16.7.3 Event Descriptions, Understanding Motion and Events

Chapter Contents (Back)
Event Understanding. Event Detection. General surveillance issues.
See also Human Motion, General Analysis.
See also Gesture Recognition Techniques.

Verificon,
2003.
WWW Link. Vendor, Surveillance. Software for event detection. Spin off from Princeton.

Mann, R.[Richard], Jepson, A.D.[Allan D.], Siskind, J.M.[Jeffrey Mark],
The Computational Perception of Scene Dynamics,
CVIU(65), No. 2, February 1997, pp. 113-128.
DOI Link 9704
BibRef
Earlier: (Same title, no The) ECCV96(II:528-539).
Springer DOI BibRef

Mann, R.[Richard], Jepson, A.D.[Allan D.],
Towards the Computational Perception of Action,
CVPR98(794-799).
IEEE DOI BibRef 9800

Siskind, J.M.[Jeffrey Mark],
Reconstructing force-dynamic models from video sequences,
AI(151), No. 1-2, December 2003, pp. 91-154.
Elsevier DOI 0401
BibRef
Earlier:
Visual Event Classification via Force Dynamics,
AAAI-00(149-155). BibRef

Siskind, J.M.[Jeffrey Mark], Morris, Q.,
A Maximum-Likelihood Approach to Visual Event Classification,
ECCV96(II:347-360).
Springer DOI Using real data, group into spatial events. BibRef 9600

Yacoob, Y.[Yaser], and Black, M.J.[Michael J.],
Parameterized Modeling and Recognition of Activities,
CVIU(73), No. 2, February 1999, pp. 232-247.
DOI Link
HTML Version. BibRef 9902
Earlier: ICCV98(120-127).
IEEE DOI
See also Recognizing Facial Expressions in Image Sequences Using Local Parameterized Models of Image Motion. BibRef

Buxton, H.[Hilary], Walker, N.[Nick],
Query Based Visual Analysis: Spatio-Temporal Reasoning in Computer Vision,
IVC(6), No. 4, November 1988, pp. 247-254.
Elsevier DOI BibRef 8811

Duong, V., Buxton, H., Howarth, R.J., Toal, P., Gong, S., King, S., Thomere, J., Hyde, J.,
Spatio-Temporal Reasoning,
TRD203, Esprit Project 2152: Views, 1990. BibRef 9000

Fernyhough, J.H., Cohn, A.G.[Anthony G.], Hogg, D.C.[David C.],
Constructing qualitative event models automatically from video input,
IVC(18), No. 2, January 2000, pp. 81-103.
Elsevier DOI 0001
BibRef
Earlier:
Building Qualitative Event Models Automatically from Visual Input,
ICCV98(350-355).
IEEE DOI BibRef
Earlier:
Generation of Semantic Regions from Image Sequences,
ECCV96(II:475-484).
Springer DOI Generate regions where an object has gone through. Uses tracking rather than differencing. BibRef

Dee, H.M.[Hannah M.], Cohn, A.G.[Anthony G.], Hogg, D.C.[David C.],
Building semantic scene models from unconstrained video,
CVIU(116), No. 3, March 2012, pp. 446-456.
Elsevier DOI 1201
Scene understanding; Machine learning; Human behaviour BibRef

Greenall, J.[John], Hogg, D.C.[David C.], Cohn, A.G.[Anthony G.],
Temporal Structure Models for Event Recognition,
BMVC11(xx-yy).
HTML Version. 1110
BibRef

Buxton, H., Mukerjee, A.,
Conceptualizing Images,
IVC(18), No. 2, January 2000, pp. 79.
Elsevier DOI 0001
BibRef

Buxton, H.[Hilary], Gong, S.G.[Shao-Gang],
Visual Surveillance in a Dynamic and Uncertain World,
AI(78), No. 1-2, October 1995, pp. 431-459.
Elsevier DOI Surveillance. BibRef 9510
Earlier:
Advanced Visual Surveillance Using Bayesian Networks,
Context95(xx) BibRef

Sun, R., Sessions, C.,
Self-Segmentation of Sequences: Automatic Formation of Hierarchies of Sequential Behaviors,
SMC-B(30), No. 3, June 2000, pp. 403-418.
IEEE Top Reference. 0006
BibRef

North, B.[Ben], Blake, A.[Andrew], Isard, M.[Michael], Rittscher, J.[Jens],
Learning and Classification of Complex Dynamics,
PAMI(22), No. 9, September 2000, pp. 1016-1034.
IEEE DOI 0010
EM-K Expectation-Maximization based on Kalman Filtering. And EM-C Expectation-Maximization with Condensation. (
See also Statistical Models of Visual Shape and Motion. )
See also C-Conditional Density Propagation for Visual Tracking. BibRef

Medioni, G.[Gérard], Cohen, I.[Isaac], Brémond, F.[François], Hongeng, S.[Somboon], Nevatia, R.[Ramakant],
Event Detection and Analysis from Video Streams,
PAMI(23), No. 8, August 2001, pp. 873-889.
IEEE DOI BibRef 0108 USC Computer Vision 0109
BibRef
Earlier: A1, A5, A2 only: DARPA98(63-72).
PDF File. Integration of motion detection and tracking with baehvior inference to handle noisy data and inaccurate detections. Selection from scenarios. BibRef

Hongeng, S.[Somboon], Nevatia, R.[Ram], Bremond, F.[Francois],
Video-based event recognition: activity representation and probabilistic recognition methods,
CVIU(96), No. 2, November 2004, pp. 129-162.
Elsevier DOI 0410
BibRef

Hongeng, S.[Somboon], Nevatia, R.[Ram],
Large-scale event detection using semi-hidden markov models,
ICCV03(1455-1462).
IEEE DOI 0311
BibRef
Earlier:
Multi-Agent Event Recognition,
ICCV01(II: 84-91).
IEEE DOI 0106
BibRef USC Computer VisionHierarchical decomposition into separate threads related by temporal constraints. BibRef

Hongeng, S.[Somboon], Brémond, F.[Francois], Nevatia, R.[Ramakant],
Representation and Optimal Recognition of Human Activities,
CVPR00(I: 818-825).
IEEE DOI BibRef 0001 USC Computer Vision 0005
BibRef
And:
Bayesian Framework for Video Surveillance Application,
ICPR00(Vol I: 164-170).
IEEE DOI BibRef USC Computer Vision 0009
BibRef

Hongeng, S.,
Unsupervised Learning of Multi-Object Events,
BMVC04(xx-yy).
HTML Version. 0508
BibRef

Chella, A., Frixione, M., Gaglio, S.,
Understanding dynamic scenes,
AI(123), No. 1-2, October 2000, pp. 89-132.
Elsevier DOI 0101
Integrating AI approach of describing actions and computer vision approach of describing 3d motions. BibRef

Zhao, R.[Rong], Grosky, W.I.,
Negotiating the semantic gap: from feature maps to semantic landscapes,
PR(35), No. 3, March 2002, pp. 593-600.
Elsevier DOI 0201
BibRef

Fan, J.P.[Jian-Ping], Elmagarmid, A.K.[Ahmed K.],
An automatic algorithm for semantic object generation and temporal tracking,
SP:IC(17), No. 2, February 2002, pp. 145-164.
Elsevier DOI 0201
BibRef

Johnson, N.[Neil], Hogg, D.C.[David C.],
Representation and synthesis of behaviour using Gaussian mixtures,
IVC(20), No. 12, October 2002, pp. 889-894.
Elsevier DOI 0210
BibRef

Keren, D.[Daniel],
Recognizing image 'style' and activities in video using local features and naive Bayes,
PRL(24), No. 16, December 2003, pp. 2913-2922.
Elsevier DOI 0310
BibRef

Osadchy, M.[Margarita], Keren, D.[Daniel],
A Rejection-Based Method for Event Detection in Video,
CirSysVideo(14), No. 4, April 2004, pp. 534-541.
IEEE Abstract. 0407
BibRef

Osadchy, M.[Margarita], Keren, D.[Daniel], Gal, Y.[Yaniv],
Anti-Sequences: Event Detection by Frame Stacking,
CVPR01(II:46-51).
IEEE DOI 0110
BibRef

Gal, Y., Browne, M., Lane, C.,
Long-Term Automated Monitoring of Nearshore Wave Height From Digital Video,
GeoRS(52), No. 6, June 2014, pp. 3412-3420.
IEEE DOI 1403
BibRef
Earlier:
Automatic Estimation of Nearshore Wave Height from Video Timestacks,
DICTA11(364-369).
IEEE DOI 1205
Algorithm design and analysis BibRef

Fablet, R., Bouthemy, P.,
Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics,
PAMI(25), No. 12, December 2003, pp. 1619-1624.
IEEE Abstract. 0401
BibRef
Earlier:
Non-Parametric Motion Recognition Using Temporal Multiscale Gibbs Models,
CVPR01(I:501-508).
IEEE DOI 0110
Statistical model of distributions of motion features. Recognize different motion types. BibRef

Ng, J.[Jeffrey], Gong, S.G.[Shao-Gang],
Learning Pixel-Wise Signal Energy for Understanding Semantics,
IVC(21), No. 12-13, December 2003, pp. 1183-1189.
Elsevier DOI 0401
BibRef
Earlier: BMVC01(Session 8: Modelling Behaviour).
HTML Version. Queen Mary, University of London 0110
BibRef

Laptev, I.[Ivan], Lindeberg, T.[Tony],
Velocity adaptation of spatio-temporal receptive fields for direct recognition of activities: an experimental study,
IVC(22), No. 2, 1 February 2004, pp. 105-116.
Elsevier DOI 0402
BibRef
Earlier:
Local Descriptors for Spatio-temporal Recognition,
SCVMA04(91-103).
Springer DOI 0405
BibRef
And:
Velocity adaptation of space-time interest points,
ICPR04(I: 52-56).
IEEE DOI 0409
BibRef
Earlier:
Space-time interest points,
ICCV03(432-439).
IEEE DOI 0311
Award, Helmholtz Prize.
See also On Space-Time Interest Points. BibRef

Lindeberg, T., Akbarzadeh, A., Laptev, I.,
Galilean-diagonalized spatio-temporal interest operators,
ICPR04(I: 57-62).
IEEE DOI 0409
BibRef

Lu, C.M.[Chun-Mei], Ferrier, N.J.[Nicola J.],
Repetitive motion analysis: segmentation and event classification,
PAMI(26), No. 2, February 2004, pp. 258-263.
IEEE Abstract. 0402
Analysis of repetitive motion to evaluate postural stress. BibRef

Lu, C.M.[Chun-Mei], Liu, H.Z.[Hai-Zhu], Ferrier, N.J.[Nicola J.],
Multidimensional Motion Segmentation and Identification,
CVPR00(II: 629-636).
IEEE DOI 0005
Trajectory segmentation BibRef

Goldenberg, R.[Roman], Kimmel, R.[Ron], Rivlin, E.[Ehud], Rudzsky, M.[Michael],
Behavior classification by eigendecomposition of periodic motions,
PR(38), No. 7, July 2005, pp. 1033-1043.
Elsevier DOI 0505
BibRef
Earlier:
'Dynamism of a Dog on a Leash' or Behavior Classification by Eigen-Decomposition of Periodic Motions,
ECCV02(I: 461 ff.).
Springer DOI 0205
BibRef

Amer, A.[Aishy], Dubois, E.[Eric], Mitiche, A.[Amar],
Rule-based real-time detection of context-independent events in video shots,
RealTimeImg(11), No. 3, June 2005, pp. 244-256.
Elsevier DOI 0508
BibRef

Makris, D., Ellis, T.,
Learning Semantic Scene Models From Observing Activity in Visual Surveillance,
SMC-B(35), No. 3, June 2005, pp. 397-408.
IEEE DOI 0508
BibRef
Earlier:
Automatic learning of an activity-based semantic scene model,
AVSBS03(183-188).
IEEE DOI 0310
BibRef
Earlier:
Spatial and Probabilistic Modelling of Pedestrian Behaviour,
BMVC02(Poster Session). 0208
BibRef

Pan, H.[Hao], van Beek, P.J.L.[Petrus J.L.],
Method for automatic extraction of semantically significant events from video,
US_Patent6,931,595, Aug 16, 2005
WWW Link. BibRef 0508

Lim, J.H.[Joo-Hwee], Jin, J.S.[Jesse S.],
Discovering Recurrent Image Semantics From Class Discrimination,
JASP(2006), No. 1, January 2006, pp. 1-11.
WWW Link. 0603
BibRef

Smith, P.[Paul], Shah, M.[Mubarak], da Vitoria Lobo, N.[Niels],
Integrating multiple levels of zoom to enable activity analysis,
CVIU(103), No. 1, July 2006, pp. 33-51.
Elsevier DOI 0606
BibRef
Earlier:
Integrating and employing multiple levels of zoom for activity recognition,
CVPR04(II: 928-935).
IEEE DOI 0408
Multiple cameras; Multiple zoom BibRef

Smith, P.[Paul], da Vitoria Lobo, N.[Niels], Shah, M.[Mubarak],
TemporalBoost for Event Recognition,
ICCV05(I: 733-740).
IEEE DOI 0510
BibRef

Zelnik-Manor, L.[Lihi], Irani, M.[Michal],
Statistical Analysis of Dynamic Actions,
PAMI(28), No. 9, September 2006, pp. 1530-1535.
IEEE DOI 0608
BibRef
Earlier:
Degeneracies, dependencies and their implications in multi-body and multi-sequence factorizations,
Weinland, D.[Daniel], Ronfard, R.[Remi], Boyer, E.[Edmond],
Free viewpoint action recognition using motion history volumes,
CVIU(103), No. 2-3, November-December 2006, pp. 249-257.
Elsevier DOI 0611
Dataset, Action Recognition.
WWW Link. BibRef
Earlier:
Automatic Discovery of Action Taxonomies from Multiple Views,
CVPR06(II: 1639-1645).
IEEE DOI 0606
BibRef
And: A1, A3, A2:
Action Recognition from Arbitrary Views using 3D Exemplars,
ICCV07(1-7).
IEEE DOI 0710
Action recognition; View invariance; Volumetric reconstruction BibRef

Weinland, D.[Daniel], Boyer, E.[Edmond],
Action recognition using exemplar-based embedding,
CVPR08(1-7).
IEEE DOI 0806
BibRef

Jiang, H.[Hao], Drew, M.S.[Mark S.], Li, Z.N.[Ze-Nian],
Matching by Linear Programming and Successive Convexification,
PAMI(29), No. 6, June 2007, pp. 959-975.
IEEE DOI 0704
BibRef
Earlier:
Successive Convex Matching for Action Detection,
CVPR06(II: 1646-1653).
IEEE DOI 0606
BibRef
And:
Convex Quadratic Programming for Object Localization,
ICPR06(III: 24-27).
IEEE DOI 0609
BibRef
Earlier:
Linear Programming Matching and Appearance-Adaptive Object Tracking,
EMMCVPR05(203-219).
Springer DOI 0601
BibRef

Jiang, H.[Hao], Drew, M.S.[Mark S.], Li, Z.N.[Ze-Nian],
Action Detection in Cluttered Video With Successive Convex Matching,
CirSysVideo(20), No. 1, January 2010, pp. 50-64.
IEEE DOI 1002
BibRef

Wang, Y.[Yang], Jiang, H.[Hao], Drew, M.S.[Mark S.], Li, Z.N.[Ze-Nian], Mori, G.[Greg],
Unsupervised Discovery of Action Classes,
CVPR06(II: 1654-1661).
IEEE DOI 0606
BibRef

Ma, X.[Xiang], Schonfeld, D.[Dan], Khokhar, A.A.[Ashfaq A.],
Video Event Classification and Image Segmentation Based on Noncausal Multidimensional Hidden Markov Models,
IP(18), No. 6, June 2009, pp. 1304-1313.
IEEE DOI 0905
BibRef
Earlier:
A General Two-Dimensional Hidden Markov Model and its Application in Image Classification,
ICIP07(VI: 41-44).
IEEE DOI 0709
BibRef

Veeraraghavan, A.[Ashok], Chellappa, R.[Rama], Srinivasan, M.[Mandyam],
Shape-and-Behavior Encoded Tracking of Bee Dances,
PAMI(30), No. 3, March 2008, pp. 463-476.
IEEE DOI 0801
Analyze behaviors. BibRef

Turaga, P.K.[Pavan K.], Veeraraghavan, A.[Ashok], Srivastava, A., Chellappa, R.[Rama],
Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition,
PAMI(33), No. 11, November 2011, pp. 2273-2286.
IEEE DOI 1110
BibRef
Earlier: A1, A2, A4, Only:
Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Srivastava, A.[Anuj], Turaga, P.K.[Pavan K.], Kurtek, S.[Sebastian],
On advances in differential-geometric approaches for 2D and 3D shape analyses and activity recognition,
IVC(30), No. 6-7, June 2012, pp. 398-416.
Elsevier DOI 1206
Analytic manifolds; Riemannian shape metrics; Elastic shape analysis; Video analysis; Activity recognition; Static and video image data BibRef

Turaga, P.K.[Pavan K.], Chellappa, R.[Rama],
Nearest-neighbor search algorithms on non-Euclidean manifolds for computer vision applications,
ICCVGIP10(282-289).
DOI Link 1111
BibRef
Earlier:
Learning action dictionaries from video,
ICIP08(1704-1707).
IEEE DOI 0810
BibRef

Turaga, P.K.[Pavan K.], Veeraraghavan, A.[Ashok], Chellappa, R.[Rama],
Unsupervised view and rate invariant clustering of video sequences,
CVIU(113), No. 3, March 2009, pp. 353-371.
Elsevier DOI 0902
BibRef
Earlier:
From Videos to Verbs: Mining Videos for Activities using a Cascade of Dynamical Systems,
CVPR07(1-8).
IEEE DOI 0706
Video clustering; Summarization; Surveillance; Cascade of linear dynamical systems; View invariance; Affine invariance; Rate invariance BibRef

Veeraraghavan, A.[Ashok], Roy-Chowdhury, A.K.[Amit K.],
The Function Space of an Activity,
CVPR06(I: 959-968).
IEEE DOI 0606
BibRef

Sanmohan, Krüger, V.[Volker],
Primitive Based Action Representation and Recognition,
SCIA09(31-40).
Springer DOI 0906
BibRef

Kruger, V.,
Recognition of Action as a Bayesian Parameter Estimation Problem over Time,
HumMotBook08(3). 0802
BibRef

Jacobs, N.[Nathan], Pless, R.[Robert],
Time Scales in Video Surveillance,
CirSysVideo(18), No. 8, August 2008, pp. 1106-1113.
IEEE DOI 0809
BibRef
Earlier:
Real-time constant memory visual summaries for surveillance,
VSSN06(155-160).
WWW Link. 0611
BibRef

Jacobs, N.[Nathan], Dixon, M.[Michael], Pless, R.[Robert],
Location-specific Transition Distributions for Tracking,
Motion08(1-6).
IEEE DOI 0801
BibRef

Wright, J.[John], Pless, R.[Robert],
Analysis of Persistent Motion Patterns Using the 3D Structure Tensor,
Motion05(II: 14-19).
IEEE DOI
PDF File. 0502
Capture the background model of motion and events for Surveillance. BibRef

Sohn, Y.W.[Young Wook], Kang, M.G.[Moon Gi],
Block-based recursive motion filtering for preserving true motion vectors in time-varying texture objects,
IJIST(18), No. 4, 2008, pp. 265-275.
DOI Link 0810
BibRef
Earlier:
Block-Based Motion Vector Smoothing for Periodic Pattern Region,
ICIAR07(491-500).
Springer DOI 0708
multiple minima from periodic patterns. BibRef

Lin, L.[Liang], Gong, H.F.[Hai-Feng], Li, L.[Li], Wang, L.[Liang],
Semantic event representation and recognition using syntactic attribute graph grammar,
PRL(30), No. 2, 15 January 2009, pp. 180-186,.
Elsevier DOI 0804
Visual surveillance; Event representation; Event recognition; Attribute graph grammar BibRef

Stauder, J.[Jürgen], Chupeau, B.[Bertrand], Oisel, L.[Lionel], Chevallier, L.[Louis],
Method for identification of tokens in video sequences,
US_Patent7,340,096, Mar 4, 2008
WWW Link. particular events or objects. BibRef 0803

Shyu, M.L.[Mei-Ling], Xie, Z.X.[Zong-Xing], Chen, M.[Min], Chen, S.C.[Shu-Ching],
Video Semantic Event/Concept Detection Using a Subspace-Based Multimedia Data Mining Framework,
MultMed(10), No. 2, February 2008, pp. 252-259.
IEEE DOI 0905
BibRef

Tseng, V.S., Su, J.H.[Ja-Hwung], Huang, J.H.[Jhih-Hong], Chen, C.J.[Chih-Jen],
Integrated Mining of Visual Features, Speech Features, and Frequent Patterns for Semantic Video Annotation,
MultMed(10), No. 2, February 2008, pp. 260-267.
IEEE DOI 0905
BibRef

Su, J.H., Chou, C.L., Lin, C.Y., Tseng, V.S.,
Effective Semantic Annotation by Image-to-Concept Distribution Model,
MultMed(13), No. 3, 2011, pp. 530-538.
IEEE DOI 1106
BibRef

Ziani, A.[Ahmed], Motamed, C.[Cina], Noyer, J.C.,
Temporal reasoning for scenario recognition in video-surveillance using Bayesian networks,
IET-CV(2), No. 2, June 2008, pp. 99-107.
DOI Link 0905
BibRef
Earlier: A1, A2, Only:
Temporal Bayesian Networks for Scenario Recognition,
SCIA07(689-698).
Springer DOI 0706
BibRef

Chang, J.W.[Jae-Woo], Um, J.H.[Jung-Ho],
A New Signature-Based Indexing Scheme for Efficient Trajectory Retrieval in Spatial Networks,
IEICE(E92-D), No. 6, June 2009, pp. 1240-1249.
WWW Link. 0907
BibRef

Li, N.[Ning], Xu, D.[De],
Action Recognition Using Visual-Neuron Feature,
IEICE(E92-D), No. 2, February 2009, pp. 361-364.
WWW Link. 0907
HVS (neural net) based approach. BibRef

Li, N.[Ning], Xu, D.[De],
2D Log-Gabor Wavelet Based Action Recognition,
IEICE(E92-D), No. 11, November 2009, pp. 2275-2278.
WWW Link. 0911
BibRef

Papadopoulos, G.T.[Georgios T.], Briassouli, A., Mezaris, V.[Vasileios], Kompatsiaris, I.[Ioannis], Strintzis, M.G.[Michael G.],
Statistical Motion Information Extraction and Representation for Semantic Video Analysis,
CirSysVideo(19), No. 10, October 2009, pp. 1513-1528.
IEEE DOI 0911
BibRef
Earlier: A1, A3, A4, A5:
Estimation and representation of accumulated motion characteristics for semantic event detection,
ICIP08(41-44).
IEEE DOI 0810
BibRef
And: A1, A3, A4, A5:
Accumulated motion energy fields estimation and representation for semantic event detection,
CIVR08(221-230). 0807
BibRef

Papadopoulos, G.T.[Georgios T.], Mezaris, V.[Vasileios], Kompatsiaris, I.[Ioannis], Strintzis, M.G.[Michael G.],
A Statistical Learning Approach to Spatial Context Exploitation for Semantic Image Analysis,
ICPR10(3138-3142).
IEEE DOI 1008
BibRef

Briassouli, A.[Alexia], Matsiki, D.[Dimitra], Kompatsiaris, I.[Ioannis],
Continuous wavelet transform for time-varying motion extraction,
IET-IPR(4), No. 4, August 2010, pp. 271-282.
DOI Link 1008
BibRef
Earlier:
Wavelet domain processing for trajectory extraction,
ICIP08(1560-1563).
IEEE DOI 0810
BibRef

Avgerinakis, K.[Konstantinos], Briassouli, A.[Alexia], Kompatsiaris, I.[Ioannis],
Real time illumination invariant motion change detection,
ARTEMIS10(75-80).
DOI Link 1111
BibRef

Kjellström, H.[Hedvig], Romero, J.[Javier], Kragic, D.[Danica],
Visual object-action recognition: Inferring object affordances from human demonstration,
CVIU(115), No. 1, January 2011, pp. 81-90.
Elsevier DOI 1011
Object recognition; Action recognition; Contextual recognition; Object affordances; Learning from demonstration BibRef

Ko, T.[Teresa], Hyman, J., Graham, E., Hansen, M., Soatto, S.[Stefano], Estrin, D.[Deborah],
Embedded Imagers: Detecting, Localizing, and Recognizing Objects and Events in Natural Habitats,
PIEEE(98), No. 11, November 2010, pp. 1934-1946.
IEEE DOI 1011
Dealing with natural environmental issues. BibRef

Ko, T.[Teresa], Soatto, S.[Stefano], Estrin, D.[Deborah],
Categorization in natural time-varying image sequences,
VCL-ViSU09(53-60).
IEEE DOI 0906
Mult-view for categorization. BibRef

Zhang, Y.L.[Yu-Lei], Yu, X.M.[Xi-Ming], Dang, Y.[Yan], Chen, H.C.[Hsin-Chun],
An Integrated Framework for Avatar Data Collection from the Virtual World,
IEEE_Int_Sys(25), No. 6, November-December 2010, pp. 17-23.
IEEE DOI 1101
Data for use in action analysis. BibRef

Gottfried, B.[Björn],
Interpreting motion events of pairs of moving objects,
GeoInfo(15), No. 2, April 2011, pp. 247-271.
WWW Link. 1103
Collecting a lot of data, understand moving pairs. BibRef

Lui, Y.M.[Yui Man],
Tangent Bundles on Special Manifolds for Action Recognition,
CirSysVideo(22), No. 6, June 2012, pp. 930-942.
IEEE DOI 1206
BibRef

Lui, Y.M.[Yui Man], Beveridge, J.R.[J. Ross],
Tangent bundle for human action recognition,
FG11(97-102).
IEEE DOI 1103

See also Grassmann Registration Manifolds for Face Recognition. BibRef

Lui, Y.M.[Yui Man], Beveridge, J.R.[J. Ross], Kirby, M.[Michael],
Action classification on product manifolds,
CVPR10(833-839).
IEEE DOI 1006
BibRef

Chen, L., Hoey, J.[Jesse], Nugent, C.D.[Chris D.], Cook, D.J., Yu, Z.,
Sensor-Based Activity Recognition,
SMC-C(42), No. 6, November 2012, pp. 790-808.
IEEE DOI 1210
BibRef

Tejada, P.R.[Pablo Rosales], Jung, J.Y.[Jae-Yoon],
Context-Aware Dynamic Event Processing Using Event Pattern Templates,
IEICE(E96-D), No. 5, May 2013, pp. 1053-1062.
WWW Link. 1305
Events in other than images. BibRef

Tosato, D.[Diego], Spera, M.[Mauro], Cristani, M.[Marco], Murino, V.[Vittorio],
Characterizing Humans on Riemannian Manifolds,
PAMI(35), No. 8, 2013, pp. 1972-1984.
IEEE DOI 1307
Covariance matrix; Head; Symmetric matrices; Pedestrian characterization BibRef

Tosato, D., Farenzena, M., Cristani, M., Murino, V.,
Part-based human detection on Riemannian manifolds,
ICIP10(3469-3472).
IEEE DOI 1009
BibRef

Tosato, D.[Diego], Farenzena, M.[Michela], Spera, M.[Mauro], Murino, V.[Vittorio], Cristani, M.[Marco],
Multi-class Classification on Riemannian Manifolds for Video Surveillance,
ECCV10(II: 378-391).
Springer DOI 1009

See also Re-evaluation of Pedestrian Detection on Riemannian Manifolds, A. BibRef

Farenzena, M.[Michela], Bazzani, L.[Loris], Murino, V.[Vittorio], Cristani, M.[Marco],
Towards a Subject-Centered Analysis for Automated Video Surveillance,
CIAP09(481-489).
Springer DOI 0909
Analyze from perspective of the actor, not camera. BibRef

Bilen, H.[Hakan], Namboodiri, V.P.[Vinay P.], Van Gool, L.J.[Luc J.],
Object and Action Classification with Latent Window Parameters,
IJCV(106), No. 3, February 2014, pp. 237-251.
Springer DOI 1402
BibRef
Earlier:
Classification with Global, Local and Shared Features,
DAGM12(134-143).
Springer DOI 1209
BibRef
Earlier:
Object and Action Classification with Latent Variables,
BMVC11(xx-yy).
HTML Version. 1110
Award, BMVC. BibRef
Earlier:
Action recognition: A region based approach,
WACV11(294-300).
IEEE DOI 1101
BibRef

Farahzadeh, E.[Elahe], Cham, T.J.[Tat-Jen], Sluzek, A.[Andrzej],
Scene recognition by semantic visual words,
SIViP(9), No. 8, November 2015, pp. 1935-1944.
WWW Link. 1511
BibRef

Khadem, B.S.[Behrouz Saghafi], Farahzadeh, E.[Elahe], Rajan, D.[Deepu], Sluzek, A.[Andrzej],
Embedding Visual Words into Concept Space for Action and Scene Recognition,
BMVC10(xx-yy).
HTML Version. 1009
BibRef

Avgerinakis, K.[Konstantinos], Briassouli, A.[Alexia], Kompatsiaris, Y.F.[Yi-Fannis],
Activity detection using Sequential Statistical Boundary Detection (SSBD),
CVIU(144), No. 1, 2016, pp. 46-61.
Elsevier DOI 1604
Activity localization BibRef

Avgerinakis, K.[Konstantinos], Briassouli, A.[Alexia], Kompatsiaris, I.[Ioannis],
Real Time Motion Changes for New Event Detection and Recognition,
VS10(54-63).
Springer DOI 1109
BibRef

Crispim-Junior, C.F.[Carlos Fernando], Buso, V., Avgerinakis, K., Meditskos, G., Briassouli, A., Benois-Pineau, J., Kompatsiaris, I.Y., Bremond, F.[Francois],
Semantic Event Fusion of Different Visual Modality Concepts for Activity Recognition,
PAMI(38), No. 8, August 2016, pp. 1598-1611.
IEEE DOI 1608
assisted living BibRef

Pintea, S.L.[Silvia L.], Karaoglu, S., van Gemert, J.C.[Jan C.], Smeulders, A.W.M.[Arnold W. M.],
Large scale Gaussian Process for overlap-based object proposal scoring,
CVIU(150), No. 1, 2016, pp. 95-108.
Elsevier DOI 1608
Gaussian Process BibRef

Pintea, S.L.[Silvia-Laura], van Gemert, J.C.[Jan C.], Smeulders, A.W.M.[Arnold W. M.],
Asymmetric kernel in Gaussian Processes for learning target variance,
PRL(108), 2018, pp. 70-77.
Elsevier DOI 1805
Gaussian process, Kernel metric learning, Asymmetric kernel distances, Regression BibRef

Pintea, S.L.[Silvia L.], van Gemert, J.C.[Jan C.], Smeulders, A.W.M.[Arnold W. M.],
Déjŕ Vu: Motion Prediction in Static Images,
ECCV14(III: 172-187).
Springer DOI 1408
Motion prediction in single still images by learning it from a set of videos. BibRef

Pintea, S.L.[Silvia L.], van Gemert, J.C.[Jan C.],
Making a Case for Learning Motion Representations with Phase,
MotionRep16(III: 55-64).
Springer DOI 1611
BibRef

Pintea, S.L.[Silvia L.], Mettesas, P.S.[Pascal S.], van Gemert, J.C.[Jan C.], Smeulders, A.W.M.[Arnold W. M.],
Featureless: Bypassing feature extraction in action categorization,
ICIP16(196-200)
IEEE DOI 1610
Boosting BibRef

Yu, L., Yang, Y., Huang, Z., Wang, P., Song, J., Shen, H.T.,
Web Video Event Recognition by Semantic Analysis From Ubiquitous Documents,
IP(25), No. 12, December 2016, pp. 5689-5701.
IEEE DOI 1612
Dataset, Video Events. UQE50 Dataset. UQ Event database with 50 pre-defined video events. Internet BibRef

Liu, B.[Bei], Kato, M.P.[Makoto P.], Tanaka, K.[Katsumi],
Cognition-Aware Summarization of Photos Representing Events,
IEICE(E99-D), No. 12, December 2016, pp. 3140-3153.
WWW Link. 1612
BibRef

Li, C.[Chao], Huang, Z.[Zi], Yang, Y.[Yang], Cao, J.W.[Jie-Wei], Sun, X.S.[Xiao-Shuai], Shen, H.T.[Heng Tao],
Hierarchical Latent Concept Discovery for Video Event Detection,
IP(26), No. 5, May 2017, pp. 2149-2162.
IEEE DOI 1704
Adaptation models BibRef

Gao, L.L.[Lian-Li], Li, T.[Tao], Song, J.K.[Jing-Kuan], Zhao, Z.[Zhou], Shen, H.T.[Heng Tao],
Play and rewind: Context-aware video temporal action proposals,
PR(107), 2020, pp. 107477.
Elsevier DOI 2008
Temporal action proposal generation and detection, Deep learning, Untrimmed video analysis BibRef

Li, C.[Chao], Cao, J.W.[Jie-Wei], Huang, Z.[Zi], Zhu, L., Shen, H.T.[Heng Tao],
Leveraging Weak Semantic Relevance for Complex Video Event Classification,
ICCV17(3667-3676)
IEEE DOI 1802
feature extraction, image classification, image motion analysis, learning (artificial intelligence), object detection, Visualization BibRef

Zhen, X.T.[Xian-Tong], Zheng, F.[Feng], Shao, L.[Ling], Cao, X.B.[Xian-Bin], Xu, D.[Dan],
Supervised Local Descriptor Learning for Human Action Recognition,
MultMed(19), No. 9, September 2017, pp. 2056-2065.
IEEE DOI 1708
Feature extraction, Image recognition, Kernel, Manifolds, Measurement, Supervised learning, Visualization, Action recognition, dimensionality reduction, image-to-class distance, large scale local features, manifold regularization, naive, Bayes, nearest, neighbor BibRef

Zheng, F.[Feng], Shao, L.[Ling], Song, Z.[Zhan],
Eigen-space learning using semi-supervised diffusion maps for human action recognition,
CIVR10(151-157).
DOI Link 1007
BibRef
And:
A set of co-occurrence matrices on the intrinsic manifold of human silhouettes for action recognition,
CIVR10(454-461).
DOI Link 1007
BibRef

Shao, L.[Ling], Ji, L.[Ling],
A descriptor combining MHI and PCOG for human motion classification,
CIVR10(236-242).
DOI Link 1007
BibRef
Earlier:
Motion Histogram Analysis Based Key Frame Extraction for Human Action/Activity Representation,
CRV09(88-92).
IEEE DOI 0905
BibRef

Shao, L.[Ling], Mattivi, R.[Riccardo],
Feature detector and descriptor evaluation in human action recognition,
CIVR10(477-484).
DOI Link 1007
BibRef

Jiang, Y.G.[Yu-Gang], Wu, Z.X.[Zu-Xuan], Wang, J.[Jun], Xue, X.Y.[Xiang-Yang], Chang, S.F.[Shih-Fu],
Exploiting Feature and Class Relationships in Video Categorization with Regularized Deep Neural Networks,
PAMI(40), No. 2, February 2018, pp. 352-364.
IEEE DOI 1801
Existence of a particular human action or a complex event. Benchmark testing, Correlation, Feature extraction, Internet, Neural networks, Semantics, Visualization, Video categorization, regularization BibRef

Lai, K.T.[Kuan-Ting], Yu, F.X.[Felix X.], Chen, M.S.[Ming-Syan], Chang, S.F.[Shih-Fu],
Video Event Detection by Inferring Temporal Instance Labels,
CVPR14(2251-2258)
IEEE DOI 1409
Multiple Instance Learning; Proportion SVM; Video Event Detection BibRef

Lai, K.T.[Kuan-Ting], Liu, D.[Dong], Chen, M.S.[Ming-Syan], Chang, S.F.[Shih-Fu],
Recognizing Complex Events in Videos by Learning Key Static-Dynamic Evidences,
ECCV14(III: 675-688).
Springer DOI 1408
BibRef

Soleimani, H.[Hossein], Hensman, J.[James], Saria, S.[Suchi],
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction,
PAMI(40), No. 8, August 2018, pp. 1948-1963.
IEEE DOI 1807
Computational modeling, Data models, Detectors, Predictive models, Reliability, Time series analysis, Uncertainty, time series BibRef

Tralie, C., Perea, J.,
(Quasi)Periodicity Quantification in Video Data, Using Topology,
SIIMS(11), No. 2, 2018, pp. 1049-1077.
DOI Link 1807
BibRef

Xie, W.L.[Wen-Long], Yao, H.X.[Hong-Xun], Sun, X.S.[Xiao-Shuai], Han, T.T.[Ting-Ting], Zhao, S.C.[Si-Cheng], Chua, T.S.[Tat-Seng],
Discovering Latent Discriminative Patterns for Multi-Mode Event Representation,
MultMed(21), No. 6, June 2019, pp. 1425-1436.
IEEE DOI 1906
Videos, Semantics, Visualization, Event detection, Task analysis, Encoding, Noise measurement, Segment-level, visual topics, event epitomes BibRef

dos Santos, B.N.[Brucce Neves], Rossi, R.G.[Rafael Geraldeli], Rezende, S.O.[Solange Oliveira], Marcacini, R.M.[Ricardo Marcondes],
A two-stage regularization framework for heterogeneous event networks,
PRL(138), 2020, pp. 490-496.
Elsevier DOI 2010
Event analysis, Regularization frameworks, Graph-based learning BibRef

Eun, H.J.[Hyun-Jun], Lee, S.[Sumin], Moon, J.Y.[Jin-Young], Park, J.Y.[Jong-Youl], Jung, C.[Chanho], Kim, C.[Changick],
SRG: Snippet Relatedness-Based Temporal Action Proposal Generator,
CirSysVideo(30), No. 11, November 2020, pp. 4232-4244.
IEEE DOI 2011
Proposals, Videos, Generators, Hybrid power systems, Moon, Reliability, SRG BibRef

Senocak, A.[Arda], Oh, T.H.[Tae-Hyun], Kim, J.[Junsik], Yang, M.H.[Ming-Hsuan], Kweon, I.S.[In So],
Learning to Localize Sound Sources in Visual Scenes: Analysis and Applications,
PAMI(43), No. 5, May 2021, pp. 1605-1619.
IEEE DOI 2104
BibRef
Earlier:
Learning to Localize Sound Source in Visual Scenes,
CVPR18(4358-4366)
IEEE DOI 1812
Where in scene did sound come from. Visualization, Videos, Task analysis, Correlation, Deep learning, Network architecture, Unsupervised learning, cross-modal retrieval. Position measurement. BibRef

Zhao, L.[Liang],
Event Prediction in the Big Data Era: A Systematic Survey,
Surveys(54), No. 5, May 2021, pp. xx-yy.
DOI Link 2107
big data, Event prediction, artificial intelligence BibRef

Messikommer, N.[Nico], Gehrig, D.[Daniel], Gehrig, M.[Mathias], Scaramuzza, D.[Davide],
Bridging the Gap between Events and Frames through Unsupervised Domain Adaptation,
RALetters(7), 2022.
PDF File.
WWW Link. Code, Events. BibRef 2200

Hu, W.M.[Wei-Ming], Liu, H.[Haowei], Du, Y.[Yang], Yuan, C.F.[Chun-Feng], Li, B.[Bing], Maybank, S.J.[Stephen J.],
Interaction-Aware Spatio-Temporal Pyramid Attention Networks for Action Classification,
PAMI(44), No. 10, October 2022, pp. 7010-7028.
IEEE DOI 2209
BibRef
Earlier: A3, A4, A5, A1 Add Zhao, L.[Lili], Li, Y.X.[Yang-Xi], ECCV18(XVI: 388-404).
Springer DOI 1810
Videos, Feature extraction, Training, Recurrent neural networks, Semantics, Principal component analysis, Deep learning, spatio-temporal pyramid BibRef

Li, L.[Li], Yuan, C.F.[Chun-Feng], Hu, W.M.[Wei-Ming], Li, B.[Bing],
Top-Down Cues for Event Recognition,
ACCV10(III: 691-702).
Springer DOI 1011
BibRef

Li, L.[Li], Hu, W.M.[Wei-Ming], Li, B.[Bing], Yuan, C.F.[Chun-Feng], Zhu, P.F.[Peng-Fei], Li, W.Q.[Wan-Qing],
Event Recognition Based on Top-Down Motion Attention,
ICPR10(3561-3564).
IEEE DOI 1008
BibRef

Levinkov, E.[Evgeny], Kardoost, A.[Amirhossein], Andres, B.[Bjoern], Keuper, M.[Margret],
Higher-Order Multicuts for Geometric Model Fitting and Motion Segmentation,
PAMI(45), No. 1, January 2023, pp. 608-622.
IEEE DOI 2212
Motion segmentation, Geometric modeling, Costs, Task analysis, Data models, Computational modeling, Combinatorial optimization, geometric model fitting BibRef

Keuper, M.[Margret],
Higher-Order Minimum Cost Lifted Multicuts for Motion Segmentation,
ICCV17(4252-4260)
IEEE DOI 1802
graph theory, image motion analysis, image segmentation, Higher-Order Minimum Cost Lifted Multicuts, Partitioning algorithms BibRef

Keuper, M., Andres, B.[Bjoern], Brox, T.,
Motion Trajectory Segmentation via Minimum Cost Multicuts,
ICCV15(3271-3279)
IEEE DOI 1602
Color BibRef

Kardoost, A.[Amirhossein], Keuper, M.[Margret],
Solving Minimum Cost Lifted Multicut Problems by Node Agglomeration,
ACCV18(IV:74-89).
Springer DOI 1906
BibRef

Bashmal, L.[Laila], Bazi, Y.[Yakoub], Al Rahhal, M.M.[Mohamad Mahmoud], Zuair, M.[Mansour], Melgani, F.[Farid],
CapERA: Captioning Events in Aerial Videos,
RS(15), No. 8, 2023, pp. 2139.
DOI Link 2305
BibRef

Liu, Q.Y.[Qin-Ying], Wang, Z.L.[Zi-Lei], Rong, S.H.[Sheng-Hai],
Improve Temporal Action Proposals using Hierarchical Context,
PR(140), 2023, pp. 109560.
Elsevier DOI 2305
Temporal action proposal, Contexts, Attention model BibRef


Hoang-Xuan, N.[Nhat], Nguyen, E.R.[E-Ro], Nguyen-Ho, T.L.[Thang-Long], Pham, M.K.[Minh-Khoi], Nguyen, Q.T.[Quang-Thuc], Trang-Trung, H.P.[Hoang-Phuc], Ninh, V.T.[Van-Tu], Le, T.K.[Tu-Khiem], Gurrin, C.[Cathal], Tran, M.T.[Minh-Triet],
V-FIRST 2.0: Video Event Retrieval with Flexible Textual-Visual Intermediary for VBS 2023,
MMMod23(I: 652-657).
Springer DOI 2304
BibRef

Koutras, P., Zlatinsi, A., Maragos, P.,
Exploring CNN-Based Architectures for Multimodal Salient Event Detection in Videos,
IVMSP18(1-5)
IEEE DOI 1809
Videos, Visualization, Event detection, Motion pictures, Kernel BibRef

Cavaliere, D., Greco, L., Ritrovato, P., Senatore, S.,
A knowledge-based approach for video event detection using spatio-temporal sliding windows,
AVSS17(1-6)
IEEE DOI 1806
autonomous aerial vehicles, control engineering computing, knowledge based systems, navigation, object tracking, Video sequences BibRef

Pei, W.J.[Wen-Jie], Baltrušaitis, T.[Tadas], Tax, D.M.J.[David M.J.], Morency, L.P.[Louis-Philippe],
Temporal Attention-Gated Model for Robust Sequence Classification,
CVPR17(820-829)
IEEE DOI 1711
Computational modeling, Data models, Hidden Markov models. To deal with noisy sequence data. Apply to: spoken digit recognition, text-based sentiment analysis and visual event recognition. BibRef

Sobhani, F., Chandramouli, K., Zhang, Q.N.[Qian-Ni], Izquierdo, E.[Ebroul],
Formal representation of events in a surveillance domain ontology,
ICIP16(913-917)
IEEE DOI 1610
Cameras BibRef

Liu, X.L.[Xue-Liang], Wang, F.F.[Fei-Fei], Huet, B.[Benoit], Wang, F.[Feng],
E2SGM: Event Enrichment and Summarization by Graph Model,
MMMod16(II: 348-353).
Springer DOI 1601
BibRef

Tzelepis, C., Mavridaki, E., Mezaris, V., Patras, I.,
Video aesthetic quality assessment using kernel Support Vector Machine with isotropic Gaussian sample uncertainty (KSVM-IGSU),
ICIP16(2410-2414)
IEEE DOI 1610
Cameras BibRef

Tzelepis, C.[Christos], Mezaris, V.[Vasileios], Patras, I.[Ioannis],
Video Event Detection Using Kernel Support Vector Machine with Isotropic Gaussian Sample Uncertainty (KSVM-iGSU),
MMMod16(I: 3-15).
Springer DOI 1601
BibRef

Zografos, V.[Vasileios], Lenz, R.[Reiner], Ringaby, E.[Erik], Felsberg, M.[Michael], Nordberg, K.[Klas],
Fast Segmentation of Sparse 3D Point Trajectories Using Group Theoretical Invariants,
ACCV14(IV: 675-691).
Springer DOI 1504
BibRef

Trichet, R.[Remi], Nevatia, R.[Ramakant],
Video Segmentation Descriptors for Event Recognition,
ICPR14(1940-1945)
IEEE DOI 1412
Color BibRef

Chen, S.Z.[Shi-Zhe], Huang, D.[Dong],
Elaborative Rehearsal for Zero-shot Action Recognition,
ICCV21(13618-13627)
IEEE DOI 2203
Training, Protocols, Codes, Target recognition, Semantics, Benchmark testing, Action and behavior recognition, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Huang, D.[Dong], Yao, S.T.[Shi-Tong], Wang, Y.[Yi], de la Torre, F.[Fernando],
Sequential Max-Margin Event Detectors,
ECCV14(III: 410-424).
Springer DOI 1408
BibRef

Kumar, K.P., Parameswaran, L.,
A hybrid method for object identification and event detection in video,
NCVPRIPG13(1-4)
IEEE DOI 1408
image colour analysis BibRef

Bossard, L.[Lukas], Guillaumin, M.[Matthieu], Van Gool, L.J.[Luc J.],
Event Recognition in Photo Collections with a Stopwatch HMM,
ICCV13(1193-1200)
IEEE DOI 1403
Dataset, Event Recognition. 61,000 images in 807 collections, with 14 social event classes. BibRef

Jain, A.[Arpit], Gupta, A.[Abhinav], Rodriguez, M.[Mikel], Davis, L.S.[Larry S.],
Representing Videos Using Mid-level Discriminative Patches,
CVPR13(2571-2578)
IEEE DOI 1309
Action Recognition; Video Understanding. Patches match across videos. Alignment, Action. BibRef

Irvine, J., Young, M.[Mon], Deutsch, O., Antelman, E., Guler, S., Morde, A., Ma, X.[Xiang], Pushee, I.,
Enhanced event recognition in video using image quality assessment,
AIPR12(1-8)
IEEE DOI 1307
computer vision BibRef

Izadinia, H.[Hamid], Shah, M.[Mubarak],
Recognizing Complex Events Using Large Margin Joint Low-Level Event Model,
ECCV12(IV: 430-444).
Springer DOI 1210
Video:
WWW Link. BibRef

Miller, B.[Ben], McCloskey, S.[Scott],
Metric Feature Indexing for Interactive Multimedia Search,
CRV16(109-115)
IEEE DOI 1612
activity recognition;indexing;machine learning BibRef

McCloskey, S.[Scott], Davalos, P.[Pedro],
Activity detection in the wild using video metadata,
ICPR12(3140-3143).
WWW Link. 1302
BibRef

McCloskey, S.[Scott], Liu, J.C.[Jing-Chen],
Metadata-Weighted Score Fusion for Multimedia Event Detection,
CRV14(299-305)
IEEE DOI 1406
Bit rate BibRef

Liu, J.C.[Jing-Chen], McCloskey, S.[Scott], Liu, Y.X.[Yan-Xi],
Local Expert Forest of Score Fusion for Video Event Classification,
ECCV12(V: 397-410).
Springer DOI 1210
BibRef

Castellanos, R.[Ricardo], Kalva, H.[Hari], Marques, O.[Oge], Furht, B.[Borko],
Event detection in video using motion analysis,
ARTEMIS10(57-62).
DOI Link 1111
BibRef

Bohlken, W.[Wilfried], Neumann, B.[Bernd], Hotz, L.[Lothar], Koopmann, P.[Patrick],
Ontology-Based Realtime Activity Monitoring Using Beam Search,
CVS11(112-121).
Springer DOI 1109
BibRef

Burlet, J., Aycard, O., Baig, Q.,
Interacting multiple models based classification of moving objects,
ICARCV10(2472-2478).
IEEE DOI 1109
Object behavior using lidar. BibRef

Robbel, P., Roy, D.,
Exploiting feature dynamics for active object recognition,
ICARCV10(2102-2108).
IEEE DOI 1109
Extend invariant features to time domain. BibRef

Lan, T.[Tian], Chen, T.C.[Tsung-Chuan], Savarese, S.[Silvio],
A Hierarchical Representation for Future Action Prediction,
ECCV14(III: 689-704).
Springer DOI 1408
BibRef

Liu, J.G.[Jin-Gen], Kuipers, B.[Benjamin], Savarese, S.[Silvio],
Recognizing human actions by attributes,
CVPR11(3337-3344).
IEEE DOI 1106
BibRef

Vyas, S.[Shruti], Rawat, Y.S.[Yogesh S.], Shah, M.[Mubarak],
Multi-view Action Recognition Using Cross-view Video Prediction,
ECCV20(XXVII:427-444).
Springer DOI 2011
BibRef

Liu, J.G.[Jin-Gen], Shah, M.[Mubarak], Kuipers, B.[Benjamin], Savarese, S.[Silvio],
Cross-view action recognition via view knowledge transfer,
CVPR11(3209-3216).
IEEE DOI 1106
BibRef

Park, D.J.[Dong-Jun], Eichmann, D.[David],
Video Event Detection as Matching of Spatiotemporal Projection,
ISVC10(III: 139-150).
Springer DOI 1011
BibRef

Yildirim, Y.[Yakup], Yilmaz, T.[Turgay], Yazici, A.[Adnan],
Ontology-supported object and event extraction with a genetic algorithms approach for object classification,
CIVR07(202-209).
DOI Link 0707
BibRef

Tahayna, B.[Bashar], Belkhatir, M.[Mohammed], Alhashmi, S.M.[Saadat M.], O'Daniel, T.[Thomas],
Optimizing support vector machine based classification and retrieval of semantic video events with genetic algorithms,
ICIP10(1485-1488).
IEEE DOI 1009
BibRef
And:
Motion data-driven model for semantic events classification using an optimized support vector machine,
CIVR10(296-302).
DOI Link 1007
BibRef

Dag, N.[Nilgun], Atil, I.[Ilkay], Kalkan, S.[Sinan], Sahin, E.[Erol],
Learning Affordances for Categorizing Objects and Their Properties,
ICPR10(3089-3092).
IEEE DOI 1008
Perceptual properties from interactions of object in environment. BibRef

Weinland, D.[Daniel], Özuysal, M.[Mustafa], Fua, P.[Pascal],
Making Action Recognition Robust to Occlusions and Viewpoint Changes,
ECCV10(III: 635-648).
Springer DOI 1009
BibRef

Fan, H.C.[Hong-Chao], Liu, L.[Lu], Meng, L.Q.[Li-Qiu],
A mathematic model for event detection in spatiotemporal city environment,
CityModels09(xx-yy).
PDF File. 0912
BibRef

Noguchi, A.[Akitsugu], Yanai, K.[Keiji],
Extracting Spatio-Temporal Local Features Considering Consecutiveness of Motions,
ACCV09(II: 458-467).
Springer DOI 0909
Based on SURF detector. For activity recognition.
See also Speeded-Up Robust Features (SURF). BibRef

Han, D.[Dong], Bo, L.F.[Lie-Feng], Sminchisescu, C.[Cristian],
Selection and context for action recognition,
ICCV09(1933-1940).
IEEE DOI 0909
BibRef

Hu, Y.X.[Yu-Xiao], Cao, L.L.[Liang-Liang], Lv, F.J.[Feng-Jun], Yan, S.C.[Shui-Cheng], Gong, Y.H.[Yi-Hong], Huang, T.S.[Thomas S.],
Action detection in complex scenes with spatial and temporal ambiguities,
ICCV09(128-135).
IEEE DOI 0909
BibRef

Willems, G.[Geert], Becker, J.H.[Jan Hendrik], Tuytelaars, T.[Tinne], Van Gool, L.J.[Luc J.],
Exemplar-based action recognition in video,
BMVC09(xx-yy).
PDF File. Video:
WWW Link. 0909
BibRef

Rimey, R., Keefe, D.,
Exploitation of massive numbers of simple events,
AIPR08(1-6).
IEEE DOI 0810
BibRef
And:
Temporal structure methods for image-based change analysis,
AIPR08(1-7).
IEEE DOI 0810
BibRef

Perez Concha, O.[Oscar], Xu, R.Y.D.[Richard Yi Da], Moghaddam, Z.[Zia], Piccardi, M.[Massimo],
HMM-MIO: An enhanced hidden Markov model for action recognition,
MLVMA11(62-69).
IEEE DOI 1106
BibRef

Moghaddam, Z.[Zia], Piccardi, M.[Massimo],
Human action recognition with MPEG-7 descriptors and architectures,
ARTEMIS10(63-68).
DOI Link 1111
BibRef

Moghaddam, Z.[Zia], Piccardi, M.[Massimo],
Robust density modelling using the student's t-distribution for human action recognition,
ICIP11(3261-3264).
IEEE DOI 1201
BibRef
Earlier:
Histogram-Based Training Initialisation of Hidden Markov Models for Human Action Recognition,
AVSS10(256-261).
IEEE DOI 1009
BibRef
Earlier:
Deterministic Initialization of Hidden Markov Models for Human Action Recognition,
DICTA09(188-195).
IEEE DOI 0912
BibRef

Li, J.[Jian], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
Scene Segmentation for Behaviour Correlation,
ECCV08(IV: 383-395).
Springer DOI 0810
BibRef

Jiang, H.[Hao], Martin, D.R.[David R.],
Finding Actions Using Shape Flows,
ECCV08(II: 278-292).
Springer DOI 0810
BibRef

Pogalin, E., Smeulders, A.W.M.[Arnold W.M.], Thean, A.H.C.,
Visual quasi-periodicity,
CVPR08(1-8).
IEEE DOI 0806
Detect and describe 10 types of periodicity. BibRef

Xiong, F.[Fei], Camps, O.I.[Octavia I.], Sznaier, M.[Mario],
Low order dynamics embedding for high dimensional time series,
ICCV11(2368-2374).
IEEE DOI 1201
nonlinear embeddings of dynamic data. BibRef

Li, B.L.[Bin-Long], Camps, O.I.[Octavia I.], Sznaier, M.[Mario],
Cross-view activity recognition using Hankelets,
CVPR12(1362-1369).
IEEE DOI 1208
BibRef

Li, B.L.[Bin-Long], Ayazoglu, M.[Mustafa], Mao, T.[Teresa], Camps, O.I.[Octavia I.], Sznaier, M.[Mario],
Activity recognition using dynamic subspace angles,
CVPR11(3193-3200).
IEEE DOI 1106
BibRef

Ding, T.[Tao], Sznaier, M.[Mario], Camps, O.I.[Octavia I.],
Fast track matching and event detection,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Cao, L.L.[Liang-Liang], Liu, Z.C.[Zi-Cheng], Huang, T.S.[Thomas S.],
Cross-dataset action detection,
CVPR10(1998-2005).
IEEE DOI 1006
To avoid repeated manual annotations. BibRef

Cao, L.L.[Liang-Liang], Luo, J.B.[Jie-Bo], Kautz, H.[Henry], Huang, T.S.[Thomas S.],
Annotating collections of photos using hierarchical event and scene models,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Huebner, K.[Kai], Björkman, M.[Mĺrten], Rasolzadeh, B.[Babak], Schmidt, M.[Martina], Kragic, D.[Danica],
Integration of Visual and Shape Attributes for Object Action Complexes,
CVS08(xx-yy).
Springer DOI 0805
Objects and actions are intertwined.
See also Active 3d Segmentation through Fixation of Previously Unseen Objects. BibRef

Li, L.J.[Li-Jia], Fei-Fei, L.[Li],
What, where and who? Classifying events by scene and object recognition,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Jhuang, H., Serre, T., Wolf, L., Poggio, T.,
A Biologically Inspired System for Action Recognition,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Uchida, S.[Seiichi], Mori, A.[Akihiro], Kurazume, R.[Ryo], Taniguchi, R.I.[Rin-Ichiro], Hasegawa, T.[Tsutomu],
Logical DP Matching for Detecting Similar Subsequence,
ACCV07(I: 628-637).
Springer DOI 0711
Dynamic Programming. Similar gesturs. BibRef

Wei, Q.D.[Qing-Di], Hu, W.M.[Wei-Ming], Zhang, X.Q.[Xiao-Qin], Luo, G.[Guan],
Dominant Sets-Based Action Recognition using Image Sequence Matching,
ICIP07(VI: 133-136).
IEEE DOI 0709
BibRef

Yuk, J.S.C.[Jacky S.C.], Wong, K.Y.K.[Kwan-Yee K.], Chung, R.H.Y.[Ronald H.Y.], Chow, K.P., Chin, F.Y.L.[Francis Y.L.], Tsang, K.S.H.[Kenneth S.H.],
Object-Based Surveillance Video Retrieval System with Real-Time Indexing Methodology,
ICIAR07(626-637).
Springer DOI 0708
BibRef

Arbib, M.A.[Michael A.], Lee, J.Y.[Jin-Yong],
Vision and Action in the Language-Ready Brain: From Mirror Neurons to SemRep,
BVAI07(104-123).
Springer DOI 0710
BibRef

Gupta, A.[Abhinav], Davis, L.S.[Larry S.],
Beyond Nouns: Exploiting Prepositions and Comparative Adjectives for Learning Visual Classifiers,
ECCV08(I: 16-29).
Springer DOI 0810
BibRef
Earlier:
Objects in Action: An Approach for Combining Action Understanding and Object Perception,
CVPR07(1-8).
IEEE DOI 0706
BibRef

Kaiser, B.[Benedikt], Heidemann, G.[Gunther],
Qualitative analysis of spatio-temporal event detectors,
ICPR08(1-4).
IEEE DOI 0812
BibRef
And:
Context-Free Detection of Events,
SCIA07(223-232).
Springer DOI 0706
BibRef

Grest, D.[Daniel], Krüger, V.[Volker], Koch, R.[Reinhard],
Single View Motion Tracking by Depth and Silhouette Information,
SCIA07(719-729).
Springer DOI 0706
BibRef

Krüger, V.[Volker], Grest, D.[Daniel],
Using Hidden Markov Models for Recognizing Action Primitives in Complex Actions,
SCIA07(203-212).
Springer DOI 0706
BibRef

Krüger, V.[Volker],
Recognizing Action Primitives in Complex Actions Using Hidden Markov Models,
ISVC06(I: 538-547).
Springer DOI 0611
BibRef

Park, T.S.[Tae-Su], Lee, J.H.[Ju-Hong], Park, S.H.[Sang-Ho], Choi, B.[Bumghi], Kim, D.H.[Deok-Hwan],
Search Method of Time Sensitive Frequent Itemsets in Data Streams,
CIARP06(511-518).
Springer DOI 0611
Data mining. BibRef

Alahari, K.[Karteek], Jawahar, C.V.,
Dynamic Events as Mixtures of Spatial and Temporal Features,
ICCVGIP06(540-551).
Springer DOI 0612
BibRef
And:
Discriminative Actions for Recognising Events,
ICCVGIP06(552-563).
Springer DOI 0612
BibRef

Muncaster, J.[Justin], Ma, Y.Q.[Yun-Qian],
Activity Recognition using Dynamic Bayesian Networks with Automatic State Selection,
Motion07(30-30).
IEEE DOI 0702
BibRef

Ma, Y.Q.[Yun-Qian], Damelin, S.B., Masoud, O.T., Papanikolopoulos, N.P.,
Activity Recognition Via Classification Constrained Diffusion Maps,
ISVC06(I: 1-8).
Springer DOI 0611
BibRef

Ma, Y.Q.[Yun-Qian], Bazakos, M.[Mike], Miller, B.[Ben], Buddharaju, P.[Pradeep],
Activity Awareness: from Predefined Events to New Pattern Discovery,
CVS06(11).
IEEE DOI 0602
BibRef

Ma, Y.Q.[Yun-Qian], Buddharaju, P.[Pradeep], Bazakos, M.[Mike],
Pattern Discovery for Video Surveillance,
ISVC05(347-354).
Springer DOI 0512
BibRef

Wang, T.[Tao], Li, J.G.[Jian-Guo], Diao, Q.[Qian], Hu, W.[Wei], Zhang, Y.M.[Yi-Min], Dulong, C.[Carole],
Semantic Event Detection using Conditional Random Fields,
SLAM06(109).
IEEE DOI 0609
BibRef

Altinok, A.[Alphan], El-Saban, M.[Motaz], Peck, A.J.[Austin J.], Wilson, L.[Leslie], Feinstein, S.C.[Stuart C.], Manjunath, B.S., Rose, K.[Kenneth],
Activity Analysis in Microtubule Videos by Mixture of Hidden Markov Models,
CVPR06(II: 1662-1669).
IEEE DOI 0606
BibRef

Jhala, S.[Sanjit], Lodha, S.K.[Suresh K.],
On-line Learning of Motion Patterns using an Expert Learning Framework,
LCV04(100).
IEEE DOI 0406
BibRef

Zhang, J.[Jain], Yang, Y.M.[Yi-Ming], Carbonell, J.[Jaime],
New Event Detection with Nearest Neighbor, Support Vector Machines, and Kernel Regression,
CMU-CS-TR-04-118.
HTML Version. 0501
BibRef

Krahnstoever, N.O., Rittscher, J., Tu, P.H., Chean, K., Tomlinson, T.,
Activity Recognition using Visual Tracking and RFID,
WACV05(I: 494-500).
IEEE DOI 0502
BibRef

Yu, L.[Li], Boult, T.E.[Terrance E.],
Understanding Images of Graphical User Interfaces: A New Approach to Activity Recognition for Visual Surveillance,
EventVideo04(113).
IEEE DOI 0502
How to specify interesting activities. BibRef

Ghanem, N.M.[Nagia M.], Davis, L.S.[Larry S.],
Human Appearance Change Detection,
CIAP07(536-541).
IEEE DOI 0709
Changes in human appearance. I.e. with or without backpack, suitcase. BibRef

Ghanem, N.M.[Nagia M.], DeMenthon, D.F.[Daniel F.], Doermann, D.S.[David S.], Davis, L.S.[Larry S.],
Representation and Recognition of Events in Surveillance Video Using Petri Nets,
EventVideo04(112).
IEEE DOI 0502
BibRef

Prange, J.D.,
Detecting, recognizing and understanding video events in surveillance video,
AVSBS03(4-4).
IEEE DOI 0310
BibRef

Kottow, D.[Daniel], Köppen, M.[Mario], Ruiz-del-Solar, J.[Javier],
Temporal Dynamical Interactions between Multiple Layers of Local Image Features for Event Detection in Video Sequences,
SCIA03(223-231).
Springer DOI 0310
BibRef

Ogris, G.[Georg], Paletta, L.[Lucas],
Predicting Detection Events from Bayesian Scene Recognition,
SCIA03(1058-1065).
Springer DOI 0310
BibRef

Peyrard, N., Bouthemy, P.,
Detection of meaningful events in videos based on a supervised classification approach,
ICIP03(III: 621-624).
IEEE DOI 0312
BibRef

Buzan, D., Sclaroff, S., Kollios, G.,
Extraction and clustering of motion trajectories in video,
ICPR04(II: 521-524).
IEEE DOI 0409
BibRef

Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.,
Discovering clusters in motion time-series data,
CVPR03(I: 375-381).
IEEE DOI 0307
Discover groupings of similar object motions. Allows each sequence to belong to more than a single HMM with some probability, and the hard decision about the sequence class membership can be deferred until a later time when such a decision is required. BibRef

Wu, Y.[Yi], Lin, C.K.[Ching-King], Chang, E.Y., Smith, J.R.,
Multimodal information fusion for video concept detection,
ICIP04(IV: 2391-2394).
IEEE DOI 0505
BibRef

Minnen, D., Essa, I.A., Starner, T.E.,
Expectation Grammars: Leveraging High-Level Expectations for Activity Recognition,
CVPR03(II: 626-632).
IEEE DOI 0307
BibRef

Syeda-Mahmood, T.F.,
Segmenting actions in velocity curve space,
ICPR02(IV: 170-175).
IEEE DOI 0211
BibRef

Natale, L.[Lorenzo], Rao, S.[Sajit], Sandini, G.[Giulio],
Learning to Act on Objects,
BMCV02(567 ff.).
Springer DOI 0303
BibRef

Ilg, W.[Winfried], Giese, M.[Martin],
Modeling of Movement Sequences Based on Hierarchical Spatial-Temporal Correspondence of Movement Primitives,
BMCV02(528 ff.).
Springer DOI 0303
BibRef

Diaz de Leon, R., Sucar, L.E.[L. Enrique],
Continuous activity recognition with missing data,
ICPR02(I: 439-442).
IEEE DOI 0211
BibRef

Satoh, Y., Tanahashi, H., Wang, C.H.[Cai-Hua], Kaneko, S., Niwa, Y., Yamamoto, K.,
Robust event detection by radial reach filter (RRF),
ICPR02(II: 623-626).
IEEE DOI 0211
BibRef

Kawashima, H.[Hiroaki], Matsuyama, T.[Takashi],
Interval-Based Linear Hybrid Dynamical System for Modeling Cross-Media Timing Structures in Multimedia Signals,
CIAP07(789-794).
IEEE DOI 0709
BibRef
Earlier:
Integrated event recognition from multiple sources,
ICPR02(II: 785-789).
IEEE DOI 0211
BibRef

Xu, G.[Gu], Ma, Y.F.[Yu-Fei], Zhang, H.J.[Hong-Jiang], Yang, S.Q.[Shi-Qiang],
Motion based event recognition using HMM,
ICPR02(II: 831-834).
IEEE DOI 0211
BibRef

Sun, X.D.[Xin-Ding], Manjunath, B.S., Divakaran, A.,
Representation of motion activity in hierarchical levels for video indexing and filtering,
ICIP02(I: 149-152).
IEEE DOI 0210
BibRef

Naphade, M.R., Huang, T.S.,
Discovering recurrent events in video using unsupervised methods,
ICIP02(II: 13-16).
IEEE DOI 0210
BibRef

Caelli, T.M.[Terry M.], McCabe, A.[Andrew], Binsted, G.[Gordon],
On Learning the Shape of Complex Actions,
VF01(24 ff.).
Springer DOI 0209
BibRef

Bischof, W.F.[Walter F.], Caelli, T.M.[Terry M.],
On the Learning of Complex Movement Sequences,
VF01(463 ff.).
Springer DOI 0209
BibRef

Piater, J.H., Richetto, S., Crowley, J.L.,
Event-based Activity Analysis in Live Video using a Generic Object Tracker,
PETS02(1-8). 0207
BibRef

Miller, E.[Erik], Tieu, K.[Kinh], Stauffer, C.[Chris],
Learning Object-Independent Modes of Variation with Feature Flow Fields,
MIT AIM-2001-021, September 2001.
WWW Link. 0205
BibRef

Vedula, S.,
Image Based Spatio-Temporal Modeling and View Interpolation of Dynamic Events,
CMU-RI-TR-01-37, September, 2001. BibRef 0109 Ph.D.Thesis.
PDF File. 0205
BibRef

Vedula, S., Baker, S., Kanade, T.,
Spatio-Temporal View Interpolation,
CMU-RI-TR-01-35, September, 2001.
PDF File. 0205
BibRef

Mittal, A.[Ankush], Cheong, L.F.[Loong Fah], and Sing, L.T.[Leung Tung],
Dynamic Bayesian Framework for Extracting Temporal Structure in Video,
CVPR01(II:110-115).
IEEE DOI 0110
Descriptors based on perceptual-level motion features such as time-to-collision, shot transition and temporal motion. BibRef

Remagnino, P., Jones, G.A.,
Classifying Surveillance Events from Attributes and Behaviour,
BMVC01(Session 8: Modelling Behaviour).
HTML Version. Kingston University 0110
BibRef

Rares, A., Reinders, M., Biemond, J.,
Complex Event Classification in Degraded Image Sequences,
ICIP01(I: 253-256).
IEEE DOI 0108
BibRef

Slaney, M., Ponceleon, D., Kaufman, J.,
Understanding the Semantics of Media,
VideoMining03(Chapter 8). BibRef 0300

Slaney, M.[Malcolm], Ponceleon, D.[Dulce], Kaufman, J.[James],
Temporal Events in All Dimensions and Scales,
EventVideo01(83-91).
IEEE DOI 0106
BibRef

Hoey, J.[Jesse],
Hierarchical unsupervised learning of facial expression categories,
EventVideo01(99-106).
IEEE DOI 0106
BibRef

Rui, Y.[Yong], Anandan, P.,
Segmenting Visual Actions based on Spatio-Temporal Motion Patterns,
CVPR00(I: 111-118).
IEEE DOI 0005
BibRef

Mugurel, M.L., Venkatesh, S., West, G.A.W.,
On the Incremental Learning and Recognition of the Pattern of Movement of Multiple Labelled Objects in Dynamic Scenes,
ICPR00(Vol II: 652-655).
IEEE DOI 0009
BibRef

Paletta, L.[Lucas], Prantl, M.[Manfred], Pinz, A.[Axel],
Learning Temporal Context in Active Object Recognition Using Bayesian Analysis,
ICPR00(Vol I: 695-699).
IEEE DOI 0009
BibRef

Lomker, F.[Frank], Wrede, S.[Sebastian], Hanheide, M.[Marc], Fritsch, J.[Jannik],
Building Modular Vision Systems with a Graphical Plugin Environment,
CVS06(2).
IEEE DOI 0602

See also Integration and Coordination in a Cognitive Vision System. BibRef

Li, Z.[Zhe], Fritsch, J.[Jannik], Wachsmuth, S.[Sven], Sagerer, G.[Gerhard],
An Object-Oriented Approach Using a Top-Down and Bottom-Up Process for Manipulative Action Recognition,
DAGM06(212-221).
Springer DOI 0610
BibRef

Fritsch, J., Lomker, F., Wienecke, M., Sagerer, G.,
Detecting Assembly Actions by Scene Observation,
ICIP00(Vol I: 212-215).
IEEE DOI 0008
BibRef

Shotton, D.M., Rodríguez, A., Guil, N.[Nicolás], Trelles, O.,
Object Tracking and Event Recognition in Biological Microscopy Videos,
ICPR00(Vol IV: 226-229).
IEEE DOI 0009
BibRef

Davis, J.W.[James W.], Bobick, A.F.[Aaron F.], Richards, W.A.[Whitman A.],
Categorical Representation and Recognition of Oscillatory Motion Patterns,
CVPR00(I: 628-635).
IEEE DOI 0005
BibRef

Babaguchi, N.[Noboru], Jain, R.C.[Ramesh C.],
Event Detection from Continuous Media,
ICPR98(Vol II: 1209-1212).
IEEE DOI 9808
BibRef

Uchibe, E.[Eiji], Asada, M.[Minoru], and Hosoda, K.[Koh],
State Space Construction for Behavior Acquisition in Multi Agent Environments with Vision and Action,
ICCV98(870-875).
IEEE DOI BibRef 9800

Fabiani, P.,
Dynamics of Beliefs and Strategy of Perception,
ECAI96(XX-YY). BibRef 9600

Rao, R.P.N.[Rajesh P.N.],
A Kalman Filter that Learns Robust Models of Dynamic Phenomena,
DARPA97(123-128). BibRef 9700

Olson, T.J.[Thomas J.], Brill, F.Z.[Frank Z.],
Moving Object Detection and Event Recognition Algorithms for Smart Camera,
DARPA97(159-176). BibRef 9700

Herzog, G.,
From Visual Input to Verbal Output in the Visual Translator,
TR124, Universitat Des Saarlandes, 1995. BibRef 9500

Shavit, E., Jepson, A.D.,
Motion Understanding from Qualitative Visual Dynamics,
WQV93(82-88). BibRef 9300

Okada, N.,
SUPP: Understanding Moving Picture Patterns Based on Linguistic Knowledge,
IJCAI79(690-692). BibRef 7900

Badler, N.I.,
Three-Dimensional Motion from Two-Dimensional Picture Sequences,
ICPR74(157-161). BibRef 7400

Badler, N.I.,
Temporal Scene Analysis: Conceptual Descriptions of Object Movements,
TorontoTR-80, February 1975, BibRef 7502 Ph.D.Thesis (CS). Event Understanding. Understand and describe events based on motion analysis. BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Trajectory Analysis for Events, Actions .


Last update:Nov 30, 2023 at 15:51:27