Uhr, L.[Leonard], and
Vossler, C.[Charles],
A Pattern-Recognition Program that Generates, Evaluates, and
Adjusts Its Own Operators,
CandT(251-268), 1963.
BibRef
6300
Earlier:
WJCC(19), 1961, pp. 555-570.
Recognition using a series of operators (patterns, binary masks).
BibRef
Sauvain, R.W.,
Uhr, L.,
A teachable pattern describing and recognizing program,
PR(1), No. 3, March 1969, pp. 219-232.
Elsevier DOI
0309
Learns coded line drawings.
BibRef
Uhr, L.,
Layered Recognition Cone Networks That
Preprocess Classify and Describe,
TC(21), No. 7, July 1972, pp. 758-768.
Pyramids.
Multiple Resolutions. Early precursor to the UMass work.
BibRef
7207
Uhr, L.[Leonard], and
Douglass, R.[Robert],
A Parallel-Serial Recognition Cone System for Perception:
Some Test Results,
PR(11), No. 1, 1979, pp. 29-39.
Elsevier DOI
BibRef
7900
Earlier:
'Recognition Cones,' and Some Test Results; The Imminent
Arrival of Well-Structured Parallel-Serial computers; Positions, and Positions
on Positions,
CVS78(363-377).
BibRef
Earlier:
A 'Recognition Cone' Perceptual System: Brief Test Results,
IJCAI77(597).
BibRef
Uhr, L.,
'Recognition Cones' That Perceive and Describe Scenes that Move and Change
Over Time,
ICPR76(287-293).
BibRef
7600
Uhr, L.[Leonard],
Flexible linguistic pattern recognition,
PR(3), No. 4, November 1971, pp. 363-383.
Elsevier DOI
0309
BibRef
Hayes-Roth, F.[Frederick],
Schematic classification problems and their solution,
PR(6), No. 2, October 1974, pp. 105-113.
Elsevier DOI
0309
BibRef
Hayes-Roth, F.[Frederick],
Representation of structured events and efficient procedures for their
recognition,
PR(8), No. 3, July 1976, pp. 141-150.
Elsevier DOI
0309
Structured events.
BibRef
Briot, M.,
Renaud, M.,
Stojiljkovic, Z.,
An Approach to Spatial Pattern Recognition of Solid Objects,
SMC(8), 1978, pp. 690-694.
BibRef
7800
Kovalevsky, V.A.,
Local versus Global Decisions in Image Recognition,
PIEEE(67), 1979, pp. 745-752.
BibRef
7900
Tenenbaum, J.M.[Jay M.],
Fischler, M.A.[Martin A.],
Barrow, H.G.[Harry G.],
Scene Modeling: A Structural Basis for Image Description,
CGIP(12), No. 4, April 1980, pp. 407-425.
Elsevier DOI
BibRef
8004
Barrow, H.G., and
Tenenbaum, J.M.,
MSYS: A System for Reasoning about Scenes,
SRI AICenterTN 108, 1975.
BibRef
7500
And:
SRI AIMemo121, April 1976.
Knowledge-Based Vision.
System: MSYS.
The MSYS Report. Use inexact reasoning on uncertain
data to interpret regions extracted from an image. MSYS is an
asynchronous relaxation process that applies the rules imposed by the
modeluntil the labels are consistent. Constraints such as surface
height and orientation can bu used. Relations between objects in the
scene (hence regions in the image) can be used.. An M* (modified A*)
search is used.
For application in IGS:
See also Experiments in Interpretation Guided Segmentation.
BibRef
Kunii, T.L.,
Weyl, S.,
Tenenbaum, J.M.,
A Relational Data Base Schema for Describing Complex Pictures with
Color and Texture,
ICPR74(310-316).
BibRef
7400
Tenenbaum, J.M.,
Weyl, S.,
A Region-Analysis System for Interactive Scene Analysis,
IJCAI75(682-687).
BibRef
7500
Tenenbaum, J.M.,
On Locating Objects by Their Distinguishing Features in
Multisensory Images,
CGIP(2), No. 3, December 1973, pp. 308-320.
BibRef
7312
And:
SRI-TN-84, 1973.
Early version of old SRI work. A good reference for basic
techniques for description based extraction.
BibRef
Tenenbaum, J.M.,
Object Recognition in Multi-Sensory Scene Analysis,
SRI AIMemo84, September 1973.
Acquisition and validation. Turned into MSYS and related work.
BibRef
7309
Nitzan, D.,
Object Recognition in Multisensory Scene Analysis,
SRI AIMemo83, November 1973.
BibRef
7311
Garvey, T.D.,
Perceptual Strategies for Purposive Vision,
SRITechnical Note 117, September 1976.
BibRef
7609
Garvey, T.D., and
Tenenbaum, J.M.,
On the Automatic Generation of Programs for Locating Objects in
Office Scenes,
ICPR74(162-168).
Another of the early papers.
BibRef
7400
toe Water, F.T.B.[Frits T. Beukema],
Duin, R.P.W.[Robert P. W.],
Dealing with a priori knowledge by fuzzy labels,
PR(14), No. 1-6, 1981, pp. 111-115.
Elsevier DOI
0309
BibRef
Tsotsos, J.K.[John K.],
Knowledge and the Visual Process: Content, Form and Use,
PR(17), No. 1, 1984, pp. 13-27.
Elsevier DOI
BibRef
8400
And:
(Knowledge of...)
ICPR82(654-669).
BibRef
van Cleynenbruegel, J.,
Fierens, F.,
Suetens, P.,
Oosterlinck, A.,
Knowledge-Based Improvement of Automatic Image Interpretation for
Restricted Scenes: Two Case Studies,
IVC(6), No. 4, November 1988, pp. 238-246.
Elsevier DOI
BibRef
8811
Chen, S.,
An Intelligent Computer Vision System,
IJIS(1), 1986, pp. 15-28.
BibRef
8600
Andress, K.M., and
Kak, A.C.,
Evidence Accumulation and Flow of Control in a
Hierarchial Spatial Reasoning System,
AIMag(9), No. 2, Summer 1988, pp. 75-94.
BibRef
8800
And:
ASR-I90(Ch. 4).
BibRef
And:
A Production System Environment for Integrating Knowledge with
Vision Data,
SRMSF87(1-12).
Blackboard.
BibRef
Woods, P.W.[Peter W.],
Pycock, D.[David],
Taylor, C.J.[Christopher J.],
A Frame-Based System for Modelling and Executing Visual Tasks,
IVC(7), No. 2, May 1989, pp. 102-108.
Elsevier DOI
BibRef
8905
Trivedi, M.M.,
Abidi, M.A.,
Eason, R.O., and
Gonzalez, R.C.,
Developing Robotic Systems with Multiple Sensors,
SMC(20), No. 6, November/December, 1990, pp. 1285-1300.
BibRef
9011
Earlier:
Object Recognition and Pose Determination in
Multi Sensor Robotic Systems,
SMC-C89(xx-yy).
Pose Estimation.
BibRef
Hopkins, S.,
Michaelson, G.J.,
Wallace, A.M.,
Parallel Imperative and Functional Approaches to
Visual Scene Labelling,
IVC(7), No. 3, August 1989, pp. 178-193.
Elsevier DOI
BibRef
8908
Rosin, P.L.[Paul L.],
Ellis, T.[Tim],
Frame-Based System for Image Interpretation,
IVC(9), No. 6, December 1991, pp. 353-361.
Elsevier DOI Interpretation in Prolog. Trigger C coded image processing.
BibRef
9112
Ellis, T.J.,
Rosin, P.L., and
Golton, P.,
Model-Based Vision for Automatic Alarm Detection,
AeroSysMag(6), 1990, pp. 14-20.
BibRef
9000
Lee, C.M.,
Pong, T.C.,
Slagle, J.R.,
A Knowledge-Based System for the Image Correspondence Problem,
PRAI(4), 1990, pp. 45-55.
BibRef
9000
Meisels, A.,
Levels of Knowledge for Object Extraction,
MVA(4), 1991, pp. 183-192.
BibRef
9100
Kakusho, K.,
Dan, S.,
Kitahashi, T., and
Abe, N.,
Computer Vision Based on a Hypothesization and Verification Scheme
by Parallel Relaxation,
IJCV(9), No. 1, October 1992, pp. 13-30.
Springer DOI
Relaxation.
Shape from Single Image. Recovery of shape from a monocular image.
BibRef
9210
Kakusho, K.,
Dan, S.,
Abe, N., and
Kitahashi, T.,
Shape Recovery and Error Correction Based on Hypothetical Constraints
by Parallel Network for Energy Minimization,
PRAI(8), 1994, pp. 577-593.
BibRef
9400
Lederman, S.J.,
Klatzky, R.L.,
The Intelligent Hand: An Experimental Approach to Human Object
Recognition and Implications for Robotics and AI,
AIMag(15), No. 1, Spring 1994, pp. 26-38.
BibRef
9400
Eklundh, J.O.,
Knowledge Based Image Analysis,
TRITA-NA-8206 (Integral 2), March 1982.
BibRef
8203
Wallace, A.M.[Andrew M.],
A Comparison of Approaches to High-Level Image Interpretation,
PR(21), No. 3, 1988, pp. 241-259.
Elsevier DOI
BibRef
8800
Grenander, U.[Ulf],
Miller, M.I.,
Representation of Knowledge in Complex Systems,
RoyalStat(B-56), No. 4, 1994, pp. 569-603.
9702
BibRef
Aviad, Z.,
Lozinskii, E.,
On a Conceptual Description of Images,
PRL(3), 1985, pp. 51-57.
BibRef
8500
Pham, D.T.,
Dimov, S.S.,
An Efficient Algorithm for Automatic Knowledge Acquisition,
PR(30), No. 7, July 1997, pp. 1137-1143.
Elsevier DOI
9707
BibRef
Edelman, S.,
Duvdevani-Bar, S.,
Similarity, Connectionism, and the Problem of Representation in Vision,
NeurComp(9), No. 4, May 15 1997, pp. 701-720.
9706
BibRef
Duvdevani-Bar, S.[Sharon],
Edelman, S.[Shimon],
Visual Recognition and Categorization on the Basis of Similarities to
Multiple Class Prototypes,
IJCV(33), No. 3, September 1999, pp. 201-228.
DOI Link
BibRef
9909
Mirmehdi, M.,
Palmer, P.L.,
Kittler, J.V.,
Dabis, H.S.,
Feedback Control Strategies for Object Recognition,
IP(8), No. 8, August 1999, pp. 1084-1101.
IEEE DOI
BibRef
9908
Earlier:
Multi-pass Feedback Control for Object Recognition,
VI96(49-56).
PS File.
BibRef
Earlier:
Complex Feedback Strategies for Hypothesis Generation and Verification,
BMVC96(Poster Session 1).
9608
Optimization technique with feedback.
University of Surrey
BibRef
Lesser, V.R.[Victor R.],
Nawab, H.[Hamid],
Klassner, F.I.[Frank I.],
IPUS: An Architecture for the Integrated Processing
and Understanding of Signals,
AI(77), No. 1, October 1995, pp. 129-171.
Elsevier DOI
BibRef
9510
Kelly, M.F.[Michael F.], and
Levine, M.D.[Martin D.],
Finding and Describing Objects in Complex Images,
AIU96(209-226).
Descriptions, Parts. Various filter/operators on the images.
BibRef
9600
Bourbakis, N.G.,
Mertoguno, J.S.,
Kydon: An Autonomous, Multilayer Image-Understanding System -
Lower Layers,
EngAAI(9), No. 1, February 1996, pp. 43-52.
BibRef
9602
Roli, F.,
Serpico, S.B.,
Vernazza, G.,
A Hybrid System For 2-Dimensional Image Recognition,
PIEEE(84), No. 11, November 1996, pp. 1659-1681.
9611
BibRef
Dellepiane, S.G.,
Venturi, G.,
Vernazza, G.L.,
Model Generation and Model Matching of Real Images by a Fuzzy Approach,
PR(25), No. 2, February 1992, pp. 115-137.
Elsevier DOI
BibRef
9202
Dellepiane, S.G.,
Serpico, S.B.,
Vernazza, G.L.,
Analysis and Classification of SAR Images by a
Knowledge-Based Approach,
ICPR88(II: 1207-1209).
IEEE DOI
BibRef
8800
Kuruppu, N.R.,
The Development of a BAM System Using a Delta-Rule Based Algorithm
(The DBAM System),
PRL(17), No. 11, September 16 1996, pp. 1151-1155.
9611
BibRef
Gamage, L.B.,
Gosine, R.G.,
de Silva, C.W.,
Extraction of Rules from Natural Objects for
Automated Mechanical Processing,
SMC-A(26), No. 1, January 1996, pp. 105-120.
IEEE Top Reference.
BibRef
9601
Chan, S.W.K.,
Leung, K.S.,
Wong, W.S.F.,
Object-Oriented Knowledge-Based System for Image Diagnosis,
AppAI(10), No. 5, September/October 1996, pp. 407-438.
9611
BibRef
Kontoes, C.C.,
Rokos, D.,
The Integration of Spatial Context Information in an Experimental
Knowledge-Based System and the Supervised Relaxation Algorithm:
2 Successful Approaches to Improving Spot-Xs Classification,
JRS(17), No. 16, November 10 1996, pp. 3093-3106.
9611
BibRef
Moody, J.[John],
Flynn, P.J.[Patrick J.],
Cohn, D.L.[David L.],
Parallel Hypothesis Verification,
PR(26), No. 10, October 1993, pp. 1521-1527.
Elsevier DOI
BibRef
9310
Earlier:
ICPR92(IV:107-110).
IEEE DOI
9208
BibRef
Tönjes, R.,
Growe, S.,
Bückner, J.,
Liedtke, C.E.,
Knowledge-Based Interpretation of Remote Sensing Images
Using Semantic Nets,
PhEngRS(65), No. 7, July 1999, pp. 811.
Uses knowledge about landscape scenes and map information from GIS.
BibRef
9907
Draper, B.A.[Bruce A.],
Bins, J.[Jose],
Baek, K.[Kyungim],
ADORE: Adaptive Object Recognition,
Videre(1), No. 4, Winter 2000, pp. xx-yy.
0005
BibRef
Earlier:
CVS99(522 ff.).
Springer DOI
0209
BibRef
Draper, B.A.[Bruce A.],
Baek, K.[Kyungim],
Boody, J.[Jeff],
Implementing the Expert Object Recognition Pathway,
MVA(16), No. 1, December 2004, pp. 27-32.
Springer DOI
0501
BibRef
Earlier:
CVS03(1 ff).
Springer DOI
0306
BibRef
Drummond, T.W.[Tom W.],
Caelli, T.M.[Terry M.],
Learning Task-Specific Object Recognition and Scene Understanding,
CVIU(80), No. 3, December 2000, pp. 315-348.
DOI Link
0012
BibRef
Caelli, T.M., and
Bischof, W.F.,
Machine Learning Paradigms for Pattern Recognition
and Image Understanding,
SV(10), 1996, pp. 87-103.
BibRef
9600
Caelli, T.M.[Terry M.], and
Bischof, W.F.[Walter F.],
Machine Learning and Image Interpretation,
PlenumPress, 1997.
ISBN: 0-306-45761-X. 448 pp.
Authors from School of Computing,
Curtin University of Technology,
Perth, Australia.
BibRef
9700
Blake, R.E.[Richard E.],
Juozapavicius, A.[Algimantas],
Convergent matching for model-based computer vision,
PR(36), No. 2, February 2003, pp. 527-534.
Elsevier DOI
0211
BibRef
Ogiela, M.R.[Marek R.],
Tadeusiewicz, R.[Ryszard],
Artificial intelligence structural imaging techniques in visual pattern
analysis and medical data understanding,
PR(36No. 10, October 2003, pp. 2441-2452.
Elsevier DOI
0308
See also Graph image language techniques supporting radiological, hand image interpretations.
BibRef
Rosin, P.L.[Paul L.],
Rana, O.F.[Omer F.],
Special Issue Introduction: Agent-based computer vision,
PR(37), No. 4, April 2004, pp. 627-629.
Elsevier DOI
0403
BibRef
Ogale, A.S.[Abhijit S.],
Aloimonos, Y.[Yiannis],
A Roadmap to the Integration of Early Visual Modules,
IJCV(72), No. 1, April 2007, pp. 9-25.
Springer DOI
0001
BibRef
Neumann, B.[Bernd],
Möller, R.[Ralf],
On scene interpretation with description logics,
IVC(26), No. 1, 1 January 2008, pp. 82-101.
Elsevier DOI
0711
BibRef
Earlier:
CogVis03(247-275).
Springer DOI
0310
Scene interpretation; Description logics; High-level vision
BibRef
Schroeder, C.[Carsten],
Neumann, B.[Bernd],
On the Logics of Image Interpretation:
Model Construction in a Formal Knowledge-Representation Framework,
ICIP96(II: 785-788).
IEEE DOI
BibRef
9600
Hogg, D.C.[David C.],
Neumann, B.[Berndt],
Knowledge Intensive Image Interpretation: Introduction,
ICIP96(18A2).
BibRef
9600
Ponce, J.[Jean],
Hebert, M.[Martial],
Schmid, C.[Cordelia], and
Zisserman, A.[Andrew], (Eds.)
Toward Category-Level Object Recognition,
CLOR06LCNS Volume 4170, 2006.
Springer DOI The papers selected and assembled from 2 workshops in 2003 and 2004.
BibRef
0600
Treiber, M.A.[Marco Alexander],
An Introduction to Object Recognition:
Selected Algorithms for a Wide Variety of Applications,
Springer2010, ISBN: 978-1-84996-234-6
WWW Link. Algorithm descriptions.
Buy this book: An Introduction to Object Recognition: Selected Algorithms for a Wide Variety of Applications (Advances in Pattern Recognition)
1010
BibRef
Kleiner, I.[Igor],
Keren, D.[Daniel],
Newman, I.[Ilan],
Ben-Zwi, O.[Oren],
Applying Property Testing to an Image Partitioning Problem,
PAMI(33), No. 2, February 2011, pp. 256-265.
IEEE DOI
1101
Quick test to determine whether to continue analysis.
BibRef
Hata, S.[Seiji],
Tailor-made engineering in image processing industry,
FCV11(1-2).
IEEE DOI
1102
To date computer vision applications are custom made. Discuss attempts
to improve this.
BibRef
Falomir, Z.[Zoe],
Museros, L.[Lledó],
Gonzalez-Abril, L.[Luis],
Escrig, M.T.[M. Teresa],
Ortega, J.A.[Juan A.],
A model for the qualitative description of images based on visual and
spatial features,
CVIU(116), No. 6, June 2012, pp. 698-714.
Elsevier DOI
1204
Qualitative shape; Qualitative colours; Qualitative
orientation; Spatial description
Main visual features (shape and color) and the main spatial features
(fixed orientation, relative orientation and topology) of each object
within the image.
BibRef
Sanz, I.[Ismael],
Museros, L.[Lledó],
Falomir, Z.[Zoe],
Gonzalez-Abril, L.[Luis],
Customising a qualitative colour description for adaptability and
usability,
PRL(67, Part 1), No. 1, 2015, pp. 2-10.
Elsevier DOI
1511
Colour naming
See also Measures of similarity between qualitative descriptions of shape, colour and size applied to mosaic assembling.
BibRef
Falomir, Z.[Zoe],
Museros, L.[Lledó],
Castelló, V.[Vicent],
Gonzalez-Abril, L.[Luis],
Qualitative distances and qualitative image descriptions for
representing indoor scenes in robotics,
PRL(34), No. 7, 1 May 2013, pp. 731-743.
Elsevier DOI
1303
Sensor data integration; Fuzzy logic; Qualitative shape; Qualitative
colour; Topology; Qualitative spatial orientation
BibRef
Li, C.C.[Cong-Cong],
Kowdle, A.[Adarsh],
Saxena, A.[Ashutosh],
Chen, T.H.[Tsu-Han],
Toward Holistic Scene Understanding:
Feedback Enabled Cascaded Classification Models,
PAMI(34), No. 7, July 2012, pp. 1394-1408.
IEEE DOI
1205
Scene understanding, classification, machine learning, robotics.
Jointly optimize depth, categorization, object detection.
BibRef
Moghaddam, R.F.,
Cheriet, M.,
Real-Time Knowledge-Based Processing of Images: Application of the
Online NLPM Method to Perceptual Visual Analysis,
IP(21), No. 8, August 2012, pp. 3390-3404.
IEEE DOI
1208
BibRef
Yu, L.,
Xie, J.,
Chen, S.,
Conditional random field-based image labelling combining features of
pixels, segments and regions,
IET-CV(6), No. 5, 2012, pp. 459-467.
DOI Link
1210
Single layer segment based CRF method.
BibRef
Maji, S.[Subhransu],
Berg, A.C.[Alexander C.],
Malik, J.[Jitendra],
Efficient Classification for Additive Kernel SVMs,
PAMI(35), No. 1, January 2013, pp. 66-77.
IEEE DOI
1212
BibRef
Zhang, H.[Hao],
Berg, A.C.[Alexander C.],
Maire, M.[Michael],
Malik, J.[Jitendra],
SVM-KNN: Discriminative Nearest Neighbor Classification for Visual
Category Recognition,
CVPR06(II: 2126-2136).
IEEE DOI
0606
BibRef
Ordonez, V.[Vicente],
Liu, W.[Wei],
Deng, J.[Jia],
Choi, Y.[Yejin],
Berg, A.C.[Alexander C.],
Berg, T.L.[Tamara L.],
Learning to Name Objects,
CACM(59), No. 3, March 2016, pp. 108-115.
DOI Link
1604
BibRef
Chen, X.W.[Xiao-Wu],
Li, Q.[Qing],
Zhao, D.Y.[Dong-Yue],
Zhao, Q.P.[Qin-Ping],
Occlusion cues for image scene layering,
CVIU(117), No. 1, January 2013, pp. 42-55.
Elsevier DOI
1212
Human perception; Occlusion cues; Occlusion prediction; Layering
BibRef
Yue, P.[Peng],
Di, L.P.[Li-Ping],
Wei, Y.X.[Ya-Xing],
Han, W.G.[Wei-Guo],
Intelligent services for discovery of complex geospatial features
from remote sensing imagery,
PandRS(83), No. 1, 2013, pp. 151-164.
Elsevier DOI
1308
Image mining for compex features (e.g. collection of buildings,
not just a single complex building).
BibRef
Pavlidis, T.[Theo],
The challenge of general machine vision,
SIViP(8), No. 1, January 2014, pp. 191-195.
WWW Link.
1402
BibRef
Quinton, J.C.,
Volpi, N.C.,
Barca, L.,
Pezzulo, G.,
The Cat is on the Mat. or is it a Dog? Dynamic Competition in
Perceptual Decision Making,
SMCS(44), No. 5, May 2014, pp. 539-551.
IEEE DOI
1405
decision making
BibRef
Smith, J.R.[John R.],
How Many Visual Concepts?,
MultMedMag(21), No. 1, January 2014, pp. 2-3.
IEEE DOI
1405
Scene analysis
BibRef
Xie, Y.R.[Yu-Rui],
Wu, Q.B.[Qing-Bo],
Luo, B.[Bing],
Huang, C.[Chao],
Tang, L.Z.[Liang-Zhi],
A Combing Top-Down and Bottom-Up Discriminative Dictionaries Learning
for Non-specific Object Detection,
IEICE(E97-D), No. 5, May 2014, pp. 1367-1370.
WWW Link.
1405
BibRef
Xie, Y.R.[Yu-Rui],
Wu, Q.B.[Qing-Bo],
Luo, B.[Bing],
Discriminative Semantic Parts Learning for Object Detection,
IEICE(E98-D), No. 7, July 2015, pp. 1434-1438.
WWW Link.
1508
BibRef
Sun, M.[Min],
Kim, B.S.[Byung-Soo],
Kohli, P.[Pushmeet],
Savarese, S.[Silvio],
Relating Things and Stuff via ObjectProperty Interactions,
PAMI(36), No. 7, July 2014, pp. 1370-1383.
IEEE DOI
1407
BibRef
Earlier: A2, A1, A3, A4:
Relating Things and Stuff by High-Order Potential Modeling,
Global12(III: 293-304).
Springer DOI
1210
Detectors.
the object and background.
BibRef
Wang, S.[Shuo],
Wang, Y.Z.[Yi-Zhou],
Weakly Supervised Semantic Segmentation with a Multiscale Model,
SPLetters(22), No. 3, March 2015, pp. 308-312.
IEEE DOI
1410
Buildings
BibRef
Wang, S.[Shuo],
Wang, Y.Z.[Yi-Zhou],
Zhu, S.C.[Song-Chun],
Learning Hierarchical Space Tiling for Scene Modeling, Parsing and
Attribute Tagging,
PAMI(37), No. 12, December 2015, pp. 2478-2491.
IEEE DOI
1512
BibRef
Earlier:
Hierarchical Space Tiling for Scene Modeling,
ACCV12(II:796-810).
Springer DOI
1304
attribute grammars
BibRef
Wang, S.[Shuo],
Joo, J.[Jungseock],
Wang, Y.Z.[Yi-Zhou],
Zhu, S.C.[Song-Chun],
Weakly Supervised Learning for Attribute Localization in Outdoor
Scenes,
CVPR13(3111-3118)
IEEE DOI
1309
Hierarchical Space Tiling (HST).
Learn parts and attributs given captions.
BibRef
Aloimonos, Y.[Yiannis],
Fermüller, C.[Cornelia],
The Cognitive Dialogue:
A new model for vision implementing common sense reasoning,
IVC(34), No. 1, 2015, pp. 42-44.
Elsevier DOI
1502
Vision and language.
Vision is part of an intelligent system that reasons, not just vision
by itself.
BibRef
Aditya, S.[Somak],
Yang, Y.Z.[Ye-Zhou],
Baral, C.[Chitta],
Aloimonos, Y.[Yiannis],
Fermüller, C.[Cornelia],
Image Understanding using vision and reasoning through Scene
Description Graph,
CVIU(173), 2018, pp. 33-45.
Elsevier DOI
1901
Image Understanding, Commonsense Reasoning, Vision, Reasoning
BibRef
Guo, R.Q.[Rui-Qi],
Hoiem, D.[Derek],
Labeling Complete Surfaces in Scene Understanding,
IJCV(112), No. 2, April 2015, pp. 172-187.
WWW Link.
1504
BibRef
Earlier:
Beyond the Line of Sight: Labeling the Underlying Surfaces,
ECCV12(V: 761-774).
Springer DOI
1210
infer hidden regions
BibRef
Lindner, A.[Albrecht],
Susstrunk, S.,
Semantic-Improved Color Imaging Applications: It Is All About Context,
MultMed(17), No. 5, May 2015, pp. 700-710.
IEEE DOI
1505
Computer vision
BibRef
Lindner, A.[Albrecht],
Semantic Awareness for Automatic Image Interpretation,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Dong, J.[Jian],
Chen, Q.A.[Qi-Ang],
Feng, J.S.[Jian-Shi],
Jia, K.,
Huang, Z.Y.[Zhong-Yang],
Yan, S.C.[Shui-Cheng],
Looking Inside Category: Subcategory-Aware Object Recognition,
CirSysVideo(25), No. 8, August 2015, pp. 1322-1334.
IEEE DOI
1508
Data mining
BibRef
Dong, J.[Jian],
Xia, W.[Wei],
Chen, Q.A.[Qi-Ang],
Feng, J.S.[Jian-Shi],
Huang, Z.Y.[Zhong-Yang],
Yan, S.C.[Shui-Cheng],
Subcategory-Aware Object Classification,
CVPR13(827-834)
IEEE DOI
1309
Ambiguity Modeling; Classification; Subcategory Mining
BibRef
Liu, X.H.[Xiong-Hao],
Yang, W.[Wei],
Lin, L.[Liang],
Wang, Q.[Qing],
Cai, Z.Q.[Zhao-Quan],
Lai, J.H.[Jian-Huang],
Data-Driven Scene Understanding with Adaptively Retrieved Exemplars,
MultMedMag(22), No. 3, July 2015, pp. 82-92.
IEEE DOI
1508
Computer graphics. Recover examples from database, then propogate pixel labels.
BibRef
Zitnick, C.L.[C. Lawrence],
Vedantam, R.[Ramakrishna],
Parikh, D.[Devi],
Adopting Abstract Images for Semantic Scene Understanding,
PAMI(38), No. 4, April 2016, pp. 627-638.
IEEE DOI
1603
Abstracts
BibRef
Vedantam, R.[Ramakrishna],
Lin, X.[Xiao],
Batra, T.[Tanmay],
Zitnick, C.L.[C. Lawrence],
Parikh, D.[Devi],
Learning Common Sense through Visual Abstraction,
ICCV15(2542-2550)
IEEE DOI
1602
Cognition. More than just text.
BibRef
Fang, Q.,
Xu, C.S.[Chang-Sheng],
Sang, J.,
Hossain, M.S.[M. Shamim],
Ghoneim, A.[Ahmed],
Folksonomy-Based Visual Ontology Construction and Its Applications,
MultMed(18), No. 4, April 2016, pp. 702-713.
IEEE DOI
1604
Computational modeling
BibRef
Yang, X.S.[Xiao-Shan],
Zhang, T.Z.[Tian-Zhu],
Xu, C.S.[Chang-Sheng],
Yan, S.C.[Shui-Cheng],
Hossain, M.S.[M. Shamim],
Ghoneim, A.[Ahmed],
Deep Relative Attributes,
MultMed(18), No. 9, September 2016, pp. 1832-1842.
IEEE DOI
1609
image recognition
BibRef
Malik, J.[Jitendra],
Arbeláez, P.[Pablo],
Carreira, J.[João],
Fragkiadaki, K.[Katerina],
Girshick, R.[Ross],
Gkioxari, G.[Georgia],
Gupta, S.[Saurabh],
Hariharan, B.[Bharath],
Kar, A.[Abhishek],
Tulsiani, S.[Shubham],
The three R's of computer vision:
Recognition, reconstruction and reorganization,
PRL(72), No. 1, 2016, pp. 4-14.
Elsevier DOI
1604
Object recognition
BibRef
Gori, M.[Marco],
Lippi, M.[Marco],
Maggini, M.[Marco],
Melacci, S.[Stefano],
Semantic video labeling by developmental visual agents,
CVIU(146), No. 1, 2016, pp. 9-26.
Elsevier DOI
1604
Learning from constraints
Developmental Visual Agents are life-long learning systems for video
understanding.
Go from unsupervised feature extraction to symbolic representations.
BibRef
Thomas, S.S.[Sinnu Susan],
Gupta, S.[Sumana],
Subramanian, V.K.[Venkatesh K.],
Perceptual synoptic view-based video retrieval using metadata,
SIViP(11), No. 3, March 2017, pp. 549-555.
WWW Link.
1702
BibRef
Earlier:
Perceptual synoptic view of pixel, object and semantic based
attributes of video,
JVCIR(38), No. 1, 2016, pp. 367-377.
Elsevier DOI
1605
Surveillance. Synopsis. Different levels of representation.
BibRef
Donatti, G.S.[Guillermo Sebastián],
Memory Organization for Invariant Object Recognition and Categorization,
ELCVIA(15), No. 2, 2016, pp. 33-36.
DOI Link
1611
BibRef
Fan, M.[Miao],
Zhou, Q.A.[Qi-Ang],
Zheng, T.F.[Thomas Fang],
Grishman, R.[Ralph],
Distributed representation learning for knowledge graphs with entity
descriptions,
PRL(93), No. 1, 2017, pp. 31-37.
Elsevier DOI
1706
Knowledge, graph
BibRef
Lüddecke, T.[Timo],
Agostini, A.[Alejandro],
Fauth, M.[Michael],
Tamosiunaite, M.[Minija],
Wörgötter, F.[Florentin],
Distributional semantics of objects in visual scenes in comparison to
text,
AI(274), 2019, pp. 44-65.
Elsevier DOI
1908
Object semantics, Vision and language, Semantics,
Distributional hypothesis
BibRef
Luo, J.[Jie],
Wang, Y.F.[Yi-Fei],
Jiang, D.C.[Dong-Chen],
Rule-based hidden relation recognition for large scale knowledge
graphs,
PRL(125), 2019, pp. 13-20.
Elsevier DOI
1909
Hidden relation, Knowledge graph, Reasoning, OWL2 RL
BibRef
Esteban, P.G.,
Insua, D.R.,
A Model for an Affective Non-Expensive Utility-Based Decision Agent,
AffCom(10), No. 4, October 2019, pp. 498-509.
IEEE DOI
1912
Mood, Computational modeling, Robots, Decision making,
Biological system modeling, Decision support systems,
utility theory
BibRef
Liu, D.[Ding],
Wen, B.H.[Bi-Han],
Jiao, J.B.[Jian-Bo],
Liu, X.M.[Xian-Ming],
Wang, Z.Y.[Zhang-Yang],
Huang, T.S.[Thomas S.],
Connecting Image Denoising and High-Level Vision Tasks via Deep
Learning,
IP(29), 2020, pp. 3695-3706.
IEEE DOI
2002
How denoising can help high level, how high level can help denoising.
Deep learning, neural network, image denoising, high-level vision
BibRef
van Nuenen, T.,
Ferrer, X.,
Such, J.M.,
Cote, M.,
Transparency for Whom? Assessing Discriminatory Artificial
Intelligence,
Computer(53), No. 11, November 2020, pp. 36-44.
IEEE DOI
2010
BibRef
Molinara, M.,
Bria, A.,
de Vito, S.,
Marrocco, C.,
Artificial intelligence for distributed smart systems,
PRL(142), 2021, pp. 48-50.
Elsevier DOI
2101
BibRef
Liu, D.[Daqi],
Bober, M.[Miroslaw],
Kittler, J.V.[Josef V.],
Visual Semantic Information Pursuit: A Survey,
PAMI(43), No. 4, April 2021, pp. 1404-1422.
IEEE DOI
2103
Visualization, Semantics, Task analysis, Visual perception,
Cognition, Object detection, Deep learning,
message passing
BibRef
Gangopadhyay, B.[Briti],
Hazra, S.[Somnath],
Dasgupta, P.[Pallab],
Semi-lexical languages: a formal basis for using domain knowledge to
resolve ambiguities in deep-learning based computer vision,
PRL(152), 2021, pp. 143-149.
Elsevier DOI
2112
Neuro-symbolic deduction, Semantic interpretation, Explainable inference
BibRef
Zhang, M.Y.[Meng-Yang],
Tian, G.H.[Guo-Hui],
Zhang, Y.[Ying],
Duan, P.[Peng],
Reinforcement Learning for Logic Recipe Generation:
Bridging Gaps From Images to Plans,
MultMed(24), 2022, pp. 352-365.
IEEE DOI
2202
Reinforcement learning, Feature extraction, Decoding,
Artificial neural networks, Generators, Visualization, recipe generation
BibRef
Zhao, Y.H.[Yue-Hua],
Zhang, J.G.[Ji-Guang],
Ma, J.[Jie],
Xu, S.B.[Shi-Biao],
Large-Scale Semantic Scene Understanding with Cross-Correction
Representation,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Golan, A.[Amos],
Foley, D.K.[Duncan K.],
Understanding the Constraints in Maximum Entropy Methods for Modeling
and Inference,
PAMI(45), No. 3, March 2023, pp. 3994-3998.
IEEE DOI
2302
Entropy, Bayes methods, Diseases, Systematics, Economics, Data models,
Analytical models, Causal inference, constraints, information,
principle of maximum entropy
BibRef
Duan, X.G.[Xu-Guang],
Wang, X.[Xin],
Zhao, P.L.[Pei-Lin],
Shen, G.Y.[Guang-Yao],
Zhu, W.W.[Wen-Wu],
DeepLogic: Joint Learning of Neural Perception and Logical Reasoning,
PAMI(45), No. 4, April 2023, pp. 4321-4334.
IEEE DOI
2303
Combine neural and logical frameworks.
Cognition, Optimization, Task analysis, Semantics, Deep learning,
Convergence, Artificial neural networks, perceptual reasoning
BibRef
Gao, C.[Chen],
Liu, S.[Si],
Chen, J.[Jinyu],
Wang, L.T.[Lu-Ting],
Wu, Q.[Qi],
Li, B.[Bo],
Tian, Q.[Qi],
Room-Object Entity Prompting and Reasoning for Embodied Referring
Expression,
PAMI(46), No. 2, February 2024, pp. 994-1010.
IEEE DOI
2401
BibRef
Gao, C.[Chen],
Chen, J.[Jinyu],
Liu, S.[Si],
Wang, L.T.[Lu-Ting],
Zhang, Q.[Qiong],
Wu, Q.[Qi],
Room-and-Object Aware Knowledge Reasoning for Remote Embodied
Referring Expression,
CVPR21(3063-3072)
IEEE DOI
2111
Visualization, Correlation, Navigation, Linguistics, Transformers,
Cognition, Pattern recognition
BibRef
Xiangli, Y.B.[Yuan-Bo],
Xu, L.N.[Lin-Ning],
Pan, X.G.[Xin-Gang],
Zhao, N.X.[Nan-Xuan],
Dai, B.[Bo],
Lin, D.[Dahua],
AssetField: Assets Mining and Reconfiguration in Ground Feature Plane
Representation,
ICCV23(3228-3238)
IEEE DOI
2401
The unique objects found.
BibRef
Yan, A.[An],
Wang, Y.[Yu],
Zhong, Y.[Yiwu],
Dong, C.[Chengyu],
He, Z.[Zexue],
Lu, Y.J.[Yu-Jie],
Wang, W.Y.[William Yang],
Shang, J.[Jingbo],
McAuley, J.[Julian],
Learning Concise and Descriptive Attributes for Visual Recognition,
ICCV23(3067-3077)
IEEE DOI
2401
BibRef
Gan, Z.[Zeyu],
Zhao, S.[Suyun],
Kang, J.L.[Jin-Long],
Shang, L.Y.[Li-Yuan],
Chen, H.[Hong],
Li, C.P.[Cui-Ping],
Superclass Learning with Representation Enhancement,
CVPR23(24060-24069)
IEEE DOI
2309
BibRef
Tukra, S.[Samyakh],
Hoffman, F.[Frederick],
Chatfield, K.[Ken],
Improving Visual Representation Learning Through Perceptual
Understanding,
CVPR23(14486-14495)
IEEE DOI
2309
BibRef
Zhang, Y.Z.[Yun-Zhi],
Wu, S.Z.[Shang-Zhe],
Snavely, N.[Noah],
Wu, J.J.[Jia-Jun],
Seeing a Rose in Five Thousand Ways,
CVPR23(962-971)
IEEE DOI
2309
BibRef
Guo, X.B.[Xiao-Bo],
Gao, N.[Neng],
Wang, F.[Fali],
Mu, N.[Nan],
Wang, L.[Lei],
Dong, Y.[Yao],
BEFSR: A Multiple Attention-Based Model Considering Bidirectional
Entity Information Flows and Few-Shot Relations,
ICPR22(4441-4447)
IEEE DOI
2212
Aggregates, Knowledge based systems, Knowledge representation, Task analysis
BibRef
Yang, X.Y.[Xing-Yi],
Ye, J.W.[Jing-Wen],
Wang, X.C.[Xin-Chao],
Factorizing Knowledge in Neural Networks,
ECCV22(XXXIV:73-91).
Springer DOI
2211
Assemble knowledge from networks, recast into factor networks.
BibRef
Kamath, A.[Amita],
Clark, C.[Christopher],
Gupta, T.[Tanmay],
Kolve, E.[Eric],
Hoiem, D.[Derek],
Kembhavi, A.[Aniruddha],
Webly Supervised Concept Expansion for General Purpose Vision Models,
ECCV22(XXXVI:662-681).
Springer DOI
2211
BibRef
Joshi, P.[Piyush],
Rastegarpanah, A.[Alireza],
Stolkin, R.[Rustam],
A Survey on Training Free 3D Texture-less Object Recognition
Techniques,
DICTA20(1-3)
IEEE DOI
2201
Training, Image recognition, Cameras, Object recognition,
Time factors, Robots, 3D object recognition, Feature descriptors
BibRef
Zhang, Y.F.[Yi-Feng],
Jiang, M.[Ming],
Zhao, Q.[Qi],
Explicit Knowledge Incorporation for Visual Reasoning,
CVPR21(1356-1365)
IEEE DOI
2111
Knowledge engineering, Visualization, Semantics,
Knowledge based systems, Cognition, Pattern recognition
BibRef
Hong, X.[Xin],
Lan, Y.Y.[Yan-Yan],
Pang, L.[Liang],
Guo, J.F.[Jia-Feng],
Cheng, X.Q.[Xue-Qi],
Transformation Driven Visual Reasoning,
CVPR21(6899-6908)
IEEE DOI
2111
Visualization, Computational modeling, Cognition,
Data models, Pattern recognition, Task analysis
BibRef
Zheng, W.B.[Wen-Bo],
Yan, L.[Lan],
Wang, F.Y.[Fei-Yue],
Gou, C.[Chao],
Progressive Knowledge-Embedded Unified Perceptual Parsing for Scene
Understanding,
MULA21(1633-1642)
IEEE DOI
2109
Deep learning, Visualization,
Organizations, Knowledge representation, Logic gates
BibRef
Olague, G.[Gustavo],
Olague, M.[Matthieu],
Jacobo-Lopez, A.R.[Angel R.],
Ibarra-Vázquez, G.[Gerardo],
Less is More: Pursuing the Visual Turing Test with the Kuleshov
Effect,
AUVi21(1553-1561)
IEEE DOI
2109
Deep learning, Visualization, Image recognition,
Psychology, Motion pictures
BibRef
Belavadi, P.[Poornima],
Burbach, L.[Laura],
Ziefle, M.[Martina],
Valdez, A.C.[André Calero],
Finding a Structure: Evaluating Different Modelling Languages Regarding
Their Suitability of Designing Agent-Based Models,
DHM21(I:201-219).
Springer DOI
2108
BibRef
Mi, L.[Li],
Chen, Z.Z.[Zhen-Zhong],
Hierarchical Graph Attention Network for Visual Relationship
Detection,
CVPR20(13883-13892)
IEEE DOI
2008
Visualization, Semantics, Correlation, Feature extraction, Cognition,
Task analysis, Proposals
BibRef
Abbasnejad, E.[Ehsan],
Abbasnejad, I.[Iman],
Wu, Q.[Qi],
Shi, J.[Javen],
van den Hengel, A.J.[Anton J.],
Gold Seeker: Information Gain From Policy Distributions for
Goal-Oriented Vision-and-Langauge Reasoning,
CVPR20(13447-13456)
IEEE DOI
2008
What information will be needed?
Task analysis, Visualization, Learning (artificial intelligence),
Training, History, Games
BibRef
Zhao, H.S.[Heng-Shuang],
Jia, J.Y.[Jia-Ya],
Koltun, V.[Vladlen],
Exploring Self-Attention for Image Recognition,
CVPR20(10073-10082)
IEEE DOI
2008
Convolution, Image recognition, Computational modeling,
Robustness, Tensile stress, Standards
BibRef
Luo, G.,
Zhou, Y.,
Sun, X.,
Cao, L.,
Wu, C.,
Deng, C.,
Ji, R.,
Multi-Task Collaborative Network for Joint Referring Expression
Comprehension and Segmentation,
CVPR20(10031-10040)
IEEE DOI
2008
Task analysis, Feature extraction, Frequency modulation,
Visualization, Collaborative work, Tensile stress, Linguistics
BibRef
Chen, Z.,
Wang, P.,
Ma, L.,
Wong, K.K.,
Wu, Q.,
Cops-Ref: A New Dataset and Task on Compositional Referring
Expression Comprehension,
CVPR20(10083-10092)
IEEE DOI
2008
Cognition, Visualization, Task analysis, Cats, Engines, Semantics,
Genetic expression
BibRef
Liao, Y.,
Liu, S.,
Li, G.,
Wang, F.,
Chen, Y.,
Qian, C.,
Li, B.,
A Real-Time Cross-Modality Correlation Filtering Method for Referring
Expression Comprehension,
CVPR20(10877-10886)
IEEE DOI
2008
Correlation, Feature extraction, Visualization, Proposals, Kernel,
Heating systems, Filtering
BibRef
Eum, S.,
Han, D.,
Briggs, G.,
SomethingFinder: Localizing undefined regions using referring
expressions,
MVM20(1551-1554)
IEEE DOI
2008
Visualization, Image color analysis, Task analysis,
Image resolution, Training, Complexity theory
BibRef
Yang, S.,
Li, G.,
Yu, Y.,
Graph-Structured Referring Expression Reasoning in the Wild,
CVPR20(9949-9958)
IEEE DOI
2008
Cognition, Visualization, Semantics, Linguistics, Grounding, Layout,
Image edge detection
BibRef
Wicker, M.[Matthew],
Kwiatkowska, M.[Marta],
Robustness of 3D Deep Learning in an Adversarial Setting,
CVPR19(11759-11767).
IEEE DOI
2002
Spatial arrangements.
BibRef
Sun, D.W.[Da-Wei],
Yao, A.[Anbang],
Zhou, A.[Aojun],
Zhao, H.[Hao],
Deeply-Supervised Knowledge Synergy,
CVPR19(6990-6999).
IEEE DOI
2002
BibRef
Wu, H.[Hao],
Mao, J.Y.[Jia-Yuan],
Zhang, Y.[Yufeng],
Jiang, Y.N.[Yu-Ning],
Li, L.[Lei],
Sun, W.W.[Wei-Wei],
Ma, W.Y.[Wei-Ying],
Unified Visual-Semantic Embeddings: Bridging Vision and Language With
Structured Meaning Representations,
CVPR19(6602-6611).
IEEE DOI
2002
BibRef
Bucher, M.[Maxime],
Herbin, S.[Stéphane],
Jurie, F.[Frédéric],
Semantic Bottleneck for Computer Vision Tasks,
ACCV18(II:695-712).
Springer DOI
1906
BibRef
Wang, P.[Pei],
Vasconcelos, N.M.[Nuno M.],
Towards Realistic Predictors,
ECCV18(XIII: 37-53).
Springer DOI
1810
Choose to work on the easier problems.
BibRef
Groth, O.[Oliver],
Fuchs, F.B.[Fabian B.],
Posner, I.[Ingmar],
Vedaldi, A.[Andrea],
ShapeStacks: Learning Vision-Based Physical Intuition for Generalised
Object Stacking,
ECCV18(I: 724-739).
Springer DOI
1810
BibRef
Nagarajan, T.[Tushar],
Grauman, K.[Kristen],
Attributes as Operators:
Factorizing Unseen Attribute-Object Compositions,
ECCV18(I: 172-190).
Springer DOI
1810
BibRef
Xiao, T.[Tete],
Liu, Y.C.[Ying-Cheng],
Zhou, B.[Bolei],
Jiang, Y.N.[Yu-Ning],
Sun, J.[Jian],
Unified Perceptual Parsing for Scene Understanding,
ECCV18(VI: 432-448).
Springer DOI
1810
BibRef
Zhang, J.J.[Jun-Jie],
Wu, Q.[Qi],
Shen, C.H.[Chun-Hua],
Zhang, J.[Jian],
Lu, J.F.[Jian-Feng],
van den Hengel, A.J.[Anton J.],
Goal-Oriented Visual Question Generation via Intermediate Rewards,
ECCV18(VI: 189-204).
Springer DOI
1810
BibRef
Wang, H.[Hao],
Lin, X.Y.[Xing-Yu],
Zhang, Y.M.[Yi-Meng],
Lee, T.S.[Tai Sing],
Learning Robust Object Recognition Using Composed Scenes from
Generative Models,
CRV17(232-239)
IEEE DOI
1804
convolution, feature extraction, feedforward neural nets,
image classification, image representation,
visual cortex
BibRef
Ramakrisnan, P.[Prasanna],
Jaafar, A.[Azizah],
Motivation Design Methodology for Online Knowledge Sharing Interface,
IVIC17(224-232).
Springer DOI
1711
BibRef
Ali, A.R.[Afsheen Rafaqat],
Shahid, U.[Usman],
Ali, M.[Mohsen],
Ho, J.[Jeffrey],
High-Level Concepts for Affective Understanding of Images,
WACV17(679-687)
IEEE DOI
1609
Analytical models, Feature extraction, Information technology,
Multimedia communication, Neural networks, Predictive models,
Support, vector, machines
BibRef
de Souza, F.D.M.[Fillipe D. M.],
Sarkar, S.[Sudeep],
Cámara-Chávez, G.[Guillermo],
Building semantic understanding beyond deep learning from sound and
vision,
ICPR16(2097-2102)
IEEE DOI
1705
Computational modeling, Feature extraction, Generators, Histograms,
Semantics, Support vector machines, Visualization
BibRef
Schwarz, K.[Katharina],
Berg, T.L.[Tamara L.],
Lensch, H.P.A.[Hendrik P. A.],
Auto-Illustrating Poems and Songs with Style,
ACCV16(IV: 87-103).
Springer DOI
1704
Large image dataset for selection.
BibRef
Mottaghi, R.[Roozbeh],
Hajishirzi, H.[Hannaneh],
Farhadi, A.[Ali],
A Task-Oriented Approach for Cost-Sensitive Recognition,
CVPR16(2203-2211)
IEEE DOI
1612
BibRef
Ionescu, R.T.[Radu Tudor],
Alexe, B.[Bogdan],
Leordeanu, M.[Marius],
Popescu, M.[Marius],
Papadopoulos, D.P.[Dim P.],
Ferrari, V.[Vittorio],
How Hard Can It Be?
Estimating the Difficulty of Visual Search in an Image,
CVPR16(2157-2166)
IEEE DOI
1612
Human response time data.
BibRef
Wu, Q.[Qi],
Shen, C.H.[Chun-Hua],
Liu, L.Q.[Ling-Qiao],
Dick, A.[Anthony],
van den Hengel, A.J.[Anton J.],
What Value Do Explicit High Level Concepts Have in Vision to Language
Problems?,
CVPR16(203-212)
IEEE DOI
1612
Vision to language.
BibRef
Mao, J.H.[Jun-Hua],
Huang, J.[Jonathan],
Toshev, A.[Alexander],
Camburu, O.[Oana],
Yuille, A.L.[Alan L.],
Murphy, K.[Kevin],
Generation and Comprehension of Unambiguous Object Descriptions,
CVPR16(11-20)
IEEE DOI
1612
BibRef
Lu, C.[Cewu],
Krishna, R.[Ranjay],
Bernstein, M.[Michael],
Fei-Fei, L.[Li],
Visual Relationship Detection with Language Priors,
ECCV16(I: 852-869).
Springer DOI
1611
Relationships identify objects.
BibRef
Yu, L.C.[Li-Cheng],
Poirson, P.[Patrick],
Yang, S.[Shan],
Berg, A.C.[Alexander C.],
Berg, T.L.[Tamara L.],
Modeling Context in Referring Expressions,
ECCV16(II: 69-85).
Springer DOI
1611
How to refer to objects.
BibRef
Mbock, E.A.M.[Etienne Aubin Mbe],
Image reconstruction using the reconfiguration technique,
AIPR15(1-9)
IEEE DOI
1605
feature extraction
BibRef
Klarin, K.,
Celar, S.,
Modeling information resources and application using ontological
engineering,
ICCVIA15(1-6)
IEEE DOI
1603
ontologies (artificial intelligence)
BibRef
Sun, C.[Chen],
Gan, C.[Chuang],
Nevatia, R.[Ram],
Automatic Concept Discovery from Parallel Text and Visual Corpora,
ICCV15(2596-2604)
IEEE DOI
1602
Bicycles; Detectors; Roads; Semantics; Visualization; Vocabulary
BibRef
de Lima, G.V.L.[Geovana V. L.],
Castilho, T.R.[Thullyo R.],
Bugatti, P.H.[Pedro H.],
Saito, P.T.M.[Priscila T.M.],
Lopes, F.M.[Fabrício M.],
A Complex Network-Based Approach to the Analysis and Classification of
Images,
CIARP15(322-330).
Springer DOI
1511
Knowledge from multiple areas.
BibRef
Savva, M.[Manolis],
Chang, A.X.[Angel X.],
Hanrahan, P.[Pat],
Semantically-enriched 3D models for common-sense knowledge,
Cognition15(24-31)
IEEE DOI
1510
Computational modeling.
Physical properties connect to 3D models.
BibRef
Zhu, Y.X.[Yi-Xin],
Zhao, Y.B.[Yi-Biao],
Zhu, S.C.[Song-Chun],
Understanding tools:
Task-oriented object modeling, learning and recognition,
CVPR15(2855-2864)
IEEE DOI
1510
Tools such as hammer or brush.
BibRef
Santos-Saavedra, D.,
Pardo, X.M.,
Iglesias, R.,
Canedo-Rodríguez, A.,
Álvarez-Santos, V.,
Scene Recognition Invariant to Symmetrical Reflections and Illumination
Conditions in Robotics,
IbPRIA15(130-137).
Springer DOI
1506
combination of an holistic representation and local information.
BibRef
Ioannidou, A.[Anastasia],
Chatzilari, E.[Elisavet],
Nikolopoulos, S.[Spiros],
Kompatsiaris, I.[Ioannis],
3D ResNets for 3D Object Classification,
MMMod19(I:495-506).
Springer DOI
1901
BibRef
Chantas, G.[Giannis],
Kitsikidis, A.[Alexandros],
Nikolopoulos, S.[Spiros],
Dimitropoulos, K.[Kosmas],
Douka, S.[Stella],
Kompatsiaris, I.[Ioannis],
Grammalidis, N.[Nikos],
Multi-Entity Bayesian Networks for Knowledge-Driven Analysis of ICH
Content,
CVONT14(355-369).
Springer DOI
1504
Intangible Cultural Heritage
BibRef
Kadar, I.[Ilan],
Ben-Shahar, O.[Ohad],
SceneNet: A Perceptual Ontology for Scene Understanding,
CVONT14(385-400).
Springer DOI
1504
BibRef
Tasli, H.E.[H. Emrah],
Sicre, R.[Ronan],
Gevers, T.[Theo],
Alatan, A.A.[A. Aydin],
Geometry-constrained spatial pyramid adaptation for image
classification,
ICIP14(1051-1055)
IEEE DOI
1502
Color
BibRef
Khosla, A.[Aditya],
An, B.[Byoungkwon],
Lim, J.J.[Joseph J.],
Torralba, A.B.[Antonio B.],
Looking Beyond the Visible Scene,
CVPR14(3710-3717)
IEEE DOI
1409
Analyze the environment in the urban scene, crime, what may be near, etc.
BibRef
Divvala, S.K.[Santosh K.],
Farhadi, A.[Ali],
Guestrin, C.[Carlos],
Learning Everything about Anything:
Webly-Supervised Visual Concept Learning,
CVPR14(3270-3277)
IEEE DOI
1409
BibRef
Ordonez, V.[Vicente],
Berg, T.L.[Tamara L.],
Learning High-Level Judgments of Urban Perception,
ECCV14(VI: 494-510).
Springer DOI
1408
urban perception judgments for wealth, uniqueness, and safety.
BibRef
Martinez-Enriquez, A.M.,
Escalada-Imaz, G.,
Muhammad, A.[Aslam],
Problem Solving Environment Based on Knowledge Based System Principles,
MCPR14(81-91).
Springer DOI
1407
BibRef
Chen, Z.C.[Zi-Chong],
Yang, F.[Feng],
Lindner, A.[Albrecht],
Barrenetxea, G.[Guillermo],
Vetterli, M.[Martin],
How is the weather: Automatic inference from images,
ICIP12(1853-1856).
IEEE DOI
1302
BibRef
Steinberg, D.M.[Daniel M.],
Pizarro, O.[Oscar],
Williams, S.B.[Stefan B.],
Synergistic Clustering of Image and Segment Descriptors for
Unsupervised Scene Understanding,
ICCV13(3463-3470)
IEEE DOI
1403
Scene understanding
BibRef
Saleh, B.[Babak],
Farhadi, A.[Ali],
Elgammal, A.M.[Ahmed M.],
Object-Centric Anomaly Detection by Attribute-Based Reasoning,
CVPR13(787-794)
IEEE DOI
1309
In an image, not actions.
BibRef
Juneja, M.[Mayank],
Vedaldi, A.[Andrea],
Jawahar, C.V.,
Zisserman, A.[Andrew],
Blocks That Shout: Distinctive Parts for Scene Classification,
CVPR13(923-930)
IEEE DOI
1309
Scene Classification
BibRef
Chen, J.J.[Jing-Jing],
Cao, X.C.[Xiao-Chun],
Zhang, B.[Bao],
Object clique representation for scene classification,
ICPR12(2829-2832).
WWW Link.
1302
BibRef
Fornoni, M.[Marco],
Caputo, B.[Barbara],
Scene Recognition with Naive Bayes Non-linear Learning,
ICPR14(3404-3409)
IEEE DOI
1412
BibRef
Earlier:
Indoor Scene Recognition using Task and Saliency-driven Feature Pooling,
BMVC12(98).
DOI Link
1301
Feature extraction
BibRef
Liu, Y.X.[Yi-Xian],
Hao, P.W.[Peng-Wei],
Izquierdo, E.[Ebroul],
Stage-based 3D scene reconstruction from single image,
ICPR12(1034-1037).
WWW Link.
1302
BibRef
Earlier:
Scene geometric recognition from monocular image,
3DTV12(1-4).
IEEE DOI
1212
BibRef
Jiang, Y.N.[Yu-Ning],
Yuan, J.S.[Jun-Song],
Yu, G.[Gang],
Randomized Spatial Partition for Scene Recognition,
ECCV12(II: 730-743).
Springer DOI
1210
how to use spatial info
BibRef
Ji, C.J.[Chuan-Jun],
Zhou, X.D.[Xiang-Dong],
Lin, L.[Lan],
Yang, W.D.[Wei-Dong],
Labeling Images by Integrating Sparse Multiple Distance Learning and
Semantic Context Modeling,
ECCV12(IV: 688-701).
Springer DOI
1210
BibRef
Kwitt, R.[Roland],
Vasconcelos, N.M.[Nuno M.],
Rasiwasia, N.[Nikhil],
Scene Recognition on the Semantic Manifold,
ECCV12(IV: 359-372).
Springer DOI
1210
Scene category.
BibRef
Redi, M.[Miriam],
Merialdo, B.[Bernard],
Enhancing Semantic Features with Compositional Analysis for Scene
Recognition,
Concept12(III: 446-455).
Springer DOI
1210
BibRef
Parizi, S.N.[Sobhan Naderi],
Oberlin, J.G.[John G.],
Felzenszwalb, P.F.[Pedro F.],
Reconfigurable models for scene recognition,
CVPR12(2775-2782).
IEEE DOI
1208
BibRef
Yu, X.D.[Xiao-Dong],
Fermuller, C.[Cornelia],
Teo, C.L.[Ching Lik],
Yang, Y.Z.[Ye-Zhou],
Aloimonos, Y.[Yiannis],
Active scene recognition with vision and language,
ICCV11(810-817).
IEEE DOI
1201
Use high-level knowledge for recognition.
BibRef
Möller, B.[Birgit],
Greß, O.[Oliver],
Posch, S.[Stefan],
Knowing What Happened:
Automatic Documentation of Image Analysis Processes,
CVS11(1-10).
Springer DOI
1109
BibRef
Sherrah, J.[Jamie],
Learning to Adapt:
A Method for Automatic Tuning of Algorithm Parameters,
ACIVS10(I: 414-425).
Springer DOI
1012
BibRef
Kulikowski, J.L.[Juliusz L.],
Ontological Models as Tools for Image Content Understanding,
ICCVG10(I: 43-58).
Springer DOI
1009
BibRef
Wang, G.[Gang],
Gallagher, A.C.[Andrew C.],
Luo, J.B.[Jie-Bo],
Forsyth, D.A.[David A.],
Seeing People in Social Context:
Recognizing People and Social Relationships,
ECCV10(V: 169-182).
Springer DOI
1009
Familial social relationships to recognize people, and to
recognize such relationships from image.
BibRef
Satkin, S.[Scott],
Hebert, M.[Martial],
3DNN: Viewpoint Invariant 3D Geometry Matching for Scene
Understanding,
ICCV13(1873-1880)
IEEE DOI
1403
3D Data
BibRef
Satkin, S.[Scott],
Lin, J.[Jason],
Hebert, M.[Martial],
Data-Driven Scene Understanding from 3D Models,
BMVC12(128).
DOI Link
1301
BibRef
Gupta, A.[Abhinav],
Satkin, S.[Scott],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
From 3D scene geometry to human workspace,
CVPR11(1961-1968).
IEEE DOI
1106
BibRef
Gupta, A.[Abhinav],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Blocks World Revisited:
Image Understanding Using Qualitative Geometry and Mechanics,
ECCV10(IV: 482-496).
Springer DOI
WWW Link.
1009
Award, ECCV, HM. Reason about the scene in 3D, objects have volume and 3d relationships.
BibRef
Gao, T.S.[Tian-Shi],
Koller, D.[Daphne],
Discriminative learning of relaxed hierarchy for large-scale visual
recognition,
ICCV11(2072-2079).
IEEE DOI
1201
Really need thousands of categories for real world. Multiclass classifier,
hierarchical.
BibRef
Wang, H.Y.[Hua-Yan],
Gould, S.[Stephen],
Koller, D.[Daphne],
Discriminative Learning with Latent Variables for Cluttered Indoor
Scene Understanding,
CACM(56), No. 4, April 2013, pp. 92-99.
DOI Link
1304
BibRef
Earlier:
ECCV10(II: 435-449).
Springer DOI
1009
BibRef
And:
ECCV10(IV: 497-510).
Springer DOI
1009
We address the problem of understanding an indoor scene from a single
image in terms of recovering the room geometry (floor, ceiling, and
walls) and furniture layout.
Explain the scene by the object face and the clutter (i.e. what is
on top of the desk)
BibRef
Liu, B.Y.[Be-Yang],
Gould, S.[Stephen],
Koller, D.[Daphne],
Single image depth estimation from predicted semantic labels,
CVPR10(1253-1260).
IEEE DOI
1006
First a semantic interpretation, then assign depths.
See also Alphabet SOUP: A framework for approximate energy minimization.
BibRef
Huang, Y.Z.[Yong-Zhen],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Tao, D.C.[Da-Cheng],
A Novel Visual Organization Based on Topological Perception,
ACCV09(I: 180-189).
Springer DOI
0909
Topological perceptual organization form Chen is a top down recognition
process.
BibRef
Zhou, B.[Bolei],
Zhang, L.Q.[Li-Qing],
Scene Gist: A Holistic Generative Model of Natural Image,
ACCV09(II: 395-404).
Springer DOI
0909
BibRef
Yang, X.[Xiong],
Wu, T.F.[Tian-Fu],
Zhu, S.C.[Song-Chun],
Evaluating information contributions of bottom-up and top-down
processes,
ICCV09(1042-1049).
IEEE DOI
0909
Evaluate contribution of B-U or T-D processes.
BibRef
Al-Absi, H.R.H.[Hamada R. H.],
Abdullah, A.B.[Azween B.],
A Proposed Biologically Inspired Model for Object Recognition,
IVIC09(213-222).
Springer DOI
0911
Integration of the feed-forward and feedback functions in the visual cortex.
BibRef
Misra, A.,
Sowmya, A.,
Compton, P.,
Impact of quasi-expertise on knowledge acquisition in computer vision,
IVCNZ09(334-339).
IEEE DOI
0911
BibRef
Baur, R.[Rafael],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Statistics of 3D object locations in images,
CMU-RI-TR-08-43, October, 2008.
WWW Link.
BibRef
0810
Wojek, C.[Christian],
Schiele, B.[Bernt],
A Dynamic Conditional Random Field Model for Joint Labeling of Object
and Scene Classes,
ECCV08(IV: 733-747).
Springer DOI
0810
BibRef
Chang, S.K.[Shi Kuo],
Virtual Spaces: From the Past to the Future,
Visual08(xx-yy).
Springer DOI
0809
How to look at space.
BibRef
Levine, G.[Geoffrey],
DeJong, G.[Gerald],
Object Detection by Estimating and Combining High-Level Features,
CIAP09(161-169).
Springer DOI
0909
BibRef
Earlier:
Explanation-Based Object Recognition,
WACV08(1-8).
IEEE DOI
0801
BibRef
Mundy, J.L.[Joseph L.],
Object Recognition in the Geometric Era: A Retrospective,
CLOR06(3-28).
Springer DOI
0711
BibRef
Kumar, S.,
Ramos, F.,
Douillard, B.,
Ridley, M.,
Durrant-Whyte, H.F.,
A Novel Visual Perception Framework,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Sako, H.[Hiroshi],
Recognition Strategies in Machine Vision Applications,
IMVIP07(3-3).
IEEE DOI
0709
BibRef
Tsotsos, J.K.[John K.],
Rodriguez-Sanchez, A.J.[Antonio Jose],
Rothenstein, A.L.[Albert L.],
Simine, E.[Eugene],
Different Binding Strategies for the Different Stages of Visual
Recognition,
BVAI07(150-160).
Springer DOI
0710
BibRef
Dhua, A.S.[Arnab S.],
Cutzu, F.[Florin],
Hierarchical, Generic to Specific Multi-class Object Recognition,
ICPR06(I: 783-788).
IEEE DOI
0609
Generic and specific class recognition.
BibRef
Zehnder, P.[Philipp],
Koller-Meier, E.[Esther],
Van Gool, L.J.[Luc J.],
An Efficient Shared Multi-Class Detection Cascade,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Earlier:
Efficient, Simultaneous Detection of Multiple Object Classes,
ICPR06(I: 797-802).
IEEE DOI
0609
Decision (ternary) approach for multiple object classes.
BibRef
Kittler, J.V.,
Christmas, W.J.,
Kostin, A.,
Yan, F.,
Kolonias, I.,
Windridge, D.,
A Memory Architecture and Contextual Reasoning Framework for Cognitive
Vision,
SCIA05(343-358).
Springer DOI
0506
BibRef
Nagel, H.H.,
Cognitive Vision Systems: From Ideas to Specifications,
CogVis03(57-69).
Springer DOI
0310
BibRef
Nagel, H.H.,
On Sampling the Spectrum of Approaches Toward Cognitive Vision Systems,
CogVis03(315-319).
Springer DOI
0310
BibRef
van Kaick, O.M.,
Mori, G.,
Automatic Classification of Outdoor Images by Region Matching,
CRV06(9-9).
IEEE DOI
0607
Use segmented regions.
BibRef
Delage, E.,
Lee, H.L.[Hong-Lak],
Ng, A.Y,
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from
a Single Indoor Image,
CVPR06(II: 2418-2428).
WWW Link. Maybe also:
IEEE DOI
0606
Knowledge allows us to resolve ambiguities in 3D.
BibRef
Georis, B.[Benoit],
Maziere, M.[Magale],
Bromond, F.[Francois],
Evaluation and Knowledge Representation Formalisms to Improve Video
Understanding,
CVS06(27).
IEEE DOI
0602
BibRef
Nelson, R.C.[Randal C.],
Generating Verbal Descriptions of Colored Objects:
Towards Grounding Language in Perception,
WACV05(I: 46-53).
IEEE DOI
0502
BibRef
Li, M.H.[Mu-Hua],
Clark, J.J.,
Selective Attention in the Learning of Invariant Representation of
Objects,
AttenPerf05(III: 93-93).
IEEE DOI
0507
BibRef
Ehtiati, T.,
Clark, J.J.,
A strongly coupled architecture for contextual object and scene
identification,
ICPR04(III: 69-72).
IEEE DOI
0409
BibRef
He, X.M.[Xu-Ming],
Zemel, R.S.[Richard S.],
Latent topic random fields: Learning using a taxonomy of labels,
CVPR08(1-8).
IEEE DOI
0806
BibRef
He, X.M.[Xu-Ming],
Zemel, R.S.,
Carreira-Perpinan, M.A.,
Multiscale conditional random fields for image labeling,
CVPR04(II: 695-702).
IEEE DOI
0408
Context for assigning labels.
BibRef
Wunstel, M.,
Moratz, R.,
Automatic object recognition within an office environment,
CRV04(104-109).
IEEE DOI
0408
BibRef
Neumann, B.[Bernd],
Weiss, T.[Thomas],
Navigating through Logic-Based Scene Models for High-Level Scene
Interpretations,
CVS03(212 ff).
Springer DOI
0306
BibRef
Boukraa, M.,
Ando, S.,
Tag-based vision: assisting 3D scene analysis with radio-frequency tags,
ICIP02(I: 269-272).
IEEE DOI
0210
BibRef
Sadr, J.[Javid],
Sinha, P.[Pawan],
Exploring Object Perception with Random Image Structure Evolution,
MIT AI Memo-2001-006, March 2001.
WWW Link.
0105
BibRef
Büker, U.,
Cooperative Agents for Object Recognition,
ICPR00(Vol IV: 157-160).
IEEE DOI
0009
High level recognition.
BibRef
Weber, M.,
Welling, M.,
Perona, P.,
Unsupervised Learning of Models for Recognition,
ECCV00(I: 18-32).
Springer DOI
0003
Award, Koenderink Prize.
BibRef
Weber, M.,
Welling, M.,
Perona, P.,
Towards Automatic Discovery of Object Categories,
CVPR00(II: 101-108).
IEEE DOI
0005
BibRef
Vu, A.S.,
A computer vision system for automatic knowledge-based configuration of
the image processing and hierarchical object recognition,
CIAP99(636-641).
IEEE DOI
9909
BibRef
MacGregor, R.M.[Robert M.], and
Russ, T.A.[Thomas A.], and
Price, K.E.[Keith E.],
Knowledge Representation for Computer Vision: The VEIL Project,
ARPA94(II:919-927).
BibRef
9400
USC Computer Vision
BibRef
Russ, T.A.,
MacGregor, R.M.,
Salemi, B.,
Price, K.E.,
Nevatia, R.,
VEIL: Combining Semantic Knowledge with Image Understanding,
Radius97(409-418).
BibRef
9700
USC Computer Vision
BibRef
And:
ARPA96(373-380).
BibRef
Matas, J.G.[Jiri G.],
Young, R.,
Kittler, J.V.[Josef V.],
Hypothesis Selection for Scene Interpretation Using
Grammatical Models of Scene Evolution,
ICPR98(Vol II: 1718-1720).
IEEE DOI
9808
BibRef
Oshitani, T.[Tohru],
Watanabe, T.[Toyohide],
Parallel Map Recognition Based on
Multilayer Partitioned Blackboard Model,
ICPR98(Vol II: 1604-1606).
IEEE DOI
9808
BibRef
Li, D.,
Munck-Fairwood, R.C.,
A Formal Definition and Framework for Generic Object Recognition,
SCIA93(81-88).
BibRef
9300
Burger, W.,
Burge, M.,
Mayr, W.,
Learning to recognize generic visual categories using a hybrid
structural approach,
ICIP96(II: 321-324).
IEEE DOI
9610
BibRef
Lai, G.C.,
de Figueiredo, R.J.P.,
Image interpretation using contextual feedback,
ICIP95(II: 623-626).
IEEE DOI
9510
BibRef
Shvaytser, H.,
Towards A Computational Theory Of Model Based Vision And Perception,
ICCV90(283-286).
IEEE DOI
BibRef
9000
Smyrniotis, C.[Chuck], and
Dutta, K.[Kalyan],
A Knowledge-Based System for Recognizing Man-Made Objects in
Aerial Images,
CVPR88(111-117).
IEEE DOI
Recognize Aerial Images. Preliminary report on Knowledge-Based system to deal with airports.
BibRef
8800
Hutchinson, S.A.,
Cromwell, R.L., and
Kak, A.C.,
Applying Uncertainty Reasoning to Model Based Object Recognition,
CVPR89(541-548).
IEEE DOI System level design.
BibRef
8900
Cromwell, R.L., and
Kak, A.C.,
Automatic Generation of Object Class Descriptions
Using Symbolic Learning Techniques,
AAAI-91(710-717).
BibRef
9100
Numao, M.,
Ishizuka, M.,
A Frame-Like Knowledge Representation System for Computer Vision,
ICPR84(1128-1130).
BibRef
8400
Shirai, Y.,
Recent Advance in 3-D Scene Analysis,
ICPR78(86-94).
Line labeling, structured light, generalized cones, etc.
BibRef
7800
Ballard, D.H.[Dana H.],
Brown, C.M., and
Feldman, J.A.,
An Approach to Knowledge-Directed Scene Analysis,
CVS78(271-281).
BibRef
7800
Earlier:
IJCAI77(664-670).
Hallucinate a rib.
BibRef
Bajcsy, R.,
Joshi, A.K.,
A Partially Ordered World Model and Natural Outdoor Scenes,
CVS78(263-270).
BibRef
7800
Levine, M.D.,
A Knowledge-Based Computer Vision System,
CVS78(335-352).
BibRef
7800
Segen, J.[Jakub],
Model Learning and Recognition of Nonrigid Objects,
CVPR89(597-602).
IEEE DOI
BibRef
8900
Earlier:
Learning Structural Descriptions of Shape,
MVAAS88(XX-YY).
BibRef
And:
CVPR85(96-99).
(AT&T Bell Labs) Learning. Classify and label the parts of
non-rigid objects with some occlusions.
BibRef
Segen, J.[Jakub],
Learning Shape Models for a Vision Based Human-Computer Interface,
AAAI-MLCV93(xx).
A.T.T. Bell Laboratories.
BibRef
9300
Bronskill, J.F.,
Hepburn, J.S.A., and
Au, W.K.,
A Knowledge-Based Approach to the Detection, Tracking and
Classification of Target Formations in Infrared Image Sequences,
CVPR89(153-158).
IEEE DOI Find point targets and group into clusters to identify.
BibRef
8900
Liedtke, C.E.,
Blomer, A.,
Architecture of the Knowledge Based Configuration System for
Image Analysis 'Conny',
ICPR92(I:375-378).
IEEE DOI
BibRef
9200
van der Putten, F.,
Zerubia, J.B.,
A Universal Knowledge-Based Imaging System for Hazardous Environments,
ICPR92(I:211-214).
IEEE DOI
BibRef
9200
Boyer, K.L.,
Safranek, R.J.,
Kak, A.C.,
A Knowledge Based Robotic Vision System,
CAIA84(45-50).
BibRef
8400
Matsuyama, T.,
Knowledge Organization and Control Structure in Image Understanding,
ICPR84(1118-1127).
BibRef
8400
Tanimoto, S.L.,
Paradigms for Control of Vision Using Inference in Networks,
CVWS82(3-13).
BibRef
8200
Ogawa, H.,
Kurioka, S.,
Kitahashi, T.,
Tanaka, K.,
An Application of Knowledge Base for Image Analysis,
ICPR80(340-342).
BibRef
8000
Dunlavey, M.R.,
An Hypothesis-Driven Vision System,
IJCAI75(616-619).
BibRef
7500
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Knowledge-Based Vision, Surveys, Overviews .