Landau, H.J.,
Pollak, H.O.,
Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainity III:
The Dimension of the Space of Essentially Time and Bandlimited Signals,
Bell System Tech.(41), July 1962, pp. 1295-1336.
BibRef
6207
And:
Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainity II,
Bell System Tech.(40), January 1961, pp. 65-84.
BibRef
Brigham, E.O.,
The Fast Fourier Transform,
Prentice Hall1974.
BibRef
7400
Earlier:
Add A2:
Morrow, R.E.,
Spectrum(4), December 1967, pp. 63-70.
BibRef
Singleton, R.C.,
On Computing the Fast Fourier Transform,
CACM(10), 1967, pp. 647-654.
BibRef
6700
Singleton, R.C.,
Algol Procedures for the Fast Fourier Transform, Algorithm 338,
CACM(11), 1968, pp. 773-776.
BibRef
6800
Singleton, R.C.,
An Algol Procedure for the Fast Fourier Transform with
Arbitrary Factors, Algorithm 339,
CACM(11), 1968, pp. 776-779.
BibRef
6800
Zahn, C.T.,
Roskies, R.Z.,
Fourier Descriptors for Plane Closed Curves,
TC(21), No. 3, March 1972, ppp. 269-281.
BibRef
7203
Pease, M.C.,
An Adaptation of the Fast Fourier Transform for Parallel Processing,
JACM(15), No. 2, April 1968, pp. 252-264.
BibRef
6804
Brousil, J.K.,
Smith, D.R.,
A Threshold Logic Network for Shape Invariance,
TC(16), 1967, pp. 818-828.
BibRef
6700
Yevick, M.L.[Miriam Lipschutz],
Holographic or Fourier Logic,
PR(7), No. 4, December 1975, pp. 197-213.
Elsevier DOI
0309
BibRef
Johnson, L.R.,
Jain, A.K.,
An Efficient Two-Dimensional FFT Algorithm,
PAMI(3), No. 6, November 1981, pp. 698-701.
BibRef
8111
Kuhl, F.P.[Frank P.],
Giardina, C.R.[Charles R.],
Elliptic Fourier Features of a Closed Contour,
CGIP(18), No. 3, March 1982, pp. 236-258.
Elsevier DOI
BibRef
8203
Giardina, C.R.[Charles R.],
Kuhl, F.P.[Frank P.],
Accuracy of curve approximation by harmonically related vectors with
elliptical loci,
CGIP(6), No. 3, June 1977, pp. 277-285.
Elsevier DOI
0501
BibRef
Strackee, J.,
Nagelkerke, N.J.D.,
On Closing the Fourier Descriptor Presentation,
PAMI(5), No. 6, November 1983, pp. 660-661.
BibRef
8311
Caelli, T.M.,
Hubner, M.,
Coding Images in the Frequency Domain: Filter Design and Energy Processing
Characteristics of the Human Visual System,
SMC(13), 1983, pp. 1018-1021.
BibRef
8300
Auslander, L.,
Feig, E.,
Winograd, S.,
New Algorithms for the Multidimensional Discrete Fourier Transform,
ASSP(31), 1983, pp. 388-403.
BibRef
8300
Chellappa, R.,
Bagdazian, R.,
Optimal Fourier Coding of Image Boundaries,
PAMI(6), No. 1, January 1984, pp. 102-105.
BibRef
8401
Bates, R.H.T.,
Uniqueness of Solutions to Two-Dimensional Fourier Phase Problems for
Localized and Positive Images,
CVGIP(25), No. 2, February 1984, pp. 205-217.
Elsevier DOI
BibRef
8402
Zabele, G.S.,
Koplowitz, J.,
Fourier Encoding of Closed Planar Boundaries,
PAMI(7), No. 1, January 1985, pp. 98-102.
BibRef
8501
Earlier:
A Transform Encoding Scheme for Closed Planar Curves,
ICPR84(339-342).
BibRef
Dekking, F.M.,
van Otterloo, P.J.,
Fourier Coding and Reconstruction of Complicated Contours,
SMC(16), 1986, pp. 395-404.
BibRef
8600
Lin, C.S.[Chun-Shin],
Hwang, C.L.[Chia-Lin],
New Forms of Shape Invariants from Elliptic Fourier Descriptors,
PR(20), No. 5, 1987, pp. 535-545.
Elsevier DOI
BibRef
8700
Kiryati, N.,
Maydan, D.,
Calculating Geometric Properties from Fourier Representation,
PR(22), No. 5, 1989, pp. 469-475.
Elsevier DOI
BibRef
8900
Kiryati, N.,
Calculating Geometric Properties of Objects Represented by
Fourier Coefficients,
CVPR88(641-646).
IEEE DOI
BibRef
8800
Dougherty, E.R.,
Loce, R.P.,
Robust Morphologically Continuous Fourier Descriptors I:
Projection-Generated Descriptions,
PRAI(6), 1992, pp. 873-892.
BibRef
9200
Dougherty, E.R.,
Loce, R.P.,
Robust Morphologically Continuous Fourier Descriptors II:
Continuity and Occlusion Analysis,
PRAI(6), 1992, pp. 893-911.
BibRef
9200
Li, Z.C.,
Bui, T.D.,
Suen, C.Y.,
Tang, Y.Y.,
Splitting-Shooting Methods for Nonlinear Transformations of
Digitized Patterns,
PAMI(12), No. 7, July 1990, pp. 671-682.
IEEE DOI
BibRef
9007
Li, Z.C.,
Suen, Y.,
Bui, T.D.,
Gu, Q.L.,
Splitting-Integrating Method for Normalizing Images by
Inverse Transformations,
PAMI(14), No. 6, June 1992, pp. 678-686.
IEEE DOI
BibRef
9206
Li, Z.C.,
Suen, Y.,
Bui, T.D.,
Gu, Q.L.,
Harmonic Models of Shape Transformations in Digital Images and Pictures,
GMIP(54), No. 3, May 1992, pp. 198-209.
BibRef
9205
Earlier:
Harmonic models of shape transformations in digital images and patterns,
ICPR90(II: 1-7).
IEEE DOI
9208
BibRef
Tang, Y.Y.,
Suen, C.Y.,
Nonlinear shape restoration by transformation models,
ICPR90(II: 14-19).
IEEE DOI
9208
BibRef
Li, Z.C.,
Bui, T.D.,
Suen, C.Y.,
Tang, Y.Y.,
Nonlinear transformations of digitized patterns,
ICPR88(I: 134-136).
IEEE DOI
8811
BibRef
Lawton, W.M.,
Multidimensional chirp algorithms for computing Fourier transforms,
IP(1), No. 3, July 1992, pp. 429-431.
IEEE DOI
0402
BibRef
Tabei, M.,
Ueda, M.,
Backprojection by upsampled Fourier series expansion and interpolated
FFT,
IP(1), No. 1, January 1992, pp. 77-87.
IEEE DOI
0402
BibRef
Fillard, J.P.,
Lussert, J.M.,
Castagné, M.,
M'Timet, H.,
Fourier phase shift location estimation of unfocused optical point
spread functions,
SP:IC(6), No. 4, August 1994, pp. 281-287.
Elsevier DOI
0001
Fourier phase shift; Centroid method
BibRef
Doerschuk, P.C.,
Bayesian reconstruction of signals invariant under a space-group
symmetry from Fourier transform magnitudes,
IP(3), No. 4, July 1994, pp. 438-449.
IEEE DOI
0402
BibRef
Hui, C.C.W.,
Ding, T.J.,
McCanny, J.V.,
Woods, R.F.,
A 64-Point Fourier-Transform Chip for Video Motion Compensation
Using Phase Correlation,
SolidCir(31), No. 11, November 1996, pp. 1751-1761.
9611
BibRef
Wu, M.F.[Ming-Fang],
Sheu, H.T.[Hsin-Teng],
3D Invariant Estimation of Axisymmetrical Objects Using
Fourier Descriptors,
PR(29), No. 2, February 1996, pp. 267-280.
Elsevier DOI
Fourier, 3D.
See also Contour-Based Correspondence Using Fourier Descriptors.
BibRef
9602
Sheu, H.T.[Hsin-Teng],
Wu, M.F.[Ming-Fang],
Fourier Descriptor Based Technique for Reconstructing 3D Contours
from Stereo Images,
VISP(142), No. 2, April 1995, pp. 95-104.
BibRef
9504
Pitas, I.,
Strintzis, M.G.,
General in-Place Calculation of Discrete Fourier Transforms of
Multidimensional Sequences,
ASSP(34), 1986, pp. 565-572.
BibRef
8600
Guessoum, A.,
Mersereau, R.M.,
Fast Algorithms for the Multidimensional Discrete Fourier Transform,
ASSP(34), 1986, pp. 937-943.
BibRef
8600
Hekrdla, J.,
Index Transforms of Multidimensional Cyclic Convolutions and
Discrete Fourier Transforms,
ASSP(34), 1986, pp. 996-997.
BibRef
8600
Mehalic, M.A.,
Rustan, P.L.,
Route, G.P.,
Effects of Architecture Implementation on DFT Algorithm Performance,
ASSP(33), 1985, pp. 684-693.
BibRef
8500
Haque, M.A.,
A Two-Dimensional Fast Cosine Transform,
ASSP(33), 1985, pp. 1532-1539.
BibRef
8500
Lee, B.C.,
A Fast Cosine Transform,
ASSP(33), 1985, pp. xx-yy.
BibRef
8500
Byrne, C.L.,
Fitzgerald, R.M.,
Linear and Nonlinear Estimators for One- and Two-Dimensional
Fourier Transforms,
ASSP(32), 1984, pp. 914-916.
BibRef
8400
Lim, J.S.,
Anderson, J.C.,
Searle, C.L.,
Signal Reconstruction from Cosine Transform Magnitude,
PIEEE(70), 1982, pp. 1460-1462.
BibRef
8200
Hayes, M.H.,
Lim, J.S.,
Oppenheim, A.V.,
Signal Reconstruction from Phase or Magnitude,
ASSP(28), 1980, pp. 672-680.
BibRef
8000
Oppenheim, A.V.,
Lim, J.S.,
The Importance of Phase in Signals,
PIEEE(69), No. 5, May 1981, pp. 529-541.
BibRef
8105
van Hove, P.L.,
Hayes, M.H.,
Lim, J.S.,
Oppenheim, A.V.,
Signal Reconstruction from Signed Fourier Transform Magnitude,
ASSP(31), 1983, pp. 1286-1293.
BibRef
8300
Curtis, S.R.,
Oppenheim, A.V.,
Lim, J.S.,
Signal Reconstruction from Fourier Transform Sign Information,
ASSP(33), 1985, pp. 643-657.
BibRef
8500
Bonmassar, G.[Giorgio],
Schwartz, E.L.[Eric L.],
Fourier-Analysis and Cortical Architectures:
The Exponential Chirp Transform,
RealTimeImg(3), No. 3, June 1997, pp. 229-237.
9708
See also Cortical Anatomy, Size Invariance, and Spatial Frequency Analysis.
BibRef
Bonmassar, G.[Giorgio],
Schwartz, E.L.[Eric L.],
Space-Variant Fourier-Analysis: The Exponential Chirp Transform,
PAMI(19), No. 10, October 1997, pp. 1080-1089.
IEEE DOI
9710
BibRef
Earlier:
Lie Group Theory, Space Variant Fourier Analysis
and the Exponential Chirp Transform,
CVPR96(492-498).
IEEE DOI
BibRef
Earlier:
Geometric invariance in space-variant vision systems:
The exponential chirp transform,
ICPR94(C:204-207).
IEEE DOI
9410
Representation, Log Mapping.
Log Mapping. Generate a frequency domain mapping for a log polar image.
Similar to the Mellin Transform.
BibRef
Mou-Yan, Z.,
Unbehauen, R.,
Methods for Reconstruction of 2-D Sequences from
Fourier-Transform Magnitude,
IP(6), No. 2, February 1997, pp. 222-233.
IEEE DOI
9703
BibRef
Anguh, M.M.,
Quadtree and Symmetry in FFT Computation of Digital Images,
TSP(45), No. 12, December 1997, pp. 2896-2899.
9712
BibRef
Rangarajan, S.R.,
Srinivasan, S.,
Generalized Method for Pruning an FFT Type of Transform,
VISP(144), No. 4, August 1997, pp. 189-192.
9806
BibRef
Pei, S.C.,
Tseng, C.C.,
Yeh, M.H.,
Shyu, J.J.,
Discrete Fractional Hartley and Fourier Transforms,
CirSysSignal(45), No. 6, June 1998, pp. 665-675.
9807
BibRef
Pei, S.C.,
Yeh, M.H.,
Two-Dimensional Discrete Fractional Fourier-Transform,
SP(67), No. 1, May 1998, pp. 99-108.
9807
BibRef
Duhamel, P.[Pierre],
Vetterli, M.,
Fast Fourier transforms: A tutorial review and a state of the art,
SP(19), No. 4, 1990, pp. 259-299.
BibRef
9000
Bi, G.A.,
Fast Algorithms for DFT of Composite Sequence Lengths,
SP(70), No. 2, October 1998, pp. 139-145.
9812
BibRef
Shentov, O.V.,
Mitra, S.K.,
Heute, U.,
Hossen, A.N.,
Subband DFT I: Definition, Interpretation and Extensions,
SP(41), No. 3, 1995, pp. 261-277.
BibRef
9500
Hossen, A.N.,
Heute, U.,
Shentov, O.V.,
Mitra, S.K.,
Subband DFT II: Accuracy, Complexity and Applications,
SP(41), No. 3, 1995, pp. 279-294.
BibRef
9500
Javidi, B.,
Wang, W.L.,
Zhang, G.S.,
Composite Fourier Plane Nonlinear Filter for Distortion Invariant
Pattern Recognition,
OptEng(36), No. 10, October 1997, pp. 2690-2696.
9710
BibRef
Onural, L.,
Erden, M.F.,
Ozaktas, H.M.,
Extensions to Common Laplace and Fourier Transforms,
SPLetters(4), No. 11, November 1997, pp. 310-312.
IEEE Top Reference.
9711
BibRef
Shkarin, P.,
Spencer, R.G.S.,
Time Domain Simulation of Fourier Imaging by Summation of Isochromats,
IJIST(8), No. 5, 1997, pp. 419-426.
9710
BibRef
Amidror, I.,
Hersch, R.D.,
Analysis of the Superposition of Periodic Layers and Their Moire Effects
Through the Algebraic Structure of Their Fourier Spectrum,
JMIV(8), No. 2, March 1998, pp. 99-130.
DOI Link
9803
BibRef
Pratt, I.[Ian],
Shape Representation Using Fourier Coefficients of the Sinusoidal
Transform,
JMIV(10), No. 3, May 1999, pp. 221-235.
DOI Link
BibRef
9905
Bernardini, R.,
Cortelazzo, G.M.,
Mian, G.A.,
Multidimensional fast Fourier transform algorithm for signals with
arbitrary symmetries,
JOSA-A(16), No. 8, August 1999, pp. 1892-1908.
BibRef
9908
Earlier:
A new 1D FFT-based algorithm for computing the MD FFT on arbitrary
lattices,
ICIP94(III: 567-570).
IEEE DOI
9411
BibRef
Ware, A.F.[Antony F.],
Fast Approximate Fourier Transforms for Irregularly Spaced Data,
SIAM_Rev(40), No. 4, 1998, pp. 838-856.
WWW Link.
BibRef
9800
Lo, P.C.[Pei-Chen],
Lee, Y.Y.[Yu-Yun],
Real-time implementation of the moving FFT algorithm,
SP(79), No. 3, December 1999, pp. 251-25.
0002
BibRef
Britanak, V.[Vladimir],
Rao, K.R.,
The fast generalized discrete Fourier transforms: A unified approach to
the discrete sinusoidal transforms computation,
SP(79), No. 2, December 1999, pp. 135-150.
0002
BibRef
Britanak, V.[Vladimir],
Rao, K.R.,
A new fast algorithm for the unified forward and inverse MDCT/MDST
computation,
SP(82), No. 3, 2002, pp. 433-459.
HTML Version.
0205
BibRef
Zapata, J.L.[Jaime L.],
Ritter, G.X.[Gerhard X.],
Fast Fourier Transform for Hexagonal Aggregates,
JMIV(12), No. 3, June 2000, pp. 183-197.
DOI Link
0003
BibRef
Takahashi, D.,
An extended split-radix FFT algorithm,
SPLetters(8), No. 5, May 2001, pp. 145-147.
IEEE Top Reference.
0105
BibRef
Derrode, S.[Stéphane],
Ghorbel, F.[Faouzi],
Robust and Efficient Fourier-Mellin Transform Approximations for
Gray-Level Image Reconstruction and Complete Invariant Description,
CVIU(83), No. 1, July 2001, pp. 57-78.
DOI Link
0108
Reconstruction.
Invariants.
BibRef
Lee, S.R.[Seung-Rae],
Yi, J.H.[June-Ho],
Fast Reverse Jacket Transform As an Alternative Representation of the
N-Point Fast Fourier Transform,
JMIV(16), No. 1, January 2002, pp. 31-39.
DOI Link
0202
BibRef
Gelman, L.,
Feature Representation: Both Components of the
Fourier Transform vs. Hartley Transform,
PR(35), No. 5, May 2002, pp. 1191-1192.
Elsevier DOI
0202
BibRef
Gelman, L.[Leonid],
Sanderson, M.[Michael],
Thompson, C.[Christopher],
Signal recognition: Fourier transform vs. Hartley transform,
PR(36), No. 12, December 2003, pp. 2849-2853.
Elsevier DOI
0310
BibRef
Gelman, L.[Leonid],
Sanderson, M.[Michael],
Thompson, C.[Christopher],
Signal recognition: Fourier transform vs. Cosine transform,
PRL(24), No. 15, November 2003, pp. 2823-2827.
Elsevier DOI
0308
BibRef
Wu, J.L.[Ja-Ling],
Huang, Y.M.,
Two-variable modularized fast polynomial transform algorithm for 2-D
discrete Fourier transforms,
CirSysVideo(2), No. 1, March 1992, pp. 84-87.
IEEE Top Reference.
0206
BibRef
Bracewell, R.N.[Ronald N.],
The Fourier Transform and Its Applications,
McGraw-Hill2000.
Third Edition.
BibRef
0001
Bastiaans, M.J.[Martin J.],
Alieva, T.[Tatiana],
Wigner distribution moments in fractional Fourier transform systems,
JOSA-A(19), No. 9, September 2002, pp. 1763-1773.
WWW Link.
0210
BibRef
Chan, S.C.,
Yiu, P.M.,
An efficient multiplierless approximation of the fast Fourier transform
using sum-of-powers-of-two (SOPOT) coefficients,
SPLetters(9), No. 10, October 2002, pp. 322-325.
IEEE Top Reference.
0211
BibRef
Djurovic, I.[Igor],
Stankovic, L.[LJubisa],
Adaptive windowed Fourier transform,
SP(83), No. 1, January 2003, pp. 91-100.
HTML Version.
0211
BibRef
Lee, T.C.M.[Thomas C.M.],
Wong, T.F.[Tan F.],
Nonparametric log spectrum estimation using disconnected regression
splines and genetic algorithms,
SP(83), No. 1, January 2003, pp. 79-90.
HTML Version.
0211
BibRef
Ferreira, P.J.S.G.,
Vieira, J.M.N.,
Stable DFT codes and frames,
SPLetters(10), No. 2, February 2003, pp. 50-53.
IEEE Top Reference.
0301
BibRef
Hossen, A.[Abdulnasir],
Heute, U.[Ulrich],
Seraji, G.[Gohlamali],
Arithmetic errors in the sub-band FFT: derivation of error equations
and simulation results,
SP(83), No. 2, February 2003, pp. 413-429.
Elsevier DOI
0304
BibRef
Dapena, A.,
Servière, C.,
Castedo, L.,
Inversion of the sliding Fourier transform using only two frequency
bins and its application to source separation,
SP(83), No. 2, February 2003, pp. 453-457.
Elsevier DOI
0304
BibRef
Capus, C.,
Brown, K.,
Fractional Fourier transform of the Gaussian and fractional domain
signal support,
VISP(150), No. 2, April 2003, pp. 99-106.
IEEE Abstract.
0307
BibRef
Pei, S.C.,
Chen, W.Y.,
Split Vector-Radix-2/8 2-D Fast Fourier Transform,
SPLetters(11), No. 5, may 2004, pp. 459-462.
IEEE Abstract.
0404
BibRef
MacLeod, M.D.[Malcolm D.],
Multiplierless Winograd and Prime Factor FFT Implementation,
SPLetters(11), No. 9, September 2004, pp. 740-743.
IEEE Abstract.
0409
BibRef
MacLeod, M.D.[Malcolm D.],
Multiplierless Implementation of Rotators and FFTs,
JASP(2005), No. 17, 2005, pp. 2903-2910.
WWW Link.
0603
BibRef
Yang, X.P.[Xing-Peng],
Tan, Q.F.[Qiao-Feng],
Wei, X.F.[Xiao-Feng],
Xiang, Y.[Yong],
Yan, Y.[Yingbai],
Jin, G.[Guofan],
Improved fast fractional-Fourier-transform algorithm,
JOSA-A(21), No. 9, September 2004, pp. 1677-1681.
WWW Link.
0409
BibRef
Guizar Sicairos, M.[Manuel],
Gutiérrez Vega, J.C.[Julio C.],
Two-dimensional Fourier transform of scaled Dirac delta curves,
JOSA-A(21), No. 9, September 2004, pp. 1682-1688.
WWW Link.
0409
BibRef
Djurovic, I.,
Stankovic, L.,
Moments of Multidimensional Polynomial FT,
SPLetters(11), No. 11, November 2004, pp. 879-882.
IEEE Abstract.
0411
BibRef
Brown, R.A.,
Zhu, H.,
Mitchell, J.R.,
Distributed Vector Processing of a New Local MultiScale Fourier
Transform for Medical Imaging Applications,
MedImg(24), No. 5, May 2005, pp. 689-691.
IEEE Abstract.
0505
BibRef
Uzun, I.S.,
Amira, A.,
Bouridane, A.,
FPGA Implementations of Fast Fourier Transforms for Real-Time Signal
and Image Processing,
VISP(152), No. 3, June 2005, pp. 283-296.
DOI Link
0510
See also Novel FPGA Implementations of Walsh-Hadamard Transforms for Signal Processing.
BibRef
Kunttu, I.[Iivari],
Lepistö, L.[Leena],
Rauhamaa, J.[Juhani],
Visa, A.[Ari],
Multiscale Fourier descriptors for defect image retrieval,
PRL(27), No. 2, 15 January 2006, pp. 123-132.
Elsevier DOI
0512
BibRef
Earlier:
Multiscale fourier descriptor for shape-based image retrieval,
ICPR04(II: 765-768).
IEEE DOI
0409
BibRef
Earlier:
Multiscale fourier descriptor for shape classification,
CIAP03(536-541).
IEEE DOI
0310
BibRef
Kunttu, I.[Iivari],
Lepistö, L.[Leena],
Rauhamaa, J.[Juhani],
Visa, A.[Ari],
Fourier-Based Object Description in Defect Image Retrieval,
MVA(17), No. 4, September 2006, pp. 211-218.
Springer DOI
0608
BibRef
Earlier:
Color Fourier Descriptor for Defect Image Retrieval,
CIAP05(415-422).
Springer DOI
0509
BibRef
Kunttu, I.[Iivari],
Lepistö, L.[Leena],
Shape-based retrieval of industrial surface defects using angular
radius Fourier descriptor,
IET-IPR(1), No. 2, June 2007, pp. 231-236.
DOI Link
0905
BibRef
Kunttu, I.[Iivari],
Lepistö, L.[Leena],
Visa, A.[Ari],
Enhanced Fourier Shape Descriptor Using Zero-Padding,
SCIA05(892-900).
Springer DOI
0506
BibRef
Djurovic, I.,
Lukin, V.V.,
Robust DFT With High Breakdown Point for Complex-Valued Impulse Noise
Environment,
SPLetters(13), No. 1, January 2006, pp. 25-28.
IEEE DOI
0601
BibRef
Pei, S.C.[Soo-Chang],
Hsue, W.L.,
The Multiple-Parameter Discrete Fractional Fourier Transform,
SPLetters(13), No. 6, June 2006, pp. 329-332.
IEEE DOI
0606
BibRef
Pei, S.C.,
Hsue, W.L.,
Random Discrete Fractional Fourier Transform,
SPLetters(16), No. 12, December 2009, pp. 1015-1018.
IEEE DOI
0909
BibRef
Meher, P.K.,
Highly Concurrent Reduced-Complexity 2-D Systolic Array for Discrete
Fourier Transform,
SPLetters(13), No. 8, August 2006, pp. 481-484.
IEEE DOI
0606
BibRef
Meher, P.K.,
Systolic Designs for DCT Using a Low-Complexity Concurrent
Convolutional Formulation,
CirSysVideo(16), No. 9, September 2006, pp. 1041-1050.
IEEE DOI
0610
BibRef
Meher, P.K.,
Parallel and Pipelined Architectures for Cyclic Convolution by Block
Circulant Formulation Using Low-Complexity Short-Length Algorithms,
CirSysVideo(18), No. 10, October 2008, pp. 1422-1431.
IEEE DOI
0811
BibRef
Mohanty, B.K.,
Meher, P.K.,
Parallel and Pipeline Architectures for High-Throughput Computation of
Multilevel 3-D DWT,
CirSysVideo(20), No. 9, September 2010, pp. 1200-1209.
IEEE DOI
1003
BibRef
Mohanty, B.K.,
Meher, P.K.,
Meher, P.K.,
Memory-Efficient High-Speed Convolution-Based Generic Structure for
Multilevel 2-D DWT,
CirSysVideo(23), No. 2, February 2013, pp. 353-363.
IEEE DOI
1301
BibRef
Loughlin, P.J.,
Time-Varying Spectral Approximation of Filtered Signals,
SPLetters(13), No. 10, October 2006, pp. 604-607.
IEEE DOI
0609
BibRef
Grigoryan, A.M.[Artyom M.],
Representation of the Fourier Transform by Fourier Series,
JMIV(25), No. 1, July 2006, pp. 87-105.
Springer DOI
0610
BibRef
Horikis, T.P.[Theodoros P.],
McCallum, M.S.[Matthew S.],
Self-Fourier functions and self-Fourier operators,
JOSA-A(23), No. 4, April 2006, pp. 829-834.
WWW Link.
0610
BibRef
Hwang, H.E.[Hone-Ene],
Han, P.[Pin],
Fast algorithm of phase masks for image encryption in the Fresnel
domain,
JOSA-A(23), No. 8, August 2006, pp. 1870-1874.
WWW Link.
0610
Lensless security system.
BibRef
Sangwine, S.J.,
The problem of defining the Fourier transform of a colour image,
ICIP98(I: 171-175).
IEEE DOI
9810
BibRef
Jones, K.J.,
Flexible-length fast fourier transform for mapping onto
single-instruction multiple-data computing architecture,
VISP(153), No. 4, August 2006, pp. 395-404.
WWW Link.
0705
BibRef
Jones, K.J.,
Design and parallel computation of regularised fast Hartley transform,
VISP(153), No. 1, February 2006, pp. 70-78.
DOI Link
0602
BibRef
Sung, T.Y.,
Memory-efficient and high-speed split-radix FFT/IFFT processor based on
pipelined CORDIC rotations,
VISP(153), No. 4, August 2006, pp. 405-410.
WWW Link.
0705
BibRef
Brackx, F.[Fred],
de Schepper, N.[Nele],
Sommen, F.[Frank],
The Two-Dimensional Clifford-Fourier Transform,
JMIV(26), No. 1-2, November 2006, pp. 5-18.
Springer DOI
0701
BibRef
Liu, J.,
Liu, X.,
Eigenvector-Based N-D Frequency Estimation From Sample Covariance
Matrix,
SPLetters(14), No. 3, March 2007, pp. 209-212.
IEEE DOI
0703
The proposed algorithm achieves automatic frequency pairing
without using joint diagonalization.
BibRef
Krakovsky, V.Y.[Vladimir Y.],
Moving-window discrete Fourier transform,
RealTimeIP(1), No. 2, December 2006, pp. 153-161.
Springer DOI
0001
BibRef
Sheridan, P.[Phil],
A Method to Perform a Fast Fourier Transform With Primitive Image
Transformations,
IP(16), No. 5, May 2007, pp. 1355-1369.
IEEE DOI
0704
BibRef
Foi, A.[Alessandro],
Katkovnik, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking
of Grayscale and Color Images,
IP(16), No. 5, May 2007, pp. 1395-1411.
IEEE DOI
0704
See also From Local Kernel to Nonlocal Multiple-Model Image Denoising.
See also Nonlocality-Reinforced Convolutional Neural Networks for Image Denoising.
BibRef
Vince, A.[Andrew],
Zheng, X.Q.[Xi-Qiang],
Computing the Discrete Fourier Transform on a Hexagonal Lattice,
JMIV(28), No. 2, June 2007, pp. 125-133.
Springer DOI
0710
BibRef
Yan, S.,
Xu, L.,
Anazawa, Y.,
A Two-Stage Approach to the Establishment of State-Space Formulation of
2-D Frequency Transformation,
SPLetters(14), No. 12, December 2007, pp. 960-963.
IEEE DOI
0711
BibRef
Huang, W.C.,
Li, C.P.,
Li, H.J.,
A Computationally Efficient DFT Scheme for Applications With a Subset
of Nonzero Inputs,
SPLetters(15), No. 1, 2008, pp. 206-208.
IEEE DOI
0802
BibRef
Sorensen, T.S.,
Schaeffter, T.,
Noe, K.,
Hansen, M.S.,
Accelerating the Nonequispaced Fast Fourier Transform on Commodity
Graphics Hardware,
MedImg(27), No. 4, April 2008, pp. 538-547.
IEEE DOI
0804
BibRef
Durak, L.[Lutfiye],
Özdemir, A.K.[Ahmet Kemal],
Arikan, O.[Orhan],
Efficient computation of joint fractional Fourier domain signal
representation,
JOSA-A(25), No. 3, March 2008, pp. 765-772.
WWW Link.
0804
BibRef
Lee, J.,
Lee, S.Y.,
Robust Fundamental Frequency Estimation Combining Contrast Enhancement
and Feature Unbiasing,
SPLetters(15), No. 1, 2008, pp. 521-524.
IEEE DOI
0806
BibRef
Lo, V.L.,
Millane, R.P.,
Reconstruction of compact binary images from limited Fourier amplitude
data,
JOSA-A(25), No. 10, October 2008, pp. 2600-2607.
WWW Link.
0810
BibRef
And:
Aspects of binary image reconstruction from Fourier amplitude data,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Lo, V.L.,
Millane, R.P.,
Kingston, R.L.,
Reconstruction of Macromolecular Envelopes from Crystal X-Ray
Diffraction Amplitudes,
ICIP08(2992-2995).
IEEE DOI
0810
BibRef
Yeh, M.H.,
Relationships Among Various 2-D Quaternion Fourier Transforms,
SPLetters(15), No. 1, 2008, pp. 669-672.
IEEE DOI
0811
BibRef
Parsons, A.,
The Symmetric Group in Data Permutation, With Applications to
High-Bandwidth Pipelined FFT Architectures,
SPLetters(16), No. 6, June 2009, pp. 477-480.
IEEE DOI
0904
To permute data in place.
BibRef
Broughton, S.A.[S. Allen],
Bryan, K.M.[Kurt M.],
Discrete Fourier Analysis and Wavelets:
Applications to Signal and Image Processing,
WileyNovember 2008.
ISBN: 978-0-470-29466-6.
HTML Version.
Buy this book: Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing
0905
BibRef
Hirabayashi, A.,
Consistent Sampling and Efficient Signal Reconstruction,
SPLetters(16), No. 12, December 2009, pp. 1023-1026.
IEEE DOI
0909
DFT based coefficients.
BibRef
Miranda, M.[Marta],
Dorrío, B.V.[Benito V.],
Fourier analysis of two-stage phase-shifting algorithms,
JOSA-A(27), No. 2, February 2010, pp. 276-285.
WWW Link.
1002
BibRef
Yang, Z.[Zhuo],
Kamata, S.I.[Sei-Ichiro],
Fast Polar and Spherical Fourier Descriptors for Feature Extraction,
IEICE(E93-D), No. 7, July 2010, pp. 1708-1715.
WWW Link.
1008
BibRef
And:
ICPR10(975-978).
IEEE DOI
1008
BibRef
Yang, Z.[Zhuo],
Kamata, S.I.[Sei-Ichiro],
Hypercomplex Polar Fourier Analysis for Image Representation,
IEICE(E94-D), No. 8, August 2011, pp. 1663-1670.
WWW Link.
1108
BibRef
And:
Hypercomplex polar Fourier analysis for color image,
ICIP11(2117-2120).
IEEE DOI
1201
BibRef
Yang, Z.[Zhuo],
Kamata, S.I.[Sei-Ichiro],
Fast Hypercomplex Polar Fourier Analysis,
IEICE(E95-D), No. 4, April 2012, pp. 1166-1169.
WWW Link.
1204
BibRef
Earlier:
Fast Hypercomplex Polar Fourier Analysis for Image Processing,
PSIVT11(II: 141-148).
Springer DOI
1111
BibRef
Yang, Z.[Zhuo],
Kamata, S.I.[Sei-Ichiro],
Novel Algorithm for Polar and Spherical Fourier Analysis on Two and
Three Dimensional Images,
IEICE(E95-D), No. 5, May 2012, pp. 1248-1255.
WWW Link.
1202
BibRef
Thyagarajan, K.S.,
Still Image and Video Compression with MATLAB,
Wiley-IEEEJanuary 2011.
ISBN: 978-0-470-48416-6
HTML Version.
Buy this book: Fourier Methods in Imaging (The Wiley-IS&T Series in Imaging Science and Technology)
1010
Mathematical tools for describing general one- and two-dimensional
linear imaging systems.
BibRef
Bowley, J.,
Rebollo-Neira, L.,
Sparsity and 'Something Else': An Approach to Encrypted Image Folding,
SPLetters(18), No. 3, March 2011, pp. 189-192.
IEEE DOI
1102
BibRef
Candan, C.,
On the Eigenstructure of DFT Matrices,
SPMag(28), No. 2, 2011, pp. 105-108.
IEEE DOI
1103
DSP Education
BibRef
Lyons, R.,
Reducing FFT Scalloping Loss Errors Without Multiplication,
SPMag(28), No. 2, 2011, pp. 112-116.
IEEE DOI
1103
DSP Tips and Tricks
BibRef
Grigoryan, A.M.[Artyom M.],
Two Classes of Elliptic Discrete Fourier Transforms:
Properties and Examples,
JMIV(39), No. 3, March 2011, pp. 210-229.
WWW Link.
1103
BibRef
Garces, D.H.[Daissy H.],
Rhodes, W.T.[William T.],
Peña, N.M.[Nestor M.],
Projection-Slice Theorem: A Compact Notation,
JOSA-A(28), No. 5, May 2011, pp. 766-769.
WWW Link.
1105
In terms of rotation of Fourier transform.
BibRef
Hoang, T.V.[Thai V.],
Tabbone, S.A.[Salvatore A.],
The generalization of the R-transform for invariant pattern
representation,
PR(45), No. 6, June 2012, pp. 2145-2163.
Elsevier DOI
1202
BibRef
Earlier:
A Geometric Invariant Shape Descriptor Based on the Radon, Fourier, and
Mellin Transforms,
ICPR10(2085-2088).
IEEE DOI
1008
Invariant pattern representation; Radon transform; R-transform;
R-signature; Feature extraction; Dominant directions; Noise robustness
BibRef
Hoang, T.V.[Thai V.],
Tabbone, S.A.[Salvatore A.],
Generic polar harmonic transforms for invariant image representation,
IVC(32), No. 8, 2014, pp. 497-509.
Elsevier DOI
1407
BibRef
Earlier:
Fast computation of orthogonal polar harmonic transforms,
ICPR12(3160-3163).
WWW Link.
1302
BibRef
Earlier:
Generic polar harmonic transforms for invariant image description,
ICIP11(829-832).
IEEE DOI
1201
Polar harmonic transforms
BibRef
Hoang, T.V.[Thai V.],
Tabbone, S.A.[Salvatore A.],
Fast Generic Polar Harmonic Transforms,
IP(23), No. 7, July 2014, pp. 2961-2971.
IEEE DOI
1407
Approximation methods
BibRef
Hoang, T.V.[Thai V.],
Tabbone, S.A.[Salvatore A.],
Invariant pattern recognition using the RFM descriptor,
PR(45), No. 1, 2012, pp. 271-284.
Elsevier DOI
1410
Invariant pattern representation
Radon-Fourier-Mellin
BibRef
Hasegawa, M.[Makoto],
Tabbone, S.A.[Salvatore A.],
A Shape Descriptor Combining Logarithmic-Scale Histogram of Radon
Transform and Phase-Only Correlation Function,
ICDAR11(182-186).
IEEE DOI
1111
BibRef
Wang, L.[Linkai],
Zhou, X.F.[Xiao-Fang],
Sobelman, G.E.,
Liu, R.[Ran],
Generic Mixed-Radix FFT Pruning,
SPLetters(19), No. 3, March 2012, pp. 167-170.
IEEE DOI
1202
BibRef
Schneider, D.,
A faster fast fourier transform,
Spectrum(49), No. 3, March 2012, pp. 12-13.
IEEE DOI
1203
Overview discussion of a conference report on a faster version.
BibRef
Auger, F.,
Chassande-Mottin, E.,
Flandrin, P.,
On Phase-Magnitude Relationships in the Short-Time Fourier Transform,
SPLetters(19), No. 5, May 2012, pp. 267-270.
IEEE DOI
1204
BibRef
Pei, S.C.,
Lai, Y.C.,
Closed Form Variable Fractional Time Delay Using FFT,
SPLetters(19), No. 5, May 2012, pp. 299-302.
IEEE DOI
1204
See also Comments on Closed Form Variable Fractional Time Delay Using FFT.
BibRef
de Bie, H.[Hendrik],
de Schepper, N.[Nele],
Fractional Fourier transforms of hypercomplex signals,
SIViP(6), No. 3, September 2012, pp. 381-388.
WWW Link.
1209
BibRef
Machado, J.T.[J. Tenreiro],
Duarte, F.B.[Fernando B.],
Duarte, G.M.[Gonçalo Monteiro],
Analysis of financial indices by means of the windowed Fourier
transform,
SIViP(6), No. 3, September 2012, pp. 487-494.
WWW Link.
1209
BibRef
Kakarala, R.[Ramakrishna],
The Bispectrum as a Source of Phase-Sensitive Invariants for Fourier
Descriptors: A Group-Theoretic Approach,
JMIV(44), No. 3, November 2012, pp. 341-353.
WWW Link.
1209
BibRef
Kakarala, R.[Ramakrishna],
Testing for Convexity with Fourier Descriptors,
ICPR98(Vol I: 792-794).
IEEE DOI
9808
BibRef
Kingston, A.M.[Andrew M.],
Li, H.Y.[He-Yang],
Normand, N.[Nicolas],
Svalbe, I.D.[Imants D.],
Fourier Inversion of the Mojette Transform,
DGCI14(275-284).
Springer DOI
1410
BibRef
Chandra, S.S.,
Svalbe, I.D.,
Guedon, J.,
Kingston, A.M.,
Normand, N.,
Recovering Missing Slices of the Discrete Fourier Transform Using
Ghosts,
IP(21), No. 10, October 2012, pp. 4431-4441.
IEEE DOI
1209
BibRef
Chandra, S.S.,
Normand, N.,
Kingston, A.M.,
Guedon, J.,
Svalbe, I.D.,
Robust Digital Image Reconstruction via the Discrete Fourier Slice
Theorem,
SPLetters(21), No. 6, June 2014, pp. 682-686.
IEEE DOI
1404
Discrete Fourier transforms
BibRef
Jeromin, O.,
Pattichis, M.S.,
Multiscale Sampling Geometries and Methods for Deterministic and
Stochastic Reconstructions of Magnitude and Phase Spectra of Satellite
Imagery,
GeoRS(50), No. 10, October 2012, pp. 3678-3692.
IEEE DOI
1210
BibRef
Perotti, L.,
Vrinceanu, D.,
Bessis, D.,
Beyond the Fourier Transform:
Signal Symmetry Breaking in the Complex Plane,
SPLetters(19), No. 12, December 2012, pp. 865-867.
IEEE DOI
1212
BibRef
Song, T.,
Li, H.,
Local Polar DCT Features for Image Description,
SPLetters(20), No. 1, January 2013, pp. 59-62.
IEEE DOI
1212
BibRef
Ye, S.L.[Shang-Lin],
Aboutanios, E.,
Efficient 2-D Frequency and Damping Estimation by Interpolation on
Fourier Coefficients,
SPLetters(20), No. 2, February 2013, pp. 137-140.
IEEE DOI
1302
BibRef
Taboada, J.M.,
Araujo, M.G.,
Basteiro, F.O.,
Rodriguez, J.L.,
Landesa, L.,
MLFMA-FFT Parallel Algorithm for the Solution of Extremely Large
Problems in Electromagnetics,
PIEEE(100), No. 2, February 2013, pp. 350-363.
IEEE DOI
1302
BibRef
Socheleau, F.X.,
Pastor, D.,
Duret, M.,
On Symmetric Alpha-Stable Noise After Short-Time Fourier Transformation,
SPLetters(20), No. 5, May 2013, pp. 455-458.
IEEE DOI
1304
BibRef
Socheleau, F.X.,
Pastor, D.,
Testing the Energy of Random Signals in a Known Subspace:
An Optimal Invariant Approach,
SPLetters(21), No. 10, October 2014, pp. 1182-1186.
IEEE DOI
1407
Detectors
BibRef
Wen, X.[Xue],
Sandler, M.,
Fast Additive Sinusoidal Synthesis With a Subband Sinusoidal Method,
SPLetters(20), No. 5, May 2013, pp. 467-470.
IEEE DOI
1304
BibRef
Zheng, W.H.[Wei-Hua],
Li, K.[Kenli],
Split Radix Algorithm for Length 6^m DFT,
SPLetters(20), No. 7, 2013, pp. 713-716.
IEEE DOI
1307
discrete Fourier transforms
BibRef
Kay, S.,
A Computationally Efficient Nonlinear Least Squares Method
Using Random Basis Functions,
SPLetters(20), No. 7, 2013, pp. 721-724.
IEEE DOI
1307
frequency estimation; least mean squares methods
BibRef
Blok, M.,
Comments on 'Closed Form Variable Fractional Time Delay Using FFT',
SPLetters(20), No. 8, 2013, pp. 747-750.
IEEE DOI
1307
delay filters
See also Closed Form Variable Fractional Time Delay Using FFT.
BibRef
Astudillo, R.F.[R. Fernandez],
An Extension of STFT Uncertainty Propagation for GMM-Based
Super-Gaussian a Priori Models,
SPLetters(20), No. 12, 2013, pp. 1163-1166.
IEEE DOI
1311
Fourier transforms
BibRef
Bujack, R.[Roxana],
de Bie, H.[Hendrik],
de Schepper, N.[Nele],
Scheuermann, G.[Gerik],
Convolution Products for Hypercomplex Fourier Transforms,
JMIV(48), No. 3, March 2014, pp. 606-624.
Springer DOI
1403
BibRef
Su, L.J.[Li-Juan],
Yuan, Y.[Yan],
Bin, X.L.[Xiang-Li],
Huang, F.Z.[Feng-Zhen],
Cao, J.[Jun],
Li, L.Y.[Lin-Yu],
Zhou, S.B.[Shu-Bo],
Spectrum Reconstruction Method for Airborne Temporally-Spatially
Modulated Fourier Transform Imaging Spectrometers,
GeoRS(52), No. 6, June 2014, pp. 3720-3728.
IEEE DOI
1403
Aircraft
BibRef
Bey, N.Y.[Nourédine Yahya],
Multi-resolution Fourier analysis:
Time-frequency resolution in excess of Gabor-Heisenberg limit,
SIViP(8), No. 4, May 2014, pp. 765-778.
WWW Link.
1404
BibRef
Park, C.S.[Chun-Su],
Ko, S.,
The Hopping Discrete Fourier Transform,
SPMag(31), No. 2, March 2014, pp. 135-139.
IEEE DOI
1404
Tips and Tricks section.
Algorithm design and analysis
BibRef
Park, C.S.[Chun-Su],
Fast, Accurate, and Guaranteed Stable Sliding Discrete Fourier
Transform,
SPMag(32), No. 4, July 2015, pp. 145-156.
IEEE DOI
1506
Tips and Tricks section.
Algorithm design and analysis
BibRef
Park, C.S.[Chun-Su],
2D Discrete Fourier Transform on Sliding Windows,
IP(24), No. 3, March 2015, pp. 901-907.
IEEE DOI
1502
computer vision
BibRef
Hitzer, E.[Eckhard],
Sangwine, S.J.[Stephen J.], (Eds.)
Quaternion and Clifford Fourier Transforms and Wavelets,
Lammers, M.,
The Finite Fractional Zak Transform,
SPLetters(21), No. 9, Sept 2014, pp. 1064-1067.
IEEE DOI
1406
Discrete Fourier transforms
BibRef
Zheng, X.Q.[Xi-Qiang],
Gu, F.[Feng],
Fast Fourier Transform on FCC and BCC Lattices with Outputs on FCC and
BCC Lattices Respectively,
JMIV(49), No. 3, July 2014, pp. 530-550.
Springer DOI
1407
BibRef
Wang, W.,
Li, X.,
Xia, X.G.,
Wang, W.,
The Largest Dynamic Range of a Generalized Chinese Remainder Theorem
for Two Integers,
SPLetters(22), No. 2, February 2015, pp. 254-258.
IEEE DOI
1410
Discrete Fourier transforms
BibRef
Adcock, B.,
Gataric, M.,
Hansen, A.,
On Stable Reconstructions from Nonuniform Fourier Measurements,
SIIMS(7), No. 3, 2014, pp. 1690-1723.
DOI Link
1410
BibRef
Chambolle, A.,
Jalalzai, K.,
Adapted Basis for Nonlocal Reconstruction of Missing Spectrum,
SIIMS(7), No. 3, 2014, pp. 1484-1502.
DOI Link
1410
Problem of recovering missing Fourier coefficients.
BibRef
Gilbert, A.C.,
Indyk, P.,
Iwen, M.,
Schmidt, L.,
Recent Developments in the Sparse Fourier Transform:
A compressed Fourier transform for big data,
SPMag(31), No. 5, September 2014, pp. 91-100.
IEEE DOI
1410
Big Data
BibRef
Jindal, N.[Neeru],
Singh, K.[Kulbir],
Image and video processing using discrete fractional transforms,
SIViP(8), No. 8, November 2014, pp. 1543-1553.
Springer DOI
1411
BibRef
Wang, Q.,
Yan, X.,
Qin, K.,
High-Precision, Permanently Stable, Modulated Hopping Discrete
Fourier Transform,
SPLetters(22), No. 6, June 2015, pp. 748-751.
IEEE DOI
1411
Accuracy
BibRef
Hu, W.[Wei],
Cheung, G.,
Ortega, A.,
Au, O.C.,
Multiresolution Graph Fourier Transform for Compression of Piecewise
Smooth Images,
IP(24), No. 1, January 2015, pp. 419-433.
IEEE DOI
1502
Fourier transforms
BibRef
Gnutti, A.,
Guerrini, F.,
Leonardi, R.,
Ortega, A.,
Coding of Image Intra Prediction Residuals Using Symmetric Graphs,
ICIP19(131-135)
IEEE DOI
1910
Graph Fourier Transforms, symmetry,
non-separable directional transforms,
fast implementation
BibRef
Hu, W.[Wei],
Cheung, G.[Gene],
Ortega, A.,
Intra-Prediction and Generalized Graph Fourier Transform for Image
Coding,
SPLetters(22), No. 11, November 2015, pp. 1913-1917.
IEEE DOI
1509
Fourier transforms
BibRef
Su, W.T.,
Cheung, G.,
Lin, C.W.,
Graph fourier transform with negative edges for depth image coding,
ICIP17(1682-1686)
IEEE DOI
1803
Correlation, Eigenvalues and eigenfunctions, Fourier transforms,
Image coding, Laplace equations, Symmetric matrices,
transform coding
BibRef
Kang, X.J.[Xue-Jing],
Zhang, F.[Feng],
Tao, R.[Ran],
Multichannel Random Discrete Fractional Fourier Transform,
SPLetters(22), No. 9, September 2015, pp. 1340-1344.
IEEE DOI
1503
discrete Fourier transforms
BibRef
Xu, L.,
Tao, R.[Ran],
Zhang, F.[Feng],
Multichannel Consistent Sampling and Reconstruction Associated With
Linear Canonical Transform,
SPLetters(24), No. 5, May 2017, pp. 658-662.
IEEE DOI
1704
Distortion
BibRef
Solorza-Calderón, S.[Selene],
Verdugo-Olachea, J.[Jonathan],
A RFM Pattern Recognition System Invariant to Rotation, Scale and
Translation,
CIARP15(477-484).
Springer DOI
1511
Radon-Fourier-Mellin
BibRef
Polat, G.[Gokhan],
Ozturk, S.[Sitki],
Yakut, M.[Mehmet],
Design and Implementation of 256-Point Radix-4 100 Gbit/s FFT
Algorithm into FPGA for High-Speed Applications,
ETRI(37), No. 4, August 2015, pp. 667-676.
DOI Link
1511
BibRef
Li, J.[Jia],
Duan, L.Y.[Ling-Yu],
Chen, X.W.[Xiao-Wu],
Huang, T.J.[Tie-Jun],
Tian, Y.H.[Yong-Hong],
Finding the Secret of Image Saliency in the Frequency Domain,
PAMI(37), No. 12, December 2015, pp. 2428-2440.
IEEE DOI
1512
discrete Fourier transforms
BibRef
Cheng, C.[Chen],
Yu, F.[Feng],
An Optimum Architecture for Continuous-Flow Parallel Bit Reversal,
SPLetters(22), No. 12, December 2015, pp. 2334-2338.
IEEE DOI
1512
fast Fourier transforms
BibRef
Dun, Y.J.[Yu-Jie],
Liu, G.Z.[Gui-Zhong],
A Fine-Resolution Frequency Estimator in the Odd-DFT Domain,
SPLetters(22), No. 12, December 2015, pp. 2489-2493.
IEEE DOI
1512
audio signal processing
BibRef
Wen, F.[Fuxi],
So, H.C.[Hing Cheung],
Robust Multi-Dimensional Harmonic Retrieval Using Iteratively
Reweighted HOSVD,
SPLetters(22), No. 12, December 2015, pp. 2464-2468.
IEEE DOI
1512
frequency estimation
BibRef
Pei, S.C.[Soo-Chang],
Chang, K.W.[Kuo-Wei],
Integer 2-D Discrete Fourier Transform Pairs and Eigenvectors using
Ramanujan's Sum,
SPLetters(23), No. 1, January 2016, pp. 70-74.
IEEE DOI
1601
discrete Fourier transforms
BibRef
Pei, S.C.[Soo-Chang],
Chang, K.W.[Kuo-Wei],
Closed-Form Orthogonal Ramanujan Integer Basis,
SPLetters(24), No. 1, January 2017, pp. 1-1.
IEEE DOI
1702
discrete Fourier transforms
BibRef
Khalid, Z.,
Durrani, S.,
Kennedy, R.A.,
Wiaux, Y.,
McEwen, J.D.,
Gauss-Legendre Sampling on the Rotation Group,
SPLetters(23), No. 2, February 2016, pp. 207-211.
IEEE DOI
1602
Fourier transforms. Sampling so that FT can be computed directly.
BibRef
Park, S.H.[Sang-Hyo],
Choi, K.[Kiho],
Jang, E.S.,
Zero coefficient-aware fast butterfly-based inverse discrete cosine
transform algorithm,
IET-IPR(10), No. 2, 2016, pp. 89-100.
DOI Link
1602
computational complexity
BibRef
Ahmed, A.[Adeel],
Hu, Y.F.[Yim Fun],
Noras, J.M.[James M.],
Pillai, P.[Prashant],
A universal two-way approach for estimating unknown frequencies for
unknown number of sinusoids in a signal based on eigenspace analysis of
Hankel matrix,
SIViP(10), No. 3, March 2016, pp. 543-549.
Springer DOI
1602
BibRef
Bey, N.Y.[Nourédine Yahya],
Multi-resolution Fourier Analysis: achieved high resolutions with
suppressed finite observation effects,
SIViP(10), No. 4, April 2016, pp. 711-718.
Springer DOI
1604
BibRef
Fedorenko, S.V.[Sergei Valentinovich],
Improving the Goertzel-Blahut Algorithm,
SPLetters(23), No. 6, June 2016, pp. 824-827.
IEEE DOI
1606
method for computing the discrete Fourier transform.
BibRef
Aubry, A.,
Carotenuto, V.,
Maio, A.D.,
New Results on Generalized Fractional Programming Problems With
Toeplitz Quadratics,
SPLetters(23), No. 6, June 2016, pp. 848-852.
IEEE DOI
1606
Discrete Fourier transforms
BibRef
Djukanovic, S.,
An Accurate Method for Frequency Estimation of a Real Sinusoid,
SPLetters(23), No. 7, July 2016, pp. 915-918.
IEEE DOI
1608
discrete Fourier transforms
BibRef
Hu, X.,
Tong, N.,
Zhang, Y.,
He, X.,
Wang, Y.,
Moving Target's HRRP Synthesis With Sparse Frequency-Stepped Chirp
Signal via Atomic Norm Minimization,
SPLetters(23), No. 9, September 2016, pp. 1212-1215.
IEEE DOI
1609
Fourier transforms
BibRef
Tian, N.L.[Ni-Li],
Zhang, X.Z.[Xiao-Zhi],
Ling, B.W.K.[Bingo Wing-Kuen],
Yang, Z.J.[Zhi-Jing],
Two-dimensional discrete fractional Fourier transform-based content
removal algorithm,
SIViP(10), No. 7, October 2016, pp. 1311-1318.
Springer DOI
1609
BibRef
Ongie, G.[Greg],
Jacob, M.[Mathews],
Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier
Samples,
SIIMS(9), No. 3, 2016, pp. 1004-1041.
DOI Link
1610
BibRef
Shi, J.[Jun],
Han, M.[Mo],
Zhang, N.T.[Nai-Tong],
Uncertainty principles for discrete signals associated with the
fractional Fourier and linear canonical transforms,
SIViP(10), No. 8, November 2016, pp. 1519-1525.
WWW Link.
1610
BibRef
Shang, H.[Haolu],
Jia, L.[Li],
Menenti, M.[Massimo],
Modeling and Reconstruction of Time Series of Passive Microwave Data
by Discrete Fourier Transform Guided Filtering and Harmonic Analysis,
RS(8), No. 11, 2016, pp. 970.
DOI Link
1612
BibRef
Gudovskiy, D.A.[Denis A.],
Chu, L.C.[Li-Chung],
An Accurate and Stable Sliding DFT Computed by a Modified CIC Filter,
SPMag(34), No. 1, January 2017, pp. 89-93.
IEEE DOI
1702
[Tips and Tricks]
cascade networks
BibRef
Serbes, A.,
Compact Fractional Fourier Domains,
SPLetters(24), No. 4, April 2017, pp. 427-431.
IEEE DOI
1704
Fourier transforms
BibRef
Zhao, H.,
Zhao, X.,
Zhang, T.,
Liu, Y.,
A New Contourlet Transform With Adaptive Directional Partitioning,
SPLetters(24), No. 6, June 2017, pp. 843-847.
IEEE DOI
1705
Computed tomography, Discrete Fourier transforms, Energy states,
Image reconstruction, Partitioning algorithms, Redundancy,
Adaptive contourlet transform (ACT),
adaptive directional partitioning, image sparse representation,
pseudopolar Fourier transform, (PPFT)
BibRef
Pruša, Z.,
Rajmic, P.,
Toward High-Quality Real-Time Signal Reconstruction From STFT
Magnitude,
SPLetters(24), No. 6, June 2017, pp. 892-896.
IEEE DOI
1705
Delays, Lenses, Real-time systems, Signal processing algorithms,
Spectrogram, Time-frequency analysis, Phase reconstruction,
real-time, short-time Fourier transform (STFT), spectrogram, time-frequency
BibRef
Zakaria, R.,
Le Ruyet, D.,
Analysis of the FFT-FBMC Equalization in Selective Channels,
SPLetters(24), No. 6, June 2017, pp. 897-901.
IEEE DOI
1705
Demodulation, Equalizers, Frequency modulation, Indexes, MIMO, OFDM,
Channel equalization, FFT-FBMC, filter-bank multicarrier,
frequency, selective, channel
BibRef
Grado, L.L.,
Johnson, M.D.,
Netoff, T.I.,
The Sliding Windowed Infinite Fourier Transform,
SPMag(34), No. 5, September 2017, pp. 183-188.
IEEE DOI
1709
Tips Tricks.
Algorithm design and analysis, Discrete Fourier transforms,
Filtering algorithms, IIR filters, Resonator filters, Signal,
processing, algorithms
BibRef
Guo, W.H.[Wei-Hong],
Song, G.[Guohui],
Zhang, Y.[Yue],
PCM-TV-TFV: A Novel Two-Stage Framework for Image Reconstruction from
Fourier Data,
SIIMS(10), No. 4, 2017, pp. 2250-2274.
DOI Link
1801
BibRef
So, S.,
Paliwal, K.K.,
Reconstruction of a Signal from the Real Part of Its Discrete Fourier
Transform,
SPMag(35), No. 2, March 2018, pp. 162-174.
IEEE DOI
1804
[Tips Tricks]
Discrete Fourier transforms, Image reconstruction, Imaging,
Speech enhancement, Speech processing, Tutorials, Ultrasonic imaging
BibRef
Ermeydan, E.S.[Esra Sengun],
Cankaya, I.[Ilyas],
Sparse fast Fourier transform for exactly sparse signals and signals
with additive Gaussian noise,
SIViP(12), No. 3, March 2018, pp. 445-452.
WWW Link.
1804
BibRef
Kutyniok, G.[Gitta],
Lim, W.Q.[Wang-Q],
Optimal Compressive Imaging of Fourier Data,
SIIMS(11), No. 1, 2018, pp. 507-546.
DOI Link
1804
BibRef
Rafii, Z.,
Sliding Discrete Fourier Transform with Kernel Windowing,
SPMag(35), No. 6, November 2018, pp. 88-92.
IEEE DOI
1812
[Lecture Notes Article]
discrete cosine transforms, discrete Fourier transforms,
spectral analysis, discrete Fourier transform,
Audio compression
BibRef
Kollar, Z.,
Plesznik, F.,
Trumpf, S.,
Observer-Based Recursive Sliding Discrete Fourier Transform,
SPMag(35), No. 6, November 2018, pp. 100-106.
IEEE DOI
1812
[Tips & Tricks Article]
discrete Fourier transforms, frequency-domain analysis,
observers, signal processing, time-domain analysis, DFT, time window,
Numerical stability
BibRef
Yang, C.Z.[Cheng-Zhuan],
Yu, Q.[Qian],
Multiscale Fourier descriptor based on triangular features for shape
retrieval,
SP:IC(71), 2019, pp. 110-119.
Elsevier DOI
1901
Content-based image retrieval, Fourier descriptors,
Triangular feature, Shape retrieval
BibRef
Shaik, B.S.,
Chakka, V.K.,
Reddy, A.S.,
A New Signal Representation Using Complex Conjugate Pair Sums,
SPLetters(26), No. 2, February 2019, pp. 252-256.
IEEE DOI
1902
discrete Fourier transforms, signal representation,
complex conjugate pair sum, CCPS, complex conjugate subspace,
CCPT dictionary
BibRef
Shah, S.B.,
Chakka, V.K.,
Reddy, A.S.,
On Complex Conjugate Pair Sums and Complex Conjugate Subspaces,
SPLetters(26), No. 9, September 2019, pp. 1403-1407.
IEEE DOI
1909
Image edge detection, Transforms, Convolution, Linear systems,
Computational complexity, Radar tracking, Indexes,
projections
BibRef
Colominas, M.A.,
Meignen, S.,
Pham, D.,
Time-Frequency Filtering Based on Model Fitting in the Time-Frequency
Plane,
SPLetters(26), No. 5, May 2019, pp. 660-664.
IEEE DOI
1905
filtering theory, Fourier transforms, frequency estimation,
signal processing, time-frequency analysis,
mode retrieval
BibRef
Huang, Z.Y.[Zi-Yin],
Ling, B.W.K.[Bingo Wing-Kuen],
De-Hankelization of singular spectrum analysis matrices via L1 norm
criterion,
SIViP(13), No. 5, July 2019, pp. 933-940.
Springer DOI
1906
BibRef
Anh, P.K.,
Castro, L.P.,
Thao, P.T.,
Tuan, N.M.,
New sampling theorem and multiplicative filtering in the FRFT domain,
SIViP(13), No. 5, July 2019, pp. 951-958.
Springer DOI
1906
fractional Fourier transform.
BibRef
Fedorenko, S.V.,
Efficient Syndrome Calculation via the Inverse Cyclotomic Discrete
Fourier Transform,
SPLetters(26), No. 9, September 2019, pp. 1320-1324.
IEEE DOI
1909
convolutional codes, cyclic codes, discrete Fourier transforms,
inverse transforms, Reed-Solomon codes,
Reed-Solomon codes
BibRef
Walek, P.[Petr],
Jan, J.[Jiri],
Two-dimensional shape-adaptive windowing functions for image analysis,
IET-IPR(13), No. 11, 19 September 2019, pp. 1853-1861.
DOI Link
1909
local 2D Fourier transform computations.
BibRef
Koç, A.[Aykut],
Operator theory-based discrete fractional Fourier transform,
SIViP(13), No. 7, October 2019, pp. 1461-1468.
WWW Link.
1911
BibRef
Uriostegui, K.[Kenan],
Discrete Bargmann transform,
JOSA-A(36), No. 8, August 2019, pp. 1367-1373.
DOI Link
1912
Coherent states, Fourier transforms,
Fractional Fourier transforms, Transforms
BibRef
Wang, K.[Kai],
Wen, H.[He],
Tai, W.[Wensi],
Li, G.Q.[Guo-Qing],
Estimation of Damping Factor and Signal Frequency for Damped
Sinusoidal Signal by Three Points Interpolated DFT,
SPLetters(26), No. 12, December 2019, pp. 1927-1930.
IEEE DOI
2001
Discrete Fourier transforms, Signal processing algorithms,
Damping, Frequency-domain analysis, Frequency estimation,
frequency-domain interpolation
BibRef
Wang, K.[Kai],
Wen, H.[He],
Xu, L.[Li],
Wang, L.L.[Lan-Lan],
Two Points Interpolated DFT Algorithm for Accurate Estimation of
Damping Factor and Frequency,
SPLetters(28), 2021, pp. 499-502.
IEEE DOI
2103
Discrete Fourier transforms, Frequency estimation, Damping,
Simulation, Signal processing algorithms, Noise measurement,
spectral leakage
BibRef
Liu, Y.,
Miao, H.,
Zhang, F.,
Tao, R.,
Sliding 2D Discrete Fractional Fourier Transform,
SPLetters(26), No. 12, December 2019, pp. 1733-1737.
IEEE DOI
2001
discrete Fourier transforms, signal processing,
two-dimensional discrete fractional Fourier transform,
BibRef
Feng, Q.A.[Qi-Ang],
Wang, R.B.[Rong-Bo],
Fractional convolution, correlation theorem and its application in
filter design,
SIViP(14), No. 2, March 2020, pp. 351-358.
Springer DOI
2003
fractional Fourier transform
BibRef
Xu, G.L.[Guan-Lei],
Xu, X.G.[Xiao-Gang],
Wang, X.[Xun],
Wang, X.T.[Xiao-Tong],
Generalized Cramér-Rao inequality and uncertainty relation for Fisher
information on FrFT,
SIViP(14), No. 3, April 2020, pp. 499-507.
Springer DOI
2004
fractional Fourier transform.
BibRef
Teyfouri, N.,
Rabbani, H.,
Kafieh, R.,
Jabbari, I.,
An Exact and Fast CBCT Reconstruction via Pseudo-Polar Fourier
Transform-Based Discrete Grangeat's Formula,
IP(29), 2020, pp. 5832-5847.
IEEE DOI
2005
Radon,
Image reconstruction, Interpolation, Frequency-domain analysis,
Grangeat's formula
BibRef
Zhao, T.,
Blu, T.,
The Fourier-Argand Representation: An Optimal Basis of Steerable
Patterns,
IP(29), 2020, pp. 6357-6371.
IEEE DOI
2006
Convolution, Two dimensional displays, Image edge detection,
Approximation error, Approximation algorithms,
pattern matching
BibRef
Ma, J.,
Tao, R.,
Li, Y.,
Kang, X.,
Fractional Power Spectrum and Fractional Correlation Estimations for
Nonuniform Sampling,
SPLetters(27), 2020, pp. 930-934.
IEEE DOI
2007
Estimation, Nonuniform sampling, Perturbation methods, Correlation,
Fourier transforms, Interpolation, Time-domain analysis,
power spectral density
BibRef
Laurent, N.,
Meignen, S.,
A Novel Time-Frequency Technique for Mode Retrieval Based on Linear
Chirp Approximation,
SPLetters(27), 2020, pp. 935-939.
IEEE DOI
2007
Chirp, Time-frequency analysis, Transforms, Estimation,
Noise measurement, Indexes, Data mining, Time-frequency,
linear chirp approximation
BibRef
Zhang, Q.[Qi],
Zhu, J.[Jiang],
Zhang, N.[Ning],
Xu, Z.W.[Zhi-Wei],
Multidimensional Variational Line Spectra Estimation,
SPLetters(27), 2020, pp. 945-949.
IEEE DOI
2007
Frequency estimation, Probability density function, Estimation,
Computational complexity, Bayes methods,
multidimensional frequency estimation
BibRef
Ren, K.[Ke],
Du, L.[Lan],
Lu, X.F.[Xiao-Fei],
Zhuo, Z.Y.[Zhen-Yu],
Li, L.[Lu],
Instantaneous Frequency Estimation Based on Modified Kalman Filter
for Cone-Shaped Target,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Troncoso Romero, D.E.,
Cruz Jimenez, M.G.,
Simplifying Single-Bin Discrete Fourier Transform Computations,
SPMag(38), No. 2, March 2021, pp. 130-136.
IEEE DOI
2103
Tips, Tricks.
Finite impulse response filters, Discrete Fourier transforms,
Digital signal processing, Computer architecture, Complexity theory
BibRef
Lyons, R.[Richard],
Howard, C.[Carl],
Improvements to the Sliding Discrete Fourier Transform Algorithm,
SPMag(38), No. 4, July 2021, pp. 119-127.
IEEE DOI
2107
[Tips Tricks].
Quantization (signal), Current measurement,
Discrete Fourier transforms, Signal processing algorithms,
Computational efficiency
BibRef
Kartal, B.[Bunyamin],
Bayiz, Y.E.[Yigit E.],
Koç, A.[Aykut],
Graph Signal Processing: Vertex Multiplication,
SPLetters(28), 2021, pp. 1270-1274.
IEEE DOI
2107
Measurement, Location awareness, Fourier transforms,
Frequency-domain analysis, Time series analysis, Directed graphs,
vertex multiplication
BibRef
Zhang, Z.C.[Zhi-Chao],
Shi, X.[Xiya],
Wu, A.Y.[An-Yang],
Li, D.[Dong],
Sharper N-D Heisenberg's Uncertainty Principle,
SPLetters(28), 2021, pp. 1665-1669.
IEEE DOI
2109
Uncertainty, Time-domain analysis, Information technology,
Information science, Fourier transforms, Chirp,
N-dimensional Fourier transform
BibRef
Xue, D.L.[Ding-Li],
DeBrunner, L.S.[Linda S.],
DeBrunner, V.[Victor],
Huang, Z.[Zhen],
Split-Radix Algorithm for the Discrete Hirschman Transform,
SPLetters(29), 2022, pp. 199-203.
IEEE DOI
2202
Signal processing algorithms, Discrete Fourier transforms, Shape,
Arithmetic, Hardware, Convolution, Computational complexity, DHT, HOT,
convolution
BibRef
Chen, T.Q.[Tie-Qiao],
Su, X.Q.[Xiu-Qin],
Li, H.W.[Hai-Wei],
Li, S.Y.[Si-Yuan],
Liu, J.[Jia],
Zhang, G.[Geng],
Feng, X.P.[Xiang-Peng],
Wang, S.[Shuang],
Liu, X.B.[Xue-Bin],
Wang, Y.H.[Yi-Hao],
Zou, C.[Chunbo],
Learning a Fully Connected U-Net for Spectrum Reconstruction of
Fourier Transform Imaging Spectrometers,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Huang, G.[Gaowa],
Zhang, F.[Feng],
Tao, R.[Ran],
Sliding Short-Time Fractional Fourier Transform,
SPLetters(29), 2022, pp. 1823-1827.
IEEE DOI
2209
Signal processing algorithms, Computational complexity,
Time-frequency analysis, Throughput, sliding window
BibRef
Portella, L.[Luan],
Coelho, D.F.G.[Diego F. G.],
Bayer, F.M.[Fábio M.],
Madanayake, A.[Arjuna],
Cintra, R.J.[Renato J.],
Radix-N Algorithm for Computing N^(2^(n))-Point DFT Approximations,
SPLetters(29), 2022, pp. 1838-1842.
IEEE DOI
2209
Discrete Fourier transforms, Complexity theory,
Signal processing algorithms, Approximation algorithms,
approximation
BibRef
Sahinuç, F.[Furkan],
Koç, A.[Aykut],
Fractional Fourier Transform Meets Transformer Encoder,
SPLetters(29), 2022, pp. 2258-2262.
IEEE DOI
2212
Computational modeling, Transformers, Task analysis, Deep learning,
Training, Fourier transforms, Convolution, Encoder, FNet,
Transformer
BibRef
Qiao, H.[Heng],
Yu, H.Q.[Hong-Qing],
On Landscape of Nonconvex Regularized Least Squares for Sparse
Support Recovery,
SPLetters(29), 2022, pp. 2467-2471.
IEEE DOI
2212
Signal processing algorithms, Noise measurement,
Compressed sensing, Superresolution, Stability analysis, separation prior
BibRef
Roonizi, A.K.[Arman Kheirati],
Fourier Analysis: A new computing approach,
SPMag(40), No. 1, January 2023, pp. 183-191.
IEEE DOI
2301
Lecture Notes.
BibRef
Levinson, H.W.[Howard W.],
Markel, V.[Vadim],
Triantafillou, N.[Nicholas],
Inversion of Band-Limited Discrete Fourier Transforms of Binary
Images: Uniqueness and Algorithms,
SIIMS(16), No. 3, 2023, pp. 1338-1369.
DOI Link
2309
BibRef
Monroe, B.D.[By Don],
Quantum Speedup for the Fast Fourier Transform?,
CACM(66), No. 11, November 2023, pp. 8-10.
DOI Link
2310
It is difficult to improve on the widely used, already-efficient
algorithm.
BibRef
Cheng, C.[Chunbo],
Zhang, L.M.[Li-Ming],
Li, H.[Hong],
Dai, L.[Lei],
Cui, W.J.[Wen-Jing],
A Deep Stochastic Adaptive Fourier Decomposition Network for
Hyperspectral Image Classification,
IP(33), 2024, pp. 1080-1094.
IEEE DOI
2402
Feature extraction, Convolution, Deep learning, Kernel, Hyperspectral imaging,
Convolutional neural networks, Training, HSIs classification
BibRef
He, C.[Can],
Zhang, L.M.[Li-Ming],
He, X.J.[Xiang-Jian],
Jia, W.J.[Wen-Jing],
A New Image Decomposition and Reconstruction Approach:
Adaptive Fourier Decomposition,
MMMod15(II: 227-236).
Springer DOI
1501
BibRef
Onural, L.[Levent],
A Class of Impulsive Eigenfunctions of Multidimensional Fourier
Transform,
SPLetters(31), 2024, pp. 761-764.
IEEE DOI
2403
Fourier transforms, Eigenvalues and eigenfunctions, Manifolds,
Frequency-domain analysis, Vectors, Reviews, Linearity, eigenfunctions
BibRef
Alrwashdeh, M.[Monther],
Czifra, B.[Balázs],
Kollár, Z.[Zsolt],
Analysis of Quantization Noise in Fixed-Point HDFT Algorithms,
SPLetters(31), 2024, pp. 756-760.
IEEE DOI
2403
Discrete Fourier transforms, Quantization (signal),
Signal processing algorithms, Roundoff errors, Indexes, Transforms,
UVT
BibRef
Koç, E.[Emirhan],
Alikasifoglu, T.[Tuna],
Aras, A.C.[Arda Can],
Koç, A.[Aykut],
Trainable Fractional Fourier Transform,
SPLetters(31), 2024, pp. 751-755.
IEEE DOI
2403
Vectors, Convolution, Training, Task analysis,
Computational modeling, Time series analysis, Feature extraction,
deep learning
BibRef
Fu, Z.[Zunwei],
Lin, Y.[Yan],
Yang, D.[Dachun],
Yang, S.H.[Shu-Hui],
Fractional Fourier Transforms Meet Riesz Potentials and Image
Processing,
SIIMS(17), No. 1, 2024, pp. 476-500.
DOI Link
2404
BibRef
Li, Z.[Zhen],
Gao, Z.Q.[Zhao-Qi],
Chen, L.[Liang],
Gao, J.H.[Jing-Huai],
Xu, Z.B.[Zong-Ben],
The Synchrosqueezed Method and Its Theory-Analysis-Based Novel
Short-Time Fractional Fourier Transform for Chirp Signals,
RS(16), No. 7, 2024, pp. 1173.
DOI Link
2404
BibRef
Solak, V.[Veyis],
Serbes, A.[Ahmet],
A Novel DFT-Based Algorithm for 2-D Multiple Sinusoidal Frequency
Estimation,
SPLetters(31), 2024, pp. 999-1003.
IEEE DOI
2404
Signal processing algorithms, Frequency estimation,
Discrete Fourier transforms, Signal to noise ratio, Estimation,
multiple frequency estimation
BibRef
Alikasifoglu, T.[Tuna],
Kartal, B.[Bünyamin],
Koç, A.[Aykut],
Wiener Filtering in Joint Time-Vertex Fractional Fourier Domains,
SPLetters(31), 2024, pp. 1319-1323.
IEEE DOI
2405
Filters, Wiener filters, Signal processing,
Discrete Fourier transforms, Vectors, Symmetric matrices,
signal processing on graphs
BibRef
Pavlícek, V.[Václav],
Bhandari, A.[Ayush],
Sparse Sampling in Fractional Fourier Domain:
Recovery Guarantees and Cramér-Rao Bounds,
SPLetters(31), 2024, pp. 1665-1669.
IEEE DOI
2407
Transforms, Convolution, Time-domain analysis, Kernel,
Harmonic analysis, Hardware, Discrete Fourier transforms,
Sparse Sampling
BibRef
Zou, L.L.[Li-Long],
Li, Y.[Ying],
Alani, A.M.[Amir M.],
Pseudopolar Format Matrix Description of Near-Range Radar Imaging and
Fractional Fourier Transform,
RS(16), No. 13, 2024, pp. 2482.
DOI Link
2407
BibRef
Tapia, R.[Raul],
Martínez-de Dios, J.R.[José Ramiro],
Ollero, A.[Anibal],
eFFT: An Event-Based Method for the Efficient Computation of Exact
Fourier Transforms,
PAMI(46), No. 12, December 2024, pp. 9630-9647.
IEEE DOI
2411
Fast Fourier transforms, Fourier transforms, Cameras, Hardware,
Streaming media, Software algorithms, Time-frequency analysis,
fast Fourier transform
BibRef
Shigeto, Y.[Yutaro],
Shimbo, M.[Masashi],
Yoshikawa, Y.[Yuya],
Takeuchi, A.[Akikazu],
Learning Decorrelated Representations Efficiently Using Fast Fourier
Transform,
CVPR23(2052-2060)
IEEE DOI
2309
BibRef
Wu, Z.J.[Zhi-Jie],
Jin, Y.[Yuhe],
Yi, K.M.[Kwang Moo],
Neural Fourier Filter Bank,
CVPR23(14153-14163)
IEEE DOI
2309
BibRef
Dou, Y.[Yishun],
Zheng, Z.[Zhong],
Jin, Q.Q.[Qiao-Qiao],
Ni, B.B.[Bing-Bing],
Multiplicative Fourier Level of Detail,
CVPR23(1808-1817)
IEEE DOI
2309
BibRef
Blumstein, M.[Mark],
Kvinge, H.[Henry],
Multi-Dimensional Scaling on Groups,
TAG-CV21(4222-4227)
IEEE DOI
2112
Dimensionality reduction, Measurement, Frequency synthesizers,
Voting, Discrete Fourier transforms
BibRef
Kumar, V.[Vikash],
Srivastava, S.[Sarthak],
Lal, R.[Rohit],
Chakraborty, A.[Anirban],
CAFT: Class Aware Frequency Transform for Reducing Domain Gap,
TradiCV21(2525-2534)
IEEE DOI
2112
Training, Adaptation models, Fourier transforms, Webcams,
Image processing, Scalability, Predictive models
BibRef
Chandrasegaran, K.[Keshigeyan],
Tran, N.T.[Ngoc-Trung],
Cheung, N.M.[Ngai-Man],
A Closer Look at Fourier Spectrum Discrepancies for CNN-generated
Images Detection,
CVPR21(7196-7205)
IEEE DOI
2111
Systematics, Codes, Forensics,
Computational modeling, Detectors, Computer architecture
BibRef
Qian, Y.L.[Yan-Lin],
Shi, M.J.[Miao-Jing],
Kämäräinen, J.K.[Joni-Kristian],
Matas, J.G.[Jirí G.],
Fast Fourier Intrinsic Network,
WACV21(3168-3177)
IEEE DOI
2106
Training, Estimation, Lighting, Network architecture,
Loss measurement, Image decomposition, Task analysis
BibRef
Yamashita, Y.[Yukihiko],
Wakahara, T.[Toru],
Stabilized Calculation of Gaussian Smoothing and Its Differentials
Using Attenuated Sliding Fourier Transform,
ICPR21(1128-1135)
IEEE DOI
2105
Smoothing methods, Fourier transforms,
Image processing, Image edge detection,
Pattern recognition
BibRef
Tang, M.,
Li, Z.,
Yang, Z.,
Zhan, Y.,
Su, J.,
Yu, W.,
GPU Accelerated Polar Fourier Analysis For Feature Extraction,
ICIP20(1406-1410)
IEEE DOI
2011
Graphics processing units, Instruction sets, Image resolution,
Feature extraction, Acceleration, Parallel algorithms, GPU
BibRef
Lu, K.S.,
Ortega, A.,
Mukherjee, D.,
Chen, Y.,
Perceptually Inspired Weighted MSE Optimization Using
Irregularity-Aware Graph Fourier Transform,
ICIP20(3384-3388)
IEEE DOI
2011
Image coding, Transform coding, Quantization (signal),
Discrete cosine transforms, Measurement, Fourier transforms,
image compression
BibRef
Xia, T.,
Liao, S.,
Color Image Filtering in Bessel-Fourier Moments Domain,
ICIVC20(75-81)
IEEE DOI
2009
Frequency-domain analysis, Image reconstruction, Color, Testing,
Image color analysis, Information filtering,
color image reconstruction
BibRef
Alizadeh Vahid, K.,
Prabhu, A.,
Farhadi, A.,
Rastegari, M.,
Butterfly Transform: An Efficient FFT Based Neural Architecture
Design,
CVPR20(12021-12030)
IEEE DOI
2008
Transforms, Computer architecture, Tensile stress,
Complexity theory, Training, Computational modeling, Neural networks
BibRef
Komatsu, T.,
Saito, T.,
Statistical Modeling for 3-D DFT Coefficients of Moving-Image
Sequences and its Application to Denoising,
ICIP18(3194-3198)
IEEE DOI
1809
Solid modeling, Noise reduction, Discrete Fourier transforms,
Noise measurement, Estimation, Computational modeling,
moving-image processing
BibRef
Gnutti, A.,
Guerrini, F.,
Leonardi, R.,
Ortega, A.,
Symmetry-Based Graph Fourier Transforms for Image Representation,
ICIP18(2575-2579)
IEEE DOI
1809
Discrete cosine transforms, Image reconstruction,
Laplace equations, Eigenvalues and eigenfunctions, H.265
BibRef
Xu, C.,
Dai, W.,
Xiong, H.,
Extended conjugate polar fourier transform in convolution network,
ICIP17(2453-2457)
IEEE DOI
1803
Approximation algorithms, Convolution, Fourier transforms,
Frequency-domain analysis, Wavelet domain, Wavelet transforms,
wavelet
BibRef
Komatsu, T.,
Tyon, K.,
Saito, T.,
3-D mean-separation-type short-time DFT with its application to
moving-image denoising,
ICIP17(2961-2965)
IEEE DOI
1803
Indexes, 3-D transform, local-mean separation,
phase-preserving-type shrinkage, short-time DFT, video processing
BibRef
Kruse, J.,
Rother, C.,
Schmidt, U.,
Learning to Push the Limits of Efficient FFT-Based Image
Deconvolution,
ICCV17(4596-4604)
IEEE DOI
1802
convolution, deconvolution, fast Fourier transforms,
image restoration, learning (artificial intelligence),
Optimization
BibRef
Ongie, G.[Greg],
Biswas, S.[Sampurna],
Jacob, M.[Mathews],
Structured low-rank recovery of piecewise constant signals with
performance guarantees,
ICIP16(963-967)
IEEE DOI
1610
Exact recovery limits from Fourier parameters.
BibRef
Birdsong, J.B.,
Rummelt, N.I.,
The hexagonal fast fourier transform,
ICIP16(1809-1812)
IEEE DOI
1610
Digital images
BibRef
Hascoet, J.,
Nezan, J.F.,
Ensor, A.,
de Dinechin, B.D.,
Implementation of a Fast Fourier transform algorithm onto a manycore
processor,
DASIP15(1-7)
IEEE DOI
1605
fast Fourier transforms
BibRef
Jia, J.[Jie],
Hirakawa, K.[Keigo],
Single-shot fourier transform multispectroscopy,
ICIP15(4205-4209)
IEEE DOI
1512
Hyperspectral imaging
BibRef
Prater, A.,
Sparse generalized Fourier series via collocation-based optimization,
AIPR14(1-8)
IEEE DOI
1504
Fourier series
BibRef
Ekambaram, V.N.[Venkatesan N.],
Fanti, G.C.[Giulia C.],
Ayazifar, B.[Babak],
Ramchandran, K.[Kannan],
Circulant structures and graph signal processing,
ICIP13(834-838)
IEEE DOI
1402
Discrete Fourier transforms
BibRef
Wang, X.Y.[Xiao-Yu],
Liao, S.[Simon],
Image Reconstruction from Orthogonal Fourier-Mellin Moments,
ICIAR13(687-694).
Springer DOI
1307
BibRef
Raj, A.N.J.[Alex Noel Joseph],
Majeeth, S.S.[S. Shaik],
Staunton, R.C.,
A comparison of FFT and DCT based Phase Correlation function for
focused and defocused images,
IMVIP12(173-176).
IEEE DOI
1302
BibRef
Hsung, T.C.[Tai-Chiu],
Lun, D.P.K.[Daniel Pak-Kong],
Ng, W.W.L.[William W. L.],
Zero spectrum removal using joint bilateral filter for Fourier
transform profilometry,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Soldea, O.[Octavian],
Unel, M.[Mustafa],
Ercil, A.[Aytul],
Moments of Elliptic Fourier Descriptors,
ICPR10(3521-3524).
IEEE DOI
1008
BibRef
Timm, F.[Fabian],
Martinetz, T.[Thomas],
Statistical Fourier Descriptors for Defect Image Classification,
ICPR10(4190-4193).
IEEE DOI
1008
BibRef
Dursun, S.[Serkan],
Grigoryan, A.M.[Artyom M.],
Reversible Interger 2-D Discrete Fourier Transform by Control Bits,
ICPR10(4436-4439).
IEEE DOI
1008
BibRef
Wei, H.K.[Hong-Kai],
Wang, P.B.[Ping-Bo],
Cai, Z.M.[Zhi-Ming],
Chen, B.Z.[Bao-Zhu],
Yao, W.J.[Wan-Jun],
Application of particle swarm optimization method in fractional Fourier
transform,
IASP10(442-445).
IEEE DOI
1004
BibRef
Bowles, T.[Terry],
Erickson, J.E.[Jeffrey E.],
An examination of frequency indexes used in the non-uniform DFT,
Southwest10(77-80).
IEEE DOI
1005
BibRef
Mavandadi, S.[Sam],
Aarabi, P.[Parham],
Plataniotis, K.N.,
Fourier-based Rotation Invariant image features,
ICIP09(2041-2044).
IEEE DOI
0911
BibRef
Mahgoub, A.[Ahmed],
Nguyen, T.[Thanh],
Desbiens, R.[Raphael],
Zaccarin, A.[Andre],
Aligning the frames of a non stationary imaging Fourier transform
spectrometer for spectrum retrieval,
ICIP09(573-576).
IEEE DOI
0911
BibRef
Xie, J.H.[Jun-Hao],
Wang, Z.X.[Ze-Xun],
Probability Density Function Estimation Based on Windowed Fourier
Transform of Characteristic Function,
CISP09(1-4).
IEEE DOI
0910
PDF is Fourier Transform of Characteristic Function.
BibRef
Shi, L.X.[Li-Xin],
Zhang, J.X.[Jun-Xing],
Han, G.Y.[Gui-Ying],
Multiple Fundamental Frequency Estimation Based on Harmonic Structure
Model,
CISP09(1-4).
IEEE DOI
0910
BibRef
Luo, X.L.[Xiang-Long],
Gao, J.H.[Jing-Huai],
Instantaneous Frequency Estimation Using WVD and Local SVD,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, J.M.[Jian-Ming],
Woods, B.,
Eddy, W.F.,
MEG, RFFTs, and the Hunt for High Frequency Oscillations,
CISP09(1-5).
IEEE DOI
0910
BibRef
Dong, L.F.[Li-Fang],
Yang, Y.J.[Yu-Jie],
Yue, H.[Han],
Wang, S.A.[Shu-Ai],
He, Y.F.[Ya-Feng],
Analysis of the Characteristic of Spots in Square Superlattice Pattern
by Image Processing,
CISP09(1-4).
IEEE DOI
0910
BibRef
Dong, L.F.[Li-Fang],
Yue, H.[Han],
Xiao, H.[Hong],
Yang, Y.J.[Yu-Jie],
Wang, S.A.[Shu-Ai],
Analysis of the Pattern Evolution Based on Spatial Correlation and
Fourier Spectra Technique,
CISP09(1-4).
IEEE DOI
0910
BibRef
Dong, L.F.[Li-Fang],
Xiao, H.[Hong],
Zhao, H.T.[Hai-Tao],
Yue, H.[Han],
He, Y.F.[Ya-Feng],
Analysis of Competition between Patterns by Using Fast Fourier
Transform,
CISP09(1-4).
IEEE DOI
0910
BibRef
Xiang, X.[Xiao],
Chi, X.F.[Xue-Fen],
Pan, W.R.[Wu-Rong],
Wang, Y.N.[Yi-Ning],
An Adaptive Spectrum Sensing Algorithm Based on Eigenvalue
Decomposition,
CISP09(1-5).
IEEE DOI
0910
BibRef
Ding, K.[Kang],
Zhu, W.Y.[Wen-Ying],
Yang, Z.J.[Zhi-Jian],
Li, W.H.[Wei-Hua],
Anti-Noise Performance and Parameter Estimation Accuracy of FFT and FT
Discrete Spectrum Correction,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, H.J.[Hai-Jun],
Yan, C.J.[Cao-Jun],
Peng, W.B.[Wen-Biao],
Double factors algorithm for computing DFT,
IASP09(133-137).
IEEE DOI
0904
BibRef
Bhat, P.[Pravin],
Curless, B.[Brian],
Cohen, M.[Michael],
Zitnick, C.L.[C. Lawrence],
Fourier Analysis of the 2D Screened Poisson Equation for Gradient
Domain Problems,
ECCV08(II: 114-128).
Springer DOI
0810
Reconstruct 2D function.
BibRef
Signes Pont, M.T.[María Teresa],
García Chamizo, J.M.[Juan Manuel],
Mora Mora, H.[Higinio],
de Miguel Casado, G.[Gregorio],
Improvement of Image Transform Calculation Based on a Weighted
Primitive,
ICIAR06(I: 260-271).
Springer DOI
0610
Computation techniques. Fourier and Hough.
BibRef
Gluckman, J.M.[Joshua M.],
Higher Order Whitening of Natural Images,
CVPR05(II: 354-360).
IEEE DOI
0507
Process power spectrum to remove redundancies.
BibRef
Papoidis, E.V.,
Stathaki, T.,
A DFT algoritrm based on filter banks: the extended subband DFT,
ICIP03(I: 1053-1056).
IEEE DOI
0312
BibRef
Chaker, F.,
Ghorbel, F.,
Application of affine invariant Fourier descriptors to stereo matching,
ICIP03(I: 389-392).
IEEE DOI
0312
BibRef
Chaker, F.,
Bannour, M.T.,
Ghorbel, F.,
A complete and stable set of affine-invariant Fourier descriptors,
CIAP03(578-581).
IEEE DOI
0310
BibRef
Sijbers, J.,
van Dyck, D.,
Efficient algorithm for the computation of 3D Fourier descriptors,
3DPVT02(640-643).
0206
BibRef
Sijbers, J.,
Ceulemans, T.,
van Dyck, D.,
Algorithm for the computation of 3D fourier descriptors,
ICPR02(II: 790-793).
IEEE DOI
0211
BibRef
Beaudoin, N.,
Beauchemin, S.S.,
An accurate discrete Fourier transform for image processing,
ICPR02(III: 935-939).
IEEE DOI
0211
BibRef
Michael, G.,
Porat, M.,
Image Reconstruction from Localized Fourier Magnitude,
ICIP01(I: 213-216).
IEEE DOI
0108
BibRef
Pattichis, M.,
Zhou, R.,
Raman, B.,
New Algorithms for Computing Directional Discrete Fourier Transforms,
ICIP01(III: 322-325).
IEEE DOI
0108
BibRef
Felsberg, M.[Michael],
Sommer, G.[Gerald],
Optimized Fast Algorithms for the Quaternionic Fourier Transform,
CAIP99(209-216).
Springer DOI
9909
BibRef
Akhmetshin, A.M.,
Lyuboshenko, I.V.,
The Reconstruction of Signals and Images from the Noisy
Fourier Transform Phase by Means of the Generalized Difference Principle,
ICPR96(II: 370-375).
IEEE DOI
9608
(Dniepropetrovsk State Univ., UKR)
BibRef
Lyuboshenko, I.V.,
Akhmetshin, A.M.[Alexander M.],
Regularization of the Problem of Image Restoration from its Noisy
Fourier Transform Phase,
ICIP96(I: 793-796).
IEEE DOI
BibRef
9600
Chernov, V.M.[Vladimir M.],
Vector Radix FFT with Splitting the Radix of Fractional Order,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Earlier:
A Metric Unified Treatment of Two-Dimensional FFT,
ICPR96(II: 662-669).
IEEE DOI
9608
(Image Processing Systems Inst., RUS)
BibRef
Bruckstein, A.M.[Alfred M.],
Holt, R.J.[Robert J.],
Netravali, A.N.[Arun N.],
Holographic image representations: The Fourier transform method,
CIAP97(II: 30-37).
Springer DOI
9709
BibRef
Maki, A.[Atsuto],
Bretzner, L.[Lars],
Eklundh, J.O.[Jan-Olof],
Local Fourier phase and disparity estimates: An analytical study,
CAIP95(868-873).
Springer DOI
9509
BibRef
Nikolova, M.,
Markovian reconstruction in computed imaging and Fourier synthesis,
ICIP94(II: 690-694).
IEEE DOI
9411
BibRef
Elbaz, M.,
Abraham, Z.,
Rubinstein, J.,
Zeevi, Y.,
Signal and image reconstruction from partial Fourier phase,
ICPR94(C:82-87).
IEEE DOI
9410
BibRef
Ruetz, P.A.,
Cai, M.M.,
A real time FFT chip set: architectural issues,
ICPR90(II: 385-388 vol 2).
IEEE DOI
9208
BibRef
Chen, S.S.[Su-Shing],
A New Vision System and the Fourier Descriptor
Method by Group Representation Theory,
CVPR85(106-110).
(NSF)
Fourier Descriptors. Theory, maybe more later.
BibRef
8500
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
DCT Computation .