Presto-Box: Pattern REcognition Scilab TOolBOX,
2001
HTML Version.
Code, Pattern Recognition. Routines for students to experiment with basic pattern recognition principles.
PRTools: The Matlab Toolbox for Pattern Recognition,
2004.
WWW Link.
Code, Pattern Recognition. Matlab package for PR
Implementation based on the book:
See also Classification, parameter estimation and state estimation: An engineering approach using Matlab.
0905
MultiSpec: A Freeware Multispectral Image Data Analysis System,
2007.
WWW Link.
Code, Pattern Recognition. Purdue package for analyzing multispectral and hyperspectral data.
See also Purdue University.
0905
Chow, C.K.,
Statistical Independence and Threshold Functions,
TC(14), 1965, pp. 66-68.
BibRef
6500
Chow, C., and
Liu, C.,
Approximating discrete probability distributions with dependence trees,
IT(14), No. 11, November 1968, pp. 462-467.
BibRef
6811
Ho, Y.C., and
Kashyap, R.L.,
An Algorithm for Linear Inequalities and its Applications,
TC(14), 1965, pp. 683-688.
Decides whether a data set is linearly discriminable and
also finds the best discrimination.
BibRef
6500
Nadler, M.,
'Empyrean', an alternative paradigm for pattern recognition,
PR(1), No. 2, November 1968, pp. 147-163.
Elsevier DOI
0309
Measurement, decision, feature-extraction.
BibRef
Haralick, R.M.,
The Pattern Discrimination Problem from the Perspective of Relation
Theory,
PR(7), No. 1-2, June 1975, pp. 67-79.
Elsevier DOI
0309
BibRef
Simon, J.C.,
Recent progress to formal approach of pattern recognition and scene
analysis,
PR(7), No. 3, September 1975, pp. 117-124.
Elsevier DOI
0309
Formal descriptions were slow to develop.
BibRef
Boullion, T.L.,
Odell, P.L.,
Duran, B.S.,
Estimating the probability of misclassification and variate selection,
PR(7), No. 3, September 1975, pp. 139-145.
Elsevier DOI
0309
BibRef
Ripley, B.D.,
The second-order analysis of stationary point processes,
J. Applied Probability(13), 1976, pp. 255-266.
BibRef
7600
Ripley, B.D.,
Modelling spatial patterns,
RoyalStat(B-39), 1977, pp. 172-192.
BibRef
7700
Ripley, B.D.,
Tests of 'randomness' for spatial point patterns,
RoyalStat(B-41), 1979, pp. 368-374.
BibRef
7900
Thiry, S.[Suzanne],
Pavel, M.[Monique],
Bouckaert, A.[André],
Weighted logical inference for pattern recognition,
PR(12), No. 2, 1980, pp. 63-67.
Elsevier DOI
0309
BibRef
Thiry, S.[Suzanne],
Pavel, M.[Monique],
A statistical approach for discrete pattern recognition:
A case study in endocrine physiopathology,
PR(18), No. 5, 1985, pp. 349-355.
Elsevier DOI
0309
BibRef
Oja, E.[Erkki],
Kuusela, M.[Maija],
The ALSM algorithm: An improved subspace method of classification,
PR(16), No. 4, 1983, pp. 421-427.
Elsevier DOI
0309
BibRef
Laaksonen, J.T.[Jorma T.], and
Oja, E.[Erkki],
Density Function Interpretation of Subspace Cassification Methods,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Goldfarb, L.[Lev],
A unified approach to pattern recognition,
PR(17), No. 5, 1984, pp. 575-582.
Elsevier DOI
0309
Within the proposed framework the two principal approaches to pattern
recognition (vector and syntactic) are unified.
BibRef
Goldfarb, L.[Lev],
On the foundations of intelligent processes--I. An evolving model for
pattern learning,
PR(23), No. 6, 1990, pp. 595-616.
Elsevier DOI
0401
BibRef
Wong, S.K.M.,
Poon, F.C.S.,
Comments on approximating discrete probability distributions with
dependence trees,
PAMI(11), No. 3, March 1989, pp. 333-335.
IEEE DOI
0401
See also Approximating discrete probability distributions with dependence trees.
BibRef
Avi-Itzhak, H.I.,
van Mieghem, J.A.,
Rub, L.,
Multiple Subclass Pattern-Recognition: A Maximum Correlation Approach,
PAMI(17), No. 4, April 1995, pp. 418-431.
IEEE DOI
BibRef
9504
Kreutz, M.[Martin],
Völpel, B.[Bernd],
Janßen, H.[Herbert],
Scale-Invariant Image Recognition Based on
Higher-Order Autocorrelation Features,
PR(29), No. 1, January 1996, pp. 19-26.
Elsevier DOI
BibRef
9601
Mathieu-Marni, S.,
Leymarie, P.,
Berthod, M.,
Removing Ambiguities in a Multispectral Image Classification,
JRS(17), No. 8, May 20 1996, pp. 1493-1504.
9605
BibRef
Yu, F.T.S.,
Gregory, D.A.,
Optical-Pattern Recognition: Architectures and Techniques,
PIEEE(84), No. 5, May 1996, pp. 733-752.
9605
BibRef
Prakash, M.,
Murty, M.N.,
Extended Subspace Methods of Pattern-Recognition,
PRL(17), No. 11, September 16 1996, pp. 1131-1139.
9611
BibRef
Prakash, M.,
Murty, M.N.[M. Narasimha],
Hebbian learning subspace method: A new approach,
PR(30), No. 1, January 1997, pp. 141-149.
Elsevier DOI
0401
BibRef
Prakash, M.,
Murty, M.N.,
Growing Subspace Pattern-Recognition Methods and Their
Neural-Network Models,
TNN(8), No. 1, January 1997, pp. 161-168.
9701
BibRef
Ranka, S.[Sanjay],
Heywood, T.[Todd],
Two-Dimensional Pattern Matching with K Mismatches,
PR(24), No. 1, 1991, pp. 31-40.
Elsevier DOI
BibRef
9100
Karl, W.C.,
Kulkarni, S.R.,
Verghese, G.C.,
Willsky, A.S.,
Local Tests for Consistency of Support Hyperplane Data,
JMIV(6), No. 2-3, June 1996, pp. 249-267.
9608
BibRef
Ahmed, P.,
Goyal, P.,
Narayanan, T.S.,
Suen, C.Y.,
Linear Time Algorithms for an Image Labelling Machine,
PRL(7), 1988, pp. 273-378.
BibRef
8800
Stoyan, D.,
Molchanov, I.S.,
Set-Valued Means of Random Particles,
JMIV(7), No. 2, March 1997, pp. 111-121.
DOI Link
9705
BibRef
Andres, E.,
Acharya, R.,
Sibata, C.,
Discrete Analytical Hyperplanes,
GMIP(59), No. 5, September 1997, pp. 302-309.
9712
BibRef
Talukder, A.,
Casasent, D.,
General Methodology for Simultaneous Representation and
Discrimination of Multiple Object Classes,
OptEng(37), No. 3, March 1998, pp. 904-913.
9804
BibRef
Singh, S.,
2D Spiral Pattern Recognition with Possibilistic Measures,
PRL(19), No. 2, February 1998, pp. 141-147.
9808
BibRef
Sengupta, K.[Kuntal],
Boyer, K.L.[Kim L.],
Modelbase Partitioning Using Property Matrix Spectra,
CVIU(70), No. 2, May 1998, pp. 177-196.
DOI Link
BibRef
9805
Earlier:
Using Spectral Features for Modelbase Partitioning,
ICPR96(II: 65-69).
IEEE DOI
9608
(Ohio State Univ., USA)
BibRef
Chavent, M.[Marie],
A Monothetic Clustering Method,
PRL(19), No. 11, September 1998, pp. 989-996.
9811
BibRef
Cucka, P.[Peter],
Netanyahu, N.S.[Nathan S.],
Rosenfeld, A.[Azriel],
'Robotic' estimation: the inefficiency of random-walk sampling,
PR(31), No. 12, December 1998, pp. 2091-2102.
Elsevier DOI
BibRef
9812
Dybowski, R.[Richard],
Classification of incomplete feature vectors by radial basis function
networks,
PRL(19), No. 14, December 1998, pp. 1257-1264.
BibRef
9812
And:
Erratum:
PRL(20), No. 5, May 1999, pp. 549.
BibRef
Buczkowski, S.[Stéphane],
Kyriacos, S.[Soula],
Nekka, F.[Fahima],
Cartilier, L.[Louis],
The Modified Box-Counting Method:
Analysis of Some Characteristic Parameters,
PR(31), No. 4, April 1998, pp. 411-418.
Elsevier DOI
9803
BibRef
Maharaj, E.A.[Elizabeth Ann],
Comparison and classification of stationary multivariate time series,
PR(32), No. 7, July 1999, pp. 1129-1138.
Elsevier DOI
BibRef
9907
Singh, S.[Sameer],
Noise impact on time-series forecasting using an intelligent pattern
matching technique,
PR(32), No. 8, August 1999, pp. 1389-1398.
Elsevier DOI
BibRef
9908
Singh, S.[Sameer],
Multiple forecasting using local approximation,
PR(34), No. 2, February 2001, pp. 443-455.
Elsevier DOI
0011
BibRef
Singh, S.[Sameer],
Stuart, E.[Elizabeth],
A Pattern Matching Tool for Time-Series Forecasting,
ICPR98(Vol I: 103-105).
IEEE DOI
9808
BibRef
Hess, C.[Christian],
Conditional expectation and martingales of random sets,
PR(32), No. 9, September 1999, pp. 1543-1567.
Elsevier DOI
BibRef
9909
Sidiropoulos, N.D.,
On the tractability of estimating the germ process of certain
germ-grain random set models and related problems,
PR(32), No. 9, September 1999, pp. 1667-1674.
Elsevier DOI
BibRef
9909
Last, G.,
Holtmann, M.,
On the empty space function of some germ-grain models,
PR(32), No. 9, September 1999, pp. 1587-1600.
Elsevier DOI
BibRef
9909
Balachander, T.[Thiagarajan],
Kothari, R.[Ravi],
Introducing Locality and Softness in Subspace Classification,
PAA(2), No. 1, 1999, pp. 53-58.
BibRef
9900
Comaniciu, D.[Dorin],
Meer, P.[Peter],
Distribution Free Decomposition of Multivariate Data,
PAA(2), No. 1, 1999, pp. 22-30.
BibRef
9900
Mitra, S.K.[Suman K.],
Murthy, C.A.,
Mathematical framework to show the existence of attractor of
partitioned iterative function systems,
PR(33), No. 5, May 2000, pp. 859-869.
Elsevier DOI
0003
BibRef
Ruiz Vargas, J.A.,
Hemerly, E.M.,
Adaptive observers for unknown general nonlinear systems,
SMC-B(31), No. 5, October 2001, pp. 683-690.
IEEE Top Reference.
0111
BibRef
Hastie, T.,
Tibshirani, R.,
Friedman, J.,
The Elements of Statistical Learning:
Data Mining, Inference and Prediction,
Springer-Verlag2001.
BibRef
0100
Duin, R.P.W.[Robert P.W.],
Roli, F.[Fabio],
de Ridder, D.[Dick],
A note on core research issues for statistical pattern recognition,
PRL(23), No. 4, February 2002, pp. 493-499.
Elsevier DOI
0202
BibRef
Szczecinski, L.L.[Leszek L.],
Gei, A.[Ado],
Blind decision feedback equalisers, how to avoid degenerative solutions,
SP(82), No. 11, November 2002, pp. 1675-1693.
Elsevier DOI
0210
BibRef
Serpico, S.B.,
Moser, G.,
Weight Parameter Optimization by the Ho-Kashyap Algorithm in MRF Models
for Supervised Image Classification,
GeoRS(44), No. 12, December 2006, pp. 3695-3705.
IEEE DOI
0701
See also Algorithm for Linear Inequalities and its Applications, An.
BibRef
Haralick, R.M.,
Miasnikov, A.[Alex], and
Myasnikov, A.D.[Alexei D.],
Pattern Recognition Approaches To Solving Combinatorial Problems
in Free Groups,
Contemporary Mathematics(349), 2004, pp. 197-213.
BibRef
0400
Haralick, R.M.,
Miasnikov, A.[Alex], and
Myasnikov, A.D.[Alexei D.],
Heuristics for Whitehead Minimization Problem,
Experimental Mathematics(14), No. 1, 2005, pp. 7-14.
BibRef
0500
Haralick, R.M.,
Myasnikov, A.D.[Alexei D.],
A Hybrid Algorithm For Solving the Whitehead Minimization Problem,
Symbolic Computation(41), No. 7, July 2006, pp. 818-834.
BibRef
0607
van der Heijden, F.[Ferdi],
Duin, R.P.W.[Robert P.W.],
de Ridder, D.[Dick],
Tax, a.D.M.J.[and David M.J.],
Classification, parameter estimation and state estimation:
An engineering approach using Matlab,
John
Wileyand Sons, 2004. ISBN 0470090138.
Buy this book: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB
For code:
See also PRTools: The Matlab Toolbox for Pattern Recognition.
0905
BibRef
Owczarczuk, M.[Marcin],
New separating hyperplane method with application to the optimisation
of direct marketing campaigns,
PRL(32), No. 3, 1 February 2011, pp. 540-545.
Elsevier DOI
1101
Separating hyperplane; Vapnik-Chervonenkis dimension; Direct
marketing; Lift curve
BibRef
Merkurjev, E.,
Kostic, T.,
Bertozzi, A.L.[Andrea L.],
An MBO Scheme on Graphs for Classification and Image Processing,
SIIMS(6), No. 4, 2013, pp. 1903-1930.
DOI Link
1402
MBO: Merriman-Bence-Osher.
BibRef
Merkurjev, E.[Ekaterina],
Bae, E.[Egil],
Bertozzi, A.L.[Andrea L.],
Tai, X.C.[Xue-Cheng],
Global Binary Optimization on Graphs for Classification of
High-Dimensional Data,
JMIV(52), No. 3, July 2015, pp. 414-435.
Springer DOI
1506
BibRef
Peters, G.[Georg],
Is there any need for rough clustering?,
PRL(53), No. 1, 2015, pp. 31-37.
Elsevier DOI
1502
Rough clustering
BibRef
Hasan, M.M.[M. Mahbubul],
Islam, A.S.M.S.[A.S.M. Shohidull],
Rahman, M.S.[Mohammad Saifur],
Rahman, M.S.[M. Sohel],
Order preserving pattern matching revisited,
PRL(55), No. 1, 2015, pp. 15-21.
Elsevier DOI
1503
Algorithms. OPPM.
BibRef
Vaiciukynas, E.,
Ulicny, M.,
Pashami, S.,
Nowaczyk, S.,
Learning Low-Dimensional Representation of Bivariate Histogram Data,
ITS(19), No. 11, November 2018, pp. 3723-3735.
IEEE DOI
1812
data mining, intelligent transportation systems,
mean square error methods, pattern classification, autoencoder.
BibRef
Aksac, A.[Alper],
Özyer, T.[Tansel],
Alhajj, R.[Reda],
CutESC: Cutting edge spatial clustering technique based on proximity
graphs,
PR(96), 2019, pp. 106948.
Elsevier DOI
1909
Spatial data mining, Clustering, Proximity graphs, Graph theory
BibRef
Wang, J.C.[Jia-Chun],
Sun, S.L.[Shi-Liang],
Decomposed slice sampling for factorized distributions,
PR(97), 2020, pp. 107021.
Elsevier DOI
1910
Slice sampling, Markov chain Monte Carlo,
Decomposed slice sampling, Hamiltonian Monte Carlo
BibRef
Gu, B.[Bin],
Ling, C.X.[Charles X.],
Generalized error path algorithm,
PR(120), 2021, pp. 108112.
Elsevier DOI
2109
Cross validation, Error path, Solution path, Model selection
BibRef
Liu, H.T.[Hai-Tao],
Ong, Y.S.[Yew-Soon],
Jiang, X.M.[Xiao-Mo],
Wang, X.F.[Xiao-Fang],
Modulating scalable Gaussian processes for expressive statistical
learning,
PR(120), 2021, pp. 108121.
Elsevier DOI
2109
Gaussian process, Modulation, Scalability,
Heteroscedastic noise, Multi-modality, Non-stationarity
BibRef
Vovk, V.[Vladimir],
Universal predictive systems,
PR(126), 2022, pp. 108536.
Elsevier DOI
2204
Conformal prediction, Predictive distribution,
Probabilistic calibration, Universal consistency
BibRef
Qv, H.[Hui],
Ma, T.[Tao],
Tong, X.Y.[Xin-Yi],
Huang, X.[Xuhui],
Ma, Z.[Zhe],
Feng, J.H.[Jie-Hong],
Clustering by centroid drift and boundary shrinkage,
PR(129), 2022, pp. 108745.
Elsevier DOI
2206
Clustering, Centroid drift, Boundary detection
BibRef
Xue, C.[Cheng],
Yu, L.[Lequan],
Chen, P.F.[Peng-Fei],
Dou, Q.[Qi],
Heng, P.A.[Pheng-Ann],
Robust Medical Image Classification From Noisy Labeled Data With
Global and Local Representation Guided Co-Training,
MedImg(41), No. 6, June 2022, pp. 1371-1382.
IEEE DOI
2206
Noise measurement, Training, Biomedical imaging,
Medical diagnostic imaging, Training data, Deep learning, self-supervision
BibRef
Gong, C.[Chen],
Wang, Q.Z.[Qi-Zhou],
Liu, T.L.[Tong-Liang],
Han, B.[Bo],
You, J.[Jane],
Yang, J.[Jian],
Tao, D.C.[Da-Cheng],
Instance-Dependent Positive and Unlabeled Learning With Labeling Bias
Estimation,
PAMI(44), No. 8, August 2022, pp. 4163-4177.
IEEE DOI
2207
Labeling, Maximum likelihood estimation, Training,
Random variables, Logistics, Graphical models, Data models,
generalization bound
BibRef
Cheng, D.[De],
Liu, T.L.[Tong-Liang],
Ning, Y.X.[Yi-Xiong],
Wang, N.N.[Nan-Nan],
Han, B.[Bo],
Niu, G.[Gang],
Gao, X.B.[Xin-Bo],
Sugiyama, M.[Masashi],
Instance-Dependent Label-Noise Learning with Manifold-Regularized
Transition Matrix Estimation,
CVPR22(16609-16618)
IEEE DOI
2210
Representation learning, Manifolds, Geometry, Estimation error,
Psychology, Physiology, Representation learning,
Self- semi- meta- unsupervised learning
BibRef
Zhu, Z.W.[Zhao-Wei],
Liu, T.L.[Tong-Liang],
Liu, Y.[Yang],
A Second-Order Approach to Learning with Instance-Dependent Label
Noise,
CVPR21(10108-10118)
IEEE DOI
2111
WWW Link. Training, Deep learning, Estimation,
Rendering (computer graphics), Pattern recognition, Task analysis
BibRef
Zheng, Z.C.[Zhi-Chao],
Sun, H.J.[Huai-Jiang],
Zhou, Y.[Ying],
Margin embedding net for robust margin collaborative
representation-based classification,
PR(133), 2023, pp. 108991.
Elsevier DOI
2210
Collaborative representation, Feature extraction,
Marginal sample, Image classification
BibRef
Hirschberger, F.[Florian],
Forster, D.[Dennis],
Lücke, J.[Jörg],
A Variational EM Acceleration for Efficient Clustering at Very Large
Scales,
PAMI(44), No. 12, December 2022, pp. 9787-9801.
IEEE DOI
2212
Clustering algorithms, Data models, Optimization, Task analysis,
Standards, Approximation algorithms, Training, Big data, clustering,
variational optimization
BibRef
Zhang, Q.H.[Qing-Hua],
Dai, Y.Y.[Yong-Yang],
Wang, G.Y.[Guo-Yin],
Density peaks clustering based on balance density and connectivity,
PR(134), 2023, pp. 109052.
Elsevier DOI
2212
Clustering, Mutual nearest neighbor,
Connectivity between data points, Fast search strategy
BibRef
Pei, S.F.[Shen-Fei],
Chen, H.M.[Hui-Min],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Centerless Clustering,
PAMI(45), No. 1, January 2023, pp. 167-181.
IEEE DOI
2212
Clustering algorithms, Clustering methods, Analytical models,
Computational modeling, Symmetric matrices, Linear programming, k-means
BibRef
Sagar, K.[Ksheera],
Bhadra, A.[Anindya],
A Laplace Mixture Representation of the Horseshoe and Some
Implications,
SPLetters(29), 2022, pp. 2547-2551.
IEEE DOI
2301
Mathematical models, Optimization, Linear approximation,
Random variables, Estimation, Convergence, Tail, local linear approximation
BibRef
Xu, C.J.[Cheng-Jun],
Shu, J.Q.[Jing-Qian],
Zhu, G.B.[Guo-Bin],
Scene Classification Based on Heterogeneous Features of Multi-Source
Data,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhao, J.[Jia],
Wang, G.[Gang],
Pan, J.S.[Jeng-Shyang],
Fan, T.H.[Tang-Huai],
Lee, I.[Ivan],
Density peaks clustering algorithm based on fuzzy and weighted shared
neighbor for uneven density datasets,
PR(139), 2023, pp. 109406.
Elsevier DOI
2304
Uneven density data, Density peaks clustering,
Fuzzy neighborhood, K-nearest neighbor, Weighted shared neighbor
BibRef
Hofmeyr, D.P.[David P.],
Incremental estimation of low-density separating hyperplanes for
clustering large data sets,
PR(139), 2023, pp. 109471.
Elsevier DOI
2304
Clustering, Low-density separation, Big data,
Stochastic gradient descent, Smoothing kernel, High dimensionality
BibRef
He, Q.[Qian],
Yu, F.[Fusheng],
Chang, J.Q.[Jia-Qi],
Ouyang, C.X.[Chen-Xi],
Fuzzy granular recurrence plot and quantification analysis:
A novel method for classification,
PR(139), 2023, pp. 109456.
Elsevier DOI
2304
Fuzzy granular recurrence plot, Recurrence plot,
Fuzzy information granule, Noise, Classification
BibRef
Alfaro, J.C.[Juan C.],
Aledo, J.A.[Juan A.],
Gámez, J.A.[José A.],
Pairwise learning for the partial label ranking problem,
PR(140), 2023, pp. 109590.
Elsevier DOI
2305
Preference learning, (Partial) label ranking,
Supervised classification, Pairwise decomposition, Optimal bucket order problem
BibRef
Li, S.J.[Shao-Jie],
Liu, Y.[Yong],
Learning Rates for Nonconvex Pairwise Learning,
PAMI(45), No. 8, August 2023, pp. 9996-10011.
IEEE DOI
2307
Convergence, Stability analysis, Measurement, Training, Statistics,
Sociology, Optimization, Generalization performance,
pairwise learning
BibRef
Ollila, E.[Esa],
Palomar, D.P.[Daniel P.],
Pascal, F.[Frédéric],
Affine Equivariant Tyler's M-Estimator Applied to Tail Parameter
Learning of Elliptical Distributions,
SPLetters(30), 2023, pp. 1017-1021.
IEEE DOI
2309
BibRef
Kang, H.H.[Hyun Ho],
Ahn, C.K.[Choon Ki],
Neural Network-Based Moving Window Iterative Nonlinear System
Identification,
SPLetters(30), 2023, pp. 1007-1011.
IEEE DOI
2309
BibRef
Rezaei, H.[Hamid],
Daneshpour, N.[Negin],
Mixed data clustering based on a number of similar features,
PR(143), 2023, pp. 109815.
Elsevier DOI
2310
Clustering, Mixed data, Data object distance, Similarity, Cluster center
BibRef
Huang, Y.C.[Ying-Cheng],
Xiao, F.Y.[Fu-Yuan],
Cao, Z.H.[Ze-Hong],
Lin, C.T.[Chin-Teng],
Higher Order Fractal Belief Rényi Divergence With Its Applications in
Pattern Classification,
PAMI(45), No. 12, December 2023, pp. 14709-14726.
IEEE DOI
2311
BibRef
Hu, X.B.[Xiao-Bo],
Su, J.B.[Jian-Bo],
Zhang, J.[Jun],
Disturbance rejection with compensation on features,
PR(147), 2024, pp. 110129.
Elsevier DOI
2312
Compensation, Disturbance rejection, Modeling error
BibRef
Saltos, R.[Ramiro],
Weber, R.[Richard],
Generalized black hole clustering algorithm,
PRL(176), 2023, pp. 196-201.
Elsevier DOI
2312
Inspired by the Density-based Spatial Clustering of
Applications with Noise (DBSCAN).
Density-based clustering, Pattern recognition, Data mining
BibRef
Breger, A.[Anna],
Karner, C.[Clemens],
Ehler, M.[Martin],
visClust: A visual clustering algorithm based on orthogonal
projections,
PR(148), 2024, pp. 110136.
Elsevier DOI Code:
WWW Link.
2402
Clustering, Data mining, Stiefel manifold,
Lower dimensional data representations, Projections
BibRef
Alexandre, L.[Leonardo],
Costa, R.S.[Rafael S.],
Henriques, R.[Rui],
TriSig: Evaluating the statistical significance of triclusters,
PR(149), 2024, pp. 110231.
Elsevier DOI
2403
Triclustering, Pattern discovery, Statistical significance,
Temporal pattern mining, Multivariate time series data
BibRef
Zhang, L.[Lu],
Qi, L.[Lu],
Yang, X.[Xu],
Qiao, H.[Hong],
Yang, M.H.[Ming-Hsuan],
Liu, Z.Y.[Zhi-Yong],
Automatically Discovering Novel Visual Categories With Adaptive
Prototype Learning,
PAMI(46), No. 4, April 2024, pp. 2533-2544.
IEEE DOI
2403
Task analysis, Prototypes, Feature extraction, Data models,
Self-supervised learning, Training, Representation learning, transfer learning
BibRef
Rubaiyat, A.H.M.[Abu Hasnat Mohammad],
Li, S.Y.[Shi-Ying],
Yin, X.[Xuwang],
Shifat-E-Rabbi, M.[Mohammad],
Zhuang, Y.[Yan],
Rohde, G.K.[Gustavo K.],
End-to-End Signal Classification in Signed Cumulative Distribution
Transform Space,
PAMI(46), No. 9, September 2024, pp. 5936-5950.
IEEE DOI Code:
WWW Link.
2408
Transforms, Feature extraction, Time series analysis,
Pattern classification, Data models,
nearest local subspace
BibRef
Motallebi, H.[Hassan],
Efficient and robust clustering based on backbone identification,
PR(155), 2024, pp. 110635.
Elsevier DOI
2408
Clustering algorithm, Data backbone, Popularity,
Popularity-based clustering, Arbitrary-shaped clusters
BibRef
Wang, J.H.[Jin-Hong],
Cheng, Y.[Yi],
Chen, J.T.[Jin-Tai],
Chen, T.T.[Ting-Ting],
Chen, D.[Danny],
Wu, J.[Jian],
Ord2Seq: Regarding Ordinal Regression as Label Sequence Prediction,
ICCV23(5842-5852)
IEEE DOI Code:
WWW Link.
2401
medical disease grading and movie rating.
BibRef
Ding, T.J.[Tian-Jiao],
Tong, S.B.[Sheng-Bang],
Chan, K.H.R.[Kwan Ho Ryan],
Dai, X.[Xili],
Ma, Y.[Yi],
Haeffele, B.D.[Benjamin D.],
Unsupervised Manifold Linearizing and Clustering,
ICCV23(5427-5438)
IEEE DOI
2401
BibRef
Nápoles, G.[Gonzalo],
Griffioen, N.[Niels],
Khoshrou, S.[Samaneh],
Güven, Ç.[Çiçek],
Feature Importance for Clustering,
CIARP23(I:31-45).
Springer DOI
2312
BibRef
Zhang, J.M.[Jia-Ming],
Ma, X.[Xingjun],
Yi, Q.[Qi],
Sang, J.[Jitao],
Jiang, Y.G.[Yu-Gang],
Wang, Y.[Yaowei],
Xu, C.S.[Chang-Sheng],
Unlearnable Clusters: Towards Label-Agnostic Unlearnable Examples,
CVPR23(3984-3993)
IEEE DOI
2309
BibRef
Cunningham, J.[James],
Davis, J.[Jim],
Tarplee, K.[Kyle],
Vasquez, J.[Juan],
S-FINCH: An Optimized Streaming Adaptation to FINCH Clustering,
ICPR22(1343-1349)
IEEE DOI
2212
Sensitivity, Heuristic algorithms, Clustering methods,
Soft sensors, Clustering algorithms, Data science, Benchmark testing
BibRef
Rambhatla, S.S.[Sai Saketh],
Chellappa, R.[Rama],
Shrivastava, A.[Abhinav],
The Pursuit of Knowledge:
Discovering and Localizing Novel Categories using Dual Memory,
ICCV21(9133-9143)
IEEE DOI
2203
Semantics, Focusing, Memory modules, Detectors,
Transfer/Low-shot/Semi/Unsupervised Learning,
Detection and localization in 2D and 3D
BibRef
Jia, X.[Xuhui],
Han, K.[Kai],
Zhu, Y.K.[Yu-Kun],
Green, B.[Bradley],
Joint Representation Learning and Novel Category Discovery on Single-
and Multi-Modal Data,
ICCV21(590-599)
IEEE DOI
2203
Training, Representation learning, Estimation,
Clustering algorithms, Benchmark testing, Prediction algorithms,
Vision applications and systems
BibRef
Afser, H.[Hüseyin],
Statistical Classification via Robust Hypothesis Testing:
Non-Asymptotic and Simple Bounds,
SPLetters(28), 2021, pp. 2112-2116.
IEEE DOI
2112
Training, Upper bound, Testing, Error probability, Bayes methods,
Complexity theory, Task analysis, Statistical classification, DGL test
BibRef
Charoenphakdee, N.[Nontawat],
Vongkulbhisal, J.[Jayakorn],
Chairatanakul, N.[Nuttapong],
Sugiyama, M.[Masashi],
On Focal Loss for Class-Posterior Probability Estimation:
A Theoretical Perspective,
CVPR21(5198-5207)
IEEE DOI
2111
Estimation, Object detection, Minimization,
Pattern recognition, Calibration, Image classification
BibRef
Lawson, A.[Austin],
Chung, Y.M.[Yu-Min],
Cruse, W.[William],
A Hybrid Metric based on Persistent Homology and its Application to
Signal Classification,
ICPR21(9944-9950)
IEEE DOI
2105
Shape of the data.
Measurement, Weight measurement, Data analysis, Shape,
Time series analysis, Transforms, Benchmark testing
BibRef
Bai, J.[Jing],
Chen, R.[Ran],
Context-Aware Residual Module for Image Classification,
ICPR21(3388-3395)
IEEE DOI
2105
Visualization, Image recognition, Semantics, Focusing, Data mining,
Task analysis, Image classification, context-aware, multi-scale,
image classificaiton
BibRef
Laroui, S.[Sarah],
Descombes, X.[Xavier],
Vernay, A.[Aurélia],
Villiers, F.[Florent],
Villalba, F.[François],
Debreuve, E.[Eric],
How to define a rejection class based on model learning?,
ICPR21(569-576)
IEEE DOI
2105
Computational modeling, Probability density function, Pattern recognition
BibRef
Ayma, V.A.,
Ferreira, R.S.,
Happ, P.,
Oliveira, D.,
Feitosa, R.,
Costa, G.,
Plaza, A.,
Gamba, P.,
Classification Algorithms for Big Data Analysis, A Map Reduce Approach,
PIA15(17-21).
DOI Link
1504
BibRef
Lovato, P.[Pietro],
Milanese, A.[Alessio],
Centomo, C.[Cesare],
Giorgetti, A.[Alejandro],
Bicego, M.[Manuele],
S-BLOSUM:
Classification of 2D Shapes with Biological Sequence Alignment,
ICPR14(2335-2340)
IEEE DOI
1412
Accuracy
BibRef
Wang, X.Y.[Xiao-Yang],
Ji, Q.A.[Qi-Ang],
A Unified Probabilistic Approach Modeling Relationships between
Attributes and Objects,
ICCV13(2120-2127)
IEEE DOI
1403
for attribute prediction and object recognition.
BibRef
Glazer, A.[Assaf],
Lindenbaum, M.[Michael],
Markovitch, S.[Shaul],
Feature shift detection,
ICPR12(1383-1386).
WWW Link.
1302
hidden changes due to feature value differences.
BibRef
Muńoz, A.[Alberto],
González, J.[Javier],
Combining Functional Data Projections for Time Series Classification,
CIARP09(457-464).
Springer DOI
0911
kernel Hilbert space.
BibRef
Pérez-Bonilla, A.[Alejandra],
Gibert, K.[Karina],
Towards Automatic Generation of Conceptual Interpretation of Clustering,
CIARP07(653-663).
Springer DOI
0711
BibRef
Hammer, R.[Rubi],
Hertz, T.[Tomer],
Hochstein, S.[Shaul],
Weinshall, D.[Daphna],
Classification with Positive and Negative Equivalence Constraints:
Theory, Computation and Human Experiments,
BVAI07(264-276).
Springer DOI
0710
BibRef
Agarwal, S.[Sameer],
Lim, J.W.[Jong-Woo],
Zelnik-Manor, L.[Lihi],
Perona, P.[Pietro],
Kriegman, D.J.[David J.],
Belongie, S.J.[Serge J.],
Beyond Pairwise Clustering,
CVPR05(II: 838-845).
IEEE DOI
0507
Relations are not pairwise, but 3, 4 or more.
Instance of hypergraph partitioning problem.
BibRef
Altmueller, S.,
Haralick, R.M.,
Approximating high dimensional probability distributions,
ICPR04(II: 299-302).
IEEE DOI
0409
Compare to
See also Approximating discrete probability distributions with dependence trees.
BibRef
Sanders, B.C.S.,
Nelson, R.C.,
Sukthankar, R.[Rahul],
A theory of the quasi-static world,
ICPR02(III: 1-6).
IEEE DOI
0211
BibRef
Mottl, V.,
Dvoenko, S.,
Kopylov, A.,
Pattern Recognition in Interrelated Data:
The Problem, Fundamental Assumptions, Recognition Algorithms,
ICPR04(I: 188-191).
IEEE DOI
0409
BibRef
Mottl, V.,
Seredin, O.,
Dvoenko, S.,
Kulikowski, C.,
Muchnik, I.,
Featureless pattern recognition in an imaginary Hilbert space,
ICPR02(II: 88-91).
IEEE DOI
0211
BibRef
Singh, S.,
Galton, A.,
Pattern recognition using information slicing method (PRISM),
ICPR02(II: 144-147).
IEEE DOI
0211
BibRef
Saalbach, A.,
Heidemann, G.,
Ritter, H.,
Representing object manifolds by parametrized SOMs,
ICPR02(II: 184-187).
IEEE DOI
0211
BibRef
Ohta, Y.,
Pattern recognition and understanding for visual information media,
ICPR02(I: 536-545).
IEEE DOI
0211
BibRef
Balthasar, D.,
Priese, L.,
Fast projection plane classifier,
ICPR02(II: 200-203).
IEEE DOI
0211
BibRef
Ryazanov, V.V.,
Vorontchikhin, V.A.,
Discrete approach for automatic knowledge extraction from precedent
large-scale data, and classification,
ICPR02(II: 188-191).
IEEE DOI
0211
BibRef
Veeramachaneni, S.,
Fujisawa, H.,
Liu, C.L.[Cheng-Lin],
Nagy, G.,
Classifying isogenous fields,
FHR02(41-46).
IEEE Top Reference.
0209
BibRef
Bax, E.,
Using Validation by Inference to Select a Hypothesis Function,
ICPR00(Vol II: 700-703).
IEEE DOI
0009
BibRef
Amengual, J.C.,
Vidal, E.,
On the Estimation of Error-correcting Parameters,
ICPR00(Vol II: 883-886).
IEEE DOI
BibRef
0001
ICPR00(Vol II: 887-890).
IEEE DOI
0009
BibRef
Baram, Y.,
Random Embedding Machines for Low-complexity Pattern Recognition,
ICPR00(Vol II: 748-754).
IEEE DOI
0009
BibRef
Law, M.H.,
Kwok, J.T.,
Rival Penalized Competitive Learning for Model-based Sequence
Clustering,
ICPR00(Vol II: 195-198).
IEEE DOI
0009
BibRef
Matas, J.G.[Jiri G.],
Pandit, M.,
Kittler, J.V.[Josef V.],
Selection of Speaker Independent Feature for a
Speaker Verification System,
ICPR98(Vol II: 1034-1036).
IEEE DOI
9808
BibRef
Riazanov, V.V.[Vladimir V.],
Sen'ko, O.V.,
Zhuralvlev, Y.I.[Yu I.],
Mathematical Methods for Pattern Recognition:
Logic, Optimization, Algebraic Approaches,
ICPR98(Vol I: 831-834).
IEEE DOI
9808
BibRef
Olivier, C.,
Jouzel, F.,
Avila, M.,
Markov Model Order Optimization for Text Recognition,
ICDAR97(548-551).
IEEE DOI
9708
BibRef
Gennert, M.A.,
Yuille, A.L.,
Determining the Optimal Weights in
Multiple Objective Function Optimization,
ICCV88(87-89).
IEEE DOI
BibRef
8800
Lemaire, J.,
Barrouil, C.,
Use of a priori descriptions in a high-level language and management
of the uncertainty in a scene recognition system,
ICPR96(I: 560-564).
IEEE DOI
9608
(Centre d`Etudes et de Recherches, F)
BibRef
Lemaire, J.,
Le Moigne, O.,
Development of a scene recognition system with imprecise descriptions,
ICIP96(II: 979-982).
IEEE DOI
9610
BibRef
Kimura, F.,
Miyake, Y.,
Wakabayashi, T.,
On Feature Extraction for Limited Class Problem,
ICPR96(II: 191-194).
IEEE DOI
9608
(Mie Univ., J)
BibRef
Dzemyda, G.,
Visual Analysis of a Set of Function Values,
ICPR96(II: 700-704).
IEEE DOI
9608
(Institute of Mathematics and Informatics, LIT)
BibRef
Uhl, C.,
Friedrich, R.,
Spatiotemporal Signal Analysis: Recognition of Interacting Modes,
ICPR96(II: 55-59).
IEEE DOI
9608
(Max-Planck-Institute, D)
BibRef
Arumugavelu, S.,
Ranganathan, N.,
SIMD Algorithms for Single Link and Complete Link Pattern Clustering,
ICPR96(IV: 625-629).
IEEE DOI
9608
(Univ. of Florida, USA)
BibRef
Blyumin, S.L.,
Multiplicative bases approach in mathematical cybernetics,
ICPR94(B:550-552).
IEEE DOI
9410
BibRef
Chen, Y.S.[Yung-Sheng],
Shao, W.S.[Wei-Shin],
Useful information plane on pattern classification,
ICPR94(B:605-607).
IEEE DOI
9410
BibRef
Howard, C.G.[Cheryl G.],
Bock, P.[Peter],
Multi-class classification and symbolic cognitive processing with ALISA,
CAIP93(343-354).
Springer DOI
9309
BibRef
Lazar, C.,
Pattern recognition algorithm based on cyclic codes,
ICPR92(II:455-457).
IEEE DOI
9208
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Clustering, Classification, General Methods .