7.1.5 Fourier Descriptors, DFT, FFT Computation, Use, Frequency Analysis

Chapter Contents (Back)
Fourier Transform. Fourier Descriptors. FFT Computation.
See also Matching Fourier Descriptors, Fourier Shape Descriptors.

Landau, H.J., Pollak, H.O.,
Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainity III: The Dimension of the Space of Essentially Time and Bandlimited Signals,
Bell System Tech.(41), July 1962, pp. 1295-1336. BibRef 6207
And:
Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainity II,
Bell System Tech.(40), January 1961, pp. 65-84. BibRef

Brigham, E.O.,
The Fast Fourier Transform,
Prentice Hall1974. BibRef 7400
Earlier: Add A2: Morrow, R.E., Spectrum(4), December 1967, pp. 63-70. BibRef

Singleton, R.C.,
On Computing the Fast Fourier Transform,
CACM(10), 1967, pp. 647-654. BibRef 6700

Singleton, R.C.,
Algol Procedures for the Fast Fourier Transform, Algorithm 338,
CACM(11), 1968, pp. 773-776. BibRef 6800

Singleton, R.C.,
An Algol Procedure for the Fast Fourier Transform with Arbitrary Factors, Algorithm 339,
CACM(11), 1968, pp. 776-779. BibRef 6800

Zahn, C.T., Roskies, R.Z.,
Fourier Descriptors for Plane Closed Curves,
TC(21), No. 3, March 1972, ppp. 269-281. BibRef 7203

Pease, M.C.,
An Adaptation of the Fast Fourier Transform for Parallel Processing,
JACM(15), No. 2, April 1968, pp. 252-264. BibRef 6804

Brousil, J.K., Smith, D.R.,
A Threshold Logic Network for Shape Invariance,
TC(16), 1967, pp. 818-828. BibRef 6700

Yevick, M.L.[Miriam Lipschutz],
Holographic or Fourier Logic,
PR(7), No. 4, December 1975, pp. 197-213.
Elsevier DOI 0309
BibRef

Johnson, L.R., Jain, A.K.,
An Efficient Two-Dimensional FFT Algorithm,
PAMI(3), No. 6, November 1981, pp. 698-701. BibRef 8111

Kuhl, F.P.[Frank P.], Giardina, C.R.[Charles R.],
Elliptic Fourier Features of a Closed Contour,
CGIP(18), No. 3, March 1982, pp. 236-258.
Elsevier DOI BibRef 8203

Giardina, C.R.[Charles R.], Kuhl, F.P.[Frank P.],
Accuracy of curve approximation by harmonically related vectors with elliptical loci,
CGIP(6), No. 3, June 1977, pp. 277-285.
Elsevier DOI 0501
BibRef

Strackee, J., Nagelkerke, N.J.D.,
On Closing the Fourier Descriptor Presentation,
PAMI(5), No. 6, November 1983, pp. 660-661. BibRef 8311

Caelli, T.M., Hubner, M.,
Coding Images in the Frequency Domain: Filter Design and Energy Processing Characteristics of the Human Visual System,
SMC(13), 1983, pp. 1018-1021. BibRef 8300

Auslander, L., Feig, E., Winograd, S.,
New Algorithms for the Multidimensional Discrete Fourier Transform,
ASSP(31), 1983, pp. 388-403. BibRef 8300

Chellappa, R., Bagdazian, R.,
Optimal Fourier Coding of Image Boundaries,
PAMI(6), No. 1, January 1984, pp. 102-105. BibRef 8401

Bates, R.H.T.,
Uniqueness of Solutions to Two-Dimensional Fourier Phase Problems for Localized and Positive Images,
CVGIP(25), No. 2, February 1984, pp. 205-217.
Elsevier DOI BibRef 8402

Zabele, G.S., Koplowitz, J.,
Fourier Encoding of Closed Planar Boundaries,
PAMI(7), No. 1, January 1985, pp. 98-102. BibRef 8501
Earlier:
A Transform Encoding Scheme for Closed Planar Curves,
ICPR84(339-342). BibRef

Dekking, F.M., van Otterloo, P.J.,
Fourier Coding and Reconstruction of Complicated Contours,
SMC(16), 1986, pp. 395-404. BibRef 8600

Lin, C.S.[Chun-Shin], Hwang, C.L.[Chia-Lin],
New Forms of Shape Invariants from Elliptic Fourier Descriptors,
PR(20), No. 5, 1987, pp. 535-545.
Elsevier DOI BibRef 8700

Kiryati, N., Maydan, D.,
Calculating Geometric Properties from Fourier Representation,
PR(22), No. 5, 1989, pp. 469-475.
Elsevier DOI BibRef 8900

Kiryati, N.,
Calculating Geometric Properties of Objects Represented by Fourier Coefficients,
CVPR88(641-646).
IEEE DOI BibRef 8800

Dougherty, E.R., Loce, R.P.,
Robust Morphologically Continuous Fourier Descriptors I: Projection-Generated Descriptions,
PRAI(6), 1992, pp. 873-892. BibRef 9200

Dougherty, E.R., Loce, R.P.,
Robust Morphologically Continuous Fourier Descriptors II: Continuity and Occlusion Analysis,
PRAI(6), 1992, pp. 893-911. BibRef 9200

Li, Z.C., Bui, T.D., Suen, C.Y., Tang, Y.Y.,
Splitting-Shooting Methods for Nonlinear Transformations of Digitized Patterns,
PAMI(12), No. 7, July 1990, pp. 671-682.
IEEE DOI BibRef 9007

Li, Z.C., Suen, Y., Bui, T.D., Gu, Q.L.,
Splitting-Integrating Method for Normalizing Images by Inverse Transformations,
PAMI(14), No. 6, June 1992, pp. 678-686.
IEEE DOI BibRef 9206

Li, Z.C., Suen, Y., Bui, T.D., Gu, Q.L.,
Harmonic Models of Shape Transformations in Digital Images and Pictures,
GMIP(54), No. 3, May 1992, pp. 198-209. BibRef 9205
Earlier:
Harmonic models of shape transformations in digital images and patterns,
ICPR90(II: 1-7).
IEEE DOI 9208
BibRef

Tang, Y.Y., Suen, C.Y.,
Nonlinear shape restoration by transformation models,
ICPR90(II: 14-19).
IEEE DOI 9208
BibRef

Li, Z.C., Bui, T.D., Suen, C.Y., Tang, Y.Y.,
Nonlinear transformations of digitized patterns,
ICPR88(I: 134-136).
IEEE DOI 8811
BibRef

Lawton, W.M.,
Multidimensional chirp algorithms for computing Fourier transforms,
IP(1), No. 3, July 1992, pp. 429-431.
IEEE DOI 0402
BibRef

Tabei, M., Ueda, M.,
Backprojection by upsampled Fourier series expansion and interpolated FFT,
IP(1), No. 1, January 1992, pp. 77-87.
IEEE DOI 0402
BibRef

Fillard, J.P., Lussert, J.M., Castagné, M., M'Timet, H.,
Fourier phase shift location estimation of unfocused optical point spread functions,
SP:IC(6), No. 4, August 1994, pp. 281-287.
Elsevier DOI 0001
Fourier phase shift; Centroid method BibRef

Doerschuk, P.C.,
Bayesian reconstruction of signals invariant under a space-group symmetry from Fourier transform magnitudes,
IP(3), No. 4, July 1994, pp. 438-449.
IEEE DOI 0402
BibRef

Hui, C.C.W., Ding, T.J., McCanny, J.V., Woods, R.F.,
A 64-Point Fourier-Transform Chip for Video Motion Compensation Using Phase Correlation,
SolidCir(31), No. 11, November 1996, pp. 1751-1761. 9611
BibRef

Wu, M.F.[Ming-Fang], Sheu, H.T.[Hsin-Teng],
3D Invariant Estimation of Axisymmetrical Objects Using Fourier Descriptors,
PR(29), No. 2, February 1996, pp. 267-280.
Elsevier DOI Fourier, 3D.
See also Contour-Based Correspondence Using Fourier Descriptors. BibRef 9602

Sheu, H.T.[Hsin-Teng], Wu, M.F.[Ming-Fang],
Fourier Descriptor Based Technique for Reconstructing 3D Contours from Stereo Images,
VISP(142), No. 2, April 1995, pp. 95-104. BibRef 9504

Pitas, I., Strintzis, M.G.,
General in-Place Calculation of Discrete Fourier Transforms of Multidimensional Sequences,
ASSP(34), 1986, pp. 565-572. BibRef 8600

Guessoum, A., Mersereau, R.M.,
Fast Algorithms for the Multidimensional Discrete Fourier Transform,
ASSP(34), 1986, pp. 937-943. BibRef 8600

Hekrdla, J.,
Index Transforms of Multidimensional Cyclic Convolutions and Discrete Fourier Transforms,
ASSP(34), 1986, pp. 996-997. BibRef 8600

Mehalic, M.A., Rustan, P.L., Route, G.P.,
Effects of Architecture Implementation on DFT Algorithm Performance,
ASSP(33), 1985, pp. 684-693. BibRef 8500

Haque, M.A.,
A Two-Dimensional Fast Cosine Transform,
ASSP(33), 1985, pp. 1532-1539. BibRef 8500

Lee, B.C.,
A Fast Cosine Transform,
ASSP(33), 1985, pp. xx-yy. BibRef 8500

Byrne, C.L., Fitzgerald, R.M.,
Linear and Nonlinear Estimators for One- and Two-Dimensional Fourier Transforms,
ASSP(32), 1984, pp. 914-916. BibRef 8400

Lim, J.S., Anderson, J.C., Searle, C.L.,
Signal Reconstruction from Cosine Transform Magnitude,
PIEEE(70), 1982, pp. 1460-1462. BibRef 8200

Hayes, M.H., Lim, J.S., Oppenheim, A.V.,
Signal Reconstruction from Phase or Magnitude,
ASSP(28), 1980, pp. 672-680. BibRef 8000

Oppenheim, A.V., Lim, J.S.,
The Importance of Phase in Signals,
PIEEE(69), No. 5, May 1981, pp. 529-541. BibRef 8105

van Hove, P.L., Hayes, M.H., Lim, J.S., Oppenheim, A.V.,
Signal Reconstruction from Signed Fourier Transform Magnitude,
ASSP(31), 1983, pp. 1286-1293. BibRef 8300

Curtis, S.R., Oppenheim, A.V., Lim, J.S.,
Signal Reconstruction from Fourier Transform Sign Information,
ASSP(33), 1985, pp. 643-657. BibRef 8500

Bonmassar, G.[Giorgio], Schwartz, E.L.[Eric L.],
Fourier-Analysis and Cortical Architectures: The Exponential Chirp Transform,
RealTimeImg(3), No. 3, June 1997, pp. 229-237. 9708

See also Cortical Anatomy, Size Invariance, and Spatial Frequency Analysis. BibRef

Bonmassar, G.[Giorgio], Schwartz, E.L.[Eric L.],
Space-Variant Fourier-Analysis: The Exponential Chirp Transform,
PAMI(19), No. 10, October 1997, pp. 1080-1089.
IEEE DOI 9710
BibRef
Earlier:
Lie Group Theory, Space Variant Fourier Analysis and the Exponential Chirp Transform,
CVPR96(492-498).
IEEE DOI BibRef
Earlier:
Geometric invariance in space-variant vision systems: The exponential chirp transform,
ICPR94(C:204-207).
IEEE DOI 9410
Representation, Log Mapping. Log Mapping. Generate a frequency domain mapping for a log polar image. Similar to the Mellin Transform. BibRef

Mou-Yan, Z., Unbehauen, R.,
Methods for Reconstruction of 2-D Sequences from Fourier-Transform Magnitude,
IP(6), No. 2, February 1997, pp. 222-233.
IEEE DOI 9703
BibRef

Anguh, M.M.,
Quadtree and Symmetry in FFT Computation of Digital Images,
TSP(45), No. 12, December 1997, pp. 2896-2899. 9712
BibRef

Rangarajan, S.R., Srinivasan, S.,
Generalized Method for Pruning an FFT Type of Transform,
VISP(144), No. 4, August 1997, pp. 189-192. 9806
BibRef

Pei, S.C., Tseng, C.C., Yeh, M.H., Shyu, J.J.,
Discrete Fractional Hartley and Fourier Transforms,
CirSysSignal(45), No. 6, June 1998, pp. 665-675. 9807
BibRef

Pei, S.C., Yeh, M.H.,
Two-Dimensional Discrete Fractional Fourier-Transform,
SP(67), No. 1, May 1998, pp. 99-108. 9807
BibRef

Duhamel, P.[Pierre], Vetterli, M.,
Fast Fourier transforms: A tutorial review and a state of the art,
SP(19), No. 4, 1990, pp. 259-299. BibRef 9000

Bi, G.A.,
Fast Algorithms for DFT of Composite Sequence Lengths,
SP(70), No. 2, October 1998, pp. 139-145. 9812
BibRef

Shentov, O.V., Mitra, S.K., Heute, U., Hossen, A.N.,
Subband DFT I: Definition, Interpretation and Extensions,
SP(41), No. 3, 1995, pp. 261-277. BibRef 9500

Hossen, A.N., Heute, U., Shentov, O.V., Mitra, S.K.,
Subband DFT II: Accuracy, Complexity and Applications,
SP(41), No. 3, 1995, pp. 279-294. BibRef 9500

Javidi, B., Wang, W.L., Zhang, G.S.,
Composite Fourier Plane Nonlinear Filter for Distortion Invariant Pattern Recognition,
OptEng(36), No. 10, October 1997, pp. 2690-2696. 9710
BibRef

Onural, L., Erden, M.F., Ozaktas, H.M.,
Extensions to Common Laplace and Fourier Transforms,
SPLetters(4), No. 11, November 1997, pp. 310-312.
IEEE Top Reference. 9711
BibRef

Shkarin, P., Spencer, R.G.S.,
Time Domain Simulation of Fourier Imaging by Summation of Isochromats,
IJIST(8), No. 5, 1997, pp. 419-426. 9710
BibRef

Amidror, I., Hersch, R.D.,
Analysis of the Superposition of Periodic Layers and Their Moire Effects Through the Algebraic Structure of Their Fourier Spectrum,
JMIV(8), No. 2, March 1998, pp. 99-130.
DOI Link 9803
BibRef

Pratt, I.[Ian],
Shape Representation Using Fourier Coefficients of the Sinusoidal Transform,
JMIV(10), No. 3, May 1999, pp. 221-235.
DOI Link BibRef 9905

Bernardini, R., Cortelazzo, G.M., Mian, G.A.,
Multidimensional fast Fourier transform algorithm for signals with arbitrary symmetries,
JOSA-A(16), No. 8, August 1999, pp. 1892-1908. BibRef 9908
Earlier:
A new 1D FFT-based algorithm for computing the MD FFT on arbitrary lattices,
ICIP94(III: 567-570).
IEEE DOI 9411
BibRef

Ware, A.F.[Antony F.],
Fast Approximate Fourier Transforms for Irregularly Spaced Data,
SIAM_Rev(40), No. 4, 1998, pp. 838-856.
WWW Link. BibRef 9800

Lo, P.C.[Pei-Chen], Lee, Y.Y.[Yu-Yun],
Real-time implementation of the moving FFT algorithm,
SP(79), No. 3, December 1999, pp. 251-25. 0002
BibRef

Britanak, V.[Vladimir], Rao, K.R.,
The fast generalized discrete Fourier transforms: A unified approach to the discrete sinusoidal transforms computation,
SP(79), No. 2, December 1999, pp. 135-150. 0002
BibRef

Britanak, V.[Vladimir], Rao, K.R.,
A new fast algorithm for the unified forward and inverse MDCT/MDST computation,
SP(82), No. 3, 2002, pp. 433-459.
HTML Version. 0205
BibRef

Zapata, J.L.[Jaime L.], Ritter, G.X.[Gerhard X.],
Fast Fourier Transform for Hexagonal Aggregates,
JMIV(12), No. 3, June 2000, pp. 183-197.
DOI Link 0003
BibRef

Takahashi, D.,
An extended split-radix FFT algorithm,
SPLetters(8), No. 5, May 2001, pp. 145-147.
IEEE Top Reference. 0105
BibRef

Derrode, S.[Stéphane], Ghorbel, F.[Faouzi],
Robust and Efficient Fourier-Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant Description,
CVIU(83), No. 1, July 2001, pp. 57-78.
DOI Link 0108
Reconstruction. Invariants. BibRef

Lee, S.R.[Seung-Rae], Yi, J.H.[June-Ho],
Fast Reverse Jacket Transform As an Alternative Representation of the N-Point Fast Fourier Transform,
JMIV(16), No. 1, January 2002, pp. 31-39.
DOI Link 0202
BibRef

Gelman, L.,
Feature Representation: Both Components of the Fourier Transform vs. Hartley Transform,
PR(35), No. 5, May 2002, pp. 1191-1192.
Elsevier DOI 0202
BibRef

Gelman, L.[Leonid], Sanderson, M.[Michael], Thompson, C.[Christopher],
Signal recognition: Fourier transform vs. Hartley transform,
PR(36), No. 12, December 2003, pp. 2849-2853.
Elsevier DOI 0310
BibRef

Gelman, L.[Leonid], Sanderson, M.[Michael], Thompson, C.[Christopher],
Signal recognition: Fourier transform vs. Cosine transform,
PRL(24), No. 15, November 2003, pp. 2823-2827.
Elsevier DOI 0308
BibRef

Wu, J.L.[Ja-Ling], Huang, Y.M.,
Two-variable modularized fast polynomial transform algorithm for 2-D discrete Fourier transforms,
CirSysVideo(2), No. 1, March 1992, pp. 84-87.
IEEE Top Reference. 0206
BibRef

Bracewell, R.N.[Ronald N.],
The Fourier Transform and Its Applications,
McGraw-Hill2000. Third Edition. BibRef 0001

Bastiaans, M.J.[Martin J.], Alieva, T.[Tatiana],
Wigner distribution moments in fractional Fourier transform systems,
JOSA-A(19), No. 9, September 2002, pp. 1763-1773.
WWW Link. 0210
BibRef

Chan, S.C., Yiu, P.M.,
An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients,
SPLetters(9), No. 10, October 2002, pp. 322-325.
IEEE Top Reference. 0211
BibRef

Djurovic, I.[Igor], Stankovic, L.[LJubisa],
Adaptive windowed Fourier transform,
SP(83), No. 1, January 2003, pp. 91-100.
HTML Version. 0211
BibRef

Lee, T.C.M.[Thomas C.M.], Wong, T.F.[Tan F.],
Nonparametric log spectrum estimation using disconnected regression splines and genetic algorithms,
SP(83), No. 1, January 2003, pp. 79-90.
HTML Version. 0211
BibRef

Ferreira, P.J.S.G., Vieira, J.M.N.,
Stable DFT codes and frames,
SPLetters(10), No. 2, February 2003, pp. 50-53.
IEEE Top Reference. 0301
BibRef

Hossen, A.[Abdulnasir], Heute, U.[Ulrich], Seraji, G.[Gohlamali],
Arithmetic errors in the sub-band FFT: derivation of error equations and simulation results,
SP(83), No. 2, February 2003, pp. 413-429.
Elsevier DOI 0304
BibRef

Dapena, A., Servière, C., Castedo, L.,
Inversion of the sliding Fourier transform using only two frequency bins and its application to source separation,
SP(83), No. 2, February 2003, pp. 453-457.
Elsevier DOI 0304
BibRef

Capus, C., Brown, K.,
Fractional Fourier transform of the Gaussian and fractional domain signal support,
VISP(150), No. 2, April 2003, pp. 99-106.
IEEE Abstract. 0307
BibRef

Pei, S.C., Chen, W.Y.,
Split Vector-Radix-2/8 2-D Fast Fourier Transform,
SPLetters(11), No. 5, may 2004, pp. 459-462.
IEEE Abstract. 0404
BibRef

MacLeod, M.D.[Malcolm D.],
Multiplierless Winograd and Prime Factor FFT Implementation,
SPLetters(11), No. 9, September 2004, pp. 740-743.
IEEE Abstract. 0409
BibRef

MacLeod, M.D.[Malcolm D.],
Multiplierless Implementation of Rotators and FFTs,
JASP(2005), No. 17, 2005, pp. 2903-2910.
WWW Link. 0603
BibRef

Yang, X.P.[Xing-Peng], Tan, Q.F.[Qiao-Feng], Wei, X.F.[Xiao-Feng], Xiang, Y.[Yong], Yan, Y.[Yingbai], Jin, G.[Guofan],
Improved fast fractional-Fourier-transform algorithm,
JOSA-A(21), No. 9, September 2004, pp. 1677-1681.
WWW Link. 0409
BibRef

Guizar Sicairos, M.[Manuel], Gutiérrez Vega, J.C.[Julio C.],
Two-dimensional Fourier transform of scaled Dirac delta curves,
JOSA-A(21), No. 9, September 2004, pp. 1682-1688.
WWW Link. 0409
BibRef

Djurovic, I., Stankovic, L.,
Moments of Multidimensional Polynomial FT,
SPLetters(11), No. 11, November 2004, pp. 879-882.
IEEE Abstract. 0411
BibRef

Brown, R.A., Zhu, H., Mitchell, J.R.,
Distributed Vector Processing of a New Local MultiScale Fourier Transform for Medical Imaging Applications,
MedImg(24), No. 5, May 2005, pp. 689-691.
IEEE Abstract. 0505
BibRef

Uzun, I.S., Amira, A., Bouridane, A.,
FPGA Implementations of Fast Fourier Transforms for Real-Time Signal and Image Processing,
VISP(152), No. 3, June 2005, pp. 283-296.
DOI Link 0510

See also Novel FPGA Implementations of Walsh-Hadamard Transforms for Signal Processing. BibRef

Kunttu, I.[Iivari], Lepistö, L.[Leena], Rauhamaa, J.[Juhani], Visa, A.[Ari],
Multiscale Fourier descriptors for defect image retrieval,
PRL(27), No. 2, 15 January 2006, pp. 123-132.
Elsevier DOI 0512
BibRef
Earlier:
Multiscale fourier descriptor for shape-based image retrieval,
ICPR04(II: 765-768).
IEEE DOI 0409
BibRef
Earlier:
Multiscale fourier descriptor for shape classification,
CIAP03(536-541).
IEEE DOI 0310
BibRef

Kunttu, I.[Iivari], Lepistö, L.[Leena], Rauhamaa, J.[Juhani], Visa, A.[Ari],
Fourier-Based Object Description in Defect Image Retrieval,
MVA(17), No. 4, September 2006, pp. 211-218.
Springer DOI 0608
BibRef
Earlier:
Color Fourier Descriptor for Defect Image Retrieval,
CIAP05(415-422).
Springer DOI 0509
BibRef

Kunttu, I.[Iivari], Lepistö, L.[Leena],
Shape-based retrieval of industrial surface defects using angular radius Fourier descriptor,
IET-IPR(1), No. 2, June 2007, pp. 231-236.
DOI Link 0905
BibRef

Kunttu, I.[Iivari], Lepistö, L.[Leena], Visa, A.[Ari],
Enhanced Fourier Shape Descriptor Using Zero-Padding,
SCIA05(892-900).
Springer DOI 0506
BibRef

Djurovic, I., Lukin, V.V.,
Robust DFT With High Breakdown Point for Complex-Valued Impulse Noise Environment,
SPLetters(13), No. 1, January 2006, pp. 25-28.
IEEE DOI 0601
BibRef

Pei, S.C.[Soo-Chang], Hsue, W.L.,
The Multiple-Parameter Discrete Fractional Fourier Transform,
SPLetters(13), No. 6, June 2006, pp. 329-332.
IEEE DOI 0606
BibRef

Pei, S.C., Hsue, W.L.,
Random Discrete Fractional Fourier Transform,
SPLetters(16), No. 12, December 2009, pp. 1015-1018.
IEEE DOI 0909
BibRef

Meher, P.K.,
Highly Concurrent Reduced-Complexity 2-D Systolic Array for Discrete Fourier Transform,
SPLetters(13), No. 8, August 2006, pp. 481-484.
IEEE DOI 0606
BibRef

Meher, P.K.,
Systolic Designs for DCT Using a Low-Complexity Concurrent Convolutional Formulation,
CirSysVideo(16), No. 9, September 2006, pp. 1041-1050.
IEEE DOI 0610
BibRef

Meher, P.K.,
Parallel and Pipelined Architectures for Cyclic Convolution by Block Circulant Formulation Using Low-Complexity Short-Length Algorithms,
CirSysVideo(18), No. 10, October 2008, pp. 1422-1431.
IEEE DOI 0811
BibRef

Mohanty, B.K., Meher, P.K.,
Parallel and Pipeline Architectures for High-Throughput Computation of Multilevel 3-D DWT,
CirSysVideo(20), No. 9, September 2010, pp. 1200-1209.
IEEE DOI 1003
BibRef

Mohanty, B.K., Meher, P.K., Meher, P.K.,
Memory-Efficient High-Speed Convolution-Based Generic Structure for Multilevel 2-D DWT,
CirSysVideo(23), No. 2, February 2013, pp. 353-363.
IEEE DOI 1301
BibRef

Loughlin, P.J.,
Time-Varying Spectral Approximation of Filtered Signals,
SPLetters(13), No. 10, October 2006, pp. 604-607.
IEEE DOI 0609
BibRef

Grigoryan, A.M.[Artyom M.],
Representation of the Fourier Transform by Fourier Series,
JMIV(25), No. 1, July 2006, pp. 87-105.
Springer DOI 0610
BibRef

Horikis, T.P.[Theodoros P.], McCallum, M.S.[Matthew S.],
Self-Fourier functions and self-Fourier operators,
JOSA-A(23), No. 4, April 2006, pp. 829-834.
WWW Link. 0610
BibRef

Hwang, H.E.[Hone-Ene], Han, P.[Pin],
Fast algorithm of phase masks for image encryption in the Fresnel domain,
JOSA-A(23), No. 8, August 2006, pp. 1870-1874.
WWW Link. 0610
Lensless security system. BibRef

Sangwine, S.J.,
The problem of defining the Fourier transform of a colour image,
ICIP98(I: 171-175).
IEEE DOI 9810
BibRef

Jones, K.J.,
Flexible-length fast fourier transform for mapping onto single-instruction multiple-data computing architecture,
VISP(153), No. 4, August 2006, pp. 395-404.
WWW Link. 0705
BibRef

Jones, K.J.,
Design and parallel computation of regularised fast Hartley transform,
VISP(153), No. 1, February 2006, pp. 70-78.
DOI Link 0602
BibRef

Sung, T.Y.,
Memory-efficient and high-speed split-radix FFT/IFFT processor based on pipelined CORDIC rotations,
VISP(153), No. 4, August 2006, pp. 405-410.
WWW Link. 0705
BibRef

Brackx, F.[Fred], de Schepper, N.[Nele], Sommen, F.[Frank],
The Two-Dimensional Clifford-Fourier Transform,
JMIV(26), No. 1-2, November 2006, pp. 5-18.
Springer DOI 0701
BibRef

Liu, J., Liu, X.,
Eigenvector-Based N-D Frequency Estimation From Sample Covariance Matrix,
SPLetters(14), No. 3, March 2007, pp. 209-212.
IEEE DOI 0703
The proposed algorithm achieves automatic frequency pairing without using joint diagonalization. BibRef

Krakovsky, V.Y.[Vladimir Y.],
Moving-window discrete Fourier transform,
RealTimeIP(1), No. 2, December 2006, pp. 153-161.
Springer DOI 0001
BibRef

Sheridan, P.[Phil],
A Method to Perform a Fast Fourier Transform With Primitive Image Transformations,
IP(16), No. 5, May 2007, pp. 1355-1369.
IEEE DOI 0704
BibRef

Foi, A.[Alessandro], Katkovnik, V.[Vladimir], Egiazarian, K.O.[Karen O.],
Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images,
IP(16), No. 5, May 2007, pp. 1395-1411.
IEEE DOI 0704

See also From Local Kernel to Nonlocal Multiple-Model Image Denoising.
See also Nonlocality-Reinforced Convolutional Neural Networks for Image Denoising. BibRef

Vince, A.[Andrew], Zheng, X.Q.[Xi-Qiang],
Computing the Discrete Fourier Transform on a Hexagonal Lattice,
JMIV(28), No. 2, June 2007, pp. 125-133.
Springer DOI 0710
BibRef

Yan, S., Xu, L., Anazawa, Y.,
A Two-Stage Approach to the Establishment of State-Space Formulation of 2-D Frequency Transformation,
SPLetters(14), No. 12, December 2007, pp. 960-963.
IEEE DOI 0711
BibRef

Huang, W.C., Li, C.P., Li, H.J.,
A Computationally Efficient DFT Scheme for Applications With a Subset of Nonzero Inputs,
SPLetters(15), No. 1, 2008, pp. 206-208.
IEEE DOI 0802
BibRef

Sorensen, T.S., Schaeffter, T., Noe, K., Hansen, M.S.,
Accelerating the Nonequispaced Fast Fourier Transform on Commodity Graphics Hardware,
MedImg(27), No. 4, April 2008, pp. 538-547.
IEEE DOI 0804
BibRef

Durak, L.[Lutfiye], Özdemir, A.K.[Ahmet Kemal], Arikan, O.[Orhan],
Efficient computation of joint fractional Fourier domain signal representation,
JOSA-A(25), No. 3, March 2008, pp. 765-772.
WWW Link. 0804
BibRef

Lee, J., Lee, S.Y.,
Robust Fundamental Frequency Estimation Combining Contrast Enhancement and Feature Unbiasing,
SPLetters(15), No. 1, 2008, pp. 521-524.
IEEE DOI 0806
BibRef

Lo, V.L., Millane, R.P.,
Reconstruction of compact binary images from limited Fourier amplitude data,
JOSA-A(25), No. 10, October 2008, pp. 2600-2607.
WWW Link. 0810
BibRef
And:
Aspects of binary image reconstruction from Fourier amplitude data,
IVCNZ08(1-6).
IEEE DOI 0811
BibRef

Lo, V.L., Millane, R.P., Kingston, R.L.,
Reconstruction of Macromolecular Envelopes from Crystal X-Ray Diffraction Amplitudes,
ICIP08(2992-2995).
IEEE DOI 0810
BibRef

Yeh, M.H.,
Relationships Among Various 2-D Quaternion Fourier Transforms,
SPLetters(15), No. 1, 2008, pp. 669-672.
IEEE DOI 0811
BibRef

Parsons, A.,
The Symmetric Group in Data Permutation, With Applications to High-Bandwidth Pipelined FFT Architectures,
SPLetters(16), No. 6, June 2009, pp. 477-480.
IEEE DOI 0904
To permute data in place. BibRef

Broughton, S.A.[S. Allen], Bryan, K.M.[Kurt M.],
Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing,
WileyNovember 2008. ISBN: 978-0-470-29466-6.
HTML Version. Buy this book: Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing 0905
BibRef

Hirabayashi, A.,
Consistent Sampling and Efficient Signal Reconstruction,
SPLetters(16), No. 12, December 2009, pp. 1023-1026.
IEEE DOI 0909
DFT based coefficients. BibRef

Miranda, M.[Marta], Dorrío, B.V.[Benito V.],
Fourier analysis of two-stage phase-shifting algorithms,
JOSA-A(27), No. 2, February 2010, pp. 276-285.
WWW Link. 1002
BibRef

Yang, Z.[Zhuo], Kamata, S.I.[Sei-Ichiro],
Fast Polar and Spherical Fourier Descriptors for Feature Extraction,
IEICE(E93-D), No. 7, July 2010, pp. 1708-1715.
WWW Link. 1008
BibRef
And: ICPR10(975-978).
IEEE DOI 1008
BibRef

Yang, Z.[Zhuo], Kamata, S.I.[Sei-Ichiro],
Hypercomplex Polar Fourier Analysis for Image Representation,
IEICE(E94-D), No. 8, August 2011, pp. 1663-1670.
WWW Link. 1108
BibRef
And:
Hypercomplex polar Fourier analysis for color image,
ICIP11(2117-2120).
IEEE DOI 1201
BibRef

Yang, Z.[Zhuo], Kamata, S.I.[Sei-Ichiro],
Fast Hypercomplex Polar Fourier Analysis,
IEICE(E95-D), No. 4, April 2012, pp. 1166-1169.
WWW Link. 1204
BibRef
Earlier:
Fast Hypercomplex Polar Fourier Analysis for Image Processing,
PSIVT11(II: 141-148).
Springer DOI 1111
BibRef

Yang, Z.[Zhuo], Kamata, S.I.[Sei-Ichiro],
Novel Algorithm for Polar and Spherical Fourier Analysis on Two and Three Dimensional Images,
IEICE(E95-D), No. 5, May 2012, pp. 1248-1255.
WWW Link. 1202
BibRef

Thyagarajan, K.S.,
Still Image and Video Compression with MATLAB,
Wiley-IEEEJanuary 2011. ISBN: 978-0-470-48416-6
HTML Version. Buy this book: Fourier Methods in Imaging (The Wiley-IS&T Series in Imaging Science and Technology) 1010
Mathematical tools for describing general one- and two-dimensional linear imaging systems. BibRef

Bowley, J., Rebollo-Neira, L.,
Sparsity and 'Something Else': An Approach to Encrypted Image Folding,
SPLetters(18), No. 3, March 2011, pp. 189-192.
IEEE DOI 1102
BibRef

Candan, C.,
On the Eigenstructure of DFT Matrices,
SPMag(28), No. 2, 2011, pp. 105-108.
IEEE DOI 1103
DSP Education BibRef

Lyons, R.,
Reducing FFT Scalloping Loss Errors Without Multiplication,
SPMag(28), No. 2, 2011, pp. 112-116.
IEEE DOI 1103
DSP Tips and Tricks BibRef

Grigoryan, A.M.[Artyom M.],
Two Classes of Elliptic Discrete Fourier Transforms: Properties and Examples,
JMIV(39), No. 3, March 2011, pp. 210-229.
WWW Link. 1103
BibRef

Garces, D.H.[Daissy H.], Rhodes, W.T.[William T.], Peña, N.M.[Nestor M.],
Projection-Slice Theorem: A Compact Notation,
JOSA-A(28), No. 5, May 2011, pp. 766-769.
WWW Link. 1105
In terms of rotation of Fourier transform. BibRef

Hoang, T.V.[Thai V.], Tabbone, S.A.[Salvatore A.],
The generalization of the R-transform for invariant pattern representation,
PR(45), No. 6, June 2012, pp. 2145-2163.
Elsevier DOI 1202
BibRef
Earlier:
A Geometric Invariant Shape Descriptor Based on the Radon, Fourier, and Mellin Transforms,
ICPR10(2085-2088).
IEEE DOI 1008
Invariant pattern representation; Radon transform; R-transform; R-signature; Feature extraction; Dominant directions; Noise robustness BibRef

Hoang, T.V.[Thai V.], Tabbone, S.A.[Salvatore A.],
Generic polar harmonic transforms for invariant image representation,
IVC(32), No. 8, 2014, pp. 497-509.
Elsevier DOI 1407
BibRef
Earlier:
Fast computation of orthogonal polar harmonic transforms,
ICPR12(3160-3163).
WWW Link. 1302
BibRef
Earlier:
Generic polar harmonic transforms for invariant image description,
ICIP11(829-832).
IEEE DOI 1201
Polar harmonic transforms BibRef

Hoang, T.V.[Thai V.], Tabbone, S.A.[Salvatore A.],
Fast Generic Polar Harmonic Transforms,
IP(23), No. 7, July 2014, pp. 2961-2971.
IEEE DOI 1407
Approximation methods BibRef

Hoang, T.V.[Thai V.], Tabbone, S.A.[Salvatore A.],
Invariant pattern recognition using the RFM descriptor,
PR(45), No. 1, 2012, pp. 271-284.
Elsevier DOI 1410
Invariant pattern representation Radon-Fourier-Mellin BibRef

Hasegawa, M.[Makoto], Tabbone, S.A.[Salvatore A.],
A Shape Descriptor Combining Logarithmic-Scale Histogram of Radon Transform and Phase-Only Correlation Function,
ICDAR11(182-186).
IEEE DOI 1111
BibRef

Wang, L.[Linkai], Zhou, X.F.[Xiao-Fang], Sobelman, G.E., Liu, R.[Ran],
Generic Mixed-Radix FFT Pruning,
SPLetters(19), No. 3, March 2012, pp. 167-170.
IEEE DOI 1202
BibRef

Schneider, D.,
A faster fast fourier transform,
Spectrum(49), No. 3, March 2012, pp. 12-13.
IEEE DOI 1203
Overview discussion of a conference report on a faster version. BibRef

Auger, F., Chassande-Mottin, E., Flandrin, P.,
On Phase-Magnitude Relationships in the Short-Time Fourier Transform,
SPLetters(19), No. 5, May 2012, pp. 267-270.
IEEE DOI 1204
BibRef

Pei, S.C., Lai, Y.C.,
Closed Form Variable Fractional Time Delay Using FFT,
SPLetters(19), No. 5, May 2012, pp. 299-302.
IEEE DOI 1204

See also Comments on Closed Form Variable Fractional Time Delay Using FFT. BibRef

de Bie, H.[Hendrik], de Schepper, N.[Nele],
Fractional Fourier transforms of hypercomplex signals,
SIViP(6), No. 3, September 2012, pp. 381-388.
WWW Link. 1209
BibRef

Machado, J.T.[J. Tenreiro], Duarte, F.B.[Fernando B.], Duarte, G.M.[Gonçalo Monteiro],
Analysis of financial indices by means of the windowed Fourier transform,
SIViP(6), No. 3, September 2012, pp. 487-494.
WWW Link. 1209
BibRef

Kakarala, R.[Ramakrishna],
The Bispectrum as a Source of Phase-Sensitive Invariants for Fourier Descriptors: A Group-Theoretic Approach,
JMIV(44), No. 3, November 2012, pp. 341-353.
WWW Link. 1209
BibRef

Kakarala, R.[Ramakrishna],
Testing for Convexity with Fourier Descriptors,
ICPR98(Vol I: 792-794).
IEEE DOI 9808
BibRef

Kingston, A.M.[Andrew M.], Li, H.Y.[He-Yang], Normand, N.[Nicolas], Svalbe, I.D.[Imants D.],
Fourier Inversion of the Mojette Transform,
DGCI14(275-284).
Springer DOI 1410
BibRef

Chandra, S.S., Svalbe, I.D., Guedon, J., Kingston, A.M., Normand, N.,
Recovering Missing Slices of the Discrete Fourier Transform Using Ghosts,
IP(21), No. 10, October 2012, pp. 4431-4441.
IEEE DOI 1209
BibRef

Chandra, S.S., Normand, N., Kingston, A.M., Guedon, J., Svalbe, I.D.,
Robust Digital Image Reconstruction via the Discrete Fourier Slice Theorem,
SPLetters(21), No. 6, June 2014, pp. 682-686.
IEEE DOI 1404
Discrete Fourier transforms BibRef

Jeromin, O., Pattichis, M.S.,
Multiscale Sampling Geometries and Methods for Deterministic and Stochastic Reconstructions of Magnitude and Phase Spectra of Satellite Imagery,
GeoRS(50), No. 10, October 2012, pp. 3678-3692.
IEEE DOI 1210
BibRef

Perotti, L., Vrinceanu, D., Bessis, D.,
Beyond the Fourier Transform: Signal Symmetry Breaking in the Complex Plane,
SPLetters(19), No. 12, December 2012, pp. 865-867.
IEEE DOI 1212
BibRef

Song, T., Li, H.,
Local Polar DCT Features for Image Description,
SPLetters(20), No. 1, January 2013, pp. 59-62.
IEEE DOI 1212
BibRef

Ye, S.L.[Shang-Lin], Aboutanios, E.,
Efficient 2-D Frequency and Damping Estimation by Interpolation on Fourier Coefficients,
SPLetters(20), No. 2, February 2013, pp. 137-140.
IEEE DOI 1302
BibRef

Taboada, J.M., Araujo, M.G., Basteiro, F.O., Rodriguez, J.L., Landesa, L.,
MLFMA-FFT Parallel Algorithm for the Solution of Extremely Large Problems in Electromagnetics,
PIEEE(100), No. 2, February 2013, pp. 350-363.
IEEE DOI 1302
BibRef

Socheleau, F.X., Pastor, D., Duret, M.,
On Symmetric Alpha-Stable Noise After Short-Time Fourier Transformation,
SPLetters(20), No. 5, May 2013, pp. 455-458.
IEEE DOI 1304
BibRef

Socheleau, F.X., Pastor, D.,
Testing the Energy of Random Signals in a Known Subspace: An Optimal Invariant Approach,
SPLetters(21), No. 10, October 2014, pp. 1182-1186.
IEEE DOI 1407
Detectors BibRef

Wen, X.[Xue], Sandler, M.,
Fast Additive Sinusoidal Synthesis With a Subband Sinusoidal Method,
SPLetters(20), No. 5, May 2013, pp. 467-470.
IEEE DOI 1304
BibRef

Zheng, W.H.[Wei-Hua], Li, K.[Kenli],
Split Radix Algorithm for Length 6^m DFT,
SPLetters(20), No. 7, 2013, pp. 713-716.
IEEE DOI 1307
discrete Fourier transforms BibRef

Kay, S.,
A Computationally Efficient Nonlinear Least Squares Method Using Random Basis Functions,
SPLetters(20), No. 7, 2013, pp. 721-724.
IEEE DOI 1307
frequency estimation; least mean squares methods BibRef

Blok, M.,
Comments on 'Closed Form Variable Fractional Time Delay Using FFT',
SPLetters(20), No. 8, 2013, pp. 747-750.
IEEE DOI 1307
delay filters
See also Closed Form Variable Fractional Time Delay Using FFT. BibRef

Astudillo, R.F.[R. Fernandez],
An Extension of STFT Uncertainty Propagation for GMM-Based Super-Gaussian a Priori Models,
SPLetters(20), No. 12, 2013, pp. 1163-1166.
IEEE DOI 1311
Fourier transforms BibRef

Bujack, R.[Roxana], de Bie, H.[Hendrik], de Schepper, N.[Nele], Scheuermann, G.[Gerik],
Convolution Products for Hypercomplex Fourier Transforms,
JMIV(48), No. 3, March 2014, pp. 606-624.
Springer DOI 1403
BibRef

Su, L.J.[Li-Juan], Yuan, Y.[Yan], Bin, X.L.[Xiang-Li], Huang, F.Z.[Feng-Zhen], Cao, J.[Jun], Li, L.Y.[Lin-Yu], Zhou, S.B.[Shu-Bo],
Spectrum Reconstruction Method for Airborne Temporally-Spatially Modulated Fourier Transform Imaging Spectrometers,
GeoRS(52), No. 6, June 2014, pp. 3720-3728.
IEEE DOI 1403
Aircraft BibRef

Bey, N.Y.[Nourédine Yahya],
Multi-resolution Fourier analysis: Time-frequency resolution in excess of Gabor-Heisenberg limit,
SIViP(8), No. 4, May 2014, pp. 765-778.
WWW Link. 1404
BibRef

Park, C.S.[Chun-Su], Ko, S.,
The Hopping Discrete Fourier Transform,
SPMag(31), No. 2, March 2014, pp. 135-139.
IEEE DOI 1404
Tips and Tricks section. Algorithm design and analysis BibRef

Park, C.S.[Chun-Su],
Fast, Accurate, and Guaranteed Stable Sliding Discrete Fourier Transform,
SPMag(32), No. 4, July 2015, pp. 145-156.
IEEE DOI 1506
Tips and Tricks section. Algorithm design and analysis BibRef

Park, C.S.[Chun-Su],
2D Discrete Fourier Transform on Sliding Windows,
IP(24), No. 3, March 2015, pp. 901-907.
IEEE DOI 1502
computer vision BibRef

Hitzer, E.[Eckhard], Sangwine, S.J.[Stephen J.], (Eds.)
Quaternion and Clifford Fourier Transforms and Wavelets,

Springer2013. ISBN 978-3-0348-0602-2.
WWW Link. 1404
BibRef

Lammers, M.,
The Finite Fractional Zak Transform,
SPLetters(21), No. 9, Sept 2014, pp. 1064-1067.
IEEE DOI 1406
Discrete Fourier transforms BibRef

Zheng, X.Q.[Xi-Qiang], Gu, F.[Feng],
Fast Fourier Transform on FCC and BCC Lattices with Outputs on FCC and BCC Lattices Respectively,
JMIV(49), No. 3, July 2014, pp. 530-550.
Springer DOI 1407
BibRef

Wang, W., Li, X., Xia, X.G., Wang, W.,
The Largest Dynamic Range of a Generalized Chinese Remainder Theorem for Two Integers,
SPLetters(22), No. 2, February 2015, pp. 254-258.
IEEE DOI 1410
Discrete Fourier transforms BibRef

Adcock, B., Gataric, M., Hansen, A.,
On Stable Reconstructions from Nonuniform Fourier Measurements,
SIIMS(7), No. 3, 2014, pp. 1690-1723.
DOI Link 1410
BibRef

Chambolle, A., Jalalzai, K.,
Adapted Basis for Nonlocal Reconstruction of Missing Spectrum,
SIIMS(7), No. 3, 2014, pp. 1484-1502.
DOI Link 1410
Problem of recovering missing Fourier coefficients. BibRef

Gilbert, A.C., Indyk, P., Iwen, M., Schmidt, L.,
Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data,
SPMag(31), No. 5, September 2014, pp. 91-100.
IEEE DOI 1410
Big Data BibRef

Jindal, N.[Neeru], Singh, K.[Kulbir],
Image and video processing using discrete fractional transforms,
SIViP(8), No. 8, November 2014, pp. 1543-1553.
Springer DOI 1411
BibRef

Wang, Q., Yan, X., Qin, K.,
High-Precision, Permanently Stable, Modulated Hopping Discrete Fourier Transform,
SPLetters(22), No. 6, June 2015, pp. 748-751.
IEEE DOI 1411
Accuracy BibRef

Hu, W.[Wei], Cheung, G., Ortega, A., Au, O.C.,
Multiresolution Graph Fourier Transform for Compression of Piecewise Smooth Images,
IP(24), No. 1, January 2015, pp. 419-433.
IEEE DOI 1502
Fourier transforms BibRef

Gnutti, A., Guerrini, F., Leonardi, R., Ortega, A.,
Coding of Image Intra Prediction Residuals Using Symmetric Graphs,
ICIP19(131-135)
IEEE DOI 1910
Graph Fourier Transforms, symmetry, non-separable directional transforms, fast implementation BibRef

Hu, W.[Wei], Cheung, G.[Gene], Ortega, A.,
Intra-Prediction and Generalized Graph Fourier Transform for Image Coding,
SPLetters(22), No. 11, November 2015, pp. 1913-1917.
IEEE DOI 1509
Fourier transforms BibRef

Su, W.T., Cheung, G., Lin, C.W.,
Graph fourier transform with negative edges for depth image coding,
ICIP17(1682-1686)
IEEE DOI 1803
Correlation, Eigenvalues and eigenfunctions, Fourier transforms, Image coding, Laplace equations, Symmetric matrices, transform coding BibRef

Kang, X.J.[Xue-Jing], Zhang, F.[Feng], Tao, R.[Ran],
Multichannel Random Discrete Fractional Fourier Transform,
SPLetters(22), No. 9, September 2015, pp. 1340-1344.
IEEE DOI 1503
discrete Fourier transforms BibRef

Xu, L., Tao, R.[Ran], Zhang, F.[Feng],
Multichannel Consistent Sampling and Reconstruction Associated With Linear Canonical Transform,
SPLetters(24), No. 5, May 2017, pp. 658-662.
IEEE DOI 1704
Distortion BibRef

Solorza-Calderón, S.[Selene], Verdugo-Olachea, J.[Jonathan],
A RFM Pattern Recognition System Invariant to Rotation, Scale and Translation,
CIARP15(477-484).
Springer DOI 1511
Radon-Fourier-Mellin BibRef

Polat, G.[Gokhan], Ozturk, S.[Sitki], Yakut, M.[Mehmet],
Design and Implementation of 256-Point Radix-4 100 Gbit/s FFT Algorithm into FPGA for High-Speed Applications,
ETRI(37), No. 4, August 2015, pp. 667-676.
DOI Link 1511
BibRef

Li, J.[Jia], Duan, L.Y.[Ling-Yu], Chen, X.W.[Xiao-Wu], Huang, T.J.[Tie-Jun], Tian, Y.H.[Yong-Hong],
Finding the Secret of Image Saliency in the Frequency Domain,
PAMI(37), No. 12, December 2015, pp. 2428-2440.
IEEE DOI 1512
discrete Fourier transforms BibRef

Cheng, C.[Chen], Yu, F.[Feng],
An Optimum Architecture for Continuous-Flow Parallel Bit Reversal,
SPLetters(22), No. 12, December 2015, pp. 2334-2338.
IEEE DOI 1512
fast Fourier transforms BibRef

Dun, Y.J.[Yu-Jie], Liu, G.Z.[Gui-Zhong],
A Fine-Resolution Frequency Estimator in the Odd-DFT Domain,
SPLetters(22), No. 12, December 2015, pp. 2489-2493.
IEEE DOI 1512
audio signal processing BibRef

Wen, F.[Fuxi], So, H.C.[Hing Cheung],
Robust Multi-Dimensional Harmonic Retrieval Using Iteratively Reweighted HOSVD,
SPLetters(22), No. 12, December 2015, pp. 2464-2468.
IEEE DOI 1512
frequency estimation BibRef

Pei, S.C.[Soo-Chang], Chang, K.W.[Kuo-Wei],
Integer 2-D Discrete Fourier Transform Pairs and Eigenvectors using Ramanujan's Sum,
SPLetters(23), No. 1, January 2016, pp. 70-74.
IEEE DOI 1601
discrete Fourier transforms BibRef

Pei, S.C.[Soo-Chang], Chang, K.W.[Kuo-Wei],
Closed-Form Orthogonal Ramanujan Integer Basis,
SPLetters(24), No. 1, January 2017, pp. 1-1.
IEEE DOI 1702
discrete Fourier transforms BibRef

Khalid, Z., Durrani, S., Kennedy, R.A., Wiaux, Y., McEwen, J.D.,
Gauss-Legendre Sampling on the Rotation Group,
SPLetters(23), No. 2, February 2016, pp. 207-211.
IEEE DOI 1602
Fourier transforms. Sampling so that FT can be computed directly. BibRef

Park, S.H.[Sang-Hyo], Choi, K.[Kiho], Jang, E.S.,
Zero coefficient-aware fast butterfly-based inverse discrete cosine transform algorithm,
IET-IPR(10), No. 2, 2016, pp. 89-100.
DOI Link 1602
computational complexity BibRef

Ahmed, A.[Adeel], Hu, Y.F.[Yim Fun], Noras, J.M.[James M.], Pillai, P.[Prashant],
A universal two-way approach for estimating unknown frequencies for unknown number of sinusoids in a signal based on eigenspace analysis of Hankel matrix,
SIViP(10), No. 3, March 2016, pp. 543-549.
Springer DOI 1602
BibRef

Bey, N.Y.[Nourédine Yahya],
Multi-resolution Fourier Analysis: achieved high resolutions with suppressed finite observation effects,
SIViP(10), No. 4, April 2016, pp. 711-718.
Springer DOI 1604
BibRef

Fedorenko, S.V.[Sergei Valentinovich],
Improving the Goertzel-Blahut Algorithm,
SPLetters(23), No. 6, June 2016, pp. 824-827.
IEEE DOI 1606
method for computing the discrete Fourier transform. BibRef

Aubry, A., Carotenuto, V., Maio, A.D.,
New Results on Generalized Fractional Programming Problems With Toeplitz Quadratics,
SPLetters(23), No. 6, June 2016, pp. 848-852.
IEEE DOI 1606
Discrete Fourier transforms BibRef

Djukanovic, S.,
An Accurate Method for Frequency Estimation of a Real Sinusoid,
SPLetters(23), No. 7, July 2016, pp. 915-918.
IEEE DOI 1608
discrete Fourier transforms BibRef

Hu, X., Tong, N., Zhang, Y., He, X., Wang, Y.,
Moving Target's HRRP Synthesis With Sparse Frequency-Stepped Chirp Signal via Atomic Norm Minimization,
SPLetters(23), No. 9, September 2016, pp. 1212-1215.
IEEE DOI 1609
Fourier transforms BibRef

Tian, N.L.[Ni-Li], Zhang, X.Z.[Xiao-Zhi], Ling, B.W.K.[Bingo Wing-Kuen], Yang, Z.J.[Zhi-Jing],
Two-dimensional discrete fractional Fourier transform-based content removal algorithm,
SIViP(10), No. 7, October 2016, pp. 1311-1318.
Springer DOI 1609
BibRef

Ongie, G.[Greg], Jacob, M.[Mathews],
Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples,
SIIMS(9), No. 3, 2016, pp. 1004-1041.
DOI Link 1610
BibRef

Shi, J.[Jun], Han, M.[Mo], Zhang, N.T.[Nai-Tong],
Uncertainty principles for discrete signals associated with the fractional Fourier and linear canonical transforms,
SIViP(10), No. 8, November 2016, pp. 1519-1525.
WWW Link. 1610
BibRef

Shang, H.[Haolu], Jia, L.[Li], Menenti, M.[Massimo],
Modeling and Reconstruction of Time Series of Passive Microwave Data by Discrete Fourier Transform Guided Filtering and Harmonic Analysis,
RS(8), No. 11, 2016, pp. 970.
DOI Link 1612
BibRef

Gudovskiy, D.A.[Denis A.], Chu, L.C.[Li-Chung],
An Accurate and Stable Sliding DFT Computed by a Modified CIC Filter,
SPMag(34), No. 1, January 2017, pp. 89-93.
IEEE DOI 1702
[Tips and Tricks] cascade networks BibRef

Serbes, A.,
Compact Fractional Fourier Domains,
SPLetters(24), No. 4, April 2017, pp. 427-431.
IEEE DOI 1704
Fourier transforms BibRef

Zhao, H., Zhao, X., Zhang, T., Liu, Y.,
A New Contourlet Transform With Adaptive Directional Partitioning,
SPLetters(24), No. 6, June 2017, pp. 843-847.
IEEE DOI 1705
Computed tomography, Discrete Fourier transforms, Energy states, Image reconstruction, Partitioning algorithms, Redundancy, Adaptive contourlet transform (ACT), adaptive directional partitioning, image sparse representation, pseudopolar Fourier transform, (PPFT) BibRef

Pruša, Z., Rajmic, P.,
Toward High-Quality Real-Time Signal Reconstruction From STFT Magnitude,
SPLetters(24), No. 6, June 2017, pp. 892-896.
IEEE DOI 1705
Delays, Lenses, Real-time systems, Signal processing algorithms, Spectrogram, Time-frequency analysis, Phase reconstruction, real-time, short-time Fourier transform (STFT), spectrogram, time-frequency BibRef

Zakaria, R., Le Ruyet, D.,
Analysis of the FFT-FBMC Equalization in Selective Channels,
SPLetters(24), No. 6, June 2017, pp. 897-901.
IEEE DOI 1705
Demodulation, Equalizers, Frequency modulation, Indexes, MIMO, OFDM, Channel equalization, FFT-FBMC, filter-bank multicarrier, frequency, selective, channel BibRef

Grado, L.L., Johnson, M.D., Netoff, T.I.,
The Sliding Windowed Infinite Fourier Transform,
SPMag(34), No. 5, September 2017, pp. 183-188.
IEEE DOI 1709
Tips Tricks. Algorithm design and analysis, Discrete Fourier transforms, Filtering algorithms, IIR filters, Resonator filters, Signal, processing, algorithms BibRef

Guo, W.H.[Wei-Hong], Song, G.[Guohui], Zhang, Y.[Yue],
PCM-TV-TFV: A Novel Two-Stage Framework for Image Reconstruction from Fourier Data,
SIIMS(10), No. 4, 2017, pp. 2250-2274.
DOI Link 1801
BibRef

So, S., Paliwal, K.K.,
Reconstruction of a Signal from the Real Part of Its Discrete Fourier Transform,
SPMag(35), No. 2, March 2018, pp. 162-174.
IEEE DOI 1804
[Tips Tricks] Discrete Fourier transforms, Image reconstruction, Imaging, Speech enhancement, Speech processing, Tutorials, Ultrasonic imaging BibRef

Ermeydan, E.S.[Esra Sengun], Cankaya, I.[Ilyas],
Sparse fast Fourier transform for exactly sparse signals and signals with additive Gaussian noise,
SIViP(12), No. 3, March 2018, pp. 445-452.
WWW Link. 1804
BibRef

Kutyniok, G.[Gitta], Lim, W.Q.[Wang-Q],
Optimal Compressive Imaging of Fourier Data,
SIIMS(11), No. 1, 2018, pp. 507-546.
DOI Link 1804
BibRef

Rafii, Z.,
Sliding Discrete Fourier Transform with Kernel Windowing,
SPMag(35), No. 6, November 2018, pp. 88-92.
IEEE DOI 1812
[Lecture Notes Article] discrete cosine transforms, discrete Fourier transforms, spectral analysis, discrete Fourier transform, Audio compression BibRef

Kollar, Z., Plesznik, F., Trumpf, S.,
Observer-Based Recursive Sliding Discrete Fourier Transform,
SPMag(35), No. 6, November 2018, pp. 100-106.
IEEE DOI 1812
[Tips & Tricks Article] discrete Fourier transforms, frequency-domain analysis, observers, signal processing, time-domain analysis, DFT, time window, Numerical stability BibRef

Yang, C.Z.[Cheng-Zhuan], Yu, Q.[Qian],
Multiscale Fourier descriptor based on triangular features for shape retrieval,
SP:IC(71), 2019, pp. 110-119.
Elsevier DOI 1901
Content-based image retrieval, Fourier descriptors, Triangular feature, Shape retrieval BibRef

Shaik, B.S., Chakka, V.K., Reddy, A.S.,
A New Signal Representation Using Complex Conjugate Pair Sums,
SPLetters(26), No. 2, February 2019, pp. 252-256.
IEEE DOI 1902
discrete Fourier transforms, signal representation, complex conjugate pair sum, CCPS, complex conjugate subspace, CCPT dictionary BibRef

Shah, S.B., Chakka, V.K., Reddy, A.S.,
On Complex Conjugate Pair Sums and Complex Conjugate Subspaces,
SPLetters(26), No. 9, September 2019, pp. 1403-1407.
IEEE DOI 1909
Image edge detection, Transforms, Convolution, Linear systems, Computational complexity, Radar tracking, Indexes, projections BibRef

Colominas, M.A., Meignen, S., Pham, D.,
Time-Frequency Filtering Based on Model Fitting in the Time-Frequency Plane,
SPLetters(26), No. 5, May 2019, pp. 660-664.
IEEE DOI 1905
filtering theory, Fourier transforms, frequency estimation, signal processing, time-frequency analysis, mode retrieval BibRef

Huang, Z.Y.[Zi-Yin], Ling, B.W.K.[Bingo Wing-Kuen],
De-Hankelization of singular spectrum analysis matrices via L1 norm criterion,
SIViP(13), No. 5, July 2019, pp. 933-940.
Springer DOI 1906
BibRef

Anh, P.K., Castro, L.P., Thao, P.T., Tuan, N.M.,
New sampling theorem and multiplicative filtering in the FRFT domain,
SIViP(13), No. 5, July 2019, pp. 951-958.
Springer DOI 1906
fractional Fourier transform. BibRef

Fedorenko, S.V.,
Efficient Syndrome Calculation via the Inverse Cyclotomic Discrete Fourier Transform,
SPLetters(26), No. 9, September 2019, pp. 1320-1324.
IEEE DOI 1909
convolutional codes, cyclic codes, discrete Fourier transforms, inverse transforms, Reed-Solomon codes, Reed-Solomon codes BibRef

Walek, P.[Petr], Jan, J.[Jiri],
Two-dimensional shape-adaptive windowing functions for image analysis,
IET-IPR(13), No. 11, 19 September 2019, pp. 1853-1861.
DOI Link 1909
local 2D Fourier transform computations. BibRef

Koç, A.[Aykut],
Operator theory-based discrete fractional Fourier transform,
SIViP(13), No. 7, October 2019, pp. 1461-1468.
WWW Link. 1911
BibRef

Uriostegui, K.[Kenan],
Discrete Bargmann transform,
JOSA-A(36), No. 8, August 2019, pp. 1367-1373.
DOI Link 1912
Coherent states, Fourier transforms, Fractional Fourier transforms, Transforms BibRef

Wang, K.[Kai], Wen, H.[He], Tai, W.[Wensi], Li, G.Q.[Guo-Qing],
Estimation of Damping Factor and Signal Frequency for Damped Sinusoidal Signal by Three Points Interpolated DFT,
SPLetters(26), No. 12, December 2019, pp. 1927-1930.
IEEE DOI 2001
Discrete Fourier transforms, Signal processing algorithms, Damping, Frequency-domain analysis, Frequency estimation, frequency-domain interpolation BibRef

Wang, K.[Kai], Wen, H.[He], Xu, L.[Li], Wang, L.L.[Lan-Lan],
Two Points Interpolated DFT Algorithm for Accurate Estimation of Damping Factor and Frequency,
SPLetters(28), 2021, pp. 499-502.
IEEE DOI 2103
Discrete Fourier transforms, Frequency estimation, Damping, Simulation, Signal processing algorithms, Noise measurement, spectral leakage BibRef

Liu, Y., Miao, H., Zhang, F., Tao, R.,
Sliding 2D Discrete Fractional Fourier Transform,
SPLetters(26), No. 12, December 2019, pp. 1733-1737.
IEEE DOI 2001
discrete Fourier transforms, signal processing, two-dimensional discrete fractional Fourier transform, BibRef

Feng, Q.A.[Qi-Ang], Wang, R.B.[Rong-Bo],
Fractional convolution, correlation theorem and its application in filter design,
SIViP(14), No. 2, March 2020, pp. 351-358.
Springer DOI 2003
fractional Fourier transform BibRef

Xu, G.L.[Guan-Lei], Xu, X.G.[Xiao-Gang], Wang, X.[Xun], Wang, X.T.[Xiao-Tong],
Generalized Cramér-Rao inequality and uncertainty relation for Fisher information on FrFT,
SIViP(14), No. 3, April 2020, pp. 499-507.
Springer DOI 2004
fractional Fourier transform. BibRef

Teyfouri, N., Rabbani, H., Kafieh, R., Jabbari, I.,
An Exact and Fast CBCT Reconstruction via Pseudo-Polar Fourier Transform-Based Discrete Grangeat's Formula,
IP(29), 2020, pp. 5832-5847.
IEEE DOI 2005
Radon, Image reconstruction, Interpolation, Frequency-domain analysis, Grangeat's formula BibRef

Zhao, T., Blu, T.,
The Fourier-Argand Representation: An Optimal Basis of Steerable Patterns,
IP(29), 2020, pp. 6357-6371.
IEEE DOI 2006
Convolution, Two dimensional displays, Image edge detection, Approximation error, Approximation algorithms, pattern matching BibRef

Ma, J., Tao, R., Li, Y., Kang, X.,
Fractional Power Spectrum and Fractional Correlation Estimations for Nonuniform Sampling,
SPLetters(27), 2020, pp. 930-934.
IEEE DOI 2007
Estimation, Nonuniform sampling, Perturbation methods, Correlation, Fourier transforms, Interpolation, Time-domain analysis, power spectral density BibRef

Laurent, N., Meignen, S.,
A Novel Time-Frequency Technique for Mode Retrieval Based on Linear Chirp Approximation,
SPLetters(27), 2020, pp. 935-939.
IEEE DOI 2007
Chirp, Time-frequency analysis, Transforms, Estimation, Noise measurement, Indexes, Data mining, Time-frequency, linear chirp approximation BibRef

Zhang, Q.[Qi], Zhu, J.[Jiang], Zhang, N.[Ning], Xu, Z.W.[Zhi-Wei],
Multidimensional Variational Line Spectra Estimation,
SPLetters(27), 2020, pp. 945-949.
IEEE DOI 2007
Frequency estimation, Probability density function, Estimation, Computational complexity, Bayes methods, multidimensional frequency estimation BibRef

Ren, K.[Ke], Du, L.[Lan], Lu, X.F.[Xiao-Fei], Zhuo, Z.Y.[Zhen-Yu], Li, L.[Lu],
Instantaneous Frequency Estimation Based on Modified Kalman Filter for Cone-Shaped Target,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Troncoso Romero, D.E., Cruz Jimenez, M.G.,
Simplifying Single-Bin Discrete Fourier Transform Computations,
SPMag(38), No. 2, March 2021, pp. 130-136.
IEEE DOI 2103
Tips, Tricks. Finite impulse response filters, Discrete Fourier transforms, Digital signal processing, Computer architecture, Complexity theory BibRef

Lyons, R.[Richard], Howard, C.[Carl],
Improvements to the Sliding Discrete Fourier Transform Algorithm,
SPMag(38), No. 4, July 2021, pp. 119-127.
IEEE DOI 2107
[Tips Tricks]. Quantization (signal), Current measurement, Discrete Fourier transforms, Signal processing algorithms, Computational efficiency BibRef

Kartal, B.[Bunyamin], Bayiz, Y.E.[Yigit E.], Koç, A.[Aykut],
Graph Signal Processing: Vertex Multiplication,
SPLetters(28), 2021, pp. 1270-1274.
IEEE DOI 2107
Measurement, Location awareness, Fourier transforms, Frequency-domain analysis, Time series analysis, Directed graphs, vertex multiplication BibRef

Zhang, Z.C.[Zhi-Chao], Shi, X.[Xiya], Wu, A.Y.[An-Yang], Li, D.[Dong],
Sharper N-D Heisenberg's Uncertainty Principle,
SPLetters(28), 2021, pp. 1665-1669.
IEEE DOI 2109
Uncertainty, Time-domain analysis, Information technology, Information science, Fourier transforms, Chirp, N-dimensional Fourier transform BibRef

Xue, D.L.[Ding-Li], DeBrunner, L.S.[Linda S.], DeBrunner, V.[Victor], Huang, Z.[Zhen],
Split-Radix Algorithm for the Discrete Hirschman Transform,
SPLetters(29), 2022, pp. 199-203.
IEEE DOI 2202
Signal processing algorithms, Discrete Fourier transforms, Shape, Arithmetic, Hardware, Convolution, Computational complexity, DHT, HOT, convolution BibRef

Chen, T.Q.[Tie-Qiao], Su, X.Q.[Xiu-Qin], Li, H.W.[Hai-Wei], Li, S.Y.[Si-Yuan], Liu, J.[Jia], Zhang, G.[Geng], Feng, X.P.[Xiang-Peng], Wang, S.[Shuang], Liu, X.B.[Xue-Bin], Wang, Y.H.[Yi-Hao], Zou, C.[Chunbo],
Learning a Fully Connected U-Net for Spectrum Reconstruction of Fourier Transform Imaging Spectrometers,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Huang, G.[Gaowa], Zhang, F.[Feng], Tao, R.[Ran],
Sliding Short-Time Fractional Fourier Transform,
SPLetters(29), 2022, pp. 1823-1827.
IEEE DOI 2209
Signal processing algorithms, Computational complexity, Time-frequency analysis, Throughput, sliding window BibRef

Portella, L.[Luan], Coelho, D.F.G.[Diego F. G.], Bayer, F.M.[Fábio M.], Madanayake, A.[Arjuna], Cintra, R.J.[Renato J.],
Radix-N Algorithm for Computing N^(2^(n))-Point DFT Approximations,
SPLetters(29), 2022, pp. 1838-1842.
IEEE DOI 2209
Discrete Fourier transforms, Complexity theory, Signal processing algorithms, Approximation algorithms, approximation BibRef

Sahinuç, F.[Furkan], Koç, A.[Aykut],
Fractional Fourier Transform Meets Transformer Encoder,
SPLetters(29), 2022, pp. 2258-2262.
IEEE DOI 2212
Computational modeling, Transformers, Task analysis, Deep learning, Training, Fourier transforms, Convolution, Encoder, FNet, Transformer BibRef

Qiao, H.[Heng], Yu, H.Q.[Hong-Qing],
On Landscape of Nonconvex Regularized Least Squares for Sparse Support Recovery,
SPLetters(29), 2022, pp. 2467-2471.
IEEE DOI 2212
Signal processing algorithms, Noise measurement, Compressed sensing, Superresolution, Stability analysis, separation prior BibRef

Roonizi, A.K.[Arman Kheirati],
Fourier Analysis: A new computing approach,
SPMag(40), No. 1, January 2023, pp. 183-191.
IEEE DOI 2301
Lecture Notes. BibRef

Levinson, H.W.[Howard W.], Markel, V.[Vadim], Triantafillou, N.[Nicholas],
Inversion of Band-Limited Discrete Fourier Transforms of Binary Images: Uniqueness and Algorithms,
SIIMS(16), No. 3, 2023, pp. 1338-1369.
DOI Link 2309
BibRef

Monroe, B.D.[By Don],
Quantum Speedup for the Fast Fourier Transform?,
CACM(66), No. 11, November 2023, pp. 8-10.
DOI Link 2310
It is difficult to improve on the widely used, already-efficient algorithm. BibRef

Cheng, C.[Chunbo], Zhang, L.M.[Li-Ming], Li, H.[Hong], Dai, L.[Lei], Cui, W.J.[Wen-Jing],
A Deep Stochastic Adaptive Fourier Decomposition Network for Hyperspectral Image Classification,
IP(33), 2024, pp. 1080-1094.
IEEE DOI 2402
Feature extraction, Convolution, Deep learning, Kernel, Hyperspectral imaging, Convolutional neural networks, Training, HSIs classification BibRef

He, C.[Can], Zhang, L.M.[Li-Ming], He, X.J.[Xiang-Jian], Jia, W.J.[Wen-Jing],
A New Image Decomposition and Reconstruction Approach: Adaptive Fourier Decomposition,
MMMod15(II: 227-236).
Springer DOI 1501
BibRef

Onural, L.[Levent],
A Class of Impulsive Eigenfunctions of Multidimensional Fourier Transform,
SPLetters(31), 2024, pp. 761-764.
IEEE DOI 2403
Fourier transforms, Eigenvalues and eigenfunctions, Manifolds, Frequency-domain analysis, Vectors, Reviews, Linearity, eigenfunctions BibRef

Alrwashdeh, M.[Monther], Czifra, B.[Balázs], Kollár, Z.[Zsolt],
Analysis of Quantization Noise in Fixed-Point HDFT Algorithms,
SPLetters(31), 2024, pp. 756-760.
IEEE DOI 2403
Discrete Fourier transforms, Quantization (signal), Signal processing algorithms, Roundoff errors, Indexes, Transforms, UVT BibRef

Koç, E.[Emirhan], Alikasifoglu, T.[Tuna], Aras, A.C.[Arda Can], Koç, A.[Aykut],
Trainable Fractional Fourier Transform,
SPLetters(31), 2024, pp. 751-755.
IEEE DOI 2403
Vectors, Convolution, Training, Task analysis, Computational modeling, Time series analysis, Feature extraction, deep learning BibRef

Fu, Z.[Zunwei], Lin, Y.[Yan], Yang, D.[Dachun], Yang, S.H.[Shu-Hui],
Fractional Fourier Transforms Meet Riesz Potentials and Image Processing,
SIIMS(17), No. 1, 2024, pp. 476-500.
DOI Link 2404
BibRef

Li, Z.[Zhen], Gao, Z.Q.[Zhao-Qi], Chen, L.[Liang], Gao, J.H.[Jing-Huai], Xu, Z.B.[Zong-Ben],
The Synchrosqueezed Method and Its Theory-Analysis-Based Novel Short-Time Fractional Fourier Transform for Chirp Signals,
RS(16), No. 7, 2024, pp. 1173.
DOI Link 2404
BibRef

Solak, V.[Veyis], Serbes, A.[Ahmet],
A Novel DFT-Based Algorithm for 2-D Multiple Sinusoidal Frequency Estimation,
SPLetters(31), 2024, pp. 999-1003.
IEEE DOI 2404
Signal processing algorithms, Frequency estimation, Discrete Fourier transforms, Signal to noise ratio, Estimation, multiple frequency estimation BibRef

Alikasifoglu, T.[Tuna], Kartal, B.[Bünyamin], Koç, A.[Aykut],
Wiener Filtering in Joint Time-Vertex Fractional Fourier Domains,
SPLetters(31), 2024, pp. 1319-1323.
IEEE DOI 2405
Filters, Wiener filters, Signal processing, Discrete Fourier transforms, Vectors, Symmetric matrices, signal processing on graphs BibRef

Pavlícek, V.[Václav], Bhandari, A.[Ayush],
Sparse Sampling in Fractional Fourier Domain: Recovery Guarantees and Cramér-Rao Bounds,
SPLetters(31), 2024, pp. 1665-1669.
IEEE DOI 2407
Transforms, Convolution, Time-domain analysis, Kernel, Harmonic analysis, Hardware, Discrete Fourier transforms, Sparse Sampling BibRef

Zou, L.L.[Li-Long], Li, Y.[Ying], Alani, A.M.[Amir M.],
Pseudopolar Format Matrix Description of Near-Range Radar Imaging and Fractional Fourier Transform,
RS(16), No. 13, 2024, pp. 2482.
DOI Link 2407
BibRef

Tapia, R.[Raul], Martínez-de Dios, J.R.[José Ramiro], Ollero, A.[Anibal],
eFFT: An Event-Based Method for the Efficient Computation of Exact Fourier Transforms,
PAMI(46), No. 12, December 2024, pp. 9630-9647.
IEEE DOI 2411
Fast Fourier transforms, Fourier transforms, Cameras, Hardware, Streaming media, Software algorithms, Time-frequency analysis, fast Fourier transform BibRef


Shi, K.X.[Ke-Xuan], Zhou, X.Y.[Xing-Yu], Gu, S.H.[Shu-Hang],
Improved Implicit Neural Representation with Fourier Reparameterized Training,
CVPR24(25985-25994)
IEEE DOI Code:
WWW Link. 2410
Training, Accuracy, Codes, Training data, Computer architecture, Network architecture BibRef

Shigeto, Y.[Yutaro], Shimbo, M.[Masashi], Yoshikawa, Y.[Yuya], Takeuchi, A.[Akikazu],
Learning Decorrelated Representations Efficiently Using Fast Fourier Transform,
CVPR23(2052-2060)
IEEE DOI 2309
BibRef

Wu, Z.J.[Zhi-Jie], Jin, Y.[Yuhe], Yi, K.M.[Kwang Moo],
Neural Fourier Filter Bank,
CVPR23(14153-14163)
IEEE DOI 2309
BibRef

Dou, Y.[Yishun], Zheng, Z.[Zhong], Jin, Q.Q.[Qiao-Qiao], Ni, B.B.[Bing-Bing],
Multiplicative Fourier Level of Detail,
CVPR23(1808-1817)
IEEE DOI 2309
BibRef

Blumstein, M.[Mark], Kvinge, H.[Henry],
Multi-Dimensional Scaling on Groups,
TAG-CV21(4222-4227)
IEEE DOI 2112
Dimensionality reduction, Measurement, Frequency synthesizers, Voting, Discrete Fourier transforms BibRef

Kumar, V.[Vikash], Srivastava, S.[Sarthak], Lal, R.[Rohit], Chakraborty, A.[Anirban],
CAFT: Class Aware Frequency Transform for Reducing Domain Gap,
TradiCV21(2525-2534)
IEEE DOI 2112
Training, Adaptation models, Fourier transforms, Webcams, Image processing, Scalability, Predictive models BibRef

Chandrasegaran, K.[Keshigeyan], Tran, N.T.[Ngoc-Trung], Cheung, N.M.[Ngai-Man],
A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection,
CVPR21(7196-7205)
IEEE DOI 2111
Systematics, Codes, Forensics, Computational modeling, Detectors, Computer architecture BibRef

Qian, Y.L.[Yan-Lin], Shi, M.J.[Miao-Jing], Kämäräinen, J.K.[Joni-Kristian], Matas, J.G.[Jirí G.],
Fast Fourier Intrinsic Network,
WACV21(3168-3177)
IEEE DOI 2106
Training, Estimation, Lighting, Network architecture, Loss measurement, Image decomposition, Task analysis BibRef

Yamashita, Y.[Yukihiko], Wakahara, T.[Toru],
Stabilized Calculation of Gaussian Smoothing and Its Differentials Using Attenuated Sliding Fourier Transform,
ICPR21(1128-1135)
IEEE DOI 2105
Smoothing methods, Fourier transforms, Image processing, Image edge detection, Pattern recognition BibRef

Tang, M., Li, Z., Yang, Z., Zhan, Y., Su, J., Yu, W.,
GPU Accelerated Polar Fourier Analysis For Feature Extraction,
ICIP20(1406-1410)
IEEE DOI 2011
Graphics processing units, Instruction sets, Image resolution, Feature extraction, Acceleration, Parallel algorithms, GPU BibRef

Lu, K.S., Ortega, A., Mukherjee, D., Chen, Y.,
Perceptually Inspired Weighted MSE Optimization Using Irregularity-Aware Graph Fourier Transform,
ICIP20(3384-3388)
IEEE DOI 2011
Image coding, Transform coding, Quantization (signal), Discrete cosine transforms, Measurement, Fourier transforms, image compression BibRef

Xia, T., Liao, S.,
Color Image Filtering in Bessel-Fourier Moments Domain,
ICIVC20(75-81)
IEEE DOI 2009
Frequency-domain analysis, Image reconstruction, Color, Testing, Image color analysis, Information filtering, color image reconstruction BibRef

Alizadeh Vahid, K., Prabhu, A., Farhadi, A., Rastegari, M.,
Butterfly Transform: An Efficient FFT Based Neural Architecture Design,
CVPR20(12021-12030)
IEEE DOI 2008
Transforms, Computer architecture, Tensile stress, Complexity theory, Training, Computational modeling, Neural networks BibRef

Komatsu, T., Saito, T.,
Statistical Modeling for 3-D DFT Coefficients of Moving-Image Sequences and its Application to Denoising,
ICIP18(3194-3198)
IEEE DOI 1809
Solid modeling, Noise reduction, Discrete Fourier transforms, Noise measurement, Estimation, Computational modeling, moving-image processing BibRef

Gnutti, A., Guerrini, F., Leonardi, R., Ortega, A.,
Symmetry-Based Graph Fourier Transforms for Image Representation,
ICIP18(2575-2579)
IEEE DOI 1809
Discrete cosine transforms, Image reconstruction, Laplace equations, Eigenvalues and eigenfunctions, H.265 BibRef

Xu, C., Dai, W., Xiong, H.,
Extended conjugate polar fourier transform in convolution network,
ICIP17(2453-2457)
IEEE DOI 1803
Approximation algorithms, Convolution, Fourier transforms, Frequency-domain analysis, Wavelet domain, Wavelet transforms, wavelet BibRef

Komatsu, T., Tyon, K., Saito, T.,
3-D mean-separation-type short-time DFT with its application to moving-image denoising,
ICIP17(2961-2965)
IEEE DOI 1803
Indexes, 3-D transform, local-mean separation, phase-preserving-type shrinkage, short-time DFT, video processing BibRef

Kruse, J., Rother, C., Schmidt, U.,
Learning to Push the Limits of Efficient FFT-Based Image Deconvolution,
ICCV17(4596-4604)
IEEE DOI 1802
convolution, deconvolution, fast Fourier transforms, image restoration, learning (artificial intelligence), Optimization BibRef

Ongie, G.[Greg], Biswas, S.[Sampurna], Jacob, M.[Mathews],
Structured low-rank recovery of piecewise constant signals with performance guarantees,
ICIP16(963-967)
IEEE DOI 1610
Exact recovery limits from Fourier parameters. BibRef

Birdsong, J.B., Rummelt, N.I.,
The hexagonal fast fourier transform,
ICIP16(1809-1812)
IEEE DOI 1610
Digital images BibRef

Hascoet, J., Nezan, J.F., Ensor, A., de Dinechin, B.D.,
Implementation of a Fast Fourier transform algorithm onto a manycore processor,
DASIP15(1-7)
IEEE DOI 1605
fast Fourier transforms BibRef

Jia, J.[Jie], Hirakawa, K.[Keigo],
Single-shot fourier transform multispectroscopy,
ICIP15(4205-4209)
IEEE DOI 1512
Hyperspectral imaging BibRef

Prater, A.,
Sparse generalized Fourier series via collocation-based optimization,
AIPR14(1-8)
IEEE DOI 1504
Fourier series BibRef

Ekambaram, V.N.[Venkatesan N.], Fanti, G.C.[Giulia C.], Ayazifar, B.[Babak], Ramchandran, K.[Kannan],
Circulant structures and graph signal processing,
ICIP13(834-838)
IEEE DOI 1402
Discrete Fourier transforms BibRef

Wang, X.Y.[Xiao-Yu], Liao, S.[Simon],
Image Reconstruction from Orthogonal Fourier-Mellin Moments,
ICIAR13(687-694).
Springer DOI 1307
BibRef

Raj, A.N.J.[Alex Noel Joseph], Majeeth, S.S.[S. Shaik], Staunton, R.C.,
A comparison of FFT and DCT based Phase Correlation function for focused and defocused images,
IMVIP12(173-176).
IEEE DOI 1302
BibRef

Hsung, T.C.[Tai-Chiu], Lun, D.P.K.[Daniel Pak-Kong], Ng, W.W.L.[William W. L.],
Zero spectrum removal using joint bilateral filter for Fourier transform profilometry,
VCIP11(1-4).
IEEE DOI 1201
BibRef

Soldea, O.[Octavian], Unel, M.[Mustafa], Ercil, A.[Aytul],
Moments of Elliptic Fourier Descriptors,
ICPR10(3521-3524).
IEEE DOI 1008
BibRef

Timm, F.[Fabian], Martinetz, T.[Thomas],
Statistical Fourier Descriptors for Defect Image Classification,
ICPR10(4190-4193).
IEEE DOI 1008
BibRef

Dursun, S.[Serkan], Grigoryan, A.M.[Artyom M.],
Reversible Interger 2-D Discrete Fourier Transform by Control Bits,
ICPR10(4436-4439).
IEEE DOI 1008
BibRef

Wei, H.K.[Hong-Kai], Wang, P.B.[Ping-Bo], Cai, Z.M.[Zhi-Ming], Chen, B.Z.[Bao-Zhu], Yao, W.J.[Wan-Jun],
Application of particle swarm optimization method in fractional Fourier transform,
IASP10(442-445).
IEEE DOI 1004
BibRef

Bowles, T.[Terry], Erickson, J.E.[Jeffrey E.],
An examination of frequency indexes used in the non-uniform DFT,
Southwest10(77-80).
IEEE DOI 1005
BibRef

Mavandadi, S.[Sam], Aarabi, P.[Parham], Plataniotis, K.N.,
Fourier-based Rotation Invariant image features,
ICIP09(2041-2044).
IEEE DOI 0911
BibRef

Mahgoub, A.[Ahmed], Nguyen, T.[Thanh], Desbiens, R.[Raphael], Zaccarin, A.[Andre],
Aligning the frames of a non stationary imaging Fourier transform spectrometer for spectrum retrieval,
ICIP09(573-576).
IEEE DOI 0911
BibRef

Xie, J.H.[Jun-Hao], Wang, Z.X.[Ze-Xun],
Probability Density Function Estimation Based on Windowed Fourier Transform of Characteristic Function,
CISP09(1-4).
IEEE DOI 0910
PDF is Fourier Transform of Characteristic Function. BibRef

Shi, L.X.[Li-Xin], Zhang, J.X.[Jun-Xing], Han, G.Y.[Gui-Ying],
Multiple Fundamental Frequency Estimation Based on Harmonic Structure Model,
CISP09(1-4).
IEEE DOI 0910
BibRef

Luo, X.L.[Xiang-Long], Gao, J.H.[Jing-Huai],
Instantaneous Frequency Estimation Using WVD and Local SVD,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wang, J.M.[Jian-Ming], Woods, B., Eddy, W.F.,
MEG, RFFTs, and the Hunt for High Frequency Oscillations,
CISP09(1-5).
IEEE DOI 0910
BibRef

Dong, L.F.[Li-Fang], Yang, Y.J.[Yu-Jie], Yue, H.[Han], Wang, S.A.[Shu-Ai], He, Y.F.[Ya-Feng],
Analysis of the Characteristic of Spots in Square Superlattice Pattern by Image Processing,
CISP09(1-4).
IEEE DOI 0910
BibRef

Dong, L.F.[Li-Fang], Yue, H.[Han], Xiao, H.[Hong], Yang, Y.J.[Yu-Jie], Wang, S.A.[Shu-Ai],
Analysis of the Pattern Evolution Based on Spatial Correlation and Fourier Spectra Technique,
CISP09(1-4).
IEEE DOI 0910
BibRef

Dong, L.F.[Li-Fang], Xiao, H.[Hong], Zhao, H.T.[Hai-Tao], Yue, H.[Han], He, Y.F.[Ya-Feng],
Analysis of Competition between Patterns by Using Fast Fourier Transform,
CISP09(1-4).
IEEE DOI 0910
BibRef

Xiang, X.[Xiao], Chi, X.F.[Xue-Fen], Pan, W.R.[Wu-Rong], Wang, Y.N.[Yi-Ning],
An Adaptive Spectrum Sensing Algorithm Based on Eigenvalue Decomposition,
CISP09(1-5).
IEEE DOI 0910
BibRef

Ding, K.[Kang], Zhu, W.Y.[Wen-Ying], Yang, Z.J.[Zhi-Jian], Li, W.H.[Wei-Hua],
Anti-Noise Performance and Parameter Estimation Accuracy of FFT and FT Discrete Spectrum Correction,
CISP09(1-5).
IEEE DOI 0910
BibRef

Li, H.J.[Hai-Jun], Yan, C.J.[Cao-Jun], Peng, W.B.[Wen-Biao],
Double factors algorithm for computing DFT,
IASP09(133-137).
IEEE DOI 0904
BibRef

Bhat, P.[Pravin], Curless, B.[Brian], Cohen, M.[Michael], Zitnick, C.L.[C. Lawrence],
Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,
ECCV08(II: 114-128).
Springer DOI 0810
Reconstruct 2D function. BibRef

Signes Pont, M.T.[María Teresa], García Chamizo, J.M.[Juan Manuel], Mora Mora, H.[Higinio], de Miguel Casado, G.[Gregorio],
Improvement of Image Transform Calculation Based on a Weighted Primitive,
ICIAR06(I: 260-271).
Springer DOI 0610
Computation techniques. Fourier and Hough. BibRef

Gluckman, J.M.[Joshua M.],
Higher Order Whitening of Natural Images,
CVPR05(II: 354-360).
IEEE DOI 0507
Process power spectrum to remove redundancies. BibRef

Papoidis, E.V., Stathaki, T.,
A DFT algoritrm based on filter banks: the extended subband DFT,
ICIP03(I: 1053-1056).
IEEE DOI 0312
BibRef

Chaker, F., Ghorbel, F.,
Application of affine invariant Fourier descriptors to stereo matching,
ICIP03(I: 389-392).
IEEE DOI 0312
BibRef

Chaker, F., Bannour, M.T., Ghorbel, F.,
A complete and stable set of affine-invariant Fourier descriptors,
CIAP03(578-581).
IEEE DOI 0310
BibRef

Sijbers, J., van Dyck, D.,
Efficient algorithm for the computation of 3D Fourier descriptors,
3DPVT02(640-643). 0206
BibRef

Sijbers, J., Ceulemans, T., van Dyck, D.,
Algorithm for the computation of 3D fourier descriptors,
ICPR02(II: 790-793).
IEEE DOI 0211
BibRef

Beaudoin, N., Beauchemin, S.S.,
An accurate discrete Fourier transform for image processing,
ICPR02(III: 935-939).
IEEE DOI 0211
BibRef

Michael, G., Porat, M.,
Image Reconstruction from Localized Fourier Magnitude,
ICIP01(I: 213-216).
IEEE DOI 0108
BibRef

Pattichis, M., Zhou, R., Raman, B.,
New Algorithms for Computing Directional Discrete Fourier Transforms,
ICIP01(III: 322-325).
IEEE DOI 0108
BibRef

Felsberg, M.[Michael], Sommer, G.[Gerald],
Optimized Fast Algorithms for the Quaternionic Fourier Transform,
CAIP99(209-216).
Springer DOI 9909
BibRef

Akhmetshin, A.M., Lyuboshenko, I.V.,
The Reconstruction of Signals and Images from the Noisy Fourier Transform Phase by Means of the Generalized Difference Principle,
ICPR96(II: 370-375).
IEEE DOI 9608
(Dniepropetrovsk State Univ., UKR) BibRef

Lyuboshenko, I.V., Akhmetshin, A.M.[Alexander M.],
Regularization of the Problem of Image Restoration from its Noisy Fourier Transform Phase,
ICIP96(I: 793-796).
IEEE DOI BibRef 9600

Chernov, V.M.[Vladimir M.],
Vector Radix FFT with Splitting the Radix of Fractional Order,
SCIA97(xx-yy)
HTML Version. 9705
BibRef
Earlier:
A Metric Unified Treatment of Two-Dimensional FFT,
ICPR96(II: 662-669).
IEEE DOI 9608
(Image Processing Systems Inst., RUS) BibRef

Bruckstein, A.M.[Alfred M.], Holt, R.J.[Robert J.], Netravali, A.N.[Arun N.],
Holographic image representations: The Fourier transform method,
CIAP97(II: 30-37).
Springer DOI 9709
BibRef

Maki, A.[Atsuto], Bretzner, L.[Lars], Eklundh, J.O.[Jan-Olof],
Local Fourier phase and disparity estimates: An analytical study,
CAIP95(868-873).
Springer DOI 9509
BibRef

Nikolova, M.,
Markovian reconstruction in computed imaging and Fourier synthesis,
ICIP94(II: 690-694).
IEEE DOI 9411
BibRef

Elbaz, M., Abraham, Z., Rubinstein, J., Zeevi, Y.,
Signal and image reconstruction from partial Fourier phase,
ICPR94(C:82-87).
IEEE DOI 9410
BibRef

Ruetz, P.A., Cai, M.M.,
A real time FFT chip set: architectural issues,
ICPR90(II: 385-388 vol 2).
IEEE DOI 9208
BibRef

Chen, S.S.[Su-Shing],
A New Vision System and the Fourier Descriptor Method by Group Representation Theory,
CVPR85(106-110). (NSF) Fourier Descriptors. Theory, maybe more later. BibRef 8500

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
DCT Computation .


Last update:Nov 26, 2024 at 16:40:19