Sutton, R.N.,
Hall, E.L.,
Texture Measures for Automatic Classification of Pulmonary Disease,
TC(21), No. 7, July 1972, pp. 667-676.
BibRef
7207
Chien, Y.P.,
Fu, K.S.,
Recognition of X-Ray Picture Patterns,
SMC(4), 1974, pp. 145-156.
BibRef
7400
Pahlplatz, M.M.M.,
Katzko, M.W.,
Hesselmans, G.H.F.M.,
Oud, P.S.,
Vooys, G.P.,
Two Methods for Analyzing Pleural Smears for the Presence
of Abnormalities,
PRL(4), 1986, pp. 405-411.
BibRef
8600
Pan, T.S.[Tin Su],
King, M.A.,
de Vries, D.J.,
Ljungberg, M.,
Correction to 'Segmentation of the Body and Lungs from Compton Scatter
and Photopeak Window Data,
MedImg(15), No. 3, June 1996, pp. 394.
IEEE Top Reference.
0203
BibRef
Hu, S.,
Hoffman, E.A.,
Reinhardt, J.M.,
Automatic lung segmentation for accurate quantitation of volumetric
X-ray CT images,
MedImg(20), No. 6, June 2001, pp. 490-498.
IEEE Top Reference.
0110
BibRef
Zhang, L.,
Hoffman, E.A.,
Reinhardt, J.M.,
Atlas-Driven Lung Lobe Segmentation in Volumetric X-Ray CT Images,
MedImg(25), No. 1, January 2006, pp. 1-16.
IEEE DOI
0601
BibRef
Ukil, S.,
Reinhardt, J.M.,
Anatomy-Guided Lung Lobe Segmentation in X-Ray CT Images,
MedImg(28), No. 2, February 2009, pp. 202-214.
IEEE DOI
0902
BibRef
Cao, K.[Kunlin],
Ding, K.[Kai],
Christensen, G.E.[Gary E.],
Raghavan, M.L.[Madhavan L.],
Amelon, R.E.[Ryan E.],
Reinhardt, J.M.[Joseph M.],
Unifying Vascular Information in Intensity-Based Nonrigid Lung CT
Registration,
WBIR10(1-12).
Springer DOI
1007
BibRef
Blechschmidt, R.A.,
Werthschutzky, R.,
Lorcher, U.,
Automated CT image evaluation of the lung: a morphology-based concept,
MedImg(20), No. 5, May 2001, pp. 434-442.
IEEE Top Reference.
0110
BibRef
Fan, L.X.[Lie-Xiang],
Santago, P.,
Jiang, H.[Huai],
Herrington, D.M.,
Ultrasound measurement of brachial flow-mediated vasodilator response,
MedImg(19), No. 6, June 2000, pp. 621-631.
IEEE Top Reference.
0110
BibRef
Frerichs, I.,
Hinz, J.,
Herrmann, P.,
Weisser, G.,
Hahn, G.,
Quintel, M.,
Hellige, G.,
Regional lung perfusion as determined by electrical impedance
tomography in comparison with electron beam ct imaging,
MedImg(21), No. 6, June 2002, pp. 646-652.
IEEE Top Reference.
0208
BibRef
Lee, Z.H.[Zheng-Hong],
Berridge, M.S.,
PET imaging-based evaluation of aerosol drugs and their delivery
devices: nasal and pulmonary studies,
MedImg(21), No. 10, October 2002, pp. 1324-1331.
IEEE Top Reference.
0301
BibRef
Sonka, M.,
Liang, W.D.[Wei-Dong],
Lauer, R.M.,
Automated analysis of brachial ultrasound image sequences: early
detection of cardiovascular disease via surrogates of endothelial function,
MedImg(21), No. 10, October 2002, pp. 1271-1279.
IEEE Top Reference.
0301
BibRef
Koning, G.,
Tuinenburg, J.C.,
Hekking, E.,
Peelen, J.,
van Weert, A.W.M.,
Bergkamp, D.,
Goedhart, B.,
Reiber, J.H.C.,
A novel measurement technique to assess the effects of coronary
brachytherapy in clinical trials,
MedImg(21), No. 10, October 2002, pp. 1254-1263.
IEEE Top Reference.
0301
BibRef
Masutani, Y.,
MacMahon, H.,
Doi, K.[Kunio],
Computerized detection of pulmonary embolism in spiral CT angiography
based on volumetric image analysis,
MedImg(21), No. 12, December 2002, pp. 1517-1523.
IEEE Top Reference.
0301
BibRef
Ray, N.,
Acton, S.T.,
Altes, T.,
de Lange, E.E.,
Brookeman, J.R.,
Merging parametric active contours within homogeneous image regions for
MRI-based lung segmentation,
MedImg(22), No. 2, February 2003, pp. 189-199.
IEEE Top Reference.
0304
BibRef
Ray, N.,
Acton, S.T.,
Altes, T.,
de Lange, E.E.,
MRI Ventilation Analysis by Merging Parametric Active Contours,
ICIP01(II: 861-864).
IEEE DOI
0108
BibRef
Behrens, T.,
Rohr, K.[Karl],
Stiehl, H.S.[H. Siegfried],
Robust segmentation of tubular structures in 3-D medical images by
parametric object detection and tracking,
SMC-B(33), No. 4, August 2003, pp. 554-561.
IEEE Abstract.
0308
BibRef
Earlier:
Using an Extended Hough Transform Combined with a Kalman Filter to
Segment Tubular Structures in 3-D Medical Images,
VMV01(xx-yy).
PDF File.
0209
BibRef
Jiang, M.[Ming],
Ji, Q.A.[Qi-Ang],
McEwen, B.F.[Bruce F.],
Automated Extraction of Fine Features of Kinetochore Microtubules and
Plus-Ends From Electron Tomography Volume,
IP(15), No. 7, July 2006, pp. 2035-2048.
IEEE DOI
0606
BibRef
Earlier:
Automated Extraction of Microtubules and Their Plus-Ends,
WACV05(I: 336-341).
IEEE DOI
0502
BibRef
Liang, L.C.[Li-Chen],
Ji, Q.A.[Qi-Ang],
McEwen, B.F.,
Extraction of 3d microtubules axes from cellular electron tomography
images,
ICPR02(I: 804-807).
IEEE DOI
0211
BibRef
Luo, H.,
Luo, J.,
Robust Online Orientation Correction for Radiographs in PACS
Environments,
MedImg(25), No. 10, October 2006, pp. 1370-1379.
IEEE DOI
0609
BibRef
Singh, V.[Vikas],
Mukherjee, L.[Lopamudra],
Xu, J.H.[Jin-Hui],
Hoffmann, K.R.,
Dinu, P.M.,
Podgorsak, M.,
Brachytherapy Seed Localization Using Geometric and Linear Programming
Techniques,
MedImg(26), No. 9, September 2007, pp. 1291-1304.
IEEE DOI
0710
BibRef
Mukherjee, L.[Lopamudra],
Singh, V.[Vikas],
Peng, J.M.[Ji-Ming],
Xu, J.H.[Jin-Hui],
Zeitz, M.J.[Michael J.],
Berezney, R.[Ronald],
Generalized Median Graphs: Theory and Applications,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Miller, G.W.,
Carl, M.,
Mata, J.F.,
Cates, Jr., G.D.,
Mugler, III, J.P.,
Simulations of Short-Time Diffusivity in Lung Airspaces and
Implications for S/V Measurements Using Hyperpolarized-Gas MRI,
MedImg(26), No. 11, November 2007, pp. 1456-1463.
IEEE DOI
0709
BibRef
Lohscheller, J.,
Eysholdt, U.,
Toy, H.,
Dollinger, M.,
Phonovibrography: Mapping High-Speed Movies of Vocal Fold Vibrations
Into 2-D Diagrams for Visualizing and Analyzing the Underlying
Laryngeal Dynamics,
MedImg(27), No. 3, March 2008, pp. 300-309.
IEEE DOI
0803
BibRef
Luegmair, G.,
Mehta, D.D.,
Kobler, J.B.,
Dollinger, M.,
Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics
Using High-Speed Video With a Laser Projection System,
MedImg(34), No. 12, December 2015, pp. 2572-2582.
IEEE DOI
1601
biomechanics
BibRef
Luegmair, G.,
Kniesburges, S.,
Zimmermann, M.,
Sutor, A.,
Eysholdt, U.,
Dollinger, M.,
Optical Reconstruction of High-Speed Surface Dynamics in an
Uncontrollable Environment,
MedImg(29), No. 12, December 2010, pp. 1979-1991.
IEEE DOI
1101
BibRef
Smal, I.,
Draegestein, K.,
Galjart, N.,
Niessen, W.J.,
Meijering, E.H.W.,
Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence
Microscopy Images: Application to Microtubule Growth Analysis,
MedImg(27), No. 6, June 2008, pp. 789-804.
IEEE DOI
0711
BibRef
Malik, A.S.[Aamir Saeed],
Choi, T.S.[Tae-Sun],
Differentiating Honeycombed Images from Normal HRCT Lung Images,
IEICE(E92-D), No. 5, May 2009, pp. 1218-1221.
WWW Link.
0907
BibRef
Earlier:
Multiscale Segmentation of HRCT Images Using Bipolar Incoherent
Filtering,
ISVC05(76-83).
Springer DOI
0512
BibRef
Bouma, H.,
Sonnemans, J.J.,
Vilanova, A.,
Gerritsen, F.A.,
Automatic Detection of Pulmonary Embolism in CTA Images,
MedImg(28), No. 8, August 2009, pp. 1223-1230.
IEEE DOI
0909
BibRef
Elizabeth, D.S.[D. Shiloah],
Kannan, A.,
Nehemiah, H.K.[H. Khanna],
Computer-aided diagnosis system for the detection of bronchiectasis in
chest computed tomography images,
IJIST(19), No. 4, December 2009, pp. 290-298.
DOI Link
0912
BibRef
Elizabeth, D.S.,
Nehemiah, H.K.,
Retmin Raj, C.S.,
Kannan, A.,
Computer-aided diagnosis of lung cancer based on analysis of the
significant slice of chest computed tomography image,
IET-IPR(6), No. 6, 2012, pp. 697-705.
DOI Link
1210
BibRef
Huysmans, T.[Toon],
Sijbers, J.[Jan],
Brigitte, V.[Verdonk],
Automatic Construction of Correspondences for Tubular Surfaces,
PAMI(32), No. 4, April 2010, pp. 636-651.
IEEE DOI
1003
Obtain correspondences for tubular shapes. MDL used to
optimize parameterization.
BibRef
Pinho, R.[Romulo],
Sijbers, J.[Jan],
Huysmans, T.[Toon],
Segmentation of the Human Trachea Using Deformable Statistical Models
of Tubular Shapes,
ACIVS07(531-542).
Springer DOI
0708
BibRef
van Rikxoort, E.M.,
Prokop, M.,
de Hoop, B.,
Viergever, M.A.,
Pluim, J.P.W.,
van Ginneken, B.,
Automatic Segmentation of Pulmonary Lobes Robust Against Incomplete
Fissures,
MedImg(29), No. 6, June 2010, pp. 1286-1296.
IEEE DOI
1007
BibRef
Lassen, B.,
van Rikxoort, E.M.,
Schmidt, M.,
Kerkstra, S.,
van Ginneken, B.,
Kuhnigk, J.M.,
Automatic Segmentation of the Pulmonary Lobes From Chest CT Scans Based
on Fissures, Vessels, and Bronchi,
MedImg(32), No. 2, February 2013, pp. 210-222.
IEEE DOI
1301
BibRef
Dawoud, A.[Amer],
Lung segmentation in chest radiographs by fusing shape information in
iterative thresholding,
IET-CV(5), No. 3, 2011, pp. 185-190.
DOI Link
1106
BibRef
Earlier:
Fusing Shape Information in Lung Segmentation in Chest Radiographs,
ICIAR10(II: 70-78).
Springer DOI
1006
BibRef
Feulner, J.,
Zhou, S.K.,
Hammon, M.,
Seifert, S.,
Huber, M.,
Comaniciu, D.,
Hornegger, J.,
Cavallaro, A.,
A Probabilistic Model for Automatic Segmentation of the Esophagus in
3-D CT Scans,
MedImg(30), No. 6, June 2011, pp. 1252-1264.
IEEE DOI
1101
BibRef
Yang, Q.[Qian],
Karpikov, A.[Alexander],
Toomre, D.[Derek],
Duncan, J.S.[James S.],
3-D Reconstruction of Microtubules From Multi-Angle Total Internal
Reflection Fluorescence Microscopy Using Bayesian Framework,
IP(20), No. 8, August 2011, pp. 2248-2259.
IEEE DOI
1108
BibRef
Earlier:
3-D reconstruction and measurement of microtubules from multiple
angle-total internal reflection fluorescence microscopy,
MMBIA09(172-177).
IEEE DOI
0906
BibRef
Massoptier, L.[Laurent],
Misra, A.[Avishkar],
Sowmya, A.[Arcot],
Casciaro, S.[Sergio],
Combining Graph-cut Technique And Anatomical Knowledge For Automatic
Segmentation Of Lungs Affected By Diffuse Parenchymal Disease In Hrct
Images,
IJIG(11), No. 4, October 2011, pp. 509-529.
DOI Link
1201
BibRef
Sorensen, L.,
Nielsen, M.,
Lo, P.[Pechin],
Ashraf, H.,
Pedersen, J.H.,
de Bruijne, M.,
Texture-Based Analysis of COPD: A Data-Driven Approach,
MedImg(31), No. 1, January 2012, pp. 70-78.
IEEE DOI
1201
BibRef
Sun, S.,
Bauer, C.,
Beichel, R.,
Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a
Novel Robust Active Shape Model Approach,
MedImg(31), No. 2, February 2012, pp. 449-460.
IEEE DOI
1202
BibRef
Zhang, Y.[Yu],
Wu, G.R.[Guo-Rong],
Yap, P.T.[Pew-Thian],
Feng, Q.J.[Qian-Jin],
Lian, J.[Jun],
Chen, W.F.[Wu-Fan],
Shen, D.G.[Ding-Gang],
Hierarchical Patch-Based Sparse Representation:
A New Approach for Resolution Enhancement of 4D-CT Lung Data,
MedImg(31), No. 11, November 2012, pp. 1993-2005.
IEEE DOI
1211
BibRef
Earlier:
Reconstruction of super-resolution lung 4D-CT using patch-based sparse
representation,
CVPR12(925-931).
IEEE DOI
1208
BibRef
Shao, Y.Q.[Ye-Qin],
Gao, Y.Z.[Yao-Zong],
Guo, Y.R.[Yan-Rong],
Shi, Y.H.[Yong-Hong],
Yang, X.[Xin],
Shen, D.G.[Ding-Gang],
Hierarchical Lung Field Segmentation With Joint Shape and Appearance
Sparse Learning,
MedImg(33), No. 9, September 2014, pp. 1761-1780.
IEEE DOI
1410
diagnostic radiography
BibRef
Gu, Y.H.[Yu-Hua],
Kumar, V.[Virendra],
Hall, L.O.[Lawrence O.],
Goldgof, D.B.[Dmitry B.],
Li, C.Y.[Ching-Yen],
Korn, R.[René],
Bendtsen, C.[Claus],
Velazquez, E.R.[Emmanuel Rios],
Dekker, A.[Andre],
Aerts, H.[Hugo],
Lambin, P.[Philippe],
Li, X.L.[Xiu-Li],
Tian, J.[Jie],
Gatenby, R.A.[Robert A.],
Gillies, R.J.[Robert J.],
Automated delineation of lung tumors from CT images using a single
click ensemble segmentation approach,
PR(46), No. 3, March 2013, pp. 692-702.
Elsevier DOI
1212
Image features; Delineation; Lung tumor; Lesion; CT; Region growing;
Ensemble segmentation
BibRef
Martins, A.L.D.[Ana L. D.],
Mascarenhas, N.D.A.[Nelson D.A.],
Spatio-Temporal Resolution Enhancement of Vocal Tract MRI Sequences:
A Comparison Among Wiener Filter Based Methods,
JMIV(45), No. 3, March 2013, pp. 200-213.
WWW Link.
1301
BibRef
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Zhou, Y.,
Feng, D.D.[David Dagan],
Feature-Based Image Patch Approximation for Lung Tissue Classification,
MedImg(32), No. 4, April 2013, pp. 797-808.
IEEE DOI
1304
BibRef
Zhang, F.[Fan],
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Zhou, Y.[Yun],
Shan, S.M.[Shi-Min],
Feng, D.D.[D. Dagan],
Context Curves for Classification of Lung Nodule Images,
DICTA13(1-7)
IEEE DOI
1402
computerised tomography
BibRef
Song, Y.[Yang],
Li, Q.[Qing],
Huang, H.[Heng],
Feng, D.D.[David Dagan],
Chen, M.[Mei],
Cai, W.D.[Wei-Dong],
Low Dimensional Representation of Fisher Vectors for Microscopy Image
Classification,
MedImg(36), No. 8, August 2017, pp. 1636-1649.
IEEE DOI
1708
BibRef
Earlier:
Histopathology Image Categorization with Discriminative Dimension
Reduction of Fisher Vectors,
BioImage16(I: 306-317).
Springer DOI
1611
Biomarkers, Biomedical imaging, Breast cancer, Feature extraction,
Microscopy, Fisher vector, dimensionality reduction,
discriminative learning, feature, learning
BibRef
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Eberl, S.[Stefan],
Fulham, M.J.[Michael J.],
Feng, D.D.[David Dagan],
Structure-Adaptive Feature Extraction and Representation for
Multi-modality Lung Images Retrieval,
DICTA10(152-157).
IEEE DOI
1012
BibRef
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Feng, D.D.,
Microscopic Image Segmentation with Two-Level Enhancement of Feature
Discriminability,
DICTA12(1-6).
IEEE DOI
1303
BibRef
Xu, R.[Rui],
Hirano, Y.S.[Yasu-Shi],
Tachibana, R.[Rie],
Kido, S.[Shoji],
A Bag-of-Features Approach to Classify Six Types of Pulmonary Textures
on High-Resolution Computed Tomography,
IEICE(E96-D), No. 4, April 2013, pp. 845-855.
WWW Link.
1304
BibRef
Heinrich, M.P.[Mattias P.],
Jenkinson, M.[Mark],
Brady, M.[Michael],
Schnabel, J.A.[Julia A.],
MRF-Based Deformable Registration and Ventilation Estimation of Lung
CT,
MedImg(32), No. 7, 2013, pp. 1239-1248.
IEEE DOI
1307
Markov processes
BibRef
Heinrich, M.P.[Mattias P.],
Papiez, B.W.[Bartlomiej W.],
Schnabel, J.A.[Julia A.],
Handels, H.[Heinz],
Non-parametric Discrete Registration with Convex Optimisation,
WBIR14(51-61).
Springer DOI
1407
BibRef
Degen, J.,
Heinrich, M.P.[Mattias P.],
Multi-Atlas Based Pseudo-CT Synthesis Using Multimodal Image
Registration and Local Atlas Fusion Strategies,
WBIR16(600-608)
IEEE DOI
1612
BibRef
Heinrich, M.P.[Mattias P.],
Jenkinson, M.[Mark],
Gleeson, F.V.[Fergus V.],
Brady, S.M.[Sir Michael],
Schnabel, J.A.[Julia A.],
Deformable multimodal registration with gradient orientation based on
structure tensors,
BMVA(2011), No. 2, 2011, pp. 1-11.
PDF File.
1209
BibRef
Cahill, N.D.[Nathan D.],
Schnabel, J.A.[Julia A.],
Noble, J.A.[J. Alison],
Hawkes, D.J.[David J.],
Revisiting overlap invariance in medical image alignment,
Tensor08(1-8).
IEEE DOI
0806
BibRef
Edwards, P.J.,
Hill, D.L.G.,
Little, J.A.,
Sahni, V.A.S.,
Hawkes, D.J.,
Medical Image Registration Incorporating Deformations,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Wang, C.W.[Ching-Wei],
Yu, C.P.[Cheng-Ping],
Automated morphological classification of lung cancer subtypes using
H&E tissue images,
MVA(24), No. 7, October 2013, pp. 1383-1391.
WWW Link.
1309
BibRef
Candemir, S.,
Jaeger, S.,
Palaniappan, K.,
Musco, J.P.,
Singh, R.K.,
Xue, Z.Y.[Zhi-Yun],
Karargyris, A.,
Antani, S.,
Thoma, G.,
McDonald, C.J.,
Lung Segmentation in Chest Radiographs Using Anatomical Atlases With
Nonrigid Registration,
MedImg(33), No. 2, February 2014, pp. 577-590.
IEEE DOI
1403
Radon transforms
BibRef
Devan, L.[Lakshmi],
Santosham, R.[Roy],
Hariharan, R.[Ranganathan],
Automated texture-based characterization of fibrosis and carcinoma
using low-dose lung CT images,
IJIST(24), No. 1, 2014, pp. 39-44.
DOI Link
1403
artificial neural network
BibRef
Mansoor, A.,
Bagci, U.,
Xu, Z.Y.[Zi-Yue],
Foster, B.,
Olivier, K.N.,
Elinoff, J.M.,
Suffredini, A.F.,
Udupa, J.K.,
Mollura, D.J.,
A Generic Approach to Pathological Lung Segmentation,
MedImg(33), No. 12, December 2014, pp. 2293-2310.
IEEE DOI
1412
BibRef
And:
Correction:
MedImg(34), No. 1, January 2015, pp. 354-354.
IEEE DOI
1502
Computed tomography; Fuzzy set theory; Image segmentation;Lungs
BibRef
Kecheril, S.S.[S. Sajith],
Venkataraman, D.,
Suganthi, J.,
Sujathan, K.,
Automated lung cancer detection by the analysis of glandular cells in
sputum cytology images using scale space features,
SIViP(9), No. 4, May 2015, pp. 851-863.
Springer DOI
1504
BibRef
Ju, W.[Wei],
Xiang, D.[Deihui],
Zhang, B.[Bin],
Wang, L.R.[Li-Rong],
Kopriva, I.,
Chen, X.J.[Xin-Jian],
Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT
Images,
IP(24), No. 12, December 2015, pp. 5854-5867.
IEEE DOI
1512
BibRef
Earlier:
Correction:
IP(25), No. 3, March 2016, pp. 1192-1192.
IEEE DOI
1602
Atomic beams; Lungs; Tumors.
computerised tomography
BibRef
Chong, D.Y.,
Kim, H.J.,
Lo, P.,
Young, S.,
McNitt-Gray, M.F.,
Abtin, F.,
Goldin, J.G.,
Brown, M.S.,
Robustness-Driven Feature Selection in Classification of Fibrotic
Interstitial Lung Disease Patterns in Computed Tomography Using 3D
Texture Features,
MedImg(35), No. 1, January 2016, pp. 144-157.
IEEE DOI
1601
Computed tomography
BibRef
Hurtado, D.E.,
Villarroel, N.,
Retamal, J.,
Bugedo, G.,
Bruhn, A.,
Improving the Accuracy of Registration-Based Biomechanical Analysis:
A Finite Element Approach to Lung Regional Strain Quantification,
MedImg(35), No. 2, February 2016, pp. 580-588.
IEEE DOI
1602
Approximation methods
BibRef
Anthimopoulos, M.,
Christodoulidis, S.,
Ebner, L.,
Christe, A.,
Mougiakakou, S.,
Lung Pattern Classification for Interstitial Lung Diseases Using a
Deep Convolutional Neural Network,
MedImg(35), No. 5, May 2016, pp. 1207-1216.
IEEE DOI
1605
Computed tomography
BibRef
Xiao, C.,
Stoel, B.C.,
Bakker, M.E.,
Peng, Y.,
Stolk, J.,
Staring, M.,
Pulmonary Fissure Detection in CT Images Using a Derivative of Stick
Filter,
MedImg(35), No. 6, June 2016, pp. 1488-1500.
IEEE DOI
1606
Computed tomography
BibRef
Islam, M.S.[M. Sirajul],
Kitchen, M.J.[Marcus J.],
GPU accelerated regional lung air volume measurements from phase
contrast X-ray images,
RealTimeIP(12), No. 1, June 2016, pp. 43-54.
WWW Link.
1606
BibRef
Semmler, M.,
Kniesburges, S.,
Birk, V.,
Ziethe, A.,
Patel, R.,
Döllinger, M.,
3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic
High-Speed Recordings,
MedImg(35), No. 7, July 2016, pp. 1615-1624.
IEEE DOI
1608
biomedical optical imaging
BibRef
Procházka, A.[Ale],
Kuchynka, J.[Jirí],
Vyata, O.[Oldrich],
Schätz, M.[Martin],
Yadollahi, M.[Mohammadreza],
Sanei, S.[Saeid],
Vali, M.[Martin],
Sleep scoring using polysomnography data features,
SIViP(12), No. 6, September 2018, pp. 1043-1051.
Springer DOI
1808
BibRef
van Tulder, G.[Gijs],
de Bruijne, M.[Marleen],
Combining Generative and Discriminative Representation Learning for
Lung CT Analysis With Convolutional Restricted Boltzmann Machines,
MedImg(35), No. 5, May 2016, pp. 1262-1272.
IEEE DOI
1605
BibRef
Earlier:
Learning Features for Tissue Classification with the Classification
Restricted Boltzmann Machine,
MCV14(47-58).
Springer DOI
1501
Computed tomography
BibRef
van Tulder, G.[Gijs],
de Bruijne, M.[Marleen],
Learning Cross-Modality Representations From Multi-Modal Images,
MedImg(38), No. 2, February 2019, pp. 638-648.
IEEE DOI
1902
BibRef
Earlier:
Representation Learning for Cross-Modality Classification,
MCV16(126-136).
Springer DOI
1711
Magnetic resonance imaging, Biomedical imaging, Encoding, Decoding,
Training, Image reconstruction, Computed tomography,
deep learning
BibRef
Bragman, F.J.S.,
McClelland, J.R.,
Jacob, J.,
Hurst, J.R.,
Hawkes, D.J.,
Pulmonary Lobe Segmentation With Probabilistic Segmentation of the
Fissures and a Groupwise Fissure Prior,
MedImg(36), No. 8, August 2017, pp. 1650-1663.
IEEE DOI
1708
Biomedical imaging, Brain modeling, Image segmentation, Lungs,
Probabilistic logic, Sociology, Statistics, Lobe segmentation,
fissure segmentation, pulmonary, image, analysis
BibRef
Muller, P.A.[Peter A.],
Mueller, J.L.[Jennifer L.],
Mellenthin, M.M.[Michelle M.],
Real-Time Implementation of Caldeórn's Method on
Subject-Specific Domains,
MedImg(36), No. 9, September 2017, pp. 1868-1875.
IEEE DOI
1709
electric impedance imaging, EIT, lung,
electrical impedance tomography, human thorax,
BibRef
Anantrasirichai, N.,
Hayes, W.,
Allinovi, M.,
Bull, D.,
Achim, A.,
Line Detection as an Inverse Problem:
Application to Lung Ultrasound Imaging,
MedImg(36), No. 10, October 2017, pp. 2045-2056.
IEEE DOI
1710
Inverse problems, Lungs, Noise measurement, Radon, Speckle, Transforms,
Ultrasonic imaging, ADMM, Line detection, deconvolution,
image restoration, inverse problem, sparsity regularisation, ultrasound
BibRef
Mittal, A.[Ajay],
Hooda, R.[Rahul],
Sofat, S.[Sanjeev],
Lung field segmentation in chest radiographs: a historical review,
current status, and expectations from deep learning,
IET-IPR(11), No. 11, November 2017, pp. 937-952.
DOI Link
1711
BibRef
Zhang, Y.K.[Yuan-Ke],
Rong, J.Y.[Jun-Yan],
Lu, H.B.[Hong-Bing],
Xing, Y.X.[Yu-Xiang],
Meng, J.[Jing],
Low-Dose Lung CT Image Restoration Using Adaptive Prior Features From
Full-Dose Training Database,
MedImg(36), No. 12, December 2017, pp. 2510-2523.
IEEE DOI
1712
Computed tomography, Databases, Image restoration, Lungs,
Principal component analysis,
restoration
BibRef
Gao, Y.F.[Yong-Feng],
Liang, Z.R.[Zheng-Rong],
Moore, W.[William],
Zhang, H.[Hao],
Pomeroy, M.J.[Marc J.],
Ferretti, J.A.[John A.],
Bilfinger, T.V.[Thomas V.],
Ma, J.H.[Jian-Hua],
Lu, H.B.[Hong-Bing],
A Feasibility Study of Extracting Tissue Textures From a Previous
Full-Dose CT Database as Prior Knowledge for Bayesian Reconstruction
of Current Low-Dose CT Images,
MedImg(38), No. 8, August 2019, pp. 1981-1992.
IEEE DOI
1908
Image reconstruction, Databases, Computed tomography, Radiology,
Bayes methods, Image edge detection, Low dose CT,
Bayesian image reconstruction
BibRef
Yin, Y.,
Sedlaczek, O.,
Müller, B.,
Warth, A.,
González-Vallinas, M.,
Lahrmann, B.,
Grabe, N.,
Kauczor, H.U.,
Breuhahn, K.,
Vignon-Clementel, I.E.,
Drasdo, D.,
Tumor Cell Load and Heterogeneity Estimation From Diffusion-Weighted
MRI Calibrated With Histological Data: an Example From Lung Cancer,
MedImg(37), No. 1, January 2018, pp. 35-46.
IEEE DOI
1801
biodiffusion, biomedical MRI, cancer, cellular biophysics,
computerised tomography, deconvolution, image colour analysis,
tumor cellularity
BibRef
de Carvalho Filho, A.O.[Antonio Oseas],
Corręa Silva, A.[Aristofanes],
Cardoso de Paiva, A.[Anselmo],
Acatauassú Nunes, R.[Rodolfo],
Gattass, M.[Marcelo],
Classification of patterns of benignity and malignancy based on CT
using topology-based phylogenetic diversity index and convolutional
neural network,
PR(81), 2018, pp. 200-212.
Elsevier DOI
1806
Lung cancer, Phylogenetic diversity index, Convolutional neural network
BibRef
Oluyide, O.M.[Oluwakorede M.],
Tapamo, J.R.[Jules-Raymond],
Viriri, S.[Serestina],
Automatic lung segmentation based on Graph Cut using a
distance-constrained energy,
IET-CV(12), No. 5, August 2018, pp. 609-615.
DOI Link
1807
BibRef
Novikov, A.A.,
Lenis, D.,
Major, D.,
Hladuvka, J.,
Wimmer, M.,
Bühler, K.,
Fully Convolutional Architectures for Multiclass Segmentation in
Chest Radiographs,
MedImg(37), No. 8, August 2018, pp. 1865-1876.
IEEE DOI
1808
Lung, Image segmentation, Heart, Task analysis, Biomedical imaging,
Shape, Feature extraction, Lung segmentation,
JSRT dataset
BibRef
Netto, S.M.B.,
Bandeira Diniz, J.O.,
Silva, A.C.,
de Paiva, A.C.,
Nunes, R.A.,
Gattass, M.,
Modified Quality Threshold Clustering for Temporal Analysis and
Classification of Lung Lesions,
IP(28), No. 4, April 2019, pp. 1813-1823.
IEEE DOI
1901
cancer, computerised tomography, feature extraction,
image classification, lung, medical image processing,
temporal analysis
BibRef
Li, X.M.[Xiao-Mei],
Dong, X.P.[Xiao-Peng],
Lian, J.[Jian],
Zhang, Y.[Yan],
Yu, J.M.[Jin-Ming],
Knockoff filter-based feature selection for discrimination of non-small
cell lung cancer in CT image,
IET-IPR(13), No. 3, February 2019, pp. 543-548.
DOI Link
1903
BibRef
Zhou, B.,
Chen, A.,
Crawford, R.,
Dogdas, B.,
Goldmarcher, G.,
A Progressively-Trained Scale-Invariant and Boundary-Aware Deep
Neural Network for the Automatic 3D Segmentation of Lung Lesions,
WACV19(1-10)
IEEE DOI
1904
computerised tomography, image segmentation, lung,
medical image processing, neural nets, supervised learning,
Training data
BibRef
Eppenhof, K.A.J.,
Pluim, J.P.W.,
Pulmonary CT Registration Through Supervised Learning With
Convolutional Neural Networks,
MedImg(38), No. 5, May 2019, pp. 1097-1105.
IEEE DOI
1905
Training, Image registration, Strain, Lung, Biomedical imaging,
Computed tomography, Convolutional neural networks,
machine learning
BibRef
Chen, G.,
Xiang, D.,
Zhang, B.,
Tian, H.,
Yang, X.,
Shi, F.,
Zhu, W.,
Tian, B.,
Chen, X.,
Automatic Pathological Lung Segmentation in Low-Dose CT Image Using
Eigenspace Sparse Shape Composition,
MedImg(38), No. 7, July 2019, pp. 1736-1749.
IEEE DOI
1907
Shape, Lung, Image segmentation, Pathology, Computed tomography,
Strain,
discriminative appearance dictionary
BibRef
Nezamabadi, K.[Kasra],
Naseri, Z.[Zeinab],
Abrishami Moghaddam, H.[Hamid],
Modarresi, M.[Mohammadreza],
Pak, N.[Neda],
Mahdizade, M.[Mehrzad],
Lung HRCT pattern classification for cystic fibrosis using
convolutional neural network,
SIViP(13), No. 6, September 2019, pp. 1225-1232.
Springer DOI
1908
BibRef
Liu, C.X.[Cai-Xia],
Zhao, R.B.[Rui-Bin],
Pang, M.Y.[Ming-Yong],
Lung segmentation based on random forest and multi-scale edge detection,
IET-IPR(13), No. 10, 22 August 2019, pp. 1745-1754.
DOI Link
1909
BibRef
Liu, Y.[Ying],
Wang, H.D.[Hao-Dong],
Gu, Y.[Yue],
Lv, X.H.[Xiao-Hong],
Image classification toward lung cancer recognition by learning deep
quality model,
JVCIR(63), 2019, pp. 102570.
Elsevier DOI
1909
Image classification, Cancer recognition, Deep feature, CNN
BibRef
Saad, M.[Maliazurina],
Lee, I.H.[Ik Hyun],
Choi, T.S.[Tae-Sun],
Automated delineation of non-small cell lung cancer: A step toward
quantitative reasoning in medical decision science,
IJIST(29), No. 4, 2019, pp. 561-576.
DOI Link
1911
collinearity, computer-aided delineation, convexity,
non-small cell lung cancer, spatial analysis, topological processing
BibRef
Seo, J.K.[Jin Keun],
Kim, K.C.[Kang Cheol],
Jargal, A.[Ariungerel.],
Lee, K.[Kyounghun.],
Harrach, B.[Bastian],
A Learning-Based Method for Solving Ill-Posed Nonlinear Inverse
Problems: A Simulation Study of Lung EIT,
SIIMS(12), No. 3, 2019, pp. 1275-1295.
DOI Link
1911
BibRef
Khan, M.A.[M. Attique],
Rubab, S.,
Kashif, A.[Asifa],
Sharif, M.I.[Muhammad Imran],
Muhammad, N.[Nazeer],
Shah, J.H.[Jamal Hussain],
Zhang, Y.D.[Yu-Dong],
Satapathy, S.C.[Suresh Chandra],
Lungs cancer classification from CT images: An integrated design of
contrast based classical features fusion and selection,
PRL(129), 2020, pp. 77-85.
Elsevier DOI
2001
Lungs cancer, Contrast normalization, Multiple features, Fusion, Selection
BibRef
Kumar, A.,
Fulham, M.,
Feng, D.,
Kim, J.,
Co-Learning Feature Fusion Maps From PET-CT Images of Lung Cancer,
MedImg(39), No. 1, January 2020, pp. 204-217.
IEEE DOI
2001
Computed tomography, Tumors, Lung, Image segmentation,
Biomedical imaging, Cancer, Multi-modality imaging, deep learning,
PET-CT
BibRef
Bhandary, A.[Abhir],
Prabhu, G.A.[G. Ananth],
Rajinikanth, V.,
Thanaraj, K.P.[K. Palani],
Satapathy, S.C.[Suresh Chandra],
Robbins, D.E.[David E.],
Shasky, C.[Charles],
Zhang, Y.D.[Yu-Dong],
Tavares, J.M.R.S.[Joăo Manuel R.S.],
Raja, N.S.M.[N. Sri Madhava],
Deep-learning framework to detect lung abnormality:
A study with chest X-Ray and lung CT scan images,
PRL(129), 2020, pp. 271-278.
Elsevier DOI
2001
BibRef
Xue, P.,
Dong, E.,
Ji, H.,
Lung 4D CT Image Registration Based on High-Order Markov Random Field,
MedImg(39), No. 4, April 2020, pp. 910-921.
IEEE DOI
2004
Lung, Image registration, Computed tomography, Optimization, Strain,
Topology, Image registration, 4D CT,
multi-level processing strategy
BibRef
Ozdemir, O.,
Russell, R.L.,
Berlin, A.A.,
A 3D Probabilistic Deep Learning System for Detection and Diagnosis
of Lung Cancer Using Low-Dose CT Scans,
MedImg(39), No. 5, May 2020, pp. 1419-1429.
IEEE DOI
2005
Solid modeling, Lung, Cancer,
Computed tomography, Deep learning, Uncertainty, Machine learning,
image classification
BibRef
Lakshmi, D.,
Thanaraj, K.P.[K. Palani],
Arunmozhi, M.,
Convolutional neural network in the detection of lung carcinoma using
transfer learning approach,
IJIST(30), No. 2, 2020, pp. 445-454.
DOI Link
2005
convolution neural network, transfer learning approach
BibRef
Bansal, G.[Gaurang],
Chamola, V.[Vinay],
Narang, P.[Pratik],
Kumar, S.[Subham],
Raman, S.[Sundaresan],
Deep3DSCan: Deep residual network and morphological descriptor based
framework for lung cancer classification and 3D segmentation,
IET-IPR(14), No. 7, 29 May 2020, pp. 1240-1247.
DOI Link
2005
BibRef
Shao, W.,
Patton, T.J.,
Gerard, S.E.,
Pan, Y.,
Reinhardt, J.M.,
Durumeric, O.C.,
Bayouth, J.E.,
Christensen, G.E.,
N-Phase Local Expansion Ratio for Characterizing Out-of-Phase Lung
Ventilation,
MedImg(39), No. 6, June 2020, pp. 2025-2034.
IEEE DOI
2006
CT, functional avoidance, image registration, lung,
out-of-phase ventilation, radiation therapy
BibRef
Chen, B.Z.[Bing-Zhi],
Zhang, Z.[Zheng],
Lin, J.Y.[Jian-Yong],
Chen, Y.[Yi],
Lu, G.M.[Guang-Ming],
Two-stream collaborative network for multi-label chest X-ray Image
classification with lung segmentation,
PRL(135), 2020, pp. 221-227.
Elsevier DOI
2006
Two-stream collaborative network, Lung segmentation,
Self-adaptive weighted fusion, Multi-label CXR image classification
BibRef
Priya, M.M.A.[Michael Mary Adline],
Jawhar, S.J.[S. Joseph],
Advanced lung cancer classification approach adopting modified graph
clustering and whale optimisation-based feature selection technique
accompanied by a hybrid ensemble classifier,
IET-IPR(14), No. 10, August 2020, pp. 2204-2215.
DOI Link
2008
BibRef
Wang, X.,
Chen, H.,
Gan, C.,
Lin, H.,
Dou, Q.,
Tsougenis, E.,
Huang, Q.,
Cai, M.,
Heng, P.,
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image
Analysis,
Cyber(50), No. 9, September 2020, pp. 3950-3962.
IEEE DOI
2008
Cancer, Lung, Feature extraction, Tumors, Task analysis,
Supervised learning, Image analysis, Deep learning,
whole slide images (WSIs)
BibRef
Jena, S.R.[Sanjukta Rani],
George, S.T.[Selvaraj Thomas],
Morphological feature extraction and KNG-CNN classification of CT
images for early lung cancer detection,
IJIST(30), No. 4, 2020, pp. 1324-1336.
DOI Link
2011
automatic detection, CLAHE, CT,
kernel based non-Gaussian convolutional neural networks, ROI
BibRef
Schaff, F.,
Morgan, K.S.,
Pollock, J.A.,
Croton, L.C.P.,
Hooper, S.B.,
Kitchen, M.J.,
Material Decomposition Using Spectral Propagation-Based
Phase-Contrast X-Ray Imaging,
MedImg(39), No. 12, December 2020, pp. 3891-3899.
IEEE DOI
2012
X-ray imaging, Attenuation, Lung, Approximation algorithms,
Mathematical model, Radiography, Inverse methods, lung imaging,
dual-energy
BibRef
Kircher, M.,
Elke, G.,
Stender, B.,
Hernández Mesa, M.,
Schuderer, F.,
Dössel, O.,
Fuld, M.K.,
Halaweish, A.F.,
Hoffman, E.A.,
Weiler, N.,
Frerichs, I.,
Regional Lung Perfusion Analysis in Experimental ARDS by Electrical
Impedance and Computed Tomography,
MedImg(40), No. 1, January 2021, pp. 251-261.
IEEE DOI
2012
Lung, Impedance, Ventilation, Computed tomography, Animals,
Pulmonary perfusion imaging, EIT, MDCT,
first pass kinetics
BibRef
Cai, N.,
Chen, H.,
Li, Y.,
Peng, Y.,
Li, J.,
Adaptive Weighting Landmark-Based Group-Wise Registration on Lung
DCE-MRI Images,
MedImg(40), No. 2, February 2021, pp. 673-687.
IEEE DOI
2102
Strain, Principal component analysis, Lung,
Magnetic resonance imaging, Time series analysis,
robust principal component analysis
BibRef
Xiao, N.[Ning],
Qiang, Y.[Yan],
Zhao, Z.J.[Zi-Juan],
Zhao, J.J.[Juan-Juan],
Lian, J.H.[Jian-Hong],
Tumour growth prediction of follow-up lung cancer via conditional
recurrent variational autoencoder,
IET-IPR(14), No. 15, 15 December 2020, pp. 3975-3981.
DOI Link
2103
BibRef
Rani, K.V.[K. Vijila],
Dayana, C.T.[C. Thinkal],
Therese, P.S.[P. Sujatha],
Prince, M.E.[M. Eugine],
Triple novelty block detection and classification approach for lung
tumor analysis,
IJIST(31), No. 2, 2021, pp. 1034-1049.
DOI Link
2105
bilateral filter, CAD,
firefly search-based Macqueen's K-means clustering,
texture feature
BibRef
Taphorn, K.[Kirsten],
Mechlem, K.[Korbinian],
Sellerer, T.[Thorsten],
de Marco, F.[Fabio],
Viermetz, M.[Manuel],
Pfeiffer, F.[Franz],
Pfeiffer, D.[Daniela],
Herzen, J.[Julia],
Direct Differentiation of Pathological Changes in the Human Lung
Parenchyma With Grating-Based Spectral X-ray Dark-Field Radiography,
MedImg(40), No. 6, June 2021, pp. 1568-1578.
IEEE DOI
2106
Lung, Imaging, Gratings, X-ray imaging, Pulmonary diseases,
Sensitivity, Correlation, Imaging modalities, lung,
x-ray imaging and computed tomography
BibRef
Viermetz, M.[Manuel],
Gustschin, N.[Nikolai],
Schmid, C.[Clemens],
Haeusele, J.[Jakob],
Noël, P.B.[Peter B.],
Proksa, R.[Roland],
Löscher, S.[Stefan],
Koehler, T.[Thomas],
Pfeiffer, F.[Franz],
Technical Design Considerations of a Human-Scale Talbot-Lau
Interferometer for Dark-Field CT,
MedImg(42), No. 1, January 2023, pp. 220-232.
IEEE DOI
2301
Gratings, Computed tomography, Geometry, Imaging, Detectors,
X-ray imaging, Lung, Computed tomography, dark-field contrast
BibRef
Zheng, S.H.[Shao-Hua],
Nie, W.Y.[Wei-Yu],
Pan, L.[Lin],
Zheng, B.[Bin],
Shen, Z.Q.[Zhi-Qiang],
Huang, L.Q.[Li-Qin],
Pei, C.H.[Chen-Hao],
She, Y.H.[Yu-Hang],
Chen, L.Q.[Liu-Qing],
A dual-attention V-network for pulmonary lobe segmentation in CT
scans,
IET-IPR(15), No. 8, 2021, pp. 1644-1654.
DOI Link
2106
BibRef
Doddavarapu, V.N.S.[V. N. Sukanya],
Kande, G.B.[Giri Babu],
Rao, B.P.[B. Prabhakar],
Rotational invariant fractional derivative filters for lung tissue
classification,
IET-IPR(15), No. 10, 2021, pp. 2202-2212.
DOI Link
2108
BibRef
Chilakala, L.R.[Lokanath Reddy],
Kishore, G.N.[Gattim Naveen],
Optimal deep belief network with opposition-based hybrid grasshopper
and honeybee optimization algorithm for lung cancer classification:
A DBNGHHB approach,
IJIST(31), No. 3, 2021, pp. 1404-1423.
DOI Link
2108
computed tomography (CT), deep belief networks (DBN),
grasshopper and honey bee (GHHB) optimization algorithm,
local tangent space alignment (LTSA)
BibRef
Yin, L.[Li],
Liu, Y.[Yang],
Pei, M.T.[Ming-Tao],
Li, J.R.[Jin-Rang],
Wu, M.[Mukun],
Jia, Y.Y.[Yuan-Yuan],
Laryngoscope8: Laryngeal image dataset and classification of
laryngeal disease based on attention mechanism,
PRL(150), 2021, pp. 207-213.
Elsevier DOI
2109
Laryngeal image dataset, Laryngeal disease classification, Attention mechanism
BibRef
Yang, J.[Jie],
Angelini, E.D.[Elsa D.],
Balte, P.P.[Pallavi P.],
Hoffman, E.A.[Eric A.],
Austin, J.H.M.[John H. M.],
Smith, B.M.[Benjamin M.],
Barr, R.G.[R. Graham],
Laine, A.F.[Andrew F.],
Novel Subtypes of Pulmonary Emphysema Based on Spatially-Informed
Lung Texture Learning: The Multi-Ethnic Study of Atherosclerosis
(MESA) COPD Study,
MedImg(40), No. 12, December 2021, pp. 3652-3662.
IEEE DOI
2112
Lung, Computed tomography, Indexes,
Shape, Biomedical imaging, Training, Lung CT, emphysema,
lung texture
BibRef
Guo, Z.Q.[Zhi-Qiang],
Xu, L.[Lina],
Si, Y.J.[Yu-Juan],
Razmjooy, N.[Navid],
Novel computer-aided lung cancer detection based on convolutional
neural network-based and feature-based classifiers using
metaheuristics,
IJIST(31), No. 4, 2021, pp. 1954-1969.
DOI Link
2112
computer-aided design, convolutional neural network,
Haralick texture features, improved Harris Hawks optimizer,
lung cancer diagnosis
BibRef
Kailasam, M.S.[Manoj Senthil],
Thiagarajan, M.[MeeraDevi],
Detection of lung tumor using dual tree complex wavelet transform and
co-active adaptive neuro fuzzy inference system classification
approach,
IJIST(31), No. 4, 2021, pp. 2032-2046.
DOI Link
2112
CANFIS, computed tomography, DT-CWT, filters, lung tumor, multiresolution
BibRef
Jena, S.R.[Sanjukta Rani],
George, S.T.[Selvaraj Thomas],
Ponraj, D.N.[Deivendran Narain],
Modeling an effectual multi-section You Only Look Once for enhancing
lung cancer prediction,
IJIST(31), No. 4, 2021, pp. 2144-2157.
DOI Link
2112
CNN, features, lung nodules, You Only Look Once
BibRef
Shi, F.[Feng],
Chen, B.J.[Bo-Jiang],
Cao, Q.Q.[Qi-Qi],
Wei, Y.[Ying],
Zhou, Q.[Qing],
Zhang, R.[Rui],
Zhou, Y.J.[Yao-Jie],
Yang, W.J.[Wen-Jie],
Wang, X.[Xiang],
Fan, R.R.[Rong-Rong],
Yang, F.[Fan],
Chen, Y.B.[Yan-Bo],
Li, W.M.[Wei-Min],
Gao, Y.Z.[Yao-Zong],
Shen, D.G.[Ding-Gang],
Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis
of Pulmonary Nodules in Chest CT Images,
MedImg(41), No. 4, April 2022, pp. 771-781.
IEEE DOI
2204
Lung, Computed tomography, Lung cancer, Tumors, Transfer learning,
Semisupervised learning, Medical diagnostic imaging,
benign-malignant classification
BibRef
Manickam, M.[Muruganantham],
Siva, R.[Rathinavelayutham],
Prabakeran, S.[Saravanan],
Geetha, K.[Kannan],
Indumathi, V.[Varadharajan],
Sethukarasi, T.[Thirumaaran],
Pulmonary disease diagnosis using African vulture optimized weighted
support vector machine approach,
IJIST(32), No. 3, 2022, pp. 843-856.
DOI Link
2205
African vulture optimization, emphysema, fibrosis, pneumothorax,
prediction, pulmonary diseases, SVM
BibRef
Ananth, A.D.[Antony Dennis],
Palanisamy, C.[Chenniappan],
Extended and optimized deep convolutional neural network-based lung
tumor identification in big data,
IJIST(32), No. 3, 2022, pp. 918-934.
DOI Link
2205
big data, classification, CT images, deep learning,
feature extraction, lung tumor detection, segmentation
BibRef
Hu, J.H.[Jun-Hao],
Zhang, C.Y.[Chen-Yang],
Zhou, K.[Kang],
Gao, S.H.[Sheng-Hua],
Chest X-Ray Diagnostic Quality Assessment:
How Much Is Pixel-Wise Supervision Needed?,
MedImg(41), No. 7, July 2022, pp. 1711-1723.
IEEE DOI
2207
Diagnostic radiography, Image segmentation, Semantics,
Quality assessment, Lung, X-ray imaging, Annotations,
box supervision
BibRef
Thirumagal, E.[Egambaram],
Saruladha, K.[Krishnamurthy],
Lung cancer classification using exponential mean saturation linear
unit activation function in various generative adversarial network
models,
IJIST(32), No. 4, 2022, pp. 1414-1428.
DOI Link
2207
activation function, cancer classification,
dataset enhancement, GAN, mortality
BibRef
Jacob, C.[Chinnu],
Menon, G.C.[Gopakumar Chandrasekhara],
Pathological categorization of lung carcinoma from multimodality
images using convolutional neural networks,
IJIST(32), No. 5, 2022, pp. 1681-1695.
DOI Link
2209
BRISQUE, computed tomography (CT),
convolutional neural networks (CNN), lung cancer,
pathological type classification
BibRef
Wang, H.F.[Hong-Fei],
Yang, P.[Ping],
Xu, C.[Chuan],
Min, L.[Lei],
Wang, S.[Shuai],
Xu, B.[Bing],
Lung CT image enhancement based on total variational frame and
wavelet transform,
IJIST(32), No. 5, 2022, pp. 1604-1614.
DOI Link
2209
image enhancement, lung CT, noise removal, total variation, wavelet transform
BibRef
Thorat, O.[Onkar],
Salvi, S.[Siddharth],
Dedhia, S.[Shrey],
Bhadane, C.[Chetashri],
Dongre, D.[Deepika],
Domain adaptation and weight initialization of neural networks for
diagnosing interstitial lung diseases,
IJIST(32), No. 5, 2022, pp. 1535-1547.
DOI Link
2209
deep learning, domain adaptation, HRCT scans,
interstitial lung diseases, transfer learning
BibRef
Sünnetci, K.M.[Kubilay Muhammed],
Alkan, A.[Ahmet],
Lung cancer detection by using probabilistic majority voting and
optimization techniques,
IJIST(32), No. 6, 2022, pp. 2049-2065.
DOI Link
2212
bag of features, data mining, lung cancer, machine learning,
probabilistic majority voting
BibRef
Huang, P.[Pan],
He, P.[Peng],
Tian, S.[Sukun],
Ma, M.[Mingrui],
Feng, P.[Peng],
Xiao, H.[Hualiang],
Mercaldo, F.[Francesco],
Santone, A.[Antonella],
Qin, J.[Jing],
A ViT-AMC Network With Adaptive Model Fusion and Multiobjective
Optimization for Interpretable Laryngeal Tumor Grading From
Histopathological Images,
MedImg(42), No. 1, January 2023, pp. 15-28.
IEEE DOI
2301
Cancer, Tumors, Adaptation models, Deep learning, Optimization,
Measurement, Visualization, Visually interpretable, model fusion,
histopathology images
BibRef
Spoorthi, B.,
Mahesh, S.[Shanthi],
Firefly Competitive Swarm Optimization Based Hierarchical Attention
Network for Lung Cancer Detection,
IJIG(23), No. 2 2023, pp. 2350017.
DOI Link
2303
BibRef
Balachandran, S.[Sangeetha],
Ranganathan, V.[Vidhyapriya],
Semantic context-aware attention UNET for lung cancer segmentation
and classification,
IJIST(33), No. 3, 2023, pp. 822-836.
DOI Link
2305
context-aware attention UNET, lung cancer detection,
lung nodule segmentation, semantic segmentation
BibRef
Pawar, S.P.[Swati P.],
Talbar, S.N.[Sanjay N.],
Multi-level deep learning based lung cancer classifier for
classification based on tumour-node-metastasis approach,
IJIST(33), No. 3, 2023, pp. 881-894.
DOI Link
2305
computer-aided diagnosis, conditional,
generative adversarial network, lung CT scan, tumor-node-metastasis
BibRef
Liu, C.X.[Cai-Xia],
Xie, W.L.[Wan-Li],
Zhao, R.B.[Rui-Bin],
Pang, M.Y.[Ming-Yong],
Segmenting lung parenchyma from CT images with gray correlation-based
clustering,
IET-IPR(17), No. 6, 2023, pp. 1658-1667.
DOI Link
2305
contour correction, gray correlation-based clustering,
image preprocessing, lung segmentation
BibRef
Kiran, S.V.[S. Vishwa],
Kaur, I.[Inderjeet],
Thangaraj, K.,
Saveetha, V.,
Grace, R.K.[R. Kingsy],
Arulkumar, N.,
Machine Learning with Data Science-Enabled Lung Cancer Diagnosis and
Classification Using Computed Tomography Images,
IJIG(23), No. 3 2023, pp. 2240002.
DOI Link
2306
BibRef
Barbouchi, K.[Khalil],
El Hamdi, D.[Dhekra],
Elouedi, I.[Ines],
Ben Aďcha, T.[Takwa],
Echi, A.K.[Afef Kacem],
Slim, I.[Ihsen],
A transformer-based deep neural network for detection and
classification of lung cancer via PET/CT images,
IJIST(33), No. 4, 2023, pp. 1383-1395.
DOI Link
2307
computed tomography, histology staging, lung cancer,
positron emission tomography, TNM staging system, transformers
BibRef
Chang, Z.Z.[Zu-Zheng],
Rodriguez, D.[Dragan],
Optimized lung cancer detection by amended whale optimizer and rough
set theory,
IJIST(33), No. 5, 2023, pp. 1713-1726.
DOI Link
2310
amended whale optimization algorithm, K-means,
lung cancer diagnosis, RBF network, rough set theory
BibRef
Xie, Y.H.[Ying-Hua],
Zhou, Y.T.[Yun-Tong],
Wang, C.[Chen],
Ma, Y.[Yanshan],
Yang, M.[Ming],
Multi-scale feature fusion network with local attention for lung
segmentation,
SP:IC(119), 2023, pp. 117042.
Elsevier DOI
2310
Multi-scale, Local attention module, Lung segmentation
BibRef
Tyagi, S.[Shweta],
Talbar, S.N.[Sanjay N.],
Predicting lung cancer treatment response from CT images using deep
learning,
IJIST(33), No. 5, 2023, pp. 1577-1592.
DOI Link
2310
convolutional neural networks, CT scan, deep learning,
lung cancer, segmentation, treatment analysis
BibRef
Fan, X.C.[Xiao-Chen],
Xu, X.[Xin],
Feng, J.X.[Jian-Xing],
Huang, H.X.[Hai-Xia],
Zuo, X.[Xiang],
Xu, G.[Guohou],
Ma, G.H.[Guang-Hui],
Chen, B.[Bin],
Wu, J.B.[Jian-Bin],
Huang, Y.[Yinhua],
Luo, Y.[Yang],
Learnable interpolation and extrapolation network for fuzzy pulmonary
lobe segmentation,
IET-IPR(17), No. 11, 2023, pp. 3258-3270.
DOI Link
2310
biomedical imaging, image segmentation, interpolation,
learning (artificial intelligence), selected
BibRef
Peng, Y.Y.[Yuan-Yuan],
Zhang, J.X.[Jia-Xing],
Lung lobe segmentation in computed tomography images based on
multi-feature fusion and ensemble learning framework,
IJIST(33), No. 6, 2023, pp. 2088-2099.
DOI Link
2311
CT, ensemble learning framework, lung lobe segmentation, multi-feature fusion
BibRef
Xu, X.B.[Xue-Bin],
Lei, M.[Meng],
Liu, D.H.[De-Hua],
Wang, M.[Muyu],
Lu, L.B.[Long-Bin],
Lung segmentation in chest X-ray image using multi-interaction
feature fusion network,
IET-IPR(17), No. 14, 2023, pp. 4129-4141.
DOI Link
2312
computer vision, convolutional neural nets, image segmentation
BibRef
Li, W.[Wei],
Liu, G.H.[Guang-Hai],
Fan, H.[Haoyi],
Li, Z.Y.[Zuo-Yong],
Zhang, D.[David],
Self-Supervised Multi-Scale Cropping and Simple Masked Attentive
Predicting for Lung CT-Scan Anomaly Detection,
MedImg(43), No. 1, January 2024, pp. 594-607.
IEEE DOI
2401
BibRef
Sivakumar, V.,
Yogesh, C.K.,
Vatchala, S.,
Kaliraj, S.,
An efficient lung image classification and detection using
spiral-optimized Gabor filter with convolutional neural network,
IJIST(34), No. 1, 2024, pp. e23013.
DOI Link
2401
convolutional neural networks (CNNs), feature extraction,
Gabor filter, lung cancer, spiral optimization algorithm (SOA)
BibRef
Chaudhary, M.F.A.[Muhammad F. A.],
Gerard, S.E.[Sarah E.],
Christensen, G.E.[Gary E.],
Cooper, C.B.[Christopher B.],
Schroeder, J.D.[Joyce D.],
Hoffman, E.A.[Eric A.],
Reinhardt, J.M.[Joseph M.],
LungViT: Ensembling Cascade of Texture Sensitive Hierarchical Vision
Transformers for Cross-Volume Chest CT Image-to-Image Translation,
MedImg(43), No. 7, July 2024, pp. 2448-2465.
IEEE DOI
2407
Computed tomography, Lung, Generative adversarial networks,
Transformers, Solid modeling, Image synthesis, vision transformers
BibRef
Hamdi, D.E.[Dhekra El],
Elouedi, I.[Ines],
Slim, I.[Ihsen],
Computer-Aided Classification of Cell Lung Cancer Via PET/CT Images
Using Convolutional Neural Network,
IJIG(24), No. 4, July 2024, pp. 2450040.
DOI Link
2408
BibRef
Ma, L.[Lei],
Wu, H.Q.[Hui-Qun],
Samundeeswari, P.,
GoogLeNet-AL: A fully automated adaptive model for lung cancer
detection,
PR(155), 2024, pp. 110657.
Elsevier DOI
2408
Lung cancer classification, Deep learning, Convolutional neural networks,
GoogLeNet-AL, Adaptive layers, Medical image analysis
BibRef
Li, G.Y.[Gary Y.],
Chen, L.[Li],
Zahiri, M.[Mohsen],
Balaraju, N.[Naveen],
Patil, S.[Shubham],
Mehanian, C.[Courosh],
Gregory, C.[Cynthia],
Gregory, K.[Kenton],
Raju, B.[Balasundar],
Kruecker, J.[Jochen],
Chen, A.[Alvin],
Weakly Semi-supervised Detector-based Video Classification with
Temporal Context for Lung Ultrasound,
CVAMD23(2475-2484)
IEEE DOI
2401
BibRef
Le, V.L.[Van-Linh],
Saut, O.[Olivier],
RRc-UNet 3D for lung tumor segmentation from CT scans of Non-Small
Cell Lung Cancer patients,
CVAMD23(2308-2317)
IEEE DOI
2401
BibRef
Sharafeldeen, A.[Ahmed],
Alksas, A.[Ahmed],
Ghazal, M.[Mohammed],
Yaghi, M.[Maha],
Khelifi, A.[Adel],
Mahmoud, A.[Ali],
Contractor, S.[Sohail],
van Bogaert, E.[Eric],
El-Baz, A.[Ayman],
Accurate Segmentation for Pathological Lung Based on Integration of
3D Appearance and Surface Models,
ICIP23(3130-3134)
IEEE DOI
2312
BibRef
VanBerlo, B.[Blake],
Li, B.[Brian],
Wong, A.[Alexander],
Hoey, J.[Jesse],
Arntfield, R.[Robert],
Exploring the Utility of Self-Supervised Pretraining Strategies for
the Detection of Absent Lung Sliding in M-Mode Lung Ultrasound,
DL-UIA23(3077-3086)
IEEE DOI
2309
BibRef
Santos, R.[Rui],
Pedrosa, J.[Joăo],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Automatic Eye-tracking-assisted Chest Radiography Pathology Screening,
IbPRIA23(520-532).
Springer DOI
2307
BibRef
Shaffie, A.[Ahmed],
Soliman, A.[Ahmed],
van Berkel, V.[Victor],
El-Baz, A.[Ayman],
Hand Crafted Features for Efficient Lung Cancer Diagnosis Using
Stacked Autoencoder,
ICPR22(4378-4384)
IEEE DOI
2212
Solid modeling, Sensitivity, Protocols, Computed tomography,
Image processing, Lung cancer, Lung, Lung Cancer,
Medical Image Processing
BibRef
Gravina, M.[Michela],
Marrone, S.[Stefano],
Docimo, L.[Ludovico],
Santini, M.[Mario],
Fiorelli, A.[Alfonso],
Parmeggiani, D.[Domenico],
Sansone, C.[Carlo],
Leveraging CycleGAN in Lung CT Sinogram-free Kernel Conversion,
CIAP22(I:100-110).
Springer DOI
2205
BibRef
Ramos, B.[Bernardo],
Pereira, T.[Tania],
Silva, F.[Francisco],
Costa, J.L.[José Luis],
Oliveira, H.P.[Hélder P.],
Differential Gene Expression Analysis of the Most Relevant Genes for
Lung Cancer Prediction and Sub-type Classification,
IbPRIA22(182-191).
Springer DOI
2205
BibRef
Diao, L.[Li],
Guo, H.Y.[Hao-Yue],
Zhou, Y.[Yue],
He, Y.[Yayi],
Bridging the GAP Between Outputs: Domain Adaptation for Lung Cancer
IHC Segmentation,
ICIP21(6-10)
IEEE DOI
2201
Training, Radio frequency, Image segmentation, Adaptation models,
Hospitals, Laboratories, Lung cancer, Medical image segmentation,
immunohistochemistry
BibRef
Alam, M.S.[Md. Shariful],
Wang, D.D.[Da-Dong],
Sowmya, A.[Arcot],
Image data augmentation for improving performance of deep
learning-based model in pathological lung segmentation,
DICTA21(1-5)
IEEE DOI
2201
Training, Image segmentation, Pathology, Pulmonary diseases,
Digital images, Lung, Indexes, Lung segmentation, data augmentation,
UNet
BibRef
Li, Z.[Zihao],
Ma, J.[Jiechao],
Zhang, S.[Shu],
Shi, Y.[Yemin],
Zhang, J.[Junge],
Huang, K.Q.[Kai-Qi],
Yu, Y.Z.[Yi-Zhou],
CCF-Net: Composite Context Fusion Network with Inter-Slice
Correlative Fusion for Multi-Disease Lesion Detection,
ICIP21(91-95)
IEEE DOI
2201
Correlation, Computed tomography, Lung, Computer architecture,
Feature extraction, Lesions, computed tomography,
lesion detection
BibRef
Azad, R.[Reza],
Bozorgpour, I.A.[I Afshin],
Asadi-Aghbolaghi, M.[Maryam],
Merhof, D.[Dorit],
Escalera, S.[Sergio],
Deep Frequency Re-calibration U-Net for Medical Image Segmentation,
CVAMD21(3267-3276)
IEEE DOI
2112
Image segmentation, Visualization, Laplace equations, Shape,
Frequency-domain analysis, Lung, Feature extraction
BibRef
Ma, S.[Sike],
Zhao, M.[Meng],
Wang, H.[Hao],
Shi, F.[Fan],
Sun, X.[Xuguo],
Chen, S.Y.[Sheng-Yong],
Dai, H.N.[Hong-Ning],
Fused 3-Stage Image Segmentation for Pleural Effusion Cell Clusters,
ICPR21(1934-1941)
IEEE DOI
2105
Image segmentation, Clustering algorithms, Lung, Fluorescence,
Feature extraction, Pattern recognition, Metastasis
BibRef
Hamad, A.S.,
Wang, Y.Y.,
Lever, T.E.,
Bunyak, F.,
Ensemble Of Deep Cascades For Detection Of Laryngeal Adductor Reflex
Events In Endoscopy Videos,
ICIP20(300-304)
IEEE DOI
2011
Image segmentation, Videos, Endoscopes, Training, Machine learning,
Event detection, Pipelines, deep learning,
endoscopy video analysis
BibRef
Han, F.,
Yu, L.,
Jiang, Y.,
Computer-aided diagnosis system of lung carcinoma using Convolutional
Neural Networks,
EDLCV20(2953-2958)
IEEE DOI
2008
Training, Lung, Cancer, Pathology, Hospitals, Medical diagnostic imaging
BibRef
Kalra, S.[Shivam],
Adnan, M.[Mohammed],
Taylor, G.[Graham],
Tizhoosh, H.R.,
Learning Permutation Invariant Representations Using Memory Networks,
ECCV20(XXIX: 677-693).
Springer DOI
2010
BibRef
Adnan, M.,
Kalra, S.,
Tizhoosh, H.R.,
Representation Learning of Histopathology Images using Graph Neural
Networks,
Microscopy20(4254-4261)
IEEE DOI
2008
Pathology, Lung, Convolution, Feature extraction, Neural networks,
Cancer, Machine learning
BibRef
Devnath, L.,
Luo, S.,
Summons, P.,
Wang, D.,
An accurate black lung detection using transfer learning based on
deep neural networks,
IVCNZ19(1-6)
IEEE DOI
2004
coal, computerised tomography, decision trees, diseases,
image classification, image segmentation, Computer-Aided Diagnosis
BibRef
Oliveira, A.C.[Ana Catarina],
Domingues, I.[Inęs],
Duarte, H.[Hugo],
Santos, J.[Joăo],
Abreu, P.H.[Pedro H.],
Going Back to Basics on Volumetric Segmentation of the Lungs in CT: A
Fully Image Processing Based Technique,
IbPRIA19(II:322-334).
Springer DOI
1910
BibRef
Dias, C.[Catarina],
Pinheiro, G.[Gil],
Cunha, A.[António],
Oliveira, H.P.[Hélder P.],
Radiogenomics: Lung Cancer-Related Genes Mutation Status Prediction,
IbPRIA19(II:335-345).
Springer DOI
1910
BibRef
Khanagha, V.[Vahid],
Kardehdeh, S.A.[Sanaz Aliari],
Context Aware Lung Cancer Annotation in Whole Slide Images Using Fully
Convolutional Neural Networks,
ICIAR19(II:345-352).
Springer DOI
1909
BibRef
Liu, Z.,
Song, Y.,
Maere, C.,
Liu, Q.,
Zhu, Y.,
Lu, H.,
Yuan, D.,
A Method for PET-CT Lung Cancer Segmentation based on Improved Random
Walk,
ICPR18(1187-1192)
IEEE DOI
1812
Computed tomography, Tumors, Image segmentation,
Positron emission tomography, Lung, Cancer,
Random walk
BibRef
Shaffie, A.,
Soliman, A.,
Ghazal, M.,
Taher, F.,
Dunlap, N.,
Wang, B.,
van Berkel, V.,
Gimel'farb, G.L.[Georgy L.],
Elmaghraby, A.,
El-Baz, A.,
A Novel Autoencoder-Based Diagnostic System for Early Assessment of
Lung Cancer,
ICIP18(1393-1397)
IEEE DOI
1809
Lung, Cancer, Computed tomography, Feature extraction,
Magnetic resonance imaging, Tools, Machine learning,
Computer Aided Diagnosis
BibRef
dos S. Neto, A.C.[Antonino C.],
Diniz, P.H.B.[Pedro H. B.],
Diniz, J.O.B.[Joăo O. B.],
Cavalcante, A.B.[André B.],
Silva, A.C.[Aristófanes C.],
de Paiva, A.C.[Anselmo C.],
deAlmeida, J.D.S.[Joăo D. S.],
Diagnosis of Non-Small Cell Lung Cancer Using Phylogenetic Diversity in
Radiomics Context,
ICIAR18(598-604).
Springer DOI
1807
BibRef
Cardoso, I.[Isadora],
Almeida, E.[Eliana],
Allende-Cid, H.[Héctor],
Frery, A.C.[Alejandro C.],
Rangayyan, R.M.[Rangaraj M.],
Azevedo-Marques, P.M.[Paulo M.],
Ramos, H.S.[Heitor S.],
Evaluation of Deep Feedforward Neural Networks for Classification of
Diffuse Lung Diseases,
CIARP17(152-159).
Springer DOI
1802
BibRef
Bayramoglu, N.,
Kaakinen, M.,
Eklund, L.,
Heikkilä, J.,
Towards Virtual H E Staining of Hyperspectral Lung Histology Images
Using Conditional Generative Adversarial Networks,
BioIm17(64-71)
IEEE DOI
1802
Chemicals, Hyperspectral imaging, Lung, Microscopy,
Principal component analysis
BibRef
Cid, Y.D.[Yashin Dicente],
Müller, H.[Henning],
Platon, A.[Alexandra],
Janssens, J.P.[Jean-Paul],
Lador, F.[Frédéric],
Poletti, P.A.[Pierre-Alexandre],
Depeursinge, A.[Adrien],
A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism
Detection on DECT Images,
MCV16(58-68).
Springer DOI
1711
BibRef
Sakamoto, M.[Masaharu],
Nakano, H.[Hiroki],
Zhao, K.[Kun],
Sekiyama, T.[Taro],
Multi-stage Neural Networks with Single-Sided Classifiers for False
Positive Reduction and Its Evaluation Using Lung X-Ray CT Images,
CIAP17(I:370-379).
Springer DOI
1711
BibRef
Kumar, D.[Devinder],
Chung, A.G.[Audrey G.],
Shaifee, M.J.[Mohammad J.],
Khalvati, F.[Farzad],
Haider, M.A.[Masoom A.],
Wong, A.[Alexander],
Discovery Radiomics for Pathologically-Proven Computed Tomography Lung
Cancer Prediction,
ICIAR17(54-62).
Springer DOI
1706
BibRef
Hamzah, M.F.M.,
Kasim, R.M.,
Yunus, A.,
Rijal, O.M.,
Noor, N.M.,
Detection of Interstitial Lung Disease using correlation and
regression methods on texture measure,
IVPR17(1-4)
IEEE DOI
1704
Computed tomography
BibRef
Noor, N.M.,
Keynote speaker: Computer aided diagnostics in medicine:
Discrimination for some lung diseases,
IVPR17(1-1)
IEEE DOI
1704
Biographies;Biomedical imaging;Diseases;IEEE Sections
BibRef
Zhao, B.,
Christensen, G.E.,
Song, J.H.,
Pan, Y.,
Gerard, S.E.,
Reinhardt, J.M.,
Du, K.,
Patton, T.,
Bayouth, J.M.,
Hugo, G.D.,
Tissue-Volume Preserving Deformable Image Registration for 4DCT
Pulmonary Images,
WBIR16(481-489)
IEEE DOI
1612
4D image registration
BibRef
Szmul, A.,
Papiez, B.W.,
Bates, R.,
Hallack, A.,
Schnabel, J.A.,
Grau, V.,
Graph Cuts-Based Registration Revisited: A Novel Approach for Lung
Image Registration Using Supervoxels and Image-Guided Filtering,
WBIR16(592-599)
IEEE DOI
1612
discrete optimization
BibRef
Wang, X.,
Lu, L.,
Shin, H.C.,
Kim, L.,
Bagheri, M.,
Nogues, I.,
Yao, J.,
Summers, R.M.,
Unsupervised Joint Mining of Deep Features and Image Labels for
Large-Scale Radiology Image Categorization and Scene Recognition,
WACV17(998-1007)
IEEE DOI
1609
Biomedical imaging, Computational modeling, Feature extraction,
Image recognition, Image representation, Optimization, Radiology
BibRef
Gao, M.C.[Ming-Chen],
Xu, Z.Y.[Zi-Yue],
Lu, L.[Le],
Harrison, A.P.[Adam P.],
Summers, R.M.[Ronald M.],
Mollura, D.J.[Daniel J.],
Multi-label Deep Regression and Unordered Pooling for Holistic
Interstitial Lung Disease Pattern Detection,
MLMI16(147-155).
Springer DOI
1611
BibRef
Soliman, A.,
Khalifa, F.,
Shaffie, A.,
Dunlap, N.,
Wang, B.,
Elmaghraby, A.,
Gimel'farb, G.,
Ghazal, M.,
El-Baz, A.,
A comprehensive framework for early assessment of lung injury,
ICIP17(3275-3279)
IEEE DOI
1803
Gaussian processes, Laplace equations, Markov processes,
computerised tomography, feature extraction,
RILI
BibRef
Soliman, A.,
Khalifa, F.,
Shaffie, A.,
Liu, N.,
Dunlap, N.,
Wang, B.,
Elmaghraby, A.,
Gimel'farb, G.,
El-Baz, A.,
Image-based CAD system for accurate identification of lung injury,
ICIP16(121-125)
IEEE DOI
1610
Adaptation models
BibRef
Noor, N.M.[Norliza Mohd.],
Rijal, O.M.[Omar Mohd.],
Than, J.C.M.[Joel Chia Ming],
Kassim, R.M.[Rosminah M.],
Yunus, A.[Ashari],
Regression as a Tool to Measure Segmentation Quality and Preliminary
Indicator of Diseased Lungs,
PSIVT15(502-511).
Springer DOI
1602
BibRef
Soliman, A.[Ahmed],
Elnakib, A.[Ahmed],
Khalifa, F.[Fahmi],
El-Ghar, M.A.[Mohamed Abou],
El-Baz, A.[Ayman],
Segmentation of pathological lungs from CT chest images,
ICIP15(3655-3659)
IEEE DOI
1512
Computed Tomography; Lung; Markov Random Field; Pathology; Segmentation
BibRef
Costa, A.[Addson],
Carvalho, B.M.[Bruno M.],
SALSA: A Simple Automatic Lung Segmentation Algorithm,
CIARP15(501-508).
Springer DOI
1511
BibRef
Yao, J.W.[Jia-Wen],
Ganti, D.[Dheeraj],
Luo, X.[Xin],
Xiao, G.H.[Guang-Hua],
Xie, Y.[Yang],
Yan, S.[Shirley],
Huang, J.Z.[Jun-Zhou],
Computer-Assisted Diagnosis of Lung Cancer Using Quantitative Topology
Features,
MLMI15(288-295).
Springer DOI
1511
BibRef
Hossain, M.R.I.[Mir Rayat Imtiaz],
Ahmed, I.[Imran],
Kabir, M.H.[Md. Hasanul],
Automatic Lung Tumor Detection Based on GLCM Features,
FSLCV14(III: 109-121).
Springer DOI
1504
BibRef
Hosseini-Asl, E.[Ehsan],
Zurada, J.M.[Jacek M.],
El-Baz, A.[Ayman],
Automatic segmentation of pathological lung using incremental
nonnegative matrix factorization,
ICIP15(3111-3115)
IEEE DOI
1512
BibRef
Earlier:
Lung segmentation based on Nonnegative Matrix Factorization,
ICIP14(877-881)
IEEE DOI
1502
Nonnegative matrix factorization.
Computed tomography
BibRef
Schlegl, T.[Thomas],
Ofner, J.[Joachim],
Langs, G.[Georg],
Unsupervised Pre-training Across Image Domains Improves Lung Tissue
Classification,
MCV14(82-93).
Springer DOI
1501
BibRef
Gill, G.[Gurman],
Beichel, R.R.[Reinhard R.],
Segmentation of Lungs with Interstitial Lung Disease in CT Scans:
A TV-L 1 Based Texture Analysis Approach,
ISVC14(I: 511-520).
Springer DOI
1501
BibRef
Cheplygina, V.[Veronika],
Sorensen, L.[Lauge],
Tax, D.M.J.[David M.J.],
Pedersen, J.H.[Jesper Holst],
Loog, M.[Marco],
de Bruijne, M.[Marleen],
Classification of COPD with Multiple Instance Learning,
ICPR14(1508-1513)
IEEE DOI
1412
Diseases
BibRef
Orjuela-Cańón, A.D.[Alvaro D.],
Gómez-Cajas, D.F.[Diego F.],
Jiménez-Moreno, R.[Robinson],
Artificial Neural Networks for Acoustic Lung Signals Classification,
CIARP14(214-221).
Springer DOI
1411
BibRef
Wujcicki, A.[Artur],
Materka, A.[Andrzej],
Quantitative and Qualitative Evaluation of Selected Lung MR Image
Registration Techniques,
ICCVG14(653-660).
Springer DOI
1410
BibRef
Amemiya, T.,
Maeda, T.,
Depth and rate estimation for chest compression CPR with smartphone,
3DUI13(125-126)
IEEE DOI
1406
accelerometers
BibRef
Kockelkorn, T.T.J.P.[Thessa T.J.P.],
Sanchez, C.I.[Clara I.],
Grutters, J.C.[Jan C.],
Ramos, R.[Rui],
de Jong, P.A.[Pim A.],
Viergever, M.A.[Max A.],
Ramos, J.[Jose],
Schaefer-Prokop, C.[Cornelia],
van Ginneken, B.[Bram],
Interactive classification of lung tissue in CT scans by combining
prior and interactively obtained training data: A simulation study,
ICPR12(105-108).
WWW Link.
1302
BibRef
Giuca, A.M.[Anne-Marie],
Seitz, K.A.[Kerry A.],
Furst, J.[Jacob],
Raicu, D.[Daniela],
Expanding diagnostically labeled datasets using content-based image
retrieval,
ICIP12(2397-2400).
IEEE DOI
1302
aided diagnosis system. Use CBIR system to label unlabelled images.
BibRef
Taher, F.[Fatma],
Werghi, N.[Naoufel],
Al-Ahmad, H.[Hussain],
Computer aided diagnosis system for early lung cancer detection,
WSSIP15(5-8)
IEEE DOI
1603
biomedical optical imaging
BibRef
Werghi, N.[Naoufel],
Donner, C.[Christian],
Taher, F.[Fatma],
Al-Ahmad, H.[Hussain],
Detection and segmentation of sputum cell for early lung cancer
detection,
ICIP12(2813-2816).
IEEE DOI
1302
BibRef
Zheng, C.J.[Chao-Jie],
Wang, X.Y.[Xiu-Ying],
Chen, J.H.[Jin-Hu],
Yin, Y.[Yong],
Feng, D.D.[David Dagan],
Deformable registration model with local rigidity preservation for
radiation therapy of lung tumor,
ICIP12(1673-1676).
IEEE DOI
1302
BibRef
Abdollahi, B.[Behnoush],
Soliman, A.[Ahmed],
Civelek, A.C.,
Li, X.F.,
Gimel'farb, G.L.,
El-Baz, A.[Ayman],
A novel Gaussian Scale Space-based joint MGRF framework for precise
lung segmentation,
ICIP12(2029-2032).
IEEE DOI
1302
BibRef
And:
A Novel 3D Joint MGRF Framework for Precise Lung Segmentation,
MLMI12(86-93).
Springer DOI
1211
BibRef
Hollensen, C.[Christian],
Cannon, G.[George],
Cannon, D.[Donald],
Bentzen, S.[Sřren],
Larsen, R.[Rasmus],
Lung Tumor Segmentation Using Electric Flow Lines for Graph Cuts,
ICIAR12(II: 206-213).
Springer DOI
1206
BibRef
Faltin, P.[Peter],
Chaisaowong, K.[Kraisorn],
Kraus, T.[Thomas],
Aach, T.[Til],
Markov-Gibbs model based registration of CT lung images using
subsampling for the follow-up assessment of pleural thickenings,
ICIP11(2181-2184).
IEEE DOI
1201
BibRef
Faltin, P.[Peter],
Chaisaowong, K.[Kraisorn],
Aach, T.[Til],
Volume-preserving correction for image registration using free-form
deformations,
ICIP12(2945-2948).
IEEE DOI
1302
BibRef
Wang, C.W.[Ching-Wei],
Yu, C.P.[Cheng-Ping],
Automatic Morphological Classification of Lung Cancer Subtypes with
Boosting Algorithms for Optimizing Therapy,
MLMI11(217-224).
Springer DOI
1109
BibRef
Takano, H.[Hirofumi],
Watanabe, M.[Masahiro],
Hironaka, S.[Shoji],
Mukai, Y.[Yoshiharu],
Aoki, Y.[Yoshimitsu],
Non-contact measurement system for swallowing time using Fiber grating
vision sensor,
FCV11(1-5).
IEEE DOI
1102
Not really lungs.
BibRef
Gangeh, M.J.[Mehrdad J.],
Sřrensen, L.[Lauge],
Shaker, S.B.[Saher B.],
Kamel, M.S.[Mohamed S.],
de Bruijne, M.[Marleen],
Multiple Classifier Systems in Texton-Based Approach for the
Classification of CT Images of Lung,
MCV10(153-163).
Springer DOI
1009
BibRef
de Boer, W.[Willem],
Lasenby, J.[Joan],
Cameron, J.[Jonathan],
Wareham, R.[Rich],
Ahmad, S.[Shiraz],
Roach, C.[Charlotte],
Hills, W.[Ward],
Iles, R.[Richard],
SLP: A Zero-contact Non-invasive Method for Pulmonary Function Testing,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Herberich, G.[Gerlind],
Ivanescu, A.[Anca],
Gamper, I.[Ivonne],
Sechi, A.S.[Antonio S.],
Aach, T.[Til],
Analysis of Length and Orientation of Microtubules in Wide-Field
Fluorescence Microscopy,
DAGM10(182-191).
Springer DOI
1009
BibRef
Murray, V.[Victor],
Pattichis, M.S.[Marios S.],
Soliz, P.[Peter],
Multiscale directional AM-FM demodulation of images using a 2D
optimized method,
ICIP11(249-252).
IEEE DOI
1201
BibRef
Vo, K.T.[Kiet T.],
Sowmya, A.[Arcot],
Scale-Space Representation of Lung HRCT Images for Diffuse Lung Disease
Classification,
ICISP10(550-558).
Springer DOI
1006
BibRef
Earlier:
Diffuse lung disease classification in HRCT lung images using
generalized Gaussian density modeling of wavelets coefficients,
ICIP09(2645-2648).
IEEE DOI
0911
BibRef
Wantroba, J.S.[Joseph S.],
Raicu, D.S.[Daniela S.],
Furst, J.D.[Jacob D.],
A statistical analysis of the effects of CT acquisition parameters on
low-level features extracted from CT images of the lung,
ICIP09(4197-4200).
IEEE DOI
0911
BibRef
Vo, K.T.[Kiet T.],
Sowmya, A.[Arcot],
Multiscale sparse representation of high-resolution computed tomography
(HRCT) lung images for diffuse lung disease classification,
ICIP11(441-444).
IEEE DOI
1201
BibRef
Earlier:
Directional Multi-scale Modeling of High-Resolution Computed Tomography
(HRCT) Lung Images for Diffuse Lung Disease Classification,
CAIP09(663-671).
Springer DOI
0909
BibRef
Baradarani, A.[Aryaz],
Wu, Q.M.J.[Q. M. Jonathan],
Efficient Segmentation of Lung Abnormalities in CT Images,
ICIAR09(749-758).
Springer DOI
0907
BibRef
Franchini, E.[Elena],
Morigi, S.[Serena],
Sgallari, F.[Fiorella],
Composed Segmentation of Tubular Structures by an Anisotropic PDE Model,
SSVM09(75-86).
Springer DOI
0906
BibRef
Ali, A.M.[Asem M.],
Farag, A.A.[Aly A.],
Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using Graph
Cuts,
ISVC08(I: 258-267).
Springer DOI
0812
BibRef
Aliotta, D.[Domenico],
Buffa, P.[Pietro],
Iaccarino, G.[Gennaro],
An Evolutionary General Purpose WebGIS to Disclose EGFR Mutations in
Lung Cancer,
Visual08(xx-yy).
Springer DOI
0809
BibRef
El-Baz, A.S.,
Gimel'farb, G.L.,
Falk, R.,
Holland, T.,
Shaffer, T.,
A Framework for Unsupervised Segmentation of Lung Tissues from Low Dose
Computed Tomography Images,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Georg, M.[Manfred],
Souvenir, R.[Richard],
Hope, A.[Andrew],
Pless, R.[Robert],
Manifold learning for 4D CT reconstruction of the lung,
MMBIA08(1-8).
IEEE DOI
0806
BibRef
da Silva Sousa, J.R.F.[Joăo Rodrigo Ferreira],
Silva, A.C.[Aristófanes Corręa],
de Paiva, A.C.[Anselmo Cardoso],
Lung Structure Classification Using 3D Geometric Measurements and SVM,
CIARP07(783-792).
Springer DOI
0711
BibRef
Gelzinis, A.[Adas],
Verikas, A.[Antanas],
Bacauskiene, M.[Marija],
Categorizing Laryngeal Images for Decision Support,
ACIVS07(521-530).
Springer DOI
0708
BibRef
Korfiatis, P.[Panayiotis],
Skiadopoulos, S.[Spyros],
Sakellaropoulos, P.[Philippos],
Kalogeropoulou, C.[Christina],
Costaridou, L.[Lena],
Automated 3D Segmentation of Lung Fields in Thin Slice CT Exploiting
Wavelet Preprocessing,
CAIP07(237-244).
Springer DOI
0708
BibRef
Bi, J.B.[Jin-Bo],
Liang, J.M.[Jian-Ming],
Multiple Instance Learning of Pulmonary Embolism Detection with
Geodesic Distance along Vascular Structure,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Pedrosa, J.[Joăo],
Sousa, P.[Pedro],
Silva, J.[Joana],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Lesion-Based Chest Radiography Image Retrieval for Explainability in
Pathology Detection,
IbPRIA22(81-94).
Springer DOI
2205
BibRef
Vinhais, C.[Carlos],
Campilho, A.[Aurélio],
Lung Parenchyma Segmentation from CT Images Based on Material
Decomposition,
ICIAR06(II: 624-635).
Springer DOI
0610
BibRef
Earlier:
Genetic Model-Based Segmentation of Chest X-Ray Images Using Free Form
Deformations,
ICIAR05(958-965).
Springer DOI
0509
BibRef
Shojaii, R.,
Alirezaie, J.,
Babyn, P.,
Automatic Lung Segmentation in CT Images using Watershed Transform,
ICIP05(II: 1270-1273).
IEEE DOI
0512
BibRef
Zrimec, T.,
Busayarat, S.,
Wilson, P.,
A 3D model of the human lung with lung regions characterization,
ICIP04(II: 1149-1152).
IEEE DOI
0505
BibRef
Zrimec, T.,
Busayarat, S.,
3D modelling and visualization of the human lung,
3DPVT04(110-115).
IEEE DOI
0412
BibRef
Yim, Y.[Yeny],
Hong, H.[Helen],
Smoothing Segmented Lung Boundary in Chest CT Images Using Scan Line
Search,
CIARP06(147-156).
Springer DOI
0611
BibRef
Hong, H.[Helen],
Lee, J.J.[Jeong-Jin],
Yim, Y.[Yeni],
Shin, Y.G.[Yeong Gil],
Automatic Segmentation and Registration of Lung Surfaces in Temporal
Chest CT Scans,
IbPRIA05(II:463).
Springer DOI
0509
BibRef
Hong, H.[Helen],
Lee, J.J.[Jeong-Jin],
Digital Subtraction CT Lung Perfusion Image Based on 3D Affine
Registration,
DAGM05(393).
Springer DOI
0509
BibRef
Benjelloun, M.[Mohammed],
Segmentation and Feature Extraction to Evaluate the Stomach Dynamic,
CRV05(437-443).
IEEE DOI
0505
BibRef
Mitani, Y.,
Matsunaga, N.,
Hamamoto, Y.,
Artificial images for classifying diffuse lung opacities in thin
section computed tomography images,
ICPR04(III: 530-533).
IEEE DOI
0409
BibRef
Mitani, Y.,
Yasuda, H.,
Kido, S.,
Ueda, K.,
Matsunaga, N.,
Hamamoto, Y.,
Combining the gabor and histogram features for classifying diffuse lung
opacities in thin-section computed tomography,
ICPR02(I: 53-56).
IEEE DOI
0211
BibRef
Ericsson, A.[Anders],
Huart, A.[Amelié],
Ekefjärd, A.[Andreas],
Ĺström, K.[Kalle],
Holst, H.[Holger],
Evander, E.[Eva],
Wollmer, P.[Per],
Edenbrandt, L.[Lars],
Automated Interpretation of Ventilation-Perfusion Lung Scintigrams for
the Diagnosis of Pulmonary Embolism Using Support Vector Machines,
SCIA03(415-421).
Springer DOI
0310
BibRef
Benmansour, F.[Fethallah],
Cohen, L.D.[Laurent D.],
Tubular Anisotropy Segmentation,
SSVM09(14-25).
Springer DOI
0906
BibRef
Hirano, Y.,
Toriwaki, J.,
Hasegawa, J.I.,
Eguchi, K.,
Ohmatsu, H.,
Quantification of shrinkage of lung lobe from chest ct images using the
3d extended voronoi division and its application to the
benign/malignant discrimination of tumor shadows,
ICPR02(I: 751-754).
IEEE DOI
0211
BibRef
Kitasaka, T.,
Mori, K.,
Suenaga, Y.,
Toriwaki, J.I.,
Saito, T.,
Hasegawa, J.I.,
Extraction of Lung Region From 3D Chest X-ray CT Images by Using Shape
Model Information of Lung,
SCIA99(Biological Applications).
BibRef
9900
Mori, K.,
Hasegawa, J.I.,
Toriwaki, J.I.,
Anno, H.,
Katada, K.,
Automated Extraction and Visualization of Bronchus from 3D CT Images
of Lung,
CVRMed95(XX-YY)
BibRef
9500
Luo, H.,
Automatic Segmentation of Lung Regions in Chest Radiographs:
A Model Guided Approach,
ICIP00(Vol II: 483-486).
IEEE DOI
0008
BibRef
Wei, J.[Jun],
Hagihara, Y.[Yoshihiro],
Kobatake, H.[Hidefumi],
Detection of Cancerous Tumors on Chest X-ray Images:
Candidate Detection Filter and Its Evaluation,
ICIP99(III:397-401).
IEEE DOI
BibRef
9900
Yamamoto, S.,
Jiang, H.,
Matsumoto, M.,
Tateno, Y.,
Iinuma, T., and
Matsumoto, T.,
Image Processing for Computer-Aided Diagnosis of
Lung Cancer by CT (LSCT),
WACV96(236-241).
IEEE DOI
9609
BibRef
Thimm, G.[Georg],
Tracking Articulators in X-ray Movies of the Vocal Tract,
CAIP99(126-133).
Springer DOI
9909
BibRef
Wei, J.[Jun],
Hagihara, Y.,
Kobatake, H.,
Detection of rounded opacities on chest radiographs using convergence
index filter,
CIAP99(757-761).
IEEE DOI
9909
BibRef
Okumura, T.[Toshiaki],
Miwa, T.[Tomoko],
Kako, J.I.[Jun-Ichi],
Yamamoto, S.[Shinji],
Matsumoto, M.[Mitsuomi],
Tateno, Y.[Yukio],
Iinuma, T.[Takeshi],
Matsumoto, T.[Tohru],
Automatic Detection of Lung Cancers in Chest CT Images by Variable
N-Quoit Filter,
ICPR98(Vol II: 1671-1673).
IEEE DOI
9808
BibRef
Hayashibe, R.,
Asano, N.,
Hirohata, H.,
Okumura, K.,
Kondo, S.,
Handa, S.,
Takizawa, M.,
Sone, S.,
Oshita, S.,
An automatic lung cancer detection from X-ray images obtained through
yearly serial mass survey,
ICIP96(I: 343-346).
IEEE DOI
9610
BibRef
Tozaki, T.,
Kawata, Y.,
Niki, N.,
Ohmatsu, H.,
Eguchi, K.,
Moriyama, N.,
3D image analysis of the lung area using thin section CT images and its
application to differential diagnosis,
ICIP96(II: 281-284).
IEEE DOI
9610
BibRef
Young, S.,
Fourier-Based Dose Calculation in Radiation Brachytherapy,
ICIP97(II: 132-135).
IEEE DOI
BibRef
9700
Sammouda, M.[Mohamed],
Sammouda, R.[Rachid],
Niki, N.[Noboru],
Mukai, K.[Kyoshi],
Segmentation and Analysis of Liver Cancer Pathological Color Images
based on Artificial Neural Networks,
ICIP99(III:392-396).
IEEE DOI
BibRef
9900
Taher, F.[Fatma],
Sammouda, R.[Rachid],
Artificial Neural Network and Fuzzy Clustering Methods in Segmenting
Sputum Color Images for Lung Cancer Diagnosis,
ICISP10(513-520).
Springer DOI
1006
BibRef
Sammouda, R.[Rachid],
Niki, N.[Noboru],
Nishitani, H.[Hiromu],
Nakamura, S.,
Mori, S.,
Segmentation of sputum color image for lung cancer diagnosis based on
neural networks,
CIAP97(II: 461-468).
Springer DOI
9709
BibRef
And:
Segmentation of sputum color image for lung cancer diagnosis,
ICIP97(I: 243-246).
IEEE DOI
9710
BibRef
Chmielewski, L.,
Chmielewska, E.,
Sklodowski, M.,
Cudny, W.,
Skoczylas, J.,
Finding postirradiation reaction in lungs from digitized X-rays,
CAIP95(850-855).
Springer DOI
9509
BibRef
Kim, N.H.,
Aggarwal, S.J.,
Bovik, A.C.,
Diller, K.R.,
Computing shape changes in SOLANUM tuberosa slices viewed through a
stereo microscope,
ICPR88(II: 1213-1215).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Chest X-Ray Analysis .