24.2.2.2 Change Detection for Damage Assessment

Chapter Contents (Back)
Remote Sensing. Registration. Aerial Image Analysis. Change Detection. Damage Assessment. Building Damage.
See also Change Detection -- Image Level.
See also Forest Fire Evaluation, Wildfire Analysis, Brushfire Analysis, Fire Detection.
See also Flood Analysis, Flood Mapping, Flood Monitoring.
See also Tsunami Detection, Analysis, Warning, Disaster.

Gamba, P.[Paolo], Casciati, F.[Fabio],
GIS and Image Understanding for Near-Real-Time Earthquake Damage Assessment,
PhEngRS(64), No. 10, October 1998, pp. 987. BibRef 9810

Spillman, W.B., Huston, D.R.,
Cellular-Automata for Image-Analysis of Damage in Large Structures,
OptEng(37), No. 3, March 1998, pp. 898-903. 9804
BibRef

Abuelgasim, A.A., Gopal, S.,
Change detection using adaptive fuzzy neural networks: Environmental damage assessment after the Gulf war,
RSE(70), No. 2, 1999, pp. 208-223. 9911
BibRef

Al-Khudhairy, D.H.A., Caravaggi, I., Giada, S.,
Structural Damage Assessments from Ikonos Data Using Change Detection, Object-Oriented Segmentation, and Classification Techniques,
PhEngRS(71), No. 7, July 2005, pp. 825-838. Classical change detection methods, object-oriented image segmentation, and classification techniques are applied to investigate effectiveness for identifying post-disaster, structurally damaged zones using very high resolution satellite imagery.
WWW Link. 0509
BibRef

Gamba, P., Dell'Acqua, F., Trianni, G.,
Rapid Damage Detection in the Bam Area Using Multitemporal SAR and Exploiting Ancillary Data,
GeoRS(45), No. 6, June 2007, pp. 1582-1589.
IEEE DOI 0706

See also Improvements to urban area characterization using multitemporal and multiangle SAR images. BibRef

Dell'Acqua, F., Gamba, P.,
Remote Sensing and Earthquake Damage Assessment: Experiences, Limits, and Perspectives,
PIEEE(100), No. 10, October 2012, pp. 2876-2890.
IEEE DOI 1210
BibRef

Trianni, G.[Giovanna], Gamba, P.[Paolo],
Fast damage mapping in case of earthquakes using multitemporal SAR data,
RealTimeIP(4), No. 3, August 2009, pp. xx-yy.
Springer DOI 0909
BibRef

Sertel, E., Kaya, S., Curran, P.J.,
Use of Semivariograms to Identify Earthquake Damage in an Urban Area,
GeoRS(45), No. 6, June 2007, pp. 1590-1594.
IEEE DOI 0706
BibRef

Barnes, C.F., Fritz, H., Yoo, J.,
Hurricane Disaster Assessments With Image-Driven Data Mining in High-Resolution Satellite Imagery,
GeoRS(45), No. 6, June 2007, pp. 1631-1640.
IEEE DOI 0706
BibRef

Barnes, C.F.,
Image-Driven Data Mining for Image Content Segmentation, Classification, and Attribution,
GeoRS(45), No. 9, September 2007, pp. 2964-2978.
IEEE DOI 0710
BibRef

Bahirat, K., Bovolo, F., Bruzzone, L., Chaudhuri, S.,
A Novel Domain Adaptation Bayesian Classifier for Updating Land-Cover Maps With Class Differences in Source and Target Domains,
GeoRS(50), No. 7, July 2012, pp. 2810-2826.
IEEE DOI 1208
BibRef

Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment,
GeoRS(45), No. 6, June 2007, pp. 1658-1670.
IEEE DOI 0706

See also Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, A. BibRef

Bovolo, F.[Francesca], Marin, C.[Carlo], Bruzzone, L.[Lorenzo],
A Hierarchical Approach to Change Detection in Very High Resolution SAR Images for Surveillance Applications,
GeoRS(51), No. 4, April 2013, pp. 2042-2054.
IEEE DOI 1304
BibRef
Earlier:
A multilevel approach to change detection for port surveillance with very high resolution SAR images,
MultiTemp11(9-12).
IEEE DOI 1109
BibRef

Bertoluzza, M., Bruzzone, L.[Lorenzo], Bovolo, F.[Francesca],
Circular change detection in image time series inspired by two-dimensional phase unwrapping,
MultiTemp17(1-4)
IEEE DOI 1712
Big Data, geophysical image processing, geophysical techniques, image resolution, time series, 2D phase unwrapping, CD error, unwrapping BibRef

Bovolo, F., Bruzzone, L., Marconcini, M.,
A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure,
GeoRS(46), No. 7, July 2008, pp. 2070-2082.
IEEE DOI 0806
BibRef

Yin, L.[Li], Silverman, R.M.[Robert Mark],
Housing Abandonment and Demolition: Exploring the Use of Micro-Level and Multi-Year Models,
IJGI(4), No. 3, 2015, pp. 1184.
DOI Link 1508
BibRef

Solano-Correa, Y.T.[Yady Tatiana], Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
Generation of Homogeneous VHR Time Series by Nonparametric Regression of Multisensor Bitemporal Images,
GeoRS(57), No. 10, October 2019, pp. 7579-7593.
IEEE DOI 1910
geophysical image processing, image classification, image resolution, optical sensors, regression analysis, very high geometrical resolution (VHR) time series (TS) BibRef

Solano-Correa, Y.T., Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo], Fernández-Prieto, D.,
Spatio-temporal evolution of crop fields in Sentinel-2 Satellite Image Time Series,
MultiTemp17(1-4)
IEEE DOI 1712
crops, geophysical techniques, Barrax, Sentinel-2 satellite image time series, Spain, Spatio-temporal mapping BibRef

Bovolo, F., Marchesi, S., Bruzzone, L.,
A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images,
GeoRS(50), No. 6, June 2012, pp. 2196-2212.
IEEE DOI 1205

See also Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, A. BibRef

Marinelli, D., Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors,
GeoRS(57), No. 7, July 2019, pp. 4913-4928.
IEEE DOI 1907
BibRef
Earlier:
A novel method for unsupervised multiple Change Detection in hyperspectral images based on binary Spectral Change Vectors,
MultiTemp17(1-4)
IEEE DOI 1712
Hyperspectral imaging, Image coding, Principal component analysis, Complexity theory, multitemporal images. geophysical techniques, land cover, vegetation, ad-hoc techniques, agricultural area, Spatial resolution
See also Support Vector Domain Method For Change Detection In Multitemporal Images, A. BibRef

Saha, S., Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images,
GeoRS(57), No. 6, June 2019, pp. 3677-3693.
IEEE DOI 1906
Feature extraction, Remote sensing, Image segmentation, Optical imaging, Optical sensors, very high-resolution images BibRef

Saha, S., Bovolo, F., Bruzzone, L.,
Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding,
GeoRS(59), No. 3, March 2021, pp. 1917-1929.
IEEE DOI 1806
Optical imaging, Radar polarimetry, Feature extraction, Optical sensors, Synthetic aperture radar, Transcoding, Buildings, very high-resolution images BibRef

Fernandez-Prieto, D., Marconcini, M.,
A Novel Partially Supervised Approach to Targeted Change Detection,
GeoRS(49), No. 12, December 2011, pp. 5016-5038.
IEEE DOI 1201
BibRef

Chini, M., Pierdicca, N., Emery, W.J.,
Exploiting SAR and VHR Optical Images to Quantify Damage Caused by the 2003 Bam Earthquake,
GeoRS(47), No. 1, January 2009, pp. 145-152.
IEEE DOI 0901
BibRef

Tagliavini, F., Reichenbach, P., Maragna, D., Guzzetti, F., Pasuto, A.,
Comparison of 2-D and 3-D computer models for the M. Salta rock fall, Vajont Valley, northern Italy,
GeoInfo(13), No. 3, September 2009, pp. xx-yy.
Springer DOI 0905
BibRef

Cohen, A.R.[Andrew R.], Bjornsson, C.S.[Christopher S.], Temple, S.[Sally], Banker, G.[Gary], Roysam, B.[Badrinath],
Automatic Summarization of Changes in Biological Image Sequences Using Algorithmic Information Theory,
PAMI(31), No. 8, August 2009, pp. 1386-1403.
IEEE DOI 0906
Summarize changes in a medical sequence. Tissue strain due to insertion of probe/tool. BibRef

Brunner, D., Lemoine, G., Bruzzone, L.,
Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery,
GeoRS(48), No. 5, May 2010, pp. 2403-2420.
IEEE DOI 1006

See also Building Height Retrieval From VHR SAR Imagery Based on an Iterative Simulation and Matching Technique. BibRef

Manfredi, M., Aldrighi, M., Dell'Acqua, F.,
Eigenmethod for Feature Matching of Pre- and Postevent Images Exploiting Adjacency,
GeoRS(48), No. 7, July 2010, pp. 2890-2898.
IEEE DOI 1007
BibRef

Guglielmino, F., Nunnari, G., Puglisi, G., Spata, A.,
Simultaneous and Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps,
GeoRS(49), No. 6, June 2011, pp. 1815-1826.
IEEE DOI 1106
BibRef

Splinter, K.D., Strauss, D.R., Tomlinson, R.B.,
Assessment of Post-Storm Recovery of Beaches Using Video Imaging Techniques: A Case Study at Gold Coast, Australia,
GeoRS(49), No. 12, December 2011, pp. 4704-4716.
IEEE DOI 1201
BibRef

Sjahputera, O., Scott, G.J., Claywell, B.C., Klaric, M.N., Hudson, N.J., Keller, J.M., Davis, C.H.,
Clustering of Detected Changes in High-Resolution Satellite Imagery Using a Stabilized Competitive Agglomeration Algorithm,
GeoRS(49), No. 12, December 2011, pp. 4687-4703.
IEEE DOI 1201
BibRef

Klaric, M.N., Claywell, B.C., Scott, G.J., Hudson, N.J., Sjahputera, O., Li, Y., Barratt, S.T., Keller, J.M., Davis, C.H.,
GeoCDX: An Automated Change Detection and Exploitation System for High-Resolution Satellite Imagery,
GeoRS(51), No. 4, April 2013, pp. 2067-2086.
IEEE DOI 1304
BibRef

Matsuoka, M., Nojima, N.,
Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery,
RS(2), No. 9, September 2010, pp. 2111-2126.
DOI Link 1203
BibRef

Bielski, C., Gentilini, S., Pappalardo, M.,
Post-Disaster Image Processing for Damage Analysis Using GENESI-DR, WPS and Grid Computing,
RS(3), No. 6, June 2011, pp. 1234-1250.
DOI Link 1203
BibRef

Ghoshal, S., James, L., Singer, M., Aalto, R.,
Channel and Floodplain Change Analysis over a 100-Year Period: Lower Yuba River, California,
RS(2), No. 7, July 2010, pp. 1797-1825.
DOI Link 1203
BibRef

Rocchini, D.,
Ecological Status and Change by Remote Sensing,
RS(2), No. 10, October 2010, pp. 2424-2425.
DOI Link 1203
BibRef

Vassilakis, E.,
Remote Sensing of Environmental Change in the Antirio Deltaic Fan Region, Western Greece,
RS(2), No. 11, November 2010, pp. 2547-2560.
DOI Link 1203
BibRef

Tong, X.H.[Xiao-Hua], Hong, Z.H.[Zhong-Hua], Liu, S.J.[Shi-Jie], Zhang, X.[Xue], Xie, H.[Huan], Li, Z.Y.[Zheng-Yuan], Yang, S.[Sonlin], Wang, W.[Weian], Bao, F.[Feng],
Building-damage detection using pre- and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake,
PandRS(68), No. 1, March 2012, pp. 13-27.
Elsevier DOI 1204
Building collapse detection; Earthquake; Rational polynomial coefficient; Geopositioning accuracy; Digital elevation model; IKONOS stereo images BibRef

Debella-Gilo, M.[Misganu], Kääb, A.[Andreas],
Locally adaptive template sizes for matching repeat images of Earth surface mass movements,
PandRS(69), No. 1, April 2012, pp. 10-28.
Elsevier DOI 1202
Image matching; Normalized cross-correlation; Mass movement; Displacement; Adaptive template BibRef

Towler, J., Krawiec, B., Kochersberger, K.,
Radiation Mapping in Post-Disaster Environments Using an Autonomous Helicopter,
RS(4), No. 7, July 2012, pp. 1995-2015.
DOI Link 1208
BibRef

Wagner, M.A., Myint, S.W., Cerveny, R.S.,
Geospatial Assessment of Recovery Rates Following a Tornado Disaster,
GeoRS(50), No. 11, November 2012, pp. 4313-4322.
IEEE DOI 1210
BibRef

Yamaguchi, Y.,
Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR,
PIEEE(100), No. 10, October 2012, pp. 2851-2860.
IEEE DOI 1210
BibRef

Hooper, A., Prata, F., Sigmundsson, F.,
Remote Sensing of Volcanic Hazards and Their Precursors,
PIEEE(100), No. 10, October 2012, pp. 2908-2930.
IEEE DOI 1210
BibRef

Klonus, S.[Sascha], Ehlers, M.[Manfred], Tomowski, D.[Daniel], Michel, U.[Ulrich], Reinartz, P.[Peter],
Detection of Damaged Buildings in Crisis Areas from Panchromatic Remote Sensing Data,
PFG(2011), No. 4, 2011, pp. 219-231.
WWW Link. 1211
BibRef

Ehlers, M., Klonus, S., Jarmer, T., Sofina, N., Michel, U., Reinartz, P., Sirmacek, B.,
Cest Analysis: Automated Change Detection From Very-high-resolution Remote Sensing Images,
ISPRS12(XXXIX-B7:317-322).
DOI Link 1209
BibRef

Pesci, A.[Arianna], Teza, G.[Giordano], Bonali, E.[Elena], Casula, G.[Giuseppe], Boschi, E.[Enzo],
A laser scanning-based method for fast estimation of seismic-induced building deformations,
PandRS(79), No. 1, May 2013, pp. 185-198.
Elsevier DOI 1305
Architecture; Change detection; Laser scanning; Model; Performance BibRef

Tong, X.H.[Xiao-Hua], Lin, X.F.[Xiao-Fei], Feng, T.T.[Tian-Tian], Xie, H.[Huan], Liu, S.J.[Shi-Jie], Hong, Z.H.[Zhong-Hua], Chen, P.[Peng],
Use of shadows for detection of earthquake-induced collapsed buildings in high-resolution satellite imagery,
PandRS(79), No. 1, May 2013, pp. 53-67.
Elsevier DOI 1305
Hybrid approach; Shadow analysis; Building collapse detection; High-resolution satellite image; Earthquake-induced damage assessment; Accuracy BibRef

Brett, P.T.B., Guida, R.,
Earthquake Damage Detection in Urban Areas Using Curvilinear Features,
GeoRS(51), No. 9, 2013, pp. 4877-4884.
IEEE DOI 1309
Buildings BibRef

Dong, L.G.[Lai-Gen], Shan, J.[Jie],
A comprehensive review of earthquake-induced building damage detection with remote sensing techniques,
PandRS(84), No. 0, 2013, pp. 85-99.
Elsevier DOI 1309
Earthquakes BibRef

Frattini, P.[Paolo], Crosta, G.B.[Giovanni B.], Allievi, J.[Jacopo],
Damage to Buildings in Large Slope Rock Instabilities Monitored with the PSInSAR™ Technique,
RS(5), No. 10, 2013, pp. 4753-4773.
DOI Link 1311
BibRef

Kerfoot, W.C.[W. Charles], Hobmeier, M.M.[Martin M.], Yousef, F.[Foad], Green, S.A.[Sarah A.], Regis, R.[Robert], Brooks, C.N.[Colin N.], Shuchman, R.[Robert], Anderson, J.[Jamey], Reif, M.[Molly],
Light Detection and Ranging (LiDAR) and Multispectral Scanner (MSS) Studies Examine Coastal Environments Influenced by Mining,
IJGI(3), No. 1, 2014, pp. 66-95.
DOI Link 1402
BibRef

Thomas, J., Kareem, A., Bowyer, K.W.,
Automated Poststorm Damage Classification of Low-Rise Building Roofing Systems Using High-Resolution Aerial Imagery,
GeoRS(52), No. 7, July 2014, pp. 3851-3861.
IEEE DOI 1403
Buildings BibRef

Li, N.[Ning], Wang, R.[Robert], Liu, Y.[Yabo], Du, K.N.[Kang-Ning], Chen, J.Q.[Jia-Qi], Deng, Y.K.[Yun-Kai],
Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM,
PandRS(94), No. 1, 2014, pp. 91-101.
Elsevier DOI 1407
Airborne SAR imagery BibRef

Plank, S.[Simon],
Rapid Damage Assessment by Means of Multi-Temporal SAR: A Comprehensive Review and Outlook to Sentinel-1,
RS(6), No. 6, 2014, pp. 4870-4906.
DOI Link 1407
BibRef

Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images,
GeoRS(43), No. 12, December 2005, pp. 2963-2972.
IEEE DOI 0512
BibRef
Earlier:
An Adaptive Multiscale Approach to Unsupervised Change Detection in Multitemporal SAR Images,
ICIP05(I: 665-668).
IEEE DOI 0512

See also Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment, A. BibRef

Marin, C., Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
Building Change Detection in Multitemporal Very High Resolution SAR Images,
GeoRS(53), No. 5, May 2015, pp. 2664-2682.
IEEE DOI 1502
radar detection BibRef

Domínguez, E.M.[E. Méndez], Meier, E., Small, D., Schaepman, M.E., Bruzzone, L., Henke, D.,
A Multisquint Framework for Change Detection in High-Resolution Multitemporal SAR Images,
GeoRS(56), No. 6, June 2018, pp. 3611-3623.
IEEE DOI 1806
Array signal processing, Azimuth, Backscatter, Detectors, Spatial resolution, Synthetic aperture radar, Image processing, wavelets BibRef

Liu, S.C.[Si-Cong], Bruzzone, L.[Lorenzo], Bovolo, F.[Francesca], Du, P.J.[Pei-Jun],
Hierarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images,
GeoRS(53), No. 1, January 2015, pp. 244-260.
IEEE DOI 1410

See also Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, A.
See also Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment, A. artificial satellites BibRef

Bruzzone, L.[Lorenzo], Bovolo, F.[Francesca], Paris, C., Solano-Correa, Y.T.[Y. Tatiana], Zanetti, M., Fernández-Prieto, D.,
Analysis of multitemporal Sentinel-2 images in the framework of the ESA Scientific Exploitation of Operational Missions,
MultiTemp17(1-4)
IEEE DOI 1712
land cover, ESA scientific exploitation of operational missions, Vegetation mapping BibRef

Liu, S.C.[Si-Cong], Du, P.J.[Pei-Jun],
Object-Oriented Change Detection from Multi-Temporal Remotely Sensed Images,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Wang, J.H.[Jian-Hua], Qin, Q.M.[Qi-Ming], Zhao, J.H.[Jiang-Hua], Ye, X.[Xin], Feng, X.[Xiao], Qin, X.B.[Xue-Bin], Yang, X.C.[Xiu-Cheng],
Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image,
RS(7), No. 4, 2015, pp. 4948-4967.
DOI Link 1505
BibRef

Wang, J.H.[Jian-Hua], Qin, Q.M.[Qi-Ming], Gao, Z.L.[Zhong-Ling], Zhao, J.H.[Jiang-Hua], Ye, X.[Xin],
A New Approach to Urban Road Extraction Using High-Resolution Aerial Image,
IJGI(5), No. 7, 2016, pp. 114.
DOI Link 1608
BibRef

Vetrivel, A.[Anand], Gerke, M.[Markus], Kerle, N.[Norman], Vosselman, G.[George],
Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images,
PandRS(105), No. 1, 2015, pp. 61-78.
Elsevier DOI 1506
Oblique images BibRef

Osaragi, T.[Toshihiro],
Modeling Obstruction and Restoration of Urban Commutation Networks in the Wake of a Devastating Earthquake in Tokyo,
IJGI(4), No. 3, 2015, pp. 1097.
DOI Link 1507
BibRef

Jiang, W.G.[Wei-Guo], Jia, K.[Kai], Wu, J.J.[Jian-Jun], Tang, Z.H.[Zheng-Hong], Wang, W.J.[Wen-Jie], Liu, X.F.[Xiao-Fu],
Evaluating the Vegetation Recovery in the Damage Area of Wenchuan Earthquake Using MODIS Data,
RS(7), No. 7, 2015, pp. 8757.
DOI Link 1506
BibRef

Xu, H.[Hao], Cheng, L.[Liang], Li, M.C.[Man-Chun], Chen, Y.M.[Yan-Ming], Zhong, L.S.[Li-Shan],
Using Octrees to Detect Changes to Buildings and Trees in the Urban Environment from Airborne LiDAR Data,
RS(7), No. 8, 2015, pp. 9682.
DOI Link 1509
BibRef

Taneja, A.[Aparna], Ballan, L.[Luca], Pollefeys, M.[Marc],
Geometric Change Detection in Urban Environments Using Images,
PAMI(37), No. 11, November 2015, pp. 2193-2206.
IEEE DOI 1511
BibRef
Earlier:
Image based detection of geometric changes in urban environments,
ICCV11(2336-2343).
IEEE DOI 1201
object detection. to direct 3D analysis to changed areas. BibRef

Zhang, H.Z.[Huai-Zhen], Wang, X.M.[Xiao-Meng], Fan, J.R.[Jian-Rong], Chi, T.H.[Tian-He], Yang, S.[Shun], Peng, L.[Ling],
Monitoring Earthquake-Damaged Vegetation after the 2008 Wenchuan Earthquake in the Mountainous River Basins, Dujiangyan County,
RS(7), No. 6, 2015, pp. 6808.
DOI Link 1507
BibRef

Zhang, H.Z.[Huai-Zhen], Chi, T.[Tianhe], Fan, J.R.[Jian-Rong], Hu, K.H.[Kai-Heng], Peng, L.[Ling],
Spatial Analysis of Wenchuan Earthquake-Damaged Vegetation in the Mountainous Basins and Its Applications,
RS(7), No. 5, 2015, pp. 5785-5804.
DOI Link 1506
BibRef

Zhai, W.[Wei], Shen, H.F.[Huan-Feng], Huang, C.L.[Chun-Lin], Pei, W.S.[Wan-Sheng],
Building Earthquake Damage Information Extraction from a Single Post-Earthquake PolSAR Image,
RS(8), No. 3, 2016, pp. 171.
DOI Link 1604
BibRef

Zhai, W.[Wei], Huang, C.L.[Chun-Lin], Pei, W.S.[Wan-Sheng],
Building Damage Assessment Based on the Fusion of Multiple Texture Features Using a Single Post-Earthquake PolSAR Image,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Vetrivel, A.[Anand], Gerke, M.[Markus], Kerle, N.[Norman], Vosselman, G.[George],
Identification of Structurally Damaged Areas in Airborne Oblique Images Using a Visual-Bag-of-Words Approach,
RS(8), No. 3, 2016, pp. 231.
DOI Link 1604
BibRef

Gueguen, L., Hamid, R.,
Toward a Generalizable Image Representation for Large-Scale Change Detection: Application to Generic Damage Analysis,
GeoRS(54), No. 6, June 2016, pp. 3378-3387.
IEEE DOI 1606
geophysical image processing BibRef

Cerra, D.[Daniele], Plank, S.[Simon], Lysandrou, V.[Vasiliki], Tian, J.J.[Jiao-Jiao],
Cultural Heritage Sites in Danger: Towards Automatic Damage Detection from Space,
RS(8), No. 9, 2016, pp. 781.
DOI Link 1610
BibRef
Earlier: A1, A4, A3, A2:
Automatic Damage Detection For Sensitive Cultural Heritage Sites,
ISPRS16(B5: 215-219).
DOI Link 1610
BibRef

Cooner, A.J.[Austin J.], Shao, Y.[Yang], Campbell, J.B.[James B.],
Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake,
RS(8), No. 10, 2016, pp. 868.
DOI Link 1609
BibRef

Chen, S.W., Wang, X.S., Sato, M.,
Urban Damage Level Mapping Based on Scattering Mechanism Investigation Using Fully Polarimetric SAR Data for the 3.11 East Japan Earthquake,
GeoRS(54), No. 12, December 2016, pp. 6919-6929.
IEEE DOI 1612
earthquakes BibRef

Gong, L.X.[Li-Xia], Wang, C.[Chao], Wu, F.[Fan], Zhang, J.F.[Jing-Fa], Zhang, H.[Hong], Li, Q.A.[Qi-Ang],
Earthquake-Induced Building Damage Detection with Post-Event Sub-Meter VHR TerraSAR-X Staring Spotlight Imagery,
RS(8), No. 11, 2016, pp. 887.
DOI Link 1612
BibRef

Liu, H.[Hai], Koyama, C.[Christian], Zhu, J.F.[Jin-Feng], Liu, Q.[Qinghuo], Sato, M.[Motoyuki],
Post-Earthquake Damage Inspection of Wood-Frame Buildings by a Polarimetric GB-SAR System,
RS(8), No. 11, 2016, pp. 935.
DOI Link 1612
BibRef

Karimzadeh, S.[Sadra], Mastuoka, M.[Masashi],
Building Damage Assessment Using Multisensor Dual-Polarized Synthetic Aperture Radar Data for the 2016 M 6.2 Amatrice Earthquake, Italy,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Janalipour, M.[Milad], Mohammadzadeh, A.[Ali],
A Fuzzy-GA Based Decision Making System for Detecting Damaged Buildings from High-Spatial Resolution Optical Images,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Tu, J.H.[Ji-Hui], Li, D.R.[De-Ren], Feng, W.Q.[Wen-Qing], Han, Q.[Qinhu], Sui, H.G.[Hai-Gang],
Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images,
IJGI(6), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Xiao, Z.F.[Zhi-Feng], Long, Y.[Yang], Li, D.R.[De-Ren], Wei, C.S.[Chun-Shan], Tang, G.[Gefu], Liu, J.Y.[Jun-Yi],
High-Resolution Remote Sensing Image Retrieval Based on CNNs from a Dimensional Perspective,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Frank, J.[Jared], Rebbapragada, U.[Umaa], Bialas, J.[James], Oommen, T.[Thomas], Havens, T.C.[Timothy C.],
Effect of Label Noise on the Machine-Learned Classification of Earthquake Damage,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Sun, G.[Genyun], Hao, Y.L.[Yan-Ling], Chen, X.L.[Xiao-Lin], Ren, J.C.[Jin-Chang], Zhang, A.Z.[Ai-Zhu], Huang, B.H.[Bing-Hu], Zhang, Y.Z.[Yuan-Zhi], Jia, X.P.[Xiu-Ping],
Dynamic Post-Earthquake Image Segmentation with an Adaptive Spectral-Spatial Descriptor,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Li, S.D.[Shao-Dan], Tang, H.[Hong], Huang, X.[Xin], Mao, T.[Ting], Niu, X.N.[Xiao-Nan],
Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link 1712
BibRef

Pierdicca, N., Anniballe, R., Noto, F., Bignami, C., Chini, M., Martinelli, A., Mannella, A.,
Triple Collocation to Assess Classification Accuracy Without a Ground Truth in Case of Earthquake Damage Assessment,
GeoRS(56), No. 1, January 2018, pp. 485-496.
IEEE DOI 1801
earthquakes, geophysical image processing, image classification, remote sensing, AD 2009, Aquila earthquake damage, Italy, triple collocation (TC) BibRef

Jung, J., Yun, S.H., Kim, D.j., Lavalle, M.,
Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data,
GeoRS(56), No. 3, March 2018, pp. 1520-1532.
IEEE DOI 1804
decorrelation, optimisation, parameter estimation, probability, radar imaging, radar interferometry, radar polarimetry, synthetic aperture radar (SAR) BibRef

Milillo, P.[Pietro], Giardina, G.[Giorgia], DeJong, M.J.[Matthew J.], Perissin, D.[Daniele], Milillo, G.[Giovanni],
Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Dabove, P.[Paolo], di Pietra, V.[Vincenzo], Lingua, A.M.[Andrea Maria],
Close range photogrammetry with tablet technology in post-earthquake scenario: Sant'Agostino church in Amatrice,
GeoInfo(22), No. 2, April 2018, pp. 463-477.
WWW Link. 1805
BibRef

Chen, J.[Jie], Liu, H.F.[Hai-Fei], Hou, J.L.[Jia-Liang], Yang, M.H.[Min-Hua], Deng, M.[Min],
Improving Building Change Detection in VHR Remote Sensing Imagery by Combining Coarse Location and Co-Segmentation,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Liu, H.F.[Hai-Fei], Yang, M.H.[Min-Hua], Chen, J.[Jie], Hou, J.L.[Jia-Liang], Deng, M.[Min],
Line-Constrained Shape Feature for Building Change Detection in VHR Remote Sensing Imagery,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Feng, W.Q.[Wen-Qing], Sui, H.G.[Hai-Gang], Tu, J.H.[Ji-Hui], Huang, W.M.[Wei-Ming], Xu, C.[Chuan], Sun, K.[Kaimin],
A Novel Change Detection Approach for Multi-Temporal High-Resolution Remote Sensing Images Based on Rotation Forest and Coarse-to-Fine Uncertainty Analyses,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Feng, W.Q.[Wen-Qing], Sui, H.G.[Hai-Gang], Tu, J.H.[Ji-Hui],
Object-oriented Change Detection For Remote Sensing Images Based On Multi-scale Fusion,
ISPRS16(B7: 483-491).
DOI Link 1610
BibRef

Sun, K.M.[Kai-Mina], Li, D.[Derena], Sui, H.G.[Hai-Ganga], Liu, J.Y.[Jun-Yia], Ma, G.R.[Guo-Rui],
Object-level Change Detection Based On High-resolution Remote-sensing Images and Its Application in Japanese Earthquake on March 11, 2011,
AnnalsPRS(I-7), No. 2012, pp. 249-256.
DOI Link 1209
BibRef

Sui, H.G.[Hai-Gang], Tu, J.H.[Ji-Hui], Song, Z., Chen, G., Li, Q.,
A Novel 3D Building Damage Detection Method Using Multiple Overlapping UAV Images,
Thematic14(173-179).
DOI Link 1404
BibRef

Washaya, P.[Prosper], Balz, T.[Timo], Mohamadi, B.[Bahaa],
Coherence Change-Detection with Sentinel-1 for Natural and Anthropogenic Disaster Monitoring in Urban Areas,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Olen, S.[Stephanie], Bookhagen, B.[Bodo],
Mapping Damage-Affected Areas after Natural Hazard Events Using Sentinel-1 Coherence Time Series,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Duarte, D.[Diogo], Nex, F.[Francesco], Kerle, N.[Norman], Vosselman, G.[George],
Multi-Resolution Feature Fusion for Image Classification of Building Damages with Convolutional Neural Networks,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Nex, F.[Francesco], Duarte, D.[Diogo], Steenbeek, A.[Anne], Kerle, N.[Norman],
Towards Real-Time Building Damage Mapping with Low-Cost UAV Solutions,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Alizadeh, M.[Mohsen], Hashim, M.[Mazlan], Alizadeh, E.[Esmaeil], Shahabi, H.[Himan], Karami, M.R.[Mohammad Reza], Pour, A.B.[Amin Beiranvand], Pradhan, B.[Biswajeet], Zabihi, H.[Hassan],
Multi-Criteria Decision Making (MCDM) Model for Seismic Vulnerability Assessment (SVA) of Urban Residential Buildings,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Moya, L.[Luis], Zakeri, H.[Homa], Yamazaki, F.[Fumio], Liu, W.[Wen], Mas, E.[Erick], Koshimura, S.[Shunichi],
3D gray level co-occurrence matrix and its application to identifying collapsed buildings,
PandRS(149), 2019, pp. 14-28.
Elsevier DOI 1903
Three-dimensional GLCM, Texture, Change detection BibRef

Daudt, R.C.[Rodrigo Caye], Le Saux, B.[Bertrand], Boulch, A.[Alexandre], Gousseau, Y.[Yann],
Multitask learning for large-scale semantic change detection,
CVIU(187), 2019, pp. 102783.
Elsevier DOI 1909
Semantic change detection, High resolution Earth observation, Fully convolutional networks, Remote sensing, Multitask learning BibRef

Ci, T.Y.[Tian-Yu], Liu, Z.[Zhen], Wang, Y.[Ying],
Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Gonzalez-Drigo, R.[Ramon], Cabrera, E.[Esteban], Luzi, G.[Guido], Pujades, L.G.[Luis G.], Vargas-Alzate, Y.F.[Yeudy F.], Avila-Haro, J.[Jorge],
Assessment of Post-Earthquake Damaged Building with Interferometric Real Aperture Radar,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Nex, F.[Francesco], Duarte, D.[Diogo], Tonolo, F.G.[Fabio Giulio], Kerle, N.[Norman],
Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art CNN in Operational Conditions,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Wang, X.[Xue], Li, P.J.[Pei-Jun],
Extraction of urban building damage using spectral, height and corner information from VHR satellite images and airborne LiDAR data,
PandRS(159), 2020, pp. 322-336.
Elsevier DOI 1912
Building damage, Very high resolution (VHR), Height, Corner, Earthquake BibRef

Ma, H.J.[Hao-Jie], Liu, Y.[Yalan], Ren, Y.H.[Yu-Huan], Wang, D.C.[Da-Cheng], Yu, L.J.[Lin-Jun], Yu, J.X.[Jing-Xian],
Improved CNN Classification Method for Groups of Buildings Damaged by Earthquake, Based on High Resolution Remote Sensing Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Park, S.E.[Sang-Eun], Jung, Y.T.[Yoon Taek],
Detection of Earthquake-Induced Building Damages Using Polarimetric SAR Data,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Kim, M.[Minhwa], Lee, S.J.[Seung-Jae], Park, S.E.[Sang-Eun],
On Unsupervised Multiclass Change Detection Using Dual-Polarimetric SAR Data,
RS(16), No. 15, 2024, pp. 2858.
DOI Link 2408
BibRef

Kim, M.[Minhwa], Park, S.E.[Sang-Eun], Lee, S.J.[Seung-Jae],
Detection of Damaged Buildings Using Temporal SAR Data with Different Observation Modes,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Kerle, N.[Norman], Nex, F.[Francesco], Gerke, M.[Markus], Duarte, D.[Diogo], Vetrivel, A.[Anand],
UAV-Based Structural Damage Mapping: A Review,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Ali, M.U.[Muhammad Usman], Sultani, W.[Waqas], Ali, M.[Mohsen],
Destruction from sky: Weakly supervised approach for destruction detection in satellite imagery,
PandRS(162), 2020, pp. 115-124.
Elsevier DOI 2004
Destruction detection, Segmentation, Attention network, Hard negative mining, Deep learning, Weakly supervised learning BibRef

Pollino, M.[Maurizio], Cappucci, S.[Sergio], Giordano, L.[Ludovica], Iantosca, D.[Domenico], de Cecco, L.[Luigi], Bersan, D.[Danilo], Rosato, V.[Vittorio], Borfecchia, F.[Flavio],
Assessing Earthquake-Induced Urban Rubble by Means of Multiplatform Remotely Sensed Data,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Xu, Z.Q.[Zhi-Qiang], Chen, Y.M.[Yu-Min], Yang, F.[Fan], Chu, T.Y.[Tian-You], Zhou, H.Y.[Hong-Yan],
A Postearthquake Multiple Scene Recognition Model Based on Classical SSD Method and Transfer Learning,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Li, Y., Hu, W., Li, H., Dong, H., Zhang, B., Tian, Q.,
Aligning Discriminative and Representative Features: An Unsupervised Domain Adaptation Method for Building Damage Assessment,
IP(29), 2020, pp. 6110-6122.
IEEE DOI 2005
Building damage assessment, domain adaptation, MMD, transfer learning, variational autoencoder BibRef

Shao, J.Y.[Jin-Yuan], Tang, L.[Lina], Liu, M.[Ming], Shao, G.F.[Guo-Fan], Sun, L.[Lang], Qiu, Q.Y.[Quan-Yi],
BDD-Net: A General Protocol for Mapping Buildings Damaged by a Wide Range of Disasters Based on Satellite Imagery,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Malmgren-Hansen, D.[David], Sohnesen, T.[Thomas], Fisker, P.[Peter], Baez, J.[Javier],
Sentinel-1 Change Detection Analysis for Cyclone Damage Assessment in Urban Environments,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Zhang, R.[Rui], Li, H.[Heng], Duan, K.F.[Kai-Feng], You, S.C.[Shu-Cheng], Liu, K.[Ke], Wang, F.[Futao], Hu, Y.[Yong],
Automatic Detection of Earthquake-Damaged Buildings by Integrating UAV Oblique Photography and Infrared Thermal Imaging,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Valentijn, T.[Tinka], Margutti, J.[Jacopo], van den Homberg, M.[Marc], Laaksonen, J.[Jorma],
Multi-Hazard and Spatial Transferability of a CNN for Automated Building Damage Assessment,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Pulvirenti, L.[Luca], Squicciarino, G.[Giuseppe], Fiori, E.[Elisabetta],
A Method to Automatically Detect Changes in Multitemporal Spectral Indices: Application to Natural Disaster Damage Assessment,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Javed, A.[Aisha], Jung, S.J.[Se-Jung], Lee, W.H.[Won Hee], Han, Y.K.[You-Kyung],
Object-Based Building Change Detection by Fusing Pixel-Level Change Detection Results Generated from Morphological Building Index,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009

See also Object-Based High-Rise Building Detection Using Morphological Building Index and Digital Map. BibRef

Kalantar, B.[Bahareh], Ueda, N.[Naonori], Al-Najjar, H.A.H.[Husam A. H.], Halin, A.A.[Alfian Abdul],
Assessment of Convolutional Neural Network Architectures for Earthquake-Induced Building Damage Detection based on Pre- and Post-Event Orthophoto Images,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Su, J.H.[Jin-Hua], Bai, Y.B.[Yan-Bing], Wang, X.R.[Xing-Rui], Lu, D.[Dong], Zhao, B.[Bo], Yang, H.F.[Han-Fang], Mas, E.[Erick], Koshimura, S.[Shunichi],
Technical Solution Discussion for Key Challenges of Operational Convolutional Neural Network-Based Building-Damage Assessment from Satellite Imagery: Perspective from Benchmark xBD Dataset,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Marx, A.[Andrew], Poynor, M.[Mia], Kim, Y.K.[Young-Kyung], Oberreiter, L.[Lauren],
Detecting Destroyed Communities in Remote Areas with Personal Electronic Device Data: A Case Study of the 2017 Puebla Earthquake,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Tilon, S.[Sofia], Nex, F.[Francesco], Kerle, N.[Norman], Vosselman, G.[George],
Post-Disaster Building Damage Detection from Earth Observation Imagery Using Unsupervised and Transferable Anomaly Detecting Generative Adversarial Networks,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Xiu, H.[Haoyi], Shinohara, T.[Takayuki], Matsuoka, M.[Masashi], Inoguchi, M.[Munenari], Kawabe, K.[Ken], Horie, K.[Kei],
Collapsed Building Detection Using 3D Point Clouds and Deep Learning,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Bai, Y.B.[Yan-Bing], Hu, J.J.[Jun-Jie], Su, J.H.[Jin-Hua], Liu, X.[Xing], Liu, H.Y.[Hao-Yu], He, X.W.[Xian-Wen], Meng, S.W.[Sheng-Wang], Mas, E.[Erick], Koshimura, S.[Shunichi],
Pyramid Pooling Module-Based Semi-Siamese Network: A Benchmark Model for Assessing Building Damage from xBD Satellite Imagery Datasets,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Charrua, A.B.[Alberto Bento], Padmanaban, R.[Rajchandar], Cabral, P.[Pedro], Bandeira, S.[Salomão], Romeiras, M.M.[Maria M.],
Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

ElGharbawi, T.[Tamer], Zarzoura, F.[Fawzi],
Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon,
PandRS(173), 2021, pp. 1-9.
Elsevier DOI 2102
Amplitude Correlation, InSAR, Beirut Explosion, Hazard Assessment, Hypothesis Testing, Phase Filter BibRef

Yang, W.T.[Wan-Ting], Zhang, X.F.[Xian-Feng], Luo, P.[Peng],
Transferability of Convolutional Neural Network Models for Identifying Damaged Buildings Due to Earthquake,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Chen, X.[Xue], Achilli, V.[Vladimiro], Fabris, M.[Massimo], Menin, A.[Andrea], Monego, M.[Michele], Tessari, G.[Giulia], Floris, M.[Mario],
Combining Sentinel-1 Interferometry and Ground-Based Geomatics Techniques for Monitoring Buildings Affected by Mass Movements,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Wu, C.[Chuyi], Zhang, F.[Feng], Xia, J.S.[Jun-Shi], Xu, Y.C.[Yi-Chen], Li, G.Q.[Guo-Qing], Xie, J.[Jibo], Du, Z.H.[Zhen-Hong], Liu, R.Y.[Ren-Yi],
Building Damage Detection Using U-Net with Attention Mechanism from Pre- and Post-Disaster Remote Sensing Datasets,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Nie, Y.L.[Yu-Liang], Zeng, Q.M.[Qi-Ming], Zhang, H.Z.[Hai-Zhen], Wang, Q.[Qing],
Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Hasanlou, M.[Mahdi], Shah-Hosseini, R.[Reza], Seydi, S.T.[Seyd Teymoor], Karimzadeh, S.[Sadra], Matsuoka, M.[Masashi],
Earthquake Damage Region Detection by Multitemporal Coherence Map Analysis of Radar and Multispectral Imagery,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Boloorani, A.D.[Ali Darvishi], Darvishi, M.[Mehdi], Weng, Q.H.[Qi-Hao], Liu, X.T.[Xiang-Tong],
Post-War Urban Damage Mapping Using InSAR: The Case of Mosul City in Iraq,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Okada, G.[Genki], Moya, L.[Luis], Mas, E.[Erick], Koshimura, S.[Shunichi],
The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Adriano, B.[Bruno], Yokoya, N.[Naoto], Xia, J.[Junshi], Miura, H.[Hiroyuki], Liu, W.[Wen], Matsuoka, M.[Masashi], Koshimura, S.[Shunichi],
Learning from multimodal and multitemporal earth observation data for building damage mapping,
PandRS(175), 2021, pp. 132-143.
Elsevier DOI 2105
Multimodal remote sensing, Disaster damage mapping, Deep convolutional neural network BibRef

Chen, Z.[Zhiang], Wagner, M.[Melissa], Das, J.[Jnaneshwar], Doe, R.K.[Robert K.], Cerveny, R.S.[Randall S.],
Data-Driven Approaches for Tornado Damage Estimation with Unpiloted Aerial Systems,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Chaidas, K.[Konstantinos], Tataris, G.[George], Soulakellis, N.[Nikolaos],
Seismic Damage Semantics on Post-Earthquake LOD3 Building Models Generated by UAS,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Rashidian, V.[Vahid], Baise, L.G.[Laurie G.], Koch, M.[Magaly], Moaveni, B.[Babak],
Detecting Demolished Buildings after a Natural Hazard Using High Resolution RGB Satellite Imagery and Modified U-Net Convolutional Neural Networks,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Balado, J.[Jesús], Arias, P.[Pedro], Lorenzo, H.[Henrique], Meijide-Rodríguez, A.[Adrián],
Disturbance Analysis in the Classification of Objects Obtained from Urban LiDAR Point Clouds with Convolutional Neural Networks,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Zhang, L.[Lin], Hu, X.Y.[Xiang-Yun], Zhang, M.[Mi], Shu, Z.[Zhen], Zhou, H.[Hao],
Object-level change detection with a dual correlation attention-guided detector,
PandRS(177), 2021, pp. 147-160.
Elsevier DOI 2106
Change detection, Object level, Attention, Dual learning, Data augmentation BibRef

Karimzadeh, S.[Sadra], Matsuoka, M.[Masashi],
A Preliminary Damage Assessment Using Dual Path Synthetic Aperture Radar Analysis for the M 6.4 Petrinja Earthquake (2020), Croatia,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Wang, C.[Chao], Qiu, X.[Xing], Huan, H.[Hai], Wang, S.[Shuai], Zhang, Y.[Yan], Chen, X.H.[Xiao-Hui], He, W.[Wei],
Earthquake-Damaged Buildings Detection in Very High-Resolution Remote Sensing Images Based on Object Context and Boundary Enhanced Loss,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Zhang, Y.[Ying], Roffey, M.[Matthew], Leblanc, S.G.[Sylvain G.],
A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

de Giorgi, A.[Andrea], Solarna, D.[David], Moser, G.[Gabriele], Tapete, D.[Deodato], Cigna, F.[Francesca], Boni, G.[Giorgio], Rudari, R.[Roberto], Serpico, S.B.[Sebastiano Bruno], Pisani, A.R.[Anna Rita], Montuori, A.[Antonio], Zoffoli, S.[Simona],
Monitoring the Recovery after 2016 Hurricane Matthew in Haiti via Markovian Multitemporal Region-Based Modeling,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Park, S.[Sangki], Jung, K.[Kichul],
Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link 2109
BibRef
And: Correction: IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Moya, L.[Luis], Geiß, C.[Christian], Hashimoto, M.[Masakazu], Mas, E.[Erick], Koshimura, S.[Shunichi], Strunz, G.[Günter],
Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification,
GeoRS(59), No. 10, October 2021, pp. 8288-8304.
IEEE DOI 2109
Buildings, Training, Remote sensing, Training data, Earthquakes, Support vector machines, Machine learning, Automatic labeling, support vector machine (SVM) BibRef

Lin, D.M.[Da-Ming], Wang, J.[Jie], Li, Y.D.[Yun-Dong],
Unsupervised Building Damage Identification Using Post-Event Optical Imagery and Variational Autoencoder,
IEICE(E104-D), No. 10, October 2021, pp. 1770-1774.
WWW Link. 2110
BibRef

Donato, A.[Antonio], Randazzo, L.[Luciana], Ricca, M.[Michela], Rovella, N.[Natalia], Collina, M.[Matteo], Ruggieri, N.[Nicola], Dodaro, F.[Francesco], Costanzo, A.[Antonio], Alberghina, M.F.[Maria F.], Schiavone, S.[Salvatore], Buongiorno, M.F.[Maria F.], La Russa, M.F.[Mauro F.],
Decay Assessment of Stone-Built Cultural Heritage: The Case Study of the Cosenza Cathedral Façade (South Calabria, Italy),
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Shi, L.F.[Ling-Fei], Zhang, F.[Feng], Xia, J.[Junshi], Xie, J.[Jibo], Zhang, Z.[Zhe], Du, Z.H.[Zhen-Hong], Liu, R.Y.[Ren-Yi],
Identifying Damaged Buildings in Aerial Images Using the Object Detection Method,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Lin, C.[Chen], Li, Y.[Yundong], Liu, Y.[Yi], Wang, X.[Xiang], Geng, S.[Shuo],
Building Damage Assessment From Post-Hurricane Imageries Using Unsupervised Domain Adaptation With Enhanced Feature Discrimination,
GeoRS(60), 2022, pp. 1-10.
IEEE DOI 2112
Feature extraction, Buildings, Generative adversarial networks, Training, Deep learning, Hurricanes, generative adversarial network (GAN) BibRef

Lin, Q.G.[Qi-Gen], Ci, T.Y.[Tian-Yu], Wang, L.B.[Lei-Bin], Mondal, S.K.[Sanjit Kumar], Yin, H.X.[Hua-Xiang], Wang, Y.[Ying],
Transfer Learning for Improving Seismic Building Damage Assessment,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Jing, Y.[Yafei], Ren, Y.[Yuhuan], Liu, Y.[Yalan], Wang, D.C.[Da-Cheng], Yu, L.J.[Lin-Jun],
Automatic Extraction of Damaged Houses by Earthquake Based on Improved YOLOv5: A Case Study in Yangbi,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Ding, J.J.[Jiu-Jie], Zhang, J.H.[Jia-Huan], Zhan, Z.Q.[Zong-Qian], Tang, X.F.[Xiao-Fang], Wang, X.[Xin],
A Precision Efficient Method for Collapsed Building Detection in Post-Earthquake UAV Images Based on the Improved NMS Algorithm and Faster R-CNN,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhan, Y.H.[Yi-Hao], Liu, W.[Wen], Maruyama, Y.[Yoshihisa],
Damaged Building Extraction Using Modified Mask R-CNN Model Using Post-Event Aerial Images of the 2016 Kumamoto Earthquake,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Wang, Y.[Yu], Cui, L.[Liangyi], Zhang, C.[Chenzong], Chen, W.L.[Wen-Li], Xu, Y.[Yang], Zhang, Q.Q.[Qiang-Qiang],
A Two-Stage Seismic Damage Assessment Method for Small, Dense, and Imbalanced Buildings in Remote Sensing Images,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Wang, C.[Chao], Zhang, Y.[Yan], Xie, T.[Tao], Guo, L.[Lin], Chen, S.S.[Shi-Shi], Li, J.Y.[Jun-Yong], Shi, F.[Fan],
A Detection Method for Collapsed Buildings Combining Post-Earthquake High-Resolution Optical and Synthetic Aperture Radar Images,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Paris, L.[Leonardo], Rossi, M.L.[Maria Laura], Cipriani, G.[Giorgia],
Modeling as a Critical Process of Knowledge: Survey of Buildings in a State of Ruin,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Chen, J.[Jin], Tang, H.[Hong], Ge, J.Y.[Jia-Yi], Pan, Y.Z.[Yao-Zhong],
Rapid Assessment of Building Damage Using Multi-Source Data: A Case Study of April 2015 Nepal Earthquake,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Seydi, S.T.[Seyd Teymoor], Rastiveis, H.[Heidar], Kalantar, B.[Bahareh], Halin, A.A.[Alfian Abdul], Ueda, N.[Naonori],
BDD-Net: An End-to-End Multiscale Residual CNN for Earthquake-Induced Building Damage Detection,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Jang, A.[Arum], Ju, Y.K.[Young K.], Park, M.J.[Min Jae],
Structural Stability Evaluation of Existing Buildings by Reverse Engineering with 3D Laser Scanner,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Bouchard, I.[Isabelle], Rancourt, M.È.[Marie-Ève], Aloise, D.[Daniel], Kalaitzis, F.[Freddie],
On Transfer Learning for Building Damage Assessment from Satellite Imagery in Emergency Contexts,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Hake, F.[Frederic], Göttert, L.[Leonard], Neumann, I.[Ingo], Alkhatib, H.[Hamza],
Using Machine-Learning for the Damage Detection of Harbour Structures,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Liu, C.X.[Chao-Xian], Sui, H.G.[Hai-Gang], Wang, J.X.[Jian-Xun], Ni, Z.X.[Zi-Xuan], Ge, L.[Liang],
Real-Time Ground-Level Building Damage Detection Based on Lightweight and Accurate YOLOv5 Using Terrestrial Images,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Yang, J.[Jian], Tang, W.M.[Wei-Ming], Xuan, W.[Wei], Xi, R.J.[Rui-Jie],
Tight Integration of GNSS and Static Level for High Accuracy Dilapidated House Deformation Monitoring,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Sun, X.L.[Xiao-Lin], Chen, X.[Xi], Yang, L.[Liao], Wang, W.S.[Wei-Sheng], Zhou, X.X.[Xi-Xuan], Wang, L.[Lili], Yao, Y.[Yuan],
Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zhang, H.M.[Hai-Ming], Wang, M.C.[Ming-Chang], Zhang, Y.X.[Yong-Xian], Ma, G.R.[Guo-Rui],
TDA-Net: A Novel Transfer Deep Attention Network for Rapid Response to Building Damage Discovery,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Xia, L.G.[Lie-Gang], Chen, J.[Jun], Luo, J.C.[Jian-Cheng], Zhang, J.X.[Jun-Xia], Yang, D.Z.[De-Zhi], Shen, Z.F.[Zhan-Feng],
Building Change Detection Based on an Edge-Guided Convolutional Neural Network Combined with a Transformer,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Yamazaki, F.[Fumio], Liu, W.[Wen], Horie, K.[Kei],
Use of Multi-Temporal LiDAR Data to Extract Collapsed Buildings and to Monitor Their Removal Process after the 2016 Kumamoto Earthquake,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Yu, Z.B.[Zheng-Bo], Chen, Z.[Zhe], Sun, Z.C.[Zhong-Chang], Guo, H.D.[Hua-Dong], Leng, B.[Bo], He, Z.Q.[Zi-Qiong], Yang, J.[Jinpei], Xing, S.W.[Shu-Wen],
SegDetector: A Deep Learning Model for Detecting Small and Overlapping Damaged Buildings in Satellite Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Aimaiti, Y.[Yusupujiang], Sanon, C.[Christina], Koch, M.[Magaly], Baise, L.G.[Laurie G.], Moaveni, B.[Babak],
War Related Building Damage Assessment in Kyiv, Ukraine, Using Sentinel-1 Radar and Sentinel-2 Optical Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Takhtkeshha, N.[Narges], Mohammadzadeh, A.[Ali], Salehi, B.[Bahram],
A Rapid Self-Supervised Deep-Learning-Based Method for Post-Earthquake Damage Detection Using UAV Data (Case Study: Sarpol-e Zahab, Iran),
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Ge, J.Y.[Jia-Yi], Tang, H.[Hong], Yang, N.[Naisen], Hu, Y.J.[Yi-Jiang],
Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases,
PandRS(195), 2023, pp. 105-128.
Elsevier DOI 2301
Building damage, Remote sensing, Incremental learning, Style transfer, Disaster response BibRef

He, Y.J.[Yong-Jun], Wang, J.F.[Jin-Fei], Liao, C.H.[Chun-Hua], Zhou, X.[Xin], Shan, B.[Bo],
MS4D-Net: Multitask-Based Semi-Supervised Semantic Segmentation Framework with Perturbed Dual Mean Teachers for Building Damage Assessment from High-Resolution Remote Sensing Imagery,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Zuo, H.[Heng], Guo, H.[Huiyong],
Structural Nonlinear Damage Identification Method Based on the Kullback-Leibler Distance of Time Domain Model Residuals,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Cho, S.[Shinki], Xiu, H.[Haoyi], Matsuoka, M.[Masashi],
Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake,
RS(15), No. 8, 2023, pp. 2181.
DOI Link 2305
BibRef

Seo, H.[Hyungjoon], Raut, A.D.[Aishwarya Deepak], Chen, C.[Cheng], Zhang, C.[Cheng],
Multi-Label Classification and Automatic Damage Detection of Masonry Heritage Building through CNN Analysis of Infrared Thermal Imaging,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Huang, Q.H.[Qi-Hao], Jin, G.[Guowang], Xiong, X.[Xin], Ye, H.[Hao], Xie, Y.Z.[Yu-Zhi],
Monitoring Urban Change in Conflict from the Perspective of Optical and SAR Satellites: The Case of Mariupol, a City in the Conflict between RUS and UKR,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
BibRef

Ge, J.Y.[Jia-Yi], Tang, H.[Hong], Ji, C.[Chao],
Self-Incremental Learning for Rapid Identification of Collapsed Buildings Triggered by Natural Disasters,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link 2308
BibRef

Rodríguez-Antuñano, I.[Ignacio], Martínez-Sánchez, J.[Joaquín], Cabaleiro, M.[Manuel], Riveiro, B.[Belén],
Anticipating the Collapse of Urban Infrastructure: A Methodology Based on Earth Observation and MT-InSAR,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link 2308
BibRef

Zhao, J.[Jing], Liu, N.[Ning], Li, J.H.[Jun-Hui], Guo, X.[Xi], Deng, H.T.[Hong-Tao], Sun, J.S.[Jin-Shan],
A GIS-Based Damage Evaluation Method for Explosives Road Transportation Accidents,
IJGI(12), No. 12, 2023, pp. 470.
DOI Link 2312
BibRef

Liu, R.Y.[Ruo-Yang], Zhu, W.Q.[Wen-Quan], Yang, X.Y.[Xin-Yi],
Screening Image Features of Collapsed Buildings for Operational and Rapid Remote Sensing Identification,
RS(15), No. 24, 2023, pp. 5747.
DOI Link 2401
BibRef

Ahmadi, S.A.[Seyed Ali], Mohammadzadeh, A.[Ali], Yokoya, N.[Naoto], Ghorbanian, A.[Arsalan],
BD-SKUNet: Selective-Kernel UNets for Building Damage Assessment in High-Resolution Satellite Images,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

Aydin, N.[Nezir], Yilmaz, O.[Oktay], Deveci, M.[Muhammet], Lv, Z.H.[Zhi-Han],
Heuristics Based Optimization for Multidepot Drone Location and Routing Problem to Detect Post-Earthquake Damages,
ITS(25), No. 1, January 2024, pp. 850-858.
IEEE DOI 2402
Drones, Earthquakes, Buildings, Routing, Mathematical models, Path planning, Image resolution, drones BibRef

Liu, H.[Hui], Yuan, M.Z.[Ming-Ze], Li, M.[Mei], Li, B.[Ben], Chen, N.[Ning], Wang, J.Z.[Jin-Zheng], Li, X.[Xu], Wu, X.[Xiaohu],
TDFPI: A Three-Dimensional and Full Parameter Inversion Model and Its Application for Building Damage Assessment in Guotun Coal Mining Areas, Shandong, China,
RS(16), No. 4, 2024, pp. 698.
DOI Link 2402
BibRef

Zhu, L.[Linye], Sun, W.B.[Wen-Bin], Fan, D.Q.[De-Qin], Xing, H.Q.[Hua-Qiao], Liu, X.Q.[Xiao-Qi],
Unsupervised spatial self-similarity difference-based change detection method for multi-source heterogeneous images,
PR(149), 2024, pp. 110237.
Elsevier DOI 2403
Heterogeneous images, multi-source, change detection, unsupervised method BibRef


Sachdeva, R.[Ragav], Zisserman, A.[Andrew],
The Change You Want to See (Now in 3D),
OpenSUN3D(2052-2061)
IEEE DOI Code:
WWW Link. 2401
Different camera positions, different times. BibRef

Tu, Y.B.[Yun-Bin], Li, L.[Liang], Su, L.[Li], Zha, Z.J.[Zheng-Jun], Yan, C.G.[Cheng-Gang], Huang, Q.M.[Qing-Ming],
Self-supervised Cross-view Representation Reconstruction for Change Captioning,
ICCV23(2793-2803)
IEEE DOI Code:
WWW Link. 2401
BibRef

Dondi, P.[Piercarlo], Senaldi, I.[Ilaria], Lombardi, L.[Luca], Piastra, M.[Marco],
Many-to-many Metrics: A New Approach to Evaluate the Performance of Structural Damage Detection Networks,
CIAP23(II:144-155).
Springer DOI 2312
BibRef

Khalil, M., Satish Kumar, J.,
The Use of AHP Within GIS for Destructed Areas in Damascus, Syria,
ISPRS21(B4-2021: 103-109).
DOI Link 2201
Analytic Hierarchy Process. What to reconstruct. BibRef

Ekmekcioglu, O., Demir, N.,
Automated Detection of Collapsed Buildings with Use of Optical and Sar Images, Case Study: Izmir Earthquake on October 30th, 2020,
ISPRS21(B3-2021: 707-712).
DOI Link 2201
BibRef

Zhu, X.Y.[Xiao-Yu], Liang, J.W.[Jun-Wei], Hauptmann, A.G.[Alexander G.],
MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos,
WACV21(2022-2031)
IEEE DOI 2106
Social networking (online), Computational modeling, Buildings, Object detection, Benchmark testing, Hurricanes, Data models BibRef

Bai, Y.S.[Yong-Sheng], Sezen, H.[Halil], Yilmaz, A.[Alper],
End-to-end Deep Learning Methods for Automated Damage Detection in Extreme Events at Various Scales,
ICPR21(6640-6647)
IEEE DOI 2105
Training, Deep learning, Image segmentation, Visualization, Earthquakes, Inspection, Pattern recognition, Mask R-CNN BibRef

Gupta, R.[Rohit], Shah, M.[Mubarak],
RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery,
ICPR21(4405-4411)
IEEE DOI 2105
Location awareness, Image segmentation, Satellites, Head, Architecture, Tiles BibRef

Yasuno, T.[Takato], Amakata, M.[Masazumi], Okano, M.[Masahiro],
Natural Disaster Classification Using Aerial Photography Explainable for Typhoon Damaged Feature,
MAES20(15-25).
Springer DOI 2103
BibRef

Ermlick, W.[William], Newman, N.[Nick], Pawar, D.[Devayani], Richardett, T.[Tyler], Conroy, C.[Christian], Baldo, J.[James], Aggarwal, R.[Rajesh], Bosch, M.[Marc],
Natural Disaster Building Damage Assessment Using a Two-encoder U-net,
ISVC20(I:683-695).
Springer DOI 2103
BibRef

Spasenovic, K., Carrion, D., Migliaccio, F.,
Potential of Geolocated Crowdsourced Image Posts In Predicting An Early Estimate of the Patterns of Structural Damage Following A Hurricane,
ISPRS20(B4:291-297).
DOI Link 2012
BibRef

Chaidas, K., Tataris, G., Soulakellis, N.,
Post-earthquake 3D Building Model (LOD2) Generation from UAS Imagery: The Case of Vrisa Traditional Settlement, Lesvos, Greece,
SmartCityApp20(165-172).
DOI Link 2012
BibRef

Sonobe, M.,
Characteristics of Texture Index of Damaged Buildings Using Time-series High-resolution Optical Satellite Images,
ISPRS20(B3:1709-1714).
DOI Link 2012
BibRef

Weber, E.[Ethan], Marzo, N.[Nuria], Papadopoulos, D.P.[Dim P.], Biswas, A.[Aritro], Lapedriza, A.[Agata], Ofli, F.[Ferda], Imran, M.[Muhammad], Torralba, A.[Antonio],
Detecting Natural Disasters, Damage, and Incidents in the Wild,
ECCV20(XIX:331-350).
Springer DOI 2011
BibRef

Blaszczak-Bak, W., Suchocki, C., Janicka, J., Dumalski, A., Duchnowski, R.,
Defect Detection of Historic Structures in Dark Places Based On The Point Cloud Analysis By Modified OPTD Method,
Gi4DM19(71-77).
DOI Link 1912
BibRef

Croce, V., Caroti, G., Piemonte, A.,
Assessment of Earthquake-induced Damage Level On Buildings: Analysis Of Two Different Survey Methods for a Case Study,
CIPA19(351-358).
DOI Link 1912
BibRef

Kwon, D., Yu, J.,
Automatic Damage Detection of Stone Cultural Property Based On Deep Learning Algorithm,
CIPA19(639-643).
DOI Link 1912
BibRef

Jabari, S., Krafczek, M.,
Application of Off-nadir Satellite Imagery in Earthquake Damage Assessment Using Object-based Hog Feature Descriptor,
Gi4DM19(167-171).
DOI Link 1912
BibRef

Mohr, L., Benauer, R., Leitl, P., Fraundorfer, F.,
Damage Estimation of Explosions in Urban Environments By Simulation,
Gi4DM19(253-260).
DOI Link 1912
BibRef

Eskandari, M., Goodarzi, S., Nekooie, M.A.,
Seismic Damage Assessment of Lifelines Based On Geospatial Analysis,
GGT19(197-203).
DOI Link 1912
BibRef

Zanazzi, E., Coïsson, E., Ferretti, D.,
Gis Analysis of The Seismic Damage On Historical Masonry Spires,
GEORES19(1173-1179).
DOI Link 1912
BibRef

Aali, H., Sharifi, A., Malian, A.,
Earthquake Damage Detection Using Satellite Images (Case Study: Sarpol-zahab Earthquake),
SMPR19(1-5).
DOI Link 1912
BibRef

Jung, M., Chung, M., Kim, Y.,
Assessing Complex Damage Using Pre-disaster Optical and Post-disaster Polsar Data,
Gi4DM19(181-185).
DOI Link 1912
BibRef

Kerle, N., Nex, F., Duarte, D., Vetrivel, A.,
Uav-based Structural Damage Mapping - Results From 6 Years of Research In Two European Projects,
Gi4DM19(187-194).
DOI Link 1912
BibRef

Kim, S.S., Kim, T.H., Sim, J.S.,
Applicability Assessment of UAV Mapping for Disaster Damage Investigation in Korea,
Gi4DM19(209-214).
DOI Link 1912
BibRef

Kafi, K.M., Aliyu, A., Olugbodi, K.H., Abubakar, I.J., Usman, S.G., Saleh, M.,
Urban Infrastructure and Buildings in Ruins: Damage Severity Mapping Of Neighborhoods Affected By The June 2018 Windstorm in Bauchi,
GGT19(327-330).
DOI Link 1912
BibRef

Yasuno, T.[Takato], Amakata, M.[Masazumi], Fujii, J.[Junichiro], Shimamoto, Y.[Yuri],
Color-Base Damage Feature Enhanced Support Vector Classifier for Monitoring Quake Image,
CCIW19(260-275).
Springer DOI 1905
BibRef

Sulzer, R., Nourian, P., Palmieri, M., van Gemert, J.C.,
Shape Based Classification of Seismic Building Structural Types,
GeoInfo18(179-186).
DOI Link 1901
Pre-damage assessment. BibRef

Daka, T.[Trishala], Udatha, L.[Lokesh], Pasupuleti, V.D.K.[Venkata Dilip Kumar], Kalapatapu, P.[Prafulla], Rajaram, B.[Bharghava],
Ancient Sandbox Technique: An Experimental Study Using Piezoelectric Sensors,
EuroMed18(II:173-184).
Springer DOI 1811
Study of ancient temple construction to explain why they are resistant to natural calamities. BibRef

Chatzistamatis, S., Kalaitzis, P., Chaidas, K., Chatzitheodorou, C., Papadopoulou, E.E., Tataris, G., Soulakellis, N.,
Fusion of TLS and UAV Photogrammetry Data for Post-earthquake 3d Modeling of A Cultural Heritage Church,
Gi4DM18(143-150).
DOI Link 1805
BibRef

Soulakellis, N., Chatzistamatis, S., Vasilakos, C., Tataris, G., Papakonstantinou, A., Kavroudakis, D., Topouzelis, K., Roussou, O., Kalloniatis, C., Papadopoulou, E.E., Chaidas, K., Kalaitzis, P.,
Synergistic Exploitation of Geoinformation Methods for Post-earthquake 3d Mapping of Vrisa Traditional Settlement, Lesvos Island, Greece,
Gi4DM18(491-498).
DOI Link 1805
BibRef

Baiocchi, V., Bianchi, A., Maddaluno, C., Vidale, M.,
Pansharpening Techniques to Detect Mass Monument Damaging in Iraq,
GeomCultural17(121-126).
DOI Link 1805
BibRef

Oxoli, D., Boccardo, P., Brovelli, M.A., Molinari, M.E., Monti Guarnieri, A.,
Coherent Change Detection For Repeated-pass Interferometric SAR Images: An Application To Earthquake Damage Assessment on Buildings,
Gi4DM18(383-388).
DOI Link 1805
BibRef

Rastiveis, H., Khodaverdi Zahraee, N., Jouybari, A.,
Object-oriented Classification of LIDAR Data for Post-Earthquake Damage Detection,
Gi4DM18(421-427).
DOI Link 1805
BibRef

Vasilakos, C., Chatzistamatis, S., Roussou, O., Soulakellis, N.,
Terrestrial Photogrammetry vs Laser Scanning for Rapid Earthquake Damage Assessment,
Gi4DM18(527-533).
DOI Link 1805
BibRef

Chiabrando, F., di Lolli, A., Patrucco, G., Spanò, A., Sammartano, G., Teppati Losè, L.,
Multitemporal 3D Modelling for Cultural Heritage Emergency During Seismic Events: Damage Assesment of S. Agostino Church in Amatrice (RI),
GeomCultural17(69-76).
DOI Link 1805
BibRef

Oreni, D., Brumana, R., Della-Torre, S., Banfi, F.,
Survey, HBIM and Conservation Plan of a Monumental Building Damaged by Earthquake,
GeomCultural17(337-342).
DOI Link 1805
BibRef

Radicioni, F., Matracchi, P., Brigante, R., Brozzi, A., Cecconi, M., Stoppini, A., Tosi, G.,
The Tempio Della Consolazione In Todi: Integrated Geomatic Techniques for a Monument Description Including Structural Damage Evolution in Time,
GeomCultural17(433-440).
DOI Link 1805
BibRef

Pavelka, Jr., K., Šedina, J., Raeva, P., Hulková, M.,
Modern Processing Capabilities of Analog Data from Documentation of the Great Omayyad Mosque in Aleppo, Syria, Damaged In Civil War,
CIPA17(561-565).
DOI Link 1805
BibRef

Vafadari, A., Philip, G., Jennings, R.,
Damage Assessment And Monitoring Of Cultural Heritage Places In A Disaster And Post-disaster Event: A Case Study Of Syria,
CIPA17(695-701).
DOI Link 1805
BibRef

Nia, K.R., Mori, G.,
Building Damage Assessment Using Deep Learning and Ground-Level Image Data,
CRV17(95-102)
IEEE DOI 1804
automatic optical inspection, buildings (structures), condition monitoring, disasters, feature extraction, Regression with Neural Networks BibRef

Meixner, P., Eckstein, M.,
Multi-temporal Analysis of WWII Reconnaissance Photos,
ISPRS16(B8: 973-978).
DOI Link 1610
BibRef

Stentoumis, C., Protopapadakis, E., Doulamis, A., Doulamis, N.,
A Holistic Approach For Inspection Of Civil Infrastructures Based On Computer Vision Techniques,
ISPRS16(B5: 131-138).
DOI Link 1610
BibRef

Kuny, S., Hammer, H., Schulz, K.,
Assessing the Suitability of Simulated SAR Signatures of Debris for the Usage In Damage Detection,
ISPRS16(B3: 877-881).
DOI Link 1610
BibRef

Laun, S., Rösch, N., Breunig, M., Doori, M.A.[M. Al],
Implementation Of Kriging Methods In Mobile GIS To Estimate Damage To Buildings In Crisis Scenarios,
ISPRS16(B2: 211-216).
DOI Link 1610
BibRef

Gokaraju, B., Turlapaty, A.C., Doss, D.A., King, R.L., Younan, N.H.,
Change detection analysis of tornado disaster using conditional copulas and Data Fusion for cost-effective disaster management,
AIPR15(1-8)
IEEE DOI 1605
emergency management BibRef

Faur, D., Datcu, M.,
A rapid mapping approach to quantify damages caused by the 2003 bam earthquake using high resolution multitemporal optical images,
MultiTemp15(1-4)
IEEE DOI 1511
disasters BibRef

Shi, X., Lu, L., Yang, S., Huang, G., Zhao, Z.,
Object-oriented change detection based on weighted polarimetric scattering differences on POLSAR images,
IWIDF15(149-154).
DOI Link 1508
BibRef

Hang, D., Hassan, G.M.[Ghulam Mubashar], MacNish, C.[Cara], Dyskin, A.[Arcady],
Characteristics of Color Digital Image Correlation for Deformation Measurement in Geomechanical Structures,
DICTA16(1-8)
IEEE DOI 1701
BibRef
Earlier: A2, A3, A4, Only:
Extending Digital Image Correlation to Reconstruct Displacement and Strain Fields around Discontinuities in Geomechanical Structures under Deformation,
WACV15(710-717)
IEEE DOI 1503
Color. Accuracy BibRef

Uglešic, D.[Davor], Uglešic, A.[Ante],
Assessment of Structural Natural Frequencies and Application in the Calibration of FEM Models and Structural Health Monitoring,
EuroMed14(669-677).
Springer DOI 1412
evaluation of buildings. BibRef

Nex, F., Rupnik, E., Toschi, I., Remondino, F.,
Automated processing of high resolution airborne images for earthquake damage assessment,
LandImaging14(315-321).
DOI Link 1411
BibRef

Murtiyoso, A., Remondino, F., Rupnik, E., Nex, F., Grussenmeyer, P.,
Oblique Aerial Photography Tool for Building Inspection and Damage Assessment,
LandImaging14(309-313).
DOI Link 1411
BibRef

Souami, M.A.,
Impact of Stylistic Features, Architectural and Urban Rules of the Algiers Architectural Heritage Dating Between 1830 and 1930 on the Strength of its Buildings During the Earthquake,
CIPA13(605-610).
DOI Link 1311
BibRef

Wang, X., Li, P.,
Urban Building Collapse Detection Using Very High Resolution Imagery and Airborne LIDAR Data,
IWIDF13(127-132).
DOI Link 1311
BibRef

Ariyasu, E., Koizumi, M., Ikubo, M., Hatake, S.,
Application Of Mobile Lidar Mapping For Damage Survey After Great East Japan Earthquake,
ISPRS12(XXXIX-B1:573-576).
DOI Link 1209
BibRef

Matsuoka, R., Nagusa, I., Yasuhara, H., Mori, M., Katayama, T., Yachi, N., Hasui, A., Katakuse, M., Atagi, T.,
Some Aspects in Height Measurement by UAV Photogrammetry,
UAV-g13(269-274).
DOI Link 1311
BibRef

Boccardo, P., Tonolo, F.G.,
Haiti Earthquake Damage Assessment: Review Of The Remote Sensing Role,
ISPRS12(XXXIX-B4:529-532).
DOI Link 1209
BibRef

Wang, Z., Li, Z., Shen, Y., Wu, L., Li, H.,
Event-driven Observations And Comprehensive Evaluation For Natural Disaster Assessment In China,
ISPRS12(XXXIX-B4:533-538).
DOI Link 1209
BibRef

Michel, U., Thunig, H., Ehlers, M., Reinartz, P.,
Rapid Change Detection Algorithm For Disaster Management,
AnnalsPRS(I-4), No. 2012, pp. 107-111.
DOI Link 1209
BibRef

Vu, T.T.,
Rapid Disaster Damage Estimation,
ISPRS12(XXXIX-B8:65-69).
DOI Link 1209
BibRef

Golparvar-Fard, M.[Mani], Pena-Mora, F.[Feniosky], Savarese, S.[Silvio],
Monitoring changes of 3D building elements from unordered photo collections,
CVRSE11(249-256).
IEEE DOI 1201
BibRef

Gerke, M.[Markus], Kerle, N.[Norman],
Graph matching in 3D space for structural seismic damage assessment,
CVRSE11(204-211).
IEEE DOI 1201
BibRef
Earlier: A1, Only:
Supervised Classification of Multiple View Images in Object Space for Seismic Damage Assessment,
PIA11(221-232).
Springer DOI 1110
BibRef

Xin, J.F.[Jing-Feng],
Remote Sensing Monitoring and Quick Assessment on the Dammed Lakes,
ISIDF11(1-6).
IEEE DOI 1111
BibRef

Kaya, G.T.[Gulsen Taskin], Kaya, H.[Huseyin], Ersoy, O.K.[Okan K.],
Change detection in very high resolution imagery based on dynamic time warping: An implementation for Haiti earthquake damage assessment,
MultiTemp11(13-16).
IEEE DOI 1109
BibRef

Frey, D.[Daniel], Butenuth, M.[Matthias],
Multi-temporal damage assessment of linear infrastructural objects using Dynamic Bayesian Networks,
MultiTemp11(61-64).
IEEE DOI 1109
BibRef
Earlier:
Classification System of GIS-Objects using Multi-sensorial Imagery for Near-Realtime Disaster Management,
CMRT09(103-108).
PDF File. 0909
BibRef

Oude Elberink, S.[Sander], Shoko, M.[Moreblessings], Rutzinger, M.[Martin], Fathi, S.A.[Seyed Abdolmajid],
Detection of Collapsed Buildings by Classifying Segmented Airborne Laser Scanner Data,
Laser11(xx-yy).
DOI Link 1109
BibRef

Vanderhaegen, S., Canters, F.,
Developing Urban Metrics to Describe the Morphology of Urban Areas at Block Level,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Mücher, C.A., Kooistra, L., Vermeulen, M., Haest, B., Spanhove, T., Delalieux, S., Vanden Borre, J., Schmidt, A.,
Object Identification and Characterization with Hyperspectral Imagery to Identify Structure and Function of Natura 2000 Habitats,
GEOBIA10(xx-yy).
PDF File. 1007
Monitor EU protected habitats. BibRef

Nijland, W.[Wiebe], Addink, E.A.[Elisabeth A.], de Jong, S.M.[Steven M.], van der Meer, F.D.[Freek D.],
Detection of Ecosystem Functioning Using Object-Based Time-Series Analysis,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Ahmed, W.M.[Wamiq M.], Zhang, M.[Ming], Al-Kofahi, O.[Omar],
Historical comparison of vehicles using scanned x-ray images,
WACV11(288-293).
IEEE DOI 1101
Border crossing x-ray scanners. Compare to previous scans. BibRef

Galina, M.H., Diniz, H.N., Quintanilha, J.A., Batista, G.T.,
The Increase of Artificial Lakes as a Result of Sand Mining Activities, in the Paraíba do Sul River Valley Basin, São Paulo State, Brazil,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Hanson, E., Wolff, E.,
Change Detection for Update of Topographic Databases Through Multi-Level Region-Based Classification of VHR Optical and SAR Data,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Lack, N., Bleisch, S.,
Object-Based Change Detection for a Cultural-Historical Survey of the Landscape: From Cow Trails to Walking Paths,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Reinhold, M., Selsam, P.,
Automated Change Detection for Thematic Data Using Object-Based Analysis of Remote Sensing Imagery,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Förster, M., Frick, A., Schuster, C., Kleinschmit, B.,
Object-Based Change Detection Analysis for the Monitoring of Habitats in the Framework of the Natura 2000 Directive with Multi-Temporal Satellite Data,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Doxani, G., Karantzalos, K., Strati, M. .T.[M. Tsakiri-],
Automatic Change Detection in Urban Areas Under a Scale-Space, Object-Oriented Classification Framework,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Clouet, J.M.M.N.[Jean-Matthieu Monnet Nicolas], Berger, F.[Frédéric],
Using geomatics and airborne laser scanning for rockfall risk zoning: A case study in the french alps,
CGC10(91).
PDF File. 1006
BibRef

Whitehead, K.[Kenneth],
Monitoring the Seasonal Decay of a Proglacial Icing using Ground-Based Time-Lapse Photography,
CGC10(67).
PDF File. 1006
BibRef

Crespo, C., Armesto, L.J., Arias, P., Gonzalez-Aguilera, D.,
Damage Detection On Historical Buildings Using Unsupervised Classification Techniques,
CloseRange10(xx-yy).
PDF File. 1006
BibRef

Zhou, Q.M.[Qi-Ming], Sun, B.[Bo],
Modeling And Visualizing Spatio-temporal Pattern Of Land Cover Change In Pearl River Delta Region Of China Using Multi-temporal Imagery,
VCGVA09(xx-yy). 0910
Spatio-temporal pattern, LUCC, Change detection, Pearl River Delta region, urban growth mode BibRef

Zhang, G.[Guo], Li, Y.[Yang],
A New Approach Toward Object-based Change Detection,
VCGVA09(xx-yy). 0910
change detection, object-based, segmentation, mean shift, intensity, texture, integration BibRef

Atif, J.[Jamal], Darbon, J.[Jerome],
Copula-set measures on topographic maps for change detection,
ICIP09(2881-2884).
IEEE DOI 0911
BibRef

Liang, R.N.[Rong-Na], Yan, Y.J.[Yun-Ju], Xi, Z.Y.[Zhu-You],
Characteristics of Detect Index for Structural Small Damage Based on Wavelet Analysis Under Strong Background Noise,
CISP09(1-4).
IEEE DOI 0910
BibRef

Yang, H.F.[Hai-Feng], Wu, Z.Y.[Zi-Yan], Yan, Y.J.[Yun-Ju],
A Study on Structural Damage Detection Method Based on Model Updating,
CISP09(1-5).
IEEE DOI 0910
BibRef

Gao, S.Q.[Shan-Qing], Liu, Y.W.[Yu-Wen], Feng, Z.L.[Zhong-Lin],
Research on Target Damage Assessment Based on SAR Images,
CISP09(1-5).
IEEE DOI 0910
BibRef

Choi, K.[Kyoungah], Lee, I.Y.[Imp-Yeong], Kim, S.J.[Seong-Joon],
A Feature Based Approach to Automatic Change Detection from Lidar Data in Urban Areas,
Laser09(259). 0909
BibRef

Matikainen, L.[Leena], Hyyppä, J.[Juha], Ahokas, E.[Eero], Markelin, L.[Lauri], Kaartinen, H.[Harri],
An improved approach for automatic detection of changes in buildings,
Laser09(61). 0909
BibRef

Hommel, M.[Miriam],
Verification of a building damage analysis and extension to surroundings of reference buildings,
Laser09(18). 0909
BibRef

Eden, I.[Ibrahim], Cooper, D.B.[David B.],
Using 3D Line Segments for Robust and Efficient Change Detection from Multiple Noisy Images,
ECCV08(IV: 172-185).
Springer DOI 0810
BibRef

Yu, J.H.[Jung-Hum], Ng, A.H.M.[Alex Hay-Man], Jung, S.H.[Sung-Heuk], Ge, L.L.[Lin-Lin], Rizos, C.[Chris],
Urban Monitoring Using Persistent Scatterer InSAR and Photogrammetry,
ISPRS08(B1: 257 ff).
PDF File. 0807
BibRef

Feng, T.T.[Tian-Tian], Wang, M.[Mi], Gong, J.Y.[Jian-Ya],
A Method for Urban Buildings Change Detection Based on Vertical Edges Extraction,
ISPRS08(B3b: 473 ff).
PDF File. 0807
BibRef

Shtain, Z.[Zachi], Filin, S.[Sagi],
Accuracy and Reliability Assessment of GLAS Measurements Over Israel,
Laser11(xx-yy).
DOI Link 1109
BibRef

Zeibak, R.[Reem], Filin, S.[Sagi],
Managing Uncertainty in the Detection of Changes from Terrestrial Laser Scanning Data,
ISPRS08(B5: 501 ff).
PDF File. 0807
BibRef

Brito, J.L.N.S.[Jorge Luís Nunese Silva], Silveira, M.T.[Marcelo Teixeira], Jacobsen, K.[Karsten], Amorim, S.[Sandro], Mota, G.L.A.[Guilherme Lúcio Abelha], Feitosa, R.Q.[Raul Queiroz], Heipke, C.[Christian],
Monitoring of Height Changes in Urban Areas from Multi-Temporal, Multi-Scale and Multi-Platform Remotely Sensed Data,
ISPRS08(B1: 835 ff).
PDF File. 0807
BibRef

Rehor, M.[Miriam],
Classification of Building Damages Based on Laser Scanning Data,
Laser07(326).
PDF File. 0709
BibRef

Rehor, M.[Miriam], Bähr, H.P.[Hans-Peter],
Segmentation of Damaged Buildings from Laser Scanning Data,
PCV06(xx-yy).
PDF File. 0609
BibRef

Hemmleb, M., Weritz, F., Schiemenz, A., Grote, A., Maierhofer, C.,
Multi-spectral data acquisition and processing techniques for damage detection on building surfaces,
IEVM06(xx-yy).
PDF File. 0609
BibRef

Puente, I.[Iván], González-Jorge, H.[Higinio], Arias, P.[Pedro], Armesto, J.[Julia],
Land-Based Mobile Laser Scanning Systems: A Review,
Laser11(xx-yy).
DOI Link 1109
BibRef

Arias, P., Armesto, J., Lorenzo, H., Ordóñez, C.,
Digital photogrammetry, GPR and finite elements in heritage documentation: geometry and structural damages,
IEVM06(xx-yy).
PDF File. 0609
BibRef

Sumer, E., Turker, M.,
An integrated earthquake damage detection system,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Rabin, R.M.[Robert M.], Whittaker, T.[Tom],
Tool for Storm Analysis Using Multiple Data Sets,
ISVC05(571-578).
Springer DOI 0512
BibRef

Simizu, H., Gotoh, T., Saji, H.,
Automatic detection of earthquake damaged areas from aerial images and digital map,
ICIP03(I: 829-832).
IEEE DOI 0312
BibRef

Kauffmann, M.[Michael],
Facade Classification for Damage Detection,
PCV02(B: 105). 0305
BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Flood Analysis, Flood Mapping, Flood Monitoring .


Last update:Aug 28, 2024 at 16:02:19