Lin, Y.T.[Yun-Ting],
Chen, Y.K.[Yen-Kuang],
Kung, S.Y.,
A Principal Component Clustering Approach to Object Oriented
Motion Segmentation and Estimation,
VLSIVideo(17), No. 2-3, November 1997, pp. 163-187.
9712
BibRef
Earlier:
Object-Based Scene Segmentation Combining Motion and Image Cues,
ICIP96(I: 957-960).
IEEE DOI
BibRef
Altunbasak, Y.[Yucel],
Eren, P.E.[P. Erhan],
Tekalp, A.M.[A. Murat],
Region-Based Parametric Motion Segmentation Using Color Information,
GMIP(60), No. 1, January 1998, pp. 13-23.
BibRef
9801
Altunbasak, Y.,
Oten, R., and
de Figueiredo, R.J.P.,
Simultaneous Object Segmentation, Multiple Object Tracking and
Alpha Map Generation,
ICIP97(I: 69-72).
IEEE DOI
BibRef
9700
Altunbasak, Y.[Yucel],
Mersereau, R.M.,
Patti, A.J.[Andrew J.],
A fast parametric motion estimation algorithm with illumination and
lens distortion correction,
IP(12), No. 4, April 2003, pp. 395-408.
IEEE DOI
0306
BibRef
Altunbasak, Y.[Yucel],
Patti, A.J.[Andrew J.],
King, O.D.[Oliver D.],
On Global Parametric Motion Estimation with Lens Distortion Correction,
ICIP99(III:686-690).
IEEE DOI
BibRef
9900
Nguyen, H.T.,
Worring, M.,
Dev, A.,
Detection of Moving Objects in Video Using a Robust Motion Similarity
Measure,
IP(9), No. 1, January 2000, pp. 137-141.
IEEE DOI
0001
BibRef
Onural, L.[Levent],
Alatan, A.A.[Abdullah Aydin],
Tuncel, E.[Ertem],
Rule-based moving object segmentation,
US_Patent6,337,917, Jan 8, 2002
WWW Link.
BibRef
0201
Earlier: A2, A3, A1:
A Rule-Based Method for Object Segmentation in Video Sequences,
ICIP97(II: 522-525).
IEEE DOI
BibRef
Lo, C.C.[Chi-Chun],
Wang, S.J.[Shuenn-Jyi],
A histogram-based moment-preserving clustering algorithm for video
segmentation,
PRL(24), No. 14, October 2003, pp. 2209-2218.
Elsevier DOI
0307
BibRef
Yang, G.B.[Gao-Bo],
Yu, S.F.[Sheng-Fa],
Modified intelligent scissors and adaptive frame skipping for video
object segmentation,
RealTimeImg(11), No. 4, August 2005, pp. 310-322.
Elsevier DOI
0508
BibRef
Chujoh, T.[Takeshi],
Kikuchi, Y.[Yoshihiro],
Sakuma, A.[Akira],
Hayashi, T.[Toshifumi],
Kobayashi, H.[Hiroyuki],
Method for detecting a moving object in motion video
and apparatus therefor,
US_Patent6,876,701, Apr 5, 2005
WWW Link.
BibRef
0504
And:
US_Patent7,292,633, Nov 6, 2007
WWW Link.
BibRef
Chiu, S.[Shen],
Application of Fractional Fourier Transform to Moving Target Indication
via Along-Track Interferometry,
JASP(2005), No. 20, 2005, pp. 3293-3303.
WWW Link.
0603
BibRef
Gruber, A.[Amit],
Weiss, Y.[Yair],
Incorporating Non-motion Cues into 3D Motion Segmentation,
CVIU(108), No. 3, December 2007, pp. 261-271.
Elsevier DOI
0711
BibRef
Earlier:
ECCV06(III: 84-97).
Springer DOI
0608
BibRef
And:
Multibody factorization with uncertainty and missing data using the EM
algorithm,
CVPR04(I: 707-714).
IEEE DOI
0408
3D motion segmentation, Multibody factorization, Spatial coherence,
EM algorithm, Graphical models, Factor analysis, Constrained factorization;
Structure from motion
BibRef
Steenburgh, M.[Malcolm],
Murray, D.[Don],
Tucakov, V.[Vladimir],
Ku, S.[Shyan],
Barman, R.[Rod],
Method and apparatus for measuring dwell time
of objects in an environment,
US_Patent7,167,576, Jan 23, 2007
WWW Link.
BibRef
0701
Garoutte, M.V.[Maurice V.],
Video analysis using segmentation gain by area,
US_Patent7,218,756, May 15, 2007
WWW Link.
BibRef
0705
Kumar, M.P.[M. Pawan],
Torr, P.H.S.,
Zisserman, A.,
Learning Layered Motion Segmentations of Video,
IJCV(76), No. 3, March 2008, pp. 301-319.
Springer DOI
0801
BibRef
Earlier:
Learning Layered Motion Segmentation of Video,
ICCV05(I: 33-40).
IEEE DOI
0510
BibRef
Vázquez, C.[Carlos],
Ghazal, M.[Mohammed],
Amer, A.[Aishy],
Feature-based detection and correction of occlusions and split of video
objects,
SIViP(3), No. 1, January 2009, pp. xx-yy.
Springer DOI
0902
Address occlusions and object splitting.
BibRef
Li, X.[Xi],
Ning, Z.N.[Zheng-Nan],
Xiang, L.W.[Liu-Wei],
Robust Multi-Body Motion Segmentation Based on Fuzzy k-Subspace
Clustering,
IEICE(E88-D), No. 11, November 2005, pp. 2609-2614.
DOI Link
0511
See also Robust 3D Reconstruction with Outliers Using RANSAC Based Singular Value Decomposition.
BibRef
Boltz, S.[Sylvain],
Herbulot, A.[Ariane],
Debreuve, E.[Eric],
Barlaud, M.[Michel],
Aubert, G.[Gilles],
Motion and Appearance Nonparametric Joint Entropy for Video
Segmentation,
IJCV(80), No. 2, November 2008, pp. xx-yy.
Springer DOI
0809
BibRef
Earlier: A2, A1, A3, A4, A5:
Space-Time Segmentation Based on a Joint Entropy with Estimation of
Nonparametric Distributions,
SSVM07(721-732).
Springer DOI
0705
See also Joint Appearance and Deformable Shape for Nonparametric Segmentation.
See also High-Dimensional Statistical Measure for Region-of-Interest Tracking.
BibRef
Garcia, V.[Vincent],
Boltz, S.[Sylvain],
Debreuve, E.[Eric],
Barlaud, M.[Michel],
Outer-Layer Based Tracking using Entropy as a Similarity Measure,
ICIP07(VI: 309-312).
IEEE DOI
0709
See also Using the Shape Gradient for Active Contour Segmentation: From the Continuous to the Discrete Formulation.
BibRef
Boltz, S.,
Wolsztynski, E.,
Debreuve, E.,
Thierry, E.,
Barlaud, M.,
Pronzato, L.,
A Minimum-Entropy Procedure for Robust Motion Estimation,
ICIP06(1249-1252).
IEEE DOI
0610
BibRef
Herbulot, A.,
Boltz, S.,
Debreuve, E.,
Barlaud, M.,
Robust Motion-Based Segmentation in Video Sequences using Entropy
Estimator,
ICIP06(1853-1856).
IEEE DOI
0610
BibRef
Landabaso, J.L.[Jose-Luis],
Pardas, M.[Montse],
A Unified Framework for Consistent 2-D/3-D Foreground Object Detection,
CirSysVideo(18), No. 8, August 2008, pp. 1040-1051.
IEEE DOI
0809
BibRef
Tsai, D.M.[Du-Ming],
Chiu, W.Y.[Wei-Yao],
Motion Detection Using Fourier Image Reconstruction,
PRL(29), No. 16, 1 December 2008, pp. 2145-2155.
Elsevier DOI
0811
Motion detection, Surveillance, Foreground segmentation, Fourier transforms
BibRef
Sefcik, J.[Jason],
Method and system for estimating the position of
moving objects in images,
US_Patent7,277,558, Oct 2, 2007
WWW Link.
BibRef
0710
Lee, J.S.[Jin Soo],
Yu, J.S.[Jae Shin],
Method for extracting object region,
US_Patent7,313,254, Dec 25, 2007
WWW Link.
BibRef
0712
Pan, Z.L.[Zai-Liang],
Ngo, C.W.[Chong-Wah],
Moving-Object Detection, Association, and Selection in Home Videos,
MultMed(9), No. 2, February 2007, pp. 268-279.
IEEE DOI
0905
BibRef
Xu, J.F.[Jian-Feng],
Yamasaki, T.[Toshihiko],
Aizawa, K.[Kiyoharu],
Temporal Segmentation of 3-D Video by Histogram-Based Feature Vectors,
CirSysVideo(19), No. 6, June 2009, pp. 870-881.
IEEE DOI
0906
BibRef
Earlier:
Mutual Information in 3D Video,
3DTV07(1-4).
IEEE DOI
0705
BibRef
Earlier:
Motion Editing in 3D Video Database,
3DPVT06(472-479).
IEEE DOI
0606
BibRef
Earlier:
3D Video Segmentation Using Point Distance Histograms,
ICIP05(I: 701-704).
IEEE DOI
0512
BibRef
Yamasaki, T.,
Aizawa, K.,
Motion Segmentation for 3D Video Based on Spherical Registration,
3DTV07(1-4).
IEEE DOI
0705
BibRef
Celik, H.[Hasan],
Hanjalic, A.[Alan],
Hendriks, E.A.[Emile A.],
Unsupervised and simultaneous training of multiple object detectors
from unlabeled surveillance video,
CVIU(113), No. 10, October 2009, pp. 1076-1094,.
Elsevier DOI
0910
BibRef
Earlier:
On the development of an autonomous and self-adaptable moving object
detector,
AVSBS07(353-358).
IEEE DOI
0709
Object detection, Surveillance, Pattern classification, Clustering;
Unsupervised learning
BibRef
Celik, H.[Hasan],
Hanjalic, A.[Alan],
Hendriks, E.A.[Emile A.],
Boughorbel, S.[Sabri],
Online training of object detectors from unlabeled surveillance video,
Learning08(1-7).
IEEE DOI
0806
BibRef
Rambabu, C.[Chinta],
Kim, K.Y.[Ki-Young],
Woo, W.T.[Woon-Tack],
Fast and accurate extraction of moving object silhouette for
personalized Virtual Reality Studio @ Home,
RealTimeIP(4), No. 4, November 2009, pp. xx-yy.
Springer DOI
0911
VR@Home platform.
Shadows and highlights using background differences in hue and saturation.
BibRef
Silva da Silva, L.,
Scharcanski, J.[Jacob],
Video Segmentation Based on Motion Coherence of Particles in a Video
Sequence,
IP(19), No. 4, April 2010, pp. 1036-1049.
IEEE DOI
1003
BibRef
Jian, Y.D.[Yong-Dian],
Chen, C.S.[Chu-Song],
Two-View Motion Segmentation with Model Selection and Outlier Removal
by RANSAC-Enhanced Dirichlet Process Mixture Models,
IJCV(88), No. 3, July 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Earlier:
Two-View Motion Segmentation by Mixtures of Dirichlet Process with
Model Selection and Outlier Removal,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Zappella, L.[Luca],
Lladó, X.[Xavier],
Provenzi, E.,
Salvi, J.[Joaquim],
Enhanced Local Subspace Affinity for feature-based motion segmentation,
PR(44), No. 2, February 2011, pp. 454-470.
Elsevier DOI
1011
BibRef
Earlier: A1, A3, A2, A4:
Adaptive Motion Segmentation Algorithm Based on the Principal Angles
Configuration,
ACCV10(III: 15-26).
Springer DOI
1011
BibRef
Earlier: A1, A2, A4, Only:
Enhanced Model Selection for motion segmentation,
ICIP09(4053-4056).
IEEE DOI
0911
Motion segmentation, Manifold clustering, Model selection, Cluster
number estimation
BibRef
Zappella, L.[Luca],
del Bue, A.[Alessio],
Lladó, X.[Xavier],
Salvi, J.[Joaquim],
Joint estimation of segmentation and structure from motion,
CVIU(117), No. 2, February 2013, pp. 113-129.
Elsevier DOI
1301
BibRef
Earlier:
Simultaneous motion segmentation and Structure from Motion,
WMVC11(679-684).
IEEE DOI
1101
Structure from motion, Multi-body structure from motion, Motion
segmentation, Sparsity
BibRef
Gay, P.,
Bansal, V.,
Rubino, C.[Cosimo],
del Bue, A.[Alessio],
Probabilistic Structure from Motion with Objects (PSfMO),
ICCV17(3094-3103)
IEEE DOI
1802
CAD, cameras, image motion analysis, image sequences,
object detection, principal component analysis, probability,
BibRef
Magerand, L.[Ludovic],
del Bue, A.[Alessio],
Revisiting Projective Structure from Motion: A Robust and Efficient
Incremental Solution,
PAMI(42), No. 2, February 2020, pp. 430-443.
IEEE DOI
2001
BibRef
Earlier:
Practical Projective Structure from Motion (P2SfM),
ICCV17(39-47)
IEEE DOI
1802
Cameras, Estimation, Robustness,
Image reconstruction, Structure from motion, Optimization,
projective reconstruction.
computational complexity, image motion analysis, least squares approximations.
BibRef
Crocco, M.[Marco],
Rubino, C.[Cosimo],
del Bue, A.[Alessio],
Structure from Motion with Objects,
CVPR16(4141-4149)
IEEE DOI
1612
BibRef
Rubino, C.[Cosimo],
Crocco, M.[Marco],
Murino, V.[Vittorio],
del Bue, A.[Alessio],
Semantic Multi-body Motion Segmentation,
WACV15(1145-1152)
IEEE DOI
1503
Clustering algorithms
BibRef
Park, J.H.[Jong-Hyun],
Cho, W.H.[Wan-Hyun],
Lee, G.S.[Guee-Sang],
Park, S.Y.[Soon-Young],
Moving Object Detection Based on Clausius Entropy,
IEICE(E94-D), No. 2, February 2011, pp. 388-391.
WWW Link.
1102
BibRef
Choi, J.M.[Jin-Min],
Chang, H.J.[Hyung Jin],
Yoo, Y.J.[Yung Jun],
Choi, J.Y.[Jin Young],
Robust Moving Object Detection Against Fast Illumination Change,
CVIU(116), No. 2, February 2012, pp. 179-193.
Elsevier DOI
1201
Illumination change, Auto-exposure, Chromaticity difference model;
Brightness ratio model
See also Robust and Fast Moving Object Detection in a Non-Stationary Camera Via Foreground Probability Based Sampling.
BibRef
Aldroubi, A.,
Sekmen, A.,
Nearness to Local Subspace Algorithm for Subspace and Motion
Segmentation,
SPLetters(19), No. 10, October 2012, pp. 704-707.
IEEE DOI
1209
BibRef
And: A2, A1:
Subspace and motion segmentation via local subspace estimation,
WORV13(27-33)
IEEE DOI
1307
image matching
BibRef
Wei, J.[Jie],
Small Moving Object Detection from Infra-Red Sequences,
IJIG(13), No. 03, 2013, pp. 1350014.
DOI Link
1309
BibRef
Chen, Y.B.[Yi-Bin],
Cai, C.H.[Can-Hui],
Ma, K.K.[Kai-Kuang],
Wang, X.L.[Xiao-Lan],
Layered moving-object segmentation for stereoscopic video using
motion and depth information,
JVCIR(24), No. 7, 2013, pp. 829-837.
Elsevier DOI
1309
Video segmentation
BibRef
Li, D.W.[Da-Wei],
Xu, L.H.[Li-Hong],
Goodman, E.D.,
Illumination-Robust Foreground Detection in a Video Surveillance
System,
CirSysVideo(23), No. 10, 2013, pp. 1637-1650.
IEEE DOI
1311
Bayes methods
BibRef
Arvanitidou, M.G.[Marina Georgia],
Tok, M.[Michael],
Glantz, A.[Alexander],
Krutz, A.[Andreas],
Sikora, T.[Thomas],
Motion-based object segmentation using hysteresis and bidirectional
inter-frame change detection in sequences with moving camera,
SP:IC(28), No. 10, 2013, pp. 1420-1434.
Elsevier DOI
1312
Inter-frame change detection
BibRef
Ellis, A.L.[Anna-Louise],
Ferryman, J.M.[James M.],
Biologically-inspired robust motion segmentation using mutual
information,
CVIU(122), No. 1, 2014, pp. 47-64.
Elsevier DOI
1404
Biologically-inspired vision
BibRef
Li, L.Z.[Long-Zhen],
Ellis, A.L.[Anna-Louise],
Ferryman, J.M.[James M.],
On fusion for robust motion segmentation,
AVSS15(1-6)
IEEE DOI
1511
Bismuth;Entropy
BibRef
Kermani, E.[Elham],
Asemani, D.[Davud],
A robust adaptive algorithm of moving object detection for video
surveillance,
JIVP(2014), No. 1, 2014, pp. 27.
DOI Link
1405
BibRef
Koh, E.[Eunjin],
Lee, C.Y.[Chan-Young],
Jeong, D.G.[Dong Gil],
Clausius Normalized Field-Based Shape-Independent Motion Segmentation,
IEICE(E97-D), No. 5, May 2014, pp. 1254-1263.
WWW Link.
1405
BibRef
Zhong, R.,
Hu, R.,
Wang, Z.,
Wang, S.,
Fast Synopsis for Moving Objects Using Compressed Video,
SPLetters(21), No. 7, July 2014, pp. 834-838.
IEEE DOI
1405
Algorithm design and analysis
BibRef
Poling, B.[Bryan],
Lerman, G.[Gilad],
A New Approach to Two-View Motion Segmentation Using Global Dimension
Minimization,
IJCV(108), No. 3, July 2014, pp. 165-185.
Springer DOI
1407
Rigid body motion segmentation. Embed point correspondences in 9-D space.
BibRef
Sener, O.,
Ugur, K.,
Alatan, A.A.,
Efficient MRF Energy Propagation for Video Segmentation via Bilateral
Filters,
MultMed(16), No. 5, August 2014, pp. 1292-1302.
IEEE DOI
1410
filtering theory
BibRef
Kang, J.W.[Jung-Won],
Chung, M.J.[Myung Jin],
Fast Online Motion Segmentation through Multi-Temporal Interval Motion
Analysis,
IEICE(E98-D), No. 2, February 2015, pp. 479-484.
WWW Link.
1503
BibRef
Rahmati, H.[Hodjat],
Dragon, R.[Ralf],
Aamo, O.M.[Ole Morten],
Adde, L.[Lars],
Stavdahl, Ř.[Řyvind],
Van Gool, L.J.[Luc J.],
Weakly supervised motion segmentation with particle matching,
CVIU(140), No. 1, 2015, pp. 30-42.
Elsevier DOI
1509
BibRef
Earlier: A1, A2, A3, A6, A4, Only:
Motion Segmentation with Weak Labeling Priors,
GCPR14(159-171).
Springer DOI
1411
Motion segmentation
BibRef
Li, H.G.[Hong-Guang],
Li, X.J.[Xin-Jun],
Ding, W.R.[Wen-Rui],
Huang, Y.Q.[Yu-Qing],
Metadata-Assisted Global Motion Estimation for Medium-Altitude
Unmanned Aerial Vehicle Video Applications,
RS(7), No. 10, 2015, pp. 12606.
DOI Link
1511
BibRef
Azzam, R.,
Kemouche, M.S.,
Aouf, N.,
Richardson, M.,
Efficient visual object detection with spatially global Gaussian
mixture models and uncertainties,
JVCIR(36), No. 1, 2016, pp. 90-106.
Elsevier DOI
1603
Image segmentation.
visual detection of moving objects using Gaussian mixture models (GMM).
BibRef
Cao, X.,
Yang, L.,
Guo, X.,
Total Variation Regularized RPCA for Irregularly Moving Object
Detection Under Dynamic Background,
Cyber(46), No. 4, April 2016, pp. 1014-1027.
IEEE DOI
1604
Algorithm design and analysis
BibRef
Papazoglou, A.[Anestis],
del Pero, L.[Luca],
Ferrari, V.[Vittorio],
Discovering object aspects from video,
IVC(52), No. 1, 2016, pp. 206-217.
Elsevier DOI
1609
BibRef
And:
Video Temporal Alignment for Object Viewpoint,
ACCV16(IV: 273-288).
Springer DOI
1704
BibRef
Earlier: A1, A3, Only:
Fast Object Segmentation in Unconstrained Video,
ICCV13(1777-1784)
IEEE DOI
1403
Visual aspects.
video, video segmentation
See also Behavior Discovery and Alignment of Articulated Object Classes from Unstructured Video.
BibRef
Mahmoudabadi, H.[Hamid],
Olsen, M.J.[Michael J.],
Todorovic, S.[Sinisa],
Detecting sudden moving objects in a series of digital images with
different exposure times,
CVIU(158), No. 1, 2017, pp. 17-30.
Elsevier DOI
1704
Moving object
BibRef
Wang, B.,
Fu, Z.,
Xiong, H.,
Zheng, Y.F.,
Transductive Video Segmentation on Tree-Structured Model,
CirSysVideo(27), No. 5, May 2017, pp. 992-1005.
IEEE DOI
1705
Image segmentation, Motion segmentation, Object segmentation,
Proposals, Robustness, Video sequences, Visualization,
Monte Carlo approximation, parametric min-cut, temporal tree,
transductive learning, video segmentation
BibRef
Park, S.[Sanghyuk],
Park, H.[Hyunsin],
Yoo, C.D.[Chang D.],
Complex Video Scene Analysis Using Kernelized-Collaborative Behavior
Pattern Learning Based on Hierarchical Representative Object
Behaviors,
CirSysVideo(27), No. 6, June 2017, pp. 1275-1289.
IEEE DOI
1706
Algorithm design and analysis, Atom optics,
Clustering algorithms, Collaboration, Data mining,
Feature extraction, Hidden Markov models,
Complex video scene analysis (VSA),
kernelized-collaborative pattern learning, temporal, video segmentation
BibRef
Zhang, R.G.[Rong-Guo],
Liu, X.J.[Xiao-Jun],
Hu, J.[Jing],
Chang, K.[Kai],
Liu, K.[Kun],
A fast method for moving object detection in video surveillance image,
SIViP(11), No. 5, July 2017, pp. 841-848.
Springer DOI
1706
BibRef
Freifeld, O.[Oren],
Hauberg, S.[Soren],
Batmanghelich, K.[Kayhan],
Fisher, J.W.[John W.],
Transformations Based on Continuous Piecewise-Affine Velocity Fields,
PAMI(39), No. 12, December 2017, pp. 2496-2509.
IEEE DOI
1711
BibRef
Earlier:
Highly-Expressive Spaces of Well-Behaved Transformations:
Keeping it Simple,
ICCV15(2911-2919)
IEEE DOI
1602
Code, Tranformations.
WWW Link. Biomedical imaging, Complexity theory, Computational modeling,
Distribution functions, Histograms, Trajectory,
Spatial transformations,
continuous piecewise-affine velocity fields, diffeomorphisms,
tessellations, priors, MCMC
BibRef
Freifeld, O.[Oren],
Hauberg, S.[Soren],
Black, M.J.[Michael J.],
Model Transport: Towards Scalable Transfer Learning on Manifolds,
CVPR14(1378-1385)
IEEE DOI
1409
Computer Vision
BibRef
Chang, J.[Jason],
Wei, D.L.[Dong-Lai],
Fisher, III, J.W.[John W.],
A Video Representation Using Temporal Superpixels,
CVPR13(2051-2058)
IEEE DOI
1309
oversegmentation, superpixels, supervoxels, tracking, video segmentation
BibRef
Zingoni, A.[Andrea],
Diani, M.[Marco],
Corsini, G.[Giovanni],
A Flexible Algorithm for Detecting Challenging Moving Objects in
Real-Time within IR Video Sequences,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Zhao, L.,
He, Z.,
Cao, W.,
Zhao, D.,
Real-Time Moving Object Segmentation and Classification From HEVC
Compressed Surveillance Video,
CirSysVideo(28), No. 6, June 2018, pp. 1346-1357.
IEEE DOI
1806
Encoding, Feature extraction, Motion segmentation,
Object segmentation, Streaming media, Syntactics, Tracking,
video surveillance
BibRef
Gangapure, V.N.[Vijay N.],
Nanda, S.[Susmit],
Chowdhury, A.S.[Ananda S.],
Superpixel-Based Causal Multisensor Video Fusion,
CirSysVideo(28), No. 6, June 2018, pp. 1263-1272.
IEEE DOI
1806
Low illumination, dust, smoke, shadows.
Eigenvalues and eigenfunctions, Real-time systems,
Streaming media, Transforms,
superpixel
BibRef
Gangapure, V.N.[Vijay N.],
Nanda, S.[Susmit],
Chowdhury, A.S.[Ananda S.],
Jiang, X.Y.[Xiao-Yi],
Causal Video Segmentation Using Superseeds and Graph Matching,
GbRPR15(282-291).
Springer DOI
1511
BibRef
Sahoo, P.K.,
Kanungo, P.,
Mishra, S.,
A fast valley-based segmentation for detection of slowly moving objects,
SIViP(12), No. 7, October 2018, pp. 1265-1272.
WWW Link.
1809
BibRef
Mehta, R.[Rakesh],
Amores, J.[Jaume],
Improving detection speed in video by exploiting frame correlation,
PRL(112), 2018, pp. 303-309.
Elsevier DOI
1809
BibRef
Javed, S.,
Mahmood, A.,
Al-Maadeed, S.,
Bouwmans, T.,
Jung, S.K.,
Moving Object Detection in Complex Scene Using Spatiotemporal
Structured-Sparse RPCA,
IP(28), No. 2, February 2019, pp. 1007-1022.
IEEE DOI
1811
Sparse matrices, Spatiotemporal phenomena, Laplace equations,
Object detection, Linear programming, Optimization,
spatiotemporal regularization
BibRef
Sultana, M.[Maryam],
Mahmood, A.[Arif],
Jung, S.K.[Soon Ki],
Unsupervised Moving Object Detection in Complex Scenes Using
Adversarial Regularizations,
MultMed(23), 2021, pp. 2005-2018.
IEEE DOI
2107
Generative adversarial networks, Lighting,
Heuristic algorithms, Object detection, Minimization,
generative adversarial networks
BibRef
Shijila, B.,
Tom, A.J.[Anju Jose],
George, S.N.[Sudhish N.],
Moving object detection by low rank approximation and L1-TV
regularization on RPCA framework,
JVCIR(56), 2018, pp. 188-200.
Elsevier DOI
1811
Moving object detection, Low rank recovery,
Background subtraction, Robust principle component analysis
BibRef
Li, L.H.[Lin-Hao],
Hu, Q.H.[Qing-Hua],
Li, X.[Xin],
Moving Object Detection in Video via Hierarchical Modeling and
Alternating Optimization,
IP(28), No. 4, April 2019, pp. 2021-2036.
IEEE DOI
1901
image motion analysis, image resolution, Markov processes,
object detection, optimisation, video signal processing,
alternating direction multipliers method (ADMM)
BibRef
Kandylakis, Z.[Zacharias],
Vasili, K.[Konstantinos],
Karantzalos, K.[Konstantinos],
Fusing Multimodal Video Data for Detecting Moving Objects/Targets in
Challenging Indoor and Outdoor Scenes,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Tom, A.J.,
George, S.N.,
Video Completion and Simultaneous Moving Object Detection for Extreme
Surveillance Environments,
SPLetters(26), No. 4, April 2019, pp. 577-581.
IEEE DOI
1903
TV, Surveillance, Minimization, Video sequences, Object detection,
Cleaning, Tensor low rank approximation, moving object detection,
half thresholding
BibRef
Tom, A.J.,
George, S.N.,
Simultaneous Reconstruction and Moving Object Detection From
Compressive Sampled Surveillance Videos,
IP(29), 2020, pp. 7590-7602.
IEEE DOI
2007
Low rank approximation, 3D anisotropic total variation,
moving object detection, compressed sensing
BibRef
Chen, B.,
Shi, L.,
Ke, X.,
A Robust Moving Object Detection in Multi-Scenario Big Data for Video
Surveillance,
CirSysVideo(29), No. 4, April 2019, pp. 982-995.
IEEE DOI
1904
Object detection, Robustness, Sparse matrices, Video surveillance,
Video sequences, Context modeling, Big data,
mutiple scenarios, moving object detection
BibRef
Kanojia, G.[Gagan],
Raman, S.[Shanmuganathan],
Patch-based detection of dynamic objects in CrowdCam images,
VC(35), No. 4, April 2019, pp. 521-534.
Springer DOI
1906
static and dynamic parts of scene.
BibRef
Ma, Y.[Yuchi],
Anderson, J.[John],
Crouch, S.[Stephen],
Shan, J.[Jie],
Moving Object Detection and Tracking with Doppler LiDAR,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Minaee, S.[Shervin],
Wang, Y.[Yao],
An ADMM Approach to Masked Signal Decomposition Using Subspace
Representation,
IP(28), No. 7, July 2019, pp. 3192-3204.
IEEE DOI
1906
image matching, image reconstruction, image representation,
motion estimation, object detection, optimisation,
segmentation
BibRef
Guo, Z.M.[Zi-Ming],
Cai, B.G.[Bai-Gen],
Jiang, W.[Wei],
Wang, J.[Jian],
Feature-based detection and classification of moving objects using
LiDAR sensor,
IET-ITS(13), No. 7, July 2019, pp. 1088-1096.
DOI Link
1906
BibRef
Zhou, Y.[Yang],
Ling, B.W.K.[Bingo Wing-Kuen],
Detecting moving objects via the low-rank representation,
SIViP(13), No. 8, November 2019, pp. 1593-1601.
WWW Link.
1911
BibRef
Isik, S.[Sahin],
Özkan, K.[Kemal],
Gerek, Ö.N.[Ömer Nezih],
CVABS: moving object segmentation with common vector approach for
videos,
IET-CV(13), No. 8, December 2019, pp. 719-729.
DOI Link
1912
BibRef
Cao, Y.[Ying],
Sun, L.J.[Li-Juan],
Han, C.[Chong],
Guo, J.[Jian],
Video segmentation scheme based on AMC,
IET-IPR(14), No. 3, 28 February 2020, pp. 407-416.
DOI Link
2002
BibRef
Alizadeh, M.,
Sharifkhani, M.,
Compressed Domain Moving Object Detection Based on CRF,
CirSysVideo(30), No. 3, March 2020, pp. 674-684.
IEEE DOI
2003
Standards, Feature extraction, Encoding, Video sequences,
Object detection, Complexity theory, Data mining, moving object
BibRef
Fujimura, Y.[Yuki],
Sonogashira, M.[Motoharu],
Iiyam, M.[Masaaki],
Simultaneous Estimation of Object Region and Depth in Participating
Media Using a ToF Camera,
IEICE(E103-D), No. 3, March 2020, pp. 660-673.
WWW Link.
2003
BibRef
Tang, P.[Peng],
Wang, C.Y.[Chun-Yu],
Wang, X.G.[Xing-Gang],
Liu, W.Y.[Wen-Yu],
Zeng, W.J.[Wen-Jun],
Wang, J.D.[Jing-Dong],
Object Detection in Videos by High Quality Object Linking,
PAMI(42), No. 5, May 2020, pp. 1272-1278.
IEEE DOI
2004
Object detection in videos, object linking
BibRef
Kanojia, G.,
Raman, S.,
Simultaneous Detection and Removal of Dynamic Objects in Multi-view
Images,
WACV20(1979-1988)
IEEE DOI
2006
Heuristic algorithms, Vehicle dynamics, Videos, Feature extraction,
Cameras, Task analysis, Dynamics
BibRef
Martins, I.[Isabel],
Carvalho, P.[Pedro],
Corte-Real, L.[Luís],
Alba-Castro, J.L.[José Luis],
Texture collinearity foreground segmentation for night videos,
CVIU(200), 2020, pp. 103032.
Elsevier DOI
2010
BibRef
Earlier:
Bio-inspired Boosting for Moving Objects Segmentation,
ICIAR16(397-406).
Springer DOI
1608
Background subtraction, Foreground segmentation,
Change detection, GMM, MOG, Night videos, Texture features, Texture matching
BibRef
Jin, R.B.[Rui-Bing],
Lin, G.S.[Guo-Sheng],
Wen, C.Y.[Chang-Yun],
Wang, J.L.[Jian-Liang],
Motion Context Network for Weakly Supervised Object Detection in
Videos,
SPLetters(27), 2020, pp. 1864-1868.
IEEE DOI
2011
Correlation, Optical imaging, Videos, Optical signal processing,
Integrated optics, Feature extraction, Object detection,
weakly supervised learning
BibRef
Fute, E.T.[Elie Tagne],
Deffo, L.L.S.[Lionel Landry Sop],
Tonye, E.[Emmanuel],
HADEM-MACS: a hybrid approach for detection and extraction of objects
in movement by multimedia autonomous computer systems,
IJCVR(11), No. 1, 2021, pp. 21-40.
DOI Link
2012
BibRef
Wang, C.J.[Chen-Jie],
Li, C.Y.[Cheng-Yuan],
Liu, J.[Jun],
Luo, B.[Bin],
Su, X.[Xin],
Wang, Y.J.[Ya-Jun],
Gao, Y.[Yan],
U2-ONet: A Two-Level Nested Octave U-Structure Network with a
Multi-Scale Attention Mechanism for Moving Object Segmentation,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zou, C.[Cheng],
He, B.W.[Bing-Wei],
Zhu, M.Z.[Ming-Zhu],
Zhang, L.W.[Li-Wei],
Zhang, J.W.[Jian-Wei],
Encode-decode network with fully connected CRF for dynamic objects
detection and static maps reconstruction,
SP:IC(95), 2021, pp. 116237.
Elsevier DOI
2106
Robot vision, Encode-decode network, CRF,
Dynamic objects detection, Static maps reconstruction
BibRef
Yi, R.[Ran],
Ye, Z.P.[Zi-Peng],
Zhao, W.[Wang],
Yu, M.J.[Min-Jing],
Lai, Y.K.[Yu-Kun],
Liu, Y.J.[Yong-Jin],
Feature-Aware Uniform Tessellations on Video Manifold for
Content-Sensitive Supervoxels,
PAMI(43), No. 9, September 2021, pp. 3183-3195.
IEEE DOI
2108
BibRef
Earlier: A1, A6, A5, Only:
Content-Sensitive Supervoxels via Uniform Tessellations on Video
Manifolds,
CVPR18(646-655)
IEEE DOI
1812
Voxels, coherent in apprarance and motion.
Streaming media, Manifolds, Cascading style sheets,
Spatiotemporal phenomena, Color,
centroidal Voronoi tessellation.
Manifolds, Image color analysis, Generators,
BibRef
Cai, Q.[Qi],
Chen, Z.F.[Zhi-Feng],
Wu, D.P.O.[Da-Peng Oliver],
Liu, S.[Shan],
Li, X.[Xiang],
A Novel Video Coding Strategy in HEVC for Object Detection,
CirSysVideo(31), No. 12, December 2021, pp. 4924-4937.
IEEE DOI
2112
Video coding, Object detection, Bit rate, Encoding, Codecs, Detectors,
Visualization, HEVC, object detection, detection accuracy modeling,
bit allocation
BibRef
Gao, F.[Fei],
Li, Y.Y.[Yun-Yang],
Lu, S.F.[Shu-Fang],
Extracting Moving Objects More Accurately: A CDA Contour Optimizer,
CirSysVideo(31), No. 12, December 2021, pp. 4840-4849.
IEEE DOI
2112
Change detection algorithms, Image edge detection,
Feature extraction, Unsupervised learning, Supervised learning,
motion detection
BibRef
Mondal, A.[Anindya],
Shashant, R.,
Giraldo, J.H.[Jhony H.],
Bouwmans, T.[Thierry],
Chowdhury, A.S.[Ananda S.],
Moving Object Detection for Event-based Vision using Graph Spectral
Clustering,
GSP-CV21(876-884)
IEEE DOI
2112
Visualization, Neuromorphics, Object detection,
Vision sensors, Semisupervised learning, Cameras
BibRef
Giraldo, J.H.[Jhony H.],
Javed, S.[Sajid],
Werghi, N.[Naoufel],
Bouwmans, T.[Thierry],
Graph CNN for Moving Object Detection in Complex Environments from
Unseen Videos,
RSLCV21(225-233)
IEEE DOI
2112
Deep learning, Training, Video sequences,
Supervised learning, Pipelines, Object detection
BibRef
Feng, J.[Junyi],
Li, S.Y.[Song-Yuan],
Li, X.[Xi],
Wu, F.[Fei],
Tian, Q.[Qi],
Yang, M.H.[Ming-Hsuan],
Ling, H.B.[Hai-Bin],
TapLab: A Fast Framework for Semantic Video Segmentation Tapping Into
Compressed-Domain Knowledge,
PAMI(44), No. 3, March 2022, pp. 1591-1603.
IEEE DOI
2202
Image segmentation, Semantics, Streaming media,
Motion segmentation, Real-time systems, Task analysis,
compressed domain
BibRef
Arrigoni, F.[Federica],
Ricci, E.[Elisa],
Pajdla, T.[Tomas],
Multi-frame Motion Segmentation by Combining Two-Frame Results,
IJCV(130), No. 3, March 2022, pp. 696-728.
Springer DOI
2203
BibRef
Arrigoni, F.[Federica],
Magri, L.[Luca],
Pajdla, T.[Tomas],
On the Usage of the Trifocal Tensor in Motion Segmentation,
ECCV20(XX:514-530).
Springer DOI
2011
BibRef
Earlier: A1, A3, Only:
Robust Motion Segmentation From Pairwise Matches,
ICCV19(671-681)
IEEE DOI
2004
image matching, image motion analysis,
image segmentation, pairwise matches,
Structure from motion
BibRef
Mustafa, A.[Armin],
Russell, C.[Chris],
Hilton, A.[Adrian],
4D Temporally Coherent Multi-Person Semantic Reconstruction and
Segmentation,
IJCV(130), No. 6, June 2022, pp. 1583-1606.
Springer DOI
2207
BibRef
Earlier:
U4D: Unsupervised 4D Dynamic Scene Understanding,
ICCV19(10422-10431)
IEEE DOI
2004
image motion analysis, image reconstruction, image segmentation,
image sequences, object detection, pose estimation,
Estimation
BibRef
Dai, P.W.[Peng-Wen],
Yao, S.Y.[Si-Yuan],
Li, Z.[Zekun],
Zhang, S.[Sanyi],
Cao, X.C.[Xiao-Chun],
ACE: Anchor-Free Corner Evolution for Real-Time Arbitrarily-Oriented
Object Detection,
IP(31), 2022, pp. 4076-4089.
IEEE DOI
2206
Object detection, Image segmentation, Task analysis, Semantics,
Proposals, Location awareness, Visualization, Object detection, evolution
BibRef
Wang, D.[Degen],
Wang, T.[Tong],
Cui, W.C.[Wei-Chen],
Liu, C.[Cheng],
Adaptive Support-Driven Sparse Recovery STAP Method with Subspace
Penalty,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
STAP: Space-Time Adaptive Processing.
BibRef
You, M.Y.[Ming-Yu],
Luo, C.X.[Chao-Xian],
Zhou, H.J.[Hong-Jun],
Zhu, S.Q.[Shao-Qing],
Dynamic dense CRF inference for video segmentation and semantic SLAM,
PR(133), 2023, pp. 109023.
Elsevier DOI
2210
Incremental multi-class video segmentation,
Semantic robotSimultaneous Localization and mMapping,
Dynamic dense conditional random field
BibRef
Haller, E.[Emanuela],
Florea, A.M.[Adina Magda],
Leordeanu, M.[Marius],
Iterative Knowledge Exchange Between Deep Learning and Space-Time
Spectral Clustering for Unsupervised Segmentation in Videos,
PAMI(44), No. 11, November 2022, pp. 7638-7656.
IEEE DOI
2210
Videos, Clustering algorithms, Task analysis, Object segmentation,
Mathematical models, Deep learning, Convergence, deep learning
BibRef
Marcu, A.[Alina],
Licaret, V.[Vlad],
Costea, D.[Dragos],
Leordeanu, M.[Marius],
Semantics Through Time: Semi-supervised Segmentation of Aerial Videos
with Iterative Label Propagation,
ACCV20(I:537-552).
Springer DOI
2103
BibRef
Yuan, S.R.[Shu-Rong],
Shi, L.[Lei],
Yao, B.[Bo],
Zhai, Y.T.[Yu-Tong],
Li, F.Y.[Fang-Yan],
Du, Y.F.[Yue-Fan],
Detection of the New Class of Hypersonic Targets under Emerging
Hyperspectral Sample Streams:
An Unsupervised Isolation Forest Solution,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
An, Z.J.[Zi-Jia],
Liu, C.L.[Chun-Lei],
Han, Y.Q.[Yu-Qi],
Effectiveness Guided Cross-Modal Information Sharing for Aligned
RGB-T Object Detection,
SPLetters(29), 2022, pp. 2562-2566.
IEEE DOI
2301
Feature extraction, Information sharing, Correlation, Interference,
Object detection, Data mining, Visualization,
modal effectiveness guiding
BibRef
Li, X.M.[Xiao-Min],
Nabati, R.[Ramin],
Singh, K.[Kunjan],
Corona, E.[Enrique],
Metsis, V.[Vangelis],
Parchami, A.[Armin],
EMOD: Efficient Moving Object Detection via Image Eccentricity
Analysis and Sparse Neural Networks,
RealWorld23(51-59)
IEEE DOI
2302
Convolution, Computational modeling, Pipelines, Object detection,
Object segmentation, Streaming media, Cameras
BibRef
Sabat, N.[Neelesh],
Subodh-Raj, M.S.,
George, S.N.[Sudhish N.],
Kumar, T.K. .S.I.[T.K. Sun-Il],
A computationally efficient moving object detection technique using
tensor QR decomposition based TRPCA framework,
JVCIR(92), 2023, pp. 103785.
Elsevier DOI
2303
Moving object detection, Tensor QR decomposition,
Robust principal component analysis, Half thresholding
BibRef
Xu, B.T.[Bi-Tong],
Li, Z.Z.[Zheng-Zhou],
Cheng, B.[Bei],
Yang, Y.X.[Yu-Xin],
Siddique, A.[Abubakar],
A Target Imaging and Recognition Method Based on Raptor Vision,
RS(15), No. 8, 2023, pp. 2106.
DOI Link
2305
Based on wide field of view and high-resolution (fovea) of raptors.
BibRef
Liang, C.[Chen],
Wang, W.G.[Wen-Guan],
Zhou, T.F.[Tian-Fei],
Miao, J.X.[Jia-Xu],
Luo, Y.[Yawei],
Yang, Y.[Yi],
Local-Global Context Aware Transformer for Language-Guided Video
Segmentation,
PAMI(45), No. 8, August 2023, pp. 10055-10069.
IEEE DOI
2307
Transformers, Task analysis, Visualization, Linguistics,
Object segmentation, Grounding, multi-modal transformer
BibRef
Xu, B.W.[Bang-Wu],
Wu, Q.[Qin],
Chai, Z.L.[Zhi-Lei],
Guo, X.L.[Xue-Liang],
Shi, J.B.[Jian-Bo],
GAMA: Geometric analysis based motion-aware architecture for moving
object segmentation,
CVIU(234), 2023, pp. 103751.
Elsevier DOI
2307
Moving object segmentation, Motion degeneracy,
Geometric analysis, Bidirectional motion constraint, Motion-aware architecture
BibRef
Liu, H.[Hao],
Ma, Y.[Yanni],
Wang, H.[Hanyun],
Zhang, C.[Chaobo],
Guo, Y.L.[Yu-Lan],
AnchorPoint:
Query Design for Transformer-Based 3D Object Detection and Tracking,
ITS(24), No. 10, October 2023, pp. 10988-11000.
IEEE DOI
2310
BibRef
Zhou, B.[Benjia],
Wang, P.[Pichao],
Wan, J.[Jun],
Liang, Y.Y.[Yan-Yan],
Wang, F.[Fan],
A Unified Multimodal De- and Re-Coupling Framework for RGB-D Motion
Recognition,
PAMI(45), No. 10, October 2023, pp. 11428-11442.
IEEE DOI
2310
BibRef
Park, C.H.[Chee-Hyun],
Chang, J.H.[Joon-Hyuk],
Robust Time-of-Arrival-Based Splitting Mean Moving Object
Localization,
SPLetters(31), 2024, pp. 226-230.
IEEE DOI
2401
BibRef
Dong, G.F.[Guan-Fang],
Zhao, C.Q.[Chen-Qiu],
Pan, X.C.[Xi-Chen],
Basu, A.[Anup],
Learning Temporal Distribution and Spatial Correlation Toward
Universal Moving Object Segmentation,
IP(33), 2024, pp. 2447-2461.
IEEE DOI Code:
WWW Link.
2404
Videos, Training, Object segmentation, Correlation,
Iterative methods, Mathematical models, Deep learning,
machine learning
BibRef
Panigrahi, U.[Upasana],
Sahoo, P.K.[Prabodh Kumar],
Panda, M.K.[Manoj Kumar],
Panda, G.[Ganapati],
A ResNet-101 deep learning framework induced transfer learning
strategy for moving object detection,
IVC(146), 2024, pp. 105021.
Elsevier DOI
2405
Background subtraction, Deep learning architecture,
Transfer learning, Feature pooling framework, Contrast normalization
BibRef
Zeng, C.[Can],
Qiao, Y.L.[Yu-Long],
A Moving Object Detection Method Based on Graph Neural Network,
CVIDL23(549-554)
IEEE DOI
2403
Optical filters, Motion segmentation, Heuristic algorithms,
Object detection, Feature extraction, Prediction algorithms, GraphSAGE
BibRef
Yu, J.W.[Jiang-Wei],
Li, X.[Xiang],
Zhao, X.R.[Xin-Ran],
Zhang, H.M.[Hong-Ming],
Wang, Y.X.[Yu-Xiong],
Video State-Changing Object Segmentation,
ICCV23(20382-20391)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, X.T.[Xiang-Tai],
Yuan, H.[Haobo],
Zhang, W.W.[Wen-Wei],
Cheng, G.L.[Guang-Liang],
Pang, J.M.[Jiang-Miao],
Loy, C.C.[Chen Change],
Tube-Link: A Flexible Cross Tube Framework for Universal Video
Segmentation,
ICCV23(13877-13887)
IEEE DOI Code:
WWW Link.
2401
BibRef
Homeyer, C.[Christian],
Schnörr, C.[Christoph],
On Moving Object Segmentation from Monocular Video with Transformers,
NIVT23(880-891)
IEEE DOI
2401
BibRef
Liu, H.S.[Hai-Song],
Teng, Y.[Yao],
Lu, T.[Tao],
Wang, H.[Haiguang],
Wang, L.M.[Li-Min],
SparseBEV: High-Performance Sparse 3D Object Detection from
Multi-Camera Videos,
ICCV23(18534-18544)
IEEE DOI Code:
WWW Link.
2401
BibRef
Ding, H.H.[Heng-Hui],
Liu, C.[Chang],
He, S.T.[Shu-Ting],
Jiang, X.D.[Xu-Dong],
Loy, C.C.[Chen Change],
MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions,
ICCV23(2694-2703)
IEEE DOI Code:
WWW Link.
2401
BibRef
Cheng, H.K.[Ho Kei],
Oh, S.W.[Seoung Wug],
Price, B.[Brian],
Schwing, A.[Alexander],
Lee, J.Y.[Joon-Young],
Tracking Anything with Decoupled Video Segmentation,
ICCV23(1316-1326)
IEEE DOI
2401
BibRef
Fan, K.[Ke],
Lei, J.[Jingshi],
Qian, X.[Xuelin],
Yu, M.[Miaopeng],
Xiao, T.J.[Tian-Jun],
He, T.[Tong],
Zhang, Z.[Zheng],
Fu, Y.W.[Yan-Wei],
Rethinking Amodal Video Segmentation from Learning Supervised Signals
with Object-centric Representation,
ICCV23(1272-1281)
IEEE DOI Code:
WWW Link.
2401
BibRef
Bekuzarov, M.[Maksym],
Bermudez, A.[Ariana],
Lee, J.Y.[Joon-Young],
Li, H.[Hao],
XMem++: Production-level Video Segmentation From Few Annotated Frames,
ICCV23(635-644)
IEEE DOI Code:
WWW Link.
2401
BibRef
Prummel, W.[Wieke],
Giraldo, J.H.[Jhony H.],
Zakharova, A.[Anastasia],
Bouwmans, T.[Thierry],
Inductive Graph Neural Networks for Moving Object Segmentation,
ICIP23(2730-2734)
IEEE DOI
2312
BibRef
Lian, L.[Long],
Wu, Z.R.[Zhi-Rong],
Yu, S.X.[Stella X.],
Bootstrapping Objectness from Videos by Relaxed Common Fate and
Visual Grouping,
CVPR23(14582-14591)
IEEE DOI
2309
BibRef
Kumar, N.[Nishant],
egvic, S.[Sinia],
Eslami, A.[Abouzar],
Gumhold, S.[Stefan],
Normalizing Flow based Feature Synthesis for Outlier-Aware Object
Detection,
CVPR23(5156-5165)
IEEE DOI
2309
BibRef
Lin, Z.H.[Zhi-Hao],
Wang, Y.T.[Yong-Tao],
Zhang, J.[Jinhe],
Chu, X.J.[Xiao-Jie],
DynamicDet: A Unified Dynamic Architecture for Object Detection,
CVPR23(6282-6291)
IEEE DOI
2309
BibRef
Wang, T.[Tao],
Learning to Detect and Segment for Open Vocabulary Object Detection,
CVPR23(7051-7060)
IEEE DOI
2309
BibRef
Yu, T.T.[Ting-Ting],
Chen, C.[Chen],
Zhou, Y.C.[Yi-Chao],
Hu, X.Y.[Xi-Yuan],
Improving Surveillance Object Detection with Adaptive Omni-attention
over Both Inter-frame and Intra-frame Context,
ACCV22(II:222-237).
Springer DOI
2307
BibRef
Pavlitskaya, S.[Svetlana],
Polley, N.[Nikolai],
Weber, M.[Michael],
Zöllner, J.M.[J. Marius],
Adversarial Vulnerability of Temporal Feature Networks for Object
Detection,
SafeDrive22(510-525).
Springer DOI
2304
BibRef
Lee, J.K.[Jun-Kyu],
Varghese, B.[Blesson],
Vandierendonck, H.[Hans],
ROMA: Run-Time Object Detection To Maximize Real-Time Accuracy,
WACV23(6394-6403)
IEEE DOI
2302
Histograms, Analytical models, Runtime, Detectors, Object detection,
Switches, Applications: Embedded sensing/real-time techniques
BibRef
Griffin, B.[Brent],
Mobile Robot Manipulation using Pure Object Detection,
WACV23(561-571)
IEEE DOI
2302
WWW Link. Visualization, Annotations, Robot vision systems, Estimation,
Object detection, Benchmark testing, Mobile robots,
Vision + language and/or other modalities
BibRef
Kreutz, T.[Thomas],
Mühlhäuser, M.[Max],
Guinea, A.S.[Alejandro Sanchez],
Unsupervised 4D LiDAR Moving Object Segmentation in Stationary
Settings with Multivariate Occupancy Time Series,
WACV23(1644-1653)
IEEE DOI
2302
Point cloud compression, Laser radar, Annotations,
Time series analysis, Neural networks, Clustering algorithms
BibRef
Belharbi, S.[Soufiane],
Ben Ayed, I.[Ismail],
McCaffrey, L.[Luke],
Granger, E.[Eric],
TCAM: Temporal Class Activation Maps for Object Localization in
Weakly-Labeled Unconstrained Videos,
WACV23(137-146)
IEEE DOI
2302
Location awareness, Training, Visualization, Streaming media,
Parallel processing, Real-time systems, Proposals,
un-supervised learning
BibRef
Guo, Y.L.[Yu-Lan],
Yin, Q.[Qian],
Hu, Q.Y.[Qing-Yong],
Zhang, F.[Feng],
Xiao, C.[Chao],
Zhang, Y.[Ye],
Wang, H.[Hanyun],
Dai, C.G.[Chen-Guang],
Yang, J.[Jian],
Zhou, Z.[Zhuang],
Guo, W.L.[Wei-Long],
Qi, X.[Xiyu],
Tu, K.[Kelong],
Xu, C.[Cong],
Zhu, S.[Shudan],
Chen, L.[Lai],
Lin, B.[Bin],
Xue, C.[Chaocan],
Zheng, J.L.[Jin-Lei],
Qin, L.[Limei],
Li, Y.[Ying],
Zhao, M.[Manqi],
Ruan, L.[Lu],
Cui, M.P.[Ming-Peng],
Ding, G.C.[Guan-Chen],
Jiang, G.[Guangwei],
Chen, Z.Z.[Zhen-Zhong],
Sun, Y.H.[Yu-Han],
Cao, K.Y.[Kai-Yang],
Kong, L.Y.[Ling-Yu],
Chen, S.D.[Shao-Dong],
Zhao, Z.C.[Zhi-Cheng],
Shen, Q.[Qin],
Liu, L.[Lei],
Li, C.L.[Cheng-Long],
Xiao, Y.[Yun],
The First Challenge on Moving Object Detection and Tracking in
Satellite Videos: Methods and Results,
ICPR22(4981-4988)
IEEE DOI
2212
Satellites, Object detection, Benchmark testing,
Object tracking, Videos
BibRef
Ozbay, B.[Bengisu],
Camps, O.[Octavia],
Sznaier, M.[Mario],
Fast Two-View Motion Segmentation Using Christoffel Polynomials,
ECCV22(XXX:1-19).
Springer DOI
2211
BibRef
Osman, I.[Islam],
Shehata, M.S.[Mohamed S.],
Few-Shot Learning Network for Moving Object Detection Using
Exemplar-Based Attention Map,
ICIP22(1056-1060)
IEEE DOI
2211
Deep learning, Object detection, Benchmark testing, Task analysis, Videos,
Few-shot learning, meta-learning, moving object detection, deep learning
BibRef
García-González, J.[Jorge],
Luque-Baena, R.M.[Rafael M.],
Ortiz-de-Lazcano-Lobato, J.M.[Juan M.],
López-Rubio, E.[Ezequiel],
Moving Object Detection in Noisy Video Sequences Using Deep
Convolutional Disentangled Representations,
ICIP22(1376-1380)
IEEE DOI
2211
Training, Image segmentation, Shape, Video sequences,
Object detection, Probabilistic logic, Proposals, Autoencoders
BibRef
Köksal, A.[Aybora],
Tuzcuoglu, Ö.[Önder],
Ince, K.G.[Kutalmis Gökalp],
Ataseven, Y.[Yoldas],
Alatan, A.A.[A. Aydin],
Improved Hard Example Mining Approach for Single Shot Object
Detectors,
ICIP22(3536-3540)
IEEE DOI
2211
Training, Detectors, Object detection, Real-time systems,
hard example mining, loss rank mining, real time object detection
BibRef
Kim, D.[Dahun],
Xie, J.[Jun],
Wang, H.Y.[Hui-Yu],
Qiao, S.Y.[Si-Yuan],
Yu, Q.H.[Qi-Hang],
Kim, H.S.[Hong-Seok],
Adam, H.[Hartwig],
Kweon, I.S.[In So],
Chen, L.C.[Liang-Chieh],
TubeFormer-DeepLab: Video Mask Transformer,
CVPR22(13904-13914)
IEEE DOI
2210
Semantics, Predictive models,
Benchmark testing, Transformers, Electron tubes, grouping and shape analysis
BibRef
Park, Y.[Younghyun],
Kim, S.[Soyeong],
Choi, W.[Wonjeong],
Han, D.J.[Dong-Jun],
Moon, J.[Jaekyun],
Active Object Detection with Epistemic Uncertainty and Hierarchical
Information Aggregation,
ECV22(2711-2715)
IEEE DOI
2210
Training, Measurement, Learning systems, Uncertainty, Head,
Computational modeling, Object detection
BibRef
Du, X.F.[Xue-Feng],
Wang, X.[Xin],
Gozum, G.[Gabriel],
Li, Y.X.[Yi-Xuan],
Unknown-Aware Object Detection: Learning What You Don't Know from
Videos in the Wild,
CVPR22(13668-13678)
IEEE DOI
2210
Training, Uncertainty, Shape, Object detection, Predictive models,
Pattern recognition, Reliability, Transparency, fairness, retrieval
BibRef
Yang, B.B.[Bin-Bin],
Deng, X.C.[Xin-Chi],
Shi, H.[Han],
Li, C.L.[Chang-Lin],
Zhang, G.W.[Geng-Wei],
Xu, H.[Hang],
Zhao, S.[Shen],
Lin, L.[Liang],
Liang, X.D.[Xiao-Dan],
Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism,
CVPR22(9245-9254)
IEEE DOI
2210
Correlation, Prototypes, Object detection, Logic gates,
Streaming media, Pattern recognition, retrieval
BibRef
Fu, Q.C.[Qi-Chen],
Liu, X.Y.[Xing-Yu],
Kitani, K.M.[Kris M.],
Sequential Voting with Relational Box Fields for Active Object
Detection,
CVPR22(2364-2373)
IEEE DOI
2210
Supervised learning, Stochastic processes, Estimation,
Reinforcement learning, Object detection, Pattern recognition,
retrieval
BibRef
Shen, Y.C.[Yi-Chun],
Jiang, W.L.[Wan-Li],
Xu, Z.[Zhen],
Li, R.D.[Run-Dong],
Kwon, J.H.[Jung-Hyun],
Confidence Propagation Cluster:
Unleash Full Potential of Object Detectors,
CVPR22(1141-1151)
IEEE DOI
2210
Message passing, Robot vision systems, Detectors, Object detection,
Parallel processing, Pattern recognition, Recognition: detection,
Video analysis and understanding
BibRef
Xu, R.[Ran],
Mu, F.Z.[Fang-Zhou],
Lee, J.[Jayoung],
Mukherjee, P.[Preeti],
Chaterji, S.[Somali],
Bagchi, S.[Saurabh],
Li, Y.[Yin],
Smartadapt: Multi-branch Object Detection Framework for Videos on
Mobiles,
CVPR22(2518-2528)
IEEE DOI
2210
Schedules, Runtime, Machine learning algorithms, Tracking,
Machine vision, Object detection, Machine learning, retrieval
BibRef
Hu, J.Y.[Ji-Yuan],
Wang, T.[Tao],
Zhu, S.Q.[Shi-Qiang],
VMM: Viewpoint-based Memory Mechanism for Object Detection of Moving
Sensors,
ISCV22(1-7)
IEEE DOI
2208
Performance evaluation, Location awareness, Costs,
Virtual machine monitors, Detectors, Object detection.
BibRef
Fujitake, M.[Masato],
Sugimoto, A.[Akihiro],
Video representation learning through prediction for online object
detection,
RWSurvil22(530-539)
IEEE DOI
2202
Representation learning, Conferences, Stochastic processes,
Object detection, Detectors, Streaming media, Predictive models
BibRef
Cores, D.[Daniel],
Brea, V.M.[Víctor M.],
Mucientes, M.[Manuel],
Spatio-Temporal Object Detection from UAV On-Board Cameras,
CAIP21(II:143-152).
Springer DOI
2112
BibRef
Yang, G.S.[Geng-Shan],
Ramanan, D.[Deva],
Learning to Segment Rigid Motions from Two Frames,
CVPR21(1266-1275)
IEEE DOI
2111
Motion segmentation,
Motion estimation, Estimation, Training data, Computer architecture
BibRef
Hu, Y.T.[Yuan-Ting],
Wang, J.H.[Jia-Hong],
Yeh, R.A.[Raymond A.],
Schwing, A.G.[Alexander G.],
SAIL-VOS 3D: A Synthetic Dataset and Baselines for Object Detection
and 3D Mesh Reconstruction from Video Data,
CVPR21(1418-1428)
IEEE DOI
2111
BibRef
And:
HVU21(3359-3369)
IEEE DOI
2109
Solid modeling, Annotations, Object detection, Data models
BibRef
Psaltis, A.[Athanasios],
Dimou, A.[Anastasios],
Alvarez, F.[Federico],
Daras, P.[Petros],
Flow R-CNN: Flow-enhanced Object Detection,
CADL20(685-700).
Springer DOI
2103
BibRef
Javed, S.,
Mahmood, A.,
Dias, J.,
Werghi, N.,
CS-RPCA: Clustered Sparse RPCA for Moving Object Detection,
ICIP20(3209-3213)
IEEE DOI
2011
Sparse matrices, Feature extraction, Manifolds,
Matrix decomposition, Linear programming, Computational modeling, Robust PCA
BibRef
Roy, S.M.,
Bouwmans, T.,
Dual Information-Based Background Model For Moving Object Detection,
ICIP20(3219-3223)
IEEE DOI
2011
Hidden Markov models, Histograms, Object detection,
Adaptation models, Computational modeling, Video sequences,
complex backgrounds
BibRef
Constantinou, G.[George],
You, S.[Suya],
Shahabi, C.[Cyrus],
Towards Scalable and Efficient Client Selection for Federated Object
Detection,
ICPR22(5140-5146)
IEEE DOI
2212
Training, Deep learning, Privacy,
Federated learning, Neural networks, Object detection
BibRef
Constantinou, G.,
Shahabi, C.,
Kim, S.H.,
Spatial Keyframe Extraction Of Mobile Videos For Efficient Object
Detection At The Edge,
ICIP20(1466-1470)
IEEE DOI
2011
Videos, Cameras, Metadata, Image edge detection, Silicon,
Visualization, Object detection, spatial keyframe extraction,
object detection
BibRef
Brazil, G.[Garrick],
Pons-Moll, G.[Gerard],
Liu, X.M.[Xiao-Ming],
Schiele, B.[Bernt],
Kinematic 3d Object Detection in Monocular Video,
ECCV20(XXIII:135-152).
Springer DOI
2011
BibRef
Du, L.,
Ye, X.,
Tan, X.,
Feng, J.,
Xu, Z.,
Ding, E.,
Wen, S.,
Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point
Cloud Object Detection,
CVPR20(13326-13335)
IEEE DOI
2008
Feature extraction, Object detection,
Solid modeling, Adaptation models, Robustness, Proposals
BibRef
Amrani, E.,
Ben-Ari, R.,
Shapira, I.,
Hakim, T.,
Bronstein, A.M.,
Self-Supervised Object Detection and Retrieval Using Unlabeled Videos,
MULWS20(4100-4108)
IEEE DOI
2008
Videos, Object detection, Noise measurement, Training, Detectors,
Manuals, Visualization
BibRef
Mandal, M.,
Kumar, L.K.,
Saran, M.S.[M. Singh],
Vipparthi, S.K.,
MotionRec: A Unified Deep Framework for Moving Object Recognition,
WACV20(2723-2732)
IEEE DOI
2006
Feature extraction, Videos, Object detection, Detectors, History,
Estimation, Task analysis
BibRef
Chai, Y.,
Patchwork: A Patch-Wise Attention Network for Efficient Object
Detection and Segmentation in Video Streams,
ICCV19(3414-3423)
IEEE DOI
2004
image motion analysis, image segmentation,
learning (artificial intelligence), object detection, History
BibRef
Amrani, E.,
Ben-Ari, R.,
Hakim, T.,
Bronstein, A.M.,
Learning to Detect and Retrieve Objects From Unlabeled Videos,
MMVAMTC19(3713-3717)
IEEE DOI
2004
correlation methods, feature extraction, object detection,
pattern clustering, supervised learning, video retrieval, Task analysis
BibRef
Dave, A.,
Tokmakov, P.,
Ramanan, D.,
Towards Segmenting Anything That Moves,
HVU19(1493-1502)
IEEE DOI
2004
image motion analysis, image segmentation, image sequences,
learning (artificial intelligence), object detection,
spatiotemporal grouping
BibRef
Yang, Y.C.[Yan-Chao],
Loquercio, A.[Antonio],
Scaramuzza, D.[Davide],
Soatto, S.[Stefano],
Unsupervised Moving Object Detection via Contextual Information
Separation,
CVPR19(879-888).
IEEE DOI
2002
BibRef
Roshan, A.,
Zhang, Y.,
Moving Object Detection Using Spatial Correlation in LAB Colour Space,
PTVSBB19(173-177).
DOI Link
1912
BibRef
Andriyanov, N.A.,
Vasil'ev, K.K.,
Dement'ev, V.E.,
Investigation of Filtering and Objects Detection Algorithms for A
Multizone Image Sequence,
PTVSBB19(7-10).
DOI Link
1912
BibRef
Taran, O.,
Rezaeifar, S.,
Holotyak, T.,
Voloshynovskiy, S.,
Robustification of Deep Net Classifiers by Key Based Diversified
Aggregation with Pre-Filtering,
ICIP19(2294-2298)
IEEE DOI
1910
Adversarial attacks, black / gray-box,
non-gradient / gradient based attacks, defense, machine learning
BibRef
Duque-Arias, D.,
Velasco-Forero, S.,
Deschaud, J.E.,
Goulette, F.,
Marcotegui, B.,
A Graph-Based Color Lines Model for Image Analysis,
CIAP19(II:181-191).
Springer DOI
1909
Video, initial color lines.
BibRef
Xie, R.J.[Ren-Jie],
Wang, Y.C.[Yuan-Cheng],
Xie, T.[Tian],
Zhang, Y.H.[Yu-Hao],
Xu, L.[Li],
Lu, J.[Jian],
Wang, Q.[Qiao],
Adversarial Training for Video Disentangled Representation,
MMMod19(II:532-543).
Springer DOI
1901
Stationary scene and moving objects.
BibRef
Shi, H.,
Liu, C.,
A New Foreground Segmentation Method for Video Analysis in Different
Color Spaces,
ICPR18(2899-2904)
IEEE DOI
1812
Image color analysis, Density functional theory, Color,
Image segmentation, Probability density function,
Motion segmentation
BibRef
Ujiie, T.,
Hiromoto, M.,
Sato, T.,
Interpolation-Based Object Detection Using Motion Vectors for
Embedded Real-time Tracking Systems,
ECVW18(729-7298)
IEEE DOI
1812
Streaming media, Interpolation, Object detection, Detectors,
Motion compensation, Real-time systems, Tracking
BibRef
Jin, S.[Sou_Young],
Roy Chowdhury, A.[Aruni],
Jiang, H.[Huaizu],
Singh, A.[Ashish],
Prasad, A.[Aditya],
Chakraborty, D.[Deep],
Learned-Miller, E.G.[Erik G.],
Unsupervised Hard Example Mining from Videos for Improved Object
Detection,
ECCV18(XIII: 316-333).
Springer DOI
1810
BibRef
Lee, S.H.,
Jang, W.D.,
Kim, C.S.,
Temporal Superpixels Based on Proximity-Weighted Patch Matching,
ICCV17(3630-3638)
IEEE DOI
1802
feature extraction, image colour analysis, image matching,
image segmentation, motion estimation, PPM motion vectors,
Robustness
BibRef
Sagawa, R.,
Satoh, Y.,
Illuminant-Camera Communication to Observe Moving Objects under
Strong External Light by Spread Spectrum Modulation,
CVPR17(2317-2325)
IEEE DOI
1711
Cameras, Light sources, Lighting, Modulation, Multiplexing,
Signal to noise ratio, Spread, spectrum, communication
BibRef
Jain, S.D.,
Xiong, B.,
Grauman, K.,
FusionSeg: Learning to Combine Motion and Appearance for Fully
Automatic Segmentation of Generic Objects in Videos,
CVPR17(2117-2126)
IEEE DOI
1711
Image segmentation, Motion segmentation, Object segmentation,
Optical imaging, Training, Videos
BibRef
Yang, R.,
Ni, B.,
Ma, C.,
Xu, Y.,
Yang, X.,
Video Segmentation via Multiple Granularity Analysis,
CVPR17(6383-6392)
IEEE DOI
1711
Feature extraction, Image segmentation, Noise measurement,
Target tracking, Visualization
BibRef
Wang, Q.Q.[Qian-Qian],
Zhou, X.W.[Xiao-Wei],
Hariharan, B.[Bharath],
Snavely, N.[Noah],
Learning Feature Descriptors Using Camera Pose Supervision,
ECCV20(I:757-774).
Springer DOI
2011
BibRef
Pathak, D.,
Girshick, R.,
Dollár, P.[Piotr],
Darrell, T.J.,
Hariharan, B.[Bharath],
Learning Features by Watching Objects Move,
CVPR17(6024-6033)
IEEE DOI
1711
Image segmentation, Motion segmentation, Object detection,
Training, Unsupervised learning, Videos
BibRef
Zhang, Y.C.[Yu-Chi],
Li, G.L.[Guo-Lin],
Xie, X.[Xiang],
Wang, Z.H.[Zhi-Hua],
A new algorithm for fast and accurate moving object detection based
on motion segmentation by clustering,
MVA17(444-447)
DOI Link
1708
Clustering algorithms, Clustering methods,
Histograms, Image motion analysis, Motion segmentation, Optical, imaging
BibRef
Khodabandeh, M.[Mehran],
Muralidharan, S.[Srikanth],
Vahdat, A.[Arash],
Mehrasa, N.[Nazanin],
Pereira, E.M.[Eduardo M.],
Satoh, S.[Shin'ichi],
Mori, G.[Greg],
Unsupervised learning of supervoxel embeddings for video Segmentation,
ICPR16(2392-2397)
IEEE DOI
1705
Benchmark testing, Context, Feature extraction,
Motion segmentation, Partitioning algorithms, Standards,
Unsupervised, learning
BibRef
Miguel, A.,
Beery, S.,
Flores, E.,
Klemesrud, L.,
Bayrakcismith, R.,
Finding areas of motion in camera trap images,
ICIP16(1334-1338)
IEEE DOI
1610
Animals
BibRef
Gu, S.,
Wang, J.,
Pan, L.,
Cheng, S.,
Ma, Z.,
Xie, M.,
Figure/ground video segmentation via low-rank sparse learning,
ICIP16(864-868)
IEEE DOI
1610
Coherence
BibRef
Jin, X.[Xin],
Guo, K.[Kui],
Song, C.G.[Cheng-Gen],
Li, X.D.[Xiao-Dong],
Zhao, G.[Geng],
Luo, J.[Jing],
Li, Y.Z.[Yu-Zhen],
Chen, Y.Y.[Ying-Ya],
Liu, Y.[Yan],
Wang, H.C.[Huai-Chao],
Private Video Foreground Extraction Through Chaotic Mapping Based
Encryption in the Cloud,
MMMod16(I: 562-573).
Springer DOI
1601
BibRef
Karthikeyan, S.,
Ngo, T.[Thuyen],
Eckstein, M.[Miguel],
Manjunath, B.S.,
Eye tracking assisted extraction of attentionally important objects
from videos,
CVPR15(3241-3250)
IEEE DOI
1510
BibRef
Kuznetsova, A.[Alina],
Hwang, S.J.[Sung Ju],
Rosenhahn, B.[Bodo],
Sigal, L.[Leonid],
Expanding object detector's Horizon:
Incremental learning framework for object detection in videos,
CVPR15(28-36)
IEEE DOI
1510
BibRef
Choy, C.B.[Christopher Bongsoo],
Stark, M.[Michael],
Corbett-Davies, S.[Sam],
Savarese, S.[Silvio],
Enriching object detection with 2D-3D registration and continuous
viewpoint estimation,
CVPR15(2512-2520)
IEEE DOI
1510
BibRef
Liu, H.Y.[Hong-Ye],
Zhao, T.[Taiyin],
Wang, Y.[Yaowei],
Tian, Y.H.[Yong-Hong],
A refined object detection method based on HTM,
VCIP14(93-96)
IEEE DOI
1504
image motion analysis
BibRef
Perera, S.[Samunda],
Barnes, N.M.[Nick M.],
He, X.M.[Xu-Ming],
Izadi, S.[Shahram],
Kohli, P.[Pushmeet],
Glocker, B.[Ben],
Motion Segmentation of Truncated Signed Distance Function Based
Volumetric Surfaces,
WACV15(1046-1053)
IEEE DOI
1503
Cameras.
Truncated signed distance function surface reconstructions.
BibRef
Yan, J.Z.[Ji-Zhou],
Chen, D.D.[Dong-Dong],
Myeong, H.[Heesoo],
Shiratori, T.[Takaaki],
Ma, Y.[Yi],
Automatic Extraction of Moving Objects from Image and LIDAR Sequences,
3DV14(673-680)
IEEE DOI
1503
Image color analysis
BibRef
Rengarajan, V.[Vijay],
Rajagopalan, A.N.,
Aravind, R.,
Motion Estimation and Classification in Compressive Sensing from
Dynamic Measurements,
ICPR14(3475-3480)
IEEE DOI
1412
Cameras
BibRef
Khoreva, A.[Anna],
Galasso, F.[Fabio],
Hein, M.[Matthias],
Schiele, B.[Bernt],
Classifier based graph construction for video segmentation,
CVPR15(951-960)
IEEE DOI
1510
BibRef
Earlier:
Learning Must-Link Constraints for Video Segmentation Based on Spectral
Clustering,
GCPR14(701-712).
Springer DOI
1411
BibRef
Vishnyakov, B.V.,
Sidyakin, S.V.,
Vizilter, Y.V.,
Diffusion Background Model for Moving Objects Detection,
PTVSBB15(65-71).
DOI Link
1508
BibRef
Vishnyakov, B.V.,
Gorbatsevich, V.,
Sidyakin, S.V.,
Vizilter, Y.V.,
Malin, I.,
Egorov, A.,
Fast Moving Objects Detection Using iLBP Background Model,
PCV14(347-350).
DOI Link
1404
BibRef
Vishnyakov, B.V.,
Egorov, A.,
Sidyakin, S.V.,
Malin, I.,
Vizilter, Y.V.,
Statistical Model For Pseudo-Moving Objects Recognition In Video
Surveillance Systems,
PCV14(351-356).
DOI Link
1404
BibRef
Xu, Y.L.[Yi-Liang],
Song, D.Z.[De-Zhen],
Hoogs, A.[Anthony],
An Efficient Online Hierarchical Supervoxel Segmentation Algorithm for
Time-critical Applications,
BMVC14(xx-yy).
HTML Version.
1410
Video segmentation.
BibRef
Faktor, A.[Alon],
Irani, M.[Michal],
Video Segmentation by Non-Local Consensus voting,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Wang, R.[Rui],
Bunyak, F.[Filiz],
Seetharaman, G.[Guna],
Palaniappan, K.[Kannappan],
Static and Moving Object Detection Using Flux Tensor with Split
Gaussian Models,
CDW14(420-424)
IEEE DOI
1409
Gaussian model
BibRef
Weinzaepfel, P.[Philippe],
Revaud, J.[Jerome],
Harchaoui, Z.[Zaid],
Schmid, C.[Cordelia],
Learning to detect Motion Boundaries,
CVPR15(2578-2586)
IEEE DOI
1510
BibRef
Elqursh, A.[Ali],
Elgammal, A.M.[Ahmed M.],
Online Motion Segmentation Using Dynamic Label Propagation,
ICCV13(2008-2015)
IEEE DOI
1403
BibRef
Neubert, P.[Peer],
Schubert, S.[Stefan],
Hyperdimensional computing as a framework for systematic aggregation
of image descriptors,
CVPR21(16933-16942)
IEEE DOI
2111
Systematics, Aggregates, Semantics, Memory management, Layout, Tools
BibRef
Neubert, P.[Peer],
Protzel, P.[Peter],
Evaluating Superpixels in Video:
Metrics Beyond Figure-Ground Segmentation,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Couprie, C.[Camille],
Farabet, C.[Clement],
Le Cun, Y.L.[Yann L.],
Najman, L.[Laurent],
Causal graph-based video segmentation,
ICIP13(4249-4253)
IEEE DOI
1402
Optimization, graph-matching, superpixels
BibRef
Feng, W.G.[Wei-Guo],
Liu, R.[Rui],
Jia, B.Z.[Bao-Zhi],
Zhu, M.[Ming],
An efficient pixel-wise method for moving object detection in complex
scenes,
AVSS13(389-394)
IEEE DOI
1311
Adaptation models
BibRef
Allekotte, K.[Kevin],
de Cristóforis, P.[Pablo],
Melita, M.[Mario],
Mejail, M.[Marta],
Astronomical Image Data Reduction for Moving Object Detection,
CIARP13(II:116-123).
Springer DOI
1311
BibRef
Walha, A.[Ahlem],
Wali, A.[Ali],
Alimi, A.M.[Adel M.],
Moving Object Detection System in Aerial Video Surveillance,
ACIVS13(310-320).
Springer DOI
1311
BibRef
Tang, K.[Kevin],
Sukthankar, R.[Rahul],
Yagnik, J.[Jay],
Fei-Fei, L.[Li],
Discriminative Segment Annotation in Weakly Labeled Video,
CVPR13(2483-2490)
IEEE DOI
1309
Learning from internet videos. Tags may not be right. Focus here
on segmentation.
BibRef
Flores-Mangas, F.[Fernando],
Jepson, A.D.[Allan D.],
Fast Rigid Motion Segmentation via Incrementally-Complex Local Models,
CVPR13(2259-2266)
IEEE DOI
1309
Model Selection
BibRef
Shin, Y.D.[Yong-Deuk],
Park, J.H.[Jae-Han],
Jang, G.R.[Ga-Ram],
Baeg, M.H.[Moon-Hong],
Moving objects detection using freely moving depth sensing camera,
ICPR12(1314-1317).
WWW Link.
1302
BibRef
Ji, H.[Hao],
Su, F.[Fei],
Robust motion segmentation via refined sparse subspace clustering,
ICPR12(1546-1549).
WWW Link.
1302
BibRef
Zhang, S.H.[Shang-Hang],
Wei, K.J.[Kai-Jin],
Jia, H.Z.[Hui-Zhu],
Xie, X.D.[Xiao-Dong],
Gao, W.[Wen],
An efficient foreground-based surveillance video coding scheme in low
bit-rate compression,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Luo, Z.Y.[Zheng-Yi],
Song, L.[Li],
Zheng, S.B.[Shi-Bao],
Ling, N.[Nam],
Optimized nested protection for video Region of Interest with Raptor
codes,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Wang, F.P.[Fu-Ping],
Chung, W.H.[Wei-Ho],
Ni, G.K.[Guo-Kai],
Chen, I.Y.[Ing-Yi],
Kuo, S.Y.[Sy-Yen],
Moving Object Extraction Using Compressed Domain Features of H.264
INTRA Frames,
AVSS12(258-263).
IEEE DOI
1211
BibRef
Izadinia, H.,
Saleemi, I.[Imran],
Shah, M.[Mubarak],
Multimodal Analysis for Identification and Segmentation of
Moving-Sounding Objects,
MultMed(15), No. 2, 2013, pp. 378-390.
IEEE DOI
1302
BibRef
Dey, S.[Soumyabrata],
Reilly, V.[Vladimir],
Saleemi, I.[Imran],
Shah, M.[Mubarak],
Detection of Independently Moving Objects in Non-planar Scenes via
Multi-Frame Monocular Epipolar Constraint,
ECCV12(V: 860-873).
Springer DOI
1210
Video:
WWW Link.
BibRef
Lee, J.H.[Ju-Ho],
Kwak, S.[Suha],
Han, B.H.[Bo-Hyung],
Choi, S.J.[Seung-Jin],
Online Video Segmentation by Bayesian Split-Merge Clustering,
ECCV12(IV: 856-869).
Springer DOI
1210
BibRef
Paiton, D.M.,
Brumby, S.P.,
Kenyon, G.T.,
Kunde, G.J.,
Peterson, K.D.,
Ham, M.I.,
Schultz, P.F.,
George, J.S.,
Combining multiple visual processing streams for locating and
classifying objects in video,
Southwest12(49-52).
IEEE DOI
1205
On large dataset of aerial video.
BibRef
Papon, J.[Jeremie],
Abramov, A.[Alexey],
Wörgötter, F.[Florentin],
Occlusion Handling in Video Segmentation via Predictive Feedback,
ARTEMIS12(III: 233-242).
Springer DOI
1210
See also Real-Time Segmentation of Stereo Videos on a Portable System With a Mobile GPU.
BibRef
Wang, Y.Y.[Yi-Ying],
Lee, C.H.[Chia-Han],
Segmentation by temporal detection integration,
ICIP11(3125-3128).
IEEE DOI
1201
BibRef
Mondal, A.[Ajoy],
Ghosh, S.[Susmita],
Ghosh, A.[Ashish],
Distributed differential evolution algorithm for MAP estimation of MRF
model for detecting moving objects,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Ding, J.W.[Jian-Wei],
Li, M.[Min],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Modeling Complex Scenes for Accurate Moving Objects Segmentation,
ACCV10(II: 82-94).
Springer DOI
1011
BibRef
Chen, A.Y.C.[Albert Y. C.],
Corso, J.J.[Jason J.],
Temporally consistent multi-class video-object segmentation with the
Video Graph-Shifts algorithm,
WMVC11(614-621).
IEEE DOI
1101
BibRef
Zografos, V.[Vasileios],
Enhancing motion segmentation by combination of complementary
affinities,
ICPR12(2198-2201).
WWW Link.
1302
BibRef
Zografos, V.[Vasileios],
Nordberg, K.[Klas],
Fast and accurate motion segmentation using Linear Combination of Views,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Zografos, V.[Vasileios],
Nordberg, K.[Klas],
Ellis, L.[Liam],
Sparse Motion Segmentation Using Multiple Six-Point Consistencies,
VECTaR10(338-348).
Springer DOI
1109
BibRef
Nordberg, K.[Klas],
Zografos, V.[Vasileios],
Multibody Motion Segmentation Using the Geometry of 6 Points in 2D
Images,
ICPR10(1783-1787).
IEEE DOI
1008
BibRef
Boukharouba, K.[Khaled],
Bako, L.[Laurent],
Lecoeuche, S.[Stephane],
Temporal video segmentation using a switched affine models
identification technique,
IPTA10(157-160).
IEEE DOI
1007
BibRef
van Essen, G.,
Marsland, S.,
Lewis, J.,
Hierarchical block-based image registration for computing multiple
image motions,
IVCNZ09(425-430).
IEEE DOI
0911
BibRef
Wang, Y.J.[Yan-Jiang],
Suo, P.[Peng],
Qi, Y.J.[Yu-Juan],
Memorizing GMM to Handle Sharp Changes in Moving Object Segmentation,
CISP09(1-4).
IEEE DOI
0910
BibRef
Zhang, Y.[Yan],
Chen, K.[Kai],
Wang, H.J.[Hui-Jing],
Zhou, Y.[Yi],
Guan, H.B.[Hai-Bing],
Two-View Motion Segmentation by Gaussian Blurring Mean Shift with
Fitness Measure,
CISP09(1-6).
IEEE DOI
0910
BibRef
Wang, Y.N.[Yan-Ni],
Fan, Y.Y.[Yang-Yu],
Adaptive Motion Segmentation Based on Genetic Algorithm,
CISP09(1-4).
IEEE DOI
0910
BibRef
Girisha, R.,
Murali, S.,
Segmentation of motion objects from surveillance video sequences using
partial correlation,
ICIP09(1129-1132).
IEEE DOI
0911
BibRef
Earlier: A2, A1:
Segmentation of Motion Objects from Surveillance Video Sequences Using
Temporal Differencing Combined with Multiple Correlation,
AVSBS09(472-477).
IEEE DOI
0909
BibRef
Liu, F.[Feng],
Gleicher, M.[Michael],
Learning color and locality cues for moving object detection and
segmentation,
CVPR09(320-327).
IEEE DOI
0906
BibRef
Baradarani, A.[Aryaz],
Wu, J.[Jonathan],
Moving object segmentation using the 9/7-10/8 dual-tree complex filter
bank,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Fraile, R.[Roberto],
Hogg, D.C.[David C.],
Cohn, A.G.[Anthony G.],
Motion segmentation by consensus,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Li, H.W.[Hong-Wei],
Lin, L.[Liang],
Wu, T.F.[Tian-Fu],
Liu, X.B.[Xiao-Bai],
Dong, L.F.[Lan-Fang],
Object-of-interest extraction by integrating stochastic inference with
learnt active shape sketch,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhang, T.Z.[Tian-Zhu],
Li, S.Z.[Stan Z.],
Xiang, S.M.[Shi-Ming],
Zhang, L.[Lun],
Liu, S.[Si],
Co-Training Based Segmentation of Merged Moving Objects,
VS08(xx-yy).
0810
BibRef
Brostow, G.J.[Gabriel J.],
Shotton, J.D.J.[Jamie D.J.],
Fauqueur, J.[Julien],
Cipolla, R.[Roberto],
Segmentation and Recognition Using Structure from Motion Point Clouds,
ECCV08(I: 44-57).
Springer DOI
0810
Might be more a depth segmentation paper.
Object segmentation using motion derived 3D data.
BibRef
Fradet, M.[Matthieu],
Pérez, P.[Patrick],
Robert, P.[Philippe],
Semi-automatic Motion Segmentation with Motion Layer Mosaics,
ECCV08(III: 210-223).
Springer DOI
0810
BibRef
Langs, G.[Georg],
Paragios, N.[Nikos],
Modeling the structure of multivariate manifolds: Shape maps,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Yoo, Y.S.[Yong-Seok],
Park, T.S.[Tae-Suh],
A moving object detection algorithm for smart cameras,
EmbedCV08(1-8).
IEEE DOI
0806
BibRef
Monteiro, F.C.[Fernando C.],
Campilho, A.[Aurélio],
Region and Graph-Based Motion Segmentation,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Venetianer, P.L.,
Zhang, Z.,
Yin, W.,
Lipton, A.J.,
Stationary target detection using the ObjectVideo surveillance system,
AVSBS07(242-247).
IEEE DOI
0709
See also ObjectVideo.
BibRef
Wei, Z.Y.[Zhao-Yi],
Lee, D.J.[Dah-Jye],
Jilk, D.[David],
Schoenberger, R.[Robert],
Motion Projection for Floating Object Detection,
ISVC07(II: 152-161).
Springer DOI
0711
BibRef
Toussaint, M.,
Willert, V.[Volker],
Eggert, J.[Julian],
Korner, E.,
Motion Segmentation Using Inference in Dynamic Bayesian Networks,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Hu, H.[Han],
Gu, Q.Q.[Quan-Quan],
Deng, L.[Lei],
Zhou, J.[Jie],
Multiframe Motion Segmentation via Penalized Map Estimation and Linear
Programming,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Verbeke, N.[Nicolas],
Vincent, N.[Nicole],
A PCA-Based Technique to Detect Moving Objects,
SCIA07(641-650).
Springer DOI
0706
BibRef
Lee, D.G.[Dong-Gyu],
Han, S.Y.[Su-Young],
Shape Preserving Hierarchical Triangular Mesh for Motion Estimation,
PSIVT06(929-938).
Springer DOI
0612
Motion detection, change the mesh.
BibRef
Park, S.Y.[Soon-Yong],
Moon, J.Y.[Jaek-Young],
Park, C.J.[Chang-Joon],
Lee, I.H.[In-Ho],
Moving Object Removal Based on Global Feature Registration,
ACIVS06(275-286).
Springer DOI
0609
BibRef
Dupont, R.[Romain],
Juan, O.[Olivier],
Keriven, R.[Renaud],
Robust Segmentation of Hidden Layers in Video Sequences,
ICPR06(III: 75-78).
IEEE DOI
0609
BibRef
Yamazaki, M.[Masaki],
Xu, G.[Gang],
Chen, Y.W.[Yen-Wei],
Detection of Moving Objects by Independent Component Analysis,
ACCV06(II:467-478).
Springer DOI
0601
See also Separating Reflections from Images Using Kernel Independent Component Analysis.
BibRef
Wang, J.[Jia],
Wang, H.F.[Hai-Feng],
Liu, Q.S.[Qing-Shan],
Lu, H.Q.[Han-Qing],
Automatic Moving Object Segmentation with Accurate Boundaries,
ACCV06(I:276-285).
Springer DOI
0601
BibRef
Liu, Y.Z.[Ya-Zhou],
Gao, W.[Wen],
Yao, H.X.[Hong-Xun],
Liu, S.H.[Shao-Hui],
Wang, L.J.[Li-Jun],
Fast Moving Region Detection Scheme in Ad Hoc Sensor Network,
ICIAR04(II: 520-527).
Springer DOI
0409
BibRef
Carminati, L.,
Benois-Pineau, J.,
Gaussian Mixture Classification for Moving Object Detection in Video
Surveillance Environment,
ICIP05(III: 113-116).
IEEE DOI
0512
BibRef
Dupont, R.[Romain],
Paragios, N.[Nikos],
Keriven, R.[Renaud],
Fuchs, P.[Phillipe],
Extraction of Layers of Similar Motion Through Combinatorial Techniques,
EMMCVPR05(220-234).
Springer DOI
0601
BibRef
Solomon, J.,
Butman, J.A.,
Sood, A.,
Segmentation of Objects in Temporal Images Using the Hidden Markov
Model,
ICIP05(I: 1-4).
IEEE DOI
0512
BibRef
Wang, Y.[Yang],
Ji, Q.A.[Qi-Ang],
A Dynamic Conditional Random Field Model for Object Segmentation in
Image Sequences,
CVPR05(I: 264-270).
IEEE DOI
0507
BibRef
Al-Mazeed, A.[Ahmad],
Nixon, M.S.[Mark S.],
Gunn, S.R.[Steve R.],
Classifiers Combination for Improved Motion Segmentation,
ICIAR04(II: 363-371).
Springer DOI
0409
BibRef
Barbu, A.[Adrian],
Zhu, S.C.[Song Chun],
On the Relationship Between Image and Motion Segmentation,
SCVMA04(51-63).
Springer DOI
0405
BibRef
Kahl, F.[Fredrik],
Hartley, R.I.[Richard I.],
Hilsenstein, V.[Volker],
Novelty Detection in Image Sequences with Dynamic Background,
SMVP04(117-128).
Springer DOI
0505
BibRef
Wildenauer, H.[Horst],
Blauensteiner, P.[Philipp],
Hanbury, A.[Allan],
Kampel, M.[Martin],
Motion Detection Using an Improved Colour Model,
ISVC06(II: 607-616).
Springer DOI
0611
BibRef
Chen, M.L.[Mao-Lin],
Ma, G.Y.[Geng-Yu],
Kee, S.C.[Seok-Cheol],
Pixels Classification for Moving Object Extraction,
Motion05(II: 44-49).
IEEE DOI
0502
BibRef
Myerscough, P.J.,
Nixon, M.S.,
Estimating the phase congruency of localised frequencies,
ICIP04(I: 275-278).
IEEE DOI
0505
BibRef
And:
Temporal phase congruency,
Southwest04(76-79).
IEEE DOI
0411
Moving feature detector.
BibRef
Tweed, D.,
Estimating rigid motions via the conformal model of Euclidean space,
ICPR04(II: 171-174).
IEEE DOI
0409
BibRef
Nair, V.,
Clark, J.J.,
An unsupervised, online learning framework for moving object detection,
CVPR04(II: 317-324).
IEEE DOI
0408
BibRef
Toth, D.,
Aach, T.,
Detection and recognition of moving objects using statistical motion
detection and Fourier descriptors,
CIAP03(430-435).
IEEE DOI
0310
BibRef
Kim, D.H.[Dae-Hee],
Ahn, C.H.[Chung-Hyun],
No, Y.S.[Yo-Sung],
Video segmentation using vector-valued diffusion and clustering,
ICIP03(I: 989-992).
IEEE DOI
0312
BibRef
Rousson, M.,
Deriche, R.,
A variational framework for active and adaptative segmentation of
vector valued images,
Motion02(56-61).
IEEE DOI
0303
BibRef
Porikli, F.M.[Fatih Murat],
Object Segmentation of Color Video Sequences,
CAIP01(610 ff.).
Springer DOI
0210
BibRef
Porikli, F.M.,
Wang, Y.,
An Unsupervised Multi-resolution Object Extraction Algorithm Using
Video-cube,
ICIP01(II: 359-362).
IEEE DOI
0108
BibRef
Yoshida, T.,
Shimosato, T.,
Motion Image Segmentation Using 3-d Watershed Algorithm,
ICIP01(II: 773-776).
IEEE DOI
0108
BibRef
Yamada, A.[Akio],
Ohta, M.[Mutsumi],
A Study of Region Partitioning Using Reciprocal Estimation of Region
Models and Pixel Motion,
ICIP99(I:1-5).
IEEE DOI
BibRef
9900
Kim, C.I.[Changick I.],
Hwang, J.N.[Jenq-Neng],
A Fast and Robust Moving Object Segmentation in Video Sequences,
ICIP99(II:131-134).
IEEE DOI
BibRef
9900
Murphey, Y.L.,
Lu, H.,
Lakshmanan, S.,
Karlsen, R.E.,
Gerhart, G.R.,
Meitzler, T.J.,
Dyta: an intelligent system for moving target detection,
CIAP99(1116-1121).
IEEE DOI
9909
BibRef
de Smet, P., and
de Vleeschauwer, D.,
Motion-Based Segmentation Using a Thresholded Merging Strategy on
Watershed Segments,
ICIP97(II: 490-493).
IEEE DOI
BibRef
9700
Csillag, P., and
Boroczky, L.,
Iterative Motion-Based Segmentation for Object-Based Video Coding,
ICIP97(I: 73-76).
IEEE DOI
BibRef
9700
Hoetter, M.,
Mester, R.,
Meyer, M.,
Detection of Moving Objects Using a Robust Displacement Estimation
Including a Statistical Error Analysis,
ICPR96(IV: 249-255).
IEEE DOI
9608
(Robert Bosch GmbH, D)
BibRef
Xiong, W.[Wei],
Graffigne, C.,
A hierarchical method for detection of moving objects,
ICIP94(II: 795-799).
IEEE DOI
9411
BibRef
Cloutier, L.,
Mitiche, A.,
Bouthemy, P.,
Segmentation and estimation of image motion by a robust method,
ICIP94(II: 805-809).
IEEE DOI
9411
BibRef
Ayer, S.,
Schroeter, P.,
Bigün, J.,
Segmentation of Moving Objects by Robust Motion Parameter Estimation
over Multiple Frames,
ECCV94(B:316-327).
Springer DOI
BibRef
9400
Ayer, S.[Serge],
Sequential and Competitive Methods for the Estimation of
Multiple Motions,
Ph.D.Thesis, EPFL, Lausanne, 1995.
BibRef
9500
Anbalagan, R.S.,
Hu, G.,
Jain, A.K.,
A segmentation and object extraction algorithm with linear memory and
time constraints,
ICPR88(I: 596-600).
IEEE DOI
8811
BibRef
Darmon, C.A.,
A New Recursive Method to Detect Moving Objects in a Sequence of Images,
PRIP82(259-261).
BibRef
8200
Bers, K.H.,
Bohner, M.,
Gerlach, H.,
Object Detection in Image Sequences,
ICPR80(1317-1319).
BibRef
8000
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Video Object Segmentation .