14.5.9.4 Neural Networks for Classification and Pattern Recognition

Chapter Contents (Back)
Neural Networks. Classification.
See also Neural Networks for Segmentation.
See also Capsule Networks.
See also Recurrent Neural Networks for Shapes and Complex Features, RNN.
See also Knowledge Distillation.

Caianiello, E.R., Grimson, W.E.L.,
Methods of Analysis of Neural Nets,
BioCyber(22), 1976, pp. 1-6. BibRef 7600

Caianiello, E.R., Grimson, W.E.L.,
Synthesis of Boolean Nets and Time Behavior of a General Mathematical Neuron,
BioCyber(18), 1975, pp. 111-117. BibRef 7500

Takiyama, R.[Ryuzo],
Multiple threshold perceptron,
PR(10), No. 1, 1978, pp. 27-30.
Elsevier DOI 0309
BibRef

Reilly, D.L., Cooper, L.N., Elbaum, C.,
A Neural Model for Category Learning,
BioCyber(45), 1982, pp. 35-41.
PDF File. BibRef 8200

Fukushima, K.[Kunihiko], Miyake, S.[Sei],
Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position,
PR(15), No. 6, 1982, pp. 455-469.
Elsevier DOI 0309
This algorithm can be realized with a multilayered network consisting of neuron-like cells. BibRef

Lippmann, R.P.[Richard P.],
Pattern Classification Using Neural Networks,
CommunMag(27), No. 11, November, 1989, pp. pp. 47-54. Prototype based classifier faster than gradient descent. BibRef 8911

Wu, C.H.[Chung-Hsien], Wang, J.F.[Jhing-Fa], Wu, W.H.[Wen-Horng],
A shunting multilayer perceptron network for confusing/composite pattern recognition,
PR(24), No. 11, 1991, pp. 1093-1103.
Elsevier DOI 0401
BibRef

Hassoun, M.H., and Song, J.,
Adaptive Ho-Kashyap Rules for Perceptron Training,
TNN(3), No. 1, 1992, pp. 51-61.
See also Algorithm for Linear Inequalities and its Applications, An. BibRef 9200

Widrow, B., and Winter, R.,
Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition,
Computer(21), No. 3, March 1988, pp. 25-39. BibRef 8803

Fukushima, K.,
A Neural Network for Visual Pattern Recognition,
Computer(21), No. 3, March 1988, pp. 65-75. BibRef 8803

Bilbro, G.L., Snyder, W.E., Garnier, S.J., Gault, J.W.,
Mean Field Annealing: A Formalism for Constructing GNC-Like Algorithms,
TNN(3), No. 1, January 1992, pp. xx. BibRef 9201

Gupta, L.[Lalit], Wang, J.S.[Jie-Sheng], Charles, A.[Alain], Kisatsky, P.[Paul],
Prototype selection rules for neural network training,
PR(25), No. 11, November 1992, pp. 1401-1408.
Elsevier DOI 0401
BibRef

Chou, W.S.[Wen-Shou], Chen, Y.C.[Yung-Chang],
A new fast algorithm for effective training of neural classifiers,
PR(25), No. 4, April 1992, pp. 423-429.
Elsevier DOI 0401
BibRef

Yeung, D.Y.[Dit-Yan],
Constructive neural networks as estimators of bayesian discriminant functions,
PR(26), No. 1, January 1993, pp. 189-204.
Elsevier DOI 0401
BibRef

Kim, H.J.[Ho J.], Yang, H.S.[Hyun S.],
A Neural-Network Capable of Learning and Inference for Visual-Pattern Recognition,
PR(27), No. 10, October 1994, pp. 1291-1302.
Elsevier DOI BibRef 9410

Pham, D.T., Bayro-Corrochano, E.J.,
Self-organizing neural-network-based pattern clustering method with fuzzy outputs,
PR(27), No. 8, August 1994, pp. 1103-1110.
Elsevier DOI 0401
BibRef

Abou-Nasr, M.A., Sid-Ahmed, M.A.,
Fast learning and efficient memory utilization with a prototype based neural classifier,
PR(28), No. 4, April 1995, pp. 581-593.
Elsevier DOI 0401
prototype classifiers learn faster than gradient descent methods. BibRef

Moh, J.[Jenlong], Shih, F.Y.[Frank Y.],
A general purpose model for image operations based on multilayer perceptrons,
PR(28), No. 7, July 1995, pp. 1083-1090.
Elsevier DOI 0401
BibRef

Wang, L.P.[Li-Po], Alkon, D.L.[Daniel L.],
An artificial neural network system for temporal-spatial sequence processing,
PR(28), No. 8, August 1995, pp. 1267-1276.
Elsevier DOI 0401
BibRef

Tumer, K.[Kagan], Ghosh, J.[Joydeep],
Analysis of decision boundaries in linearly combined neural classifiers,
PR(29), No. 2, February 1996, pp. 341-348.
Elsevier DOI 0401
BibRef
Earlier:
Estimating the Bayes Error Rate Through Classifier Combining,
ICPR96(II: 695-699).
IEEE DOI 9608
(Univ. of Texas, Austin, USA) BibRef

Jun, G.[Goo], Ghosh, J.[Joydeep],
Nearest-Manifold Classification with Gaussian Processes,
ICPR10(914-917).
IEEE DOI 1008
BibRef

Ravichandran, A., Yegnanarayana, B.,
Studies on Object Recognition from Degraded Images Using Neural Networks,
NeurNet(8), No. 3, 1995, pp. 481-488. BibRef 9500

Graf, H.P., Nohl, C.R., Ben, J.,
Image Recognition with an Analog Neural-Net Chip,
MVA(8), No. 2, 1995, pp. 131-140. BibRef 9500
Earlier: ICPR92(IV:11-14).
IEEE DOI 9208
BibRef

Lin, W.G.[Wen-Gou], Wang, S.S.[Shuenn-Shyang],
A Modified S-Neuron and Its Application to Scale-Invariant Classification,
PR(28), No. 9, September 1995, pp. 1423-1432.
Elsevier DOI BibRef 9509

Gazula, S.[Srinivas], Kabuka, M.R.[Mansur R.],
Design of Supervised Classifiers Using Boolean Neural Networks,
PAMI(17), No. 12, December 1995, pp. 1239-1246.
IEEE DOI BibRef 9512
And: A2 only:
Reply to: Comments on 'Design of Supervised Classifiers Using Boolean Neural Networks',
PAMI(21), No. 9, September 1999, pp. 957-958.
IEEE DOI
See also Comments on Design of Supervised Classifiers Using Boolean Neural Networks. BibRef

Hussain, B., Kabuka, M.R.,
A novel feature recognition neural network and its application to character recognition,
PAMI(16), No. 1, January 1994, pp. 98-106.
IEEE DOI 0401
BibRef

Smith, G.,
Comments on 'Design of Supervised Classifiers Using Boolean Neural Networks',
PAMI(21), No. 9, September 1999, pp. 956.
IEEE DOI
See also Design of Supervised Classifiers Using Boolean Neural Networks. BibRef 9909

Ishii, S., Fukumizu, K., and Watanabe, S.,
A net work of chaotic elements for information processing,
NeurNet(9), No. 1, January 1996, pp. 25-40.
Elsevier DOI BibRef 9601

Grimes, C., Picton, P.D., Elliman, D.G.,
A Neural-Network Position-Independent Multiple Pattern Recogniser,
AIEng(10), No. 2, 1996, pp. 117-126. BibRef 9600

di Zenzo, S.[Silvano],
Pattern recognition of collections,
IVC(1), No. 2, May 1983, pp. 93-97.
Elsevier DOI 0401
BibRef

di Zenzo, S., Burgess, N., Ferragina, P., Granieri, M.N.,
Recognition by Constructive Neural Algorithms,
PRL(14), No. 12, December 1993, pp. 997-1007. BibRef 9312

Burgess, N., Granieri, M.N.,
A growing network classifier of 3D objects using multiple views,
ICPR92(II:512-515).
IEEE DOI 9208
BibRef

Ridella, S., Rovetta, S., Zunino, R.,
Circular Backpropagation Networks for Classification,
TNN(8), No. 1, January 1997, pp. 84-97. 9701
BibRef

Kanaoka, T., Chellappa, R., Yoshitaka, M., Tomita, S.,
A Higher-Order Neural Network for Distortion Invariant Pattern Recognition,
PRL(13), 1992, pp. 837-841. BibRef 9200

Kaita, T.[Takeshi], Tomita, S.[Shingo], Yamanaka, J.[Junkichi],
On a Higher-Order Neural Network for Distortion Invariant Pattern Recognition,
PRL(23), No. 8, June 2002, pp. 977-984.
Elsevier DOI 0204
BibRef

Osman, H., Fahmy, M.M.,
On The Discriminatory Power Of Adaptive Feedforward Layered Networks,
PAMI(16), No. 8, August 1994, pp. 837-842.
IEEE DOI BibRef 9408

Osman, H., Fahmy, M.M.,
Neural Classifiers and Statistical Pattern-Recognition: Applications for Currently Established Links,
SMC-B(27), No. 3, June 1997, pp. 488-497.
IEEE Top Reference. 9706
BibRef

Hsu, T.C., Wang, S.D.,
The K1-Map Reduction for Pattern Classifications,
PAMI(19), No. 6, June 1997, pp. 616-622.
IEEE DOI 9708
An approach for Restricted Coulomb Energy (RCE) networks to determine the number of clusters or network centers. BibRef

Ray, K.S., Ghoshal, J.,
Neuro Fuzzy Approach to Pattern-Recognition,
NeurNet(10), No. 1, January 1997, pp. 161-182. 9702
BibRef

Ray, K.S.[Kumar S.],
Pattern Recognition Based on Fuzzy Set and Genetic Algorithm,
IJIG(14), No. 03, 2014, pp. 1450009.
DOI Link 1410
BibRef

Ornes, C., Sklansky, J.,
A Neural-Network That Visualizes What It Classifies,
PRL(18), No. 11-13, November 1997, pp. 1301-1306. 9806
BibRef

Ornes, C., Sklansky, J.,
A Visual Neural Classifier,
SMC-B(28), No. 4, August 1998, pp. 620-625.
IEEE Top Reference. 9808
BibRef

Ornes, C.[Chester], Sklansky, J.[Jack], Disher, A.[Anthony],
A Visual Neural Network that Learns Perceptual Relationships,
ICPR98(Vol I: 873-875).
IEEE DOI 9808
BibRef

Auda, G., Kamel, M.,
CMNN: Cooperative Modular Neural Networks for Pattern Recognition,
PRL(18), No. 11-13, November 1997, pp. 1391-1398. 9806
BibRef

Murino, V.,
Structured Neural Networks for Pattern Recognition,
SMC-B(28), No. 4, August 1998, pp. 553-561.
IEEE Top Reference. 9808
BibRef

Lu, Z.K., Chi, Z.R., Siu, W.C.,
Length Estimation of Digit Strings Using a Neural Network with Structure Based Features,
JEI(7), No. 1, January 1998, pp. 79-85. 9807
BibRef

Chen, C.W., Chen, L.L.,
Cellular Neural Network Architecture for Gibbs Random Field Based Image Segmentation,
JEI(7), No. 1, January 1998, pp. 45-51. 9807
BibRef

Chen, C.W., Chen, L.L., Luo, J.B.,
A Cellular Neural Network for Clustering-Based Adaptive Quantization in Subband Video Compression,
CirSysVideo(6), No. 6, December 1996, pp. 688-692.
IEEE Top Reference. 9701
BibRef

Aizenberg, I.N.,
Processing of Noisy and Small Detailed Gray Scale Images Using Cellular Neural Networks,
JEI(6), No. 3, July 1997, pp. 272-285. 9807
BibRef

Lin, C.C.[Che-Chern], El-Jaroudi, A.[Amro],
An Algorithm to Determine the Feasibilities and Weights of Two-Layer Perceptrons for Partitioning and Classification,
PR(31), No. 11, November 1998, pp. 1613-1625.
Elsevier DOI BibRef 9811

Zhou, W.,
Verification of the Nonparametric Characteristics of Backpropagation Neural Networks for Image Classification,
GeoRS(37), No. 2, March 1999, pp. 771.
IEEE Top Reference. BibRef 9903

Carozza, M.[Menita], Rampone, S.[Salvatore],
Function approximation from noisy data by an incremental RBF network,
PR(32), No. 12, December 1999, pp. 2081-2083.
Elsevier DOI BibRef 9912
And: Further results:
An incremental multivariate regression method for function approximation from noisy data,
PR(34), No. 3, March 2001, pp. 695-702.
Elsevier DOI 0101
BibRef

Lin, C.T., Lee, Y.C., Pu, H.C.,
Satellite Sensor Image Classification Using Cascaded Architecture of Neural Fuzzy Network,
GeoRS(38), No. 2, March 2000, pp. 1033-1043.
IEEE Top Reference. 0004
BibRef

Simpson, J.J., McIntire, T.J., Sienko, M.,
An Improved Hybrid Clustering Algorithm for Natural Scenes,
GeoRS(38), No. 2, March 2000, pp. 1016-1032.
IEEE Top Reference. 0004
BibRef

Rughooputh, H.C.S., Rughooputh, S.D.D.V.,
Spectral recognition using a modified Eckhorn neural network model,
IVC(18), No. 14, November 2000, pp. 1101-1103.
Elsevier DOI 0101
BibRef

Lin, J.S.[Jzau-Sheng],
Annealed chaotic neural network with nonlinear self-feedback and its application to clustering problem,
PR(34), No. 5, May 2001, pp. 1093-1104.
Elsevier DOI 0102
BibRef

Go, J.[Jinwook], Han, G.[Gunhee], Kim, H.[Hagbae], Lee, C.H.[Chul-Hee],
Multigradient: a new neural network learning algorithm for pattern classification,
GeoRS(39), No. 5, May 2001, pp. 986-993.
IEEE Top Reference. 0106
BibRef

Iyatomi, H.[Hitoshi], Hagiwara, M.[Masafumi],
Scenery image recognition and interpretation using fuzzy inference neural networks,
PR(35), No. 8, August 2002, pp. 1793-1806.
Elsevier DOI 0206
BibRef

Iyatomi, H.[Hitoshi], Hagiwara, M.[Masafumi],
Adaptive fuzzy inference neural network,
PR(37), No. 10, October 2004, pp. 2049-2057.
Elsevier DOI 0409
Initial rule, selection of important elements, identification of the network structure, parameter estimation. BibRef

Lin, J.S.[Jzau-Sheng], Liu, S.H.[Shao-Han],
Classification of multispectral images based on a fuzzy-possibilistic neural network,
SMC-C(32), No. 4, November 2002, pp. 499-506.
IEEE Top Reference. 0301
BibRef

Jiang, X.D.[Xu-Dong], Wah, A.H.K.S.[Alvin Harvey Kam Siew],
Constructing and training feed-forward neural networks for pattern classification,
PR(36), No. 4, April 2003, pp. 853-867.
Elsevier DOI 0304
BibRef

Raudys, A.,
Boosting neural network feature extraction by reduced accuracy activation functions,
PR(36), No. 6, June 2003, pp. 1343-1354.
Elsevier DOI 0304
BibRef

Venkatesh, Y.V., Raja, S.K.[S. Kumar],
On the classification of multispectral satellite images using the multilayer perceptron,
PR(36), No. 9, September 2003, pp. 2161-2175.
Elsevier DOI 0307
BibRef

Porter, R.B.[Reid B.], Harvey, N.R.[Neal R.], Perkins, S.[Simon], Theiler, J.[James], Brumby, S.P.[Steven P.], Bloch, J.J.[Jeffrey J.], Gokhale, M.[Maya], Szymanski, J.J.[John J.],
Optimizing Digital Hardware Perceptrons for Multi-Spectral Image Classification,
JMIV(19), No. 2, September 2003, pp. 133-150.
DOI Link 0308
BibRef

Park, S.B.[Soo Beom], Lee, J.W.[Jae Won], Kim, S.K.[Sang Kyoon],
Content-based image classification using a neural network,
PRL(25), No. 3, February 2004, pp. 287-300.
Elsevier DOI 0401
BibRef

Han, M.[Min], Xi, J.H.[Jian-Hui],
Efficient clustering of radial basis perceptron neural network for pattern recognition,
PR(37), No. 10, October 2004, pp. 2059-2067.
Elsevier DOI 0409
BibRef

Alaiz-Rodríguez, R.[Rocío], Guerrero-Curieses, A.[Alicia], Cid-Sueiro, J.[Jesús],
Minimax classifiers based on neural networks,
PR(38), No. 1, January 2005, pp. 29-39.
Elsevier DOI 0410
BibRef

Sanz, P.J., Marin, R., Sanchez, J.S.,
Including efficient object recognition capabilities in online robots: from a statistical to a Neural-network classifier,
SMC-C(35), No. 1, February 2005, pp. 87-96.
IEEE Abstract. 0501
BibRef

Lim, C.P.[Chee-Peng], Leong, J.H.[Jenn-Hwai], Kuan, M.M.[Mei-Ming],
A Hybrid Neural Network System for Pattern Classification Tasks with Missing Features,
PAMI(27), No. 4, April 2005, pp. 648-653.
IEEE Abstract. 0501
Classification with incomplete data. BibRef

Artyomov, E.[Evgeny], Yadid-Pecht, O.[Orly],
Modified high-order neural network for invariant pattern recognition,
PRL(26), No. 6, 1 May 2005, pp. 843-851.
Elsevier DOI 0501
BibRef

Yadid-Pecht, O.[Orly], Gur, M.,
A simple 'possibilistic' clustering neural network,
ICPR94(B:520-521).
IEEE DOI 9410
BibRef

Spratling, M.W.[Michael W.],
Learning Viewpoint Invariant Perceptual Representations from Cluttered Images,
PAMI(27), No. 5, May 2005, pp. 753-761.
IEEE Abstract. 0501
Neural network application. Learn simple patterns in all orientations. BibRef

Qin, A.K., Suganthan, P.N.,
Enhanced neural gas network for prototype-based clustering,
PR(38), No. 8, August 2005, pp. 1275-1288.
Elsevier DOI 0505
Code, Neural Networks. BibRef
Earlier:
Kernel neural gas algorithms with application to cluster analysis,
ICPR04(IV: 617-620).
IEEE DOI 0409
Code available:
WWW Link. BibRef

Chi, H.M.[Hoi-Ming], Ersoy, O.K.,
A statistical self-organizing learning system for remote sensing classification,
GeoRS(43), No. 8, August 2005, pp. 1890-1900.
IEEE DOI 0508
BibRef

Zhang, H., Huang, W., Huang, Z., Zhang, B.,
A Kernel Autoassociator Approach to Pattern Classification,
SMC-B(35), No. 3, June 2005, pp. 593-606.
IEEE DOI 0508
BibRef

Perez, C.A., Gonzalez, G.D., Medina, L.E., Galdames, F.J.,
Linear Versus Nonlinear Neural Modeling for 2-D Pattern Recognition,
SMC-A(35), No. 6, November 2005, pp. 955-964.
IEEE DOI 0510
BibRef

Cang, S., Yu, H.,
Novel probabilty neural network,
VISP(152), No. 5, October 2005, pp. 535-544.
DOI Link 0512
BibRef

Ng, W.W.Y.[Wing W.Y.], Dorado, A.[Andres], Yeung, D.S.[Daniel S.], Pedrycz, W.[Witold], and Izquierdo, E.[Ebroul],
Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error,
PR(40), No. 1, January 2007, pp. 19-32.
Elsevier DOI 0611
Image classification; Radial basis functions neural networks; MPEG-7; Support vector machines; Generalization error BibRef

Chandramouli, K., Izquierdo, E.,
Image Classification using Chaotic Particle Swarm Optimization,
ICIP06(3001-3004).
IEEE DOI 0610
BibRef

del Frate, F.[Fabio], Pacifici, F.[Fabio], Schiavon, G.[Giovanni], Solimini, C.[Chiara],
Use of Neural Networks for Automatic Classification From High-Resolution Images,
GeoRS(45), No. 4, April 2007, pp. 800-809.
IEEE DOI 0704
BibRef

Meher, S.K.[Saroj K.], Uma Shankar, B., Ghosh, A.[Ashish],
Wavelet-Feature-Based Classifiers for Multispectral Remote-Sensing Images,
GeoRS(45), No. 6, June 2007, pp. 1881-1886.
IEEE DOI 0706
BibRef

Ou, G.B.[Guo-Bin], Murphey, Y.L.[Yi Lu],
Multi-class pattern classification using neural networks,
PR(40), No. 1, January 2007, pp. 4-18.
Elsevier DOI 0611
BibRef
Earlier: Add A3: Feldkamp, L.[Lee], ICPR04(IV: 585-588).
IEEE DOI 0409
Machine learning; Multi-class classification; Neural networks BibRef

Murphey, Y.L.[Yi Lu], Luo, Y.[Yun],
Feature extraction for a multiple pattern classification neural network system,
ICPR02(II: 220-223).
IEEE DOI 0211
BibRef

Shankar, B.U.[B. Uma], Meher, S.K.[Saroj K.], Ghosh, A.[Ashish], Bruzzone, L.[Lorenzo],
Remote Sensing Image Classification: A Neuro-fuzzy MCS Approach,
ICCVGIP06(128-139).
Springer DOI 0612
BibRef

Misra, B.B., Dehuri, S., Dash, P.K., Panda, G.,
A reduced and comprehensible polynomial neural network for classification,
PRL(29), No. 12, 1 September 2008, pp. 1705-1712.
Elsevier DOI 0804
Classification; Polynomial neural network; Particle swarm optimization BibRef

Ponalagusamy, R., Senthilkumar, S.,
A new fourth order embedded RKAHeM(4,4) method with error control on multilayer raster cellular neural network,
SIViP(3), No. 1, January 2009, pp. xx-yy.
Springer DOI 0902
initial value problems. BibRef

Ponalagusamy, R., Senthilkumar, S.,
A new fourth order embedded RKAHeM(4,4) method with error control on single layer/raster cellular neural network,
SIViP(3), No. 3, September 2009, pp. xx-yy.
Springer DOI 0910
BibRef

Senthilkumar, S.,
Hole-Filler Cellular Neural Network Simulation by RKGHM(5,5),
JMIV(43), No. 3, July 2012, pp. 194-205.
WWW Link. 1204
BibRef

Fontenla-Romero, O.[Oscar], Guijarro-Berdinas, B.[Bertha], Perez-Sanchez, B.[Beatriz], Alonso-Betanzos, A.[Amparo],
A new convex objective function for the supervised learning of single-layer neural networks,
PR(43), No. 5, May 2010, pp. 1984-1992.
Elsevier DOI 1003
Single-layer neural networks; Global optimum; Supervised learning method; Least squares; Convex optimization; Incremental learning BibRef

Gross, B.A.[Brooks A.], Hanna, D.M.[Darrin M.],
Artificial neural networks capable of learning spatiotemporal chemical diffusion in the cortical brain,
PR(43), No. 11, November 2010, pp. 3910-3921.
Elsevier DOI 1008
Artificial intelligence; Elman; Neural network; 3D; Chemical imaging; Brain; Neurochemistry BibRef

Yu, D.[Dong], Deng, L.[Li],
Efficient and effective algorithms for training single-hidden-layer neural networks,
PRL(33), No. 5, 1 April 2012, pp. 554-558.
Elsevier DOI 1202
Neural network; Extreme learning machine; Accelerated gradient algorithm; Weighted algorithm; MNIST BibRef

Martínez-Rego, D.[David], Fontenla-Romero, O.[Oscar], Alonso-Betanzos, A.[Amparo],
Nonlinear single layer neural network training algorithm for incremental, nonstationary and distributed learning scenarios,
PR(45), No. 12, December 2012, pp. 4536-4546.
Elsevier DOI 1208
Artificial neural networks; Incremental learning; Nonstationary learning; Distributed learning BibRef

Martinez-Rego, D.[David], Castillo, E.[Enrique], Fontenla-Romero, O.[Oscar], Alonso-Betanzos, A.[Amparo],
A Minimum Volume Covering Approach with a Set of Ellipsoids,
PAMI(35), No. 12, 2013, pp. 2997-3009.
IEEE DOI 1311
Classification BibRef

Benalcázar, M.E.[Marco E.], Brun, M.[Marcel], Ballarin, V.[Virginia], Passoni, I.[Isabel], Meschino, G.[Gustavo], Pra, L.D.[Lucía Dai],
Automatic Design of Binary W-operators Using Artificial Feed-forward Neural Networks Based on the Weighted Mean Square Error Cost Function,
CIARP12(495-502).
Springer DOI 1209
BibRef

Chen, B.[Bo], Polatkan, G.[Gungor], Sapiro, G.[Guillermo], Blei, D.[David], Dunson, D.[David], Carin, L.[Lawrence],
Deep Learning with Hierarchical Convolutional Factor Analysis,
PAMI(35), No. 8, 2013, pp. 1887-1901.
IEEE DOI 1307
Analytical models; Bayesian methods; Convolution; deep learning BibRef

Goodfellow, I.J.[Ian J.], Courville, A.[Aaron], Bengio, Y.[Yoshua],
Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning,
PAMI(35), No. 8, 2013, pp. 1902-1914.
IEEE DOI 1307
Approximation methods; Neural nets BibRef

Courville, A.[Aaron], Desjardins, G., Bergstra, J., Bengio, Y.[Yoshua],
The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions,
PAMI(36), No. 9, September 2014, pp. 1874-1887.
IEEE DOI 1408
Covariance matrices BibRef

Li, D., Wang, W., Ismail, F.,
Fuzzy Neural Network Technique for System State Forecasting,
Cyber(43), No. 5, 2013, pp. 1484-1494.
IEEE DOI 1309
Fuzzy neural predictors BibRef

Seyedhosseini, M.[Mojtaba], Tasdizen, T.[Tolga],
Multi-Class Multi-Scale Series Contextual Model for Image Segmentation,
IP(22), No. 11, 2013, pp. 4486-4496.
IEEE DOI 1310
electron microscopy BibRef

Seyedhosseini, M.[Mojtaba], Paiva, A.R.C.[Antonio R.C.], Tasdizen, T.[Tolga],
Image Parsing with a Three-State Series Neural Network Classifier,
ICPR10(4508-4511).
IEEE DOI 1008
BibRef

Chen, C.H.[Ching-Han], Kuo, C.M.[Chia-Ming], Yao, T.K.[Tun-Kai], Hsieh, S.H.[Sheng-Hsien],
Anisotropic Probabilistic Neural Network for Image Interpolation,
JMIV(48), No. 3, March 2014, pp. 488-498.
Springer DOI 1403
BibRef

Zuo, Z., Wang, G.,
Learning Discriminative Hierarchical Features for Object Recognition,
SPLetters(21), No. 9, Sept 2014, pp. 1159-1163.
IEEE DOI 1406
Artificial neural networks BibRef

Alvar, M.[Manuel], Rodriguez-Calvo, A.[Andrea], Sanchez-Miralles, A.[Alvaro], Arranz, A.[Alvaro],
Mixture of Merged Gaussian Algorithm using RTDENN,
MVA(25), No. 5, July 2014, pp. 1133-1144.
Springer DOI 1407
RTDENN: Real-Time Dynamic Ellipsoidal Neural Networks BibRef

Charalampous, K.[Konstantinos], Gasteratos, A.[Antonios],
A tensor-based deep learning framework,
IVC(32), No. 11, 2014, pp. 916-929.
Elsevier DOI 1410
Deep learning BibRef

Ramirez-Quintana, J.A.[Juan Alberto], Chacon-Murguia, M.I.[Mario Ignacio],
Self-adaptive SOM-CNN neural system for dynamic object detection in normal and complex scenarios,
PR(48), No. 4, 2015, pp. 1137-1149.
Elsevier DOI 1502
Video analysis BibRef

Luo, W.[Wei], Yang, J.[Jian], Xu, W.[Wei], Fu, T.[Tao],
Locality-Constrained Sparse Auto-Encoder for Image Classification,
SPLetters(22), No. 8, August 2015, pp. 1070-1073.
IEEE DOI 1502
image classification BibRef

Harikumar, R., kumar, B.V.[B. Vinoth],
Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor,
IJIST(25), No. 1, 2015, pp. 33-40.
DOI Link 1502
medical images BibRef

Liu, J.[Jing], Liu, B.Y.[Bing-Yuan], Lu, H.Q.[Han-Qing],
Detection guided deconvolutional network for hierarchical feature learning,
PR(48), No. 8, 2015, pp. 2645-2655.
Elsevier DOI 1505
Image representation BibRef

Choi, J.S.[Jae Seung],
Discrimination algorithm using voiced detection method and time-delay neural network system by 3 FFT sub-bands,
IJCVR(5), No. 2, 2015, pp. 99-111.
DOI Link 1505
BibRef

Kong, S., Jiang, Z., Yang, Q.,
Modeling Neuron Selectivity Over Simple Midlevel Features for Image Classification,
IP(24), No. 8, August 2015, pp. 2404-2414.
IEEE DOI 1505
Convolution BibRef

Zhu, S.H.[Song-Hao], Shi, Z.[Zhe], Sun, C.J.[Cheng-Jian], Shen, S.H.[Shu-Han],
Deep neural network based image annotation,
PRL(65), No. 1, 2015, pp. 103-108.
Elsevier DOI 1511
Deep learning BibRef
Earlier: A3, A1, A2, Only:
Image annotation via deep neural network,
MVA15(518-521)
IEEE DOI 1507
Computer architecture BibRef

Huang, Y.[Yan], Wang, W.[Wei], Wang, L.[Liang],
Unconstrained Multimodal Multi-Label Learning,
MultMed(17), No. 11, November 2015, pp. 1923-1935.
IEEE DOI 1511
BibRef
Earlier:
Conditional High-Order Boltzmann Machine: A Supervised Learning Model for Relation Learning,
ICCV15(4265-4273)
IEEE DOI 1602
Correlation BibRef

Huang, Y.[Yan], Wang, W.[Wei], Wang, L.A.[Li-Ang], Tan, T.N.[Tie-Niu],
Conditional High-Order Boltzmann Machines for Supervised Relation Learning,
IP(26), No. 9, September 2017, pp. 4297-4310.
IEEE DOI 1708
BibRef
Earlier:
Multi-Task Deep Neural Network for Multi-Label Learning,
ICIP13(2897-2900)
IEEE DOI 1402
Boltzmann machines, face recognition, image classification, learning (artificial intelligence), matrix decomposition, tensors, CHBM, action similarity labeling, binary classification, conditional high-order Boltzmann machines, conditional likelihood, data relation, discriminant ability enhancement, face verification, high-order multiplicative interactions, high-order parameter tensors, invariant recognition, joint likelihood, latent variables, multiple matrix factorization, pairwise input samples, relation feature classification, relation feature learning, supervised relation learning, Computational modeling, Data models, Face, Logic gates, Measurement, Supervised learning, Tensile stress, Deep learning, action similarity labeling, face verification, high-order Boltzmann machine, relation learning BibRef

An, H.[Hongsub], Shim, H.M.[Hyeon-Min], Na, S.I.[Sang-Il], Lee, S.[Sangmin],
Split and merge algorithm for deep learning and its application for additional classes,
PRL(65), No. 1, 2015, pp. 137-144.
Elsevier DOI 1511
Deep neural networks BibRef

Hile, R.[Ryan], Cova, T.J.[Thomas J.],
Exploratory Testing of an Artificial Neural Network Classification for Enhancement of the Social Vulnerability Index,
IJGI(4), No. 4, 2015, pp. 1774.
DOI Link 1511
BibRef

Sengoz, C.[Cenker], Ramanna, S.[Sheela],
Learning relational facts from the web: A tolerance rough set approach,
PRL(67, Part 2), No. 1, 2015, pp. 130-137.
Elsevier DOI 1512
Tolerance rough sets BibRef

Yang, Y.[Yang], Zhang, W.S.[Wen-Sheng], Xie, Y.[Yuan],
Image automatic annotation via multi-view deep representation,
JVCIR(33), No. 1, 2015, pp. 368-377.
Elsevier DOI 1512
Image annotation BibRef

Burian, P.[Petr], Holota, R.[Radek],
Fast image recognition based on n-tuple neural networks implemented in an FPGA,
RealTimeIP(11), No. 1, January 2016, pp. 155-166.
WWW Link. 1601
BibRef

Azizpour, H.[Hossein], Razavian, A.S.[Ali Sharif], Sullivan, J.[Josephine], Maki, A.[Atsuto], Carlsson, S.[Stefan],
Factors of Transferability for a Generic ConvNet Representation,
PAMI(38), No. 9, September 2016, pp. 1790-1802.
IEEE DOI 1609
BibRef
Earlier:
From generic to specific deep representations for visual recognition,
DeepLearn15(36-45)
IEEE DOI 1510
feature extraction BibRef

Razavian, A.S.[Ali Sharif], Azizpour, H.[Hossein], Maki, A.[Atsuto], Sullivan, J.[Josephine], Ek, C.H.[Carl Henrik], Carlsson, S.[Stefan],
Persistent Evidence of Local Image Properties in Generic ConvNets,
SCIA15(249-262).
Springer DOI 1506
BibRef

Dash, C.S.K.[C. Sanjeev Kumar], Saran, A.[Amitav], Sahoo, P.[Pulak], Dehuri, S.[Satchidananda], Cho, S.B.[Sung-Bae],
Design of self-adaptive and equilibrium differential evolution optimized radial basis function neural network classifier for imputed database,
PRL(80), No. 1, 2016, pp. 76-83.
Elsevier DOI 1609
Data mining BibRef

Passalis, N.[Nikolaos], Tefas, A.[Anastasios],
Neural Bag-of-Features learning,
PR(64), No. 1, 2017, pp. 277-294.
Elsevier DOI 1701
Encoding, Entropy, Feature extraction, Histograms, Quantization (signal), Semantics, Training. BibRef

Passalis, N.[Nikolaos], Tefas, A.[Anastasios],
Learning bag-of-embedded-words representations for textual information retrieval,
PR(81), 2018, pp. 254-267.
Elsevier DOI 1806
BibRef
Earlier:
Bag of Embedded Words learning for text retrieval,
ICPR16(2416-2421)
IEEE DOI 1705
Word embeddings, Bag-of-words, Bag-of-features, Dictionary learning, Relevance feedback, Information retrieval. BibRef

Passalis, N.[Nikolaos], Tefas, A.[Anastasios],
Learning Neural Bag-of-Features for Large-Scale Image Retrieval,
SMCS(47), No. 10, October 2017, pp. 2641-2652.
IEEE DOI 1709
Dictionaries, Encoding, Feature extraction, Histograms, Image retrieval, Image segmentation, Bag-of-features (BoFs) representation, information retrieval, neural networks, retrieval-oriented, optimization BibRef

Passalis, N.[Nikolaos], Tefas, A.[Anastasios],
Accelerating Similarity-Based Discriminant Analysis Using Class-Specific Prototypes,
ICIP18(161-165)
IEEE DOI 1809
Prototypes, Kernel, Training, Task analysis, Robustness, Optimized production technology, Similarity Embedding Framework BibRef

Ahsan, A.M.[Amin Mohamed], Mohamad, D.B.[Dzulkifli Bin],
Machine learning technique for object detection based on SURF feature,
IJCVR(7), No. 1/2, 2017, pp. 6-19.
DOI Link 1701
NN learning using SURF features BibRef

Bakhtiary, A.H.[Amir H.], Lapedriza, A.[Agata], Masip, D.[David],
Winner takes all hashing for speeding up the training of neural networks in large class problems,
PRL(93), No. 1, 2017, pp. 38-47.
Elsevier DOI 1706
Winner takes all hashing BibRef

Zhang, J.M.[Jian-Ming], Bargal, S.A.[Sarah Adel], Lin, Z.[Zhe], Brandt, J.[Jonathan], Shen, X.H.[Xiao-Hui], Sclaroff, S.[Stan],
Top-Down Neural Attention by Excitation Backprop,
IJCV(126), No. 10, October 2018, pp. 1084-1102.
Springer DOI 1809
BibRef
Earlier: A1, A3, A4, A5, A6, Only: ECCV16(IV: 543-559).
Springer DOI 1611
BibRef

Sidike, P.[Paheding], Asari, V.K.[Vijayan K.], Sagan, V.[Vasit],
Progressively Expanded Neural Network (PEN Net) for hyperspectral image classification: A new neural network paradigm for remote sensing image analysis,
PandRS(146), 2018, pp. 161-181.
Elsevier DOI 1812
Neural network, Hyperspectral image (HSI), Classification, Machine learning, Remote sensing BibRef

Rojas-Delgado, J.[Jairo], Trujillo-Rasúa, R.[Rafael], Bello, R.[Rafael],
A continuation approach for training Artificial Neural Networks with meta-heuristics,
PRL(125), 2019, pp. 373-380.
Elsevier DOI 1909
Continuation, Optimization, Neural-network BibRef

Liang, D.J.[Dao-Jun], Yang, F.[Feng], Wang, X.P.[Xiu-Ping], Ju, X.H.[Xiao-Hui],
Multi-sample inference network,
IET-CV(13), No. 6, September 2019, pp. 605-613.
DOI Link 1911
Network with multiple samples. BibRef

Rosenfeld, A.[Amir], Tsotsos, J.K.[John K.],
Incremental Learning Through Deep Adaptation,
PAMI(42), No. 3, March 2020, pp. 651-663.
IEEE DOI 2002
BibRef
And:
Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to Nothing,
CRV19(9-16)
IEEE DOI 1908
Task analysis, Switches, Training, Neural networks, Convolutional codes, Incremental learning, domain adaptation. Training, Neural networks, Limiting, Machine learning, Optimization, Network architecture, Kernel, Deep Learning, Optimization, Random Weights BibRef

Rosenfeld, A., Biparva, M., Tsotsos, J.K.,
Priming Neural Networks,
Cognitive18(2092-209209)
IEEE DOI 1812
Visualization, Task analysis, Object detection, Neural networks, Semantics, Image segmentation BibRef

Zhu, Z.H.[Zhi-Hui], Soudry, D.[Daniel], Eldar, Y.C.[Yonina C.], Wakin, M.B.[Michael B.],
The Global Optimization Geometry of Shallow Linear Neural Networks,
JMIV(62), No. 3, April 2020, pp. 279-292.
Springer DOI 2004
BibRef

Zhang, J.S.[Jiang-She], Hu, J.Y.[Jun-Ying], Liu, J.M.[Jun-Min],
Neural network with multiple connection weights,
PR(107), 2020, pp. 107481.
Elsevier DOI 2008
Neural network, Neurotransmitter, Interpretability, Extending dimension BibRef

Dogan, Ü.[Ürün], Deshmukh, A.A.[Aniket Anand], Machura, M.B.[Marcin Bronislaw], Igel, C.[Christian],
Label-similarity Curriculum Learning,
ECCV20(XXIX: 174-190).
Springer DOI 2010
guiding the optimization to desirable optima BibRef

Chrysos, G.G.[Grigorios G], Panagakis, Y.[Yannis],
NAPS: Non-adversarial polynomial synthesis,
PRL(140), 2020, pp. 318-324.
Elsevier DOI 2012
Polynomial neural networks, Tensor decompositions, Generative models BibRef

Chrysos, G.G.[Grigorios G.], Moschoglou, S.[Stylianos], Bouritsas, G.[Giorgos], Deng, J.K.[Jian-Kang], Panagakis, Y.[Yannis], Zafeiriou, S.P.[Stefanos P.],
Deep Polynomial Neural Networks,
PAMI(44), No. 8, August 2022, pp. 4021-4034.
IEEE DOI 2207
Tensors, Neural networks, Task analysis, Faces, Training, Matrix decomposition, Convolutional neural networks, face verification BibRef

Yu, Y.H.[Yong-Hong], Jiao, L.H.[Li-Hong], Zhou, N.N.[Ning-Ning], Zhang, L.[Li], Yin, H.Z.[Hong-Zhi],
Enhanced factorization machine via neural pairwise ranking and attention networks,
PRL(140), 2020, pp. 348-357.
Elsevier DOI 2012
Recommendation algorithm, Factorization machine, Neural networks BibRef

Wang, Z., Xiang, C., Zou, W., Xu, C.,
DMA Regularization: Enhancing Discriminability of Neural Networks by Decreasing the Minimal Angle,
SPLetters(27), 2020, pp. 2089-2093.
IEEE DOI 2012
Image Classification, Discrimination Regularization, Intra-class Compactness, Inter-class Discrepancy, Deep Learning BibRef

Li, M.[Ming], Wang, D.H.[Dian-Hui],
2-D Stochastic Configuration Networks for Image Data Analytics,
Cyber(51), No. 1, January 2021, pp. 359-372.
IEEE DOI 2012
Data models, Data analysis, Computational modeling, Analytical models, Approximation algorithms, Neural networks, 2-D stochastic configuration networks (2DSCNs) BibRef

Shi, J.[Jun], Xu, J.F.[Jian-Feng], Tasaka, K.[Kazuyuki], Chen, Z.B.[Zhi-Bo],
SASL: Saliency-Adaptive Sparsity Learning for Neural Network Acceleration,
CirSysVideo(31), No. 5, 2021, pp. 2008-2019.
IEEE DOI 2105
BibRef

Li, J.[Jia], Xiao, M.Q.[Ming-Qing], Fang, C.[Cong], Dai, Y.[Yue], Xu, C.[Chao], Lin, Z.C.[Zhou-Chen],
Training Neural Networks by Lifted Proximal Operator Machines,
PAMI(44), No. 6, June 2022, pp. 3334-3348.
IEEE DOI 2205
Training, Artificial neural networks, Linear programming, Convergence, Tuning, Standards, Patents, Neural networks, parallel implementation BibRef

Wang, S.P.[Shi-Peng], Yang, Y.[Yan], Sun, J.[Jian], Xu, Z.B.[Zong-Ben],
Variational HyperAdam: A Meta-Learning Approach to Network Training,
PAMI(44), No. 8, August 2022, pp. 4469-4484.
IEEE DOI 2207
Training, Task analysis, Optimization, Neural networks, Random variables, Training data, Estimation, Network training, variational hyperadam BibRef

Gao, T.[Tao], Bai, X.[Xiao], Wang, C.[Chen], Zhang, L.[Liang], Zheng, J.[Jin], Wang, J.[Jian],
A modified interval type-2 Takagi-Sugeno fuzzy neural network and its convergence analysis,
PR(131), 2022, pp. 108861.
Elsevier DOI 2208
IT2 fuzzy model, Fuzzy neural network, Takagi-Sugeno, Conjugate gradient, Convergence BibRef

Elyounsi, A.[Asma], Tlijani, H.[Hatem], Bouhlel, M.S.[Mohamed Salim],
Firefly Algorithm Optimized Functional Link Artificial Neural Network for ISA-Radar Image Recognition,
IJIG(22), No. 5 2022, pp. 2250044.
DOI Link 2212
BibRef

Tovias-Alanis, S.O.[Samuel Omar], Sossa, H.[Humberto], Gómez-Flores, W.[Wilfrido],
Learning smooth dendrite morphological neurons for pattern classification using linkage trees and evolutionary-based hyperparameter tuning,
PRL(172), 2023, pp. 274-281.
Elsevier DOI 2309
Dendrite morphological neurons, Spherical dendrites, Linkage trees, Pattern classification, Genetic algorithm BibRef

Groenendijk, R.[Rick], Dorst, L.[Leo], Gevers, T.[Theo],
Geometric Back-Propagation in Morphological Neural Networks,
PAMI(45), No. 11, November 2023, pp. 14045-14051.
IEEE DOI 2310
BibRef

Yu, X.H.[Xiao-Han], Mao, S.C.[Shao-Chen], Wang, L.[Lei], Lu, S.J.[Shi-Jie], Yu, K.[Kun],
Research on neural processes with multiple latent variables,
IET-IPR(17), No. 11, 2023, pp. 3323-3336.
DOI Link 2310
Combines the advantages of neural network and Gaussian Process. encoder-decoder, multiple latent variables, neural process, regression BibRef


Cai, S.[Sudong],
IIEU: Rethinking Neural Feature Activation from Decision-Making,
ICCV23(5773-5783)
IEEE DOI 2401
Instantaneous Importance Estimation Units BibRef

Tao, C.X.[Chen-Xin], Zhu, X.[Xizhou], Su, W.J.[Wei-Jie], Huang, G.[Gao], Li, B.[Bin], Zhou, J.[Jie], Qiao, Y.[Yu], Wang, X.G.[Xiao-Gang], Dai, J.F.[Ji-Feng],
Siamese Image Modeling for Self-Supervised Vision Representation Learning,
CVPR23(2132-2141)
IEEE DOI 2309
BibRef

Spallanzani, M.[Matteo], Leonardi, G.P.[Gian Paolo], Benini, L.[Luca],
Training Quantised Neural Networks with STE Variants: The Additive Noise Annealing Algorithm,
CVPR22(470-479)
IEEE DOI 2210
Training, Schedules, Annealing, Shape, Neural networks, Stochastic processes, Dynamic scheduling, Optimization methods, Efficient learning and inferences BibRef

Ricci, S.[Simone], Uricchio, T.[Tiberio], del Bimbo, A.[Alberto],
Learning Advisor Networks for Noisy Image Classification,
CIAP22(II:442-453).
Springer DOI 2205
BibRef

Li, F.R.[Fan-Rong], Li, G.[Gang], He, X.Y.[Xiang-Yu], Cheng, J.[Jian],
Dynamic Dual Gating Neural Networks,
ICCV21(5310-5319)
IEEE DOI 2203
Limiting, Computational modeling, Neural networks, Redundancy, Channel estimation, Network architecture, BibRef

Cordonnier, J.B.[Jean-Baptiste], Mahendran, A.[Aravindh], Dosovitskiy, A.[Alexey], Weissenborn, D.[Dirk], Uszkoreit, J.[Jakob], Unterthiner, T.[Thomas],
Differentiable Patch Selection for Image Recognition,
CVPR21(2351-2360)
IEEE DOI 2111
Training, Image resolution, Image recognition, Computational modeling, Neural networks, Memory management BibRef

Bungert, L.[Leon], Raab, R.[René], Roith, T.[Tim], Schwinn, L.[Leo], Tenbrinck, D.[Daniel],
Clip: Cheap Lipschitz Training of Neural Networks,
SSVM21(307-319).
Springer DOI 2106
BibRef

Limnios, S.[Stratis], Dasoulas, G.[George], Thilikos, D.M.[Dimitrios M.], Vazirgiannis, M.[Michalis],
Hcore-Init: Neural Network Initialization based on Graph Degeneracy,
ICPR21(5852-5858)
IEEE DOI 2105
Deep learning, Knowledge engineering, Image recognition, Neurons, Tools, Multilayer perceptrons, Data mining BibRef

Wang, X.L.[Xing-Lu], Li, Y.M.[Ying-Ming],
Gradient Deconfliction-Based Training For Multi-Exit Architectures,
ICIP20(1866-1870)
IEEE DOI 2011
Early exit with easy samples. Training, Computational modeling, Adaptation models, Neural networks, Task analysis, Acceleration, Deconfliction BibRef

Tran, D.T.[Dat Thanh], Gabbouj, M.[Moncef], Iosifidis, A.[Alexandros],
Subset Sampling for Progressive Neural Network Learning,
ICIP20(713-717)
IEEE DOI 2011
Training, Network topology, Neurons, Biological neural networks, Training data, Optimization, Face recognition, Subset Selection, Progressive Neural Network Learning BibRef

Yang, H., Tang, M., Wen, W., Yan, F., Hu, D., Li, A., Li, H., Chen, Y.,
Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality Regularization and Singular Value Sparsification,
EDLCV20(2899-2908)
IEEE DOI 2008
Training, Matrix decomposition, Convolution, Computational modeling, Kernel, Load modeling, Tensile stress BibRef

Huang, C., Chen, J., Wu, J.,
Learning Sparse Neural Networks Through Mixture-Distributed Regularization,
EDLCV20(2968-2977)
IEEE DOI 2008
Logic gates, Training, Neurons, Artificial neural networks, Computational modeling, Exponential distribution BibRef

Zhou, Y.[Yi], Barnes, C.[Connelly], Lu, J.W.[Jing-Wan], Yang, J.M.[Ji-Mei], Li, H.[Hao],
On the Continuity of Rotation Representations in Neural Networks,
CVPR19(5738-5746).
IEEE DOI 2002
BibRef

Guo, Q.S.[Qiu-Shan], Yu, Z.P.[Zhi-Peng], Wu, Y.C.[Yi-Chao], Liang, D.[Ding], Qin, H.Y.[Hao-Yu], Yan, J.J.[Jun-Jie],
Dynamic Recursive Neural Network,
CVPR19(5142-5151).
IEEE DOI 2002
BibRef

Usama, M.[Muhammad], Chang, D.E.[Dong Eui],
Towards Robust Neural Networks with Lipschitz Continuity,
IWDW18(373-389).
Springer DOI 1905
BibRef

Manessi, F.[Franco], Rozza, A.[Alessandro],
Learning Combinations of Activation Functions,
ICPR18(61-66)
IEEE DOI 1812
Training, Biological neural networks, Mercury (metals), Optimization, Neurons, Computer architecture BibRef

Horii, K., Maeda, K., Ogawa, T.[Takahiro], Haseyama, M.[Miki],
A Human-Centered Neural Network Model with Discriminative Locality Preserving Canonical Correlation Analysis for Image Classification,
ICIP18(2366-2370)
IEEE DOI 1809
Visualization, Biology, Correlation, Training, Feature extraction, Neural networks, Transforms, Image classification, neural network, canonical correlation analysis BibRef

Zhao, R.W.[Rui-Wei], Li, J.G.[Jian-Guo], Chen, Y.R.[Yu-Rong], Liu, J.M.[Jia-Ming], Jiang, Y.G.[Yu-Gang], Xue, X.Y.[Xiang-Yang],
Regional Gating Neural Networks for Multi-label Image Classification,
BMVC16(xx-yy).
HTML Version. 1805
BibRef

Wang, Y.N.[Yu-Nong], Bian, H.Y.[Huan-Yu], Yu, N.H.[Neng-Hai],
Neural network with saliency based feature selection ability,
ICIP17(4502-4506)
IEEE DOI 1803
Benchmark testing, Biological neural networks, Feature extraction, Kernel, Task analysis, Visualization, visual saliency BibRef

Grzeszick, R., Sudholt, S., Fink, G.A.,
Optimistic and pessimistic neural networks for object recognition,
ICIP17(350-354)
IEEE DOI 1803
Biological neural networks, Computational modeling, Neurons, Predictive models, Task analysis, Training, Uncertainty, Output Modeling BibRef

Pavez, J.[Juan], Hakobyan, H.[Hayk], Valle, C.[Carlos], Brooks, W.[William], Kuleshov, S.[Sergey], Allende, H.[Héctor],
Neural Networks for the Reconstruction and Separation of High Energy Particles in a Preshower Calorimeter,
CIARP17(491-498).
Springer DOI 1802
BibRef

Haeffele, B.D., Vidal, R.,
Global Optimality in Neural Network Training,
CVPR17(4390-4398)
IEEE DOI 1711
Algorithm design and analysis, Biological neural networks, Loss measurement, Minimization, Neurons, Optimization, Training BibRef

Dong, X., Huang, J., Yang, Y., Yan, S.,
More is Less: A More Complicated Network with Less Inference Complexity,
CVPR17(1895-1903)
IEEE DOI 1711
Acceleration, Collaboration, Computational modeling, Convolution, Kernel, Neural networks, Tensile, stress BibRef

Kaoutar, S., Mohamed, E.,
Multi-criteria optimization of neural networks using multi-objective genetic algorithm,
ISCV17(1-4)
IEEE DOI 1710
Pareto optimisation, genetic algorithms, minimisation, multilayer perceptrons, vectors, MLPNN, NSGA II algorithm, Pareto set, absolute weights, architecture objective optimization, BibRef

Srinivas, S., Subramanya, A., Babu, R.V.,
Training Sparse Neural Networks,
ECVW17(455-462)
IEEE DOI 1709
Biological neural networks, Complexity theory, Indexes, Logic gates, Sparse matrices, Training BibRef

Meng, N., So, H.K.H., Lam, E.Y.,
Computational single-cell classification using deep learning on bright-field and phase images,
MVA17(190-193)
DOI Link 1708
Feature extraction, Imaging, Machine learning, Microprocessors, Neural networks, Training BibRef

Cui, S.Q.[Shu-Qi], Jiang, H.[Hong], Wang, Z.[Zheng], Shen, C.M.[Chao-Min],
Application of neural network based on SIFT local feature extraction in medical image classification,
ICIVC17(92-97)
IEEE DOI 1708
Biological neural networks, Feature extraction, Image classification, Medical diagnostic imaging, Neurons, BP neural network, ROI, SIFT, SVM, slide, the, window BibRef

Kampffmeyer, M.[Michael], Løkse, S.[Sigurd], Bianchi, F.M.[Filippo M.], Jenssen, R.[Robert], Livi, L.[Lorenzo],
Deep Kernelized Autoencoders,
SCIA17(I: 419-430).
Springer DOI 1706
BibRef

Nilsson, N., Ortiz-Catalan, M.,
Estimates of Classification Complexity for Myoelectric Pattern Recognition,
ICPR16(2682-2687)
IEEE DOI 1705
Artificial neural networks, Complexity theory, Correlation, Electromyography, Indexes, Pattern recognition, Silicon BibRef

Peng, K.H.[Kang-Hao], Zhang, H.[Heng],
Mutual information-based RBM neural networks,
ICPR16(2458-2463)
IEEE DOI 1705
Annealing, Entropy, Manganese, Monte Carlo methods, Mutual information, Neural networks, Training BibRef

Liu, L.[Lei],
Hierarchical learning for large multi-class network classification,
ICPR16(2307-2312)
IEEE DOI 1705
Additives, Computational modeling, Covariance matrices, Linear programming, Matrix decomposition, Optimization, Testing BibRef

Kalra, S., Sriram, A., Rahnamayan, S., Tizhoosh, H.R.,
Learning opposites using neural networks,
ICPR16(1213-1218)
IEEE DOI 1705
Approximation algorithms, Convergence, Data mining, Neural networks, Optimization, Training, Training, data BibRef

Roy, A., Todorovic, S., Latecki, L.J.,
Context-regularized learning of fully convolutional networks for scene labeling,
ICPR16(3751-3756)
IEEE DOI 1705
Context, Labeling, Layout, Semantics, Standards, Training, Training, data BibRef

Nooka, S.P., Chennupati, S., Veerabhadra, K., Sah, S., Ptucha, R.,
Adaptive hierarchical classification networks,
ICPR16(3578-3583)
IEEE DOI 1705
Adaptation models, Adaptive systems, Couplings, Feature extraction, Neural networks, Training, Convolutional Neural Network, Decomposition, Hierarchy, Image Classification, Muli-layer, Perceptron BibRef

Williams, P.[Phillip],
SINN: Shepard Interpolation Neural Networks,
ISVC16(II: 349-358).
Springer DOI 1701
BibRef

Liu, S.F.[Si-Fei], Pan, J.S.[Jin-Shan], Yang, M.H.[Ming-Hsuan],
Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network,
ECCV16(IV: 560-576).
Springer DOI 1611
BibRef

Srinivas, S.[Suraj], Babu, R.V.[R. Venkatesh],
Data-free Parameter Pruning for Deep Neural Networks,
BMVC15(xx-yy).
DOI Link 1601
BibRef

Huang, Y.C.[Yu-Chi], Sun, X.Y.[Xiu-Yu], Lu, M.[Ming], Xu, M.[Ming],
Channel-Max, Channel-Drop and Stochastic Max-pooling,
DeepLearn15(9-17)
IEEE DOI 1510
Color BibRef

Lin, K.[Kevin], Yang, H.F.[Huei-Fang], Hsiao, J.H.[Jen-Hao], Chen, C.S.[Chu-Song],
Deep learning of binary hash codes for fast image retrieval,
DeepLearn15(27-35)
IEEE DOI 1510
Binary codes BibRef

Oyallon, E.[Edouard],
Building a Regular Decision Boundary with Deep Networks,
CVPR17(1886-1894)
IEEE DOI 1711
Buildings, Convolution, Standards, Training, Wavelet transforms BibRef

Oyallon, E.[Edouard], Mallat, S.[Stephane],
Deep roto-translation scattering for object classification,
CVPR15(2865-2873)
IEEE DOI 1510
BibRef

Lai, H.J.[Han-Jiang], Pan, Y.[Yan], Liu, Y.[Ye], Yan, S.C.[Shui-Cheng],
Simultaneous feature learning and hash coding with deep neural networks,
CVPR15(3270-3278)
IEEE DOI 1510
BibRef

Shankar, S.[Sukrit], Garg, V.K.[Vikas K.], Cipolla, R.[Roberto],
DEEP-CARVING: Discovering visual attributes by carving deep neural nets,
CVPR15(3403-3412)
IEEE DOI 1510
BibRef

Perronnin, F.[Florent], Larlus, D.[Diane],
Fisher vectors meet Neural Networks: A hybrid classification architecture,
CVPR15(3743-3752)
IEEE DOI 1510
BibRef

Verbancsics, P.[Phillip], Harguess, J.[Josh],
Image Classification Using Generative Neuro Evolution for Deep Learning,
WACV15(488-493)
IEEE DOI 1503
Accuracy BibRef

Li, W.B.[Wen-Bin],
Learning Multi-scale Representations for Material Classification,
GCPR14(757-764).
Springer DOI 1411
BibRef

Mendoza-Castañeda, E.[Efraín], Reyes-García, C.A.[Carlos A.], Escalante, H.J.[Hugo Jair], Moreno, W.[Wilfrido], Rosales-Pérez, A.[Alejandro],
Enhanced Fuzzy-Relational Neural Network with Alternative Relational Products,
CIARP14(666-673).
Springer DOI 1411
BibRef

Ocampo-Vega, R.[Ricardo], Sanchez-Ante, G.[Gildardo], Falcon-Morales, L.E.[Luis E.], Sossa, H.[Humberto],
Automatic Construction of Radial-Basis Function Networks Through an Adaptive Partition Algorithm,
MCPR16(198-207).
Springer DOI 1608
BibRef

Sossa, H.[Humberto], Cortés, G.[Griselda], Guevara, E.[Elizabeth],
New Radial Basis Function Neural Network Architecture for Pattern Classification: First Results,
CIARP14(706-713).
Springer DOI 1411
BibRef

Shashi Kumar, M.S., Vimala, K.S., Avinash, N.,
Face distance estimation from a monocular camera,
ICIP13(3532-3536)
IEEE DOI 1402
Back propagation neural network BibRef

Landassuri-Moreno, V.M.[Víctor Manuel], Bustillo-Hernández, C.L.[Carmen L.],
Single-Step-Ahead and Multi-Step-Ahead Prediction with Evolutionary Artificial Neural Networks,
CIARP13(I:65-72).
Springer DOI 1311
BibRef

Orjuela-Cañón, A.D.[Alvaro D.], Delisle-Rodríguez, D.[Denis], López-Delis, A.[Alberto],
Onset and Peak Pattern Recognition on Photoplethysmographic Signals Using Neural Networks,
CIARP13(I:543-550).
Springer DOI 1311
BibRef

Chien, C.J.[Chiang-Ju], Wang, Y.C.[Ying-Chung],
Observer based adaptive control of nonlinear systems using filtered-FNN design,
ICARCV12(52-57).
IEEE DOI 1304
BibRef
And: A2, A1:
An FNN-Based adaptive iterative learning control for a class of nonlinear discrete-time systems,
ICARCV12(447-451).
IEEE DOI 1304
Fuzzy Neural Network BibRef

Zhuo, W.[Wen], Cao, Z.G.[Zhi-Guo], Qin, Y.M.[Yue-Ming], Yu, Z.H.[Zheng-Hong], Xiao, Y.[Yang],
Image classification using HTM cortical learning algorithms,
ICPR12(2452-2455).
WWW Link. 1302
BibRef

Sossa, H.[Humberto], Garro, B.A.[Beatriz A.], Villegas, J.[Juan], Avilés, C.[Carlos], Olague, G.[Gustavo],
Automatic Design of Artificial Neural Networks and Associative Memories for Pattern Classification and Pattern Restoration,
MCPR12(23-34).
Springer DOI 1208
BibRef

Varvak, M.S.[Mark S.],
Pattern Classification Using Radial Basis Function Neural Networks Enhanced with the Rvachev Function Method,
CIARP11(272-279).
Springer DOI 1111
BibRef

Nussbaum-Thom, M.[Markus], Schweiger, R.[Roland], Palm, G.[Günther],
Training of Sparsely Connected MLPs,
DAGM11(356-365).
Springer DOI 1109
Multi-Layer Perceptrons. BibRef

Vajda, S.[Szilard], Fink, G.A.[Gernot A.],
Strategies for Training Robust Neural Network Based Digit Recognizers on Unbalanced Data Sets,
FHR10(148-153).
IEEE DOI 1011
BibRef
And:
Exploring Pattern Selection Strategies for Fast Neural Network Training,
ICPR10(2913-2916).
IEEE DOI 1008
BibRef

Adhyaru, D.M.[Dipak M.], Kar, I.N., Gopal, M.,
Constrained Control of Weakly Coupled Nonlinear Systems Using Neural Network,
PReMI09(567-572).
Springer DOI 0912
BibRef

Huo, P.[Peng], Shiu, S.C.K.[Simon Chi-Keung], Wang, H.B.[Hai-Bo], Niu, B.[Ben],
Case Indexing Using PSO and ANN in Real Time Strategy Games,
PReMI09(106-115).
Springer DOI 0912
BibRef

Dhumal, A.[Abhishek], Narayanan, R.G.[R. Ganesh], Kumar, G.S.[G. Saravana],
Estimation of Tailor-Welded Blank Parameters for Acceptable Tensile Behaviour Using ANN,
PReMI09(140-145).
Springer DOI 0912
BibRef

Jang, H.H.[Hong-Hoon], Park, A.[Anjin], Jung, K.C.[Kee-Chul],
Neural Network Implementation Using CUDA and OpenMP,
DICTA08(155-161).
IEEE DOI 0812
BibRef

Rubi-Velez, A.[Anna], Gomez-Ramirez, E.[Eduardo], Pazienza, G.E.[Giovanni E.],
Computing the Weights of Polynomial Cellular Neural Networks Using Quadratic Programming,
CIARP09(645-652).
Springer DOI 0911
BibRef

Stasiak, B.[Bartlomiej],
Two-Dimensional Fast Orthogonal Neural Network for Image Recognition,
CIARP09(653-660).
Springer DOI 0911
BibRef

Chen, F.Y.[Fang-Yue], Chen, L.[Lin], Jin, W.F.[Wei-Feng],
Robust Designs of Selected Objects Extraction CNN,
CISP09(1-3).
IEEE DOI 0910
cellular neural/nonlinear network. BibRef

Liu, W.[Wei], Li, W.H.[Wen-Hui],
An Algorithmic Framework to the Optimal Mapping Function by a Radial Basis Function Neural Network,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wang, L.[Lei], Wen, X.B.[Xian-Bin], Jiao, X.[Xu], Zhang, J.G.[Jian-Guang],
Object Recognition Using a Bayesian Network Imitating Human Neocortex,
CISP09(1-5).
IEEE DOI 0910
BibRef

Peerasathein, T., Woo, M.[Myung], Gaborski, R.S.,
Biologically Inspired Object Categorization in Cluttered Scenes,
AIPR07(117-122).
IEEE DOI 0710
I.e. recognize what separately from where. Implement the what is it, not where is it. BibRef

Sporns, O.,
Complex neural networks as future tools in imagery analysis,
AIPR04(67-72).
IEEE DOI 0410
BibRef

Flynn, M., Abarbanel, H., Kenyon, G.T.[Garrett T.],
Neurally-based algorithms for image processing,
AIPR04(79-85).
IEEE DOI 0410
BibRef

Firpi, H.A., Goodman, E.,
Swarmed feature selection,
AIPR04(112-118).
IEEE DOI 0410
BibRef

Firpi, H.A., Goodman, E.D.,
Designing templates for cellular neural networks using particle swarm optimization,
AIPR04(119-123).
IEEE DOI 0410
BibRef

Ebner, M.[Marc],
Engineering of Computer Vision Algorithms Using Evolutionary Algorithms,
ACIVS09(367-378).
Springer DOI 0909
BibRef

Xiao, P.[Ping], Shi, Y.X.[Yue-Xiang], Xie, W.L.[Wen-Lan],
A novel method of mapping semantic gap to classify natural images,
IASP09(166-171).
IEEE DOI 0904
gap between low level processing and high level recognition. Color and texture, then Neural Network to map features. BibRef

Scripps, J.[Jerry], Tan, P.N.[Pang-Ning], Chen, F.L.[Fei-Long], Esfahanian, A.H.[Abdol-Hossein],
A matrix alignment approach for link prediction,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Kiranyaz, S.[Serkan], Ince, T.[Turker], Yildirim, A.[Alper], Gabbouj, M.[Moncef],
Unsupervised design of Artificial Neural Networks via multi-dimensional Particle Swarm Optimization,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Barrón, R.[Ricardo], Sossa, H.[Humberto], Cruz, B.[Benjamín],
A New Algorithm for Training Multi-layered Morphological Networks,
CIARP07(546-555).
Springer DOI 0711
BibRef

García, A.[Antonio], León, C.[Carlos], Monedero, I.[Iñigo], Ropero, J.[Jorge],
A Precise Electrical Disturbance Generator for Neural Network Training with Real Level Output,
CIARP07(534-545).
Springer DOI 0711
BibRef

Canales, F.[Fernando], Chacón, M.[Max],
Modification of the Growing Neural Gas Algorithm for Cluster Analysis,
CIARP07(684-693).
Springer DOI 0711
BibRef

Siebel, N.T.[Nils T.], Krause, J.[Jochen], Sommer, G.[Gerald],
Efficient Learning of Neural Networks with Evolutionary Algorithms,
DAGM07(466-475).
Springer DOI 0709
BibRef

Stanojevic, M.[Mladen], Vraneš, S.[Sanja],
Applying Neural Networks to Knowledge Representation and Determination of Its Meaning,
BVAI07(523-532).
Springer DOI 0710
BibRef

di Garbo, A.[Angelo], Barbi, M.[Michele], Chillemi, S.[Santi],
Coincidence Detector Properties of Small Networks of Interneurons,
BVAI07(408-417).
Springer DOI 0710
BibRef

Domijan, D.[Dražen], Šetic, M.[Mia],
Computing the Maximum Using Presynaptic Inhibition with Glutamate Receptors,
BVAI07(418-427).
Springer DOI 0710
BibRef

Pazienti, A.[Antonio], Diesmann, M.[Markus], Grün, S.[Sonja],
Bounds of the Ability to Destroy Precise Coincidences by Spike Dithering,
BVAI07(428-437).
Springer DOI 0710
BibRef

Oberhoff, D.[Daniel], Kolesnik, M.[Marina],
Neural Object Recognition by Hierarchical Learning and Extraction of Essential Shapes,
BVAI07(288-297).
Springer DOI 0710
BibRef

Kumar, N.[Niraj], Agrawal, A.[Anupam],
Nonparametric Neural Network Model Based on Rough-Fuzzy Membership Function for Classification of Remotely Sensed Images,
ICCVGIP06(106-117).
Springer DOI 0612
BibRef

Nandedkar, A.V., Biswas, P.K.,
Object Recognition Using Reflex Fuzzy Min-Max Neural Network with Floating Neurons,
ICCVGIP06(597-609).
Springer DOI 0612
BibRef
Earlier:
A Reflex Fuzzy Min Max Neural Network for Granular Data Classification,
ICPR06(II: 650-653).
IEEE DOI 0609
BibRef
Earlier:
A fuzzy min-max neural network classifier with compensatory neuron architecture,
ICPR04(IV: 553-556).
IEEE DOI 0409
BibRef

Bianchini, M.[Monica], Maggini, M.[Marco], Sarti, L.[Lorenzo],
Object Localization Using Input/Output Recursive Neural Networks,
ICPR06(III: 95-98).
IEEE DOI 0609
BibRef
And:
Object Recognition Using Multiresolution Trees,
SSPR06(331-339).
Springer DOI 0608
BibRef

Nieuwenhuis, C.[Claudia], Yan, M.[Michelle],
Knowledge Based Image Enhancement Using Neural Networks,
ICPR06(III: 814-817).
IEEE DOI 0609
BibRef

Zhang, Q.A.[Qi-Ang], Liu, W.B.[Wen-Bing], Wei, X.P.[Xiao-Peng], Xu, J.[Jin],
Globally Exponential Stability of Non-autonomous Delayed Neural Networks,
IbPRIA05(II:91).
Springer DOI 0509
BibRef

Wehrmann, F.[Felix], Bengtsson, E.[Ewert],
Modelling Non-linearities in Images Using an Auto-associative Neural Network,
CAIP03(754-761).
Springer DOI 0311
BibRef

Perwass, C.[Christian], Banarer, V.[Vladimir], Sommer, G.[Gerald],
Spherical Decision Surfaces Using Conformal Modelling,
DAGM03(9-16).
Springer DOI 0310
Award, GCPR, HM. Hypersphere neuron. BibRef

Huang, Y.S.[Yea-Shuan], Tsai, Y.H.[Yao-Hong],
An RBF-based pattern recognition method by competitively reducing classification-oriented error,
ICPR02(II: 180-183).
IEEE DOI 0211
BibRef

Toh, K.A.[Kar-Ann], Lu, J.W.[Ju-Wei], Yau, W.Y.[Wei-Yun],
Global Feedforward Neural Network Learning for Classification and Regression,
EMMCVPR01(407-422).
Springer DOI 0205
BibRef

Gentili, S.,
Information Update on Neural Tree Networks,
ICIP01(I: 505-508).
IEEE DOI 0108
BibRef

Raudys, S.J.,
Prior Weights in Adaptive Pattern Classification,
ICPR00(Vol II: 1010-1013).
IEEE DOI 0009
BibRef

Aizenberg, I., Aizenberg, N., Butakov, C., Farberov, E.,
Image Recognition on the Neural Network Based on Multi-valued Neurons,
ICPR00(Vol II: 989-992).
IEEE DOI 0009
Faces. BibRef

Fyfe, C., Lai, P.L.,
Canonical Correlation Analysis Neural Networks,
ICPR00(Vol II: 977-980).
IEEE DOI 0009
BibRef

Messer, K., Kittler, J.V.,
Fast Unit Selection Algorithm for Neural Network Design,
ICPR00(Vol II: 981-984).
IEEE DOI 0009
BibRef

de Sousa, R., de Carvalho, J.M., de Assis, F.,
Designing Translation Invariant Operations Via Neural Network Training,
ICIP00(Vol I: 908-911).
IEEE DOI 0008
BibRef

Heidemann, G., Lücke, D., Ritter, H.,
A System for Various Visual Classification Tasks Based on Neural Networks,
ICPR00(Vol I: 9-12).
IEEE DOI 0009
BibRef

Mingo, L.F.[Luis F.], Arroyo, F.[Fernando], Luengo, C.[Carmen], Castellanos, J.[Juan],
Enhanced Neural Networks and Medical Imaging,
CAIP99(149-156).
Springer DOI 9909
BibRef
And:
Learning HyperSurfaces with Neural Networks,
SCIA99(Neural Nets). BibRef

Jahn, H.[Herbert],
Feature Grouping Based on Graphs and Neural Networks,
CAIP99(568-577).
Springer DOI 9909
BibRef

Shimodaira, H.[Hiroshi], Keeni, K.[Kanad], Nakayama, K.[Kenji],
Automatic Generation of Initial Weights and Estimation of Hidden Units for Pattern Classification Using Neural Networks,
ICPR98(Vol II: 1568-1571).
IEEE DOI 9808
BibRef

Chen, Z.Y., Desai, M.D., and Zhang, X.,
Feedforward Neural Networks with Multilevel Hidden Neurons for Remotely Sensed Image Classification,
ICIP97(II: 653-656).
IEEE DOI BibRef 9700

Gorodnichy, D.O.[Dmitry O.], Reznik, A.M.[Alexandre M.],
Static and dynamic attractors of autoassociative neural networks,
CIAP97(II: 238-245).
Springer DOI 9709
BibRef

Timchenko, L.I.[Leonid I.], Kutaev, Y.F.[Yuri F.], Grudin, M.A.[Maxim A.], Chepornyuk, S.V.[Serge V.], Harvey, D.M.[David M.], Gertsiy, A.A.[Alexander A.],
A brain-like approach to multistage hierarchical image processing,
CIAP97(II: 246-253).
Springer DOI 9709
BibRef

Foltyniewicz, R.[Rafal],
Efficient high order neural network for rotation, translation and distance invariant recognition of gray scale images,
CAIP95(424-431).
Springer DOI 9509
BibRef

Aizenberg, N., Aizenberg, I.N., Krivosheev, G.,
Multi-Valued and Universal Binary Neurons: Mathematical Model, Learning, Networks, Application to Image Processing and Pattern Recognition,
ICPR96(IV: 185-189).
IEEE DOI 9608
(Univ. of Uzhgorod, UKR) BibRef

Michaelis, B., Schnelting, O., Seiffert, U., Mecke, R.,
Adaptive Filtering of Distorted Displacement Vector Fields Using Artificial Neural Networks,
ICPR96(IV: 335-339).
IEEE DOI 9608
(Otto-von-Guericke-Univ., D) BibRef

Michaelis, B.[Bernd], Krell, G.[Gerald],
Artificial neural networks for image improvement,
CAIP93(838-845).
Springer DOI 9309
BibRef

Pereira, M.S., Manolakos, E.S.,
Hierarchical neural network for multiresolution image analysis,
ICIP96(I: 261-264).
IEEE DOI 9610
BibRef

Petkov, N.[Nikolay],
Use of cortical filters and neural networks in a self-organising image classification system,
CIAP95(165-170).
Springer DOI 9509
BibRef

Lin, S.H.[Shang-Hung], Kung, S.Y.,
Probabilistic DBNN via expectation-maximization with multi-sensor classification applications,
ICIP95(III: 236-239).
IEEE DOI 9510
BibRef

Chan, Y., Kung, S.Y.,
Multi-level pixel difference classification methods,
ICIP95(III: 252-255).
IEEE DOI 9510
BibRef

Dunstone, E.S.,
Image processing using an image approximation neural network,
ICIP94(III: 912-916).
IEEE DOI 9411
BibRef

Miyauchi, A., Watanabe, A., Miyauchi, M.,
A method to interpret 3D motion using neural networks,
ICIP94(III: 83-87).
IEEE DOI 9411
BibRef

Biriukov, S.A.,
Spurious states detection and basin describing in feedforward neural networks,
ICPR94(B:586-588).
IEEE DOI 9410
BibRef

Mascarilla, L., Zahzah, E.H., Desachy, J.,
Neural networks classifiers based on geocoded data and multispectral images for satellite image interpretation,
CAIP93(830-837).
Springer DOI 9309
BibRef

Pan, H.P., Forstner, W.,
An MDL-principled evolutionary mechanism to automatic architecturing of pattern recognition neural network,
ICPR92(II:25-28).
IEEE DOI 9208
BibRef

Nedeljkovic, V.,
A novel multilayer neural networks training algorithm that minimizes the probability of classification error,
ICPR92(II:13-16).
IEEE DOI 9208
BibRef

Roy, A.,
On linear programming, neural network design, pattern classification and polynomial time training,
ICPR92(II:5-8).
IEEE DOI 9208
BibRef

Cheng, X.S., Backer, E., Gerbrands, J.J.,
DRBP: dynamically reinforced BP-based ANN-training,
ICPR92(II:9-12).
IEEE DOI 9208
BibRef

Tambouratzis, G.[George], Stonham, T.J.,
A logical neural network that adapts to changes in the pattern environment,
ICPR92(II:46-49).
IEEE DOI 9208
BibRef

Gas, B., Natowicz, R.,
A model of formal neural networks for unsupervised learning of binary temporal sequences,
ICPR92(II:541-544).
IEEE DOI 9208
BibRef

Singer, Y., Yair, E.,
Learning class probabilities from labeled data,
ICPR92(II:553-556).
IEEE DOI 9208
BibRef

Kamata, S.I., Niimi, M., Kawaguchi, E.,
A multi-temporal classification of multi-spectral images using a neural network,
ICPR94(B:470-472).
IEEE DOI 9410
BibRef

Kamata, S.I., Eason, R.O., Perez, A., Kawaguchi, E.,
A neural network classifier for LANDSAT image data,
ICPR92(II:573-576).
IEEE DOI 9208
BibRef

Kamada, H.[Hiroshi],
A proposal for an artificial neural network that optimizes reference vectors: FMNET,
ICPR92(III:590-593).
IEEE DOI 9208
BibRef

Patrikar, A.,
Dual networks and their pattern classification properties,
CVPR91(686-687).
IEEE DOI 0403
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Capsule Networks .


Last update:Sep 15, 2024 at 16:30:49