21.7.3 Lungs, and Lung Cancer Image Analysis

Chapter Contents (Back)
Lungs. Lung Cancer. Medical, Applications.
See also Chest X-Ray Analysis.
See also Pulmonary Nodules, Lung Nodules.
See also Airway Tree Structure.
See also Emphysema, Lung Analysis.
See also Bronchoscopy Systems, Bronchial Analysis.
See also Lung Motion Analysis, Respiration, Breathing.

Sutton, R.N., Hall, E.L.,
Texture Measures for Automatic Classification of Pulmonary Disease,
TC(21), No. 7, July 1972, pp. 667-676. BibRef 7207

Chien, Y.P., Fu, K.S.,
Recognition of X-Ray Picture Patterns,
SMC(4), 1974, pp. 145-156. BibRef 7400

Pahlplatz, M.M.M., Katzko, M.W., Hesselmans, G.H.F.M., Oud, P.S., Vooys, G.P.,
Two Methods for Analyzing Pleural Smears for the Presence of Abnormalities,
PRL(4), 1986, pp. 405-411. BibRef 8600

Pan, T.S.[Tin Su], King, M.A., de Vries, D.J., Ljungberg, M.,
Correction to 'Segmentation of the Body and Lungs from Compton Scatter and Photopeak Window Data,
MedImg(15), No. 3, June 1996, pp. 394.
IEEE Top Reference. 0203
BibRef

Hu, S., Hoffman, E.A., Reinhardt, J.M.,
Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images,
MedImg(20), No. 6, June 2001, pp. 490-498.
IEEE Top Reference. 0110
BibRef

Zhang, L., Hoffman, E.A., Reinhardt, J.M.,
Atlas-Driven Lung Lobe Segmentation in Volumetric X-Ray CT Images,
MedImg(25), No. 1, January 2006, pp. 1-16.
IEEE DOI 0601
BibRef

Ukil, S., Reinhardt, J.M.,
Anatomy-Guided Lung Lobe Segmentation in X-Ray CT Images,
MedImg(28), No. 2, February 2009, pp. 202-214.
IEEE DOI 0902
BibRef

Cao, K.[Kunlin], Ding, K.[Kai], Christensen, G.E.[Gary E.], Raghavan, M.L.[Madhavan L.], Amelon, R.E.[Ryan E.], Reinhardt, J.M.[Joseph M.],
Unifying Vascular Information in Intensity-Based Nonrigid Lung CT Registration,
WBIR10(1-12).
Springer DOI 1007
BibRef

Blechschmidt, R.A., Werthschutzky, R., Lorcher, U.,
Automated CT image evaluation of the lung: a morphology-based concept,
MedImg(20), No. 5, May 2001, pp. 434-442.
IEEE Top Reference. 0110
BibRef

Fan, L.X.[Lie-Xiang], Santago, P., Jiang, H.[Huai], Herrington, D.M.,
Ultrasound measurement of brachial flow-mediated vasodilator response,
MedImg(19), No. 6, June 2000, pp. 621-631.
IEEE Top Reference. 0110
BibRef

Frerichs, I., Hinz, J., Herrmann, P., Weisser, G., Hahn, G., Quintel, M., Hellige, G.,
Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam ct imaging,
MedImg(21), No. 6, June 2002, pp. 646-652.
IEEE Top Reference. 0208
BibRef

Lee, Z.H.[Zheng-Hong], Berridge, M.S.,
PET imaging-based evaluation of aerosol drugs and their delivery devices: nasal and pulmonary studies,
MedImg(21), No. 10, October 2002, pp. 1324-1331.
IEEE Top Reference. 0301
BibRef

Sonka, M., Liang, W.D.[Wei-Dong], Lauer, R.M.,
Automated analysis of brachial ultrasound image sequences: early detection of cardiovascular disease via surrogates of endothelial function,
MedImg(21), No. 10, October 2002, pp. 1271-1279.
IEEE Top Reference. 0301
BibRef

Koning, G., Tuinenburg, J.C., Hekking, E., Peelen, J., van Weert, A.W.M., Bergkamp, D., Goedhart, B., Reiber, J.H.C.,
A novel measurement technique to assess the effects of coronary brachytherapy in clinical trials,
MedImg(21), No. 10, October 2002, pp. 1254-1263.
IEEE Top Reference. 0301
BibRef

Masutani, Y., MacMahon, H., Doi, K.[Kunio],
Computerized detection of pulmonary embolism in spiral CT angiography based on volumetric image analysis,
MedImg(21), No. 12, December 2002, pp. 1517-1523.
IEEE Top Reference. 0301
BibRef

Ray, N., Acton, S.T., Altes, T., de Lange, E.E., Brookeman, J.R.,
Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation,
MedImg(22), No. 2, February 2003, pp. 189-199.
IEEE Top Reference. 0304
BibRef

Ray, N., Acton, S.T., Altes, T., de Lange, E.E.,
MRI Ventilation Analysis by Merging Parametric Active Contours,
ICIP01(II: 861-864).
IEEE DOI 0108
BibRef

Behrens, T., Rohr, K.[Karl], Stiehl, H.S.[H. Siegfried],
Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking,
SMC-B(33), No. 4, August 2003, pp. 554-561.
IEEE Abstract. 0308
BibRef
Earlier:
Using an Extended Hough Transform Combined with a Kalman Filter to Segment Tubular Structures in 3-D Medical Images,
VMV01(xx-yy).
PDF File. 0209
BibRef

Jiang, M.[Ming], Ji, Q.A.[Qi-Ang], McEwen, B.F.[Bruce F.],
Automated Extraction of Fine Features of Kinetochore Microtubules and Plus-Ends From Electron Tomography Volume,
IP(15), No. 7, July 2006, pp. 2035-2048.
IEEE DOI 0606
BibRef
Earlier:
Automated Extraction of Microtubules and Their Plus-Ends,
WACV05(I: 336-341).
IEEE DOI 0502
BibRef

Liang, L.C.[Li-Chen], Ji, Q.A.[Qi-Ang], McEwen, B.F.,
Extraction of 3d microtubules axes from cellular electron tomography images,
ICPR02(I: 804-807).
IEEE DOI 0211
BibRef

Luo, H., Luo, J.,
Robust Online Orientation Correction for Radiographs in PACS Environments,
MedImg(25), No. 10, October 2006, pp. 1370-1379.
IEEE DOI 0609
BibRef

Singh, V.[Vikas], Mukherjee, L.[Lopamudra], Xu, J.H.[Jin-Hui], Hoffmann, K.R., Dinu, P.M., Podgorsak, M.,
Brachytherapy Seed Localization Using Geometric and Linear Programming Techniques,
MedImg(26), No. 9, September 2007, pp. 1291-1304.
IEEE DOI 0710
BibRef

Mukherjee, L.[Lopamudra], Singh, V.[Vikas], Peng, J.M.[Ji-Ming], Xu, J.H.[Jin-Hui], Zeitz, M.J.[Michael J.], Berezney, R.[Ronald],
Generalized Median Graphs: Theory and Applications,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Miller, G.W., Carl, M., Mata, J.F., Cates, Jr., G.D., Mugler, III, J.P.,
Simulations of Short-Time Diffusivity in Lung Airspaces and Implications for S/V Measurements Using Hyperpolarized-Gas MRI,
MedImg(26), No. 11, November 2007, pp. 1456-1463.
IEEE DOI 0709
BibRef

Lohscheller, J., Eysholdt, U., Toy, H., Dollinger, M.,
Phonovibrography: Mapping High-Speed Movies of Vocal Fold Vibrations Into 2-D Diagrams for Visualizing and Analyzing the Underlying Laryngeal Dynamics,
MedImg(27), No. 3, March 2008, pp. 300-309.
IEEE DOI 0803
BibRef

Luegmair, G., Mehta, D.D., Kobler, J.B., Dollinger, M.,
Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System,
MedImg(34), No. 12, December 2015, pp. 2572-2582.
IEEE DOI 1601
biomechanics BibRef

Luegmair, G., Kniesburges, S., Zimmermann, M., Sutor, A., Eysholdt, U., Dollinger, M.,
Optical Reconstruction of High-Speed Surface Dynamics in an Uncontrollable Environment,
MedImg(29), No. 12, December 2010, pp. 1979-1991.
IEEE DOI 1101
BibRef

Smal, I., Draegestein, K., Galjart, N., Niessen, W.J., Meijering, E.H.W.,
Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis,
MedImg(27), No. 6, June 2008, pp. 789-804.
IEEE DOI 0711
BibRef

Malik, A.S.[Aamir Saeed], Choi, T.S.[Tae-Sun],
Differentiating Honeycombed Images from Normal HRCT Lung Images,
IEICE(E92-D), No. 5, May 2009, pp. 1218-1221.
WWW Link. 0907
BibRef
Earlier:
Multiscale Segmentation of HRCT Images Using Bipolar Incoherent Filtering,
ISVC05(76-83).
Springer DOI 0512
BibRef

Bouma, H., Sonnemans, J.J., Vilanova, A., Gerritsen, F.A.,
Automatic Detection of Pulmonary Embolism in CTA Images,
MedImg(28), No. 8, August 2009, pp. 1223-1230.
IEEE DOI 0909
BibRef

Elizabeth, D.S.[D. Shiloah], Kannan, A., Nehemiah, H.K.[H. Khanna],
Computer-aided diagnosis system for the detection of bronchiectasis in chest computed tomography images,
IJIST(19), No. 4, December 2009, pp. 290-298.
DOI Link 0912
BibRef

Elizabeth, D.S., Nehemiah, H.K., Retmin Raj, C.S., Kannan, A.,
Computer-aided diagnosis of lung cancer based on analysis of the significant slice of chest computed tomography image,
IET-IPR(6), No. 6, 2012, pp. 697-705.
DOI Link 1210
BibRef

Huysmans, T.[Toon], Sijbers, J.[Jan], Brigitte, V.[Verdonk],
Automatic Construction of Correspondences for Tubular Surfaces,
PAMI(32), No. 4, April 2010, pp. 636-651.
IEEE DOI 1003
Obtain correspondences for tubular shapes. MDL used to optimize parameterization. BibRef

Pinho, R.[Romulo], Sijbers, J.[Jan], Huysmans, T.[Toon],
Segmentation of the Human Trachea Using Deformable Statistical Models of Tubular Shapes,
ACIVS07(531-542).
Springer DOI 0708
BibRef

van Rikxoort, E.M., Prokop, M., de Hoop, B., Viergever, M.A., Pluim, J.P.W., van Ginneken, B.,
Automatic Segmentation of Pulmonary Lobes Robust Against Incomplete Fissures,
MedImg(29), No. 6, June 2010, pp. 1286-1296.
IEEE DOI 1007
BibRef

Lassen, B., van Rikxoort, E.M., Schmidt, M., Kerkstra, S., van Ginneken, B., Kuhnigk, J.M.,
Automatic Segmentation of the Pulmonary Lobes From Chest CT Scans Based on Fissures, Vessels, and Bronchi,
MedImg(32), No. 2, February 2013, pp. 210-222.
IEEE DOI 1301
BibRef

Dawoud, A.[Amer],
Lung segmentation in chest radiographs by fusing shape information in iterative thresholding,
IET-CV(5), No. 3, 2011, pp. 185-190.
DOI Link 1106
BibRef
Earlier:
Fusing Shape Information in Lung Segmentation in Chest Radiographs,
ICIAR10(II: 70-78).
Springer DOI 1006
BibRef

Feulner, J., Zhou, S.K., Hammon, M., Seifert, S., Huber, M., Comaniciu, D., Hornegger, J., Cavallaro, A.,
A Probabilistic Model for Automatic Segmentation of the Esophagus in 3-D CT Scans,
MedImg(30), No. 6, June 2011, pp. 1252-1264.
IEEE DOI 1101
BibRef

Yang, Q.[Qian], Karpikov, A.[Alexander], Toomre, D.[Derek], Duncan, J.S.[James S.],
3-D Reconstruction of Microtubules From Multi-Angle Total Internal Reflection Fluorescence Microscopy Using Bayesian Framework,
IP(20), No. 8, August 2011, pp. 2248-2259.
IEEE DOI 1108
BibRef
Earlier:
3-D reconstruction and measurement of microtubules from multiple angle-total internal reflection fluorescence microscopy,
MMBIA09(172-177).
IEEE DOI 0906
BibRef

Massoptier, L.[Laurent], Misra, A.[Avishkar], Sowmya, A.[Arcot], Casciaro, S.[Sergio],
Combining Graph-cut Technique And Anatomical Knowledge For Automatic Segmentation Of Lungs Affected By Diffuse Parenchymal Disease In Hrct Images,
IJIG(11), No. 4, October 2011, pp. 509-529.
DOI Link 1201
BibRef

Sorensen, L., Nielsen, M., Lo, P.[Pechin], Ashraf, H., Pedersen, J.H., de Bruijne, M.,
Texture-Based Analysis of COPD: A Data-Driven Approach,
MedImg(31), No. 1, January 2012, pp. 70-78.
IEEE DOI 1201
BibRef

Sun, S., Bauer, C., Beichel, R.,
Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach,
MedImg(31), No. 2, February 2012, pp. 449-460.
IEEE DOI 1202
BibRef

Zhang, Y.[Yu], Wu, G.R.[Guo-Rong], Yap, P.T.[Pew-Thian], Feng, Q.J.[Qian-Jin], Lian, J.[Jun], Chen, W.F.[Wu-Fan], Shen, D.G.[Ding-Gang],
Hierarchical Patch-Based Sparse Representation: A New Approach for Resolution Enhancement of 4D-CT Lung Data,
MedImg(31), No. 11, November 2012, pp. 1993-2005.
IEEE DOI 1211
BibRef
Earlier:
Reconstruction of super-resolution lung 4D-CT using patch-based sparse representation,
CVPR12(925-931).
IEEE DOI 1208
BibRef

Shao, Y.Q.[Ye-Qin], Gao, Y.Z.[Yao-Zong], Guo, Y.R.[Yan-Rong], Shi, Y.H.[Yong-Hong], Yang, X.[Xin], Shen, D.G.[Ding-Gang],
Hierarchical Lung Field Segmentation With Joint Shape and Appearance Sparse Learning,
MedImg(33), No. 9, September 2014, pp. 1761-1780.
IEEE DOI 1410
diagnostic radiography BibRef

Gu, Y.H.[Yu-Hua], Kumar, V.[Virendra], Hall, L.O.[Lawrence O.], Goldgof, D.B.[Dmitry B.], Li, C.Y.[Ching-Yen], Korn, R.[René], Bendtsen, C.[Claus], Velazquez, E.R.[Emmanuel Rios], Dekker, A.[Andre], Aerts, H.[Hugo], Lambin, P.[Philippe], Li, X.L.[Xiu-Li], Tian, J.[Jie], Gatenby, R.A.[Robert A.], Gillies, R.J.[Robert J.],
Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach,
PR(46), No. 3, March 2013, pp. 692-702.
Elsevier DOI 1212
Image features; Delineation; Lung tumor; Lesion; CT; Region growing; Ensemble segmentation BibRef

Martins, A.L.D.[Ana L. D.], Mascarenhas, N.D.A.[Nelson D.A.],
Spatio-Temporal Resolution Enhancement of Vocal Tract MRI Sequences: A Comparison Among Wiener Filter Based Methods,
JMIV(45), No. 3, March 2013, pp. 200-213.
WWW Link. 1301
BibRef

Song, Y.[Yang], Cai, W.D.[Wei-Dong], Zhou, Y., Feng, D.D.[David Dagan],
Feature-Based Image Patch Approximation for Lung Tissue Classification,
MedImg(32), No. 4, April 2013, pp. 797-808.
IEEE DOI 1304
BibRef

Zhang, F.[Fan], Song, Y.[Yang], Cai, W.D.[Wei-Dong], Zhou, Y.[Yun], Shan, S.M.[Shi-Min], Feng, D.D.[D. Dagan],
Context Curves for Classification of Lung Nodule Images,
DICTA13(1-7)
IEEE DOI 1402
computerised tomography BibRef

Song, Y.[Yang], Li, Q.[Qing], Huang, H.[Heng], Feng, D.D.[David Dagan], Chen, M.[Mei], Cai, W.D.[Wei-Dong],
Low Dimensional Representation of Fisher Vectors for Microscopy Image Classification,
MedImg(36), No. 8, August 2017, pp. 1636-1649.
IEEE DOI 1708
BibRef
Earlier:
Histopathology Image Categorization with Discriminative Dimension Reduction of Fisher Vectors,
BioImage16(I: 306-317).
Springer DOI 1611
Biomarkers, Biomedical imaging, Breast cancer, Feature extraction, Microscopy, Fisher vector, dimensionality reduction, discriminative learning, feature, learning BibRef

Song, Y.[Yang], Cai, W.D.[Wei-Dong], Eberl, S.[Stefan], Fulham, M.J.[Michael J.], Feng, D.D.[David Dagan],
Structure-Adaptive Feature Extraction and Representation for Multi-modality Lung Images Retrieval,
DICTA10(152-157).
IEEE DOI 1012
BibRef

Song, Y.[Yang], Cai, W.D.[Wei-Dong], Feng, D.D.,
Microscopic Image Segmentation with Two-Level Enhancement of Feature Discriminability,
DICTA12(1-6).
IEEE DOI 1303
BibRef

Xu, R.[Rui], Hirano, Y.S.[Yasu-Shi], Tachibana, R.[Rie], Kido, S.[Shoji],
A Bag-of-Features Approach to Classify Six Types of Pulmonary Textures on High-Resolution Computed Tomography,
IEICE(E96-D), No. 4, April 2013, pp. 845-855.
WWW Link. 1304
BibRef

Heinrich, M.P.[Mattias P.], Jenkinson, M.[Mark], Brady, M.[Michael], Schnabel, J.A.[Julia A.],
MRF-Based Deformable Registration and Ventilation Estimation of Lung CT,
MedImg(32), No. 7, 2013, pp. 1239-1248.
IEEE DOI 1307
Markov processes BibRef

Heinrich, M.P.[Mattias P.], Papiez, B.W.[Bartlomiej W.], Schnabel, J.A.[Julia A.], Handels, H.[Heinz],
Non-parametric Discrete Registration with Convex Optimisation,
WBIR14(51-61).
Springer DOI 1407
BibRef

Degen, J., Heinrich, M.P.[Mattias P.],
Multi-Atlas Based Pseudo-CT Synthesis Using Multimodal Image Registration and Local Atlas Fusion Strategies,
WBIR16(600-608)
IEEE DOI 1612
BibRef

Heinrich, M.P.[Mattias P.], Jenkinson, M.[Mark], Gleeson, F.V.[Fergus V.], Brady, S.M.[Sir Michael], Schnabel, J.A.[Julia A.],
Deformable multimodal registration with gradient orientation based on structure tensors,
BMVA(2011), No. 2, 2011, pp. 1-11.
PDF File. 1209
BibRef

Cahill, N.D.[Nathan D.], Schnabel, J.A.[Julia A.], Noble, J.A.[J. Alison], Hawkes, D.J.[David J.],
Revisiting overlap invariance in medical image alignment,
Tensor08(1-8).
IEEE DOI 0806
BibRef

Edwards, P.J., Hill, D.L.G., Little, J.A., Sahni, V.A.S., Hawkes, D.J.,
Medical Image Registration Incorporating Deformations,
BMVC95(xx-yy).
PDF File. 9509
BibRef

Wang, C.W.[Ching-Wei], Yu, C.P.[Cheng-Ping],
Automated morphological classification of lung cancer subtypes using H&E tissue images,
MVA(24), No. 7, October 2013, pp. 1383-1391.
WWW Link. 1309
BibRef

Candemir, S., Jaeger, S., Palaniappan, K., Musco, J.P., Singh, R.K., Xue, Z.Y.[Zhi-Yun], Karargyris, A., Antani, S., Thoma, G., McDonald, C.J.,
Lung Segmentation in Chest Radiographs Using Anatomical Atlases With Nonrigid Registration,
MedImg(33), No. 2, February 2014, pp. 577-590.
IEEE DOI 1403
Radon transforms BibRef

Devan, L.[Lakshmi], Santosham, R.[Roy], Hariharan, R.[Ranganathan],
Automated texture-based characterization of fibrosis and carcinoma using low-dose lung CT images,
IJIST(24), No. 1, 2014, pp. 39-44.
DOI Link 1403
artificial neural network BibRef

Mansoor, A., Bagci, U., Xu, Z.Y.[Zi-Yue], Foster, B., Olivier, K.N., Elinoff, J.M., Suffredini, A.F., Udupa, J.K., Mollura, D.J.,
A Generic Approach to Pathological Lung Segmentation,
MedImg(33), No. 12, December 2014, pp. 2293-2310.
IEEE DOI 1412
BibRef
And: Correction: MedImg(34), No. 1, January 2015, pp. 354-354.
IEEE DOI 1502
Computed tomography; Fuzzy set theory; Image segmentation;Lungs BibRef

Kecheril, S.S.[S. Sajith], Venkataraman, D., Suganthi, J., Sujathan, K.,
Automated lung cancer detection by the analysis of glandular cells in sputum cytology images using scale space features,
SIViP(9), No. 4, May 2015, pp. 851-863.
Springer DOI 1504
BibRef

Ju, W.[Wei], Xiang, D.[Deihui], Zhang, B.[Bin], Wang, L.R.[Li-Rong], Kopriva, I., Chen, X.J.[Xin-Jian],
Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images,
IP(24), No. 12, December 2015, pp. 5854-5867.
IEEE DOI 1512
BibRef
Earlier: Correction: IP(25), No. 3, March 2016, pp. 1192-1192.
IEEE DOI 1602
Atomic beams; Lungs; Tumors. computerised tomography BibRef

Chong, D.Y., Kim, H.J., Lo, P., Young, S., McNitt-Gray, M.F., Abtin, F., Goldin, J.G., Brown, M.S.,
Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features,
MedImg(35), No. 1, January 2016, pp. 144-157.
IEEE DOI 1601
Computed tomography BibRef

Hurtado, D.E., Villarroel, N., Retamal, J., Bugedo, G., Bruhn, A.,
Improving the Accuracy of Registration-Based Biomechanical Analysis: A Finite Element Approach to Lung Regional Strain Quantification,
MedImg(35), No. 2, February 2016, pp. 580-588.
IEEE DOI 1602
Approximation methods BibRef

Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.,
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network,
MedImg(35), No. 5, May 2016, pp. 1207-1216.
IEEE DOI 1605
Computed tomography BibRef

Xiao, C., Stoel, B.C., Bakker, M.E., Peng, Y., Stolk, J., Staring, M.,
Pulmonary Fissure Detection in CT Images Using a Derivative of Stick Filter,
MedImg(35), No. 6, June 2016, pp. 1488-1500.
IEEE DOI 1606
Computed tomography BibRef

Islam, M.S.[M. Sirajul], Kitchen, M.J.[Marcus J.],
GPU accelerated regional lung air volume measurements from phase contrast X-ray images,
RealTimeIP(12), No. 1, June 2016, pp. 43-54.
WWW Link. 1606
BibRef

Semmler, M., Kniesburges, S., Birk, V., Ziethe, A., Patel, R., Döllinger, M.,
3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings,
MedImg(35), No. 7, July 2016, pp. 1615-1624.
IEEE DOI 1608
biomedical optical imaging BibRef

Procházka, A.[Aleš], Kuchynka, J.[Jirí], Vyšata, O.[Oldrich], Schätz, M.[Martin], Yadollahi, M.[Mohammadreza], Sanei, S.[Saeid], Vališ, M.[Martin],
Sleep scoring using polysomnography data features,
SIViP(12), No. 6, September 2018, pp. 1043-1051.
Springer DOI 1808
BibRef

van Tulder, G.[Gijs], de Bruijne, M.[Marleen],
Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines,
MedImg(35), No. 5, May 2016, pp. 1262-1272.
IEEE DOI 1605
BibRef
Earlier:
Learning Features for Tissue Classification with the Classification Restricted Boltzmann Machine,
MCV14(47-58).
Springer DOI 1501
Computed tomography BibRef

van Tulder, G.[Gijs], de Bruijne, M.[Marleen],
Learning Cross-Modality Representations From Multi-Modal Images,
MedImg(38), No. 2, February 2019, pp. 638-648.
IEEE DOI 1902
BibRef
Earlier:
Representation Learning for Cross-Modality Classification,
MCV16(126-136).
Springer DOI 1711
Magnetic resonance imaging, Biomedical imaging, Encoding, Decoding, Training, Image reconstruction, Computed tomography, deep learning BibRef

Bragman, F.J.S., McClelland, J.R., Jacob, J., Hurst, J.R., Hawkes, D.J.,
Pulmonary Lobe Segmentation With Probabilistic Segmentation of the Fissures and a Groupwise Fissure Prior,
MedImg(36), No. 8, August 2017, pp. 1650-1663.
IEEE DOI 1708
Biomedical imaging, Brain modeling, Image segmentation, Lungs, Probabilistic logic, Sociology, Statistics, Lobe segmentation, fissure segmentation, pulmonary, image, analysis BibRef

Muller, P.A.[Peter A.], Mueller, J.L.[Jennifer L.], Mellenthin, M.M.[Michelle M.],
Real-Time Implementation of Caldeórn's Method on Subject-Specific Domains,
MedImg(36), No. 9, September 2017, pp. 1868-1875.
IEEE DOI 1709
electric impedance imaging, EIT, lung, electrical impedance tomography, human thorax, BibRef

Anantrasirichai, N., Hayes, W., Allinovi, M., Bull, D., Achim, A.,
Line Detection as an Inverse Problem: Application to Lung Ultrasound Imaging,
MedImg(36), No. 10, October 2017, pp. 2045-2056.
IEEE DOI 1710
Inverse problems, Lungs, Noise measurement, Radon, Speckle, Transforms, Ultrasonic imaging, ADMM, Line detection, deconvolution, image restoration, inverse problem, sparsity regularisation, ultrasound BibRef

Mittal, A.[Ajay], Hooda, R.[Rahul], Sofat, S.[Sanjeev],
Lung field segmentation in chest radiographs: a historical review, current status, and expectations from deep learning,
IET-IPR(11), No. 11, November 2017, pp. 937-952.
DOI Link 1711
BibRef

Zhang, Y.K.[Yuan-Ke], Rong, J.Y.[Jun-Yan], Lu, H.B.[Hong-Bing], Xing, Y.X.[Yu-Xiang], Meng, J.[Jing],
Low-Dose Lung CT Image Restoration Using Adaptive Prior Features From Full-Dose Training Database,
MedImg(36), No. 12, December 2017, pp. 2510-2523.
IEEE DOI 1712
Computed tomography, Databases, Image restoration, Lungs, Principal component analysis, restoration BibRef

Gao, Y.F.[Yong-Feng], Liang, Z.R.[Zheng-Rong], Moore, W.[William], Zhang, H.[Hao], Pomeroy, M.J.[Marc J.], Ferretti, J.A.[John A.], Bilfinger, T.V.[Thomas V.], Ma, J.H.[Jian-Hua], Lu, H.B.[Hong-Bing],
A Feasibility Study of Extracting Tissue Textures From a Previous Full-Dose CT Database as Prior Knowledge for Bayesian Reconstruction of Current Low-Dose CT Images,
MedImg(38), No. 8, August 2019, pp. 1981-1992.
IEEE DOI 1908
Image reconstruction, Databases, Computed tomography, Radiology, Bayes methods, Image edge detection, Low dose CT, Bayesian image reconstruction BibRef

Yin, Y., Sedlaczek, O., Müller, B., Warth, A., González-Vallinas, M., Lahrmann, B., Grabe, N., Kauczor, H.U., Breuhahn, K., Vignon-Clementel, I.E., Drasdo, D.,
Tumor Cell Load and Heterogeneity Estimation From Diffusion-Weighted MRI Calibrated With Histological Data: an Example From Lung Cancer,
MedImg(37), No. 1, January 2018, pp. 35-46.
IEEE DOI 1801
biodiffusion, biomedical MRI, cancer, cellular biophysics, computerised tomography, deconvolution, image colour analysis, tumor cellularity BibRef

de Carvalho Filho, A.O.[Antonio Oseas], Corręa Silva, A.[Aristofanes], Cardoso de Paiva, A.[Anselmo], Acatauassú Nunes, R.[Rodolfo], Gattass, M.[Marcelo],
Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network,
PR(81), 2018, pp. 200-212.
Elsevier DOI 1806
Lung cancer, Phylogenetic diversity index, Convolutional neural network BibRef

Oluyide, O.M.[Oluwakorede M.], Tapamo, J.R.[Jules-Raymond], Viriri, S.[Serestina],
Automatic lung segmentation based on Graph Cut using a distance-constrained energy,
IET-CV(12), No. 5, August 2018, pp. 609-615.
DOI Link 1807
BibRef

Novikov, A.A., Lenis, D., Major, D., Hladuvka, J., Wimmer, M., Bühler, K.,
Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs,
MedImg(37), No. 8, August 2018, pp. 1865-1876.
IEEE DOI 1808
Lung, Image segmentation, Heart, Task analysis, Biomedical imaging, Shape, Feature extraction, Lung segmentation, JSRT dataset BibRef

Netto, S.M.B., Bandeira Diniz, J.O., Silva, A.C., de Paiva, A.C., Nunes, R.A., Gattass, M.,
Modified Quality Threshold Clustering for Temporal Analysis and Classification of Lung Lesions,
IP(28), No. 4, April 2019, pp. 1813-1823.
IEEE DOI 1901
cancer, computerised tomography, feature extraction, image classification, lung, medical image processing, temporal analysis BibRef

Li, X.M.[Xiao-Mei], Dong, X.P.[Xiao-Peng], Lian, J.[Jian], Zhang, Y.[Yan], Yu, J.M.[Jin-Ming],
Knockoff filter-based feature selection for discrimination of non-small cell lung cancer in CT image,
IET-IPR(13), No. 3, February 2019, pp. 543-548.
DOI Link 1903
BibRef

Zhou, B., Chen, A., Crawford, R., Dogdas, B., Goldmarcher, G.,
A Progressively-Trained Scale-Invariant and Boundary-Aware Deep Neural Network for the Automatic 3D Segmentation of Lung Lesions,
WACV19(1-10)
IEEE DOI 1904
computerised tomography, image segmentation, lung, medical image processing, neural nets, supervised learning, Training data BibRef

Eppenhof, K.A.J., Pluim, J.P.W.,
Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks,
MedImg(38), No. 5, May 2019, pp. 1097-1105.
IEEE DOI 1905
Training, Image registration, Strain, Lung, Biomedical imaging, Computed tomography, Convolutional neural networks, machine learning BibRef

Chen, G., Xiang, D., Zhang, B., Tian, H., Yang, X., Shi, F., Zhu, W., Tian, B., Chen, X.,
Automatic Pathological Lung Segmentation in Low-Dose CT Image Using Eigenspace Sparse Shape Composition,
MedImg(38), No. 7, July 2019, pp. 1736-1749.
IEEE DOI 1907
Shape, Lung, Image segmentation, Pathology, Computed tomography, Strain, discriminative appearance dictionary BibRef

Nezamabadi, K.[Kasra], Naseri, Z.[Zeinab], Abrishami Moghaddam, H.[Hamid], Modarresi, M.[Mohammadreza], Pak, N.[Neda], Mahdizade, M.[Mehrzad],
Lung HRCT pattern classification for cystic fibrosis using convolutional neural network,
SIViP(13), No. 6, September 2019, pp. 1225-1232.
Springer DOI 1908
BibRef

Liu, C.X.[Cai-Xia], Zhao, R.B.[Rui-Bin], Pang, M.Y.[Ming-Yong],
Lung segmentation based on random forest and multi-scale edge detection,
IET-IPR(13), No. 10, 22 August 2019, pp. 1745-1754.
DOI Link 1909
BibRef

Liu, Y.[Ying], Wang, H.D.[Hao-Dong], Gu, Y.[Yue], Lv, X.H.[Xiao-Hong],
Image classification toward lung cancer recognition by learning deep quality model,
JVCIR(63), 2019, pp. 102570.
Elsevier DOI 1909
Image classification, Cancer recognition, Deep feature, CNN BibRef

Saad, M.[Maliazurina], Lee, I.H.[Ik Hyun], Choi, T.S.[Tae-Sun],
Automated delineation of non-small cell lung cancer: A step toward quantitative reasoning in medical decision science,
IJIST(29), No. 4, 2019, pp. 561-576.
DOI Link 1911
collinearity, computer-aided delineation, convexity, non-small cell lung cancer, spatial analysis, topological processing BibRef

Seo, J.K.[Jin Keun], Kim, K.C.[Kang Cheol], Jargal, A.[Ariungerel.], Lee, K.[Kyounghun.], Harrach, B.[Bastian],
A Learning-Based Method for Solving Ill-Posed Nonlinear Inverse Problems: A Simulation Study of Lung EIT,
SIIMS(12), No. 3, 2019, pp. 1275-1295.
DOI Link 1911
BibRef

Khan, M.A.[M. Attique], Rubab, S., Kashif, A.[Asifa], Sharif, M.I.[Muhammad Imran], Muhammad, N.[Nazeer], Shah, J.H.[Jamal Hussain], Zhang, Y.D.[Yu-Dong], Satapathy, S.C.[Suresh Chandra],
Lungs cancer classification from CT images: An integrated design of contrast based classical features fusion and selection,
PRL(129), 2020, pp. 77-85.
Elsevier DOI 2001
Lungs cancer, Contrast normalization, Multiple features, Fusion, Selection BibRef

Kumar, A., Fulham, M., Feng, D., Kim, J.,
Co-Learning Feature Fusion Maps From PET-CT Images of Lung Cancer,
MedImg(39), No. 1, January 2020, pp. 204-217.
IEEE DOI 2001
Computed tomography, Tumors, Lung, Image segmentation, Biomedical imaging, Cancer, Multi-modality imaging, deep learning, PET-CT BibRef

Bhandary, A.[Abhir], Prabhu, G.A.[G. Ananth], Rajinikanth, V., Thanaraj, K.P.[K. Palani], Satapathy, S.C.[Suresh Chandra], Robbins, D.E.[David E.], Shasky, C.[Charles], Zhang, Y.D.[Yu-Dong], Tavares, J.M.R.S.[Joăo Manuel R.S.], Raja, N.S.M.[N. Sri Madhava],
Deep-learning framework to detect lung abnormality: A study with chest X-Ray and lung CT scan images,
PRL(129), 2020, pp. 271-278.
Elsevier DOI 2001
BibRef

Xue, P., Dong, E., Ji, H.,
Lung 4D CT Image Registration Based on High-Order Markov Random Field,
MedImg(39), No. 4, April 2020, pp. 910-921.
IEEE DOI 2004
Lung, Image registration, Computed tomography, Optimization, Strain, Topology, Image registration, 4D CT, multi-level processing strategy BibRef

Ozdemir, O., Russell, R.L., Berlin, A.A.,
A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans,
MedImg(39), No. 5, May 2020, pp. 1419-1429.
IEEE DOI 2005
Solid modeling, Lung, Cancer, Computed tomography, Deep learning, Uncertainty, Machine learning, image classification BibRef

Lakshmi, D., Thanaraj, K.P.[K. Palani], Arunmozhi, M.,
Convolutional neural network in the detection of lung carcinoma using transfer learning approach,
IJIST(30), No. 2, 2020, pp. 445-454.
DOI Link 2005
convolution neural network, transfer learning approach BibRef

Bansal, G.[Gaurang], Chamola, V.[Vinay], Narang, P.[Pratik], Kumar, S.[Subham], Raman, S.[Sundaresan],
Deep3DSCan: Deep residual network and morphological descriptor based framework for lung cancer classification and 3D segmentation,
IET-IPR(14), No. 7, 29 May 2020, pp. 1240-1247.
DOI Link 2005
BibRef

Shao, W., Patton, T.J., Gerard, S.E., Pan, Y., Reinhardt, J.M., Durumeric, O.C., Bayouth, J.E., Christensen, G.E.,
N-Phase Local Expansion Ratio for Characterizing Out-of-Phase Lung Ventilation,
MedImg(39), No. 6, June 2020, pp. 2025-2034.
IEEE DOI 2006
CT, functional avoidance, image registration, lung, out-of-phase ventilation, radiation therapy BibRef

Chen, B.Z.[Bing-Zhi], Zhang, Z.[Zheng], Lin, J.Y.[Jian-Yong], Chen, Y.[Yi], Lu, G.M.[Guang-Ming],
Two-stream collaborative network for multi-label chest X-ray Image classification with lung segmentation,
PRL(135), 2020, pp. 221-227.
Elsevier DOI 2006
Two-stream collaborative network, Lung segmentation, Self-adaptive weighted fusion, Multi-label CXR image classification BibRef

Priya, M.M.A.[Michael Mary Adline], Jawhar, S.J.[S. Joseph],
Advanced lung cancer classification approach adopting modified graph clustering and whale optimisation-based feature selection technique accompanied by a hybrid ensemble classifier,
IET-IPR(14), No. 10, August 2020, pp. 2204-2215.
DOI Link 2008
BibRef

Wang, X., Chen, H., Gan, C., Lin, H., Dou, Q., Tsougenis, E., Huang, Q., Cai, M., Heng, P.,
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis,
Cyber(50), No. 9, September 2020, pp. 3950-3962.
IEEE DOI 2008
Cancer, Lung, Feature extraction, Tumors, Task analysis, Supervised learning, Image analysis, Deep learning, whole slide images (WSIs) BibRef

Jena, S.R.[Sanjukta Rani], George, S.T.[Selvaraj Thomas],
Morphological feature extraction and KNG-CNN classification of CT images for early lung cancer detection,
IJIST(30), No. 4, 2020, pp. 1324-1336.
DOI Link 2011
automatic detection, CLAHE, CT, kernel based non-Gaussian convolutional neural networks, ROI BibRef

Schaff, F., Morgan, K.S., Pollock, J.A., Croton, L.C.P., Hooper, S.B., Kitchen, M.J.,
Material Decomposition Using Spectral Propagation-Based Phase-Contrast X-Ray Imaging,
MedImg(39), No. 12, December 2020, pp. 3891-3899.
IEEE DOI 2012
X-ray imaging, Attenuation, Lung, Approximation algorithms, Mathematical model, Radiography, Inverse methods, lung imaging, dual-energy BibRef

Kircher, M., Elke, G., Stender, B., Hernández Mesa, M., Schuderer, F., Dössel, O., Fuld, M.K., Halaweish, A.F., Hoffman, E.A., Weiler, N., Frerichs, I.,
Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography,
MedImg(40), No. 1, January 2021, pp. 251-261.
IEEE DOI 2012
Lung, Impedance, Ventilation, Computed tomography, Animals, Pulmonary perfusion imaging, EIT, MDCT, first pass kinetics BibRef

Cai, N., Chen, H., Li, Y., Peng, Y., Li, J.,
Adaptive Weighting Landmark-Based Group-Wise Registration on Lung DCE-MRI Images,
MedImg(40), No. 2, February 2021, pp. 673-687.
IEEE DOI 2102
Strain, Principal component analysis, Lung, Magnetic resonance imaging, Time series analysis, robust principal component analysis BibRef

Xiao, N.[Ning], Qiang, Y.[Yan], Zhao, Z.J.[Zi-Juan], Zhao, J.J.[Juan-Juan], Lian, J.H.[Jian-Hong],
Tumour growth prediction of follow-up lung cancer via conditional recurrent variational autoencoder,
IET-IPR(14), No. 15, 15 December 2020, pp. 3975-3981.
DOI Link 2103
BibRef

Rani, K.V.[K. Vijila], Dayana, C.T.[C. Thinkal], Therese, P.S.[P. Sujatha], Prince, M.E.[M. Eugine],
Triple novelty block detection and classification approach for lung tumor analysis,
IJIST(31), No. 2, 2021, pp. 1034-1049.
DOI Link 2105
bilateral filter, CAD, firefly search-based Macqueen's K-means clustering, texture feature BibRef

Taphorn, K.[Kirsten], Mechlem, K.[Korbinian], Sellerer, T.[Thorsten], de Marco, F.[Fabio], Viermetz, M.[Manuel], Pfeiffer, F.[Franz], Pfeiffer, D.[Daniela], Herzen, J.[Julia],
Direct Differentiation of Pathological Changes in the Human Lung Parenchyma With Grating-Based Spectral X-ray Dark-Field Radiography,
MedImg(40), No. 6, June 2021, pp. 1568-1578.
IEEE DOI 2106
Lung, Imaging, Gratings, X-ray imaging, Pulmonary diseases, Sensitivity, Correlation, Imaging modalities, lung, x-ray imaging and computed tomography BibRef

Viermetz, M.[Manuel], Gustschin, N.[Nikolai], Schmid, C.[Clemens], Haeusele, J.[Jakob], Noël, P.B.[Peter B.], Proksa, R.[Roland], Löscher, S.[Stefan], Koehler, T.[Thomas], Pfeiffer, F.[Franz],
Technical Design Considerations of a Human-Scale Talbot-Lau Interferometer for Dark-Field CT,
MedImg(42), No. 1, January 2023, pp. 220-232.
IEEE DOI 2301
Gratings, Computed tomography, Geometry, Imaging, Detectors, X-ray imaging, Lung, Computed tomography, dark-field contrast BibRef

Zheng, S.H.[Shao-Hua], Nie, W.Y.[Wei-Yu], Pan, L.[Lin], Zheng, B.[Bin], Shen, Z.Q.[Zhi-Qiang], Huang, L.Q.[Li-Qin], Pei, C.H.[Chen-Hao], She, Y.H.[Yu-Hang], Chen, L.Q.[Liu-Qing],
A dual-attention V-network for pulmonary lobe segmentation in CT scans,
IET-IPR(15), No. 8, 2021, pp. 1644-1654.
DOI Link 2106
BibRef

Doddavarapu, V.N.S.[V. N. Sukanya], Kande, G.B.[Giri Babu], Rao, B.P.[B. Prabhakar],
Rotational invariant fractional derivative filters for lung tissue classification,
IET-IPR(15), No. 10, 2021, pp. 2202-2212.
DOI Link 2108
BibRef

Chilakala, L.R.[Lokanath Reddy], Kishore, G.N.[Gattim Naveen],
Optimal deep belief network with opposition-based hybrid grasshopper and honeybee optimization algorithm for lung cancer classification: A DBNGHHB approach,
IJIST(31), No. 3, 2021, pp. 1404-1423.
DOI Link 2108
computed tomography (CT), deep belief networks (DBN), grasshopper and honey bee (GHHB) optimization algorithm, local tangent space alignment (LTSA) BibRef

Yin, L.[Li], Liu, Y.[Yang], Pei, M.T.[Ming-Tao], Li, J.R.[Jin-Rang], Wu, M.[Mukun], Jia, Y.Y.[Yuan-Yuan],
Laryngoscope8: Laryngeal image dataset and classification of laryngeal disease based on attention mechanism,
PRL(150), 2021, pp. 207-213.
Elsevier DOI 2109
Laryngeal image dataset, Laryngeal disease classification, Attention mechanism BibRef

Yang, J.[Jie], Angelini, E.D.[Elsa D.], Balte, P.P.[Pallavi P.], Hoffman, E.A.[Eric A.], Austin, J.H.M.[John H. M.], Smith, B.M.[Benjamin M.], Barr, R.G.[R. Graham], Laine, A.F.[Andrew F.],
Novel Subtypes of Pulmonary Emphysema Based on Spatially-Informed Lung Texture Learning: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study,
MedImg(40), No. 12, December 2021, pp. 3652-3662.
IEEE DOI 2112
Lung, Computed tomography, Indexes, Shape, Biomedical imaging, Training, Lung CT, emphysema, lung texture BibRef

Guo, Z.Q.[Zhi-Qiang], Xu, L.[Lina], Si, Y.J.[Yu-Juan], Razmjooy, N.[Navid],
Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics,
IJIST(31), No. 4, 2021, pp. 1954-1969.
DOI Link 2112
computer-aided design, convolutional neural network, Haralick texture features, improved Harris Hawks optimizer, lung cancer diagnosis BibRef

Kailasam, M.S.[Manoj Senthil], Thiagarajan, M.[MeeraDevi],
Detection of lung tumor using dual tree complex wavelet transform and co-active adaptive neuro fuzzy inference system classification approach,
IJIST(31), No. 4, 2021, pp. 2032-2046.
DOI Link 2112
CANFIS, computed tomography, DT-CWT, filters, lung tumor, multiresolution BibRef

Jena, S.R.[Sanjukta Rani], George, S.T.[Selvaraj Thomas], Ponraj, D.N.[Deivendran Narain],
Modeling an effectual multi-section You Only Look Once for enhancing lung cancer prediction,
IJIST(31), No. 4, 2021, pp. 2144-2157.
DOI Link 2112
CNN, features, lung nodules, You Only Look Once BibRef

Shi, F.[Feng], Chen, B.J.[Bo-Jiang], Cao, Q.Q.[Qi-Qi], Wei, Y.[Ying], Zhou, Q.[Qing], Zhang, R.[Rui], Zhou, Y.J.[Yao-Jie], Yang, W.J.[Wen-Jie], Wang, X.[Xiang], Fan, R.R.[Rong-Rong], Yang, F.[Fan], Chen, Y.B.[Yan-Bo], Li, W.M.[Wei-Min], Gao, Y.Z.[Yao-Zong], Shen, D.G.[Ding-Gang],
Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images,
MedImg(41), No. 4, April 2022, pp. 771-781.
IEEE DOI 2204
Lung, Computed tomography, Lung cancer, Tumors, Transfer learning, Semisupervised learning, Medical diagnostic imaging, benign-malignant classification BibRef

Manickam, M.[Muruganantham], Siva, R.[Rathinavelayutham], Prabakeran, S.[Saravanan], Geetha, K.[Kannan], Indumathi, V.[Varadharajan], Sethukarasi, T.[Thirumaaran],
Pulmonary disease diagnosis using African vulture optimized weighted support vector machine approach,
IJIST(32), No. 3, 2022, pp. 843-856.
DOI Link 2205
African vulture optimization, emphysema, fibrosis, pneumothorax, prediction, pulmonary diseases, SVM BibRef

Ananth, A.D.[Antony Dennis], Palanisamy, C.[Chenniappan],
Extended and optimized deep convolutional neural network-based lung tumor identification in big data,
IJIST(32), No. 3, 2022, pp. 918-934.
DOI Link 2205
big data, classification, CT images, deep learning, feature extraction, lung tumor detection, segmentation BibRef

Hu, J.H.[Jun-Hao], Zhang, C.Y.[Chen-Yang], Zhou, K.[Kang], Gao, S.H.[Sheng-Hua],
Chest X-Ray Diagnostic Quality Assessment: How Much Is Pixel-Wise Supervision Needed?,
MedImg(41), No. 7, July 2022, pp. 1711-1723.
IEEE DOI 2207
Diagnostic radiography, Image segmentation, Semantics, Quality assessment, Lung, X-ray imaging, Annotations, box supervision BibRef

Thirumagal, E.[Egambaram], Saruladha, K.[Krishnamurthy],
Lung cancer classification using exponential mean saturation linear unit activation function in various generative adversarial network models,
IJIST(32), No. 4, 2022, pp. 1414-1428.
DOI Link 2207
activation function, cancer classification, dataset enhancement, GAN, mortality BibRef

Jacob, C.[Chinnu], Menon, G.C.[Gopakumar Chandrasekhara],
Pathological categorization of lung carcinoma from multimodality images using convolutional neural networks,
IJIST(32), No. 5, 2022, pp. 1681-1695.
DOI Link 2209
BRISQUE, computed tomography (CT), convolutional neural networks (CNN), lung cancer, pathological type classification BibRef

Wang, H.F.[Hong-Fei], Yang, P.[Ping], Xu, C.[Chuan], Min, L.[Lei], Wang, S.[Shuai], Xu, B.[Bing],
Lung CT image enhancement based on total variational frame and wavelet transform,
IJIST(32), No. 5, 2022, pp. 1604-1614.
DOI Link 2209
image enhancement, lung CT, noise removal, total variation, wavelet transform BibRef

Thorat, O.[Onkar], Salvi, S.[Siddharth], Dedhia, S.[Shrey], Bhadane, C.[Chetashri], Dongre, D.[Deepika],
Domain adaptation and weight initialization of neural networks for diagnosing interstitial lung diseases,
IJIST(32), No. 5, 2022, pp. 1535-1547.
DOI Link 2209
deep learning, domain adaptation, HRCT scans, interstitial lung diseases, transfer learning BibRef

Sünnetci, K.M.[Kubilay Muhammed], Alkan, A.[Ahmet],
Lung cancer detection by using probabilistic majority voting and optimization techniques,
IJIST(32), No. 6, 2022, pp. 2049-2065.
DOI Link 2212
bag of features, data mining, lung cancer, machine learning, probabilistic majority voting BibRef

Huang, P.[Pan], He, P.[Peng], Tian, S.[Sukun], Ma, M.[Mingrui], Feng, P.[Peng], Xiao, H.[Hualiang], Mercaldo, F.[Francesco], Santone, A.[Antonella], Qin, J.[Jing],
A ViT-AMC Network With Adaptive Model Fusion and Multiobjective Optimization for Interpretable Laryngeal Tumor Grading From Histopathological Images,
MedImg(42), No. 1, January 2023, pp. 15-28.
IEEE DOI 2301
Cancer, Tumors, Adaptation models, Deep learning, Optimization, Measurement, Visualization, Visually interpretable, model fusion, histopathology images BibRef

Spoorthi, B., Mahesh, S.[Shanthi],
Firefly Competitive Swarm Optimization Based Hierarchical Attention Network for Lung Cancer Detection,
IJIG(23), No. 2 2023, pp. 2350017.
DOI Link 2303
BibRef

Balachandran, S.[Sangeetha], Ranganathan, V.[Vidhyapriya],
Semantic context-aware attention UNET for lung cancer segmentation and classification,
IJIST(33), No. 3, 2023, pp. 822-836.
DOI Link 2305
context-aware attention UNET, lung cancer detection, lung nodule segmentation, semantic segmentation BibRef

Pawar, S.P.[Swati P.], Talbar, S.N.[Sanjay N.],
Multi-level deep learning based lung cancer classifier for classification based on tumour-node-metastasis approach,
IJIST(33), No. 3, 2023, pp. 881-894.
DOI Link 2305
computer-aided diagnosis, conditional, generative adversarial network, lung CT scan, tumor-node-metastasis BibRef

Liu, C.X.[Cai-Xia], Xie, W.L.[Wan-Li], Zhao, R.B.[Rui-Bin], Pang, M.Y.[Ming-Yong],
Segmenting lung parenchyma from CT images with gray correlation-based clustering,
IET-IPR(17), No. 6, 2023, pp. 1658-1667.
DOI Link 2305
contour correction, gray correlation-based clustering, image preprocessing, lung segmentation BibRef

Kiran, S.V.[S. Vishwa], Kaur, I.[Inderjeet], Thangaraj, K., Saveetha, V., Grace, R.K.[R. Kingsy], Arulkumar, N.,
Machine Learning with Data Science-Enabled Lung Cancer Diagnosis and Classification Using Computed Tomography Images,
IJIG(23), No. 3 2023, pp. 2240002.
DOI Link 2306
BibRef

Barbouchi, K.[Khalil], El Hamdi, D.[Dhekra], Elouedi, I.[Ines], Ben Aďcha, T.[Takwa], Echi, A.K.[Afef Kacem], Slim, I.[Ihsen],
A transformer-based deep neural network for detection and classification of lung cancer via PET/CT images,
IJIST(33), No. 4, 2023, pp. 1383-1395.
DOI Link 2307
computed tomography, histology staging, lung cancer, positron emission tomography, TNM staging system, transformers BibRef

Chang, Z.Z.[Zu-Zheng], Rodriguez, D.[Dragan],
Optimized lung cancer detection by amended whale optimizer and rough set theory,
IJIST(33), No. 5, 2023, pp. 1713-1726.
DOI Link 2310
amended whale optimization algorithm, K-means, lung cancer diagnosis, RBF network, rough set theory BibRef

Xie, Y.H.[Ying-Hua], Zhou, Y.T.[Yun-Tong], Wang, C.[Chen], Ma, Y.[Yanshan], Yang, M.[Ming],
Multi-scale feature fusion network with local attention for lung segmentation,
SP:IC(119), 2023, pp. 117042.
Elsevier DOI 2310
Multi-scale, Local attention module, Lung segmentation BibRef

Tyagi, S.[Shweta], Talbar, S.N.[Sanjay N.],
Predicting lung cancer treatment response from CT images using deep learning,
IJIST(33), No. 5, 2023, pp. 1577-1592.
DOI Link 2310
convolutional neural networks, CT scan, deep learning, lung cancer, segmentation, treatment analysis BibRef

Fan, X.C.[Xiao-Chen], Xu, X.[Xin], Feng, J.X.[Jian-Xing], Huang, H.X.[Hai-Xia], Zuo, X.[Xiang], Xu, G.[Guohou], Ma, G.H.[Guang-Hui], Chen, B.[Bin], Wu, J.B.[Jian-Bin], Huang, Y.[Yinhua], Luo, Y.[Yang],
Learnable interpolation and extrapolation network for fuzzy pulmonary lobe segmentation,
IET-IPR(17), No. 11, 2023, pp. 3258-3270.
DOI Link 2310
biomedical imaging, image segmentation, interpolation, learning (artificial intelligence), selected BibRef

Peng, Y.Y.[Yuan-Yuan], Zhang, J.X.[Jia-Xing],
Lung lobe segmentation in computed tomography images based on multi-feature fusion and ensemble learning framework,
IJIST(33), No. 6, 2023, pp. 2088-2099.
DOI Link 2311
CT, ensemble learning framework, lung lobe segmentation, multi-feature fusion BibRef

Xu, X.B.[Xue-Bin], Lei, M.[Meng], Liu, D.H.[De-Hua], Wang, M.[Muyu], Lu, L.B.[Long-Bin],
Lung segmentation in chest X-ray image using multi-interaction feature fusion network,
IET-IPR(17), No. 14, 2023, pp. 4129-4141.
DOI Link 2312
computer vision, convolutional neural nets, image segmentation BibRef

Li, W.[Wei], Liu, G.H.[Guang-Hai], Fan, H.[Haoyi], Li, Z.Y.[Zuo-Yong], Zhang, D.[David],
Self-Supervised Multi-Scale Cropping and Simple Masked Attentive Predicting for Lung CT-Scan Anomaly Detection,
MedImg(43), No. 1, January 2024, pp. 594-607.
IEEE DOI 2401
BibRef

Sivakumar, V., Yogesh, C.K., Vatchala, S., Kaliraj, S.,
An efficient lung image classification and detection using spiral-optimized Gabor filter with convolutional neural network,
IJIST(34), No. 1, 2024, pp. e23013.
DOI Link 2401
convolutional neural networks (CNNs), feature extraction, Gabor filter, lung cancer, spiral optimization algorithm (SOA) BibRef

Chaudhary, M.F.A.[Muhammad F. A.], Gerard, S.E.[Sarah E.], Christensen, G.E.[Gary E.], Cooper, C.B.[Christopher B.], Schroeder, J.D.[Joyce D.], Hoffman, E.A.[Eric A.], Reinhardt, J.M.[Joseph M.],
LungViT: Ensembling Cascade of Texture Sensitive Hierarchical Vision Transformers for Cross-Volume Chest CT Image-to-Image Translation,
MedImg(43), No. 7, July 2024, pp. 2448-2465.
IEEE DOI 2407
Computed tomography, Lung, Generative adversarial networks, Transformers, Solid modeling, Image synthesis, vision transformers BibRef

Hamdi, D.E.[Dhekra El], Elouedi, I.[Ines], Slim, I.[Ihsen],
Computer-Aided Classification of Cell Lung Cancer Via PET/CT Images Using Convolutional Neural Network,
IJIG(24), No. 4, July 2024, pp. 2450040.
DOI Link 2408
BibRef

Ma, L.[Lei], Wu, H.Q.[Hui-Qun], Samundeeswari, P.,
GoogLeNet-AL: A fully automated adaptive model for lung cancer detection,
PR(155), 2024, pp. 110657.
Elsevier DOI 2408
Lung cancer classification, Deep learning, Convolutional neural networks, GoogLeNet-AL, Adaptive layers, Medical image analysis BibRef


Chen, Y.F.[Yi-Fei], Zou, B.F.[Bin-Feng], Guo, Z.X.[Zhao-Xin], Huang, Y.[Yiyu], Huang, Y.F.[Yi-Fan], Qin, F.[Feiwei], Li, Q.[Qinhai], Wang, C.M.[Chang-Miao],
SCUNet++: Swin-UNet and CNN Bottleneck Hybrid Architecture with Multi-Fusion Dense Skip Connection for Pulmonary Embolism CT Image Segmentation*,
WACV24(7744-7752)
IEEE DOI Code:
WWW Link. 2404
Image segmentation, Fuses, Computed tomography, Pulmonary diseases, Computer network reliability, Medical services, Image recognition and understanding BibRef

Li, G.Y.[Gary Y.], Chen, L.[Li], Zahiri, M.[Mohsen], Balaraju, N.[Naveen], Patil, S.[Shubham], Mehanian, C.[Courosh], Gregory, C.[Cynthia], Gregory, K.[Kenton], Raju, B.[Balasundar], Kruecker, J.[Jochen], Chen, A.[Alvin],
Weakly Semi-supervised Detector-based Video Classification with Temporal Context for Lung Ultrasound,
CVAMD23(2475-2484)
IEEE DOI 2401
BibRef

Le, V.L.[Van-Linh], Saut, O.[Olivier],
RRc-UNet 3D for lung tumor segmentation from CT scans of Non-Small Cell Lung Cancer patients,
CVAMD23(2308-2317)
IEEE DOI 2401
BibRef

Sharafeldeen, A.[Ahmed], Alksas, A.[Ahmed], Ghazal, M.[Mohammed], Yaghi, M.[Maha], Khelifi, A.[Adel], Mahmoud, A.[Ali], Contractor, S.[Sohail], van Bogaert, E.[Eric], El-Baz, A.[Ayman],
Accurate Segmentation for Pathological Lung Based on Integration of 3D Appearance and Surface Models,
ICIP23(3130-3134)
IEEE DOI 2312
BibRef

VanBerlo, B.[Blake], Li, B.[Brian], Wong, A.[Alexander], Hoey, J.[Jesse], Arntfield, R.[Robert],
Exploring the Utility of Self-Supervised Pretraining Strategies for the Detection of Absent Lung Sliding in M-Mode Lung Ultrasound,
DL-UIA23(3077-3086)
IEEE DOI 2309
BibRef

Santos, R.[Rui], Pedrosa, J.[Joăo], Mendonça, A.M.[Ana Maria], Campilho, A.[Aurélio],
Automatic Eye-tracking-assisted Chest Radiography Pathology Screening,
IbPRIA23(520-532).
Springer DOI 2307
BibRef

Shaffie, A.[Ahmed], Soliman, A.[Ahmed], van Berkel, V.[Victor], El-Baz, A.[Ayman],
Hand Crafted Features for Efficient Lung Cancer Diagnosis Using Stacked Autoencoder,
ICPR22(4378-4384)
IEEE DOI 2212
Solid modeling, Sensitivity, Protocols, Computed tomography, Image processing, Lung cancer, Lung, Lung Cancer, Medical Image Processing BibRef

Gravina, M.[Michela], Marrone, S.[Stefano], Docimo, L.[Ludovico], Santini, M.[Mario], Fiorelli, A.[Alfonso], Parmeggiani, D.[Domenico], Sansone, C.[Carlo],
Leveraging CycleGAN in Lung CT Sinogram-free Kernel Conversion,
CIAP22(I:100-110).
Springer DOI 2205
BibRef

Ramos, B.[Bernardo], Pereira, T.[Tania], Silva, F.[Francisco], Costa, J.L.[José Luis], Oliveira, H.P.[Hélder P.],
Differential Gene Expression Analysis of the Most Relevant Genes for Lung Cancer Prediction and Sub-type Classification,
IbPRIA22(182-191).
Springer DOI 2205
BibRef

Diao, L.[Li], Guo, H.Y.[Hao-Yue], Zhou, Y.[Yue], He, Y.[Yayi],
Bridging the GAP Between Outputs: Domain Adaptation for Lung Cancer IHC Segmentation,
ICIP21(6-10)
IEEE DOI 2201
Training, Radio frequency, Image segmentation, Adaptation models, Hospitals, Laboratories, Lung cancer, Medical image segmentation, immunohistochemistry BibRef

Alam, M.S.[Md. Shariful], Wang, D.D.[Da-Dong], Sowmya, A.[Arcot],
Image data augmentation for improving performance of deep learning-based model in pathological lung segmentation,
DICTA21(1-5)
IEEE DOI 2201
Training, Image segmentation, Pathology, Pulmonary diseases, Digital images, Lung, Indexes, Lung segmentation, data augmentation, UNet BibRef

Li, Z.[Zihao], Ma, J.[Jiechao], Zhang, S.[Shu], Shi, Y.[Yemin], Zhang, J.[Junge], Huang, K.Q.[Kai-Qi], Yu, Y.Z.[Yi-Zhou],
CCF-Net: Composite Context Fusion Network with Inter-Slice Correlative Fusion for Multi-Disease Lesion Detection,
ICIP21(91-95)
IEEE DOI 2201
Correlation, Computed tomography, Lung, Computer architecture, Feature extraction, Lesions, computed tomography, lesion detection BibRef

Azad, R.[Reza], Bozorgpour, I.A.[I Afshin], Asadi-Aghbolaghi, M.[Maryam], Merhof, D.[Dorit], Escalera, S.[Sergio],
Deep Frequency Re-calibration U-Net for Medical Image Segmentation,
CVAMD21(3267-3276)
IEEE DOI 2112
Image segmentation, Visualization, Laplace equations, Shape, Frequency-domain analysis, Lung, Feature extraction BibRef

Ma, S.[Sike], Zhao, M.[Meng], Wang, H.[Hao], Shi, F.[Fan], Sun, X.[Xuguo], Chen, S.Y.[Sheng-Yong], Dai, H.N.[Hong-Ning],
Fused 3-Stage Image Segmentation for Pleural Effusion Cell Clusters,
ICPR21(1934-1941)
IEEE DOI 2105
Image segmentation, Clustering algorithms, Lung, Fluorescence, Feature extraction, Pattern recognition, Metastasis BibRef

Hamad, A.S., Wang, Y.Y., Lever, T.E., Bunyak, F.,
Ensemble Of Deep Cascades For Detection Of Laryngeal Adductor Reflex Events In Endoscopy Videos,
ICIP20(300-304)
IEEE DOI 2011
Image segmentation, Videos, Endoscopes, Training, Machine learning, Event detection, Pipelines, deep learning, endoscopy video analysis BibRef

Han, F., Yu, L., Jiang, Y.,
Computer-aided diagnosis system of lung carcinoma using Convolutional Neural Networks,
EDLCV20(2953-2958)
IEEE DOI 2008
Training, Lung, Cancer, Pathology, Hospitals, Medical diagnostic imaging BibRef

Kalra, S.[Shivam], Adnan, M.[Mohammed], Taylor, G.[Graham], Tizhoosh, H.R.,
Learning Permutation Invariant Representations Using Memory Networks,
ECCV20(XXIX: 677-693).
Springer DOI 2010
BibRef

Adnan, M., Kalra, S., Tizhoosh, H.R.,
Representation Learning of Histopathology Images using Graph Neural Networks,
Microscopy20(4254-4261)
IEEE DOI 2008
Pathology, Lung, Convolution, Feature extraction, Neural networks, Cancer, Machine learning BibRef

Devnath, L., Luo, S., Summons, P., Wang, D.,
An accurate black lung detection using transfer learning based on deep neural networks,
IVCNZ19(1-6)
IEEE DOI 2004
coal, computerised tomography, decision trees, diseases, image classification, image segmentation, Computer-Aided Diagnosis BibRef

Oliveira, A.C.[Ana Catarina], Domingues, I.[Inęs], Duarte, H.[Hugo], Santos, J.[Joăo], Abreu, P.H.[Pedro H.],
Going Back to Basics on Volumetric Segmentation of the Lungs in CT: A Fully Image Processing Based Technique,
IbPRIA19(II:322-334).
Springer DOI 1910
BibRef

Dias, C.[Catarina], Pinheiro, G.[Gil], Cunha, A.[António], Oliveira, H.P.[Hélder P.],
Radiogenomics: Lung Cancer-Related Genes Mutation Status Prediction,
IbPRIA19(II:335-345).
Springer DOI 1910
BibRef

Khanagha, V.[Vahid], Kardehdeh, S.A.[Sanaz Aliari],
Context Aware Lung Cancer Annotation in Whole Slide Images Using Fully Convolutional Neural Networks,
ICIAR19(II:345-352).
Springer DOI 1909
BibRef

Liu, Z., Song, Y., Maere, C., Liu, Q., Zhu, Y., Lu, H., Yuan, D.,
A Method for PET-CT Lung Cancer Segmentation based on Improved Random Walk,
ICPR18(1187-1192)
IEEE DOI 1812
Computed tomography, Tumors, Image segmentation, Positron emission tomography, Lung, Cancer, Random walk BibRef

Shaffie, A., Soliman, A., Ghazal, M., Taher, F., Dunlap, N., Wang, B., van Berkel, V., Gimel'farb, G.L.[Georgy L.], Elmaghraby, A., El-Baz, A.,
A Novel Autoencoder-Based Diagnostic System for Early Assessment of Lung Cancer,
ICIP18(1393-1397)
IEEE DOI 1809
Lung, Cancer, Computed tomography, Feature extraction, Magnetic resonance imaging, Tools, Machine learning, Computer Aided Diagnosis BibRef

dos S. Neto, A.C.[Antonino C.], Diniz, P.H.B.[Pedro H. B.], Diniz, J.O.B.[Joăo O. B.], Cavalcante, A.B.[André B.], Silva, A.C.[Aristófanes C.], de Paiva, A.C.[Anselmo C.], deAlmeida, J.D.S.[Joăo D. S.],
Diagnosis of Non-Small Cell Lung Cancer Using Phylogenetic Diversity in Radiomics Context,
ICIAR18(598-604).
Springer DOI 1807
BibRef

Cardoso, I.[Isadora], Almeida, E.[Eliana], Allende-Cid, H.[Héctor], Frery, A.C.[Alejandro C.], Rangayyan, R.M.[Rangaraj M.], Azevedo-Marques, P.M.[Paulo M.], Ramos, H.S.[Heitor S.],
Evaluation of Deep Feedforward Neural Networks for Classification of Diffuse Lung Diseases,
CIARP17(152-159).
Springer DOI 1802
BibRef

Bayramoglu, N., Kaakinen, M., Eklund, L., Heikkilä, J.,
Towards Virtual H E Staining of Hyperspectral Lung Histology Images Using Conditional Generative Adversarial Networks,
BioIm17(64-71)
IEEE DOI 1802
Chemicals, Hyperspectral imaging, Lung, Microscopy, Principal component analysis BibRef

Cid, Y.D.[Yashin Dicente], Müller, H.[Henning], Platon, A.[Alexandra], Janssens, J.P.[Jean-Paul], Lador, F.[Frédéric], Poletti, P.A.[Pierre-Alexandre], Depeursinge, A.[Adrien],
A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images,
MCV16(58-68).
Springer DOI 1711
BibRef

Sakamoto, M.[Masaharu], Nakano, H.[Hiroki], Zhao, K.[Kun], Sekiyama, T.[Taro],
Multi-stage Neural Networks with Single-Sided Classifiers for False Positive Reduction and Its Evaluation Using Lung X-Ray CT Images,
CIAP17(I:370-379).
Springer DOI 1711
BibRef

Kumar, D.[Devinder], Chung, A.G.[Audrey G.], Shaifee, M.J.[Mohammad J.], Khalvati, F.[Farzad], Haider, M.A.[Masoom A.], Wong, A.[Alexander],
Discovery Radiomics for Pathologically-Proven Computed Tomography Lung Cancer Prediction,
ICIAR17(54-62).
Springer DOI 1706
BibRef

Hamzah, M.F.M., Kasim, R.M., Yunus, A., Rijal, O.M., Noor, N.M.,
Detection of Interstitial Lung Disease using correlation and regression methods on texture measure,
IVPR17(1-4)
IEEE DOI 1704
Computed tomography BibRef

Noor, N.M.,
Keynote speaker: Computer aided diagnostics in medicine: Discrimination for some lung diseases,
IVPR17(1-1)
IEEE DOI 1704
Biographies;Biomedical imaging;Diseases;IEEE Sections BibRef

Zhao, B., Christensen, G.E., Song, J.H., Pan, Y., Gerard, S.E., Reinhardt, J.M., Du, K., Patton, T., Bayouth, J.M., Hugo, G.D.,
Tissue-Volume Preserving Deformable Image Registration for 4DCT Pulmonary Images,
WBIR16(481-489)
IEEE DOI 1612
4D image registration BibRef

Szmul, A., Papiez, B.W., Bates, R., Hallack, A., Schnabel, J.A., Grau, V.,
Graph Cuts-Based Registration Revisited: A Novel Approach for Lung Image Registration Using Supervoxels and Image-Guided Filtering,
WBIR16(592-599)
IEEE DOI 1612
discrete optimization BibRef

Wang, X., Lu, L., Shin, H.C., Kim, L., Bagheri, M., Nogues, I., Yao, J., Summers, R.M.,
Unsupervised Joint Mining of Deep Features and Image Labels for Large-Scale Radiology Image Categorization and Scene Recognition,
WACV17(998-1007)
IEEE DOI 1609
Biomedical imaging, Computational modeling, Feature extraction, Image recognition, Image representation, Optimization, Radiology BibRef

Gao, M.C.[Ming-Chen], Xu, Z.Y.[Zi-Yue], Lu, L.[Le], Harrison, A.P.[Adam P.], Summers, R.M.[Ronald M.], Mollura, D.J.[Daniel J.],
Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Detection,
MLMI16(147-155).
Springer DOI 1611
BibRef

Soliman, A., Khalifa, F., Shaffie, A., Dunlap, N., Wang, B., Elmaghraby, A., Gimel'farb, G., Ghazal, M., El-Baz, A.,
A comprehensive framework for early assessment of lung injury,
ICIP17(3275-3279)
IEEE DOI 1803
Gaussian processes, Laplace equations, Markov processes, computerised tomography, feature extraction, RILI BibRef

Soliman, A., Khalifa, F., Shaffie, A., Liu, N., Dunlap, N., Wang, B., Elmaghraby, A., Gimel'farb, G., El-Baz, A.,
Image-based CAD system for accurate identification of lung injury,
ICIP16(121-125)
IEEE DOI 1610
Adaptation models BibRef

Noor, N.M.[Norliza Mohd.], Rijal, O.M.[Omar Mohd.], Than, J.C.M.[Joel Chia Ming], Kassim, R.M.[Rosminah M.], Yunus, A.[Ashari],
Regression as a Tool to Measure Segmentation Quality and Preliminary Indicator of Diseased Lungs,
PSIVT15(502-511).
Springer DOI 1602
BibRef

Soliman, A.[Ahmed], Elnakib, A.[Ahmed], Khalifa, F.[Fahmi], El-Ghar, M.A.[Mohamed Abou], El-Baz, A.[Ayman],
Segmentation of pathological lungs from CT chest images,
ICIP15(3655-3659)
IEEE DOI 1512
Computed Tomography; Lung; Markov Random Field; Pathology; Segmentation BibRef

Costa, A.[Addson], Carvalho, B.M.[Bruno M.],
SALSA: A Simple Automatic Lung Segmentation Algorithm,
CIARP15(501-508).
Springer DOI 1511
BibRef

Yao, J.W.[Jia-Wen], Ganti, D.[Dheeraj], Luo, X.[Xin], Xiao, G.H.[Guang-Hua], Xie, Y.[Yang], Yan, S.[Shirley], Huang, J.Z.[Jun-Zhou],
Computer-Assisted Diagnosis of Lung Cancer Using Quantitative Topology Features,
MLMI15(288-295).
Springer DOI 1511
BibRef

Hossain, M.R.I.[Mir Rayat Imtiaz], Ahmed, I.[Imran], Kabir, M.H.[Md. Hasanul],
Automatic Lung Tumor Detection Based on GLCM Features,
FSLCV14(III: 109-121).
Springer DOI 1504
BibRef

Hosseini-Asl, E.[Ehsan], Zurada, J.M.[Jacek M.], El-Baz, A.[Ayman],
Automatic segmentation of pathological lung using incremental nonnegative matrix factorization,
ICIP15(3111-3115)
IEEE DOI 1512
BibRef
Earlier:
Lung segmentation based on Nonnegative Matrix Factorization,
ICIP14(877-881)
IEEE DOI 1502
Nonnegative matrix factorization. Computed tomography BibRef

Schlegl, T.[Thomas], Ofner, J.[Joachim], Langs, G.[Georg],
Unsupervised Pre-training Across Image Domains Improves Lung Tissue Classification,
MCV14(82-93).
Springer DOI 1501
BibRef

Gill, G.[Gurman], Beichel, R.R.[Reinhard R.],
Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L 1 Based Texture Analysis Approach,
ISVC14(I: 511-520).
Springer DOI 1501
BibRef

Cheplygina, V.[Veronika], Sorensen, L.[Lauge], Tax, D.M.J.[David M.J.], Pedersen, J.H.[Jesper Holst], Loog, M.[Marco], de Bruijne, M.[Marleen],
Classification of COPD with Multiple Instance Learning,
ICPR14(1508-1513)
IEEE DOI 1412
Diseases BibRef

Orjuela-Cańón, A.D.[Alvaro D.], Gómez-Cajas, D.F.[Diego F.], Jiménez-Moreno, R.[Robinson],
Artificial Neural Networks for Acoustic Lung Signals Classification,
CIARP14(214-221).
Springer DOI 1411
BibRef

Wujcicki, A.[Artur], Materka, A.[Andrzej],
Quantitative and Qualitative Evaluation of Selected Lung MR Image Registration Techniques,
ICCVG14(653-660).
Springer DOI 1410
BibRef

Amemiya, T., Maeda, T.,
Depth and rate estimation for chest compression CPR with smartphone,
3DUI13(125-126)
IEEE DOI 1406
accelerometers BibRef

Kockelkorn, T.T.J.P.[Thessa T.J.P.], Sanchez, C.I.[Clara I.], Grutters, J.C.[Jan C.], Ramos, R.[Rui], de Jong, P.A.[Pim A.], Viergever, M.A.[Max A.], Ramos, J.[Jose], Schaefer-Prokop, C.[Cornelia], van Ginneken, B.[Bram],
Interactive classification of lung tissue in CT scans by combining prior and interactively obtained training data: A simulation study,
ICPR12(105-108).
WWW Link. 1302
BibRef

Giuca, A.M.[Anne-Marie], Seitz, K.A.[Kerry A.], Furst, J.[Jacob], Raicu, D.[Daniela],
Expanding diagnostically labeled datasets using content-based image retrieval,
ICIP12(2397-2400).
IEEE DOI 1302
aided diagnosis system. Use CBIR system to label unlabelled images. BibRef

Taher, F.[Fatma], Werghi, N.[Naoufel], Al-Ahmad, H.[Hussain],
Computer aided diagnosis system for early lung cancer detection,
WSSIP15(5-8)
IEEE DOI 1603
biomedical optical imaging BibRef

Werghi, N.[Naoufel], Donner, C.[Christian], Taher, F.[Fatma], Al-Ahmad, H.[Hussain],
Detection and segmentation of sputum cell for early lung cancer detection,
ICIP12(2813-2816).
IEEE DOI 1302
BibRef

Zheng, C.J.[Chao-Jie], Wang, X.Y.[Xiu-Ying], Chen, J.H.[Jin-Hu], Yin, Y.[Yong], Feng, D.D.[David Dagan],
Deformable registration model with local rigidity preservation for radiation therapy of lung tumor,
ICIP12(1673-1676).
IEEE DOI 1302
BibRef

Abdollahi, B.[Behnoush], Soliman, A.[Ahmed], Civelek, A.C., Li, X.F., Gimel'farb, G.L., El-Baz, A.[Ayman],
A novel Gaussian Scale Space-based joint MGRF framework for precise lung segmentation,
ICIP12(2029-2032).
IEEE DOI 1302
BibRef
And:
A Novel 3D Joint MGRF Framework for Precise Lung Segmentation,
MLMI12(86-93).
Springer DOI 1211
BibRef

Hollensen, C.[Christian], Cannon, G.[George], Cannon, D.[Donald], Bentzen, S.[Sřren], Larsen, R.[Rasmus],
Lung Tumor Segmentation Using Electric Flow Lines for Graph Cuts,
ICIAR12(II: 206-213).
Springer DOI 1206
BibRef

Faltin, P.[Peter], Chaisaowong, K.[Kraisorn], Kraus, T.[Thomas], Aach, T.[Til],
Markov-Gibbs model based registration of CT lung images using subsampling for the follow-up assessment of pleural thickenings,
ICIP11(2181-2184).
IEEE DOI 1201
BibRef

Faltin, P.[Peter], Chaisaowong, K.[Kraisorn], Aach, T.[Til],
Volume-preserving correction for image registration using free-form deformations,
ICIP12(2945-2948).
IEEE DOI 1302
BibRef

Wang, C.W.[Ching-Wei], Yu, C.P.[Cheng-Ping],
Automatic Morphological Classification of Lung Cancer Subtypes with Boosting Algorithms for Optimizing Therapy,
MLMI11(217-224).
Springer DOI 1109
BibRef

Takano, H.[Hirofumi], Watanabe, M.[Masahiro], Hironaka, S.[Shoji], Mukai, Y.[Yoshiharu], Aoki, Y.[Yoshimitsu],
Non-contact measurement system for swallowing time using Fiber grating vision sensor,
FCV11(1-5).
IEEE DOI 1102
Not really lungs. BibRef

Gangeh, M.J.[Mehrdad J.], Sřrensen, L.[Lauge], Shaker, S.B.[Saher B.], Kamel, M.S.[Mohamed S.], de Bruijne, M.[Marleen],
Multiple Classifier Systems in Texton-Based Approach for the Classification of CT Images of Lung,
MCV10(153-163).
Springer DOI 1009
BibRef

de Boer, W.[Willem], Lasenby, J.[Joan], Cameron, J.[Jonathan], Wareham, R.[Rich], Ahmad, S.[Shiraz], Roach, C.[Charlotte], Hills, W.[Ward], Iles, R.[Richard],
SLP: A Zero-contact Non-invasive Method for Pulmonary Function Testing,
BMVC10(xx-yy).
HTML Version. 1009
BibRef

Herberich, G.[Gerlind], Ivanescu, A.[Anca], Gamper, I.[Ivonne], Sechi, A.S.[Antonio S.], Aach, T.[Til],
Analysis of Length and Orientation of Microtubules in Wide-Field Fluorescence Microscopy,
DAGM10(182-191).
Springer DOI 1009
BibRef

Murray, V.[Victor], Pattichis, M.S.[Marios S.], Soliz, P.[Peter],
Multiscale directional AM-FM demodulation of images using a 2D optimized method,
ICIP11(249-252).
IEEE DOI 1201
BibRef

Vo, K.T.[Kiet T.], Sowmya, A.[Arcot],
Scale-Space Representation of Lung HRCT Images for Diffuse Lung Disease Classification,
ICISP10(550-558).
Springer DOI 1006
BibRef
Earlier:
Diffuse lung disease classification in HRCT lung images using generalized Gaussian density modeling of wavelets coefficients,
ICIP09(2645-2648).
IEEE DOI 0911
BibRef

Wantroba, J.S.[Joseph S.], Raicu, D.S.[Daniela S.], Furst, J.D.[Jacob D.],
A statistical analysis of the effects of CT acquisition parameters on low-level features extracted from CT images of the lung,
ICIP09(4197-4200).
IEEE DOI 0911
BibRef

Vo, K.T.[Kiet T.], Sowmya, A.[Arcot],
Multiscale sparse representation of high-resolution computed tomography (HRCT) lung images for diffuse lung disease classification,
ICIP11(441-444).
IEEE DOI 1201
BibRef
Earlier:
Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification,
CAIP09(663-671).
Springer DOI 0909
BibRef

Baradarani, A.[Aryaz], Wu, Q.M.J.[Q. M. Jonathan],
Efficient Segmentation of Lung Abnormalities in CT Images,
ICIAR09(749-758).
Springer DOI 0907
BibRef

Franchini, E.[Elena], Morigi, S.[Serena], Sgallari, F.[Fiorella],
Composed Segmentation of Tubular Structures by an Anisotropic PDE Model,
SSVM09(75-86).
Springer DOI 0906
BibRef

Ali, A.M.[Asem M.], Farag, A.A.[Aly A.],
Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using Graph Cuts,
ISVC08(I: 258-267).
Springer DOI 0812
BibRef

Aliotta, D.[Domenico], Buffa, P.[Pietro], Iaccarino, G.[Gennaro],
An Evolutionary General Purpose WebGIS to Disclose EGFR Mutations in Lung Cancer,
Visual08(xx-yy).
Springer DOI 0809
BibRef

El-Baz, A.S., Gimel'farb, G.L., Falk, R., Holland, T., Shaffer, T.,
A Framework for Unsupervised Segmentation of Lung Tissues from Low Dose Computed Tomography Images,
BMVC08(xx-yy).
PDF File. 0809
BibRef

Georg, M.[Manfred], Souvenir, R.[Richard], Hope, A.[Andrew], Pless, R.[Robert],
Manifold learning for 4D CT reconstruction of the lung,
MMBIA08(1-8).
IEEE DOI 0806
BibRef

da Silva Sousa, J.R.F.[Joăo Rodrigo Ferreira], Silva, A.C.[Aristófanes Corręa], de Paiva, A.C.[Anselmo Cardoso],
Lung Structure Classification Using 3D Geometric Measurements and SVM,
CIARP07(783-792).
Springer DOI 0711
BibRef

Gelzinis, A.[Adas], Verikas, A.[Antanas], Bacauskiene, M.[Marija],
Categorizing Laryngeal Images for Decision Support,
ACIVS07(521-530).
Springer DOI 0708
BibRef

Korfiatis, P.[Panayiotis], Skiadopoulos, S.[Spyros], Sakellaropoulos, P.[Philippos], Kalogeropoulou, C.[Christina], Costaridou, L.[Lena],
Automated 3D Segmentation of Lung Fields in Thin Slice CT Exploiting Wavelet Preprocessing,
CAIP07(237-244).
Springer DOI 0708
BibRef

Bi, J.B.[Jin-Bo], Liang, J.M.[Jian-Ming],
Multiple Instance Learning of Pulmonary Embolism Detection with Geodesic Distance along Vascular Structure,
CVPR07(1-8).
IEEE DOI 0706
BibRef

Pedrosa, J.[Joăo], Sousa, P.[Pedro], Silva, J.[Joana], Mendonça, A.M.[Ana Maria], Campilho, A.[Aurélio],
Lesion-Based Chest Radiography Image Retrieval for Explainability in Pathology Detection,
IbPRIA22(81-94).
Springer DOI 2205
BibRef

Vinhais, C.[Carlos], Campilho, A.[Aurélio],
Lung Parenchyma Segmentation from CT Images Based on Material Decomposition,
ICIAR06(II: 624-635).
Springer DOI 0610
BibRef
Earlier:
Genetic Model-Based Segmentation of Chest X-Ray Images Using Free Form Deformations,
ICIAR05(958-965).
Springer DOI 0509
BibRef

Shojaii, R., Alirezaie, J., Babyn, P.,
Automatic Lung Segmentation in CT Images using Watershed Transform,
ICIP05(II: 1270-1273).
IEEE DOI 0512
BibRef

Zrimec, T., Busayarat, S., Wilson, P.,
A 3D model of the human lung with lung regions characterization,
ICIP04(II: 1149-1152).
IEEE DOI 0505
BibRef

Zrimec, T., Busayarat, S.,
3D modelling and visualization of the human lung,
3DPVT04(110-115).
IEEE DOI 0412
BibRef

Yim, Y.[Yeny], Hong, H.[Helen],
Smoothing Segmented Lung Boundary in Chest CT Images Using Scan Line Search,
CIARP06(147-156).
Springer DOI 0611
BibRef

Hong, H.[Helen], Lee, J.J.[Jeong-Jin], Yim, Y.[Yeni], Shin, Y.G.[Yeong Gil],
Automatic Segmentation and Registration of Lung Surfaces in Temporal Chest CT Scans,
IbPRIA05(II:463).
Springer DOI 0509
BibRef

Hong, H.[Helen], Lee, J.J.[Jeong-Jin],
Digital Subtraction CT Lung Perfusion Image Based on 3D Affine Registration,
DAGM05(393).
Springer DOI 0509
BibRef

Benjelloun, M.[Mohammed],
Segmentation and Feature Extraction to Evaluate the Stomach Dynamic,
CRV05(437-443).
IEEE DOI 0505
BibRef

Mitani, Y., Matsunaga, N., Hamamoto, Y.,
Artificial images for classifying diffuse lung opacities in thin section computed tomography images,
ICPR04(III: 530-533).
IEEE DOI 0409
BibRef

Mitani, Y., Yasuda, H., Kido, S., Ueda, K., Matsunaga, N., Hamamoto, Y.,
Combining the gabor and histogram features for classifying diffuse lung opacities in thin-section computed tomography,
ICPR02(I: 53-56).
IEEE DOI 0211
BibRef

Ericsson, A.[Anders], Huart, A.[Amelié], Ekefjärd, A.[Andreas], Ĺström, K.[Kalle], Holst, H.[Holger], Evander, E.[Eva], Wollmer, P.[Per], Edenbrandt, L.[Lars],
Automated Interpretation of Ventilation-Perfusion Lung Scintigrams for the Diagnosis of Pulmonary Embolism Using Support Vector Machines,
SCIA03(415-421).
Springer DOI 0310
BibRef

Benmansour, F.[Fethallah], Cohen, L.D.[Laurent D.],
Tubular Anisotropy Segmentation,
SSVM09(14-25).
Springer DOI 0906
BibRef

Hirano, Y., Toriwaki, J., Hasegawa, J.I., Eguchi, K., Ohmatsu, H.,
Quantification of shrinkage of lung lobe from chest ct images using the 3d extended voronoi division and its application to the benign/malignant discrimination of tumor shadows,
ICPR02(I: 751-754).
IEEE DOI 0211
BibRef

Kitasaka, T., Mori, K., Suenaga, Y., Toriwaki, J.I., Saito, T., Hasegawa, J.I.,
Extraction of Lung Region From 3D Chest X-ray CT Images by Using Shape Model Information of Lung,
SCIA99(Biological Applications). BibRef 9900

Mori, K., Hasegawa, J.I., Toriwaki, J.I., Anno, H., Katada, K.,
Automated Extraction and Visualization of Bronchus from 3D CT Images of Lung,
CVRMed95(XX-YY) BibRef 9500

Luo, H.,
Automatic Segmentation of Lung Regions in Chest Radiographs: A Model Guided Approach,
ICIP00(Vol II: 483-486).
IEEE DOI 0008
BibRef

Wei, J.[Jun], Hagihara, Y.[Yoshihiro], Kobatake, H.[Hidefumi],
Detection of Cancerous Tumors on Chest X-ray Images: Candidate Detection Filter and Its Evaluation,
ICIP99(III:397-401).
IEEE DOI BibRef 9900

Yamamoto, S., Jiang, H., Matsumoto, M., Tateno, Y., Iinuma, T., and Matsumoto, T.,
Image Processing for Computer-Aided Diagnosis of Lung Cancer by CT (LSCT),
WACV96(236-241).
IEEE DOI 9609
BibRef

Thimm, G.[Georg],
Tracking Articulators in X-ray Movies of the Vocal Tract,
CAIP99(126-133).
Springer DOI 9909
BibRef

Wei, J.[Jun], Hagihara, Y., Kobatake, H.,
Detection of rounded opacities on chest radiographs using convergence index filter,
CIAP99(757-761).
IEEE DOI 9909
BibRef

Okumura, T.[Toshiaki], Miwa, T.[Tomoko], Kako, J.I.[Jun-Ichi], Yamamoto, S.[Shinji], Matsumoto, M.[Mitsuomi], Tateno, Y.[Yukio], Iinuma, T.[Takeshi], Matsumoto, T.[Tohru],
Automatic Detection of Lung Cancers in Chest CT Images by Variable N-Quoit Filter,
ICPR98(Vol II: 1671-1673).
IEEE DOI 9808
BibRef

Hayashibe, R., Asano, N., Hirohata, H., Okumura, K., Kondo, S., Handa, S., Takizawa, M., Sone, S., Oshita, S.,
An automatic lung cancer detection from X-ray images obtained through yearly serial mass survey,
ICIP96(I: 343-346).
IEEE DOI 9610
BibRef

Tozaki, T., Kawata, Y., Niki, N., Ohmatsu, H., Eguchi, K., Moriyama, N.,
3D image analysis of the lung area using thin section CT images and its application to differential diagnosis,
ICIP96(II: 281-284).
IEEE DOI 9610
BibRef

Young, S.,
Fourier-Based Dose Calculation in Radiation Brachytherapy,
ICIP97(II: 132-135).
IEEE DOI BibRef 9700

Sammouda, M.[Mohamed], Sammouda, R.[Rachid], Niki, N.[Noboru], Mukai, K.[Kyoshi],
Segmentation and Analysis of Liver Cancer Pathological Color Images based on Artificial Neural Networks,
ICIP99(III:392-396).
IEEE DOI BibRef 9900

Taher, F.[Fatma], Sammouda, R.[Rachid],
Artificial Neural Network and Fuzzy Clustering Methods in Segmenting Sputum Color Images for Lung Cancer Diagnosis,
ICISP10(513-520).
Springer DOI 1006
BibRef

Sammouda, R.[Rachid], Niki, N.[Noboru], Nishitani, H.[Hiromu], Nakamura, S., Mori, S.,
Segmentation of sputum color image for lung cancer diagnosis based on neural networks,
CIAP97(II: 461-468).
Springer DOI 9709
BibRef
And:
Segmentation of sputum color image for lung cancer diagnosis,
ICIP97(I: 243-246).
IEEE DOI 9710
BibRef

Chmielewski, L., Chmielewska, E., Sklodowski, M., Cudny, W., Skoczylas, J.,
Finding postirradiation reaction in lungs from digitized X-rays,
CAIP95(850-855).
Springer DOI 9509
BibRef

Kim, N.H., Aggarwal, S.J., Bovik, A.C., Diller, K.R.,
Computing shape changes in SOLANUM tuberosa slices viewed through a stereo microscope,
ICPR88(II: 1213-1215).
IEEE DOI 8811
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Chest X-Ray Analysis .


Last update:Aug 28, 2024 at 16:02:19