Gamba, P.[Paolo],
Casciati, F.[Fabio],
GIS and Image Understanding for Near-Real-Time Earthquake Damage
Assessment,
PhEngRS(64), No. 10, October 1998, pp. 987.
BibRef
9810
Spillman, W.B.,
Huston, D.R.,
Cellular-Automata for Image-Analysis of Damage in Large Structures,
OptEng(37), No. 3, March 1998, pp. 898-903.
9804
BibRef
Abuelgasim, A.A.,
Gopal, S.,
Change detection using adaptive fuzzy neural networks:
Environmental damage assessment after the Gulf war,
RSE(70), No. 2, 1999, pp. 208-223.
9911
BibRef
Al-Khudhairy, D.H.A.,
Caravaggi, I.,
Giada, S.,
Structural Damage Assessments from Ikonos Data Using Change Detection,
Object-Oriented Segmentation, and Classification Techniques,
PhEngRS(71), No. 7, July 2005, pp. 825-838.
Classical change detection methods, object-oriented image
segmentation, and classification techniques are applied to investigate
effectiveness for identifying post-disaster, structurally damaged
zones using very high resolution satellite imagery.
WWW Link.
0509
BibRef
Gamba, P.,
Dell'Acqua, F.,
Trianni, G.,
Rapid Damage Detection in the Bam Area Using Multitemporal SAR and
Exploiting Ancillary Data,
GeoRS(45), No. 6, June 2007, pp. 1582-1589.
IEEE DOI
0706
See also Improvements to urban area characterization using multitemporal and multiangle SAR images.
BibRef
Dell'Acqua, F.,
Gamba, P.,
Remote Sensing and Earthquake Damage Assessment:
Experiences, Limits, and Perspectives,
PIEEE(100), No. 10, October 2012, pp. 2876-2890.
IEEE DOI
1210
BibRef
Trianni, G.[Giovanna],
Gamba, P.[Paolo],
Fast damage mapping in case of earthquakes using multitemporal SAR data,
RealTimeIP(4), No. 3, August 2009, pp. xx-yy.
Springer DOI
0909
BibRef
Sertel, E.,
Kaya, S.,
Curran, P.J.,
Use of Semivariograms to Identify Earthquake Damage in an Urban Area,
GeoRS(45), No. 6, June 2007, pp. 1590-1594.
IEEE DOI
0706
BibRef
Barnes, C.F.,
Fritz, H.,
Yoo, J.,
Hurricane Disaster Assessments With Image-Driven Data Mining in
High-Resolution Satellite Imagery,
GeoRS(45), No. 6, June 2007, pp. 1631-1640.
IEEE DOI
0706
BibRef
Barnes, C.F.,
Image-Driven Data Mining for Image Content Segmentation,
Classification, and Attribution,
GeoRS(45), No. 9, September 2007, pp. 2964-2978.
IEEE DOI
0710
BibRef
Bahirat, K.,
Bovolo, F.,
Bruzzone, L.,
Chaudhuri, S.,
A Novel Domain Adaptation Bayesian Classifier for Updating Land-Cover
Maps With Class Differences in Source and Target Domains,
GeoRS(50), No. 7, July 2012, pp. 2810-2826.
IEEE DOI
1208
BibRef
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
A Split-Based Approach to Unsupervised Change Detection in Large-Size
Multitemporal Images: Application to Tsunami-Damage Assessment,
GeoRS(45), No. 6, June 2007, pp. 1658-1670.
IEEE DOI
0706
See also Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, A.
BibRef
Bovolo, F.[Francesca],
Marin, C.[Carlo],
Bruzzone, L.[Lorenzo],
A Hierarchical Approach to Change Detection in Very High Resolution SAR
Images for Surveillance Applications,
GeoRS(51), No. 4, April 2013, pp. 2042-2054.
IEEE DOI
1304
BibRef
Earlier:
A multilevel approach to change detection for port surveillance with
very high resolution SAR images,
MultiTemp11(9-12).
IEEE DOI
1109
BibRef
Bertoluzza, M.,
Bruzzone, L.[Lorenzo],
Bovolo, F.[Francesca],
Circular change detection in image time series inspired by
two-dimensional phase unwrapping,
MultiTemp17(1-4)
IEEE DOI
1712
Big Data, geophysical image processing, geophysical techniques,
image resolution, time series, 2D phase unwrapping, CD error,
unwrapping
BibRef
Bovolo, F.,
Bruzzone, L.,
Marconcini, M.,
A Novel Approach to Unsupervised Change Detection Based on a
Semisupervised SVM and a Similarity Measure,
GeoRS(46), No. 7, July 2008, pp. 2070-2082.
IEEE DOI
0806
BibRef
Yin, L.[Li],
Silverman, R.M.[Robert Mark],
Housing Abandonment and Demolition:
Exploring the Use of Micro-Level and Multi-Year Models,
IJGI(4), No. 3, 2015, pp. 1184.
DOI Link
1508
BibRef
Solano-Correa, Y.T.[Yady Tatiana],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Generation of Homogeneous VHR Time Series by Nonparametric Regression
of Multisensor Bitemporal Images,
GeoRS(57), No. 10, October 2019, pp. 7579-7593.
IEEE DOI
1910
geophysical image processing, image classification,
image resolution, optical sensors, regression analysis,
very high geometrical resolution (VHR) time series (TS)
BibRef
Solano-Correa, Y.T.,
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Fernández-Prieto, D.,
Spatio-temporal evolution of crop fields in Sentinel-2 Satellite
Image Time Series,
MultiTemp17(1-4)
IEEE DOI
1712
crops, geophysical techniques, Barrax,
Sentinel-2 satellite image time series, Spain,
Spatio-temporal mapping
BibRef
Bovolo, F.,
Marchesi, S.,
Bruzzone, L.,
A Framework for Automatic and Unsupervised Detection of Multiple
Changes in Multitemporal Images,
GeoRS(50), No. 6, June 2012, pp. 2196-2212.
IEEE DOI
1205
See also Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, A.
BibRef
Marinelli, D.,
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
A Novel Change Detection Method for Multitemporal Hyperspectral
Images Based on Binary Hyperspectral Change Vectors,
GeoRS(57), No. 7, July 2019, pp. 4913-4928.
IEEE DOI
1907
BibRef
Earlier:
A novel method for unsupervised multiple Change Detection in
hyperspectral images based on binary Spectral Change Vectors,
MultiTemp17(1-4)
IEEE DOI
1712
Hyperspectral imaging, Image coding,
Principal component analysis, Complexity theory,
multitemporal images.
geophysical techniques, land cover,
vegetation, ad-hoc techniques, agricultural area,
Spatial resolution
See also Support Vector Domain Method For Change Detection In Multitemporal Images, A.
BibRef
Saha, S.,
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Unsupervised Deep Change Vector Analysis for Multiple-Change
Detection in VHR Images,
GeoRS(57), No. 6, June 2019, pp. 3677-3693.
IEEE DOI
1906
Feature extraction, Remote sensing, Image segmentation,
Optical imaging, Optical sensors,
very high-resolution images
BibRef
Saha, S.,
Bovolo, F.,
Bruzzone, L.,
Building Change Detection in VHR SAR Images via Unsupervised Deep
Transcoding,
GeoRS(59), No. 3, March 2021, pp. 1917-1929.
IEEE DOI
1806
Optical imaging, Radar polarimetry, Feature extraction,
Optical sensors, Synthetic aperture radar, Transcoding, Buildings,
very high-resolution images
BibRef
Fernandez-Prieto, D.,
Marconcini, M.,
A Novel Partially Supervised Approach to Targeted Change Detection,
GeoRS(49), No. 12, December 2011, pp. 5016-5038.
IEEE DOI
1201
BibRef
Chini, M.,
Pierdicca, N.,
Emery, W.J.,
Exploiting SAR and VHR Optical Images to Quantify Damage Caused by the
2003 Bam Earthquake,
GeoRS(47), No. 1, January 2009, pp. 145-152.
IEEE DOI
0901
BibRef
Tagliavini, F.,
Reichenbach, P.,
Maragna, D.,
Guzzetti, F.,
Pasuto, A.,
Comparison of 2-D and 3-D computer models for the M. Salta rock fall,
Vajont Valley, northern Italy,
GeoInfo(13), No. 3, September 2009, pp. xx-yy.
Springer DOI
0905
BibRef
Cohen, A.R.[Andrew R.],
Bjornsson, C.S.[Christopher S.],
Temple, S.[Sally],
Banker, G.[Gary],
Roysam, B.[Badrinath],
Automatic Summarization of Changes in Biological Image Sequences Using
Algorithmic Information Theory,
PAMI(31), No. 8, August 2009, pp. 1386-1403.
IEEE DOI
0906
Summarize changes in a medical sequence. Tissue strain due to insertion of
probe/tool.
BibRef
Brunner, D.,
Lemoine, G.,
Bruzzone, L.,
Earthquake Damage Assessment of Buildings Using VHR Optical and SAR
Imagery,
GeoRS(48), No. 5, May 2010, pp. 2403-2420.
IEEE DOI
1006
See also Building Height Retrieval From VHR SAR Imagery Based on an Iterative Simulation and Matching Technique.
BibRef
Manfredi, M.,
Aldrighi, M.,
Dell'Acqua, F.,
Eigenmethod for Feature Matching of Pre- and Postevent Images
Exploiting Adjacency,
GeoRS(48), No. 7, July 2010, pp. 2890-2898.
IEEE DOI
1007
BibRef
Guglielmino, F.,
Nunnari, G.,
Puglisi, G.,
Spata, A.,
Simultaneous and Integrated Strain Tensor Estimation From Geodetic and
Satellite Deformation Measurements to Obtain Three-Dimensional
Displacement Maps,
GeoRS(49), No. 6, June 2011, pp. 1815-1826.
IEEE DOI
1106
BibRef
Splinter, K.D.,
Strauss, D.R.,
Tomlinson, R.B.,
Assessment of Post-Storm Recovery of Beaches Using Video Imaging
Techniques: A Case Study at Gold Coast, Australia,
GeoRS(49), No. 12, December 2011, pp. 4704-4716.
IEEE DOI
1201
BibRef
Sjahputera, O.,
Scott, G.J.,
Claywell, B.C.,
Klaric, M.N.,
Hudson, N.J.,
Keller, J.M.,
Davis, C.H.,
Clustering of Detected Changes in High-Resolution Satellite Imagery
Using a Stabilized Competitive Agglomeration Algorithm,
GeoRS(49), No. 12, December 2011, pp. 4687-4703.
IEEE DOI
1201
BibRef
Klaric, M.N.,
Claywell, B.C.,
Scott, G.J.,
Hudson, N.J.,
Sjahputera, O.,
Li, Y.,
Barratt, S.T.,
Keller, J.M.,
Davis, C.H.,
GeoCDX: An Automated Change Detection and Exploitation System for
High-Resolution Satellite Imagery,
GeoRS(51), No. 4, April 2013, pp. 2067-2086.
IEEE DOI
1304
BibRef
Matsuoka, M.,
Nojima, N.,
Building Damage Estimation by Integration of Seismic Intensity
Information and Satellite L-band SAR Imagery,
RS(2), No. 9, September 2010, pp. 2111-2126.
DOI Link
1203
BibRef
Bielski, C.,
Gentilini, S.,
Pappalardo, M.,
Post-Disaster Image Processing for Damage Analysis Using GENESI-DR, WPS
and Grid Computing,
RS(3), No. 6, June 2011, pp. 1234-1250.
DOI Link
1203
BibRef
Ghoshal, S.,
James, L.,
Singer, M.,
Aalto, R.,
Channel and Floodplain Change Analysis over a 100-Year Period:
Lower Yuba River, California,
RS(2), No. 7, July 2010, pp. 1797-1825.
DOI Link
1203
BibRef
Rocchini, D.,
Ecological Status and Change by Remote Sensing,
RS(2), No. 10, October 2010, pp. 2424-2425.
DOI Link
1203
BibRef
Vassilakis, E.,
Remote Sensing of Environmental Change in the Antirio Deltaic Fan
Region, Western Greece,
RS(2), No. 11, November 2010, pp. 2547-2560.
DOI Link
1203
BibRef
Tong, X.H.[Xiao-Hua],
Hong, Z.H.[Zhong-Hua],
Liu, S.J.[Shi-Jie],
Zhang, X.[Xue],
Xie, H.[Huan],
Li, Z.Y.[Zheng-Yuan],
Yang, S.[Sonlin],
Wang, W.[Weian],
Bao, F.[Feng],
Building-damage detection using pre- and post-seismic high-resolution
satellite stereo imagery: A case study of the May 2008 Wenchuan
earthquake,
PandRS(68), No. 1, March 2012, pp. 13-27.
Elsevier DOI
1204
Building collapse detection; Earthquake; Rational polynomial
coefficient; Geopositioning accuracy; Digital elevation model; IKONOS
stereo images
BibRef
Debella-Gilo, M.[Misganu],
Kääb, A.[Andreas],
Locally adaptive template sizes for matching repeat images of Earth
surface mass movements,
PandRS(69), No. 1, April 2012, pp. 10-28.
Elsevier DOI
1202
Image matching; Normalized cross-correlation; Mass movement;
Displacement; Adaptive template
BibRef
Towler, J.,
Krawiec, B.,
Kochersberger, K.,
Radiation Mapping in Post-Disaster Environments Using an Autonomous
Helicopter,
RS(4), No. 7, July 2012, pp. 1995-2015.
DOI Link
1208
BibRef
Wagner, M.A.,
Myint, S.W.,
Cerveny, R.S.,
Geospatial Assessment of Recovery Rates Following a Tornado Disaster,
GeoRS(50), No. 11, November 2012, pp. 4313-4322.
IEEE DOI
1210
BibRef
Yamaguchi, Y.,
Disaster Monitoring by Fully Polarimetric SAR Data Acquired With
ALOS-PALSAR,
PIEEE(100), No. 10, October 2012, pp. 2851-2860.
IEEE DOI
1210
BibRef
Hooper, A.,
Prata, F.,
Sigmundsson, F.,
Remote Sensing of Volcanic Hazards and Their Precursors,
PIEEE(100), No. 10, October 2012, pp. 2908-2930.
IEEE DOI
1210
BibRef
Klonus, S.[Sascha],
Ehlers, M.[Manfred],
Tomowski, D.[Daniel],
Michel, U.[Ulrich],
Reinartz, P.[Peter],
Detection of Damaged Buildings in Crisis Areas from Panchromatic Remote
Sensing Data,
PFG(2011), No. 4, 2011, pp. 219-231.
WWW Link.
1211
BibRef
Ehlers, M.,
Klonus, S.,
Jarmer, T.,
Sofina, N.,
Michel, U.,
Reinartz, P.,
Sirmacek, B.,
Cest Analysis: Automated Change Detection From Very-high-resolution
Remote Sensing Images,
ISPRS12(XXXIX-B7:317-322).
DOI Link
1209
BibRef
Pesci, A.[Arianna],
Teza, G.[Giordano],
Bonali, E.[Elena],
Casula, G.[Giuseppe],
Boschi, E.[Enzo],
A laser scanning-based method for fast estimation of seismic-induced
building deformations,
PandRS(79), No. 1, May 2013, pp. 185-198.
Elsevier DOI
1305
Architecture; Change detection; Laser scanning; Model; Performance
BibRef
Tong, X.H.[Xiao-Hua],
Lin, X.F.[Xiao-Fei],
Feng, T.T.[Tian-Tian],
Xie, H.[Huan],
Liu, S.J.[Shi-Jie],
Hong, Z.H.[Zhong-Hua],
Chen, P.[Peng],
Use of shadows for detection of earthquake-induced collapsed buildings
in high-resolution satellite imagery,
PandRS(79), No. 1, May 2013, pp. 53-67.
Elsevier DOI
1305
Hybrid approach; Shadow analysis; Building collapse detection;
High-resolution satellite image; Earthquake-induced damage assessment;
Accuracy
BibRef
Brett, P.T.B.,
Guida, R.,
Earthquake Damage Detection in Urban Areas Using Curvilinear Features,
GeoRS(51), No. 9, 2013, pp. 4877-4884.
IEEE DOI
1309
Buildings
BibRef
Dong, L.G.[Lai-Gen],
Shan, J.[Jie],
A comprehensive review of earthquake-induced building damage
detection with remote sensing techniques,
PandRS(84), No. 0, 2013, pp. 85-99.
Elsevier DOI
1309
Earthquakes
BibRef
Frattini, P.[Paolo],
Crosta, G.B.[Giovanni B.],
Allievi, J.[Jacopo],
Damage to Buildings in Large Slope Rock Instabilities Monitored with
the PSInSAR™ Technique,
RS(5), No. 10, 2013, pp. 4753-4773.
DOI Link
1311
BibRef
Kerfoot, W.C.[W. Charles],
Hobmeier, M.M.[Martin M.],
Yousef, F.[Foad],
Green, S.A.[Sarah A.],
Regis, R.[Robert],
Brooks, C.N.[Colin N.],
Shuchman, R.[Robert],
Anderson, J.[Jamey],
Reif, M.[Molly],
Light Detection and Ranging (LiDAR) and Multispectral Scanner (MSS)
Studies Examine Coastal Environments Influenced by Mining,
IJGI(3), No. 1, 2014, pp. 66-95.
DOI Link
1402
BibRef
Thomas, J.,
Kareem, A.,
Bowyer, K.W.,
Automated Poststorm Damage Classification of Low-Rise Building
Roofing Systems Using High-Resolution Aerial Imagery,
GeoRS(52), No. 7, July 2014, pp. 3851-3861.
IEEE DOI
1403
Buildings
BibRef
Li, N.[Ning],
Wang, R.[Robert],
Liu, Y.[Yabo],
Du, K.N.[Kang-Ning],
Chen, J.Q.[Jia-Qi],
Deng, Y.K.[Yun-Kai],
Robust river boundaries extraction of dammed lakes in mountain areas
after Wenchuan Earthquake from high resolution SAR images combining
local connectivity and ACM,
PandRS(94), No. 1, 2014, pp. 91-101.
Elsevier DOI
1407
Airborne SAR imagery
BibRef
Plank, S.[Simon],
Rapid Damage Assessment by Means of Multi-Temporal SAR:
A Comprehensive Review and Outlook to Sentinel-1,
RS(6), No. 6, 2014, pp. 4870-4906.
DOI Link
1407
BibRef
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
A Detail-Preserving Scale-Driven Approach to Change Detection in
Multitemporal SAR Images,
GeoRS(43), No. 12, December 2005, pp. 2963-2972.
IEEE DOI
0512
BibRef
Earlier:
An Adaptive Multiscale Approach to Unsupervised Change Detection in
Multitemporal SAR Images,
ICIP05(I: 665-668).
IEEE DOI
0512
See also Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment, A.
BibRef
Marin, C.,
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Building Change Detection in Multitemporal Very High Resolution SAR
Images,
GeoRS(53), No. 5, May 2015, pp. 2664-2682.
IEEE DOI
1502
radar detection
BibRef
Domínguez, E.M.[E. Méndez],
Meier, E.,
Small, D.,
Schaepman, M.E.,
Bruzzone, L.,
Henke, D.,
A Multisquint Framework for Change Detection in High-Resolution
Multitemporal SAR Images,
GeoRS(56), No. 6, June 2018, pp. 3611-3623.
IEEE DOI
1806
Array signal processing, Azimuth, Backscatter, Detectors,
Spatial resolution, Synthetic aperture radar, Image processing,
wavelets
BibRef
Liu, S.C.[Si-Cong],
Bruzzone, L.[Lorenzo],
Bovolo, F.[Francesca],
Du, P.J.[Pei-Jun],
Hierarchical Unsupervised Change Detection in Multitemporal
Hyperspectral Images,
GeoRS(53), No. 1, January 2015, pp. 244-260.
IEEE DOI
1410
See also Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, A.
See also Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment, A. artificial satellites
BibRef
Bruzzone, L.[Lorenzo],
Bovolo, F.[Francesca],
Paris, C.,
Solano-Correa, Y.T.[Y. Tatiana],
Zanetti, M.,
Fernández-Prieto, D.,
Analysis of multitemporal Sentinel-2 images in the framework of the
ESA Scientific Exploitation of Operational Missions,
MultiTemp17(1-4)
IEEE DOI
1712
land cover,
ESA scientific exploitation of operational missions,
Vegetation mapping
BibRef
Liu, S.C.[Si-Cong],
Du, P.J.[Pei-Jun],
Object-Oriented Change Detection from Multi-Temporal Remotely Sensed
Images,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Wang, J.H.[Jian-Hua],
Qin, Q.M.[Qi-Ming],
Zhao, J.H.[Jiang-Hua],
Ye, X.[Xin],
Feng, X.[Xiao],
Qin, X.B.[Xue-Bin],
Yang, X.C.[Xiu-Cheng],
Knowledge-Based Detection and Assessment of Damaged Roads Using
Post-Disaster High-Resolution Remote Sensing Image,
RS(7), No. 4, 2015, pp. 4948-4967.
DOI Link
1505
BibRef
Wang, J.H.[Jian-Hua],
Qin, Q.M.[Qi-Ming],
Gao, Z.L.[Zhong-Ling],
Zhao, J.H.[Jiang-Hua],
Ye, X.[Xin],
A New Approach to Urban Road Extraction Using High-Resolution Aerial
Image,
IJGI(5), No. 7, 2016, pp. 114.
DOI Link
1608
BibRef
Vetrivel, A.[Anand],
Gerke, M.[Markus],
Kerle, N.[Norman],
Vosselman, G.[George],
Identification of damage in buildings based on gaps in 3D point
clouds from very high resolution oblique airborne images,
PandRS(105), No. 1, 2015, pp. 61-78.
Elsevier DOI
1506
Oblique images
BibRef
Osaragi, T.[Toshihiro],
Modeling Obstruction and Restoration of Urban Commutation Networks in
the Wake of a Devastating Earthquake in Tokyo,
IJGI(4), No. 3, 2015, pp. 1097.
DOI Link
1507
BibRef
Jiang, W.G.[Wei-Guo],
Jia, K.[Kai],
Wu, J.J.[Jian-Jun],
Tang, Z.H.[Zheng-Hong],
Wang, W.J.[Wen-Jie],
Liu, X.F.[Xiao-Fu],
Evaluating the Vegetation Recovery in the Damage Area of Wenchuan
Earthquake Using MODIS Data,
RS(7), No. 7, 2015, pp. 8757.
DOI Link
1506
BibRef
Xu, H.[Hao],
Cheng, L.[Liang],
Li, M.C.[Man-Chun],
Chen, Y.M.[Yan-Ming],
Zhong, L.S.[Li-Shan],
Using Octrees to Detect Changes to Buildings and Trees in the Urban
Environment from Airborne LiDAR Data,
RS(7), No. 8, 2015, pp. 9682.
DOI Link
1509
BibRef
Taneja, A.[Aparna],
Ballan, L.[Luca],
Pollefeys, M.[Marc],
Geometric Change Detection in Urban Environments Using Images,
PAMI(37), No. 11, November 2015, pp. 2193-2206.
IEEE DOI
1511
BibRef
Earlier:
Image based detection of geometric changes in urban environments,
ICCV11(2336-2343).
IEEE DOI
1201
object detection.
to direct 3D analysis to changed areas.
BibRef
Zhang, H.Z.[Huai-Zhen],
Wang, X.M.[Xiao-Meng],
Fan, J.R.[Jian-Rong],
Chi, T.H.[Tian-He],
Yang, S.[Shun],
Peng, L.[Ling],
Monitoring Earthquake-Damaged Vegetation after the 2008 Wenchuan
Earthquake in the Mountainous River Basins, Dujiangyan County,
RS(7), No. 6, 2015, pp. 6808.
DOI Link
1507
BibRef
Zhang, H.Z.[Huai-Zhen],
Chi, T.[Tianhe],
Fan, J.R.[Jian-Rong],
Hu, K.H.[Kai-Heng],
Peng, L.[Ling],
Spatial Analysis of Wenchuan Earthquake-Damaged Vegetation in the
Mountainous Basins and Its Applications,
RS(7), No. 5, 2015, pp. 5785-5804.
DOI Link
1506
BibRef
Zhai, W.[Wei],
Shen, H.F.[Huan-Feng],
Huang, C.L.[Chun-Lin],
Pei, W.S.[Wan-Sheng],
Building Earthquake Damage Information Extraction from a Single
Post-Earthquake PolSAR Image,
RS(8), No. 3, 2016, pp. 171.
DOI Link
1604
BibRef
Zhai, W.[Wei],
Huang, C.L.[Chun-Lin],
Pei, W.S.[Wan-Sheng],
Building Damage Assessment Based on the Fusion of Multiple Texture
Features Using a Single Post-Earthquake PolSAR Image,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Vetrivel, A.[Anand],
Gerke, M.[Markus],
Kerle, N.[Norman],
Vosselman, G.[George],
Identification of Structurally Damaged Areas in Airborne Oblique
Images Using a Visual-Bag-of-Words Approach,
RS(8), No. 3, 2016, pp. 231.
DOI Link
1604
BibRef
Gueguen, L.,
Hamid, R.,
Toward a Generalizable Image Representation for Large-Scale Change
Detection: Application to Generic Damage Analysis,
GeoRS(54), No. 6, June 2016, pp. 3378-3387.
IEEE DOI
1606
geophysical image processing
BibRef
Cerra, D.[Daniele],
Plank, S.[Simon],
Lysandrou, V.[Vasiliki],
Tian, J.J.[Jiao-Jiao],
Cultural Heritage Sites in Danger: Towards Automatic Damage Detection
from Space,
RS(8), No. 9, 2016, pp. 781.
DOI Link
1610
BibRef
Earlier: A1, A4, A3, A2:
Automatic Damage Detection For Sensitive Cultural Heritage Sites,
ISPRS16(B5: 215-219).
DOI Link
1610
BibRef
Cooner, A.J.[Austin J.],
Shao, Y.[Yang],
Campbell, J.B.[James B.],
Detection of Urban Damage Using Remote Sensing and Machine Learning
Algorithms: Revisiting the 2010 Haiti Earthquake,
RS(8), No. 10, 2016, pp. 868.
DOI Link
1609
BibRef
Chen, S.W.,
Wang, X.S.,
Sato, M.,
Urban Damage Level Mapping Based on Scattering Mechanism
Investigation Using Fully Polarimetric SAR Data for the 3.11 East
Japan Earthquake,
GeoRS(54), No. 12, December 2016, pp. 6919-6929.
IEEE DOI
1612
earthquakes
BibRef
Gong, L.X.[Li-Xia],
Wang, C.[Chao],
Wu, F.[Fan],
Zhang, J.F.[Jing-Fa],
Zhang, H.[Hong],
Li, Q.A.[Qi-Ang],
Earthquake-Induced Building Damage Detection with Post-Event
Sub-Meter VHR TerraSAR-X Staring Spotlight Imagery,
RS(8), No. 11, 2016, pp. 887.
DOI Link
1612
BibRef
Liu, H.[Hai],
Koyama, C.[Christian],
Zhu, J.F.[Jin-Feng],
Liu, Q.[Qinghuo],
Sato, M.[Motoyuki],
Post-Earthquake Damage Inspection of Wood-Frame Buildings by a
Polarimetric GB-SAR System,
RS(8), No. 11, 2016, pp. 935.
DOI Link
1612
BibRef
Karimzadeh, S.[Sadra],
Mastuoka, M.[Masashi],
Building Damage Assessment Using Multisensor Dual-Polarized Synthetic
Aperture Radar Data for the 2016 M 6.2 Amatrice Earthquake, Italy,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Janalipour, M.[Milad],
Mohammadzadeh, A.[Ali],
A Fuzzy-GA Based Decision Making System for Detecting Damaged
Buildings from High-Spatial Resolution Optical Images,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Tu, J.H.[Ji-Hui],
Li, D.R.[De-Ren],
Feng, W.Q.[Wen-Qing],
Han, Q.[Qinhu],
Sui, H.G.[Hai-Gang],
Detecting Damaged Building Regions Based on Semantic Scene Change
from Multi-Temporal High-Resolution Remote Sensing Images,
IJGI(6), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Xiao, Z.F.[Zhi-Feng],
Long, Y.[Yang],
Li, D.R.[De-Ren],
Wei, C.S.[Chun-Shan],
Tang, G.[Gefu],
Liu, J.Y.[Jun-Yi],
High-Resolution Remote Sensing Image Retrieval Based on CNNs from a
Dimensional Perspective,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Frank, J.[Jared],
Rebbapragada, U.[Umaa],
Bialas, J.[James],
Oommen, T.[Thomas],
Havens, T.C.[Timothy C.],
Effect of Label Noise on the Machine-Learned Classification of
Earthquake Damage,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Sun, G.[Genyun],
Hao, Y.L.[Yan-Ling],
Chen, X.L.[Xiao-Lin],
Ren, J.C.[Jin-Chang],
Zhang, A.Z.[Ai-Zhu],
Huang, B.H.[Bing-Hu],
Zhang, Y.Z.[Yuan-Zhi],
Jia, X.P.[Xiu-Ping],
Dynamic Post-Earthquake Image Segmentation with an Adaptive
Spectral-Spatial Descriptor,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Li, S.D.[Shao-Dan],
Tang, H.[Hong],
Huang, X.[Xin],
Mao, T.[Ting],
Niu, X.N.[Xiao-Nan],
Automated Detection of Buildings from Heterogeneous VHR Satellite
Images for Rapid Response to Natural Disasters,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Pierdicca, N.,
Anniballe, R.,
Noto, F.,
Bignami, C.,
Chini, M.,
Martinelli, A.,
Mannella, A.,
Triple Collocation to Assess Classification Accuracy Without a Ground
Truth in Case of Earthquake Damage Assessment,
GeoRS(56), No. 1, January 2018, pp. 485-496.
IEEE DOI
1801
earthquakes, geophysical image processing, image classification,
remote sensing, AD 2009, Aquila earthquake damage, Italy,
triple collocation (TC)
BibRef
Jung, J.,
Yun, S.H.,
Kim, D.j.,
Lavalle, M.,
Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal
Polarimetric-Interferometric SAR Data,
GeoRS(56), No. 3, March 2018, pp. 1520-1532.
IEEE DOI
1804
decorrelation, optimisation, parameter estimation, probability,
radar imaging, radar interferometry, radar polarimetry,
synthetic aperture radar (SAR)
BibRef
Milillo, P.[Pietro],
Giardina, G.[Giorgia],
DeJong, M.J.[Matthew J.],
Perissin, D.[Daniele],
Milillo, G.[Giovanni],
Multi-Temporal InSAR Structural Damage Assessment:
The London Crossrail Case Study,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Dabove, P.[Paolo],
di Pietra, V.[Vincenzo],
Lingua, A.M.[Andrea Maria],
Close range photogrammetry with tablet technology in post-earthquake
scenario: Sant'Agostino church in Amatrice,
GeoInfo(22), No. 2, April 2018, pp. 463-477.
WWW Link.
1805
BibRef
Chen, J.[Jie],
Liu, H.F.[Hai-Fei],
Hou, J.L.[Jia-Liang],
Yang, M.H.[Min-Hua],
Deng, M.[Min],
Improving Building Change Detection in VHR Remote Sensing Imagery by
Combining Coarse Location and Co-Segmentation,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Liu, H.F.[Hai-Fei],
Yang, M.H.[Min-Hua],
Chen, J.[Jie],
Hou, J.L.[Jia-Liang],
Deng, M.[Min],
Line-Constrained Shape Feature for Building Change Detection in VHR
Remote Sensing Imagery,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Feng, W.Q.[Wen-Qing],
Sui, H.G.[Hai-Gang],
Tu, J.H.[Ji-Hui],
Huang, W.M.[Wei-Ming],
Xu, C.[Chuan],
Sun, K.[Kaimin],
A Novel Change Detection Approach for Multi-Temporal High-Resolution
Remote Sensing Images Based on Rotation Forest and Coarse-to-Fine
Uncertainty Analyses,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Feng, W.Q.[Wen-Qing],
Sui, H.G.[Hai-Gang],
Tu, J.H.[Ji-Hui],
Object-oriented Change Detection For Remote Sensing Images Based On
Multi-scale Fusion,
ISPRS16(B7: 483-491).
DOI Link
1610
BibRef
Sun, K.M.[Kai-Mina],
Li, D.[Derena],
Sui, H.G.[Hai-Ganga],
Liu, J.Y.[Jun-Yia],
Ma, G.R.[Guo-Rui],
Object-level Change Detection Based On High-resolution Remote-sensing
Images and Its Application in Japanese Earthquake on March 11, 2011,
AnnalsPRS(I-7), No. 2012, pp. 249-256.
DOI Link
1209
BibRef
Sui, H.G.[Hai-Gang],
Tu, J.H.[Ji-Hui],
Song, Z.,
Chen, G.,
Li, Q.,
A Novel 3D Building Damage Detection Method Using Multiple Overlapping
UAV Images,
Thematic14(173-179).
DOI Link
1404
BibRef
Washaya, P.[Prosper],
Balz, T.[Timo],
Mohamadi, B.[Bahaa],
Coherence Change-Detection with Sentinel-1 for Natural and
Anthropogenic Disaster Monitoring in Urban Areas,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Olen, S.[Stephanie],
Bookhagen, B.[Bodo],
Mapping Damage-Affected Areas after Natural Hazard Events Using
Sentinel-1 Coherence Time Series,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Duarte, D.[Diogo],
Nex, F.[Francesco],
Kerle, N.[Norman],
Vosselman, G.[George],
Multi-Resolution Feature Fusion for Image Classification of Building
Damages with Convolutional Neural Networks,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Nex, F.[Francesco],
Duarte, D.[Diogo],
Steenbeek, A.[Anne],
Kerle, N.[Norman],
Towards Real-Time Building Damage Mapping with Low-Cost UAV Solutions,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Alizadeh, M.[Mohsen],
Hashim, M.[Mazlan],
Alizadeh, E.[Esmaeil],
Shahabi, H.[Himan],
Karami, M.R.[Mohammad Reza],
Pour, A.B.[Amin Beiranvand],
Pradhan, B.[Biswajeet],
Zabihi, H.[Hassan],
Multi-Criteria Decision Making (MCDM) Model for Seismic Vulnerability
Assessment (SVA) of Urban Residential Buildings,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Moya, L.[Luis],
Zakeri, H.[Homa],
Yamazaki, F.[Fumio],
Liu, W.[Wen],
Mas, E.[Erick],
Koshimura, S.[Shunichi],
3D gray level co-occurrence matrix and its application to identifying
collapsed buildings,
PandRS(149), 2019, pp. 14-28.
Elsevier DOI
1903
Three-dimensional GLCM, Texture, Change detection
BibRef
Daudt, R.C.[Rodrigo Caye],
Le Saux, B.[Bertrand],
Boulch, A.[Alexandre],
Gousseau, Y.[Yann],
Multitask learning for large-scale semantic change detection,
CVIU(187), 2019, pp. 102783.
Elsevier DOI
1909
Semantic change detection, High resolution Earth observation,
Fully convolutional networks, Remote sensing, Multitask learning
BibRef
Ci, T.Y.[Tian-Yu],
Liu, Z.[Zhen],
Wang, Y.[Ying],
Assessment of the Degree of Building Damage Caused by Disaster Using
Convolutional Neural Networks in Combination with Ordinal Regression,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Gonzalez-Drigo, R.[Ramon],
Cabrera, E.[Esteban],
Luzi, G.[Guido],
Pujades, L.G.[Luis G.],
Vargas-Alzate, Y.F.[Yeudy F.],
Avila-Haro, J.[Jorge],
Assessment of Post-Earthquake Damaged Building with Interferometric
Real Aperture Radar,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Nex, F.[Francesco],
Duarte, D.[Diogo],
Tonolo, F.G.[Fabio Giulio],
Kerle, N.[Norman],
Structural Building Damage Detection with Deep Learning: Assessment
of a State-of-the-Art CNN in Operational Conditions,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Wang, X.[Xue],
Li, P.J.[Pei-Jun],
Extraction of urban building damage using spectral, height and corner
information from VHR satellite images and airborne LiDAR data,
PandRS(159), 2020, pp. 322-336.
Elsevier DOI
1912
Building damage, Very high resolution (VHR), Height, Corner, Earthquake
BibRef
Ma, H.J.[Hao-Jie],
Liu, Y.[Yalan],
Ren, Y.H.[Yu-Huan],
Wang, D.C.[Da-Cheng],
Yu, L.J.[Lin-Jun],
Yu, J.X.[Jing-Xian],
Improved CNN Classification Method for Groups of Buildings Damaged by
Earthquake, Based on High Resolution Remote Sensing Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Park, S.E.[Sang-Eun],
Jung, Y.T.[Yoon Taek],
Detection of Earthquake-Induced Building Damages Using Polarimetric
SAR Data,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Kim, M.[Minhwa],
Lee, S.J.[Seung-Jae],
Park, S.E.[Sang-Eun],
On Unsupervised Multiclass Change Detection Using Dual-Polarimetric
SAR Data,
RS(16), No. 15, 2024, pp. 2858.
DOI Link
2408
BibRef
Kim, M.[Minhwa],
Park, S.E.[Sang-Eun],
Lee, S.J.[Seung-Jae],
Detection of Damaged Buildings Using Temporal SAR Data with Different
Observation Modes,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Kerle, N.[Norman],
Nex, F.[Francesco],
Gerke, M.[Markus],
Duarte, D.[Diogo],
Vetrivel, A.[Anand],
UAV-Based Structural Damage Mapping: A Review,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Ali, M.U.[Muhammad Usman],
Sultani, W.[Waqas],
Ali, M.[Mohsen],
Destruction from sky: Weakly supervised approach for destruction
detection in satellite imagery,
PandRS(162), 2020, pp. 115-124.
Elsevier DOI
2004
Destruction detection, Segmentation, Attention network,
Hard negative mining, Deep learning, Weakly supervised learning
BibRef
Pollino, M.[Maurizio],
Cappucci, S.[Sergio],
Giordano, L.[Ludovica],
Iantosca, D.[Domenico],
de Cecco, L.[Luigi],
Bersan, D.[Danilo],
Rosato, V.[Vittorio],
Borfecchia, F.[Flavio],
Assessing Earthquake-Induced Urban Rubble by Means of Multiplatform
Remotely Sensed Data,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Xu, Z.Q.[Zhi-Qiang],
Chen, Y.M.[Yu-Min],
Yang, F.[Fan],
Chu, T.Y.[Tian-You],
Zhou, H.Y.[Hong-Yan],
A Postearthquake Multiple Scene Recognition Model Based on Classical
SSD Method and Transfer Learning,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Li, Y.,
Hu, W.,
Li, H.,
Dong, H.,
Zhang, B.,
Tian, Q.,
Aligning Discriminative and Representative Features: An Unsupervised
Domain Adaptation Method for Building Damage Assessment,
IP(29), 2020, pp. 6110-6122.
IEEE DOI
2005
Building damage assessment, domain adaptation, MMD,
transfer learning, variational autoencoder
BibRef
Shao, J.Y.[Jin-Yuan],
Tang, L.[Lina],
Liu, M.[Ming],
Shao, G.F.[Guo-Fan],
Sun, L.[Lang],
Qiu, Q.Y.[Quan-Yi],
BDD-Net: A General Protocol for Mapping Buildings Damaged by a Wide
Range of Disasters Based on Satellite Imagery,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Malmgren-Hansen, D.[David],
Sohnesen, T.[Thomas],
Fisker, P.[Peter],
Baez, J.[Javier],
Sentinel-1 Change Detection Analysis for Cyclone Damage Assessment in
Urban Environments,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Zhang, R.[Rui],
Li, H.[Heng],
Duan, K.F.[Kai-Feng],
You, S.C.[Shu-Cheng],
Liu, K.[Ke],
Wang, F.[Futao],
Hu, Y.[Yong],
Automatic Detection of Earthquake-Damaged Buildings by Integrating
UAV Oblique Photography and Infrared Thermal Imaging,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Valentijn, T.[Tinka],
Margutti, J.[Jacopo],
van den Homberg, M.[Marc],
Laaksonen, J.[Jorma],
Multi-Hazard and Spatial Transferability of a CNN for Automated
Building Damage Assessment,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Pulvirenti, L.[Luca],
Squicciarino, G.[Giuseppe],
Fiori, E.[Elisabetta],
A Method to Automatically Detect Changes in Multitemporal Spectral
Indices: Application to Natural Disaster Damage Assessment,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Javed, A.[Aisha],
Jung, S.J.[Se-Jung],
Lee, W.H.[Won Hee],
Han, Y.K.[You-Kyung],
Object-Based Building Change Detection by Fusing Pixel-Level Change
Detection Results Generated from Morphological Building Index,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
See also Object-Based High-Rise Building Detection Using Morphological Building Index and Digital Map.
BibRef
Kalantar, B.[Bahareh],
Ueda, N.[Naonori],
Al-Najjar, H.A.H.[Husam A. H.],
Halin, A.A.[Alfian Abdul],
Assessment of Convolutional Neural Network Architectures for
Earthquake-Induced Building Damage Detection based on Pre- and
Post-Event Orthophoto Images,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Su, J.H.[Jin-Hua],
Bai, Y.B.[Yan-Bing],
Wang, X.R.[Xing-Rui],
Lu, D.[Dong],
Zhao, B.[Bo],
Yang, H.F.[Han-Fang],
Mas, E.[Erick],
Koshimura, S.[Shunichi],
Technical Solution Discussion for Key Challenges of Operational
Convolutional Neural Network-Based Building-Damage Assessment from
Satellite Imagery: Perspective from Benchmark xBD Dataset,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Marx, A.[Andrew],
Poynor, M.[Mia],
Kim, Y.K.[Young-Kyung],
Oberreiter, L.[Lauren],
Detecting Destroyed Communities in Remote Areas with Personal
Electronic Device Data: A Case Study of the 2017 Puebla Earthquake,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Tilon, S.[Sofia],
Nex, F.[Francesco],
Kerle, N.[Norman],
Vosselman, G.[George],
Post-Disaster Building Damage Detection from Earth Observation
Imagery Using Unsupervised and Transferable Anomaly Detecting
Generative Adversarial Networks,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Xiu, H.[Haoyi],
Shinohara, T.[Takayuki],
Matsuoka, M.[Masashi],
Inoguchi, M.[Munenari],
Kawabe, K.[Ken],
Horie, K.[Kei],
Collapsed Building Detection Using 3D Point Clouds and Deep Learning,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Bai, Y.B.[Yan-Bing],
Hu, J.J.[Jun-Jie],
Su, J.H.[Jin-Hua],
Liu, X.[Xing],
Liu, H.Y.[Hao-Yu],
He, X.W.[Xian-Wen],
Meng, S.W.[Sheng-Wang],
Mas, E.[Erick],
Koshimura, S.[Shunichi],
Pyramid Pooling Module-Based Semi-Siamese Network: A Benchmark Model
for Assessing Building Damage from xBD Satellite Imagery Datasets,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Charrua, A.B.[Alberto Bento],
Padmanaban, R.[Rajchandar],
Cabral, P.[Pedro],
Bandeira, S.[Salomão],
Romeiras, M.M.[Maria M.],
Impacts of the Tropical Cyclone Idai in Mozambique:
A Multi-Temporal Landsat Satellite Imagery Analysis,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
ElGharbawi, T.[Tamer],
Zarzoura, F.[Fawzi],
Damage detection using SAR coherence statistical analysis,
application to Beirut, Lebanon,
PandRS(173), 2021, pp. 1-9.
Elsevier DOI
2102
Amplitude Correlation, InSAR, Beirut Explosion,
Hazard Assessment, Hypothesis Testing, Phase Filter
BibRef
Yang, W.T.[Wan-Ting],
Zhang, X.F.[Xian-Feng],
Luo, P.[Peng],
Transferability of Convolutional Neural Network Models for
Identifying Damaged Buildings Due to Earthquake,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Chen, X.[Xue],
Achilli, V.[Vladimiro],
Fabris, M.[Massimo],
Menin, A.[Andrea],
Monego, M.[Michele],
Tessari, G.[Giulia],
Floris, M.[Mario],
Combining Sentinel-1 Interferometry and Ground-Based Geomatics
Techniques for Monitoring Buildings Affected by Mass Movements,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Wu, C.[Chuyi],
Zhang, F.[Feng],
Xia, J.S.[Jun-Shi],
Xu, Y.C.[Yi-Chen],
Li, G.Q.[Guo-Qing],
Xie, J.[Jibo],
Du, Z.H.[Zhen-Hong],
Liu, R.Y.[Ren-Yi],
Building Damage Detection Using U-Net with Attention Mechanism from
Pre- and Post-Disaster Remote Sensing Datasets,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Nie, Y.L.[Yu-Liang],
Zeng, Q.M.[Qi-Ming],
Zhang, H.Z.[Hai-Zhen],
Wang, Q.[Qing],
Building Damage Detection Based on OPCE Matching Algorithm Using a
Single Post-Event PolSAR Data,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Hasanlou, M.[Mahdi],
Shah-Hosseini, R.[Reza],
Seydi, S.T.[Seyd Teymoor],
Karimzadeh, S.[Sadra],
Matsuoka, M.[Masashi],
Earthquake Damage Region Detection by Multitemporal Coherence Map
Analysis of Radar and Multispectral Imagery,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Boloorani, A.D.[Ali Darvishi],
Darvishi, M.[Mehdi],
Weng, Q.H.[Qi-Hao],
Liu, X.T.[Xiang-Tong],
Post-War Urban Damage Mapping Using InSAR:
The Case of Mosul City in Iraq,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Okada, G.[Genki],
Moya, L.[Luis],
Mas, E.[Erick],
Koshimura, S.[Shunichi],
The Potential Role of News Media to Construct a Machine Learning
Based Damage Mapping Framework,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Adriano, B.[Bruno],
Yokoya, N.[Naoto],
Xia, J.[Junshi],
Miura, H.[Hiroyuki],
Liu, W.[Wen],
Matsuoka, M.[Masashi],
Koshimura, S.[Shunichi],
Learning from multimodal and multitemporal earth observation data for
building damage mapping,
PandRS(175), 2021, pp. 132-143.
Elsevier DOI
2105
Multimodal remote sensing, Disaster damage mapping,
Deep convolutional neural network
BibRef
Chen, Z.[Zhiang],
Wagner, M.[Melissa],
Das, J.[Jnaneshwar],
Doe, R.K.[Robert K.],
Cerveny, R.S.[Randall S.],
Data-Driven Approaches for Tornado Damage Estimation with Unpiloted
Aerial Systems,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Chaidas, K.[Konstantinos],
Tataris, G.[George],
Soulakellis, N.[Nikolaos],
Seismic Damage Semantics on Post-Earthquake LOD3 Building Models
Generated by UAS,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Rashidian, V.[Vahid],
Baise, L.G.[Laurie G.],
Koch, M.[Magaly],
Moaveni, B.[Babak],
Detecting Demolished Buildings after a Natural Hazard Using High
Resolution RGB Satellite Imagery and Modified U-Net Convolutional
Neural Networks,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Balado, J.[Jesús],
Arias, P.[Pedro],
Lorenzo, H.[Henrique],
Meijide-Rodríguez, A.[Adrián],
Disturbance Analysis in the Classification of Objects Obtained from
Urban LiDAR Point Clouds with Convolutional Neural Networks,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhang, L.[Lin],
Hu, X.Y.[Xiang-Yun],
Zhang, M.[Mi],
Shu, Z.[Zhen],
Zhou, H.[Hao],
Object-level change detection with a dual correlation
attention-guided detector,
PandRS(177), 2021, pp. 147-160.
Elsevier DOI
2106
Change detection, Object level, Attention, Dual learning, Data augmentation
BibRef
Karimzadeh, S.[Sadra],
Matsuoka, M.[Masashi],
A Preliminary Damage Assessment Using Dual Path Synthetic Aperture
Radar Analysis for the M 6.4 Petrinja Earthquake (2020), Croatia,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wang, C.[Chao],
Qiu, X.[Xing],
Huan, H.[Hai],
Wang, S.[Shuai],
Zhang, Y.[Yan],
Chen, X.H.[Xiao-Hui],
He, W.[Wei],
Earthquake-Damaged Buildings Detection in Very High-Resolution Remote
Sensing Images Based on Object Context and Boundary Enhanced Loss,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, Y.[Ying],
Roffey, M.[Matthew],
Leblanc, S.G.[Sylvain G.],
A Novel Framework for Rapid Detection of Damaged Buildings Using
Pre-Event LiDAR Data and Shadow Change Information,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
de Giorgi, A.[Andrea],
Solarna, D.[David],
Moser, G.[Gabriele],
Tapete, D.[Deodato],
Cigna, F.[Francesca],
Boni, G.[Giorgio],
Rudari, R.[Roberto],
Serpico, S.B.[Sebastiano Bruno],
Pisani, A.R.[Anna Rita],
Montuori, A.[Antonio],
Zoffoli, S.[Simona],
Monitoring the Recovery after 2016 Hurricane Matthew in Haiti via
Markovian Multitemporal Region-Based Modeling,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Park, S.[Sangki],
Jung, K.[Kichul],
Gaussian Process Regression-Based Structural Response Model and Its
Application to Regional Damage Assessment,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
And:
Correction:
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Moya, L.[Luis],
Geiß, C.[Christian],
Hashimoto, M.[Masakazu],
Mas, E.[Erick],
Koshimura, S.[Shunichi],
Strunz, G.[Günter],
Disaster Intensity-Based Selection of Training Samples for Remote
Sensing Building Damage Classification,
GeoRS(59), No. 10, October 2021, pp. 8288-8304.
IEEE DOI
2109
Buildings, Training, Remote sensing, Training data, Earthquakes,
Support vector machines, Machine learning, Automatic labeling,
support vector machine (SVM)
BibRef
Lin, D.M.[Da-Ming],
Wang, J.[Jie],
Li, Y.D.[Yun-Dong],
Unsupervised Building Damage Identification Using Post-Event Optical
Imagery and Variational Autoencoder,
IEICE(E104-D), No. 10, October 2021, pp. 1770-1774.
WWW Link.
2110
BibRef
Donato, A.[Antonio],
Randazzo, L.[Luciana],
Ricca, M.[Michela],
Rovella, N.[Natalia],
Collina, M.[Matteo],
Ruggieri, N.[Nicola],
Dodaro, F.[Francesco],
Costanzo, A.[Antonio],
Alberghina, M.F.[Maria F.],
Schiavone, S.[Salvatore],
Buongiorno, M.F.[Maria F.],
La Russa, M.F.[Mauro F.],
Decay Assessment of Stone-Built Cultural Heritage: The Case Study of
the Cosenza Cathedral Façade (South Calabria, Italy),
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Shi, L.F.[Ling-Fei],
Zhang, F.[Feng],
Xia, J.[Junshi],
Xie, J.[Jibo],
Zhang, Z.[Zhe],
Du, Z.H.[Zhen-Hong],
Liu, R.Y.[Ren-Yi],
Identifying Damaged Buildings in Aerial Images Using the Object
Detection Method,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lin, C.[Chen],
Li, Y.[Yundong],
Liu, Y.[Yi],
Wang, X.[Xiang],
Geng, S.[Shuo],
Building Damage Assessment From Post-Hurricane Imageries Using
Unsupervised Domain Adaptation With Enhanced Feature Discrimination,
GeoRS(60), 2022, pp. 1-10.
IEEE DOI
2112
Feature extraction, Buildings, Generative adversarial networks,
Training, Deep learning, Hurricanes,
generative adversarial network (GAN)
BibRef
Lin, Q.G.[Qi-Gen],
Ci, T.Y.[Tian-Yu],
Wang, L.B.[Lei-Bin],
Mondal, S.K.[Sanjit Kumar],
Yin, H.X.[Hua-Xiang],
Wang, Y.[Ying],
Transfer Learning for Improving Seismic Building Damage Assessment,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Jing, Y.[Yafei],
Ren, Y.[Yuhuan],
Liu, Y.[Yalan],
Wang, D.C.[Da-Cheng],
Yu, L.J.[Lin-Jun],
Automatic Extraction of Damaged Houses by Earthquake Based on
Improved YOLOv5: A Case Study in Yangbi,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Ding, J.J.[Jiu-Jie],
Zhang, J.H.[Jia-Huan],
Zhan, Z.Q.[Zong-Qian],
Tang, X.F.[Xiao-Fang],
Wang, X.[Xin],
A Precision Efficient Method for Collapsed Building Detection in
Post-Earthquake UAV Images Based on the Improved NMS Algorithm and
Faster R-CNN,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhan, Y.H.[Yi-Hao],
Liu, W.[Wen],
Maruyama, Y.[Yoshihisa],
Damaged Building Extraction Using Modified Mask R-CNN Model Using
Post-Event Aerial Images of the 2016 Kumamoto Earthquake,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, Y.[Yu],
Cui, L.[Liangyi],
Zhang, C.[Chenzong],
Chen, W.L.[Wen-Li],
Xu, Y.[Yang],
Zhang, Q.Q.[Qiang-Qiang],
A Two-Stage Seismic Damage Assessment Method for Small, Dense, and
Imbalanced Buildings in Remote Sensing Images,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, C.[Chao],
Zhang, Y.[Yan],
Xie, T.[Tao],
Guo, L.[Lin],
Chen, S.S.[Shi-Shi],
Li, J.Y.[Jun-Yong],
Shi, F.[Fan],
A Detection Method for Collapsed Buildings Combining Post-Earthquake
High-Resolution Optical and Synthetic Aperture Radar Images,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Paris, L.[Leonardo],
Rossi, M.L.[Maria Laura],
Cipriani, G.[Giorgia],
Modeling as a Critical Process of Knowledge:
Survey of Buildings in a State of Ruin,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Chen, J.[Jin],
Tang, H.[Hong],
Ge, J.Y.[Jia-Yi],
Pan, Y.Z.[Yao-Zhong],
Rapid Assessment of Building Damage Using Multi-Source Data: A Case
Study of April 2015 Nepal Earthquake,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Seydi, S.T.[Seyd Teymoor],
Rastiveis, H.[Heidar],
Kalantar, B.[Bahareh],
Halin, A.A.[Alfian Abdul],
Ueda, N.[Naonori],
BDD-Net: An End-to-End Multiscale Residual CNN for Earthquake-Induced
Building Damage Detection,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Jang, A.[Arum],
Ju, Y.K.[Young K.],
Park, M.J.[Min Jae],
Structural Stability Evaluation of Existing Buildings by Reverse
Engineering with 3D Laser Scanner,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Bouchard, I.[Isabelle],
Rancourt, M.È.[Marie-Ève],
Aloise, D.[Daniel],
Kalaitzis, F.[Freddie],
On Transfer Learning for Building Damage Assessment from Satellite
Imagery in Emergency Contexts,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Hake, F.[Frederic],
Göttert, L.[Leonard],
Neumann, I.[Ingo],
Alkhatib, H.[Hamza],
Using Machine-Learning for the Damage Detection of Harbour Structures,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liu, C.X.[Chao-Xian],
Sui, H.G.[Hai-Gang],
Wang, J.X.[Jian-Xun],
Ni, Z.X.[Zi-Xuan],
Ge, L.[Liang],
Real-Time Ground-Level Building Damage Detection Based on Lightweight
and Accurate YOLOv5 Using Terrestrial Images,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yang, J.[Jian],
Tang, W.M.[Wei-Ming],
Xuan, W.[Wei],
Xi, R.J.[Rui-Jie],
Tight Integration of GNSS and Static Level for High Accuracy
Dilapidated House Deformation Monitoring,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Sun, X.L.[Xiao-Lin],
Chen, X.[Xi],
Yang, L.[Liao],
Wang, W.S.[Wei-Sheng],
Zhou, X.X.[Xi-Xuan],
Wang, L.[Lili],
Yao, Y.[Yuan],
Using InSAR and PolSAR to Assess Ground Displacement and Building
Damage after a Seismic Event: Case Study of the 2021 Baicheng
Earthquake,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, H.M.[Hai-Ming],
Wang, M.C.[Ming-Chang],
Zhang, Y.X.[Yong-Xian],
Ma, G.R.[Guo-Rui],
TDA-Net: A Novel Transfer Deep Attention Network for Rapid Response
to Building Damage Discovery,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Xia, L.G.[Lie-Gang],
Chen, J.[Jun],
Luo, J.C.[Jian-Cheng],
Zhang, J.X.[Jun-Xia],
Yang, D.Z.[De-Zhi],
Shen, Z.F.[Zhan-Feng],
Building Change Detection Based on an Edge-Guided Convolutional
Neural Network Combined with a Transformer,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Yamazaki, F.[Fumio],
Liu, W.[Wen],
Horie, K.[Kei],
Use of Multi-Temporal LiDAR Data to Extract Collapsed Buildings and
to Monitor Their Removal Process after the 2016 Kumamoto Earthquake,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yu, Z.B.[Zheng-Bo],
Chen, Z.[Zhe],
Sun, Z.C.[Zhong-Chang],
Guo, H.D.[Hua-Dong],
Leng, B.[Bo],
He, Z.Q.[Zi-Qiong],
Yang, J.[Jinpei],
Xing, S.W.[Shu-Wen],
SegDetector: A Deep Learning Model for Detecting Small and
Overlapping Damaged Buildings in Satellite Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Aimaiti, Y.[Yusupujiang],
Sanon, C.[Christina],
Koch, M.[Magaly],
Baise, L.G.[Laurie G.],
Moaveni, B.[Babak],
War Related Building Damage Assessment in Kyiv, Ukraine, Using
Sentinel-1 Radar and Sentinel-2 Optical Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Takhtkeshha, N.[Narges],
Mohammadzadeh, A.[Ali],
Salehi, B.[Bahram],
A Rapid Self-Supervised Deep-Learning-Based Method for
Post-Earthquake Damage Detection Using UAV Data (Case Study: Sarpol-e
Zahab, Iran),
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Ge, J.Y.[Jia-Yi],
Tang, H.[Hong],
Yang, N.[Naisen],
Hu, Y.J.[Yi-Jiang],
Rapid identification of damaged buildings using incremental learning
with transferred data from historical natural disaster cases,
PandRS(195), 2023, pp. 105-128.
Elsevier DOI
2301
Building damage, Remote sensing, Incremental learning,
Style transfer, Disaster response
BibRef
He, Y.J.[Yong-Jun],
Wang, J.F.[Jin-Fei],
Liao, C.H.[Chun-Hua],
Zhou, X.[Xin],
Shan, B.[Bo],
MS4D-Net: Multitask-Based Semi-Supervised Semantic Segmentation
Framework with Perturbed Dual Mean Teachers for Building Damage
Assessment from High-Resolution Remote Sensing Imagery,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zuo, H.[Heng],
Guo, H.[Huiyong],
Structural Nonlinear Damage Identification Method Based on the
Kullback-Leibler Distance of Time Domain Model Residuals,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Cho, S.[Shinki],
Xiu, H.[Haoyi],
Matsuoka, M.[Masashi],
Backscattering Characteristics of SAR Images in Damaged Buildings Due
to the 2016 Kumamoto Earthquake,
RS(15), No. 8, 2023, pp. 2181.
DOI Link
2305
BibRef
Seo, H.[Hyungjoon],
Raut, A.D.[Aishwarya Deepak],
Chen, C.[Cheng],
Zhang, C.[Cheng],
Multi-Label Classification and Automatic Damage Detection of Masonry
Heritage Building through CNN Analysis of Infrared Thermal Imaging,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Huang, Q.H.[Qi-Hao],
Jin, G.[Guowang],
Xiong, X.[Xin],
Ye, H.[Hao],
Xie, Y.Z.[Yu-Zhi],
Monitoring Urban Change in Conflict from the Perspective of Optical
and SAR Satellites: The Case of Mariupol, a City in the Conflict
between RUS and UKR,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Ge, J.Y.[Jia-Yi],
Tang, H.[Hong],
Ji, C.[Chao],
Self-Incremental Learning for Rapid Identification of Collapsed
Buildings Triggered by Natural Disasters,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Rodríguez-Antuñano, I.[Ignacio],
Martínez-Sánchez, J.[Joaquín],
Cabaleiro, M.[Manuel],
Riveiro, B.[Belén],
Anticipating the Collapse of Urban Infrastructure:
A Methodology Based on Earth Observation and MT-InSAR,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Zhao, J.[Jing],
Liu, N.[Ning],
Li, J.H.[Jun-Hui],
Guo, X.[Xi],
Deng, H.T.[Hong-Tao],
Sun, J.S.[Jin-Shan],
A GIS-Based Damage Evaluation Method for Explosives Road
Transportation Accidents,
IJGI(12), No. 12, 2023, pp. 470.
DOI Link
2312
BibRef
Liu, R.Y.[Ruo-Yang],
Zhu, W.Q.[Wen-Quan],
Yang, X.Y.[Xin-Yi],
Screening Image Features of Collapsed Buildings for Operational and
Rapid Remote Sensing Identification,
RS(15), No. 24, 2023, pp. 5747.
DOI Link
2401
BibRef
Ahmadi, S.A.[Seyed Ali],
Mohammadzadeh, A.[Ali],
Yokoya, N.[Naoto],
Ghorbanian, A.[Arsalan],
BD-SKUNet: Selective-Kernel UNets for Building Damage Assessment in
High-Resolution Satellite Images,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Aydin, N.[Nezir],
Yilmaz, O.[Oktay],
Deveci, M.[Muhammet],
Lv, Z.H.[Zhi-Han],
Heuristics Based Optimization for Multidepot Drone Location and
Routing Problem to Detect Post-Earthquake Damages,
ITS(25), No. 1, January 2024, pp. 850-858.
IEEE DOI
2402
Drones, Earthquakes, Buildings, Routing, Mathematical models,
Path planning, Image resolution, drones
BibRef
Liu, H.[Hui],
Yuan, M.Z.[Ming-Ze],
Li, M.[Mei],
Li, B.[Ben],
Chen, N.[Ning],
Wang, J.Z.[Jin-Zheng],
Li, X.[Xu],
Wu, X.[Xiaohu],
TDFPI: A Three-Dimensional and Full Parameter Inversion Model and Its
Application for Building Damage Assessment in Guotun Coal Mining
Areas, Shandong, China,
RS(16), No. 4, 2024, pp. 698.
DOI Link
2402
BibRef
Zhu, L.[Linye],
Sun, W.B.[Wen-Bin],
Fan, D.Q.[De-Qin],
Xing, H.Q.[Hua-Qiao],
Liu, X.Q.[Xiao-Qi],
Unsupervised spatial self-similarity difference-based change
detection method for multi-source heterogeneous images,
PR(149), 2024, pp. 110237.
Elsevier DOI
2403
Heterogeneous images, multi-source, change detection, unsupervised method
BibRef
Tu, Y.B.[Yun-Bin],
Li, L.[Liang],
Su, L.[Li],
Zha, Z.J.[Zheng-Jun],
Yan, C.G.[Cheng-Gang],
Huang, Q.M.[Qing-Ming],
Self-supervised Cross-view Representation Reconstruction for Change
Captioning,
ICCV23(2793-2803)
IEEE DOI Code:
WWW Link.
2401
BibRef
Dondi, P.[Piercarlo],
Senaldi, I.[Ilaria],
Lombardi, L.[Luca],
Piastra, M.[Marco],
Many-to-many Metrics: A New Approach to Evaluate the Performance of
Structural Damage Detection Networks,
CIAP23(II:144-155).
Springer DOI
2312
BibRef
Khalil, M.,
Satish Kumar, J.,
The Use of AHP Within GIS for Destructed Areas in Damascus, Syria,
ISPRS21(B4-2021: 103-109).
DOI Link
2201
Analytic Hierarchy Process. What to reconstruct.
BibRef
Ekmekcioglu, O.,
Demir, N.,
Automated Detection of Collapsed Buildings with Use of Optical and Sar
Images, Case Study: Izmir Earthquake on October 30th, 2020,
ISPRS21(B3-2021: 707-712).
DOI Link
2201
BibRef
Zhu, X.Y.[Xiao-Yu],
Liang, J.W.[Jun-Wei],
Hauptmann, A.G.[Alexander G.],
MSNet: A Multilevel Instance Segmentation Network for Natural
Disaster Damage Assessment in Aerial Videos,
WACV21(2022-2031)
IEEE DOI
2106
Social networking (online), Computational modeling, Buildings,
Object detection, Benchmark testing, Hurricanes, Data models
BibRef
Bai, Y.S.[Yong-Sheng],
Sezen, H.[Halil],
Yilmaz, A.[Alper],
End-to-end Deep Learning Methods for Automated Damage Detection in
Extreme Events at Various Scales,
ICPR21(6640-6647)
IEEE DOI
2105
Training, Deep learning, Image segmentation, Visualization,
Earthquakes, Inspection, Pattern recognition,
Mask R-CNN
BibRef
Gupta, R.[Rohit],
Shah, M.[Mubarak],
RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery,
ICPR21(4405-4411)
IEEE DOI
2105
Location awareness, Image segmentation,
Satellites, Head, Architecture, Tiles
BibRef
Yasuno, T.[Takato],
Amakata, M.[Masazumi],
Okano, M.[Masahiro],
Natural Disaster Classification Using Aerial Photography Explainable
for Typhoon Damaged Feature,
MAES20(15-25).
Springer DOI
2103
BibRef
Ermlick, W.[William],
Newman, N.[Nick],
Pawar, D.[Devayani],
Richardett, T.[Tyler],
Conroy, C.[Christian],
Baldo, J.[James],
Aggarwal, R.[Rajesh],
Bosch, M.[Marc],
Natural Disaster Building Damage Assessment Using a Two-encoder U-net,
ISVC20(I:683-695).
Springer DOI
2103
BibRef
Spasenovic, K.,
Carrion, D.,
Migliaccio, F.,
Potential of Geolocated Crowdsourced Image Posts In Predicting An Early
Estimate of the Patterns of Structural Damage Following A Hurricane,
ISPRS20(B4:291-297).
DOI Link
2012
BibRef
Chaidas, K.,
Tataris, G.,
Soulakellis, N.,
Post-earthquake 3D Building Model (LOD2) Generation from UAS Imagery:
The Case of Vrisa Traditional Settlement, Lesvos, Greece,
SmartCityApp20(165-172).
DOI Link
2012
BibRef
Sonobe, M.,
Characteristics of Texture Index of Damaged Buildings Using Time-series
High-resolution Optical Satellite Images,
ISPRS20(B3:1709-1714).
DOI Link
2012
BibRef
Weber, E.[Ethan],
Marzo, N.[Nuria],
Papadopoulos, D.P.[Dim P.],
Biswas, A.[Aritro],
Lapedriza, A.[Agata],
Ofli, F.[Ferda],
Imran, M.[Muhammad],
Torralba, A.[Antonio],
Detecting Natural Disasters, Damage, and Incidents in the Wild,
ECCV20(XIX:331-350).
Springer DOI
2011
BibRef
Blaszczak-Bak, W.,
Suchocki, C.,
Janicka, J.,
Dumalski, A.,
Duchnowski, R.,
Defect Detection of Historic Structures in Dark Places Based On The
Point Cloud Analysis By Modified OPTD Method,
Gi4DM19(71-77).
DOI Link
1912
BibRef
Croce, V.,
Caroti, G.,
Piemonte, A.,
Assessment of Earthquake-induced Damage Level On Buildings:
Analysis Of Two Different Survey Methods for a Case Study,
CIPA19(351-358).
DOI Link
1912
BibRef
Kwon, D.,
Yu, J.,
Automatic Damage Detection of Stone Cultural Property Based On Deep
Learning Algorithm,
CIPA19(639-643).
DOI Link
1912
BibRef
Jabari, S.,
Krafczek, M.,
Application of Off-nadir Satellite Imagery in Earthquake Damage
Assessment Using Object-based Hog Feature Descriptor,
Gi4DM19(167-171).
DOI Link
1912
BibRef
Mohr, L.,
Benauer, R.,
Leitl, P.,
Fraundorfer, F.,
Damage Estimation of Explosions in Urban Environments By Simulation,
Gi4DM19(253-260).
DOI Link
1912
BibRef
Eskandari, M.,
Goodarzi, S.,
Nekooie, M.A.,
Seismic Damage Assessment of Lifelines Based On Geospatial Analysis,
GGT19(197-203).
DOI Link
1912
BibRef
Zanazzi, E.,
Coïsson, E.,
Ferretti, D.,
Gis Analysis of The Seismic Damage On Historical Masonry Spires,
GEORES19(1173-1179).
DOI Link
1912
BibRef
Aali, H.,
Sharifi, A.,
Malian, A.,
Earthquake Damage Detection Using Satellite Images (Case Study:
Sarpol-zahab Earthquake),
SMPR19(1-5).
DOI Link
1912
BibRef
Jung, M.,
Chung, M.,
Kim, Y.,
Assessing Complex Damage Using Pre-disaster Optical and Post-disaster
Polsar Data,
Gi4DM19(181-185).
DOI Link
1912
BibRef
Kerle, N.,
Nex, F.,
Duarte, D.,
Vetrivel, A.,
Uav-based Structural Damage Mapping - Results From 6 Years of Research
In Two European Projects,
Gi4DM19(187-194).
DOI Link
1912
BibRef
Kim, S.S.,
Kim, T.H.,
Sim, J.S.,
Applicability Assessment of UAV Mapping for Disaster Damage
Investigation in Korea,
Gi4DM19(209-214).
DOI Link
1912
BibRef
Kafi, K.M.,
Aliyu, A.,
Olugbodi, K.H.,
Abubakar, I.J.,
Usman, S.G.,
Saleh, M.,
Urban Infrastructure and Buildings in Ruins: Damage Severity Mapping Of
Neighborhoods Affected By The June 2018 Windstorm in Bauchi,
GGT19(327-330).
DOI Link
1912
BibRef
Yasuno, T.[Takato],
Amakata, M.[Masazumi],
Fujii, J.[Junichiro],
Shimamoto, Y.[Yuri],
Color-Base Damage Feature Enhanced Support Vector Classifier for
Monitoring Quake Image,
CCIW19(260-275).
Springer DOI
1905
BibRef
Sulzer, R.,
Nourian, P.,
Palmieri, M.,
van Gemert, J.C.,
Shape Based Classification of Seismic Building Structural Types,
GeoInfo18(179-186).
DOI Link
1901
Pre-damage assessment.
BibRef
Daka, T.[Trishala],
Udatha, L.[Lokesh],
Pasupuleti, V.D.K.[Venkata Dilip Kumar],
Kalapatapu, P.[Prafulla],
Rajaram, B.[Bharghava],
Ancient Sandbox Technique:
An Experimental Study Using Piezoelectric Sensors,
EuroMed18(II:173-184).
Springer DOI
1811
Study of ancient temple construction to explain why they are resistant to
natural calamities.
BibRef
Chatzistamatis, S.,
Kalaitzis, P.,
Chaidas, K.,
Chatzitheodorou, C.,
Papadopoulou, E.E.,
Tataris, G.,
Soulakellis, N.,
Fusion of TLS and UAV Photogrammetry Data for Post-earthquake 3d
Modeling of A Cultural Heritage Church,
Gi4DM18(143-150).
DOI Link
1805
BibRef
Soulakellis, N.,
Chatzistamatis, S.,
Vasilakos, C.,
Tataris, G.,
Papakonstantinou, A.,
Kavroudakis, D.,
Topouzelis, K.,
Roussou, O.,
Kalloniatis, C.,
Papadopoulou, E.E.,
Chaidas, K.,
Kalaitzis, P.,
Synergistic Exploitation of Geoinformation Methods for Post-earthquake
3d Mapping of Vrisa Traditional Settlement, Lesvos Island, Greece,
Gi4DM18(491-498).
DOI Link
1805
BibRef
Baiocchi, V.,
Bianchi, A.,
Maddaluno, C.,
Vidale, M.,
Pansharpening Techniques to Detect Mass Monument Damaging in Iraq,
GeomCultural17(121-126).
DOI Link
1805
BibRef
Oxoli, D.,
Boccardo, P.,
Brovelli, M.A.,
Molinari, M.E.,
Monti Guarnieri, A.,
Coherent Change Detection For Repeated-pass Interferometric SAR Images:
An Application To Earthquake Damage Assessment on Buildings,
Gi4DM18(383-388).
DOI Link
1805
BibRef
Rastiveis, H.,
Khodaverdi Zahraee, N.,
Jouybari, A.,
Object-oriented Classification of LIDAR Data for Post-Earthquake Damage
Detection,
Gi4DM18(421-427).
DOI Link
1805
BibRef
Vasilakos, C.,
Chatzistamatis, S.,
Roussou, O.,
Soulakellis, N.,
Terrestrial Photogrammetry vs Laser Scanning for Rapid Earthquake
Damage Assessment,
Gi4DM18(527-533).
DOI Link
1805
BibRef
Chiabrando, F.,
di Lolli, A.,
Patrucco, G.,
Spanò, A.,
Sammartano, G.,
Teppati Losè, L.,
Multitemporal 3D Modelling for Cultural Heritage Emergency During
Seismic Events: Damage Assesment of S. Agostino Church in Amatrice (RI),
GeomCultural17(69-76).
DOI Link
1805
BibRef
Oreni, D.,
Brumana, R.,
Della-Torre, S.,
Banfi, F.,
Survey, HBIM and Conservation Plan of a Monumental Building Damaged by
Earthquake,
GeomCultural17(337-342).
DOI Link
1805
BibRef
Radicioni, F.,
Matracchi, P.,
Brigante, R.,
Brozzi, A.,
Cecconi, M.,
Stoppini, A.,
Tosi, G.,
The Tempio Della Consolazione In Todi: Integrated Geomatic Techniques
for a Monument Description Including Structural Damage Evolution in
Time,
GeomCultural17(433-440).
DOI Link
1805
BibRef
Pavelka, Jr., K.,
Šedina, J.,
Raeva, P.,
Hulková, M.,
Modern Processing Capabilities of Analog Data from Documentation of the
Great Omayyad Mosque in Aleppo, Syria, Damaged In Civil War,
CIPA17(561-565).
DOI Link
1805
BibRef
Vafadari, A.,
Philip, G.,
Jennings, R.,
Damage Assessment And Monitoring Of Cultural Heritage Places In A
Disaster And Post-disaster Event: A Case Study Of Syria,
CIPA17(695-701).
DOI Link
1805
BibRef
Nia, K.R.,
Mori, G.,
Building Damage Assessment Using Deep Learning and Ground-Level Image
Data,
CRV17(95-102)
IEEE DOI
1804
automatic optical inspection, buildings (structures),
condition monitoring, disasters, feature extraction,
Regression with Neural Networks
BibRef
Meixner, P.,
Eckstein, M.,
Multi-temporal Analysis of WWII Reconnaissance Photos,
ISPRS16(B8: 973-978).
DOI Link
1610
BibRef
Stentoumis, C.,
Protopapadakis, E.,
Doulamis, A.,
Doulamis, N.,
A Holistic Approach For Inspection Of Civil Infrastructures Based On
Computer Vision Techniques,
ISPRS16(B5: 131-138).
DOI Link
1610
BibRef
Kuny, S.,
Hammer, H.,
Schulz, K.,
Assessing the Suitability of Simulated SAR Signatures of Debris for the
Usage In Damage Detection,
ISPRS16(B3: 877-881).
DOI Link
1610
BibRef
Laun, S.,
Rösch, N.,
Breunig, M.,
Doori, M.A.[M. Al],
Implementation Of Kriging Methods In Mobile GIS To Estimate Damage To
Buildings In Crisis Scenarios,
ISPRS16(B2: 211-216).
DOI Link
1610
BibRef
Gokaraju, B.,
Turlapaty, A.C.,
Doss, D.A.,
King, R.L.,
Younan, N.H.,
Change detection analysis of tornado disaster using conditional
copulas and Data Fusion for cost-effective disaster management,
AIPR15(1-8)
IEEE DOI
1605
emergency management
BibRef
Faur, D.,
Datcu, M.,
A rapid mapping approach to quantify damages caused by the 2003 bam
earthquake using high resolution multitemporal optical images,
MultiTemp15(1-4)
IEEE DOI
1511
disasters
BibRef
Shi, X.,
Lu, L.,
Yang, S.,
Huang, G.,
Zhao, Z.,
Object-oriented change detection based on weighted polarimetric
scattering differences on POLSAR images,
IWIDF15(149-154).
DOI Link
1508
BibRef
Hang, D.,
Hassan, G.M.[Ghulam Mubashar],
MacNish, C.[Cara],
Dyskin, A.[Arcady],
Characteristics of Color Digital Image Correlation for Deformation
Measurement in Geomechanical Structures,
DICTA16(1-8)
IEEE DOI
1701
BibRef
Earlier: A2, A3, A4, Only:
Extending Digital Image Correlation to Reconstruct Displacement and
Strain Fields around Discontinuities in Geomechanical Structures
under Deformation,
WACV15(710-717)
IEEE DOI
1503
Color.
Accuracy
BibRef
Uglešic, D.[Davor],
Uglešic, A.[Ante],
Assessment of Structural Natural Frequencies and Application in the
Calibration of FEM Models and Structural Health Monitoring,
EuroMed14(669-677).
Springer DOI
1412
evaluation of buildings.
BibRef
Nex, F.,
Rupnik, E.,
Toschi, I.,
Remondino, F.,
Automated processing of high resolution airborne images for earthquake
damage assessment,
LandImaging14(315-321).
DOI Link
1411
BibRef
Murtiyoso, A.,
Remondino, F.,
Rupnik, E.,
Nex, F.,
Grussenmeyer, P.,
Oblique Aerial Photography Tool for Building Inspection and Damage
Assessment,
LandImaging14(309-313).
DOI Link
1411
BibRef
Souami, M.A.,
Impact of Stylistic Features, Architectural and Urban Rules of the
Algiers Architectural Heritage Dating Between 1830 and 1930 on the
Strength of its Buildings During the Earthquake,
CIPA13(605-610).
DOI Link
1311
BibRef
Wang, X.,
Li, P.,
Urban Building Collapse Detection Using Very High Resolution Imagery
and Airborne LIDAR Data,
IWIDF13(127-132).
DOI Link
1311
BibRef
Ariyasu, E.,
Koizumi, M.,
Ikubo, M.,
Hatake, S.,
Application Of Mobile Lidar Mapping For Damage Survey After Great East
Japan Earthquake,
ISPRS12(XXXIX-B1:573-576).
DOI Link
1209
BibRef
Matsuoka, R.,
Nagusa, I.,
Yasuhara, H.,
Mori, M.,
Katayama, T.,
Yachi, N.,
Hasui, A.,
Katakuse, M.,
Atagi, T.,
Some Aspects in Height Measurement by UAV Photogrammetry,
UAV-g13(269-274).
DOI Link
1311
BibRef
Boccardo, P.,
Tonolo, F.G.,
Haiti Earthquake Damage Assessment: Review Of The Remote Sensing Role,
ISPRS12(XXXIX-B4:529-532).
DOI Link
1209
BibRef
Wang, Z.,
Li, Z.,
Shen, Y.,
Wu, L.,
Li, H.,
Event-driven Observations And Comprehensive Evaluation For Natural
Disaster Assessment In China,
ISPRS12(XXXIX-B4:533-538).
DOI Link
1209
BibRef
Michel, U.,
Thunig, H.,
Ehlers, M.,
Reinartz, P.,
Rapid Change Detection Algorithm For Disaster Management,
AnnalsPRS(I-4), No. 2012, pp. 107-111.
DOI Link
1209
BibRef
Vu, T.T.,
Rapid Disaster Damage Estimation,
ISPRS12(XXXIX-B8:65-69).
DOI Link
1209
BibRef
Golparvar-Fard, M.[Mani],
Pena-Mora, F.[Feniosky],
Savarese, S.[Silvio],
Monitoring changes of 3D building elements from unordered photo
collections,
CVRSE11(249-256).
IEEE DOI
1201
BibRef
Gerke, M.[Markus],
Kerle, N.[Norman],
Graph matching in 3D space for structural seismic damage assessment,
CVRSE11(204-211).
IEEE DOI
1201
BibRef
Earlier: A1, Only:
Supervised Classification of Multiple View Images in Object Space for
Seismic Damage Assessment,
PIA11(221-232).
Springer DOI
1110
BibRef
Xin, J.F.[Jing-Feng],
Remote Sensing Monitoring and Quick Assessment on the Dammed Lakes,
ISIDF11(1-6).
IEEE DOI
1111
BibRef
Kaya, G.T.[Gulsen Taskin],
Kaya, H.[Huseyin],
Ersoy, O.K.[Okan K.],
Change detection in very high resolution imagery based on dynamic time
warping: An implementation for Haiti earthquake damage assessment,
MultiTemp11(13-16).
IEEE DOI
1109
BibRef
Frey, D.[Daniel],
Butenuth, M.[Matthias],
Multi-temporal damage assessment of linear infrastructural objects
using Dynamic Bayesian Networks,
MultiTemp11(61-64).
IEEE DOI
1109
BibRef
Earlier:
Classification System of GIS-Objects using Multi-sensorial Imagery for
Near-Realtime Disaster Management,
CMRT09(103-108).
PDF File.
0909
BibRef
Oude Elberink, S.[Sander],
Shoko, M.[Moreblessings],
Rutzinger, M.[Martin],
Fathi, S.A.[Seyed Abdolmajid],
Detection of Collapsed Buildings by Classifying Segmented Airborne
Laser Scanner Data,
Laser11(xx-yy).
DOI Link
1109
BibRef
Vanderhaegen, S.,
Canters, F.,
Developing Urban Metrics to Describe the Morphology of Urban Areas at
Block Level,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Mücher, C.A.,
Kooistra, L.,
Vermeulen, M.,
Haest, B.,
Spanhove, T.,
Delalieux, S.,
Vanden Borre, J.,
Schmidt, A.,
Object Identification and Characterization with Hyperspectral Imagery
to Identify Structure and Function of Natura 2000 Habitats,
GEOBIA10(xx-yy).
PDF File.
1007
Monitor EU protected habitats.
BibRef
Nijland, W.[Wiebe],
Addink, E.A.[Elisabeth A.],
de Jong, S.M.[Steven M.],
van der Meer, F.D.[Freek D.],
Detection of Ecosystem Functioning Using Object-Based Time-Series
Analysis,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Ahmed, W.M.[Wamiq M.],
Zhang, M.[Ming],
Al-Kofahi, O.[Omar],
Historical comparison of vehicles using scanned x-ray images,
WACV11(288-293).
IEEE DOI
1101
Border crossing x-ray scanners. Compare to previous scans.
BibRef
Galina, M.H.,
Diniz, H.N.,
Quintanilha, J.A.,
Batista, G.T.,
The Increase of Artificial Lakes as a Result of Sand Mining Activities,
in the Paraíba do Sul River Valley Basin, São Paulo State, Brazil,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Hanson, E.,
Wolff, E.,
Change Detection for Update of Topographic Databases Through
Multi-Level Region-Based Classification of VHR Optical and SAR Data,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Lack, N.,
Bleisch, S.,
Object-Based Change Detection for a Cultural-Historical Survey of the
Landscape: From Cow Trails to Walking Paths,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Reinhold, M.,
Selsam, P.,
Automated Change Detection for Thematic Data Using Object-Based
Analysis of Remote Sensing Imagery,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Förster, M.,
Frick, A.,
Schuster, C.,
Kleinschmit, B.,
Object-Based Change Detection Analysis for the Monitoring of Habitats
in the Framework of the Natura 2000 Directive with Multi-Temporal
Satellite Data,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Doxani, G.,
Karantzalos, K.,
Strati, M. .T.[M. Tsakiri-],
Automatic Change Detection in Urban Areas Under a Scale-Space,
Object-Oriented Classification Framework,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Clouet, J.M.M.N.[Jean-Matthieu Monnet Nicolas],
Berger, F.[Frédéric],
Using geomatics and airborne laser scanning for rockfall risk zoning:
A case study in the french alps,
CGC10(91).
PDF File.
1006
BibRef
Whitehead, K.[Kenneth],
Monitoring the Seasonal Decay of a Proglacial Icing using Ground-Based
Time-Lapse Photography,
CGC10(67).
PDF File.
1006
BibRef
Crespo, C.,
Armesto, L.J.,
Arias, P.,
Gonzalez-Aguilera, D.,
Damage Detection On Historical Buildings Using Unsupervised
Classification Techniques,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Zhou, Q.M.[Qi-Ming],
Sun, B.[Bo],
Modeling And Visualizing Spatio-temporal Pattern Of Land Cover Change
In Pearl River Delta Region Of China Using Multi-temporal Imagery,
VCGVA09(xx-yy).
0910
Spatio-temporal pattern, LUCC, Change detection, Pearl River Delta region, urban growth mode
BibRef
Zhang, G.[Guo],
Li, Y.[Yang],
A New Approach Toward Object-based Change Detection,
VCGVA09(xx-yy).
0910
change detection, object-based, segmentation, mean shift, intensity, texture, integration
BibRef
Atif, J.[Jamal],
Darbon, J.[Jerome],
Copula-set measures on topographic maps for change detection,
ICIP09(2881-2884).
IEEE DOI
0911
BibRef
Liang, R.N.[Rong-Na],
Yan, Y.J.[Yun-Ju],
Xi, Z.Y.[Zhu-You],
Characteristics of Detect Index for Structural Small Damage Based on
Wavelet Analysis Under Strong Background Noise,
CISP09(1-4).
IEEE DOI
0910
BibRef
Yang, H.F.[Hai-Feng],
Wu, Z.Y.[Zi-Yan],
Yan, Y.J.[Yun-Ju],
A Study on Structural Damage Detection Method Based on Model Updating,
CISP09(1-5).
IEEE DOI
0910
BibRef
Gao, S.Q.[Shan-Qing],
Liu, Y.W.[Yu-Wen],
Feng, Z.L.[Zhong-Lin],
Research on Target Damage Assessment Based on SAR Images,
CISP09(1-5).
IEEE DOI
0910
BibRef
Choi, K.[Kyoungah],
Lee, I.Y.[Imp-Yeong],
Kim, S.J.[Seong-Joon],
A Feature Based Approach to Automatic Change Detection from Lidar Data
in Urban Areas,
Laser09(259).
0909
BibRef
Matikainen, L.[Leena],
Hyyppä, J.[Juha],
Ahokas, E.[Eero],
Markelin, L.[Lauri],
Kaartinen, H.[Harri],
An improved approach for automatic detection of changes in buildings,
Laser09(61).
0909
BibRef
Hommel, M.[Miriam],
Verification of a building damage analysis and extension to
surroundings of reference buildings,
Laser09(18).
0909
BibRef
Eden, I.[Ibrahim],
Cooper, D.B.[David B.],
Using 3D Line Segments for Robust and Efficient Change Detection from
Multiple Noisy Images,
ECCV08(IV: 172-185).
Springer DOI
0810
BibRef
Yu, J.H.[Jung-Hum],
Ng, A.H.M.[Alex Hay-Man],
Jung, S.H.[Sung-Heuk],
Ge, L.L.[Lin-Lin],
Rizos, C.[Chris],
Urban Monitoring Using Persistent Scatterer InSAR and Photogrammetry,
ISPRS08(B1: 257 ff).
PDF File.
0807
BibRef
Feng, T.T.[Tian-Tian],
Wang, M.[Mi],
Gong, J.Y.[Jian-Ya],
A Method for Urban Buildings Change Detection Based on Vertical Edges
Extraction,
ISPRS08(B3b: 473 ff).
PDF File.
0807
BibRef
Shtain, Z.[Zachi],
Filin, S.[Sagi],
Accuracy and Reliability Assessment of GLAS Measurements Over Israel,
Laser11(xx-yy).
DOI Link
1109
BibRef
Zeibak, R.[Reem],
Filin, S.[Sagi],
Managing Uncertainty in the Detection of Changes from Terrestrial Laser
Scanning Data,
ISPRS08(B5: 501 ff).
PDF File.
0807
BibRef
Brito, J.L.N.S.[Jorge Luís Nunese Silva],
Silveira, M.T.[Marcelo Teixeira],
Jacobsen, K.[Karsten],
Amorim, S.[Sandro],
Mota, G.L.A.[Guilherme Lúcio Abelha],
Feitosa, R.Q.[Raul Queiroz],
Heipke, C.[Christian],
Monitoring of Height Changes in Urban Areas from Multi-Temporal,
Multi-Scale and Multi-Platform Remotely Sensed Data,
ISPRS08(B1: 835 ff).
PDF File.
0807
BibRef
Rehor, M.[Miriam],
Classification of Building Damages Based on Laser Scanning Data,
Laser07(326).
PDF File.
0709
BibRef
Rehor, M.[Miriam],
Bähr, H.P.[Hans-Peter],
Segmentation of Damaged Buildings from Laser Scanning Data,
PCV06(xx-yy).
PDF File.
0609
BibRef
Hemmleb, M.,
Weritz, F.,
Schiemenz, A.,
Grote, A.,
Maierhofer, C.,
Multi-spectral data acquisition and processing techniques for damage
detection on building surfaces,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Puente, I.[Iván],
González-Jorge, H.[Higinio],
Arias, P.[Pedro],
Armesto, J.[Julia],
Land-Based Mobile Laser Scanning Systems: A Review,
Laser11(xx-yy).
DOI Link
1109
BibRef
Arias, P.,
Armesto, J.,
Lorenzo, H.,
Ordóñez, C.,
Digital photogrammetry, GPR and finite elements in heritage
documentation: geometry and structural damages,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Sumer, E.,
Turker, M.,
An integrated earthquake damage detection system,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Rabin, R.M.[Robert M.],
Whittaker, T.[Tom],
Tool for Storm Analysis Using Multiple Data Sets,
ISVC05(571-578).
Springer DOI
0512
BibRef
Simizu, H.,
Gotoh, T.,
Saji, H.,
Automatic detection of earthquake damaged areas from aerial images and
digital map,
ICIP03(I: 829-832).
IEEE DOI
0312
BibRef
Kauffmann, M.[Michael],
Facade Classification for Damage Detection,
PCV02(B: 105).
0305
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Flood Analysis, Flood Mapping, Flood Monitoring .