos],
Fritz, M.[Mario],
Tuytelaars, T.[Tinne],
The Pooled NBNN Kernel: Beyond Image-to-Class and Image-to-Image,
ACCV12(I:176-189).
Springer DOI
1304
BibRef
Houle, M.E.[Michael E.],
Ma, X.G.[Xi-Guo],
Oria, V.[Vincent],
Sun, J.C.[Ji-Chao],
Improving the quality of K-NN graphs through vector sparsification:
application to image databases,
MultInfoRetr(3), No. 4, November 2014, pp. 259-274.
Springer DOI
1411
K-nearest neighbor for retrieval.
BibRef
Houle, M.E.,
Nett, M.,
Rank-Based Similarity Search: Reducing the Dimensional Dependence,
PAMI(37), No. 1, January 2015, pp. 136-150.
IEEE DOI
1412
a data structure for k-NN search, the Rank Cover Tree (RCT).
Approximation methods
BibRef
Giordano, D.,
Kavasidis, I.,
Palazzo, S.,
Spampinato, C.,
Nonparametric label propagation using mutual local similarity in
nearest neighbors,
CVIU(131), No. 1, 2015, pp. 116-127.
Elsevier DOI
1412
Big data
BibRef
Ritter, G.X.[Gerhard X.],
Nieves-Vázquez, J.A.[José-A.],
Urcid, G.[Gonzalo],
A simple statistics-based nearest neighbor cluster detection
algorithm,
PR(48), No. 3, 2015, pp. 918-932.
Elsevier DOI
1412
Clusters
BibRef
Calvo-Zaragoza, J.[Jorge],
Valero-Mas, J.J.[Jose J.],
Rico-Juan, J.R.[Juan R.],
Improving kNN multi-label classification in Prototype Selection
scenarios using class proposals,
PR(48), No. 5, 2015, pp. 1608-1622.
Elsevier DOI
1502
BibRef
And:
Prototype Generation on Structural Data Using Dissimilarity Space
Representation: A Case of Study,
IbPRIA15(75-82).
Springer DOI
1506
K-Nearest Neighbor
BibRef
Valero-Mas, J.J.[Jose J.],
Calvo-Zaragoza, J.[Jorge],
Rico-Juan, J.R.[Juan R.],
Iñesta, J.M.[José M.],
A Study of Prototype Selection Algorithms for Nearest Neighbour in
Class-Imbalanced Problems,
IbPRIA17(335-343).
Springer DOI
1706
BibRef
Bourrier, A.[Anthony],
Perronnin, F.[Florent],
Gribonval, R.[Rémi],
Pérez, P.[Patrick],
Jégou, H.[Hervé],
Explicit Embeddings for Nearest Neighbor Search with Mercer Kernels,
JMIV(52), No. 3, July 2015, pp. 459-468.
Springer DOI
1506
BibRef
Xiao, C.,
Chaovalitwongse, W.A.,
Optimization Models for Feature Selection of Decomposed Nearest
Neighbor,
SMCS(46), No. 2, February 2016, pp. 177-184.
IEEE DOI
1601
Convex functions
BibRef
Liu, X.L.[Xiang-Long],
Deng, C.[Cheng],
Lang, B.[Bo],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search,
IP(25), No. 2, February 2016, pp. 907-919.
IEEE DOI
1601
Boosting
BibRef
Liu, X.L.[Xiang-Long],
Huang, L.,
Deng, C.[Cheng],
Lang, B.,
Tao, D.C.[Da-Cheng],
Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual
Search,
IP(25), No. 10, October 2016, pp. 4514-4524.
IEEE DOI
1610
file organisation
BibRef
Liu, X.L.[Xiang-Long],
Li, Z.J.[Zhu-Jin],
Deng, C.[Cheng],
Tao, D.C.[Da-Cheng],
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor
Search,
IP(26), No. 11, November 2017, pp. 5324-5336.
IEEE DOI
1709
approximation theory, cryptography,
distributed adaptive binary quantization,
fast nearest neighbor search, hashing method,
optimization, Binary codes, Encoding,
Hypercubes, Nearest neighbor searches, Prototypes,
Training, Locality-sensitive hashing,
distributed learning, nearest neighbor search,
BibRef
Liu, X.L.[Xiang-Long],
Huang, L.,
Deng, C.[Cheng],
Lu, J.,
Lang, B.,
Multi-View Complementary Hash Tables for Nearest Neighbor Search,
ICCV15(1107-1115)
IEEE DOI
1602
Binary codes
BibRef
Yu, Z.,
Chen, H.,
Liu, J.,
You, J.,
Leung, H.,
Han, G.,
Hybrid k-Nearest Neighbor Classifier,
Cyber(46), No. 6, June 2016, pp. 1263-1275.
IEEE DOI
1605
Computational efficiency
BibRef
Zhu, Q.S.[Qing-Sheng],
Feng, J.[Ji],
Huang, J.L.[Jin-Long],
Natural neighbor:
A self-adaptive neighborhood method without parameter K,
PRL(80), No. 1, 2016, pp. 30-36.
Elsevier DOI
1609
Nearest neighbor
BibRef
Datta, S.[Shounak],
Misra, D.[Debaleena],
Das, S.[Swagatam],
A feature weighted penalty based dissimilarity measure for k-nearest
neighbor classification with missing features,
PRL(80), No. 1, 2016, pp. 231-237.
Elsevier DOI
1609
kNN classifier
BibRef
Verdoliva, L.,
Cozzolino, D.,
Poggi, G.,
A Reliable Order-Statistics-Based Approximate Nearest Neighbor Search
Algorithm,
IP(26), No. 1, January 2017, pp. 237-250.
IEEE DOI
1612
computer vision
BibRef
Gallego, A.J.[Antonio-Javier],
Calvo-Zaragoza, J.[Jorge],
Valero-Mas, J.J.[Jose J.],
Rico-Juan, J.R.[Juan R.],
Clustering-based k-nearest neighbor classification for large-scale
data with neural codes representation,
PR(74), No. 1, 2018, pp. 531-543.
Elsevier DOI
1711
Efficient, kNN, classification
BibRef
Myhre, J.N.[Jonas Nordhaug],
Mikalsen, K.Ø.[Karl Øyvind],
Løkse, S.[Sigurd],
Jenssen, R.[Robert],
Robust clustering using a kNN mode seeking ensemble,
PR(76), No. 1, 2018, pp. 491-505.
Elsevier DOI
1801
BibRef
Earlier:
Consensus Clustering Using kNN Mode Seeking,
SCIA15(175-186).
Springer DOI
1506
Density based clustering
BibRef
Shi, B.[Bing],
Han, L.X.[Li-Xin],
Yan, H.[Hong],
Adaptive clustering algorithm based on kNN and density,
PRL(104), 2018, pp. 37-44.
Elsevier DOI
1804
NN, SR, Density, Adaptive, Clustering
BibRef
Zhang, S.C.[Shi-Chao],
Cheng, D.[Debo],
Deng, Z.[Zhenyun],
Zong, M.[Ming],
Deng, X.[Xuelian],
A novel kNN algorithm with data-driven k parameter computation,
PRL(109), 2018, pp. 44-54.
Elsevier DOI
1806
kNN method, kNN prediction, Parameter computation
BibRef
López, J.[Julio],
Maldonado, S.[Sebastián],
Redefining nearest neighbor classification in high-dimensional
settings,
PRL(110), 2018, pp. 36-43.
Elsevier DOI
1806
Nearest neighbor classification, High-dimensional datasets, Distance metrics
BibRef
Chen, S.B.[Si-Bao],
Xu, Y.L.[Yu-Lan],
Ding, C.H.Q.[Chris H.Q.],
Luo, B.[Bin],
A Nonnegative Locally Linear KNN model for image recognition,
PR(83), 2018, pp. 78-90.
Elsevier DOI
1808
Sparse minimization, Nonnegative, Locally linear KNN,
Robustness, Image recognition
BibRef
Zhang, Y.Q.[You-Qiang],
Cao, G.[Guo],
Wang, B.S.[Bi-Sheng],
Li, X.S.[Xue-Song],
A novel ensemble method for k-nearest neighbor,
PR(85), 2019, pp. 13-25.
Elsevier DOI
1810
Distance metric, -nearest neighbor, Ensemble learning,
Random subspace, Evidence theory
BibRef
Ghanem, S.,
Krim, H.,
Clouse, H.S.,
Sakla, W.,
Metric Driven Classification: A Non-Parametric Approach Based on the
Henze-Penrose Test Statistic,
IP(27), No. 12, December 2018, pp. 5947-5956.
IEEE DOI
1810
Probability density function, Training data, Feature extraction,
Electric variables measurement, Force measurement,
pattern recognition
BibRef
Ghanem, S.,
Skau, E.,
Krim, H.,
Clouse, H.S.,
Sakla, W.,
Non-parametric bounds on the nearest neighbor classification accuracy
based on the Henze-Penrose metric,
ICIP16(1364-1368)
IEEE DOI
1610
Feature extraction
BibRef
Zheng, C.Y.[Cheng-Yong],
Wang, N.N.[Ning-Ning],
Collaborative representation with k-nearest classes for
classification,
PRL(117), 2019, pp. 30-36.
Elsevier DOI
1901
-nearest classes, Collaborative representation, Classification
BibRef
Maraziotis, I.A.[Ioannis A.],
Perantonis, S.[Stavros],
Dragomir, A.[Andrei],
Thanos, D.[Dimitris],
K-Nets: Clustering through nearest neighbors networks,
PR(88), 2019, pp. 470-481.
Elsevier DOI
1901
BibRef
Liu, H.[Hong],
Ji, R.R.[Rong-Rong],
Wang, J.D.[Jing-Dong],
Shen, C.H.[Chun-Hua],
Ordinal Constraint Binary Coding for Approximate Nearest Neighbor
Search,
PAMI(41), No. 4, April 2019, pp. 941-955.
IEEE DOI
1903
Hashing.
Binary codes, Tensile stress, Optimization, Measurement,
Quantization (signal), Manifolds, Encoding, Binary code learning,
discrete optimization
BibRef
Kurdziel, M.[Marcin],
Boryczko, K.[Krzysztof],
Neighbor-rank densities for non-metric data,
PRL(128), 2019, pp. 306-310.
Elsevier DOI
1912
Density measures, Nearest neighbor ranks, Non-metric data
BibRef
Chiu, C.Y.[Chih-Yi],
Markchit, S.[Sarawut],
Effective and efficient indexing in cross-modal hashing-based
datasets,
SP:IC(80), 2020, pp. 115650.
Elsevier DOI
1912
Binary embedding, Cross-modal retrieval, Inverted indexing,
Learning to rank, Nearest neighbor search
BibRef
Tang, B.[Bo],
He, H.B.[Hai-Bo],
Zhang, S.[Song],
MCENN: A variant of extended nearest neighbor method for pattern
recognition,
PRL(133), 2020, pp. 116-122.
Elsevier DOI
2005
Extended nearest neighbor, Distance metric learning,
Intra-class coherence, Classification
BibRef
Abu-Aisheh, Z.[Zeina],
Raveaux, R.[Romain],
Ramel, J.Y.[Jean-Yves],
Efficient k-nearest neighbors search in graph space,
PRL(134), 2020, pp. 77-86.
Elsevier DOI
2005
Graph classification, Graph Edit Distance, K-Nearest Neighbors,
Branch-and-Bound, Optimization
BibRef
Ma, J.L.[Jun-Liang],
Xiao, B.[Bing],
Deng, C.[Cheng],
Graph based semi-supervised classification with probabilistic nearest
neighbors,
PRL(133), 2020, pp. 94-101.
Elsevier DOI
2005
Graph construction, Probabilistic nearest neighbors,
Probability transition matrix, Semi-supervised classification
BibRef
Eghbali, S.[Sepehr],
Ashtiani, H.[Hassan],
Tahvildari, L.[Ladan],
Online Nearest Neighbor Search Using Hamming Weight Trees,
PAMI(42), No. 7, July 2020, pp. 1729-1740.
IEEE DOI
2006
Nearest neighbor search, binary codes, sublinear search,
tree search, Hamming Weight
BibRef
Hong, W.X.[Wei-Xiang],
Tang, X.Y.[Xue-Yan],
Meng, J.J.[Jing-Jing],
Yuan, J.S.[Jun-Song],
Asymmetric Mapping Quantization for Nearest Neighbor Search,
PAMI(42), No. 7, July 2020, pp. 1783-1790.
IEEE DOI
2006
Vector quantization, nearest neighbour search, image retrieval,
distributed optimization
BibRef
Jia, B.B.[Bin-Bin],
Zhang, M.L.[Min-Ling],
Multi-dimensional classification via kNN feature augmentation,
PR(106), 2020, pp. 107423.
Elsevier DOI
2006
Machine learning, Multi-dimensional classification,
Feature augmentation, Class dependencies
BibRef
Aguilera, J.[Juan],
González, L.C.[Luis C.],
Montes-y-Gómez, M.[Manuel],
López, R.[Roberto],
Escalante, H.J.[Hugo J.],
From neighbors to strengths-the k-strongest strengths (kSS)
classification algorithm,
PRL(136), 2020, pp. 301-308.
Elsevier DOI
2008
Classification problems, k-Nearest neighbor, Gravitational force
BibRef
Li, H.G.[Hong-Gui],
1D representation of Laplacian eigenmaps and dual k-nearest neighbours
for unified video coding,
IET-IPR(14), No. 10, August 2020, pp. 2156-2165.
DOI Link
2008
BibRef
Abbas, M.[Mohamed],
El-Zoghabi, A.[Adel],
Shoukry, A.[Amin],
DenMune: Density peak based clustering using mutual nearest neighbors,
PR(109), 2021, pp. 107589.
Elsevier DOI
2009
Clustering, Mutual neighbors, Dimensionality reduction,
Arbitrary shapes, Nearest neighbors, Density peak
BibRef
Cariou, C.[Claude],
Le Moan, S.[Steven],
Chehdi, K.[Kacem],
Improving K-Nearest Neighbor Approaches for Density-Based Pixel
Clustering in Hyperspectral Remote Sensing Images,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Rastin, N.[Niloofar],
Jahromi, M.Z.[Mansoor Zolghadri],
Taheri, M.[Mohammad],
A generalized weighted distance k-Nearest Neighbor for multi-label
problems,
PR(114), 2021, pp. 107526.
Elsevier DOI
2103
Multi-label classification, Binary relevance, Nearest neighbor,
Adaptive distance measure, Prototype weighting
BibRef
André, F.[Fabien],
Kermarrec, A.M.[Anne-Marie],
Le Scouarnec, N.[Nicolas],
Quicker ADC:
Unlocking the Hidden Potential of Product Quantization With SIMD,
PAMI(43), No. 5, May 2021, pp. 1666-1677.
IEEE DOI
2104
Quantization (signal), Filtering, Binary codes, Throughput, Indexes,
Open source software, Stress, Image databases, SIMD
BibRef
Su, H.J.[Hong-Jun],
Yu, Y.[Yao],
Wu, Z.Y.[Zhao-Yue],
Du, Q.[Qian],
Random Subspace-Based k-Nearest Class Collaborative Representation
for Hyperspectral Image Classification,
GeoRS(59), No. 8, August 2021, pp. 6840-6853.
IEEE DOI
2108
Training, Testing, Collaboration, Dictionaries,
Hyperspectral imaging, Collaborative representation,
shape-adaptive (SA) neighborhood
BibRef
Gong, X.W.[Xiu-Wen],
Yang, J.H.[Jia-Hui],
Yuan, D.[Dong],
Bao, W.[Wei],
Generalized Large Margin kNN for Partial Label Learning,
MultMed(24), 2022, pp. 1055-1066.
IEEE DOI
2203
Phase locked loops, Noise measurement, Optimization, Measurement,
Training, Faces, Data structures, Partial label, classification,
metric learning
BibRef
Bareche, I.[Imene],
Xia, Y.[Ying],
A Distributed Hybrid Indexing for Continuous KNN Query Processing
over Moving Objects,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Valero-Mas, J.J.[Jose J.],
Gallego, A.J.[Antonio Javier],
Alonso-Jiménez, P.[Pablo],
Serra, X.[Xavier],
Multilabel Prototype Generation for data reduction in K-Nearest
Neighbour classification,
PR(135), 2023, pp. 109190.
Elsevier DOI
2212
Multilabel classification, Prototype generation, Efficient NN
BibRef
Qiu, T.[Teng],
Li, Y.J.[Yong-Jie],
Hierarchical nearest neighbor descent, in-tree, and clustering,
PR(137), 2023, pp. 109300.
Elsevier DOI
2302
Clustering, In-tree, Hierarchical nearest neighbor descent, Mass cytometry
BibRef
Qiu, T.[Teng],
Li, C.Y.[Chao-Yi],
Li, Y.J.[Yong-Jie],
D-NND: A Hierarchical Density Clustering Method via Nearest Neighbor
Descent,
ICPR18(1414-1419)
IEEE DOI
1812
Deep Nearest Neighbor Descent.
Artificial neural networks, Estimation, Clustering methods, Kernel,
Feature extraction, Unsupervised learning, Bandwidth
BibRef
Wang, Y.Z.[Yi-Zhang],
Pang, W.[Wei],
Jiao, Z.X.[Zhi-Xiang],
An adaptive mutual K-nearest neighbors clustering algorithm based on
maximizing mutual information,
PR(137), 2023, pp. 109273.
Elsevier DOI
2302
Mutual K-nearest neighbors, Adaptive clustering, Maximizing mutual information
BibRef
Ali, A.[Amjad],
Hamraz, M.[Muhammad],
Gul, N.[Naz],
Khan, D.M.[Dost Muhammad],
Aldahmani, S.[Saeed],
Khan, Z.[Zardad],
A k nearest neighbour ensemble via extended neighbourhood rule and
feature subsets,
PR(142), 2023, pp. 109641.
Elsevier DOI
2307
Features subset, Nearest Neighbours Rule, NN Ensemble, Classification
BibRef
Tobin, J.[Joshua],
Zhang, M.[Mimi],
A Theoretical Analysis of Density Peaks Clustering and the
Component-Wise Peak-Finding Algorithm,
PAMI(46), No. 2, February 2024, pp. 1109-1120.
IEEE DOI
2401
Density-based clustering, nearest-neighbor graph, density peaks,
semi-supervised clustering, multi-image matching
BibRef
Chen, J.[Jiang],
Zhang, X.Y.[Xian-Yong],
Yuan, Z.[Zhong],
Feature selections based on two-type overlap degrees and three-view
granulation measures for k-nearest-neighbor rough sets,
PR(156), 2024, pp. 110837.
Elsevier DOI
2408
K-nearest-neighbor rough set, Neighborhood rough set,
Feature selection, Overlap degree, Dependency degree, Information measure
BibRef
Ai, L.[Liefu],
Jiang, C.[Changyu],
Learning Adaptive Hypersphere: Boosting Efficiency on Approximate
Nearest Neighbor Search,
SPLetters(31), 2024, pp. 2190-2194.
IEEE DOI
2409
Vectors, Training, Accuracy, Filtration, Convergence,
Computational modeling, Search methods, vector quantization
BibRef
Xie, J.[Jiang],
Xiang, X.X.[Xue-Xin],
Xia, S.[Shuyin],
Jiang, L.[Lian],
Wang, G.[Guoyin],
Gao, X.B.[Xin-Bo],
MGNR: A Multi-Granularity Neighbor Relationship and Its Application
in KNN Classification and Clustering Methods,
PAMI(46), No. 12, December 2024, pp. 7956-7972.
IEEE DOI
2411
Computational modeling, Data models, Clustering methods,
Machine learning, Clustering algorithms, neighbor relationship
BibRef
Wang, J.[Jing],
Feng, F.[Fu],
Lv, J.H.[Jian-Hui],
Geng, X.[Xin],
Residual k-Nearest Neighbors Label Distribution Learning,
PR(158), 2025, pp. 111006.
Elsevier DOI
2411
Label Distribution Learning (LDL), Label ambiguity,
-Nearest Neighbors (NN), Generalization, Manifold, Neighborhood
BibRef
Liu, M.Y.[Ming-Yang],
Yang, Z.Y.[Zu-Yuan],
Han, W.[Wei],
Xie, S.L.[Sheng-Li],
Cluster Guided Truncated Hashing for Enhanced Approximate Nearest
Neighbor Search,
SPLetters(32), 2025, pp. 181-185.
IEEE DOI
2501
Encoding, Quantization (signal), Binary codes, Clustering algorithms,
Vectors, Indexes, Search problems, quantization
BibRef
Nakamura, K.[Kazumoto],
Nozawa, Y.[Yuji],
Lin, Y.C.[Yu-Chieh],
Nakata, K.[Kengo],
Ng, Y.Y.[You-Yang],
Improving Image Clustering with Artifacts Attenuation via
Inference-time Attention Engineering,
ACCV24(I: 277-295).
Springer DOI
2412
BibRef
Nakata, K.[Kengo],
Ng, Y.Y.[You-Yang],
Miyashita, D.[Daisuke],
Maki, A.[Asuka],
Lin, Y.C.[Yu-Chieh],
Deguchi, J.[Jun],
Revisiting a kNN-Based Image Classification System with High-Capacity
Storage,
ECCV22(XXXVII:457-474).
Springer DOI
2211
BibRef
Zhang, H.[Haokui],
Tang, B.[Buzhou],
Hu, W.Z.[Wen-Ze],
Wang, X.Y.[Xiao-Yu],
Connecting Compression Spaces with Transformer for Approximate Nearest
Neighbor Search,
ECCV22(XIV:515-530).
Springer DOI
2211
BibRef
Orozco-Alzate, M.[Mauricio],
Bicego, M.[Manuele],
A cheaper Rectified-Nearest-Feature-Line-Segment classifier based on
safe points,
ICPR21(2787-2794)
IEEE DOI
2105
Training, Interpolation, Extrapolation,
Explosions, Computational efficiency
BibRef
Ju, X.B.[Xin-Bo],
Shao, S.[Shuo],
Long, H.[Huan],
Wang, W.Z.[Wei-Zhe],
Nearest Neighbor Classification Based on Activation Space of
Convolutional Neural Network,
ICPR21(431-437)
IEEE DOI
2105
Neural networks, Tools,
Classification algorithms, Convolutional neural networks,
Image classification
BibRef
Jia, B.B.[Bin-Bin],
Zhang, M.L.[Min-Ling],
Md-knn: An Instance-based Approach for Multi-Dimensional
Classification,
ICPR21(126-133)
IEEE DOI
2105
Estimation, Machine learning, Benchmark testing
BibRef
Sarfraz, S.[Saquib],
Sharma, V.[Vivek],
Stiefelhagen, R.[Rainer],
Efficient Parameter-Free Clustering Using First Neighbor Relations,
CVPR19(8926-8935).
IEEE DOI
2002
BibRef
He, X.Y.[Xiang-Yu],
Wang, P.S.[Pei-Song],
Cheng, J.[Jian],
K-Nearest Neighbors Hashing,
CVPR19(2834-2843).
IEEE DOI
2002
BibRef
Rattaphun, M.,
Prayoonwong, A.,
Chiu, C.Y.,
Indexing in k-Nearest Neighbor Graph by Hash-Based Hill-Climbing,
MVA19(1-4)
DOI Link
1911
approximation theory, file organisation, graph theory,
nearest neighbour methods, query processing, search problems,
hashing
BibRef
Orozco-Alzate, M.[Mauricio],
Baldo, S.[Sisto],
Bicego, M.[Manuele],
Relation, Transition and Comparison Between the Adaptive Nearest
Neighbor Rule and the Hypersphere Classifier,
CIAP19(I:141-151).
Springer DOI
1909
BibRef
Zamora, J.[Juan],
Allende-Cid, H.[Héctor],
Mendoza, M.[Marcelo],
A Distributed Shared Nearest Neighbors Clustering Algorithm,
CIARP17(710-718).
Springer DOI
1802
BibRef
Ezghari, S.,
Benouini, R.,
Zahi, A.,
Zenkouar, K.,
Learning efficient and interpretable prototypes from data for nearest
neighbor classification method,
ISCV17(1-7)
IEEE DOI
1710
nearest neighbor classification method,
Classification algorithms,
clustering, interpretability, nearest neighbor, prototype, learning
BibRef
Iwai, Y.,
Nishiyama, M.,
Yoshimura, H.,
Asymmetric locality preserving projection and its application to
k-nearest neighbor method,
MVA17(55-58)
DOI Link
1708
Eigenvalues and eigenfunctions, Linear programming,
Matrix decomposition, Optimization, Organizations,
Principal component analysis, Symmetric matrices
BibRef
Aryal, A.M.,
Wang, S.J.[Su-Jing],
Discovery of patterns in spatio-temporal data using clustering
techniques,
ICIVC17(990-995)
IEEE DOI
1708
Clustering algorithms, Noise measurement, Public transportation,
Shape, clustering, shared nearest neighbor clustering,
spatial-temporal clustering, spatial-temporal, patterns
BibRef
Bicego, M.,
Loog, M.,
Weighted K-Nearest Neighbor revisited,
ICPR16(1642-1647)
IEEE DOI
1705
Degradation, Diversity reception,
Terminology, Testing, Training
BibRef
Barddal, J.P.,
Gomes, H.M.,
Granatyr, J.,
de Souza Britto, A.,
Enembreck, F.,
Overcoming feature drifts via dynamic feature weighted k-nearest
neighbor learning,
ICPR16(2186-2191)
IEEE DOI
1705
Adaptation models, Entropy, Feature extraction, Generators,
Light emitting diodes, Proposals
BibRef
Ozan, E.C.,
Kiranyaz, S.,
Gabbouj, M.,
Joint K-Means quantization for Approximate Nearest Neighbor Search,
ICPR16(3645-3649)
IEEE DOI
1705
Encoding, Hamming distance, Optimization, Search problems, Training,
Vector, quantization
BibRef
Ozan, E.C.,
Riabchenko, E.,
Kiranyaz, S.,
Gabbouj, M.,
A vector quantization based k-NN approach for large-scale image
classification,
IPTA16(1-6)
IEEE DOI
1703
image classification
BibRef
Woodley, A.[Alan],
Chappell, T.[Timothy],
Geva, S.[Shlomo],
Nayak, R.[Richi],
Efficient Feature Selection and Nearest Neighbour Search for
Hyperspectral Image Classification,
DICTA16(1-8)
IEEE DOI
1701
Classification algorithms
BibRef
Harwood, B.,
Drummond, T.W.[Tom W.],
FANNG: Fast Approximate Nearest Neighbour Graphs,
CVPR16(5713-5722)
IEEE DOI
1612
BibRef
Heo, J.P.[Jae-Pil],
Lin, Z.[Zhe],
Shen, X.H.[Xiao-Hui],
Brandt, J.[Jonathan],
Yoon, S.E.[Sung-Eui],
Shortlist Selection with Residual-Aware Distance Estimator for
K-Nearest Neighbor Search,
CVPR16(2009-2017)
IEEE DOI
1612
BibRef
Fränti, P.[Pasi],
Mariescu-Istodor, R.[Radu],
Zhong, C.M.[Cai-Ming],
XNN Graph,
SSSPR16(207-217).
Springer DOI
1611
Not a fixed k-NN, a variable number.
BibRef
Malach, T.,
Pomenkova, J.,
Learning of a robusted nearest neighbor classifier using multiple
training data,
WSSIP16(1-4)
IEEE DOI
1608
closed circuit television
BibRef
Wang, Z.,
Yuan, X.T.[Xiao-Tong],
Liu, Q.,
Yan, S.C.[Shui-Cheng],
Additive Nearest Neighbor Feature Maps,
ICCV15(2866-2874)
IEEE DOI
1602
Additives
BibRef
Nguyen, T.A.[Tuan Anh],
Matsui, Y.[Yusuke],
Yamasaki, T.[Toshihiko],
Aizawa, K.[Kiyoharu],
Searching for nearest neighbors with a dense space partitioning,
ICIP15(4461-4465)
IEEE DOI
1512
computer vision
BibRef
Liu, Q.F.[Qing-Feng],
Puthenputhussery, A.[Ajit],
Liu, C.J.[Cheng-Jun],
Novel general KNN classifier and general nearest mean classifier for
visual classification,
ICIP15(1810-1814)
IEEE DOI
1512
BibRef
Bhattacharya, G.[Gautam],
Ghosh, K.[Koushik],
Chowdhury, A.S.[Ananda S.],
kNN Classification with an Outlier Informative Distance Measure,
PReMI17(21-27).
Springer DOI
1711
BibRef
Earlier:
A probabilistic framework for dynamic k estimation in kNN classifiers
with certainty factor,
ICAPR15(1-5)
IEEE DOI
1511
learning (artificial intelligence)
BibRef
Reineking, T.[Thomas],
Kluth, T.[Tobias],
Nakath, D.[David],
Adaptive Information Selection in Images:
Efficient Naive Bayes Nearest Neighbor Classification,
CAIP15(I:350-361).
Springer DOI
1511
BibRef
Saeedan, F.[Faraz],
Caputo, B.[Barbara],
Towards Learning Free Naive Bayes Nearest Neighbor-Based Domain
Adaptation,
CIAP15(II:320-331).
Springer DOI
1511
BibRef
Alhammami, M.[Muhammad],
Ooi, C.P.[Chee Pun],
Tan, W.H.[Wooi-Haw],
Violence Recognition Using Harmonic Mean of Distances and Relational
Velocity with K-Nearest Neighbour Classifier,
IVIC15(132-139).
Springer DOI
1511
BibRef
Liu, Q.F.[Qing-Feng],
Liu, C.J.[Cheng-Jun],
A novel locally linear KNN model for visual recognition,
CVPR15(1329-1337)
IEEE DOI
1510
BibRef
Li, X.Z.[Xue-Zhen],
Kurita, T.,
Nonlinear discriminant analysis using K nearest neighbor estimation,
FCV15(1-6)
IEEE DOI
1506
Bayes methods
BibRef
Herranz, L.[Luis],
Jiang, S.Q.[Shu-Qiang],
Accuracy and Specificity Trade-off in
K-nearest Neighbors Classification,
ACCV14(II: 133-146).
Springer DOI
1504
BibRef
Ren, W.Q.[Wei-Qiang],
Yu, Y.[Yinan],
Zhang, J.[Junge],
Huang, K.Q.[Kai-Qi],
Learning Convolutional Nonlinear Features for K Nearest Neighbor
Image Classification,
ICPR14(4358-4363)
IEEE DOI
1412
Algorithm design and analysis
BibRef
Park, M.W.[Min-Woo],
Gunda, K.[Kiran],
Gupta, H.[Himaanshu],
Shafique, K.[Khurram],
Optimized Transform Coding for Approximate KNN Search,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Kalayeh, M.M.[Mahdi M.],
Idrees, H.[Haroon],
Shah, M.[Mubarak],
NMF-KNN: Image Annotation Using Weighted Multi-view Non-negative
Matrix Factorization,
CVPR14(184-191)
IEEE DOI
1409
BibRef
Tommasi, T.[Tatiana],
Caputo, B.[Barbara],
Frustratingly Easy NBNN Domain Adaptation,
ICCV13(897-904)
IEEE DOI
1403
Domain Adaptation; Naive Bayes Nearest Neighbor
BibRef
Jin, Z.M.[Zhong-Ming],
Hu, Y.[Yao],
Lin, Y.[Yue],
Zhang, D.[Debing],
Lin, S.[Shiding],
Cai, D.[Deng],
Li, X.L.[Xue-Long],
Complementary Projection Hashing,
ICCV13(257-264)
IEEE DOI
1403
Approximate Nearest Neighbor Search; Hashing
BibRef
Badr, M.[Mehdi],
Vodislav, D.[Dan],
Picard, D.[David],
Yin, S.Y.[Shao-Yi],
Gosselin, P.H.[Philippe-Henri],
Multi-criteria search algorithm:
An efficient approximate k-NN algorithm for image retrieval,
ICIP13(2901-2905)
IEEE DOI
1402
CBIR
BibRef
Wan, J.[Ji],
Tang, S.[Sheng],
Zhang, Y.D.[Yong-Dong],
Huang, L.[Lei],
Li, J.T.[Jin-Tao],
Data driven multi-index hashing,
ICIP13(2670-2673)
IEEE DOI
1402
Binary codes; Clustering algorithms; Indexing; Nearest neighbor search
BibRef
Tepper, M.[Mariano],
Musé, P.[Pablo],
Almansa, A.[Andrés],
Mejail, M.E.[Marta E.],
Boruvka Meets Nearest Neighbors,
CIARP13(II:560-567).
Springer DOI
1311
BibRef
Premachandran, V.[Vittal],
Kakarala, R.[Ramakrishna],
Consensus of k-NNs for Robust Neighborhood Selection on Graph-Based
Manifolds,
CVPR13(1594-1601)
IEEE DOI
1309
graph sparsification; manifold learning
BibRef
Lin, Y.[Yue],
Jin, R.[Rong],
Cai, D.[Deng],
Yan, S.C.[Shui-Cheng],
Li, X.L.[Xue-Long],
Compressed Hashing,
CVPR13(446-451)
IEEE DOI
1309
Compressed Sensing; Hashing; Nearest Neighbor Search; Random Projection
BibRef
Vascon, S.[Sebastiano],
Cristani, M.[Marco],
Using Dominant Sets for k-NN Prototype Selection,
CIAP13(II:131-140).
Springer DOI
1309
BibRef
O'Hara, S.,
Draper, B.A.,
Are you using the right approximate nearest neighbor algorithm?,
WACV13(9-14).
IEEE DOI
1303
BibRef
d'Ambrosio, R.[Roberto],
Ali, W.B.H.[Wafa Bel Haj],
Nock, R.[Richard],
Soda, P.[Paolo],
Nielsen, F.[Frank],
Barlaud, M.[Michel],
Biomedical Images Classification by Universal Nearest Neighbours
Classifier Using Posterior Probability,
MLMI12(119-127).
Springer DOI
1211
BibRef
Olonetsky, I.[Igor],
Avidan, S.[Shai],
TreeCANN: k-d Tree Coherence Approximate Nearest Neighbor Algorithm,
ECCV12(IV: 602-615).
Springer DOI
1210
BibRef
Mora, K.F.[Karina Figueroa],
Paredes, R.[Rodrigo],
Compact and Efficient Permutations for Proximity Searching,
MCPR12(207-215).
Springer DOI
1208
BibRef
Tellez, E.S.[Eric Sadit],
Chávez, E.[Edgar],
The List of Clusters Revisited,
MCPR12(187-196).
Springer DOI
1208
BibRef
Wang, J.[Jing],
Wang, J.D.[Jing-Dong],
Zeng, G.[Gang],
Tu, Z.W.[Zhuo-Wen],
Gan, R.[Rui],
Li, S.P.[Shi-Peng],
Scalable k-NN graph construction for visual descriptors,
CVPR12(1106-1113).
IEEE DOI
1208
BibRef
McCann, S.[Sancho],
Lowe, D.G.[David G.],
Spatially Local Coding for Object Recognition,
Efficient Detection for Spatially Local Coding,
RoLoD14(615-629).
Springer DOI
1504
BibRef
Earlier:
ACCV12(I:204-217).
Springer DOI
1304
BibRef
And:
Local Naive Bayes Nearest Neighbor for image classification,
CVPR12(3650-3656).
IEEE DOI
1208
BibRef
He, K.[Kaiming],
Sun, J.[Jian],
Computing nearest-neighbor fields via Propagation-Assisted KD-Trees,
CVPR12(111-118).
IEEE DOI
1208
BibRef
Zhang, Z.M.[Zi-Ming],
Sturgess, P.[Paul],
Sengupta, S.[Sunando],
Crook, N.[Nigel],
Torr, P.H.S.[Philip H.S.],
Efficient discriminative learning of parametric nearest neighbor
classifiers,
CVPR12(2232-2239).
IEEE DOI
1208
BibRef
McCall, C.[Corey],
Reddy, K.[Kishore],
Shah, M.[Mubarak],
Macro-Class Selection for Hierarchical K-NN Classification
of Inertial Sensor Data,
PECCS12(xx-yy).
PDF File.
1203
See also UCF-iPhone.
BibRef
Tuytelaars, T.,
Fritz, M.,
Saenko, K.,
Darrell, T.J.,
The NBNN kernel,
ICCV11(1824-1831).
IEEE DOI
1201
Naive Bayes Nearest Neighbor.
BibRef
Paredes, R.[Roberto],
Girolami, M.[Mark],
On the Use of Diagonal and Class-Dependent Weighted Distances for the
Probabilistic k-Nearest Neighbor,
IbPRIA11(265-272).
Springer DOI
1106
BibRef
Kobayashi, T.[Takao],
Shimizu, I.[Ikuko],
Fast Density Estimation for Approximated k Nearest Neighbor
Classification,
FHR10(345-351).
IEEE DOI
1011
Combine multiple rough density approximations.
BibRef
Chernoff, K.[Konstantin],
Nielsen, M.[Mads],
Weighting of the k-Nearest-Neighbors,
ICPR10(666-669).
IEEE DOI
1008
BibRef
Chen, Q.[Qiaona],
Sun, S.L.[Shi-Liang],
Hierarchical Large Margin Nearest Neighbor Classification,
ICPR10(906-909).
IEEE DOI
1008
BibRef
Behmo, R.[Régis],
Marcombes, P.[Paul],
Dalalyan, A.S.[Arnak S.],
Prinet, V.[Véronique],
Towards Optimal Naive Bayes Nearest Neighbor,
ECCV10(IV: 171-184).
Springer DOI
1009
BibRef
Eftekhari, A.[Armin],
Abrishami-Moghaddam, H.[Hamid],
Babaie-Zadeh, M.[Massoud],
Moin, M.S.[Mohammad-Shahram],
Two dimensional compressive classifier for sparse images,
ICIP09(2137-2140).
IEEE DOI
0911
BibRef
Eftekhari, A.[Armin],
Abrishami-Moghaddam, H.[Hamid],
Babaie-Zadeh, M.[Massoud],
k/K-Nearest Neighborhood Criterion for Improvement of Locally Linear
Embedding,
CAIP09(808-815).
Springer DOI
0909
BibRef
Rodriguez, Y.[Yanet],
de Baets, B.[Bernard],
Garcia, M.M.[Maria M.],
Morell, C.[Carlos],
Grau, R.[Ricardo],
A Correlation-Based Distance Function for Nearest Neighbor
Classification,
CIARP08(284-291).
Springer DOI
0809
BibRef
Boiman, O.[Oren],
Shechtman, E.[Eli],
Irani, M.[Michal],
In defense of Nearest-Neighbor based image classification,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Garcia, V.[Vincent],
Nielsen, F.[Frank],
Searching High-Dimensional Neighbours: CPU-Based Tailored
Data-Structures Versus GPU-Based Brute-Force Method,
MIRAGE09(425-436).
Springer DOI
0905
BibRef
Garcia, V.[Vincent],
Debreuve, E.[Eric],
Barlaud, M.[Michel],
Fast k nearest neighbor search using GPU,
CVGPU08(1-6).
IEEE DOI
0806
BibRef
Kumar, M.P.[M. Pawan],
Torr, P.H.S.,
Zisserman, A.,
An Invariant Large Margin Nearest Neighbour Classifier,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Omercevic, D.[Dusan],
Drbohlav, O.[Ondrej],
Leonardis, A.[Ales],
High-Dimensional Feature Matching:
Employing the Concept of Meaningful Nearest Neighbors,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Satonaka, T.,
Uchimura, K.,
Elliptic Metric K-NN Method with Asymptotic MDL Measure,
ICIP06(2065-2068).
IEEE DOI
0610
BibRef
Bajramovic, F.[Ferid],
Mattern, F.[Frank],
Butko, N.J.[Nicholas J.],
Denzler, J.[Joachim],
A Comparison of Nearest Neighbor Search Algorithms for Generic Object
Recognition,
ACIVS06(1186-1197).
Springer DOI
0609
BibRef
Kier, C.[Christian],
Aach, T.[Til],
Predicting the benefit of sample size extension in multiclass k-NN
classification,
ICPR06(III: 332-335).
IEEE DOI
0609
BibRef
Delannay, N.[Nicolas],
Archambeau, C.[Cedric],
Verleysen, M.[Michel],
Automatic Adjustment of Discriminant Adaptive Nearest Neighbor,
ICPR06(II: 552-535).
IEEE DOI
0609
BibRef
Zhang, K.[Kai],
Kwok, J.T.[James T.],
Tang, M.[Ming],
Accelerated Convergence Using Dynamic Mean Shift,
ECCV06(II: 257-268).
Springer DOI
0608
BibRef
Cérou, F.[Frédéric],
Guyader, A.[Arnaud],
Nearest neighbor classification in infinite dimension,
INRIARR-5536, 2005.
HTML Version.
BibRef
0500
Guru, D.S.,
Nagendraswamy, H.S.,
Clustering of Interval-Valued Symbolic Patterns Based on Mutual
Similarity Value and the Concept of k-Mutual Nearest Neighborhood,
ACCV06(II:234-243).
Springer DOI
0601
BibRef
Zhou, Y.L.[Yong-Lei],
Zhang, C.S.[Chang-Shui],
Wang, J.C.[Jing-Chun],
Tunable Nearest Neighbor Classifier,
DAGM04(204-211).
Springer DOI
0505
BibRef
Hotta, S.,
Kiyasu, S.,
Miyahara, S.,
Pattern recognition using average patterns of categorical k-nearest
neighbors,
ICPR04(IV: 412-415).
IEEE DOI
0409
BibRef
Zhou, Z.L.[Zong-Lin],
Kwoh, C.K.[Chee Keong],
The pattern classification based on the nearest feature midpoints,
ICPR04(III: 446-449).
IEEE DOI
0409
BibRef
Arlandis, J.,
Perez Cortes, J.C.,
Cano, J.,
Rejection strategies and confidence measures for a k-nn classifier in
an ocr task,
ICPR02(I: 576-579).
IEEE DOI
0211
BibRef
Kangas, J.,
Comparison Between Two Prototype Representation Schemes for a Nearest
Neighbor Classifier,
ICPR00(Vol II: 773-776).
IEEE DOI
0009
BibRef
Ng, B.W.,
Bouzerdoum, A.,
Supervised Texture Segmentation Using DWT and a Modified K-nn
Classifier,
ICPR00(Vol II: 545-548).
IEEE DOI
0009
BibRef
Zhou, P.,
Austin, J.,
Kennedy, J.,
A Binary Correlation Matrix Memory k-nn Classifier
with Hardware Implementation,
BMVC98(xx-yy).
BibRef
9800
Kaller, D.[Damon],
Bhattacharya, B.[Binay],
Reference Set Thinning for the k-Nearest Neighbor Decision Rule,
ICPR98(Vol I: 238-242).
IEEE DOI
9808
BibRef
Huang, Y.,
Liu, K.,
Suen, C.,
A Simulated Annealing Approach to Construct Optimized Prototypes
for Nearest-Neighbor Classification,
ICPR96(IV: 483-487).
IEEE DOI
9608
(Computer & Communication Lab., ROC)
BibRef
Zouhal, L.M.[Lalla Merieme],
Denœux, T.[Thierry],
An adaptive k-NN rule based on Dempster-Shafer theory,
CAIP95(310-317).
Springer DOI
9509
BibRef
Snapp, R.R.[Robert R.],
Venkatesh, S.S.,
Asymptotic predictions of the finite-sample risk of the
k-nearest-neighbor classifier,
ICPR94(B:1-6).
IEEE DOI
9410
BibRef
Avi-Itzhak, H.,
Diep, T.A.,
Lossless acceleration for correlation-based nearest-neighbor pattern
recognition,
ICPR94(B:240-244).
IEEE DOI
9410
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Fast Nearest Neighbor Techniques .