Caianiello, E.R.,
Grimson, W.E.L.,
Methods of Analysis of Neural Nets,
BioCyber(22), 1976, pp. 1-6.
BibRef
7600
Caianiello, E.R.,
Grimson, W.E.L.,
Synthesis of Boolean Nets and Time Behavior of a
General Mathematical Neuron,
BioCyber(18), 1975, pp. 111-117.
BibRef
7500
Takiyama, R.[Ryuzo],
Multiple threshold perceptron,
PR(10), No. 1, 1978, pp. 27-30.
Elsevier DOI
0309
BibRef
Reilly, D.L.,
Cooper, L.N.,
Elbaum, C.,
A Neural Model for Category Learning,
BioCyber(45), 1982, pp. 35-41.
PDF File.
BibRef
8200
Fukushima, K.[Kunihiko],
Miyake, S.[Sei],
Neocognitron: A new algorithm for pattern recognition tolerant of
deformations and shifts in position,
PR(15), No. 6, 1982, pp. 455-469.
Elsevier DOI
0309
This algorithm can be realized with a multilayered network consisting
of neuron-like cells.
BibRef
Lippmann, R.P.[Richard P.],
Pattern Classification Using Neural Networks,
CommunMag(27), No. 11, November, 1989, pp. pp. 47-54.
Prototype based classifier faster than gradient descent.
BibRef
8911
Wu, C.H.[Chung-Hsien],
Wang, J.F.[Jhing-Fa],
Wu, W.H.[Wen-Horng],
A shunting multilayer perceptron network for confusing/composite
pattern recognition,
PR(24), No. 11, 1991, pp. 1093-1103.
Elsevier DOI
0401
BibRef
Hassoun, M.H., and
Song, J.,
Adaptive Ho-Kashyap Rules for Perceptron Training,
TNN(3), No. 1, 1992, pp. 51-61.
See also Algorithm for Linear Inequalities and its Applications, An.
BibRef
9200
Widrow, B., and
Winter, R.,
Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition,
Computer(21), No. 3, March 1988, pp. 25-39.
BibRef
8803
Fukushima, K.,
A Neural Network for Visual Pattern Recognition,
Computer(21), No. 3, March 1988, pp. 65-75.
BibRef
8803
Bilbro, G.L.,
Snyder, W.E.,
Garnier, S.J.,
Gault, J.W.,
Mean Field Annealing: A Formalism for Constructing GNC-Like Algorithms,
TNN(3), No. 1, January 1992, pp. xx.
BibRef
9201
Gupta, L.[Lalit],
Wang, J.S.[Jie-Sheng],
Charles, A.[Alain],
Kisatsky, P.[Paul],
Prototype selection rules for neural network training,
PR(25), No. 11, November 1992, pp. 1401-1408.
Elsevier DOI
0401
BibRef
Chou, W.S.[Wen-Shou],
Chen, Y.C.[Yung-Chang],
A new fast algorithm for effective training of neural classifiers,
PR(25), No. 4, April 1992, pp. 423-429.
Elsevier DOI
0401
BibRef
Yeung, D.Y.[Dit-Yan],
Constructive neural networks as estimators of bayesian discriminant
functions,
PR(26), No. 1, January 1993, pp. 189-204.
Elsevier DOI
0401
BibRef
Kim, H.J.[Ho J.],
Yang, H.S.[Hyun S.],
A Neural-Network Capable of Learning and Inference for
Visual-Pattern Recognition,
PR(27), No. 10, October 1994, pp. 1291-1302.
Elsevier DOI
BibRef
9410
Pham, D.T.,
Bayro-Corrochano, E.J.,
Self-organizing neural-network-based pattern clustering method with
fuzzy outputs,
PR(27), No. 8, August 1994, pp. 1103-1110.
Elsevier DOI
0401
BibRef
Abou-Nasr, M.A.,
Sid-Ahmed, M.A.,
Fast learning and efficient memory utilization with a prototype based
neural classifier,
PR(28), No. 4, April 1995, pp. 581-593.
Elsevier DOI
0401
prototype classifiers learn faster than gradient descent methods.
BibRef
Moh, J.[Jenlong],
Shih, F.Y.[Frank Y.],
A general purpose model for image operations based on multilayer
perceptrons,
PR(28), No. 7, July 1995, pp. 1083-1090.
Elsevier DOI
0401
BibRef
Wang, L.P.[Li-Po],
Alkon, D.L.[Daniel L.],
An artificial neural network system for temporal-spatial sequence
processing,
PR(28), No. 8, August 1995, pp. 1267-1276.
Elsevier DOI
0401
BibRef
Tumer, K.[Kagan],
Ghosh, J.[Joydeep],
Analysis of decision boundaries in linearly combined neural classifiers,
PR(29), No. 2, February 1996, pp. 341-348.
Elsevier DOI
0401
BibRef
Earlier:
Estimating the Bayes Error Rate Through Classifier Combining,
ICPR96(II: 695-699).
IEEE DOI
9608
(Univ. of Texas, Austin, USA)
BibRef
Jun, G.[Goo],
Ghosh, J.[Joydeep],
Nearest-Manifold Classification with Gaussian Processes,
ICPR10(914-917).
IEEE DOI
1008
BibRef
Ravichandran, A.,
Yegnanarayana, B.,
Studies on Object Recognition from Degraded Images
Using Neural Networks,
NeurNet(8), No. 3, 1995, pp. 481-488.
BibRef
9500
Graf, H.P.,
Nohl, C.R.,
Ben, J.,
Image Recognition with an Analog Neural-Net Chip,
MVA(8), No. 2, 1995, pp. 131-140.
BibRef
9500
Earlier:
ICPR92(IV:11-14).
IEEE DOI
9208
BibRef
Lin, W.G.[Wen-Gou],
Wang, S.S.[Shuenn-Shyang],
A Modified S-Neuron and Its Application to
Scale-Invariant Classification,
PR(28), No. 9, September 1995, pp. 1423-1432.
Elsevier DOI
BibRef
9509
Gazula, S.[Srinivas],
Kabuka, M.R.[Mansur R.],
Design of Supervised Classifiers Using Boolean Neural Networks,
PAMI(17), No. 12, December 1995, pp. 1239-1246.
IEEE DOI
BibRef
9512
And: A2 only:
Reply to: Comments on 'Design of Supervised Classifiers Using Boolean
Neural Networks',
PAMI(21), No. 9, September 1999, pp. 957-958.
IEEE DOI
See also Comments on Design of Supervised Classifiers Using Boolean Neural Networks.
BibRef
Hussain, B.,
Kabuka, M.R.,
A novel feature recognition neural network and its application to
character recognition,
PAMI(16), No. 1, January 1994, pp. 98-106.
IEEE DOI
0401
BibRef
Smith, G.,
Comments on 'Design of Supervised Classifiers Using Boolean Neural
Networks',
PAMI(21), No. 9, September 1999, pp. 956.
IEEE DOI
See also Design of Supervised Classifiers Using Boolean Neural Networks.
BibRef
9909
Ishii, S.,
Fukumizu, K., and
Watanabe, S.,
A net work of chaotic elements for information processing,
NeurNet(9), No. 1, January 1996, pp. 25-40.
Elsevier DOI
BibRef
9601
Grimes, C.,
Picton, P.D.,
Elliman, D.G.,
A Neural-Network Position-Independent Multiple Pattern Recogniser,
AIEng(10), No. 2, 1996, pp. 117-126.
BibRef
9600
di Zenzo, S.[Silvano],
Pattern recognition of collections,
IVC(1), No. 2, May 1983, pp. 93-97.
Elsevier DOI
0401
BibRef
di Zenzo, S.,
Burgess, N.,
Ferragina, P.,
Granieri, M.N.,
Recognition by Constructive Neural Algorithms,
PRL(14), No. 12, December 1993, pp. 997-1007.
BibRef
9312
Burgess, N.,
Granieri, M.N.,
A growing network classifier of 3D objects using multiple views,
ICPR92(II:512-515).
IEEE DOI
9208
BibRef
Ridella, S.,
Rovetta, S.,
Zunino, R.,
Circular Backpropagation Networks for Classification,
TNN(8), No. 1, January 1997, pp. 84-97.
9701
BibRef
Kanaoka, T.,
Chellappa, R.,
Yoshitaka, M.,
Tomita, S.,
A Higher-Order Neural Network for Distortion Invariant
Pattern Recognition,
PRL(13), 1992, pp. 837-841.
BibRef
9200
Kaita, T.[Takeshi],
Tomita, S.[Shingo],
Yamanaka, J.[Junkichi],
On a Higher-Order Neural Network for Distortion Invariant Pattern
Recognition,
PRL(23), No. 8, June 2002, pp. 977-984.
Elsevier DOI
0204
BibRef
Osman, H.,
Fahmy, M.M.,
On The Discriminatory Power Of Adaptive Feedforward Layered Networks,
PAMI(16), No. 8, August 1994, pp. 837-842.
IEEE DOI
BibRef
9408
Osman, H.,
Fahmy, M.M.,
Neural Classifiers and Statistical Pattern-Recognition:
Applications for Currently Established Links,
SMC-B(27), No. 3, June 1997, pp. 488-497.
IEEE Top Reference.
9706
BibRef
Hsu, T.C.,
Wang, S.D.,
The K1-Map Reduction for Pattern Classifications,
PAMI(19), No. 6, June 1997, pp. 616-622.
IEEE DOI
9708
An approach for Restricted Coulomb Energy (RCE) networks to determine the
number of clusters or network centers.
BibRef
Ray, K.S.,
Ghoshal, J.,
Neuro Fuzzy Approach to Pattern-Recognition,
NeurNet(10), No. 1, January 1997, pp. 161-182.
9702
BibRef
Ray, K.S.[Kumar S.],
Pattern Recognition Based on Fuzzy Set and Genetic Algorithm,
IJIG(14), No. 03, 2014, pp. 1450009.
DOI Link
1410
BibRef
Ornes, C.,
Sklansky, J.,
A Neural-Network That Visualizes What It Classifies,
PRL(18), No. 11-13, November 1997, pp. 1301-1306.
9806
BibRef
Ornes, C.,
Sklansky, J.,
A Visual Neural Classifier,
SMC-B(28), No. 4, August 1998, pp. 620-625.
IEEE Top Reference.
9808
BibRef
Ornes, C.[Chester],
Sklansky, J.[Jack],
Disher, A.[Anthony],
A Visual Neural Network that Learns Perceptual Relationships,
ICPR98(Vol I: 873-875).
IEEE DOI
9808
BibRef
Auda, G.,
Kamel, M.,
CMNN: Cooperative Modular Neural Networks for Pattern Recognition,
PRL(18), No. 11-13, November 1997, pp. 1391-1398.
9806
BibRef
Murino, V.,
Structured Neural Networks for Pattern Recognition,
SMC-B(28), No. 4, August 1998, pp. 553-561.
IEEE Top Reference.
9808
BibRef
Lu, Z.K.,
Chi, Z.R.,
Siu, W.C.,
Length Estimation of Digit Strings Using a Neural Network with
Structure Based Features,
JEI(7), No. 1, January 1998, pp. 79-85.
9807
BibRef
Chen, C.W.,
Chen, L.L.,
Cellular Neural Network Architecture for Gibbs Random Field Based
Image Segmentation,
JEI(7), No. 1, January 1998, pp. 45-51.
9807
BibRef
Chen, C.W.,
Chen, L.L.,
Luo, J.B.,
A Cellular Neural Network for Clustering-Based Adaptive Quantization
in Subband Video Compression,
CirSysVideo(6), No. 6, December 1996, pp. 688-692.
IEEE Top Reference.
9701
BibRef
Aizenberg, I.N.,
Processing of Noisy and Small Detailed Gray Scale Images
Using Cellular Neural Networks,
JEI(6), No. 3, July 1997, pp. 272-285.
9807
BibRef
Lin, C.C.[Che-Chern],
El-Jaroudi, A.[Amro],
An Algorithm to Determine the Feasibilities and Weights of Two-Layer
Perceptrons for Partitioning and Classification,
PR(31), No. 11, November 1998, pp. 1613-1625.
Elsevier DOI
BibRef
9811
Zhou, W.,
Verification of the Nonparametric Characteristics of Backpropagation
Neural Networks for Image Classification,
GeoRS(37), No. 2, March 1999, pp. 771.
IEEE Top Reference.
BibRef
9903
Carozza, M.[Menita],
Rampone, S.[Salvatore],
Function approximation from noisy data by an incremental RBF network,
PR(32), No. 12, December 1999, pp. 2081-2083.
Elsevier DOI
BibRef
9912
And:
Further results:
An incremental multivariate regression method for function
approximation from noisy data,
PR(34), No. 3, March 2001, pp. 695-702.
Elsevier DOI
0101
BibRef
Lin, C.T.,
Lee, Y.C.,
Pu, H.C.,
Satellite Sensor Image Classification Using Cascaded Architecture of
Neural Fuzzy Network,
GeoRS(38), No. 2, March 2000, pp. 1033-1043.
IEEE Top Reference.
0004
BibRef
Simpson, J.J.,
McIntire, T.J.,
Sienko, M.,
An Improved Hybrid Clustering Algorithm for Natural Scenes,
GeoRS(38), No. 2, March 2000, pp. 1016-1032.
IEEE Top Reference.
0004
BibRef
Rughooputh, H.C.S.,
Rughooputh, S.D.D.V.,
Spectral recognition using a modified Eckhorn neural network model,
IVC(18), No. 14, November 2000, pp. 1101-1103.
Elsevier DOI
0101
BibRef
Lin, J.S.[Jzau-Sheng],
Annealed chaotic neural network with nonlinear self-feedback and its
application to clustering problem,
PR(34), No. 5, May 2001, pp. 1093-1104.
Elsevier DOI
0102
BibRef
Go, J.[Jinwook],
Han, G.[Gunhee],
Kim, H.[Hagbae],
Lee, C.H.[Chul-Hee],
Multigradient: a new neural network learning algorithm for pattern
classification,
GeoRS(39), No. 5, May 2001, pp. 986-993.
IEEE Top Reference.
0106
BibRef
Iyatomi, H.[Hitoshi],
Hagiwara, M.[Masafumi],
Scenery image recognition and interpretation using fuzzy inference
neural networks,
PR(35), No. 8, August 2002, pp. 1793-1806.
Elsevier DOI
0206
BibRef
Iyatomi, H.[Hitoshi],
Hagiwara, M.[Masafumi],
Adaptive fuzzy inference neural network,
PR(37), No. 10, October 2004, pp. 2049-2057.
Elsevier DOI
0409
Initial rule, selection of important elements, identification of the network
structure, parameter estimation.
BibRef
Lin, J.S.[Jzau-Sheng],
Liu, S.H.[Shao-Han],
Classification of multispectral images based on a fuzzy-possibilistic
neural network,
SMC-C(32), No. 4, November 2002, pp. 499-506.
IEEE Top Reference.
0301
BibRef
Jiang, X.D.[Xu-Dong],
Wah, A.H.K.S.[Alvin Harvey Kam Siew],
Constructing and training feed-forward neural networks for pattern
classification,
PR(36), No. 4, April 2003, pp. 853-867.
Elsevier DOI
0304
BibRef
Raudys, A.,
Boosting neural network feature extraction by reduced accuracy
activation functions,
PR(36), No. 6, June 2003, pp. 1343-1354.
Elsevier DOI
0304
BibRef
Venkatesh, Y.V.,
Raja, S.K.[S. Kumar],
On the classification of multispectral satellite images using the
multilayer perceptron,
PR(36), No. 9, September 2003, pp. 2161-2175.
Elsevier DOI
0307
BibRef
Porter, R.B.[Reid B.],
Harvey, N.R.[Neal R.],
Perkins, S.[Simon],
Theiler, J.[James],
Brumby, S.P.[Steven P.],
Bloch, J.J.[Jeffrey J.],
Gokhale, M.[Maya],
Szymanski, J.J.[John J.],
Optimizing Digital Hardware Perceptrons for Multi-Spectral Image
Classification,
JMIV(19), No. 2, September 2003, pp. 133-150.
DOI Link
0308
BibRef
Park, S.B.[Soo Beom],
Lee, J.W.[Jae Won],
Kim, S.K.[Sang Kyoon],
Content-based image classification using a neural network,
PRL(25), No. 3, February 2004, pp. 287-300.
Elsevier DOI
0401
BibRef
Han, M.[Min],
Xi, J.H.[Jian-Hui],
Efficient clustering of radial basis perceptron neural network for
pattern recognition,
PR(37), No. 10, October 2004, pp. 2059-2067.
Elsevier DOI
0409
BibRef
Alaiz-Rodríguez, R.[Rocío],
Guerrero-Curieses, A.[Alicia],
Cid-Sueiro, J.[Jesús],
Minimax classifiers based on neural networks,
PR(38), No. 1, January 2005, pp. 29-39.
Elsevier DOI
0410
BibRef
Sanz, P.J.,
Marin, R.,
Sanchez, J.S.,
Including efficient object recognition capabilities in online robots:
from a statistical to a Neural-network classifier,
SMC-C(35), No. 1, February 2005, pp. 87-96.
IEEE Abstract.
0501
BibRef
Lim, C.P.[Chee-Peng],
Leong, J.H.[Jenn-Hwai],
Kuan, M.M.[Mei-Ming],
A Hybrid Neural Network System for Pattern Classification Tasks with
Missing Features,
PAMI(27), No. 4, April 2005, pp. 648-653.
IEEE Abstract.
0501
Classification with incomplete data.
BibRef
Artyomov, E.[Evgeny],
Yadid-Pecht, O.[Orly],
Modified high-order neural network for invariant pattern recognition,
PRL(26), No. 6, 1 May 2005, pp. 843-851.
Elsevier DOI
0501
BibRef
Yadid-Pecht, O.[Orly],
Gur, M.,
A simple 'possibilistic' clustering neural network,
ICPR94(B:520-521).
IEEE DOI
9410
BibRef
Spratling, M.W.[Michael W.],
Learning Viewpoint Invariant Perceptual Representations from Cluttered
Images,
PAMI(27), No. 5, May 2005, pp. 753-761.
IEEE Abstract.
0501
Neural network application.
Learn simple patterns in all orientations.
BibRef
Qin, A.K.,
Suganthan, P.N.,
Enhanced neural gas network for prototype-based clustering,
PR(38), No. 8, August 2005, pp. 1275-1288.
Elsevier DOI
0505
Code, Neural Networks.
BibRef
Earlier:
Kernel neural gas algorithms with application to cluster analysis,
ICPR04(IV: 617-620).
IEEE DOI
0409
Code available:
WWW Link.
BibRef
Chi, H.M.[Hoi-Ming],
Ersoy, O.K.,
A statistical self-organizing learning system for remote sensing
classification,
GeoRS(43), No. 8, August 2005, pp. 1890-1900.
IEEE DOI
0508
BibRef
Zhang, H.,
Huang, W.,
Huang, Z.,
Zhang, B.,
A Kernel Autoassociator Approach to Pattern Classification,
SMC-B(35), No. 3, June 2005, pp. 593-606.
IEEE DOI
0508
BibRef
Perez, C.A.,
Gonzalez, G.D.,
Medina, L.E.,
Galdames, F.J.,
Linear Versus Nonlinear Neural Modeling for 2-D Pattern Recognition,
SMC-A(35), No. 6, November 2005, pp. 955-964.
IEEE DOI
0510
BibRef
Cang, S.,
Yu, H.,
Novel probabilty neural network,
VISP(152), No. 5, October 2005, pp. 535-544.
DOI Link
0512
BibRef
Ng, W.W.Y.[Wing W.Y.],
Dorado, A.[Andres],
Yeung, D.S.[Daniel S.],
Pedrycz, W.[Witold], and
Izquierdo, E.[Ebroul],
Image classification with the use
of radial basis function neural networks and the minimization of the
localized generalization error,
PR(40), No. 1, January 2007, pp. 19-32.
Elsevier DOI
0611
Image classification; Radial basis functions neural networks; MPEG-7;
Support vector machines; Generalization error
BibRef
Chandramouli, K.,
Izquierdo, E.,
Image Classification using Chaotic Particle Swarm Optimization,
ICIP06(3001-3004).
IEEE DOI
0610
BibRef
del Frate, F.[Fabio],
Pacifici, F.[Fabio],
Schiavon, G.[Giovanni],
Solimini, C.[Chiara],
Use of Neural Networks for Automatic Classification From
High-Resolution Images,
GeoRS(45), No. 4, April 2007, pp. 800-809.
IEEE DOI
0704
BibRef
Meher, S.K.[Saroj K.],
Uma Shankar, B.,
Ghosh, A.[Ashish],
Wavelet-Feature-Based Classifiers for Multispectral Remote-Sensing
Images,
GeoRS(45), No. 6, June 2007, pp. 1881-1886.
IEEE DOI
0706
BibRef
Ou, G.B.[Guo-Bin],
Murphey, Y.L.[Yi Lu],
Multi-class pattern classification using neural networks,
PR(40), No. 1, January 2007, pp. 4-18.
Elsevier DOI
0611
BibRef
Earlier:
Add A3:
Feldkamp, L.[Lee],
ICPR04(IV: 585-588).
IEEE DOI
0409
Machine learning; Multi-class classification; Neural networks
BibRef
Murphey, Y.L.[Yi Lu],
Luo, Y.[Yun],
Feature extraction for a multiple pattern classification neural network
system,
ICPR02(II: 220-223).
IEEE DOI
0211
BibRef
Shankar, B.U.[B. Uma],
Meher, S.K.[Saroj K.],
Ghosh, A.[Ashish],
Bruzzone, L.[Lorenzo],
Remote Sensing Image Classification: A Neuro-fuzzy MCS Approach,
ICCVGIP06(128-139).
Springer DOI
0612
BibRef
Misra, B.B.,
Dehuri, S.,
Dash, P.K.,
Panda, G.,
A reduced and comprehensible polynomial neural network for
classification,
PRL(29), No. 12, 1 September 2008, pp. 1705-1712.
Elsevier DOI
0804
Classification; Polynomial neural network; Particle swarm optimization
BibRef
Ponalagusamy, R.,
Senthilkumar, S.,
A new fourth order embedded RKAHeM(4,4) method with error control on
multilayer raster cellular neural network,
SIViP(3), No. 1, January 2009, pp. xx-yy.
Springer DOI
0902
initial value problems.
BibRef
Ponalagusamy, R.,
Senthilkumar, S.,
A new fourth order embedded RKAHeM(4,4) method with error control on
single layer/raster cellular neural network,
SIViP(3), No. 3, September 2009, pp. xx-yy.
Springer DOI
0910
BibRef
Senthilkumar, S.,
Hole-Filler Cellular Neural Network Simulation by RKGHM(5,5),
JMIV(43), No. 3, July 2012, pp. 194-205.
WWW Link.
1204
BibRef
Fontenla-Romero, O.[Oscar],
Guijarro-Berdinas, B.[Bertha],
Perez-Sanchez, B.[Beatriz],
Alonso-Betanzos, A.[Amparo],
A new convex objective function for the supervised learning of
single-layer neural networks,
PR(43), No. 5, May 2010, pp. 1984-1992.
Elsevier DOI
1003
Single-layer neural networks; Global optimum; Supervised learning
method; Least squares; Convex optimization; Incremental learning
BibRef
Gross, B.A.[Brooks A.],
Hanna, D.M.[Darrin M.],
Artificial neural networks capable of learning spatiotemporal chemical
diffusion in the cortical brain,
PR(43), No. 11, November 2010, pp. 3910-3921.
Elsevier DOI
1008
Artificial intelligence; Elman; Neural network; 3D; Chemical imaging;
Brain; Neurochemistry
BibRef
Yu, D.[Dong],
Deng, L.[Li],
Efficient and effective algorithms for training single-hidden-layer
neural networks,
PRL(33), No. 5, 1 April 2012, pp. 554-558.
Elsevier DOI
1202
Neural network; Extreme learning machine; Accelerated gradient
algorithm; Weighted algorithm; MNIST
BibRef
Martínez-Rego, D.[David],
Fontenla-Romero, O.[Oscar],
Alonso-Betanzos, A.[Amparo],
Nonlinear single layer neural network training algorithm for
incremental, nonstationary and distributed learning scenarios,
PR(45), No. 12, December 2012, pp. 4536-4546.
Elsevier DOI
1208
Artificial neural networks; Incremental learning; Nonstationary
learning; Distributed learning
BibRef
Martinez-Rego, D.[David],
Castillo, E.[Enrique],
Fontenla-Romero, O.[Oscar],
Alonso-Betanzos, A.[Amparo],
A Minimum Volume Covering Approach with a Set of Ellipsoids,
PAMI(35), No. 12, 2013, pp. 2997-3009.
IEEE DOI
1311
Classification
BibRef
Benalcázar, M.E.[Marco E.],
Brun, M.[Marcel],
Ballarin, V.[Virginia],
Passoni, I.[Isabel],
Meschino, G.[Gustavo],
Pra, L.D.[Lucía Dai],
Automatic Design of Binary W-operators Using Artificial Feed-forward
Neural Networks Based on the Weighted Mean Square Error Cost Function,
CIARP12(495-502).
Springer DOI
1209
BibRef
Chen, B.[Bo],
Polatkan, G.[Gungor],
Sapiro, G.[Guillermo],
Blei, D.[David],
Dunson, D.[David],
Carin, L.[Lawrence],
Deep Learning with Hierarchical Convolutional Factor Analysis,
PAMI(35), No. 8, 2013, pp. 1887-1901.
IEEE DOI
1307
Analytical models; Bayesian methods; Convolution;
deep learning
BibRef
Goodfellow, I.J.[Ian J.],
Courville, A.[Aaron],
Bengio, Y.[Yoshua],
Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning,
PAMI(35), No. 8, 2013, pp. 1902-1914.
IEEE DOI
1307
Approximation methods; Neural nets
BibRef
Courville, A.[Aaron],
Desjardins, G.,
Bergstra, J.,
Bengio, Y.[Yoshua],
The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data
Distributions,
PAMI(36), No. 9, September 2014, pp. 1874-1887.
IEEE DOI
1408
Covariance matrices
BibRef
Li, D.,
Wang, W.,
Ismail, F.,
Fuzzy Neural Network Technique for System State Forecasting,
Cyber(43), No. 5, 2013, pp. 1484-1494.
IEEE DOI
1309
Fuzzy neural predictors
BibRef
Seyedhosseini, M.[Mojtaba],
Tasdizen, T.[Tolga],
Multi-Class Multi-Scale Series Contextual Model for Image
Segmentation,
IP(22), No. 11, 2013, pp. 4486-4496.
IEEE DOI
1310
electron microscopy
BibRef
Seyedhosseini, M.[Mojtaba],
Paiva, A.R.C.[Antonio R.C.],
Tasdizen, T.[Tolga],
Image Parsing with a Three-State Series Neural Network Classifier,
ICPR10(4508-4511).
IEEE DOI
1008
BibRef
Chen, C.H.[Ching-Han],
Kuo, C.M.[Chia-Ming],
Yao, T.K.[Tun-Kai],
Hsieh, S.H.[Sheng-Hsien],
Anisotropic Probabilistic Neural Network for Image Interpolation,
JMIV(48), No. 3, March 2014, pp. 488-498.
Springer DOI
1403
BibRef
Zuo, Z.,
Wang, G.,
Learning Discriminative Hierarchical Features for Object Recognition,
SPLetters(21), No. 9, Sept 2014, pp. 1159-1163.
IEEE DOI
1406
Artificial neural networks
BibRef
Alvar, M.[Manuel],
Rodriguez-Calvo, A.[Andrea],
Sanchez-Miralles, A.[Alvaro],
Arranz, A.[Alvaro],
Mixture of Merged Gaussian Algorithm using RTDENN,
MVA(25), No. 5, July 2014, pp. 1133-1144.
Springer DOI
1407
RTDENN: Real-Time Dynamic Ellipsoidal Neural Networks
BibRef
Charalampous, K.[Konstantinos],
Gasteratos, A.[Antonios],
A tensor-based deep learning framework,
IVC(32), No. 11, 2014, pp. 916-929.
Elsevier DOI
1410
Deep learning
BibRef
Ramirez-Quintana, J.A.[Juan Alberto],
Chacon-Murguia, M.I.[Mario Ignacio],
Self-adaptive SOM-CNN neural system for dynamic object detection in
normal and complex scenarios,
PR(48), No. 4, 2015, pp. 1137-1149.
Elsevier DOI
1502
Video analysis
BibRef
Luo, W.[Wei],
Yang, J.[Jian],
Xu, W.[Wei],
Fu, T.[Tao],
Locality-Constrained Sparse Auto-Encoder for Image Classification,
SPLetters(22), No. 8, August 2015, pp. 1070-1073.
IEEE DOI
1502
image classification
BibRef
Harikumar, R.,
kumar, B.V.[B. Vinoth],
Performance analysis of neural networks for classification of medical
images with wavelets as a feature extractor,
IJIST(25), No. 1, 2015, pp. 33-40.
DOI Link
1502
medical images
BibRef
Liu, J.[Jing],
Liu, B.Y.[Bing-Yuan],
Lu, H.Q.[Han-Qing],
Detection guided deconvolutional network for hierarchical feature
learning,
PR(48), No. 8, 2015, pp. 2645-2655.
Elsevier DOI
1505
Image representation
BibRef
Choi, J.S.[Jae Seung],
Discrimination algorithm using voiced detection method and time-delay
neural network system by 3 FFT sub-bands,
IJCVR(5), No. 2, 2015, pp. 99-111.
DOI Link
1505
BibRef
Kong, S.,
Jiang, Z.,
Yang, Q.,
Modeling Neuron Selectivity Over Simple Midlevel Features for Image
Classification,
IP(24), No. 8, August 2015, pp. 2404-2414.
IEEE DOI
1505
Convolution
BibRef
Zhu, S.H.[Song-Hao],
Shi, Z.[Zhe],
Sun, C.J.[Cheng-Jian],
Shen, S.H.[Shu-Han],
Deep neural network based image annotation,
PRL(65), No. 1, 2015, pp. 103-108.
Elsevier DOI
1511
Deep learning
BibRef
Earlier: A3, A1, A2, Only:
Image annotation via deep neural network,
MVA15(518-521)
IEEE DOI
1507
Computer architecture
BibRef
Huang, Y.[Yan],
Wang, W.[Wei],
Wang, L.[Liang],
Unconstrained Multimodal Multi-Label Learning,
MultMed(17), No. 11, November 2015, pp. 1923-1935.
IEEE DOI
1511
BibRef
Earlier:
Conditional High-Order Boltzmann Machine:
A Supervised Learning Model for Relation Learning,
ICCV15(4265-4273)
IEEE DOI
1602
Correlation
BibRef
Huang, Y.[Yan],
Wang, W.[Wei],
Wang, L.A.[Li-Ang],
Tan, T.N.[Tie-Niu],
Conditional High-Order Boltzmann Machines for Supervised Relation
Learning,
IP(26), No. 9, September 2017, pp. 4297-4310.
IEEE DOI
1708
BibRef
Earlier:
Multi-Task Deep Neural Network for Multi-Label Learning,
ICIP13(2897-2900)
IEEE DOI
1402
Boltzmann machines, face recognition, image classification,
learning (artificial intelligence), matrix decomposition,
tensors, CHBM, action similarity labeling, binary classification,
conditional high-order Boltzmann machines,
conditional likelihood, data relation,
discriminant ability enhancement, face verification,
high-order multiplicative interactions,
high-order parameter tensors, invariant recognition,
joint likelihood, latent variables,
multiple matrix factorization, pairwise input samples,
relation feature classification, relation feature learning,
supervised relation learning, Computational modeling,
Data models, Face, Logic gates, Measurement, Supervised learning,
Tensile stress, Deep learning, action similarity labeling,
face verification, high-order Boltzmann machine, relation learning
BibRef
An, H.[Hongsub],
Shim, H.M.[Hyeon-Min],
Na, S.I.[Sang-Il],
Lee, S.[Sangmin],
Split and merge algorithm for deep learning and its application for
additional classes,
PRL(65), No. 1, 2015, pp. 137-144.
Elsevier DOI
1511
Deep neural networks
BibRef
Hile, R.[Ryan],
Cova, T.J.[Thomas J.],
Exploratory Testing of an Artificial Neural Network Classification
for Enhancement of the Social Vulnerability Index,
IJGI(4), No. 4, 2015, pp. 1774.
DOI Link
1511
BibRef
Sengoz, C.[Cenker],
Ramanna, S.[Sheela],
Learning relational facts from the web:
A tolerance rough set approach,
PRL(67, Part 2), No. 1, 2015, pp. 130-137.
Elsevier DOI
1512
Tolerance rough sets
BibRef
Yang, Y.[Yang],
Zhang, W.S.[Wen-Sheng],
Xie, Y.[Yuan],
Image automatic annotation via multi-view deep representation,
JVCIR(33), No. 1, 2015, pp. 368-377.
Elsevier DOI
1512
Image annotation
BibRef
Burian, P.[Petr],
Holota, R.[Radek],
Fast image recognition based on n-tuple neural networks implemented in
an FPGA,
RealTimeIP(11), No. 1, January 2016, pp. 155-166.
WWW Link.
1601
BibRef
Azizpour, H.[Hossein],
Razavian, A.S.[Ali Sharif],
Sullivan, J.[Josephine],
Maki, A.[Atsuto],
Carlsson, S.[Stefan],
Factors of Transferability for a Generic ConvNet Representation,
PAMI(38), No. 9, September 2016, pp. 1790-1802.
IEEE DOI
1609
BibRef
Earlier:
From generic to specific deep representations for visual recognition,
DeepLearn15(36-45)
IEEE DOI
1510
feature extraction
BibRef
Razavian, A.S.[Ali Sharif],
Azizpour, H.[Hossein],
Maki, A.[Atsuto],
Sullivan, J.[Josephine],
Ek, C.H.[Carl Henrik],
Carlsson, S.[Stefan],
Persistent Evidence of Local Image Properties in Generic ConvNets,
SCIA15(249-262).
Springer DOI
1506
BibRef
Dash, C.S.K.[C. Sanjeev Kumar],
Saran, A.[Amitav],
Sahoo, P.[Pulak],
Dehuri, S.[Satchidananda],
Cho, S.B.[Sung-Bae],
Design of self-adaptive and equilibrium differential evolution
optimized radial basis function neural network classifier for imputed
database,
PRL(80), No. 1, 2016, pp. 76-83.
Elsevier DOI
1609
Data mining
BibRef
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Neural Bag-of-Features learning,
PR(64), No. 1, 2017, pp. 277-294.
Elsevier DOI
1701
Encoding, Entropy, Feature extraction, Histograms,
Quantization (signal), Semantics, Training.
BibRef
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Learning bag-of-embedded-words representations for textual
information retrieval,
PR(81), 2018, pp. 254-267.
Elsevier DOI
1806
BibRef
Earlier:
Bag of Embedded Words learning for text retrieval,
ICPR16(2416-2421)
IEEE DOI
1705
Word embeddings, Bag-of-words, Bag-of-features,
Dictionary learning, Relevance feedback, Information retrieval.
BibRef
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Learning Neural Bag-of-Features for Large-Scale Image Retrieval,
SMCS(47), No. 10, October 2017, pp. 2641-2652.
IEEE DOI
1709
Dictionaries, Encoding, Feature extraction, Histograms,
Image retrieval, Image segmentation,
Bag-of-features (BoFs) representation, information retrieval,
neural networks, retrieval-oriented, optimization
BibRef
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Accelerating Similarity-Based Discriminant Analysis Using
Class-Specific Prototypes,
ICIP18(161-165)
IEEE DOI
1809
Prototypes, Kernel, Training, Task analysis, Robustness,
Optimized production technology,
Similarity Embedding Framework
BibRef
Ahsan, A.M.[Amin Mohamed],
Mohamad, D.B.[Dzulkifli Bin],
Machine learning technique for object detection based on SURF feature,
IJCVR(7), No. 1/2, 2017, pp. 6-19.
DOI Link
1701
NN learning using SURF features
BibRef
Bakhtiary, A.H.[Amir H.],
Lapedriza, A.[Agata],
Masip, D.[David],
Winner takes all hashing for speeding up the training of neural
networks in large class problems,
PRL(93), No. 1, 2017, pp. 38-47.
Elsevier DOI
1706
Winner takes all hashing
BibRef
Zhang, J.M.[Jian-Ming],
Bargal, S.A.[Sarah Adel],
Lin, Z.[Zhe],
Brandt, J.[Jonathan],
Shen, X.H.[Xiao-Hui],
Sclaroff, S.[Stan],
Top-Down Neural Attention by Excitation Backprop,
IJCV(126), No. 10, October 2018, pp. 1084-1102.
Springer DOI
1809
BibRef
Earlier: A1, A3, A4, A5, A6, Only:
ECCV16(IV: 543-559).
Springer DOI
1611
BibRef
Sidike, P.[Paheding],
Asari, V.K.[Vijayan K.],
Sagan, V.[Vasit],
Progressively Expanded Neural Network (PEN Net) for hyperspectral
image classification: A new neural network paradigm for remote
sensing image analysis,
PandRS(146), 2018, pp. 161-181.
Elsevier DOI
1812
Neural network, Hyperspectral image (HSI), Classification,
Machine learning, Remote sensing
BibRef
Rojas-Delgado, J.[Jairo],
Trujillo-Rasúa, R.[Rafael],
Bello, R.[Rafael],
A continuation approach for training Artificial Neural Networks with
meta-heuristics,
PRL(125), 2019, pp. 373-380.
Elsevier DOI
1909
Continuation, Optimization, Neural-network
BibRef
Liang, D.J.[Dao-Jun],
Yang, F.[Feng],
Wang, X.P.[Xiu-Ping],
Ju, X.H.[Xiao-Hui],
Multi-sample inference network,
IET-CV(13), No. 6, September 2019, pp. 605-613.
DOI Link
1911
Network with multiple samples.
BibRef
Rosenfeld, A.[Amir],
Tsotsos, J.K.[John K.],
Incremental Learning Through Deep Adaptation,
PAMI(42), No. 3, March 2020, pp. 651-663.
IEEE DOI
2002
BibRef
And:
Intriguing Properties of Randomly Weighted Networks:
Generalizing While Learning Next to Nothing,
CRV19(9-16)
IEEE DOI
1908
Task analysis, Switches, Training, Neural networks,
Convolutional codes, Incremental learning,
domain adaptation.
Training, Neural networks, Limiting, Machine learning, Optimization,
Network architecture, Kernel, Deep Learning, Optimization, Random Weights
BibRef
Rosenfeld, A.,
Biparva, M.,
Tsotsos, J.K.,
Priming Neural Networks,
Cognitive18(2092-209209)
IEEE DOI
1812
Visualization, Task analysis, Object detection, Neural networks,
Semantics, Image segmentation
BibRef
Zhu, Z.H.[Zhi-Hui],
Soudry, D.[Daniel],
Eldar, Y.C.[Yonina C.],
Wakin, M.B.[Michael B.],
The Global Optimization Geometry of Shallow Linear Neural Networks,
JMIV(62), No. 3, April 2020, pp. 279-292.
Springer DOI
2004
BibRef
Zhang, J.S.[Jiang-She],
Hu, J.Y.[Jun-Ying],
Liu, J.M.[Jun-Min],
Neural network with multiple connection weights,
PR(107), 2020, pp. 107481.
Elsevier DOI
2008
Neural network, Neurotransmitter, Interpretability, Extending dimension
BibRef
Dogan, Ü.[Ürün],
Deshmukh, A.A.[Aniket Anand],
Machura, M.B.[Marcin Bronislaw],
Igel, C.[Christian],
Label-similarity Curriculum Learning,
ECCV20(XXIX: 174-190).
Springer DOI
2010
guiding the optimization to desirable optima
BibRef
Chrysos, G.G.[Grigorios G],
Panagakis, Y.[Yannis],
NAPS: Non-adversarial polynomial synthesis,
PRL(140), 2020, pp. 318-324.
Elsevier DOI
2012
Polynomial neural networks, Tensor decompositions, Generative models
BibRef
Chrysos, G.G.[Grigorios G.],
Moschoglou, S.[Stylianos],
Bouritsas, G.[Giorgos],
Deng, J.K.[Jian-Kang],
Panagakis, Y.[Yannis],
Zafeiriou, S.P.[Stefanos P.],
Deep Polynomial Neural Networks,
PAMI(44), No. 8, August 2022, pp. 4021-4034.
IEEE DOI
2207
Tensors, Neural networks, Task analysis, Faces, Training,
Matrix decomposition, Convolutional neural networks,
face verification
BibRef
Yu, Y.H.[Yong-Hong],
Jiao, L.H.[Li-Hong],
Zhou, N.N.[Ning-Ning],
Zhang, L.[Li],
Yin, H.Z.[Hong-Zhi],
Enhanced factorization machine via neural pairwise ranking and
attention networks,
PRL(140), 2020, pp. 348-357.
Elsevier DOI
2012
Recommendation algorithm, Factorization machine, Neural networks
BibRef
Wang, Z.,
Xiang, C.,
Zou, W.,
Xu, C.,
DMA Regularization: Enhancing Discriminability of Neural Networks by
Decreasing the Minimal Angle,
SPLetters(27), 2020, pp. 2089-2093.
IEEE DOI
2012
Image Classification, Discrimination Regularization,
Intra-class Compactness, Inter-class Discrepancy,
Deep Learning
BibRef
Li, M.[Ming],
Wang, D.H.[Dian-Hui],
2-D Stochastic Configuration Networks for Image Data Analytics,
Cyber(51), No. 1, January 2021, pp. 359-372.
IEEE DOI
2012
Data models, Data analysis, Computational modeling,
Analytical models, Approximation algorithms, Neural networks,
2-D stochastic configuration networks (2DSCNs)
BibRef
Shi, J.[Jun],
Xu, J.F.[Jian-Feng],
Tasaka, K.[Kazuyuki],
Chen, Z.B.[Zhi-Bo],
SASL: Saliency-Adaptive Sparsity Learning for Neural Network
Acceleration,
CirSysVideo(31), No. 5, 2021, pp. 2008-2019.
IEEE DOI
2105
BibRef
Li, J.[Jia],
Xiao, M.Q.[Ming-Qing],
Fang, C.[Cong],
Dai, Y.[Yue],
Xu, C.[Chao],
Lin, Z.C.[Zhou-Chen],
Training Neural Networks by Lifted Proximal Operator Machines,
PAMI(44), No. 6, June 2022, pp. 3334-3348.
IEEE DOI
2205
Training, Artificial neural networks, Linear programming,
Convergence, Tuning, Standards, Patents, Neural networks,
parallel implementation
BibRef
Wang, S.P.[Shi-Peng],
Yang, Y.[Yan],
Sun, J.[Jian],
Xu, Z.B.[Zong-Ben],
Variational HyperAdam: A Meta-Learning Approach to Network Training,
PAMI(44), No. 8, August 2022, pp. 4469-4484.
IEEE DOI
2207
Training, Task analysis, Optimization, Neural networks,
Random variables, Training data, Estimation, Network training,
variational hyperadam
BibRef
Gao, T.[Tao],
Bai, X.[Xiao],
Wang, C.[Chen],
Zhang, L.[Liang],
Zheng, J.[Jin],
Wang, J.[Jian],
A modified interval type-2 Takagi-Sugeno fuzzy neural network and its
convergence analysis,
PR(131), 2022, pp. 108861.
Elsevier DOI
2208
IT2 fuzzy model, Fuzzy neural network, Takagi-Sugeno,
Conjugate gradient, Convergence
BibRef
Elyounsi, A.[Asma],
Tlijani, H.[Hatem],
Bouhlel, M.S.[Mohamed Salim],
Firefly Algorithm Optimized Functional Link Artificial Neural Network
for ISA-Radar Image Recognition,
IJIG(22), No. 5 2022, pp. 2250044.
DOI Link
2212
BibRef
Tovias-Alanis, S.O.[Samuel Omar],
Sossa, H.[Humberto],
Gómez-Flores, W.[Wilfrido],
Learning smooth dendrite morphological neurons for pattern
classification using linkage trees and evolutionary-based
hyperparameter tuning,
PRL(172), 2023, pp. 274-281.
Elsevier DOI
2309
Dendrite morphological neurons, Spherical dendrites,
Linkage trees, Pattern classification, Genetic algorithm
BibRef
Groenendijk, R.[Rick],
Dorst, L.[Leo],
Gevers, T.[Theo],
Geometric Back-Propagation in Morphological Neural Networks,
PAMI(45), No. 11, November 2023, pp. 14045-14051.
IEEE DOI
2310
BibRef
Yu, X.H.[Xiao-Han],
Mao, S.C.[Shao-Chen],
Wang, L.[Lei],
Lu, S.J.[Shi-Jie],
Yu, K.[Kun],
Research on neural processes with multiple latent variables,
IET-IPR(17), No. 11, 2023, pp. 3323-3336.
DOI Link
2310
Combines the advantages of neural network and Gaussian Process.
encoder-decoder, multiple latent variables, neural process, regression
BibRef
Tao, C.X.[Chen-Xin],
Zhu, X.[Xizhou],
Su, W.J.[Wei-Jie],
Huang, G.[Gao],
Li, B.[Bin],
Zhou, J.[Jie],
Qiao, Y.[Yu],
Wang, X.G.[Xiao-Gang],
Dai, J.F.[Ji-Feng],
Siamese Image Modeling for Self-Supervised Vision Representation
Learning,
CVPR23(2132-2141)
IEEE DOI
2309
BibRef
Spallanzani, M.[Matteo],
Leonardi, G.P.[Gian Paolo],
Benini, L.[Luca],
Training Quantised Neural Networks with STE Variants:
The Additive Noise Annealing Algorithm,
CVPR22(470-479)
IEEE DOI
2210
Training, Schedules, Annealing, Shape, Neural networks,
Stochastic processes, Dynamic scheduling,
Optimization methods, Efficient learning and inferences
BibRef
Ricci, S.[Simone],
Uricchio, T.[Tiberio],
del Bimbo, A.[Alberto],
Learning Advisor Networks for Noisy Image Classification,
CIAP22(II:442-453).
Springer DOI
2205
BibRef
Li, F.R.[Fan-Rong],
Li, G.[Gang],
He, X.Y.[Xiang-Yu],
Cheng, J.[Jian],
Dynamic Dual Gating Neural Networks,
ICCV21(5310-5319)
IEEE DOI
2203
Limiting, Computational modeling, Neural networks, Redundancy,
Channel estimation, Network architecture,
BibRef
Cordonnier, J.B.[Jean-Baptiste],
Mahendran, A.[Aravindh],
Dosovitskiy, A.[Alexey],
Weissenborn, D.[Dirk],
Uszkoreit, J.[Jakob],
Unterthiner, T.[Thomas],
Differentiable Patch Selection for Image Recognition,
CVPR21(2351-2360)
IEEE DOI
2111
Training, Image resolution, Image recognition,
Computational modeling, Neural networks, Memory management
BibRef
Bungert, L.[Leon],
Raab, R.[René],
Roith, T.[Tim],
Schwinn, L.[Leo],
Tenbrinck, D.[Daniel],
Clip: Cheap Lipschitz Training of Neural Networks,
SSVM21(307-319).
Springer DOI
2106
BibRef
Limnios, S.[Stratis],
Dasoulas, G.[George],
Thilikos, D.M.[Dimitrios M.],
Vazirgiannis, M.[Michalis],
Hcore-Init: Neural Network Initialization based on Graph Degeneracy,
ICPR21(5852-5858)
IEEE DOI
2105
Deep learning, Knowledge engineering, Image recognition, Neurons,
Tools, Multilayer perceptrons, Data mining
BibRef
Wang, X.L.[Xing-Lu],
Li, Y.M.[Ying-Ming],
Gradient Deconfliction-Based Training For Multi-Exit Architectures,
ICIP20(1866-1870)
IEEE DOI
2011
Early exit with easy samples.
Training, Computational modeling,
Adaptation models, Neural networks, Task analysis, Acceleration,
Deconfliction
BibRef
Tran, D.T.[Dat Thanh],
Gabbouj, M.[Moncef],
Iosifidis, A.[Alexandros],
Subset Sampling for Progressive Neural Network Learning,
ICIP20(713-717)
IEEE DOI
2011
Training, Network topology, Neurons, Biological neural networks,
Training data, Optimization, Face recognition, Subset Selection,
Progressive Neural Network Learning
BibRef
Yang, H.,
Tang, M.,
Wen, W.,
Yan, F.,
Hu, D.,
Li, A.,
Li, H.,
Chen, Y.,
Learning Low-rank Deep Neural Networks via Singular Vector
Orthogonality Regularization and Singular Value Sparsification,
EDLCV20(2899-2908)
IEEE DOI
2008
Training, Matrix decomposition, Convolution,
Computational modeling, Kernel, Load modeling, Tensile stress
BibRef
Huang, C.,
Chen, J.,
Wu, J.,
Learning Sparse Neural Networks Through Mixture-Distributed
Regularization,
EDLCV20(2968-2977)
IEEE DOI
2008
Logic gates, Training, Neurons,
Artificial neural networks, Computational modeling, Exponential distribution
BibRef
Zhou, Y.[Yi],
Barnes, C.[Connelly],
Lu, J.W.[Jing-Wan],
Yang, J.M.[Ji-Mei],
Li, H.[Hao],
On the Continuity of Rotation Representations in Neural Networks,
CVPR19(5738-5746).
IEEE DOI
2002
BibRef
Guo, Q.S.[Qiu-Shan],
Yu, Z.P.[Zhi-Peng],
Wu, Y.C.[Yi-Chao],
Liang, D.[Ding],
Qin, H.Y.[Hao-Yu],
Yan, J.J.[Jun-Jie],
Dynamic Recursive Neural Network,
CVPR19(5142-5151).
IEEE DOI
2002
BibRef
Usama, M.[Muhammad],
Chang, D.E.[Dong Eui],
Towards Robust Neural Networks with Lipschitz Continuity,
IWDW18(373-389).
Springer DOI
1905
BibRef
Manessi, F.[Franco],
Rozza, A.[Alessandro],
Learning Combinations of Activation Functions,
ICPR18(61-66)
IEEE DOI
1812
Training, Biological neural networks, Mercury (metals),
Optimization, Neurons, Computer architecture
BibRef
Horii, K.,
Maeda, K.,
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
A Human-Centered Neural Network Model with Discriminative Locality
Preserving Canonical Correlation Analysis for Image Classification,
ICIP18(2366-2370)
IEEE DOI
1809
Visualization, Biology, Correlation, Training, Feature extraction,
Neural networks, Transforms, Image classification, neural network,
canonical correlation analysis
BibRef
Zhao, R.W.[Rui-Wei],
Li, J.G.[Jian-Guo],
Chen, Y.R.[Yu-Rong],
Liu, J.M.[Jia-Ming],
Jiang, Y.G.[Yu-Gang],
Xue, X.Y.[Xiang-Yang],
Regional Gating Neural Networks for Multi-label Image Classification,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Wang, Y.N.[Yu-Nong],
Bian, H.Y.[Huan-Yu],
Yu, N.H.[Neng-Hai],
Neural network with saliency based feature selection ability,
ICIP17(4502-4506)
IEEE DOI
1803
Benchmark testing, Biological neural networks,
Feature extraction, Kernel, Task analysis, Visualization,
visual saliency
BibRef
Grzeszick, R.,
Sudholt, S.,
Fink, G.A.,
Optimistic and pessimistic neural networks for object recognition,
ICIP17(350-354)
IEEE DOI
1803
Biological neural networks, Computational modeling, Neurons,
Predictive models, Task analysis, Training, Uncertainty,
Output Modeling
BibRef
Pavez, J.[Juan],
Hakobyan, H.[Hayk],
Valle, C.[Carlos],
Brooks, W.[William],
Kuleshov, S.[Sergey],
Allende, H.[Héctor],
Neural Networks for the Reconstruction and Separation of High Energy
Particles in a Preshower Calorimeter,
CIARP17(491-498).
Springer DOI
1802
BibRef
Haeffele, B.D.,
Vidal, R.,
Global Optimality in Neural Network Training,
CVPR17(4390-4398)
IEEE DOI
1711
Algorithm design and analysis, Biological neural networks,
Loss measurement, Minimization, Neurons, Optimization, Training
BibRef
Dong, X.,
Huang, J.,
Yang, Y.,
Yan, S.,
More is Less:
A More Complicated Network with Less Inference Complexity,
CVPR17(1895-1903)
IEEE DOI
1711
Acceleration, Collaboration, Computational modeling, Convolution,
Kernel, Neural networks, Tensile, stress
BibRef
Kaoutar, S.,
Mohamed, E.,
Multi-criteria optimization of neural networks using multi-objective
genetic algorithm,
ISCV17(1-4)
IEEE DOI
1710
Pareto optimisation, genetic algorithms,
minimisation,
multilayer perceptrons, vectors, MLPNN, NSGA II algorithm,
Pareto set, absolute weights,
architecture objective optimization,
BibRef
Srinivas, S.,
Subramanya, A.,
Babu, R.V.,
Training Sparse Neural Networks,
ECVW17(455-462)
IEEE DOI
1709
Biological neural networks, Complexity theory, Indexes,
Logic gates, Sparse matrices, Training
BibRef
Meng, N.,
So, H.K.H.,
Lam, E.Y.,
Computational single-cell classification using deep learning on
bright-field and phase images,
MVA17(190-193)
DOI Link
1708
Feature extraction, Imaging,
Machine learning, Microprocessors, Neural networks, Training
BibRef
Cui, S.Q.[Shu-Qi],
Jiang, H.[Hong],
Wang, Z.[Zheng],
Shen, C.M.[Chao-Min],
Application of neural network based on SIFT local feature extraction
in medical image classification,
ICIVC17(92-97)
IEEE DOI
1708
Biological neural networks, Feature extraction,
Image classification, Medical diagnostic imaging, Neurons,
BP neural network, ROI, SIFT, SVM, slide, the, window
BibRef
Kampffmeyer, M.[Michael],
Løkse, S.[Sigurd],
Bianchi, F.M.[Filippo M.],
Jenssen, R.[Robert],
Livi, L.[Lorenzo],
Deep Kernelized Autoencoders,
SCIA17(I: 419-430).
Springer DOI
1706
BibRef
Nilsson, N.,
Ortiz-Catalan, M.,
Estimates of Classification Complexity for Myoelectric Pattern
Recognition,
ICPR16(2682-2687)
IEEE DOI
1705
Artificial neural networks, Complexity theory, Correlation,
Electromyography, Indexes, Pattern recognition, Silicon
BibRef
Peng, K.H.[Kang-Hao],
Zhang, H.[Heng],
Mutual information-based RBM neural networks,
ICPR16(2458-2463)
IEEE DOI
1705
Annealing, Entropy, Manganese, Monte Carlo methods,
Mutual information, Neural networks, Training
BibRef
Liu, L.[Lei],
Hierarchical learning for large multi-class network classification,
ICPR16(2307-2312)
IEEE DOI
1705
Additives, Computational modeling, Covariance matrices,
Linear programming, Matrix decomposition, Optimization, Testing
BibRef
Kalra, S.,
Sriram, A.,
Rahnamayan, S.,
Tizhoosh, H.R.,
Learning opposites using neural networks,
ICPR16(1213-1218)
IEEE DOI
1705
Approximation algorithms, Convergence, Data mining,
Neural networks, Optimization, Training, Training, data
BibRef
Roy, A.,
Todorovic, S.,
Latecki, L.J.,
Context-regularized learning of fully convolutional networks for
scene labeling,
ICPR16(3751-3756)
IEEE DOI
1705
Context, Labeling, Layout, Semantics, Standards, Training, Training, data
BibRef
Nooka, S.P.,
Chennupati, S.,
Veerabhadra, K.,
Sah, S.,
Ptucha, R.,
Adaptive hierarchical classification networks,
ICPR16(3578-3583)
IEEE DOI
1705
Adaptation models, Adaptive systems,
Couplings, Feature extraction, Neural networks, Training,
Convolutional Neural Network, Decomposition, Hierarchy,
Image Classification, Muli-layer, Perceptron
BibRef
Williams, P.[Phillip],
SINN: Shepard Interpolation Neural Networks,
ISVC16(II: 349-358).
Springer DOI
1701
BibRef
Liu, S.F.[Si-Fei],
Pan, J.S.[Jin-Shan],
Yang, M.H.[Ming-Hsuan],
Learning Recursive Filters for Low-Level Vision via a Hybrid Neural
Network,
ECCV16(IV: 560-576).
Springer DOI
1611
BibRef
Srinivas, S.[Suraj],
Babu, R.V.[R. Venkatesh],
Data-free Parameter Pruning for Deep Neural Networks,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Huang, Y.C.[Yu-Chi],
Sun, X.Y.[Xiu-Yu],
Lu, M.[Ming],
Xu, M.[Ming],
Channel-Max, Channel-Drop and Stochastic Max-pooling,
DeepLearn15(9-17)
IEEE DOI
1510
Color
BibRef
Lin, K.[Kevin],
Yang, H.F.[Huei-Fang],
Hsiao, J.H.[Jen-Hao],
Chen, C.S.[Chu-Song],
Deep learning of binary hash codes for fast image retrieval,
DeepLearn15(27-35)
IEEE DOI
1510
Binary codes
BibRef
Oyallon, E.[Edouard],
Building a Regular Decision Boundary with Deep Networks,
CVPR17(1886-1894)
IEEE DOI
1711
Buildings, Convolution, Standards, Training,
Wavelet transforms
BibRef
Oyallon, E.[Edouard],
Mallat, S.[Stephane],
Deep roto-translation scattering for object classification,
CVPR15(2865-2873)
IEEE DOI
1510
BibRef
Lai, H.J.[Han-Jiang],
Pan, Y.[Yan],
Liu, Y.[Ye],
Yan, S.C.[Shui-Cheng],
Simultaneous feature learning and hash coding with deep neural networks,
CVPR15(3270-3278)
IEEE DOI
1510
BibRef
Shankar, S.[Sukrit],
Garg, V.K.[Vikas K.],
Cipolla, R.[Roberto],
DEEP-CARVING:
Discovering visual attributes by carving deep neural nets,
CVPR15(3403-3412)
IEEE DOI
1510
BibRef
Perronnin, F.[Florent],
Larlus, D.[Diane],
Fisher vectors meet Neural Networks:
A hybrid classification architecture,
CVPR15(3743-3752)
IEEE DOI
1510
BibRef
Verbancsics, P.[Phillip],
Harguess, J.[Josh],
Image Classification Using Generative Neuro Evolution for Deep
Learning,
WACV15(488-493)
IEEE DOI
1503
Accuracy
BibRef
Li, W.B.[Wen-Bin],
Learning Multi-scale Representations for Material Classification,
GCPR14(757-764).
Springer DOI
1411
BibRef
Mendoza-Castañeda, E.[Efraín],
Reyes-García, C.A.[Carlos A.],
Escalante, H.J.[Hugo Jair],
Moreno, W.[Wilfrido],
Rosales-Pérez, A.[Alejandro],
Enhanced Fuzzy-Relational Neural Network with Alternative Relational
Products,
CIARP14(666-673).
Springer DOI
1411
BibRef
Ocampo-Vega, R.[Ricardo],
Sanchez-Ante, G.[Gildardo],
Falcon-Morales, L.E.[Luis E.],
Sossa, H.[Humberto],
Automatic Construction of Radial-Basis Function Networks Through an
Adaptive Partition Algorithm,
MCPR16(198-207).
Springer DOI
1608
BibRef
Sossa, H.[Humberto],
Cortés, G.[Griselda],
Guevara, E.[Elizabeth],
New Radial Basis Function Neural Network Architecture for Pattern
Classification: First Results,
CIARP14(706-713).
Springer DOI
1411
BibRef
Shashi Kumar, M.S.,
Vimala, K.S.,
Avinash, N.,
Face distance estimation from a monocular camera,
ICIP13(3532-3536)
IEEE DOI
1402
Back propagation neural network
BibRef
Landassuri-Moreno, V.M.[Víctor Manuel],
Bustillo-Hernández, C.L.[Carmen L.],
Single-Step-Ahead and Multi-Step-Ahead Prediction with Evolutionary
Artificial Neural Networks,
CIARP13(I:65-72).
Springer DOI
1311
BibRef
Orjuela-Cañón, A.D.[Alvaro D.],
Delisle-Rodríguez, D.[Denis],
López-Delis, A.[Alberto],
Onset and Peak Pattern Recognition on Photoplethysmographic Signals
Using Neural Networks,
CIARP13(I:543-550).
Springer DOI
1311
BibRef
Chien, C.J.[Chiang-Ju],
Wang, Y.C.[Ying-Chung],
Observer based adaptive control of nonlinear systems using filtered-FNN
design,
ICARCV12(52-57).
IEEE DOI
1304
BibRef
And: A2, A1:
An FNN-Based adaptive iterative learning control for a class of
nonlinear discrete-time systems,
ICARCV12(447-451).
IEEE DOI
1304
Fuzzy Neural Network
BibRef
Zhuo, W.[Wen],
Cao, Z.G.[Zhi-Guo],
Qin, Y.M.[Yue-Ming],
Yu, Z.H.[Zheng-Hong],
Xiao, Y.[Yang],
Image classification using HTM cortical learning algorithms,
ICPR12(2452-2455).
WWW Link.
1302
BibRef
Sossa, H.[Humberto],
Garro, B.A.[Beatriz A.],
Villegas, J.[Juan],
Avilés, C.[Carlos],
Olague, G.[Gustavo],
Automatic Design of Artificial Neural Networks and Associative Memories
for Pattern Classification and Pattern Restoration,
MCPR12(23-34).
Springer DOI
1208
BibRef
Varvak, M.S.[Mark S.],
Pattern Classification Using Radial Basis Function Neural Networks
Enhanced with the Rvachev Function Method,
CIARP11(272-279).
Springer DOI
1111
BibRef
Nussbaum-Thom, M.[Markus],
Schweiger, R.[Roland],
Palm, G.[Günther],
Training of Sparsely Connected MLPs,
DAGM11(356-365).
Springer DOI
1109
Multi-Layer Perceptrons.
BibRef
Vajda, S.[Szilard],
Fink, G.A.[Gernot A.],
Strategies for Training Robust Neural Network Based Digit Recognizers
on Unbalanced Data Sets,
FHR10(148-153).
IEEE DOI
1011
BibRef
And:
Exploring Pattern Selection Strategies for Fast Neural Network Training,
ICPR10(2913-2916).
IEEE DOI
1008
BibRef
Adhyaru, D.M.[Dipak M.],
Kar, I.N.,
Gopal, M.,
Constrained Control of Weakly Coupled Nonlinear Systems Using Neural
Network,
PReMI09(567-572).
Springer DOI
0912
BibRef
Huo, P.[Peng],
Shiu, S.C.K.[Simon Chi-Keung],
Wang, H.B.[Hai-Bo],
Niu, B.[Ben],
Case Indexing Using PSO and ANN in Real Time Strategy Games,
PReMI09(106-115).
Springer DOI
0912
BibRef
Dhumal, A.[Abhishek],
Narayanan, R.G.[R. Ganesh],
Kumar, G.S.[G. Saravana],
Estimation of Tailor-Welded Blank Parameters for Acceptable Tensile
Behaviour Using ANN,
PReMI09(140-145).
Springer DOI
0912
BibRef
Jang, H.H.[Hong-Hoon],
Park, A.[Anjin],
Jung, K.C.[Kee-Chul],
Neural Network Implementation Using CUDA and OpenMP,
DICTA08(155-161).
IEEE DOI
0812
BibRef
Rubi-Velez, A.[Anna],
Gomez-Ramirez, E.[Eduardo],
Pazienza, G.E.[Giovanni E.],
Computing the Weights of Polynomial Cellular Neural Networks Using
Quadratic Programming,
CIARP09(645-652).
Springer DOI
0911
BibRef
Stasiak, B.[Bartlomiej],
Two-Dimensional Fast Orthogonal Neural Network for Image Recognition,
CIARP09(653-660).
Springer DOI
0911
BibRef
Chen, F.Y.[Fang-Yue],
Chen, L.[Lin],
Jin, W.F.[Wei-Feng],
Robust Designs of Selected Objects Extraction CNN,
CISP09(1-3).
IEEE DOI
0910
cellular neural/nonlinear network.
BibRef
Liu, W.[Wei],
Li, W.H.[Wen-Hui],
An Algorithmic Framework to the Optimal Mapping Function by a Radial
Basis Function Neural Network,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, L.[Lei],
Wen, X.B.[Xian-Bin],
Jiao, X.[Xu],
Zhang, J.G.[Jian-Guang],
Object Recognition Using a Bayesian Network Imitating Human Neocortex,
CISP09(1-5).
IEEE DOI
0910
BibRef
Peerasathein, T.,
Woo, M.[Myung],
Gaborski, R.S.,
Biologically Inspired Object Categorization in Cluttered Scenes,
AIPR07(117-122).
IEEE DOI
0710
I.e. recognize what separately from where. Implement the what is it, not
where is it.
BibRef
Sporns, O.,
Complex neural networks as future tools in imagery analysis,
AIPR04(67-72).
IEEE DOI
0410
BibRef
Flynn, M.,
Abarbanel, H.,
Kenyon, G.T.[Garrett T.],
Neurally-based algorithms for image processing,
AIPR04(79-85).
IEEE DOI
0410
BibRef
Firpi, H.A.,
Goodman, E.,
Swarmed feature selection,
AIPR04(112-118).
IEEE DOI
0410
BibRef
Firpi, H.A.,
Goodman, E.D.,
Designing templates for cellular neural networks using particle swarm
optimization,
AIPR04(119-123).
IEEE DOI
0410
BibRef
Ebner, M.[Marc],
Engineering of Computer Vision Algorithms Using Evolutionary Algorithms,
ACIVS09(367-378).
Springer DOI
0909
BibRef
Xiao, P.[Ping],
Shi, Y.X.[Yue-Xiang],
Xie, W.L.[Wen-Lan],
A novel method of mapping semantic gap to classify natural images,
IASP09(166-171).
IEEE DOI
0904
gap between low level processing and high level recognition.
Color and texture, then Neural Network to map features.
BibRef
Scripps, J.[Jerry],
Tan, P.N.[Pang-Ning],
Chen, F.L.[Fei-Long],
Esfahanian, A.H.[Abdol-Hossein],
A matrix alignment approach for link prediction,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kiranyaz, S.[Serkan],
Ince, T.[Turker],
Yildirim, A.[Alper],
Gabbouj, M.[Moncef],
Unsupervised design of Artificial Neural Networks via multi-dimensional
Particle Swarm Optimization,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Barrón, R.[Ricardo],
Sossa, H.[Humberto],
Cruz, B.[Benjamín],
A New Algorithm for Training Multi-layered Morphological Networks,
CIARP07(546-555).
Springer DOI
0711
BibRef
García, A.[Antonio],
León, C.[Carlos],
Monedero, I.[Iñigo],
Ropero, J.[Jorge],
A Precise Electrical Disturbance Generator for Neural Network Training
with Real Level Output,
CIARP07(534-545).
Springer DOI
0711
BibRef
Canales, F.[Fernando],
Chacón, M.[Max],
Modification of the Growing Neural Gas Algorithm for Cluster Analysis,
CIARP07(684-693).
Springer DOI
0711
BibRef
Siebel, N.T.[Nils T.],
Krause, J.[Jochen],
Sommer, G.[Gerald],
Efficient Learning of Neural Networks with Evolutionary Algorithms,
DAGM07(466-475).
Springer DOI
0709
BibRef
Stanojevic, M.[Mladen],
Vraneš, S.[Sanja],
Applying Neural Networks to Knowledge Representation and Determination
of Its Meaning,
BVAI07(523-532).
Springer DOI
0710
BibRef
di Garbo, A.[Angelo],
Barbi, M.[Michele],
Chillemi, S.[Santi],
Coincidence Detector Properties of Small Networks of Interneurons,
BVAI07(408-417).
Springer DOI
0710
BibRef
Domijan, D.[Dražen],
Šetic, M.[Mia],
Computing the Maximum Using Presynaptic Inhibition with Glutamate
Receptors,
BVAI07(418-427).
Springer DOI
0710
BibRef
Pazienti, A.[Antonio],
Diesmann, M.[Markus],
Grün, S.[Sonja],
Bounds of the Ability to Destroy Precise Coincidences by Spike
Dithering,
BVAI07(428-437).
Springer DOI
0710
BibRef
Oberhoff, D.[Daniel],
Kolesnik, M.[Marina],
Neural Object Recognition by Hierarchical Learning and Extraction of
Essential Shapes,
BVAI07(288-297).
Springer DOI
0710
BibRef
Kumar, N.[Niraj],
Agrawal, A.[Anupam],
Nonparametric Neural Network Model Based on Rough-Fuzzy Membership
Function for Classification of Remotely Sensed Images,
ICCVGIP06(106-117).
Springer DOI
0612
BibRef
Nandedkar, A.V.,
Biswas, P.K.,
Object Recognition Using Reflex Fuzzy Min-Max Neural Network with
Floating Neurons,
ICCVGIP06(597-609).
Springer DOI
0612
BibRef
Earlier:
A Reflex Fuzzy Min Max Neural Network for Granular Data Classification,
ICPR06(II: 650-653).
IEEE DOI
0609
BibRef
Earlier:
A fuzzy min-max neural network classifier with compensatory neuron
architecture,
ICPR04(IV: 553-556).
IEEE DOI
0409
BibRef
Bianchini, M.[Monica],
Maggini, M.[Marco],
Sarti, L.[Lorenzo],
Object Localization Using Input/Output Recursive Neural Networks,
ICPR06(III: 95-98).
IEEE DOI
0609
BibRef
And:
Object Recognition Using Multiresolution Trees,
SSPR06(331-339).
Springer DOI
0608
BibRef
Nieuwenhuis, C.[Claudia],
Yan, M.[Michelle],
Knowledge Based Image Enhancement Using Neural Networks,
ICPR06(III: 814-817).
IEEE DOI
0609
BibRef
Zhang, Q.A.[Qi-Ang],
Liu, W.B.[Wen-Bing],
Wei, X.P.[Xiao-Peng],
Xu, J.[Jin],
Globally Exponential Stability of Non-autonomous Delayed
Neural Networks,
IbPRIA05(II:91).
Springer DOI
0509
BibRef
Wehrmann, F.[Felix],
Bengtsson, E.[Ewert],
Modelling Non-linearities in Images Using an Auto-associative Neural
Network,
CAIP03(754-761).
Springer DOI
0311
BibRef
Perwass, C.[Christian],
Banarer, V.[Vladimir],
Sommer, G.[Gerald],
Spherical Decision Surfaces Using Conformal Modelling,
DAGM03(9-16).
Springer DOI
0310
Award, GCPR, HM. Hypersphere neuron.
BibRef
Huang, Y.S.[Yea-Shuan],
Tsai, Y.H.[Yao-Hong],
An RBF-based pattern recognition method by competitively reducing
classification-oriented error,
ICPR02(II: 180-183).
IEEE DOI
0211
BibRef
Toh, K.A.[Kar-Ann],
Lu, J.W.[Ju-Wei],
Yau, W.Y.[Wei-Yun],
Global Feedforward Neural Network Learning for Classification and
Regression,
EMMCVPR01(407-422).
Springer DOI
0205
BibRef
Gentili, S.,
Information Update on Neural Tree Networks,
ICIP01(I: 505-508).
IEEE DOI
0108
BibRef
Raudys, S.J.,
Prior Weights in Adaptive Pattern Classification,
ICPR00(Vol II: 1010-1013).
IEEE DOI
0009
BibRef
Aizenberg, I.,
Aizenberg, N.,
Butakov, C.,
Farberov, E.,
Image Recognition on the Neural Network Based on Multi-valued Neurons,
ICPR00(Vol II: 989-992).
IEEE DOI
0009
Faces.
BibRef
Fyfe, C.,
Lai, P.L.,
Canonical Correlation Analysis Neural Networks,
ICPR00(Vol II: 977-980).
IEEE DOI
0009
BibRef
Messer, K.,
Kittler, J.V.,
Fast Unit Selection Algorithm for Neural Network Design,
ICPR00(Vol II: 981-984).
IEEE DOI
0009
BibRef
de Sousa, R.,
de Carvalho, J.M.,
de Assis, F.,
Designing Translation Invariant Operations Via Neural Network Training,
ICIP00(Vol I: 908-911).
IEEE DOI
0008
BibRef
Heidemann, G.,
Lücke, D.,
Ritter, H.,
A System for Various Visual Classification Tasks Based on Neural
Networks,
ICPR00(Vol I: 9-12).
IEEE DOI
0009
BibRef
Mingo, L.F.[Luis F.],
Arroyo, F.[Fernando],
Luengo, C.[Carmen],
Castellanos, J.[Juan],
Enhanced Neural Networks and Medical Imaging,
CAIP99(149-156).
Springer DOI
9909
BibRef
And:
Learning HyperSurfaces with Neural Networks,
SCIA99(Neural Nets).
BibRef
Jahn, H.[Herbert],
Feature Grouping Based on Graphs and Neural Networks,
CAIP99(568-577).
Springer DOI
9909
BibRef
Shimodaira, H.[Hiroshi],
Keeni, K.[Kanad],
Nakayama, K.[Kenji],
Automatic Generation of Initial Weights and Estimation of Hidden Units
for Pattern Classification Using Neural Networks,
ICPR98(Vol II: 1568-1571).
IEEE DOI
9808
BibRef
Chen, Z.Y.,
Desai, M.D., and
Zhang, X.,
Feedforward Neural Networks with Multilevel Hidden Neurons for
Remotely Sensed Image Classification,
ICIP97(II: 653-656).
IEEE DOI
BibRef
9700
Gorodnichy, D.O.[Dmitry O.],
Reznik, A.M.[Alexandre M.],
Static and dynamic attractors of autoassociative neural networks,
CIAP97(II: 238-245).
Springer DOI
9709
BibRef
Timchenko, L.I.[Leonid I.],
Kutaev, Y.F.[Yuri F.],
Grudin, M.A.[Maxim A.],
Chepornyuk, S.V.[Serge V.],
Harvey, D.M.[David M.],
Gertsiy, A.A.[Alexander A.],
A brain-like approach to multistage hierarchical image processing,
CIAP97(II: 246-253).
Springer DOI
9709
BibRef
Foltyniewicz, R.[Rafal],
Efficient high order neural network for rotation, translation and
distance invariant recognition of gray scale images,
CAIP95(424-431).
Springer DOI
9509
BibRef
Aizenberg, N.,
Aizenberg, I.N.,
Krivosheev, G.,
Multi-Valued and Universal Binary Neurons:
Mathematical Model, Learning, Networks, Application to
Image Processing and Pattern Recognition,
ICPR96(IV: 185-189).
IEEE DOI
9608
(Univ. of Uzhgorod, UKR)
BibRef
Michaelis, B.,
Schnelting, O.,
Seiffert, U.,
Mecke, R.,
Adaptive Filtering of Distorted Displacement Vector Fields Using
Artificial Neural Networks,
ICPR96(IV: 335-339).
IEEE DOI
9608
(Otto-von-Guericke-Univ., D)
BibRef
Michaelis, B.[Bernd],
Krell, G.[Gerald],
Artificial neural networks for image improvement,
CAIP93(838-845).
Springer DOI
9309
BibRef
Pereira, M.S.,
Manolakos, E.S.,
Hierarchical neural network for multiresolution image analysis,
ICIP96(I: 261-264).
IEEE DOI
9610
BibRef
Petkov, N.[Nikolay],
Use of cortical filters and neural networks in a self-organising image
classification system,
CIAP95(165-170).
Springer DOI
9509
BibRef
Lin, S.H.[Shang-Hung],
Kung, S.Y.,
Probabilistic DBNN via expectation-maximization with multi-sensor
classification applications,
ICIP95(III: 236-239).
IEEE DOI
9510
BibRef
Chan, Y.,
Kung, S.Y.,
Multi-level pixel difference classification methods,
ICIP95(III: 252-255).
IEEE DOI
9510
BibRef
Dunstone, E.S.,
Image processing using an image approximation neural network,
ICIP94(III: 912-916).
IEEE DOI
9411
BibRef
Miyauchi, A.,
Watanabe, A.,
Miyauchi, M.,
A method to interpret 3D motion using neural networks,
ICIP94(III: 83-87).
IEEE DOI
9411
BibRef
Biriukov, S.A.,
Spurious states detection and basin describing in feedforward neural
networks,
ICPR94(B:586-588).
IEEE DOI
9410
BibRef
Mascarilla, L.,
Zahzah, E.H.,
Desachy, J.,
Neural networks classifiers based on geocoded data and multispectral
images for satellite image interpretation,
CAIP93(830-837).
Springer DOI
9309
BibRef
Pan, H.P.,
Forstner, W.,
An MDL-principled evolutionary mechanism to automatic architecturing of
pattern recognition neural network,
ICPR92(II:25-28).
IEEE DOI
9208
BibRef
Nedeljkovic, V.,
A novel multilayer neural networks training algorithm that minimizes
the probability of classification error,
ICPR92(II:13-16).
IEEE DOI
9208
BibRef
Roy, A.,
On linear programming, neural network design, pattern classification
and polynomial time training,
ICPR92(II:5-8).
IEEE DOI
9208
BibRef
Cheng, X.S.,
Backer, E.,
Gerbrands, J.J.,
DRBP: dynamically reinforced BP-based ANN-training,
ICPR92(II:9-12).
IEEE DOI
9208
BibRef
Tambouratzis, G.[George],
Stonham, T.J.,
A logical neural network that adapts to changes in the pattern
environment,
ICPR92(II:46-49).
IEEE DOI
9208
BibRef
Gas, B.,
Natowicz, R.,
A model of formal neural networks for unsupervised learning of binary
temporal sequences,
ICPR92(II:541-544).
IEEE DOI
9208
BibRef
Singer, Y.,
Yair, E.,
Learning class probabilities from labeled data,
ICPR92(II:553-556).
IEEE DOI
9208
BibRef
Kamata, S.I.,
Niimi, M.,
Kawaguchi, E.,
A multi-temporal classification of multi-spectral images using a neural
network,
ICPR94(B:470-472).
IEEE DOI
9410
BibRef
Kamata, S.I.,
Eason, R.O.,
Perez, A.,
Kawaguchi, E.,
A neural network classifier for LANDSAT image data,
ICPR92(II:573-576).
IEEE DOI
9208
BibRef
Kamada, H.[Hiroshi],
A proposal for an artificial neural network that optimizes reference
vectors: FMNET,
ICPR92(III:590-593).
IEEE DOI
9208
BibRef
Patrikar, A.,
Dual networks and their pattern classification properties,
CVPR91(686-687).
IEEE DOI
0403
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Capsule Networks .