Allen, G.R.,
Bonrud, L.O.,
Cosgrove, J.J., and
Stone, R.M.,
The Design and Use of Special Purpose Processors for the
Machine Processing of Remotely Sensed Data,
MPRSD73(xx).
Introduction to CDC hardware.
BibRef
7300
Bruzzone, L.,
Serpico, S.B.,
Detection of Changes in Remotely-Sensed Images by the Selective
Use of Multispectral Information,
JRS(18), No. 18, December 1997, pp. 3883-3888.
9801
BibRef
Bruzzone, L.[Lorenzo],
Fernandez-Prieto, D.[Diego],
A minimum-cost thresholding technique for unsupervised change detection,
JRS(21), No. 18, December 2000, pp. 3539-3544.
0102
BibRef
Earlier:
An MRF Approach to Unsupervised Change Detection,
ICIP99(I:143-147).
IEEE DOI
See also adaptive semiparametric and context-based approach to unsupervised change detection multitemporal remote-sensing images, An.
BibRef
Bruzzone, L.,
Cossu, R.,
An adaptive approach to reducing registration noise effects in
unsupervised change detection,
GeoRS(41), No. 11, November 2003, pp. 2455-2465.
IEEE Abstract.
0311
BibRef
Nemmour, H.[Hassiba],
Chibani, Y.[Youcef],
Neural Network Combination by Fuzzy Integral for Robust Change
Detection in Remotely Sensed Imagery,
JASP(2005), No. 14, 2005, pp. 2187-2195.
WWW Link.
0603
BibRef
Mercier, G.,
Moser, G.,
Serpico, S.B.[Sebastiano B.],
Conditional Copulas for Change Detection in Heterogeneous Remote
Sensing Images,
GeoRS(46), No. 5, May 2008, pp. 1428-1441.
IEEE DOI
0804
See also statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images, A.
See also Partially Supervised Classification of Remote Sensing Images Through SVM-Based Probability Density Estimation.
BibRef
Liu, Z.G.[Zhun-Ga],
Dezert, J.[Jean],
Mercier, G.[Grégoire],
Pan, Q.[Quan],
Dynamic Evidential Reasoning for Change Detection in Remote Sensing
Images,
GeoRS(50), No. 5, May 2012, pp. 1955-1967.
IEEE DOI
1202
BibRef
Liu, Z.,
Li, G.,
Mercier, G.,
He, Y.,
Pan, Q.,
Change Detection in Heterogenous Remote Sensing Images via
Homogeneous Pixel Transformation,
IP(27), No. 4, April 2018, pp. 1822-1834.
IEEE DOI
1802
geophysical image processing, pattern clustering, remote sensing,
HPT, K, backward transformation, belief functions theory,
remote sensing
BibRef
Millward, A.A.[Andrew A.],
Piwowar, J.M.[Joseph M.],
Howarth, P.J.[Philip J.],
Time-Series Analysis of Medium-Resolution, Multisensor Satellite Data
for Identifying Landscape Change,
PhEngRS(72), No. 6, June 2006, pp. 653-664.
WWW Link.
0610
Methodologies that use standardized principal components analysis applied
to selected bands of imagery to identify and date changes in a landscape
across a time series of multisensor imagery.
BibRef
Ehlers, M.[Manfred],
Gaehler, M.[Monika],
Janowsky, R.[Ronald],
Automated Techniques for Environmental Monitoring and Change Analyses
for Ultra High-resolution Remote Sensing Data,
PhEngRS(72), No. 7, July 2006, pp. 835-840.
WWW Link.
0610
The development of automated classification methods for vegetation and
biotope type mapping from the new generation of ultra high-resolution
remote sensing data.
BibRef
Castellana, L.,
d'Addabbo, A.,
Pasquariello, G.,
A composed supervised/unsupervised approach to improve change detection
from remote sensing,
PRL(28), No. 4, 1 March 2007, pp. 405-413.
Elsevier DOI
0701
Neural networks; Change detection; Remote sensing
BibRef
Ghosh, A.,
Subudhi, B.N.,
Bruzzone, L.,
Integration of Gibbs Markov Random Field and Hopfield-Type
Neural Networks for Unsupervised Change Detection
in Remotely Sensed Multitemporal Images,
IP(22), No. 8, 2013, pp. 3087-3096.
IEEE DOI
1307
Hopfield neural nets; Markov processes;
Gibbs Markov random field integration; graph-cut algorithm;
Change detection
See also Entropy based region selection for moving object detection.
BibRef
Subudhi, B.N.[Badri Narayan],
Ghosh, S.[Susmita],
Ghosh, A.[Ashish],
Spatial constraint Hopfield-type neural networks for detecting
changes in remotely sensed multitemporal images,
ICIP13(3815-3819)
IEEE DOI
1402
BibRef
Ghosh, S.,
Bruzzone, L.,
Patra, S.,
Bovolo, F.,
Ghosh, A.,
A Context-Sensitive Technique for Unsupervised Change Detection Based
on Hopfield-Type Neural Networks,
GeoRS(45), No. 3, March 2007, pp. 778-789.
IEEE DOI
0703
BibRef
Bergamasco, L.,
Saha, S.,
Bovolo, F.,
Bruzzone, L.,
An Explainable Convolutional Autoencoder Model for Unsupervised Change
Detection,
ISPRS20(B2:1513-1519).
DOI Link
2012
BibRef
Marchesi, S.[Silvia],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
A Context-Sensitive Technique Robust to Registration Noise for Change
Detection in VHR Multispectral Images,
IP(19), No. 7, July 2010, pp. 1877-1889.
IEEE DOI
1007
BibRef
Earlier: A3, A2, A1:
A Multiscale Change Detection Technique Robust to Registration Noise,
PReMI07(77-86).
Springer DOI
0712
BibRef
Bovolo, F.[Francesca],
Camps-Valls, G.,
Bruzzone, L.[Lorenzo],
A Support Vector Domain Method For Change Detection In Multitemporal
Images,
PRL(31), No. 10, 15 July 2010, pp. 1148-1154.
Elsevier DOI
1008
Unsupervised change detection; Support vector domain description;
Kernel methods; Bayesian thresholding; Change vector analysis; Remote
sensing
See also Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors, A.
BibRef
Han, Y.[Youkyung],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Fine co-registration of VHR images for multitemporal Urban area
analysis,
MultiTemp15(1-4)
IEEE DOI
1511
feature extraction
BibRef
Rau, J.Y.,
Chen, L.C.,
Liu, J.K.,
Wu, T.H.,
Dynamics Monitoring and Disaster Assessment for Watershed Management
Using Time-Series Satellite Images,
GeoRS(45), No. 6, June 2007, pp. 1641-1649.
IEEE DOI
0706
BibRef
Bazi, Y.,
Melgani, F.,
Al-Sharari, H.D.,
Unsupervised Change Detection in Multispectral Remotely Sensed Imagery
With Level Set Methods,
GeoRS(48), No. 8, August 2010, pp. 3178-3187.
IEEE DOI
1008
BibRef
Weiss, P.[Pierre],
Fournier, A.[Alexandre],
Blanc-Feraud, L.[Laure],
Aubert, G.[Gilles],
On The Illumination Invariance Of The Level Lines Under Directed Light:
Application To Change Detection,
SIIMS(4), No. 1, 2011, pp. 448-471.
DOI Link
1106
level lines; topographic map; illumination invariance; contrast
equalization; change detection; remote sensing
BibRef
Alberga, V.,
Similarity Measures of Remotely Sensed Multi-Sensor Images for Change
Detection Applications,
RS(1), No. 3, September 2009, pp. 122-143.
DOI Link
1203
BibRef
Zhang, L.,
Wu, C.,
Du, B.,
Automatic Radiometric Normalization for Multitemporal Remote Sensing
Imagery With Iterative Slow Feature Analysis,
GeoRS(52), No. 10, October 2014, pp. 6141-6155.
IEEE DOI
1407
Covariance matrices
BibRef
Wu, C.[Chen],
Zhang, L.P.[Liang-Pei],
Du, B.[Bo],
Kernel Slow Feature Analysis for Scene Change Detection,
GeoRS(55), No. 4, April 2017, pp. 2367-2384.
IEEE DOI
1704
Bayes methods
BibRef
Wu, C.[Chen],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Slow Feature Analysis for Change Detection in Multispectral Imagery,
GeoRS(52), No. 5, May 2014, pp. 2858-2874.
IEEE DOI
1403
Change detection;image transformation;slow feature analysis (SFA)
BibRef
Tang, Y.Q.[Yu-Qi],
Zhang, L.P.[Liang-Pei],
Urban Change Analysis with Multi-Sensor Multispectral Imagery,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Prendes, J.[Jorge],
Chabert, M.[Marie],
Pascal, F.[Frédéric],
Giros, A.[Alain],
Tourneret, J.Y.[Jean-Yves],
A Bayesian Nonparametric Model Coupled with a Markov Random Field for
Change Detection in Heterogeneous Remote Sensing Images,
SIIMS(9), No. 4, 2016, pp. 1889-1921.
DOI Link
1612
BibRef
Bosch, I.,
Serrano, A.,
Vergara, L.,
Miralles, R.,
Change detection with texture segmentation and nonlinear filtering in
optical remote sensing images,
SIViP(9), No. 8, November 2015, pp. 1955-1963.
WWW Link.
1511
BibRef
Shah-Hosseini, R.[Reza],
Homayouni, S.[Saeid],
Safari, A.[Abdolreza],
A Hybrid Kernel-Based Change Detection Method for Remotely Sensed
Data in a Similarity Space,
RS(7), No. 10, 2015, pp. 12829.
DOI Link
1511
BibRef
Hedjam, R.,
Kalacska, M.,
Mignotte, M.,
Ziaei Nafchi, H.,
Cheriet, M.,
Iterative Classifiers Combination Model for Change Detection in
Remote Sensing Imagery,
GeoRS(54), No. 12, December 2016, pp. 6997-7008.
IEEE DOI
1612
geophysical image processing
BibRef
Liu, Q.J.[Qing-Jie],
Liu, L.N.[Li-Ning],
Wang, Y.H.[Yun-Hong],
Unsupervised Change Detection for Multispectral Remote Sensing Images
Using Random Walks,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Xu, Y.[Yong],
Lin, L.[Lin],
Meng, D.Y.[De-Yu],
Learning-Based Sub-Pixel Change Detection Using Coarse Resolution
Satellite Imagery,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Touati, R.,
Mignotte, M.,
An Energy-Based Model Encoding Nonlocal Pairwise Pixel Interactions
for Multisensor Change Detection,
GeoRS(56), No. 2, February 2018, pp. 1046-1058.
IEEE DOI
1802
Estimation, Image sensors, Optical sensors, Remote sensing,
Robustness, Synthetic aperture radar, Change detection (CD),
pairwise pixel interactions
BibRef
Mignotte, M.[Max],
A Fractal Projection and Markovian Segmentation-Based Approach for
Multimodal Change Detection,
GeoRS(58), No. 11, November 2020, pp. 8046-8058.
IEEE DOI
2011
Fractals, Satellites, Optical sensors, Image segmentation,
Image sensors, Change detection, contractive mapping,
multisource
BibRef
Zanetti, M.,
Bruzzone, L.,
A Theoretical Framework for Change Detection Based on a Compound
Multiclass Statistical Model of the Difference Image,
GeoRS(56), No. 2, February 2018, pp. 1129-1143.
IEEE DOI
1802
Compounds, Data models, Radiometry, Remote sensing, Satellites,
Sensors, Statistical distributions, Change detection (CD),
multispectral (MS) multitemporal images
BibRef
Ferraris, V.,
Dobigeon, N.,
Wei, Q.,
Chabert, M.,
Detecting Changes Between Optical Images of Different Spatial and
Spectral Resolutions: A Fusion-Based Approach,
GeoRS(56), No. 3, March 2018, pp. 1566-1578.
IEEE DOI
1804
hyperspectral imaging, image fusion, image resolution,
remote sensing, change detection, fusion-based approach,
multispectral (MS) imagery
BibRef
Fang, B.[Bo],
Pan, L.[Li],
Kou, R.[Rong],
Dual Learning-Based Siamese Framework for Change Detection Using
Bi-Temporal VHR Optical Remote Sensing Images,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Touati, R.,
Mignotte, M.,
Dahmane, M.,
Multimodal Change Detection in Remote Sensing Images Using an
Unsupervised Pixel Pairwise-Based Markov Random Field Model,
IP(29), No. 1, 2020, pp. 757-767.
IEEE DOI
1910
Imaging, Remote sensing, Estimation, Visualization,
Discrete cosine transforms, Satellites, Bayes methods,
unsupervised Markovian segmentation
BibRef
Padrón-Hidalgo, J.A.,
Laparra, V.,
Longbotham, N.,
Camps-Valls, G.,
Kernel Anomalous Change Detection for Remote Sensing Imagery,
GeoRS(57), No. 10, October 2019, pp. 7743-7755.
IEEE DOI
1910
geophysical image processing, Hilbert spaces, image resolution,
remote sensing, utilize Gaussian distribution,
kernel methods
BibRef
Du, B.,
Ru, L.,
Wu, C.,
Zhang, L.,
Unsupervised Deep Slow Feature Analysis for Change Detection in
Multi-Temporal Remote Sensing Images,
GeoRS(57), No. 12, December 2019, pp. 9976-9992.
IEEE DOI
1912
Feature extraction, Remote sensing, Change detection algorithms,
Detection algorithms, Eigenvalues and eigenfunctions,
slow feature analysis (SFA)
BibRef
Wang, M.[Moyang],
Tan, K.[Kun],
Jia, X.P.[Xiu-Ping],
Wang, X.[Xue],
Chen, Y.[Yu],
A Deep Siamese Network with Hybrid Convolutional Feature Extraction
Module for Change Detection Based on Multi-sensor Remote Sensing
Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Gong, M.,
Duan, Y.,
Li, H.,
Group Self-Paced Learning With a Time-Varying Regularizer for
Unsupervised Change Detection,
GeoRS(58), No. 4, April 2020, pp. 2481-2493.
IEEE DOI
2004
Training, Change detection algorithms, Robustness,
Support vector machines, Remote sensing, Feature extraction,
self-paced learning (SPL)
BibRef
Zhan, T.,
Gong, M.,
Jiang, X.,
Zhang, M.,
Unsupervised Scale-Driven Change Detection With Deep Spatial-Spectral
Features for VHR Images,
GeoRS(58), No. 8, August 2020, pp. 5653-5665.
IEEE DOI
2007
Feature extraction, Remote sensing, Data mining,
Support vector machines, Land surface, Spatial resolution,
support vector machine (SVM)
BibRef
Zhang, M.[Min],
Shi, W.Z.[Wen-Zhong],
A Feature Difference Convolutional Neural Network-Based Change
Detection Method,
GeoRS(58), No. 10, October 2020, pp. 7232-7246.
IEEE DOI
2009
Feature extraction, Training, Sensors, Task analysis,
Convolutional neural networks, Spatial resolution, Deep learning,
remote sensing (RS)
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Li, X.[Xiao],
Sun, H.[Hao],
Kuang, G.Y.[Gang-Yao],
Nonlocal patch similarity based heterogeneous remote sensing change
detection,
PR(109), 2021, pp. 107598.
Elsevier DOI
2009
Unsupervised change detection, Heterogeneous data,
Nonlocal similarity, Graph
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Guan, D.D.[Dong-Dong],
Kuang, G.Y.[Gang-Yao],
Iterative Robust Graph for Unsupervised Change Detection of
Heterogeneous Remote Sensing Images,
IP(30), 2021, pp. 6277-6291.
IEEE DOI
2107
Radar polarimetry, Optical imaging, Image segmentation,
Image sensors, Transforms, Training, Optical sensors,
co-segmentation
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Li, X.[Xiao],
Tan, X.[Xiang],
Kuang, G.Y.[Gang-Yao],
Patch Similarity Graph Matrix-Based Unsupervised Remote Sensing
Change Detection With Homogeneous and Heterogeneous Sensors,
GeoRS(59), No. 6, June 2021, pp. 4841-4861.
IEEE DOI
2106
Optical sensors, Remote sensing, Synthetic aperture radar,
Optical imaging, Training, Task analysis, Heterogeneous data,
unsupervised change detection (CD)
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Tan, X.[Xiang],
Guan, D.D.[Dong-Dong],
Wu, J.Z.[Jun-Zheng],
Kuang, G.Y.[Gang-Yao],
Structured graph based image regression for unsupervised multimodal
change detection,
PandRS(185), 2022, pp. 16-31.
Elsevier DOI
2202
Unsupervised change detection, Structured graph, Hypergraph,
Image regression, Multimodal, Markov random field
BibRef
Zhao, L.J.[Ling-Jun],
Sun, Y.[Yuli],
Lei, L.[Lin],
Zhang, S.Q.[Si-Qian],
Auto-Weighted Structured Graph-Based Regression Method for
Heterogeneous Change Detection,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xiao, K.[Kuowei],
Sun, Y.[Yuli],
Lei, L.[Lin],
Change Alignment-Based Image Transformation for Unsupervised
Heterogeneous Change Detection,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Guan, D.D.[Dong-Dong],
Wu, J.Z.[Jun-Zheng],
Kuang, G.Y.[Gang-Yao],
Iterative structure transformation and conditional random field based
method for unsupervised multimodal change detection,
PR(131), 2022, pp. 108845.
Elsevier DOI
2208
Unsupervised change detection, KNN graph, Image transformation,
Multimodal, Conditional random field
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Li, X.[Xiao],
Tan, X.[Xiang],
Kuang, G.Y.[Gang-Yao],
Structure Consistency-Based Graph for Unsupervised Change Detection
With Homogeneous and Heterogeneous Remote Sensing Images,
GeoRS(60), 2022, pp. 1-21.
IEEE DOI
2112
Synthetic aperture radar, Radar polarimetry, Image resolution,
Optical variables measurement, Optical imaging, Adaptive optics,
unsupervised change detection (CD)
BibRef
Lu, N.[Ning],
Chen, C.[Can],
Shi, W.B.[Wen-Bo],
Zhang, J.W.[Jun-Wei],
Ma, J.F.[Jian-Feng],
Weakly Supervised Change Detection Based on Edge Mapping and SDAE
Network in High-Resolution Remote Sensing Images,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Ghaderpour, E.[Ebrahim],
Vujadinovic, T.[Tijana],
Change Detection within Remotely Sensed Satellite Image Time Series
via Spectral Analysis,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Ru, L.,
Du, B.,
Wu, C.,
Multi-Temporal Scene Classification and Scene Change Detection With
Correlation Based Fusion,
IP(30), 2021, pp. 1382-1394.
IEEE DOI
2012
Feature extraction, Correlation, Remote sensing, Semantics,
Task analysis, Training, Spatial resolution, Change detection,
convolutional neural network
BibRef
He, P.F.[Peng-Fei],
Zhao, X.W.[Xiang-Wei],
Shi, Y.[Yuli],
Cai, L.P.[Li-Ping],
Unsupervised Change Detection from Remotely Sensed Images Based on
Multi-Scale Visual Saliency Coarse-to-Fine Fusion,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Negri, R.G.[Rogério Galante],
Frery, A.C.[Alejandro C.],
Casaca, W.[Wallace],
Azevedo, S.[Samara],
Dias, M.A.[Maurício Araújo],
Silva, E.A.[Erivaldo Antônio],
Alcântara, E.H.[Enner Herênio],
Spectral-Spatial-Aware Unsupervised Change Detection With Stochastic
Distances and Support Vector Machines,
GeoRS(59), No. 4, April 2021, pp. 2863-2876.
IEEE DOI
2104
Support vector machines, Remote sensing, Robustness,
Stochastic processes, Measurement, Change detection algorithms,
unsupervised change detection
BibRef
Zheng, Z.[Zhi],
Wan, Y.[Yi],
Zhang, Y.J.[Yong-Jun],
Xiang, S.Z.[Si-Zhe],
Peng, D.F.[Dai-Feng],
Zhang, B.[Bin],
CLNet: Cross-Layer Convolutional Neural Network for Change Detection
in Optical Remote Sensing Imagery,
PandRS(175), 2021, pp. 247-267.
Elsevier DOI
2105
Change detection, Optical remote sensing image,
Deep convolutional neural networks, Cross-Layer Block (CLB), UNet
BibRef
Hou, X.[Xuan],
Bai, Y.P.[Yun-Peng],
Li, Y.[Ying],
Shang, C.J.[Chang-Jing],
Shen, Q.[Qiang],
High-resolution triplet network with dynamic multiscale feature for
change detection on satellite images,
PandRS(177), 2021, pp. 103-115.
Elsevier DOI
2106
Change detection, Triplet network, High-resolution images,
Dynamic convolution, Remote sensing
BibRef
Shao, R.Z.[Rui-Zhe],
Du, C.[Chun],
Chen, H.[Hao],
Li, J.[Jun],
SUNet: Change Detection for Heterogeneous Remote Sensing Images from
Satellite and UAV Using a Dual-Channel Fully Convolution Network,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Luppino, L.T.[Luigi Tommaso],
Kampffmeyer, M.[Michael],
Bianchi, F.M.[Filippo Maria],
Moser, G.[Gabriele],
Serpico, S.B.[Sebastiano Bruno],
Jenssen, R.[Robert],
Anfinsen, S.N.[Stian Normann],
Deep Image Translation With an Affinity-Based Change Prior for
Unsupervised Multimodal Change Detection,
GeoRS(60), 2022, pp. 1-22.
IEEE DOI
2112
Feature extraction, Deep learning, Synthetic aperture radar,
Spatial resolution, Satellites, Remote sensing, Optical imaging,
unsupervised change detection (CD)
BibRef
Choi, Y.J.[Yeon-Ju],
Yang, D.C.[Do-Chul],
Han, S.[Sanghyuck],
Han, J.[Jaeung],
Change Target Extraction Based on Scale-Adaptive Difference Image and
Morphology Filter for KOMPSAT-5,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Shafique, A.[Ayesha],
Cao, G.[Guo],
Khan, Z.[Zia],
Asad, M.[Muhammad],
Aslam, M.[Muhammad],
Deep Learning-Based Change Detection in Remote Sensing Images:
A Review,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
Survey, Change Detection.
BibRef
Xu, C.[Cong],
Liu, B.[Baisen],
He, Z.[Zishu],
A New Method for False Alarm Suppression in Heterogeneous Change
Detection,
RS(15), No. 7, 2023, pp. 1745.
DOI Link
2304
BibRef
Wu, J.Z.[Jun-Zheng],
Ni, W.P.[Wei-Ping],
Bian, H.[Hui],
Cheng, K.[Kenan],
Liu, Q.[Qiang],
Kong, X.[Xue],
Li, B.[Biao],
Unsupervised Change Detection for VHR Remote Sensing Images Based on
Temporal-Spatial-Structural Graphs,
RS(15), No. 7, 2023, pp. 1770.
DOI Link
2304
BibRef
Parelius, E.J.[Eleonora Jonasova],
A Review of Deep-Learning Methods for Change Detection in
Multispectral Remote Sensing Images,
RS(15), No. 8, 2023, pp. 2092.
DOI Link
2305
BibRef
Teng, Y.H.[Yun-He],
Liu, S.[Shuo],
Sun, W.C.[Wei-Chao],
Yang, H.[Huan],
Wang, B.[Bin],
Jia, J.[Jintong],
A VHR Bi-Temporal Remote-Sensing Image Change Detection Network Based
on Swin Transformer,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Song, Z.X.[Zi-Xuan],
Li, X.[Xiongfei],
Zhu, R.[Rui],
Wang, Z.[Zeyu],
Yang, Y.[Yu],
Zhang, X.L.[Xiao-Li],
ERMF: Edge refinement multi-feature for change detection in
bitemporal remote sensing images,
SP:IC(116), 2023, pp. 116964.
Elsevier DOI
2307
Change detection, Edge refinement, Multi-level feature,
Deep learning, Remote sensing
BibRef
Zhang, H.M.[Hai-Ming],
Ma, G.R.[Guo-Rui],
Zhang, Y.X.[Yong-Xian],
Wang, B.[Bin],
Li, H.[Heng],
Fan, L.J.[Lun-Jun],
MCHA-Net: A Multi-End Composite Higher-Order Attention Network Guided
with Hierarchical Supervised Signal for High-Resolution Remote
Sensing Image Change Detection,
PandRS(202), 2023, pp. 40-68.
Elsevier DOI
2308
Change detection, Higher-order attention, Multi-end network,
High-resolution remote sensing image, Hierarchical supervision
See also Multi-Attention Augmented Network for Single Image Super-Resolution.
BibRef
Huang, Z.Q.[Zhi-Qi],
You, H.J.[Hong-Jian],
MFSFNet: Multi-Scale Feature Subtraction Fusion Network for Remote
Sensing Image Change Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Xiang, Y.F.[Yun-Fan],
Tian, X.Y.[Xiang-Yu],
Xu, Y.[Yue],
Guan, X.K.[Xiao-Kun],
Chen, Z.C.[Zheng-Chao],
EGMT-CD: Edge-Guided Multimodal Transformers Change Detection from
Satellite and Aerial Images,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Seydi, S.T.[Seyd Teymoor],
Boueshagh, M.[Mahboubeh],
Namjoo, F.[Foad],
Minouei, S.M.[Seyed Mohammad],
Nikraftar, Z.[Zahir],
Amani, M.[Meisam],
A Hyperspectral Change Detection (HCD-Net) Framework Based on Double
Stream Convolutional Neural Networks and an Attention Module,
RS(16), No. 5, 2024, pp. 827.
DOI Link
2403
BibRef
Ren, W.[Wuxu],
Wang, Z.C.[Zhong-Chen],
Xia, M.[Min],
Lin, H.F.[Hai-Feng],
MFINet: Multi-Scale Feature Interaction Network for Change Detection
of High-Resolution Remote Sensing Images,
RS(16), No. 7, 2024, pp. 1269.
DOI Link
2404
BibRef
Zhan, Z.[Zisen],
Ren, H.J.[Hong-Jin],
Xia, M.[Min],
Lin, H.F.[Hai-Feng],
Wang, X.Y.[Xiao-Ya],
Li, X.[Xin],
AMFNet: Attention-Guided Multi-Scale Fusion Network for Bi-Temporal
Change Detection in Remote Sensing Images,
RS(16), No. 10, 2024, pp. 1765.
DOI Link
2405
BibRef
Zhang, C.[Chong],
Zhang, Y.H.[Yong-Hong],
Lin, H.F.[Hai-Feng],
Multi-Scale Feature Interaction Network for Remote Sensing Change
Detection,
RS(15), No. 11, 2023, pp. 2880.
DOI Link
2306
BibRef
Jiang, S.S.[Shan-Shan],
Lin, H.F.[Hai-Feng],
Ren, H.J.[Hong-Jin],
Hu, Z.W.[Zi-Wei],
Weng, L.G.[Li-Guo],
Xia, M.[Min],
MDANet: A High-Resolution City Change Detection Network Based on
Difference and Attention Mechanisms under Multi-Scale Feature Fusion,
RS(16), No. 8, 2024, pp. 1387.
DOI Link
2405
BibRef
Li, Y.[Yan],
Weng, L.G.[Li-Guo],
Xia, M.[Min],
Hu, K.[Kai],
Lin, H.F.[Hai-Feng],
Multi-Scale Fusion Siamese Network Based on Three-Branch Attention
Mechanism for High-Resolution Remote Sensing Image Change Detection,
RS(16), No. 10, 2024, pp. 1665.
DOI Link
2405
BibRef
Long, J.[Jiang],
Li, M.M.[Meng-Meng],
Wang, X.Q.[Xiao-Qin],
Stein, A.[Alfred],
Semantic change detection using a hierarchical semantic graph
interaction network from high-resolution remote sensing images,
PandRS(211), 2024, pp. 318-335.
Elsevier DOI Code:
WWW Link.
2405
Semantic change detection,
Hierarchical semantic graph interaction network,
Semantic difference interaction
BibRef
Tang, K.[Kai],
Xu, F.[Fei],
Chen, X.H.[Xue-Hong],
Dong, Q.[Qi],
Yuan, Y.H.[Yu-Heng],
Chen, J.[Jin],
The ClearSCD model: Comprehensively leveraging semantics and change
relationships for semantic change detection in high spatial
resolution remote sensing imagery,
PandRS(211), 2024, pp. 299-317.
Elsevier DOI Code:
WWW Link.
2405
Remote sensing, Change detection, Semantic change detection,
Semantic segmentation, Deep learning, Multi-task learning
BibRef
Wang, S.L.[Sheng-Li],
Zhu, Y.[Yihu],
Zheng, N.S.[Nan-Shan],
Liu, W.[Wei],
Zhang, H.[Hua],
Zhao, X.[Xu],
Liu, Y.K.[Yong-Kun],
Change Detection Based on Existing Vector Polygons and Up-to-Date
Images Using an Attention-Based Multi-Scale ConvTransformer Network,
RS(16), No. 10, 2024, pp. 1736.
DOI Link
2405
BibRef
Cheng, G.L.[Guang-Liang],
Huang, Y.[Yunmeng],
Li, X.T.[Xiang-Tai],
Lyu, S.C.[Shu-Chang],
Xu, Z.Y.[Zhao-Yang],
Zhao, H.B.[Hong-Bo],
Zhao, Q.[Qi],
Xiang, S.M.[Shi-Ming],
Change Detection Methods for Remote Sensing in the Last Decade:
A Comprehensive Review,
RS(16), No. 13, 2024, pp. 2355.
DOI Link
2407
Survey, Change Detection.
BibRef
Li, Y.[Yinhe],
Ren, J.C.[Jin-Chang],
Yan, Y.J.[Yi-Jun],
Sun, G.[Genyun],
Ma, P.[Ping],
SSA-LHCD: A Singular Spectrum Analysis-Driven Lightweight Network
with 2-D Self-Attention for Hyperspectral Change Detection,
RS(16), No. 13, 2024, pp. 2353.
DOI Link
2407
BibRef
Li, J.H.[Jing-Hui],
Shao, F.[Feng],
Liu, Q.[Qiang],
Meng, X.C.[Xiang-Chao],
Global-Local Collaborative Learning Network for Optical Remote
Sensing Image Change Detection,
RS(16), No. 13, 2024, pp. 2341.
DOI Link
2407
BibRef
You, Z.H.[Zhi-Hui],
Chen, S.B.[Si-Bao],
Wang, J.X.[Jia-Xin],
Luo, B.[Bin],
Robust feature aggregation network for lightweight and effective
remote sensing image change detection,
PandRS(215), 2024, pp. 31-43.
Elsevier DOI Code:
WWW Link.
2408
Change detection, Deep learning, Remote sensing, Lightweight, Feature fusion
BibRef
Zheng, Z.[Zhuo],
Zhong, Y.F.[Yan-Fei],
Zhao, J.[Ji],
Ma, A.[Ailong],
Zhang, L.P.[Liang-Pei],
Unifying remote sensing change detection via deep probabilistic
change models: From principles, models to applications,
PandRS(215), 2024, pp. 239-255.
Elsevier DOI Code:
HTML Version.
2408
Probabilistic change model, Sparsity of change,
Sparse change transformer, Change detection, Remote sensing
BibRef
Wang, X.F.[Xiao-Feng],
Guo, Z.Y.[Zhong-Yu],
Feng, R.[Ruyi],
A CNN- and Transformer-Based Dual-Branch Network for Change Detection
with Cross-Layer Feature Fusion and Edge Constraints,
RS(16), No. 14, 2024, pp. 2573.
DOI Link
2408
BibRef
Chang, H.[Hao],
Wang, P.J.[Pei-Jin],
Diao, W.H.[Wen-Hui],
Xu, G.L.[Guang-Luan],
Sun, X.[Xian],
Remote Sensing Change Detection With Bitemporal and Differential
Feature Interactive Perception,
IP(33), 2024, pp. 4543-4555.
IEEE DOI
2408
Transformers, Semantics, Attention mechanisms, Correlation,
Feature extraction, Costs, Computational modeling, Remote sensing,
semantic correlation
BibRef
Xie, J.L.[Jiang-Ling],
Li, Y.K.[Yi-Kun],
Yang, S.W.[Shu-Wen],
Li, X.J.[Xiao-Jun],
Unsupervised Noise-Resistant Remote-Sensing Image Change Detection:
A Self-Supervised Denoising Network-, FCM_SICM-, and EMD Metric-Based
Approach,
RS(16), No. 17, 2024, pp. 3209.
DOI Link
2409
BibRef
Cui, Z.[Zhoujuan],
Zu, Y.[Yueran],
Duan, Y.P.[Yi-Ping],
Tao, X.M.[Xiao-Ming],
Hypergraph Representation Learning for Remote Sensing Image Change
Detection,
RS(16), No. 18, 2024, pp. 3533.
DOI Link
2410
BibRef
Hou, X.[Xuan],
Bai, Y.P.[Yun-P#1ng],
Xie, Y.[Yefan],
Zhang, Y.F.[Yun-Feng],
Fu, L.[Lei],
Li, Y.[Ying],
Shang, C.J.[Chang-Jing],
Shen, Q.[Qiang],
Self-supervised multimodal change detection based on difference
contrast learning for remote sensing imagery,
PR(159), 2025, pp. 111148.
Elsevier DOI
2412
Self-supervised learning, Change detection, Multimodal image, Remote sensing
BibRef
Li, J.[Jialu],
Wu, C.[Chen],
Using difference features effectively: A multi-task network for
exploring change areas and change moments in time series remote
sensing images,
PandRS(218), 2024, pp. 487-505.
Elsevier DOI Code:
WWW Link.
2412
Time Series remote sensing images Change Detection (TSCD),
Recursive Optical Flow Difference (ROD) module, Change moments
BibRef
Cheng, M.[Mofan],
He, W.[Wei],
Li, Z.H.[Zhuo-Hong],
Yang, G.Y.[Guang-Yi],
Zhang, H.Y.[Hong-Yan],
Harmony in diversity: Content cleansing change detection framework
for very-high-resolution remote-sensing images,
PandRS(218), 2024, pp. 1-19.
Elsevier DOI
2412
Change detection, Feature disentanglement, Content cleansing, Image restoration
BibRef
Song, J.X.[Jia-Xin],
Yang, S.W.[Shu-Wen],
Li, Y.K.[Yi-Kun],
Li, X.J.[Xiao-Jun],
An Unsupervised Remote Sensing Image Change Detection Method Based on
RVMamba and Posterior Probability Space Change Vector,
RS(16), No. 24, 2024, pp. 4656.
DOI Link
2501
BibRef
Zhang, Y.,
Liu, G.,
Yuan, Y.,
A Novel Unsupervised Change Detection Approach Based On Spectral
Transformation For Multispectral Images,
ICIP20(51-55)
IEEE DOI
2011
Feature extraction, Principal component analysis, Imaging,
Remote sensing, Robustness, Transforms, Matrix decomposition,
spectral-spatial features
BibRef
Ziemann, A.[Amanda],
Pitts, T.[Travis],
Exploring feature augmentation as a method for improving panchromatic
remote sensing change detection,
SSIAI20(82-85)
IEEE DOI
2009
Find anomalies.
feature extraction, geophysical image processing,
geophysical signal processing, geophysical techniques,
feature augmentation
BibRef
Touati, R.,
Miqnoite, M.,
Dahmane, M.,
Change Detection in Heterogeneous Remote Sensing Images Based on an
Imaging Modality-Invariant MDS Representation,
ICIP18(3998-4002)
IEEE DOI
1809
Satellites, Optical imaging, Histograms, Remote sensing,
Feature extraction, Optical sensors
BibRef
Touati, R.,
Mignotte, M.,
Dahmane, M.,
A new change detector in heterogeneous remote sensing imagery,
IPTA17(1-6)
IEEE DOI
1804
adaptive filters, decision theory, geophysical image processing,
image filtering, image segmentation, object detection,
Thresholding algorithms
BibRef
Tan, H.L.,
Lu, S.,
Saliency-based change detection for aerial and remote sensing
imageries,
ICIP17(3730-3734)
IEEE DOI
1803
geophysical image processing, land use, remote sensing,
aerial sensing imageries, captured images, environmental noises,
Visualization
BibRef
Yang, G.[Gang],
Li, H.C.[Heng-Chao],
Liu, C.[Chi],
Unsupervised change detection of remote sensing images using
superpixel segmentation and variational Gaussian mixture model,
MultiTemp17(1-4)
IEEE DOI
1712
geophysical techniques, remote sensing, GMM,
entropy rate superpixel segmentation,
Mathematical model
BibRef
Touati, R.,
Mignotte, M.,
A multidimensional scaling optimization and fusion approach for the
unsupervised change detection problem in remote sensing images,
IPTA16(1-6)
IEEE DOI
1703
feature extraction
BibRef
Atasever, U.H.,
Civicioglu, P.,
Besdok, E.,
Ozkan, C.,
A New Unsupervised Change Detection Approach Based On DWT Image Fusion
And Backtracking Search Optimization Algorithm For Optical Remote
Sensing Data,
Thematic14(15-18).
DOI Link
1404
BibRef
Lin, Y.,
Liu, B.,
Lv, Q.l.,
Pan, C.,
Lu, Y.,
A Change Detection Method for Remote Sensing Image Based on
Multi-Feature Differencing Kernel SVM,
AnnalsPRS(I-7), No. 2012, pp. 227-235.
DOI Link
1209
BibRef
Lefebvre, A.[Antoine],
Corpetti, T.[Thomas],
Moy, L.H.[Laurence Hubert],
A measure for change detection in very high resolution remote sensing
images based on texture analysis,
ICIP09(1697-1700).
IEEE DOI
0911
BibRef
Abdelrahman, M.A.[Mostafa A.],
Ali, A.M.[Asem M.],
Elhabian, S.Y.[Shireen Y.],
Farag, A.A.[Aly A.],
Solving Geometric Co-registration Problem of Multi-spectral Remote
Sensing Imagery Using SIFT-Based Features toward Precise Change
Detection,
ISVC11(II: 607-616).
Springer DOI
1109
BibRef
Kovacs, A.[Andrea],
Sziranyi, T.[Tamas],
New Saliency Point Detection and Evaluation Methods for Finding
Structural Differences in Remote Sensing Images of Long Time-Span
Samples,
ACIVS10(II: 272-283).
Springer DOI
1012
BibRef
Mamun, A.[Al],
Jia, X.P.[Xiu-Ping],
Ryan, M.[Michael],
Combined Time Domain and Spectral Domain Data Compression for Fast
Multispectral Imagery Updating,
DICTA09(285-290).
IEEE DOI
0912
BibRef
Earlier:
Sequential Transmission of Remote Sensing Data Using a Linear Model to
Update Change,
DICTA08(104-110).
IEEE DOI
0812
BibRef
Theiler, J.[James],
Subpixel Anomalous Change Detection in Remote Sensing Imagery,
Southwest08(165-168).
IEEE DOI
0803
BibRef
Fournier, A.[Alexandre],
Weiss, P.[Pierre],
Blanc-Feraud, L.[Laure],
Aubert, G.[Gilles],
A contrast equalization procedure for change detection algorithms:
Applications to remotely sensed images of urban areas,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Wiemker, R.[Rafael],
An iterative spectral-spatial Bayesian labeling approach for
unsupervised robust change detection on remotely sensed multispectral
imagery,
CAIP97(263-270).
Springer DOI
9709
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Change Detection for Hyperspectral Images .