23.2.9 Land Cover Change Analysis, Remote Sensing Change Analysis, Temporal Analysis

Chapter Contents (Back)
Classification. Change Detection. Land Cover. Temporal Analysis. Remote Sensing. Agricultural.
See also Land Cover Change Analysis Using Learning, Neural Nets. Image level, non specific:
See also Change Detection for Remote Sensing Image Level.
See also Land Use Change Analysis.
See also Changes using Landsat Images. SAR and Radar:
See also Land Cover, Land Use Change Analysis for Radar and SAR. Urban specific:
See also Change Detection, Urban Area Land Cover, Temporal Analysis. Applications to specific regions:
See also Applied Change Analysis, Specific Site Applications, Site Specific Temporal. Longer term changes:
See also Land Cover Change Analysis, Seasonal, Annual Variations, Climate Change, Analysis. Global:
See also Land Cover Change Analysis, Global Changes, Global Analysis. Image level:
See also Change Detection -- Image Level.
See also Change Detection for Damage Assessment.
See also Night Time Image Analysis for Urban Area Detection, Change and Growth. Forest changes:
See also Forest Change Evaluation, Change Detection, Temporal Analysis.
See also Rice Crop Analysis, Production, Detection, Health, Change.
See also Gross Primary Production, Net Primary Production, GPP, NPP.

Haralick, R.M.[Robert M.], Hlavka, C.A., Yokoyama, R., Carlyle, S.M.,
Spectral-Temporal Classification Using Vegetation Phenology,
GeoRS(18), No. 2, April, 1980, pp. 167-174. BibRef 8004

Johnson, R.D., Kasischke, E.S.,
Change Vector Analysis: A Technique for the Multispectral Monitoring of Land-Cover and Condition,
JRS(19), No. 3, February 1998, pp. 411-426. 9803
BibRef

Stoms, D.M., Bueno, M.J., Davis, F.W., Cassidy, K.M., Driese, K.L., Kagan, J.S.,
Map Guided Classification of Regional Land Cover with Multitemporal AVHRR Data,
PhEngRS(64), No. 8, August 1998, pp. 831-838. 9808
BibRef

Smits, P.C., Serpico, S.B.,
Analysis and segmentation of remote-sensing images for land-cover mapping,
CIAP97(II: 743-748).
Springer DOI 9709
BibRef

Morisette, J.T., Khorram, S., Mace, T.,
Land-cover change detection enhanced with generalized linear models,
JRS(20), No. 14, September 1999, pp. 2703. A move away from only pixels BibRef 9909

de Bruin, S., Gorte, B.G.H.,
Probabilistic image classification using geological map units applied to land-cover change detection,
JRS(21), No. 12, August 2000, pp. 2389. 0008
BibRef

Stefanov, W.L., Ramsey, M.S., Christensen, P.R.,
Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers,
RSE(77), No. 2, 2001, pp. 173-185
WWW Link. 1102
BibRef

Read, J.M., Lam, N.S.N.,
Spatial methods for characterising land cover and detecting land-cover changes for the tropics,
JRS(23), No. 12, June 2002, pp. 2457-2474. 0208
BibRef

Li, X.[Xia],
A Four-Component Efficiency Index for Assessing Land Development Using Remote Sensing and GIS,
PhEngRS(71), No. 1, January 2005, pp. 47-58.
WWW Link. 0509
This paper derives the indicators of quantity, quality, location, and morphology to access land development based on the integration of remote sensing and GIS. BibRef

Boucher, A., Seto, K.C., Journel, A.G.,
A Novel Method for Mapping Land Cover Changes: Incorporating Time and Space With Geostatistics,
GeoRS(44), No. 11, November 2006, pp. 3427-3435.
IEEE DOI 0611
BibRef

Canty, M.J.[Morton J.],
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL,
Second Edition: CRC PressDecember 2009, ISBN: 9781420087130 Buy this book: Image Analysis, Classification, and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL, Second Edition First edition: BibRef 0912 CRC PressAugust, 2006, ISBN: 9780849372513
WWW Link. Code, Image Processing. 0910
BibRef

Beeri, O., Peled, A.,
Geographical model for precise agriculture monitoring with real-time remote sensing,
PandRS(64), No. 1, January 2009, pp. 47-54.
Elsevier DOI 0804
Remote sensing; Real-time; Agricultural monitoring; Quality control BibRef

McCloy, K.,
Development and Evaluation of Phenological Change Indices Derived from Time Series of Image Data,
RS(2), No. 11, November 2010, pp. 2442-2473.
DOI Link 1203
BibRef

Hatfield, J., Prueger, J.,
Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices,
RS(2), No. 2, February 2010, pp. 562-578.
DOI Link 1203
BibRef

Lein, J.,
Tracking Environmental Compliance and Remediation Trajectories Using Image-Based Anomaly Detection Methodologies,
RS(3), No. 11, November 2011, pp. 2384-2402.
DOI Link 1203
BibRef

Estoque, R.C.[Ronald C.], Estoque, R.S.[Ria S.], Murayama, Y.J.[Yu-Ji],
Prioritizing Areas for Rehabilitation by Monitoring Change in Barangay-Based Vegetation Cover,
IJGI(1), No. 1, June 2012, pp. 46-68.
DOI Link 1203
BibRef

Yetgin, Z.,
Unsupervised Change Detection of Satellite Images Using Local Gradual Descent,
GeoRS(50), No. 5, May 2012, pp. 1919-1929.
IEEE DOI 1202
BibRef

Petitjean, F.[François], Kurtz, C.[Camille], Passat, N.[Nicolas], Gançarski, P.[Pierre],
Spatio-temporal reasoning for the classification of satellite image time series,
PRL(33), No. 13, 1 October 2012, pp. 1805-1815.
Elsevier DOI 1208
Multi-temporal Analysis; Satellite image time series; Data mining; Segmentation; Information extraction BibRef

Chelali, M.[Mohamed], Kurtz, C.[Camille], Puissant, A.[Anne], Vincent, N.[Nicole],
Deep-STaR: Classification of image time series based on spatio-temporal representations,
CVIU(208-209), 2021, pp. 103221.
Elsevier DOI 2106
Image time series, Spatio-temporal features, Planar image representation, Space filling curves, Remote sensing BibRef

Shi, W.Z.[Wen-Zhong], Ding, H.Y.[Hai-Yong],
A Probability Model-based Method for Land Cover Change Detection Using Multi-Spectral Remotely Sensed Images,
PFG(2011), No. 4, 2011, pp. 271-280.
WWW Link. 1211
BibRef

Romani, L.A.S., de Avila, A.M.H., Chino, D.Y.T., Zullo, J., Chbeir, R., Traina, C., Traina, A.J.M.,
A New Time Series Mining Approach Applied to Multitemporal Remote Sensing Imagery,
GeoRS(51), No. 1, January 2013, pp. 140-150.
IEEE DOI 1301
BibRef

Zurita-Milla, R., van Gijsel, J.A.E., Hamm, N.A.S., Augustijn, P.W.M., Vrieling, A.,
Exploring Spatiotemporal Phenological Patterns and Trajectories Using Self-Organizing Maps,
GeoRS(51), No. 4, April 2013, pp. 1914-1921.
IEEE DOI 1304
BibRef

Joshi, D.[Deepti], Samal, A.[Ashok], Soh, L.K.[Leen-Kiat],
Spatio-temporal polygonal clustering with space and time as first-class citizens,
GeoInfo(17), No. 2, April 2013, pp. 387-412.
Springer DOI 1304
Objects across space and time. BibRef

Zhang, P., Shi, W., Wong, M., Chen, J.,
A Reliability-Based Multi-Algorithm Fusion Technique in Detecting Changes in Land Cover,
RS(5), No. 3, March 2013, pp. 1134-1151.
DOI Link 1304
BibRef

Sanches, I.D., de Souza Filho, C.R.[Carlos Roberto], Magalhăes, L.A., Quitério, G.C.M., Alves, M.N., Oliveira, W.J.,
Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy,
PandRS(78), No. 1, April 2013, pp. 85-101.
Elsevier DOI 1304
Reflectance spectroscopy; Contamination; Liquid hydrocarbons; Vegetation; Red edge; Brachiaria brizantha BibRef

Rodrigues, A., Marcal, A.R.S., Cunha, M.,
Monitoring Vegetation Dynamics Inferred by Satellite Data Using the PhenoSat Tool,
GeoRS(51), No. 4, April 2013, pp. 2096-2104.
IEEE DOI 1304
BibRef

Vaduva, C., Gavat, I., Datcu, M.,
Latent Dirichlet Allocation for Spatial Analysis of Satellite Images,
GeoRS(51), No. 5, May 2013, pp. 2770-2786.
IEEE DOI 1305
BibRef

Chen, J.[Jun], Wu, H.[Hao], Li, S.N.[Song-Nian], Liao, A.P.[An-Ping], He, C.Y.[Chao-Ying], Peng, S.[Shu],
Temporal logic and operation relations based knowledge representation for land cover change web services,
PandRS(83), No. 1, 2013, pp. 140-150.
Elsevier DOI 1307
Land cover BibRef

Chen, J., Wu, H.,
Land Cover Change Knowledge Representation Using Temporal Logic And Operation Relations,
AnnalsPRS(I-7), No. 2012, pp. 203-208.
DOI Link 1209
BibRef

Zhou, F.Q.[Fu-Qun], Zhang, A.N.[Ai-Ning], Townley-Smith, L.[Lawrence],
A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level,
PandRS(84), No. 0, 2013, pp. 114-129.
Elsevier DOI 1309
Land cover BibRef

Xiao, Y., Zhao, W., Zhou, D., Gong, H.,
Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales,
GeoRS(52), No. 7, July 2014, pp. 4014-4024.
IEEE DOI 1403
Absorption BibRef

Bhatt, M.[Mehul], Wallgrün, J.O.[Jan Oliver],
Geospatial Narratives and Their Spatio-Temporal Dynamics: Commonsense Reasoning for High-Level Analyses in Geographic Information Systems,
IJGI(3), No. 1, 2014, pp. 166-205.
DOI Link 1404
BibRef

Suchan, J.[Jakob], Bhatt, M.[Mehul], Santos, P.E.[Paulo E.],
Perceptual Narratives of Space and Motion for Semantic Interpretation of Visual Data,
CVONT14(339-354).
Springer DOI 1504
BibRef

Salati, S.[Sanaz], van Ruitenbeek, F.[Frank], van der Meer, F.[Freek], Naimi, B.[Babak],
Detection of Alteration Induced by Onshore Gas Seeps from ASTER and WorldView-2 Data,
RS(6), No. 4, 2014, pp. 3188-3209.
DOI Link 1405
BibRef

Behmann, J.[Jan], Steinrücken, J.[Jörg], Plümer, L.[Lutz],
Detection of early plant stress responses in hyperspectral images,
PandRS(93), No. 1, 2014, pp. 98-111.
Elsevier DOI 1407
Hyper spectral BibRef

Behmann, J.[Jan], Schmitter, P., Steinrücken, J.[Jörg], Plümer, L.[Lutz],
Ordinal classification for efficient plant stress prediction in hyperspectral data,
Thematic14(29-36).
DOI Link 1404
BibRef

Che, M.L.[Ming-Liang], Chen, B.Z.[Bao-Zhang], Zhang, H.F.[Hui-Fang], Fang, S.F.[Shi-Feng], Xu, G.[Guang], Lin, X.F.[Xiao-Feng], Wang, Y.C.[Yu-Chen],
A New Equation for Deriving Vegetation Phenophase from Time Series of Leaf Area Index (LAI) Data,
RS(6), No. 6, 2014, pp. 5650-5670.
DOI Link 1407
BibRef

Waylen, P.[Peter], Southworth, J.[Jane], Gibbes, C.[Cerian], Tsai, H.P.[Hui-Ping],
Time Series Analysis of Land Cover Change: Developing Statistical Tools to Determine Significance of Land Cover Changes in Persistence Analyses,
RS(6), No. 5, 2014, pp. 4473-4497.
DOI Link 1407
BibRef

Xu, G.[Guang], Zhang, H.R.[Hai-Rong], Chen, B.Z.[Bao-Zhang], Zhang, H.F.[Hui-Fang], Yan, J.[Jianwu], Chen, J.[Jing], Che, M.L.[Ming-Liang], Lin, X.F.[Xiao-Feng], Dou, X.M.[Xian-Ming],
A Bayesian Based Method to Generate a Synergetic Land-Cover Map from Existing Land-Cover Products,
RS(6), No. 6, 2014, pp. 5589-5613.
DOI Link 1407
BibRef

Kinkeldey, C.[Christoph],
A Concept for Uncertainty-Aware Analysis of Land Cover Change Using Geovisual Analytics,
IJGI(3), No. 3, 2014, pp. 1122-1138.
DOI Link 1410
BibRef

Breon, F., Vermote, E.F., Murphy, E.F., Franch, B.,
Measuring the Directional Variations of Land Surface Reflectance From MODIS,
GeoRS(53), No. 8, August 2015, pp. 4638-4649.
IEEE DOI 1506
Geometry BibRef

Silván-Cárdenas, J.L.[Jose L.], Wang, L.[Le],
On quantifying post-classification subpixel landcover changes,
PandRS(98), No. 1, 2014, pp. 94-105.
Elsevier DOI 1411
Subpixel classification BibRef

Vicente-Guijalba, F.[Fernando], Martinez-Marin, T.[Tomas], Lopez-Sanchez, J.M.[Juan M.],
Dynamical Approach for Real-Time Monitoring of Agricultural Crops,
GeoRS(53), No. 6, June 2015, pp. 3278-3293.
IEEE DOI 1503
Kalman filters BibRef

Günthert, S.[Sebastian], Naumann, S.[Simone], Siegmund, A.[Alexander],
Multitemporale und kantenbasierte Analyseverfahren zur Detektion agrarischer Landnutzungsdynamiken auf Teneriffa,
PFG(2015), No. 1, 2015, pp. 33-43.
DOI Link 1503
BibRef

Siachalou, S.[Sofia], Mallinis, G.[Giorgos], Tsakiri-Strati, M.[Maria],
A Hidden Markov Models Approach for Crop Classification: Linking Crop Phenology to Time Series of Multi-Sensor Remote Sensing Data,
RS(7), No. 4, 2015, pp. 3633-3650.
DOI Link 1505
BibRef

Valdiviezo-Navarro, J.C.[Juan Carlos], Carbone, A.[Anna],
Fractal analysis for natural resources management,
SPIE(Newsroom), June 16, 2015.
DOI Link 1507
A fractal analysis based on the Hurst exponent and performed on satellite images can measure changes on the Earth's surface. BibRef

Wehmann, A.[Adam], Liu, D.[Desheng],
A spatial-temporal contextual Markovian kernel method for multi-temporal land cover mapping,
PandRS(107), No. 1, 2015, pp. 77-89.
Elsevier DOI 1508
Classification BibRef

Volpi, M.[Michele], Camps-Valls, G.[Gustau], Tuia, D.[Devis],
Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis,
PandRS(107), No. 1, 2015, pp. 50-63.
Elsevier DOI 1508
Change detection BibRef

Gallaun, H.[Heinz], Steinegger, M.[Martin], Wack, R.[Roland], Schardt, M.[Mathias], Kornberger, B.[Birgit], Schmitt, U.[Ursula],
Remote Sensing Based Two-Stage Sampling for Accuracy Assessment and Area Estimation of Land Cover Changes,
RS(7), No. 9, 2015, pp. 11992.
DOI Link 1511
BibRef

Hagolle, O.[Olivier], Sylvander, S.[Sylvia], Huc, M.[Mireille], Claverie, M.[Martin], Clesse, D.[Dominique], Dechoz, C.[Cécile], Lonjou, V.[Vincent], Poulain, V.[Vincent],
SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites,
RS(7), No. 9, 2015, pp. 12242.
DOI Link 1511
BibRef

Brown, J.F.[Jesslyn F.], Howard, D.[Daniel], Wylie, B.[Bruce], Frieze, A.[Aaron], Ji, L.[Lei], Gacke, C.[Carolyn],
Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition,
RS(7), No. 12, 2015, pp. 15825.
DOI Link 1601
BibRef

Aneece, I.[Itiya], Epstein, H.[Howard],
Distinguishing Early Successional Plant Communities Using Ground-Level Hyperspectral Data,
RS(7), No. 12, 2015, pp. 15850.
DOI Link 1601
BibRef

Abercrombie, S.P., Friedl, M.A.,
Improving the Consistency of Multitemporal Land Cover Maps Using a Hidden Markov Model,
GeoRS(54), No. 2, February 2016, pp. 703-713.
IEEE DOI 1601
Algorithm design and analysis BibRef

Buitrago, M.F.[Maria F.], Skidmore, A.K.[Andrew K.], Groen, T.A.[Thomas A.], Hecker, C.A.[Christoph A.],
Connecting infrared spectra with plant traits to identify species,
PandRS(139), 2018, pp. 183-200.
Elsevier DOI 1804
Plant species differentiation, Leaf traits, Infrared spectra, Shortwave infrared, Longwave infrared, Leaf morphology, Leaf chemistry BibRef

Buitrago Acevedo, M.F.[Maria F.], Groen, T.A.[Thomas A.], Hecker, C.A.[Christoph A.], Skidmore, A.K.[Andrew K.],
Identifying leaf traits that signal stress in TIR spectra,
PandRS(125), No. 1, 2017, pp. 132-145.
Elsevier DOI 1703
Spectral emissivity BibRef

Sinha, P.[Priyakant], Kumar, L.[Lalit], Reid, N.[Nick],
Rank-Based Methods for Selection of Landscape Metrics for Land Cover Pattern Change Detection,
RS(8), No. 2, 2016, pp. 107.
DOI Link 1603
BibRef

Comber, A.J.[Alexis J.], Balzter, H.[Heiko], Cole, B.[Beth], Fisher, P.[Peter], Johnson, S.C.M.[Sarah C.M.], Ogutu, B.[Booker],
Methods to Quantify Regional Differences in Land Cover Change,
RS(8), No. 3, 2016, pp. 176.
DOI Link 1604
BibRef

Gómez, C.[Cristina], White, J.C.[Joanne C.], Wulder, M.A.[Michael A.],
Optical remotely sensed time series data for land cover classification: A review,
PandRS(116), No. 1, 2016, pp. 55-72.
Elsevier DOI 1604
Remote sensing BibRef

Chen, J., Rao, Y., Shen, M., Wang, C., Zhou, Y., Ma, L., Tang, Y., Yang, X.,
A Simple Method for Detecting Phenological Change From Time Series of Vegetation Index,
GeoRS(54), No. 6, June 2016, pp. 3436-3449.
IEEE DOI 1606
geophysical techniques BibRef

Bordogna, G.[Gloria], Kliment, T.[Tomáš], Frigerio, L.[Luca], Brivio, P.A.[Pietro Alessandro], Crema, A.[Alberto], Stroppiana, D.[Daniela], Boschetti, M.[Mirco], Sterlacchini, S.[Simone],
A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture,
IJGI(5), No. 5, 2016, pp. 73.
DOI Link 1606
BibRef

Su, Z.B.[Zhong-Bo], Vekerdy, Z.[Zoltán], Zeng, Y.J.[Yi-Jian],
Preface: Land Surface Processes and Interactions: From HCMM to Sentinel Missions and Beyond,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Durgun, Y.Ö.[Yetkin Özüm], Gobin, A.[Anne], van de Kerchove, R.[Ruben], Tychon, B.[Bernard],
Crop Area Mapping Using 100-m Proba-V Time Series,
RS(8), No. 7, 2016, pp. 585.
DOI Link 1608
BibRef

Zhang, J.X.[Jing-Xiong], Mei, Y.Y.[Ying-Ying],
Integrating Logistic Regression and Geostatistics for User-Oriented and Uncertainty-Informed Accuracy Characterization in Remotely-Sensed Land Cover Change Information,
IJGI(5), No. 7, 2016, pp. 113.
DOI Link 1608
BibRef

Hao, M.[Ming], Shi, W.Z.[Wen-Zhong], Zhang, H.[Hua], Wang, Q.M.[Qun-Ming], Deng, K.[Kazhong],
A Scale-Driven Change Detection Method Incorporating Uncertainty Analysis for Remote Sensing Images,
RS(8), No. 9, 2016, pp. 745.
DOI Link 1610
BibRef

Zhu, Z.[Zhe], Gallant, A.L.[Alisa L.], Woodcock, C.E.[Curtis E.], Pengra, B.[Bruce], Olofsson, P.[Pontus], Loveland, T.R.[Thomas R.], Jin, S.[Suming], Dahal, D.[Devendra], Yang, L.M.[Li-Min], Auch, R.F.[Roger F.],
Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative,
PandRS(122), No. 1, 2016, pp. 206-221.
Elsevier DOI 1612
Continuous Change Detection and Classification (CCDC) BibRef

Wessels, K.J.[Konrad J.], van den Bergh, F.[Frans], Roy, D.P.[David P.], Salmon, B.P.[Brian P.], Steenkamp, K.C.[Karen C.], MacAlister, B.[Bryan], Swanepoel, D.[Derick], Jewitt, D.[Debbie],
Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers,
RS(8), No. 11, 2016, pp. 888.
DOI Link 1612
BibRef

Dubois, G.[Grégoire], Basti, L.[Lucy], Bertzky, B.[Bastian], Mandrici, A.[Andrea], Conti, M.[Michele], Saura, S.[Santiago], Cottam, A.[Andrew], Battistella, L.[Luca], Martínez-López, J.[Javier], Boni, M.[Martino], Graziano, M.[Mariagrazia],
Integrating Multiple Spatial Datasets to Assess Protected Areas: Lessons Learnt from the Digital Observatory for Protected Area (DOPA),
IJGI(5), No. 12, 2016, pp. 242.
DOI Link 1612
BibRef
And: Erratum: IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Reis, M.S.[Mariane S.], Dutra, L.V.[Luciano V.], Sant'Anna, S.J.S.[Sidnei J. S.], Escada, M.I.S.[Maria Isabel S.],
Examining Multi-Legend Change Detection in Amazon with Pixel and Region Based Methods,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Pelletier, C.[Charlotte], Valero, S.[Silvia], Inglada, J.[Jordi], Champion, N.[Nicolas], Sicre, C.M.[Claire Marais], Dedieu, G.[Gérard],
Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Nyborg, J.[Joachim], Pelletier, C.[Charlotte], Assent, I.[Ira],
Generalized Classification of Satellite Image Time Series with Thermal Positional Encoding,
EarthVision22(1391-1401)
IEEE DOI 2210
Training, Satellites, Image coding, Time series analysis, Crops, Europe, Encoding BibRef

Wu, K.[Ke], Du, Q.[Qian], Wang, Y.[Yi], Yang, Y.[Yetao],
Supervised Sub-Pixel Mapping for Change Detection from Remotely Sensed Images with Different Resolutions,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Mafanya, M.[Madodomzi], Tsele, P.[Philemon], Botai, J.[Joel], Manyama, P.[Phetole], Swart, B.[Barend], Monate, T.[Thabang],
Evaluating pixel and object based image classification techniques for mapping plant invasions from UAV derived aerial imagery: Harrisia pomanensis as a case study,
PandRS(129), No. 1, 2017, pp. 1-11.
Elsevier DOI 1706
Pixel-, and, object-based, classification BibRef

Zeng, D.[Dan], Wu, L.[Lidan], Chen, B.Y.[Bo-Yang], Shen, W.[Wei],
Slope-Restricted Multi-Scale Feature Matching for Geostationary Satellite Remote Sensing Images,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Zeng, D.[Dan], Fang, R.[Rui], Ge, S.M.[Shi-Ming], Li, S.Y.[Shu-Ying], Zhang, Z.J.[Zhi-Jiang],
Geometry-Based Global Alignment for GSMS Remote Sensing Images,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Guttler, F.[Fabio], Ienco, D.[Dino], Nin, J.[Jordi], Teisseire, M.[Maguelonne], Poncelet, P.[Pascal],
A graph-based approach to detect spatiotemporal dynamics in satellite image time series,
PandRS(130), No. 1, 2017, pp. 92-107.
Elsevier DOI 1708
Satellite image time series BibRef

You, M.[Mingde], Filippi, A.M.[Anthony M.], Güneralp, I.[Inci], Güneralp, B.[Burak],
What is the Direction of Land Change? A New Approach to Land-Change Analysis,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Gong, W.B.[Wen-Bing], Fang, S.H.[Sheng-Hui], Yang, G.[Guang], Ge, M.Y.[Meng-Yu],
Using a Hidden Markov Model for Improving the Spatial-Temporal Consistency of Time Series Land Cover Classification,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link 1710
BibRef

Ma, C.H.[Cai-Hong], Xia, W.[Wei], Chen, F.[Fu], Liu, J.B.[Jian-Bo], Dai, Q.[Qin], Jiang, L.Y.[Li-Yuan], Duan, J.B.[Jian-Bo], Liu, W.[Wei],
A Content-Based Remote Sensing Image Change Information Retrieval Model,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link 1710
BibRef

Liu, W.[Wei], Lin, Y.Y.[Yi-Yuan], Liu, W.J.[Wei-Jia], Yu, Y.T.[Yong-Tao], Li, J.[Jonathan],
An attention-based multiscale transformer network for remote sensing image change detection,
PandRS(202), 2023, pp. 599-609.
Elsevier DOI 2308
Change detection, Attention mechanism, Transformer, Multiscale BibRef

Wei, Z.Q.[Zi-Quan], Han, Y.F.[Yi-Feng], Li, M.Y.[Meng-Ya], Yang, K.[Kun], Yang, Y.[Yang], Luo, Y.[Yi], Ong, S.H.[Sim-Heng],
A Small UAV Based Multi-Temporal Image Registration for Dynamic Agricultural Terrace Monitoring,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Liu, S.[Sicong], Du, Q.[Qian], Tong, X.H.[Xiao-Hua], Samat, A.[Alim], Pan, H.Y.[Hai-Yan], Ma, X.L.[Xiao-Long],
Band Selection-Based Dimensionality Reduction for Change Detection in Multi-Temporal Hyperspectral Images,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Chen, Z.[Zhao], Wang, B.[Bin],
Spectrally-Spatially Regularized Low-Rank and Sparse Decomposition: A Novel Method for Change Detection in Multitemporal Hyperspectral Images,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Yang, M.D.[Ming-Der], Chen, S.C.[Su-Chin], Tsai, H.P.[Hui Ping],
A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Böhler, J.E.[Jonas E.], Schaepman, M.E.[Michael E.], Kneubühler, M.[Mathias],
Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Chen, P.F.[Peng-Fei], Shang, J.L.[Jia-Li], Qian, B.[Budong], Jing, Q.[Qi], Liu, J.G.[Jian-Gui],
A New Regionalization Scheme for Effective Ecological Restoration on the Loess Plateau in China,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Wang, L.H.[Lan-Hui], Fensholt, R.[Rasmus],
Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Wang, Y.H.[Yan-Hui], Zhang, Q.S.[Qi-Sheng], Guan, H.L.[Hong-Liang],
Incrementally Detecting Change Types of Spatial Area Object: A Hierarchical Matching Method Considering Change Process,
IJGI(7), No. 2, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Cierniewski, J.[Jerzy], Ceglarek, J.[Jakub], Karnieli, A.[Arnon], Ben-Dor, E.[Eyal], Królewicz, S.[Slawomir], Kazmierowski, C.[Cezary],
Shortwave Radiation Affected by Agricultural Practices,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Zhai, Y.G.[Yong-Guang], Qu, Z.Y.[Zhong-Yi], Hao, L.[Lei],
Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Solano-Correa, Y.T.[Yady Tatiana], Bovolo, F.[Francesca], Bruzzone, L.[Lorenzo],
An Approach for Unsupervised Change Detection in Multitemporal VHR Images Acquired by Different Multispectral Sensors,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Lang, M.[Marc], Alleaume, S.[Samuel], Luque, S.[Sandra], Baghdadi, N.[Nicolas], Féret, J.B.[Jean-Baptiste],
Monitoring and Characterizing Heterogeneous Mediterranean Landscapes with Continuous Textural Indices Based on VHSR Imagery,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Kovac, Ž.[Žarko], Platt, T.[Trevor], Sathyendranath, S.[Shubha], Lomas, M.W.[Michael W.],
Extraction of Photosynthesis Parameters from Time Series Measurements of In Situ Production: Bermuda Atlantic Time-Series Study,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Mattupalli, C.[Chakradhar], Moffet, C.A.[Corey A.], Shah, K.N.[Kushendra N.], Young, C.A.[Carolyn A.],
Supervised Classification of RGB Aerial Imagery to Evaluate the Impact of a Root Rot Disease,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Chen, J.G.[Jia-Ge], Chen, J.[Jun], Liu, H.P.[Hui-Ping], Peng, S.[Shu],
Detection of Cropland Change Using Multi-Harmonic Based Phenological Trajectory Similarity,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808

See also Trajectory-based Analysis Of Urban Land-cover Change Detection. BibRef

Weilert, T.E.[Trina E.], Ji, W.[Wei], Zubair, O.A.[Opeyemi A.],
Assessing the Impacts of Streamside Ordinance Protection on the Spatial and Temporal Variability in Urban Riparian Vegetation,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Woodward, B.D.[Brian D.], Evangelista, P.H.[Paul H.], Young, N.E.[Nicholas E.], Vorster, A.G.[Anthony G.], West, A.M.[Amanda M.], Carroll, S.L.[Sarah L.], Girma, R.K.[Rebecca K.], Hatcher, E.Z.[Emma Zink], Anderson, R.[Ryan], Vahsen, M.L.[Megan L.], Vashisht, A.[Amandeep], Mayer, T.[Timothy], Carver, D.[Daniel], Jarnevich, C.[Catherine],
CO-RIP: A Riparian Vegetation and Corridor Extent Dataset for Colorado River Basin Streams and Rivers,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Xu, R.[Ru], Lin, H.[Hui], Lü, Y.[Yihe], Luo, Y.[Ying], Ren, Y.J.[Yan-Jiao], Comber, A.[Alexis],
A Modified Change Vector Approach for Quantifying Land Cover Change,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

de Oliveira Santos, C.L.M.[Cecília Lira Melo], Lamparelli, R.A.C.[Rubens Augusto Camargo], Figueiredo, G.K.D.A.[Gleyce Kelly Dantas Araújo], Dupuy, S.[Stéphane], Boury, J.[Julie], dos Santos Luciano, A.C.[Ana Cláudia], da Silva Torres, R.[Ricardo], Le Maire, G.[Guerric],
Classification of Crops, Pastures, and Tree Plantations along the Season with Multi-Sensor Image Time Series in a Subtropical Agricultural Region,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Wang, C.J.[Cang-Jiao], Lei, S.G.[Shao-Gang], Elmore, A.J.[Andrew J.], Jia, D.[Duo], Mu, S.G.[Shou-Guo],
Integrating Temporal Evolution with Cellular Automata for Simulating Land Cover Change,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Tang, Y.Z.[Yu-Zhi], Shao, Q.Q.[Quan-Qin], Liu, J.Y.[Ji-Yuan], Zhang, H.Y.[Hai-Yang], Yang, F.[Fan], Cao, W.[Wei], Wu, D.[Dan], Gong, G.[Guoli],
Did Ecological Restoration Hit Its Mark? Monitoring and Assessing Ecological Changes in the Grain for Green Program Region Using Multi-source Satellite Images,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Ma, W.P.[Wen-Ping], Xiong, Y.[Yunta], Wu, Y.[Yue], Yang, H.[Hui], Zhang, X.R.[Xiang-Rong], Jiao, L.C.[Li-Cheng],
Change Detection in Remote Sensing Images Based on Image Mapping and a Deep Capsule Network,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Zhang, M.X.[Meng-Xuan], Liu, Z.[Zhao], Feng, J.[Jie], Liu, L.[Long], Jiao, L.C.[Li-Cheng],
Remote Sensing Image Change Detection Based on Deep Multi-Scale Multi-Attention Siamese Transformer Network,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Zhang, X.R.[Xiang-Rong], He, L.[Ling], Qin, K.[Kai], Dang, Q.[Qi], Si, H.J.[Hong-Jie], Tang, X.[Xu], Jiao, L.C.[Li-Cheng],
SMD-Net: Siamese Multi-Scale Difference-Enhancement Network for Change Detection in Remote Sensing,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Albergel, C.[Clément], Dutra, E.[Emanuel], Bonan, B.[Bertrand], Zheng, Y.J.[Yong-Jun], Munier, S.[Simon], Balsamo, G.[Gianpaolo], de Rosnay, P.[Patricia], Muńoz-Sabater, J.[Joaquin], Calvet, J.C.[Jean-Christophe],
Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wan, X., Liu, J., Li, S., Dawson, J., Yan, H.,
An Illumination-Invariant Change Detection Method Based on Disparity Saliency Map for Multitemporal Optical Remotely Sensed Images,
GeoRS(57), No. 3, March 2019, pp. 1311-1324.
IEEE DOI 1903
geophysical image processing, image segmentation, object detection, remote sensing, sunlight, saliency BibRef

Geng, X.R.[Xiu-Rui], Ji, L.[Luyan], Zhao, Y.C.[Yong-Chao],
Filter tensor analysis: A tool for multi-temporal remote sensing target detection,
PandRS(151), 2019, pp. 290-301.
Elsevier DOI 1904
Target detection, Tensor, Multi-temporal, Multilinear function, CEM BibRef

Haouas, F.[Fatma], Solaiman, B.[Basel], Ben Dhiaf, Z.[Zouhour], Hamouda, A.[Atef], Bsaies, K.[Khaled],
Multi-temporal image change mining based on evidential conflict reasoning,
PandRS(151), 2019, pp. 59-75.
Elsevier DOI 1904
Change detection, Change analysis, Multi-temporal remote sensed images, Dempster-Shafer Theory, Change Measure BibRef

Mercier, A.[Audrey], Betbeder, J.[Julie], Rumiano, F.[Florent], Baudry, J.[Jacques], Gond, V.[Valéry], Blanc, L.[Lilian], Bourgoin, C.[Clément], Cornu, G.[Guillaume], Ciudad, C.[Carlos], Marchamalo, M.[Miguel], Poccard-Chapuis, R.[René], Hubert-Moy, L.[Laurence],
Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest-Agriculture Mosaics in Temperate and Tropical Landscapes,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Osinska-Skotak, K.[Katarzyna], Jelowicki, L.[Lukasz], Bakula, K.[Krzysztof], Michalska-Hejduk, D.[Dorota], Wylazlowska, J.[Justyna], Kopec, D.[Dominik],
Analysis of Using Dense Image Matching Techniques to Study the Process of Secondary Succession in Non-Forest Natura 2000 Habitats,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Sousa, D.[Daniel], Small, C.[Christopher], Spalton, A.[Andrew], Kwarteng, A.[Andy],
Coupled Spatiotemporal Characterization of Monsoon Cloud Cover and Vegetation Phenology,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Diao, C.Y.[Chun-Yuan],
Innovative pheno-network model in estimating crop phenological stages with satellite time series,
PandRS(153), 2019, pp. 96-109.
Elsevier DOI 1906
Complex network, Time series, Optical imaging, Phenology, Agriculture BibRef

Paris, C., Bruzzone, L., Fernández-Prieto, D.,
A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images,
GeoRS(57), No. 7, July 2019, pp. 4259-4277.
IEEE DOI 1907
Remote sensing, Earth, Training, Artificial satellites, Reliability, Time series analysis, Satellites, Automatic classification, unsupervised methods BibRef

Zakeri, F.[Fatemeh], Huang, B.[Bo], Saradjian, M.R.[Mohammad Reza],
Fusion of Change Vector Analysis in Posterior Probability Space and Postclassification Comparison for Change Detection from Multispectral Remote Sensing Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Fasbender, D.[Dominique], Vajsová, B.[Blanka], Wirnhardt, C.[Csaba], Lemajic, S.[Slavko],
A Simple Similarity Index for the Comparison of Remotely Sensed Time Series with Scarce Simultaneous Acquisitions,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Hamada, Y.[Yuki], Szoldatits, K.[Katherine], Grippo, M.[Mark], Hartmann, H.M.[Heidi M.],
Remotely Sensed Spatial Structure as an Indicator of Internal Changes of Vegetation Communities in Desert Landscapes,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Yeom, J.[Junho], Jung, J.H.[Jin-Ha], Chang, A.[Anjin], Ashapure, A.[Akash], Maeda, M.[Murilo], Maeda, A.[Andrea], Landivar, J.[Juan],
Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Zheng, Z.F.[Zhi-Feng], Cao, J.N.[Jian-Nong], Lv, Z.Y.[Zhi-Yong], Benediktsson, J.A.[Jón Atli],
Spatial-Spectral Feature Fusion Coupled with Multi-Scale Segmentation Voting Decision for Detecting Land Cover Change with VHR Remote Sensing Images,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Yang, X.[Xu], Lv, Z.Y.[Zhi-Yong], Benediktsson, J.A.[Jón Atli], Chen, F.[Fengrui],
Novel Spatial-Spectral Channel Attention Neural Network for Land Cover Change Detection with Remote Sensed Images,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Levitan, N.[Nathaniel], Kang, Y.[Yanghui], Özdogan, M.[Mutlu], Magliulo, V.[Vincenzo], Castillo, P.[Paulo], Moshary, F.[Fred], Gross, B.[Barry],
Evaluation of the Uncertainty in Satellite-Based Crop State Variable Retrievals Due to Site and Growth Stage Specific Factors and Their Potential in Coupling with Crop Growth Models,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Xu, H.Q.[Han-Qiu], Wang, Y.F.[Yi-Fan], Guan, H.[Huade], Shi, T.T.[Ting-Ting], Hu, X.S.[Xi-Sheng],
Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Elsherif, A.[Ahmed], Gaulton, R.[Rachel], Mills, J.P.[Jon P.],
Four Dimensional Mapping of Vegetation Moisture Content Using Dual-Wavelength Terrestrial Laser Scanning,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910
BibRef
And:
The Potential of Dual-wavelength Terrestrial Laser Scanning in 3d Canopy Fuel Moisture Content Mapping,
Laser19(975-979).
DOI Link 1912
BibRef

Tomppo, E.[Erkki], Antropov, O.[Oleg], Praks, J.[Jaan],
Cropland Classification Using Sentinel-1 Time Series: Methodological Performance and Prediction Uncertainty Assessment,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Pause, M.[Marion], Raasch, F.[Filip], Marrs, C.[Christopher], Csaplovics, E.[Elmar],
Monitoring Glyphosate-Based Herbicide Treatment Using Sentinel-2 Time Series: A Proof-of-Principle,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Liu, M.L.[Mao-Lin], Ke, Y.H.[Ying-Hai], Yin, Q.[Qi], Chen, X.W.[Xiu-Wan], Im, J.[Jungho],
Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Huang, X.[Xin], Liu, J.H.[Jian-Hong], Zhu, W.Q.[Wen-Quan], Atzberger, C.[Clement], Liu, Q.F.[Qiu-Feng],
The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Yan, J.N.[Ji-Ning], Wang, L.Z.[Li-Zhe], Song, W.J.[Wei-Jing], Chen, Y.L.[Yun-Liang], Chen, X.D.[Xiao-Dao], Deng, Z.[Ze],
A time-series classification approach based on change detection for rapid land cover mapping,
PandRS(158), 2019, pp. 249-262.
Elsevier DOI 1912
LULC, Time-series classification, Change detection, Prophet, DTW, TSCCD BibRef

Awty-Carroll, K.[Katie], Bunting, P.[Pete], Hardy, A.[Andy], Bell, G.[Gemma],
An Evaluation and Comparison of Four Dense Time Series Change Detection Methods Using Simulated Data,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Zatelli, P.[Paolo], Gobbi, S.[Stefano], Tattoni, C.[Clara], Cantiani, M.G.[Maria Giulia], La Porta, N.[Nicola], Rocchini, D.[Duccio], Zorzi, N.[Nicola], Ciolli, M.[Marco],
Relevance of the Cell Neighborhood Size in Landscape Metrics Evaluation and Free or Open Source Software Implementations,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Tuna, C.[Caglayan], Mirmahboub, B.[Behzad], Merciol, F.[François], Lefčvre, S.[Sébastien],
Component trees for image sequences and streams,
PRL(129), 2020, pp. 255-262.
Elsevier DOI 2001
Hierarchical representation, Max-tree, Satellite image time series BibRef

Vicario, S.[Saverio], Adamo, M.[Maria], Alcaraz-Segura, D.[Domingo], Tarantino, C.[Cristina],
Bayesian Harmonic Modelling of Sparse and Irregular Satellite Remote Sensing Time Series of Vegetation Indexes: A Story of Clouds and Fires,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Liu, H.L.[Hua-Liang], Zhang, F.Z.[Fei-Zhou], Zhang, L.[Lifu], Lin, Y.K.[Yu-Kun], Wang, S.H.[Si-Heng], Xie, Y.F.[Ye-Feng],
UNVI-Based Time Series for Vegetation Discrimination Using Separability Analysis and Random Forest Classification,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

You, N.[Nanshan], Dong, J.[Jinwei],
Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine,
PandRS(161), 2020, pp. 109-123.
Elsevier DOI 2002
Earliest identifiable timing (EIT), Crops, Random forest, Classifier transfer, Temporal composite, Sentinel, Google Earth Engine BibRef

Münch, Z.[Zahn],
Global and local patterns of landscape change accuracy,
PandRS(161), 2020, pp. 264-277.
Elsevier DOI 2002
Land cover change, Intensity analysis, Quantity, Shift, Disagreement, Change budget, Local geographically weighted, Differ BibRef

Li, J.[Jiwei], Fabina, N.S.[Nicholas S.], Knapp, D.E.[David E.], Asner, G.P.[Gregory P.],
The Sensitivity of Multi-spectral Satellite Sensors to Benthic Habitat Change,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Zhang, X.Y.[Xiao-Yang], Wang, J.M.[Jian-Min], Henebry, G.M.[Geoffrey M.], Gao, F.[Feng],
Development and evaluation of a new algorithm for detecting 30m land surface phenology from VIIRS and HLS time series,
PandRS(161), 2020, pp. 37-51.
Elsevier DOI 2002
30 m land surface phenology, HLS time series, VIIRS time series, Evaluation and validation BibRef

Wagner, M.P.[Matthias P.], Slawig, T.[Thomas], Taravat, A.[Alireza], Oppelt, N.[Natascha],
Remote Sensing Data Assimilation in Dynamic Crop Models Using Particle Swarm Optimization,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Militino, A.F.[Ana F.], Moradi, M.[Mehdi], Ugarte, M.D.[M. Dolores],
On the Performances of Trend and Change-Point Detection Methods for Remote Sensing Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Varga, O.G.[Orsolya Gyöngyi], Pontius, Jr., R.G.[Robert Gilmore], Szabó, Z.[Zsuzsanna], Szabó, S.[Szilárd],
Effects of Category Aggregation on Land Change Simulation Based on Corine Land Cover Data,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Deng, G.R.[Guo-Rong], Zhang, H.Y.[Hong-Yan], Yang, L.B.[Ling-Bin], Zhao, J.J.[Jian-Jun], Guo, X.Y.[Xiao-Yi], Ying, H.[Hong], Rihan, W.[Wu], Guo, D.[Dan],
Estimating Frost during Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Shang, J.L.[Jia-Li], Liu, J.G.[Jian-Gui], Poncos, V.[Valentin], Geng, X.Y.[Xiao-Yuan], Qian, B.D.[Bu-Dong], Chen, Q.H.[Qi-Hao], Dong, T.F.[Tai-Feng], Macdonald, D.[Dan], Martin, T.[Tim], Kovacs, J.[John], Walters, D.[Dan],
Detection of Crop Seeding and Harvest through Analysis of Time-Series Sentinel-1 Interferometric SAR Data,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Chen, H.[Hao], Shi, Z.W.[Zhen-Wei],
A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006

WWW Link. Dataset, Building Changes. LEVIR-CD Dataset. BibRef

Panuju, D.R.[Dyah R.], Paull, D.J.[David J.], Griffin, A.L.[Amy L.],
Change Detection Techniques Based on Multispectral Images for Investigating Land Cover Dynamics,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Häme, T.[Tuomas], Sirro, L.[Laura], Kilpi, J.[Jorma], Seitsonen, L.[Lauri], Andersson, K.[Kaj], Melkas, T.[Timo],
A Hierarchical Clustering Method for Land Cover Change Detection and Identification,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Kalinicheva, E.[Ekaterina], Sublime, J.[Jérémie], Trocan, M.[Maria],
Unsupervised Satellite Image Time Series Clustering Using Object-Based Approaches and 3D Convolutional Autoencoder,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Wu, Y.[Yue], Bai, Z.F.[Zhuang-Fei], Miao, Q.G.[Qi-Guang], Ma, W.P.[Wen-Ping], Yang, Y.L.[Yue-Lei], Gong, M.G.[Mao-Guo],
A Classified Adversarial Network for Multi-Spectral Remote Sensing Image Change Detection,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Slingsby, J.A.[Jasper A.], Moncrieff, G.R.[Glenn R.], Wilson, A.M.[Adam M.],
Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics,
PandRS(166), 2020, pp. 15-25.
Elsevier DOI 2007
Fynbos, Fire, Time series, Global change, Hierarchical Bayes, Ecological forecasting BibRef

Ghaderpour, E.[Ebrahim], Vujadinovic, T.[Tijana],
The Potential of the Least-Squares Spectral and Cross-Wavelet Analyses for Near-Real-Time Disturbance Detection within Unequally Spaced Satellite Image Time Series,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
Find environmental changes quickly. BibRef

You, Y.[Yanan], Cao, J.Y.[Jing-Yi], Zhou, W.L.[Wen-Li],
A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
Survey, Change Detection. BibRef

Bashir, B.[Barjeece], Cao, C.X.[Chun-Xiang], Naeem, S.[Shahid], Joharestani, M.Z.[Mehdi Zamani], Bo, X.[Xie], Afzal, H.[Huma], Jamal, K.[Kashif], Mumtaz, F.[Faisal],
Spatio-Temporal Vegetation Dynamic and Persistence under Climatic and Anthropogenic Factors,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Gbodjo, Y.J.E.[Yawogan Jean Eudes], Ienco, D.[Dino], Leroux, L.[Louise], Interdonato, R.[Roberto], Gaetano, R.[Raffaele], Ndao, B.[Babacar],
Object-Based Multi-Temporal and Multi-Source Land Cover Mapping Leveraging Hierarchical Class Relationships,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Qian, J.H.[Jun-Hao], Xia, M.[Min], Zhang, Y.H.[Yong-Hong], Liu, J.[Jia], Xu, Y.Q.[Yi-Qing],
TCDNet: Trilateral Change Detection Network for Google Earth Image,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Wan, Y.[Yue], Zhang, J.X.[Jing-Xiong], Yang, W.J.[Wen-Jing], Tang, Y.W.[Yun-Wei],
Refining Land-Cover Maps Based on Probabilistic Re-Classification in CCA Ordination Space,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Yu, J.X.[Jing-Xian], Liu, Y.L.[Ya-Lan], Ren, Y.H.[Yu-Huan], Ma, H.J.[Hao-Jie], Wang, D.C.[Da-Cheng], Jing, Y.F.[Ya-Fei], Yu, L.J.[Lin-Jun],
Application Study on Double-Constrained Change Detection for Land Use/Land Cover Based on GF-6 WFV Imageries,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Koehler, J.[Jonas], Kuenzer, C.[Claudia],
Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data: A Review,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Gao, F.[Feng], Anderson, M.C.[Martha C.], Hively, W.D.[W. Dean],
Detecting Cover Crop End-Of-Season Using VENľS and Sentinel-2 Satellite Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Voormansik, K.[Kaupo], Zalite, K.[Karlis], Sünter, I.[Indrek], Tamm, T.[Tanel], Koppel, K.[Kalev], Verro, T.[Tarvi], Brauns, A.[Agris], Jakovels, D.[Dainis], Praks, J.[Jaan],
Separability of Mowing and Ploughing Events on Short Temporal Baseline Sentinel-1 Coherence Time Series,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Jopia, A.[Alberto], Zambrano, F.[Francisco], Pérez-Martínez, W.[Waldo], Vidal-Páez, P.[Paulina], Molina, J.[Julio], de la Hoz Mardones, F.[Felipe],
Time-Series of Vegetation Indices (VNIR/SWIR) Derived from Sentinel-2 (A/B) to Assess Turgor Pressure in Kiwifruit,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Morgan, B.E.[Bryn E.], Chipman, J.W.[Jonathan W.], Bolger, D.T.[Douglas T.], Dietrich, J.T.[James T.],
Spatiotemporal Analysis of Vegetation Cover Change in a Large Ephemeral River: Multi-Sensor Fusion of Unmanned Aerial Vehicle (UAV) and Landsat Imagery,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Li, J.T.[Jing-Tao], Shen, Y.L.[Yong-Lin], Yang, C.[Chao],
An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Wang, S.[Shuai], Rao, Y.H.[Yu-Han], Chen, J.[Jin], Liu, L.C.[Li-Cong], Wang, W.Q.[Wen-Qing],
Adopting 'Difference-in-Differences' Method to Monitor Crop Response to Agrometeorological Hazards with Satellite Data: A Case Study of Dry-Hot Wind,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Swetnam, T.L.[Tyson L.], Yool, S.R.[Stephen R.], Roy, S.[Samapriya], Falk, D.A.[Donald A.],
On the Use of Standardized Multi-Temporal Indices for Monitoring Disturbance and Ecosystem Moisture Stress across Multiple Earth Observation Systems in the Google Earth Engine,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Liu, J.W.[Jing-Wei], Yan, J.[Jining], Wang, L.[Lizhe], Huang, L.[Liang], He, H.X.[Hai-Xu], Liu, H.[Hong],
Remote Sensing Time Series Classification Based on Self-Attention Mechanism and Time Sequence Enhancement,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Copenhaver, K.[Ken], Hamada, Y.[Yuki], Mueller, S.[Steffen], Dunn, J.B.[Jennifer B.],
Examining the Characteristics of the Cropland Data Layer in the Context of Estimating Land Cover Change,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Santos, L.A.[Lorena A.], Ferreira, K.R.[Karine R.], Camara, G.[Gilberto], Picoli, M.C.A.[Michelle C.A.], Simoes, R.E.[Rolf E.],
Quality control and class noise reduction of satellite image time series,
PandRS(177), 2021, pp. 75-88.
Elsevier DOI 2106
Self-organizing map, Class noise reduction, Bayesian inference, Satellite image time series, Land use and cover classification BibRef

Kosiuczenko, P.[Piotr],
An Interval Temporal Logic for Time Series Specification and Data Integration,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Wang, L.J.[Li-Jun], Wang, J.Y.[Jia-Yao], Qin, F.[Fen],
Feature Fusion Approach for Temporal Land Use Mapping in Complex Agricultural Areas,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Gobbo, S.[Stefano], Ghiraldini, A.[Alessandro], Dramis, A.[Andrea], Ferro, N.D.[Nicola Dal], Morari, F.[Francesco],
Estimation of Hail Damage Using Crop Models and Remote Sensing,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Xu, J.L.[Jia-Lang], Luo, C.B.[Chun-Bo], Chen, X.Y.[Xin-Yue], Wei, S.C.[Shi-Cai], Luo, Y.[Yang],
Remote Sensing Change Detection Based on Multidirectional Adaptive Feature Fusion and Perceptual Similarity,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Xiang, S.[Shao], Wang, M.[Mi], Jiang, X.F.[Xiao-Fan], Xie, G.Q.[Guang-Qi], Zhang, Z.[Zhiqi], Tang, P.[Peng],
Dual-Task Semantic Change Detection for Remote Sensing Images Using the Generative Change Field Module,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Soares, A.[Anderson], Körting, T.[Thales], Fonseca, L.[Leila], Bendini, H.D.[Hugo Do_Nascimento],
Simple Nonlinear Iterative Temporal Clustering,
GeoRS(59), No. 9, September 2021, pp. 7669-7679.
IEEE DOI 2109
Image segmentation, Satellites, Time series analysis, Feature extraction, Spatiotemporal phenomena, time series BibRef

Shen, J.[Jing], Tao, C.[Chao], Qi, J.[Ji], Wang, H.[Hao],
Semi-Supervised Convolutional Long Short-Term Memory Neural Networks for Time Series Land Cover Classification,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Yang, L.[Le], Chen, Y.M.[Yi-Ming], Song, S.[Shiji], Li, F.[Fan], Huang, G.[Gao],
Deep Siamese Networks Based Change Detection with Remote Sensing Images,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Ke, Q.T.[Qing-Tian], Zhang, P.[Peng],
MCCRNet: A Multi-Level Change Contextual Refinement Network for Remote Sensing Image Change Detection,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Li, W.S.[Wei-Sheng], Cao, D.W.[Dong-Wen], Peng, Y.D.[Yi-Dong], Yang, C.[Chao],
MSNet: A Multi-Stream Fusion Network for Remote Sensing Spatiotemporal Fusion Based on Transformer and Convolution,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Li, W.S.[Wei-Sheng], Cao, D.W.[Dong-Wen], Xiang, M.H.[Ming-Hao],
Enhanced Multi-Stream Remote Sensing Spatiotemporal Fusion Network Based on Transformer and Dilated Convolution,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Li, W.S.[Wei-Sheng], Wu, F.Y.[Feng-Yan], Cao, D.W.[Dong-Wen],
Dual-Branch Remote Sensing Spatiotemporal Fusion Network Based on Selection Kernel Mechanism,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Zhang, Z.[Zheng], Tang, P.[Ping], Zhang, W.X.[Wei-Xiong], Tang, L.[Liang],
Satellite Image Time Series Clustering via Time Adaptive Optimal Transport,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Zhang, W.X.[Wei-Xiong], Zhang, H.[Hao], Zhao, Z.[Zhitao], Tang, P.[Ping], Zhang, Z.[Zheng],
Attention to Both Global and Local Features: A Novel Temporal Encoder for Satellite Image Time Series Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Guo, W.Q.[Wen-Qi], Zhang, W.X.[Wei-Xiong], Zhang, Z.[Zheng], Tang, P.[Ping], Gao, S.C.[Shi-Chen],
Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

di Pilato, A.[Antonio], Taggio, N.[Nicolň], Pompili, A.[Alexis], Iacobellis, M.[Michele], di Florio, A.[Adriano], Passarelli, D.[Davide], Samarelli, S.[Sergio],
Deep Learning Approaches to Earth Observation Change Detection,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Li, X.[Xuan], Duan, H.B.[Hai-Bin], Li, J.C.[Jing-Chun], Deng, Y.M.[Yi-Min], Wang, F.Y.[Fei-Yue],
Biological eagle eye-based method for change detection in water scenes,
PR(122), 2022, pp. 108203.
Elsevier DOI 2112
Change detection, Eagle eye, Synthetic boat sequence, Synthetic dataset, Unmanned aerial vehicle BibRef

Shen, Y.[Yu], Zhang, X.Y.[Xiao-Yang], Wang, W.[Weile], Nemani, R.[Ramakrishna], Ye, Y.C.[Yong-Chang], Wang, J.M.[Jian-Min],
Fusing Geostationary Satellite Observations with Harmonized Landsat-8 and Sentinel-2 Time Series for Monitoring Field-Scale Land Surface Phenology,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Kang, Y.P.[Yu-Peng], Hu, X.[Xinli], Meng, Q.Y.[Qing-Yan], Zou, Y.F.[You-Feng], Zhang, L.L.[Lin-Lin], Liu, M.[Miao], Zhao, M.[Maofan],
Land Cover and Crop Classification Based on Red Edge Indices Features of GF-6 WFV Time Series Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Moskolaď, W.R.[Waytehad Rose], Abdou, W.[Wahabou], Dipanda, A.[Albert], Kolyang,
Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Wang, Y.M.[Yi-Ming], Zhang, Z.X.[Zeng-Xin], Chen, X.[Xi],
Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Zhao, J.Q.[Jian-Qiao], Cao, Y.[Yue], Yu, L.[Le],
Global Change of Land-Sparing and Land-Sharing Patterns over the Past 30 Years: Evidence from Remote Sensing and Statistics,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Lopez-Fornieles, E.[Eva], Brunel, G.[Guilhem], Rancon, F.[Florian], Gaci, B.[Belal], Metz, M.[Maxime], Devaux, N.[Nicolas], Taylor, J.[James], Tisseyre, B.[Bruno], Roger, J.M.[Jean-Michel],
Potential of Multiway PLS (N-PLS) Regression Method to Analyse Time-Series of Multispectral Images: A Case Study in Agriculture,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Tang, J.J.[Jia-Jia], Liang, J.[Jie], Yang, Y.J.[Yong-Jun], Zhang, S.L.[Shao-Liang], Hou, H.[Huping], Zhu, X.X.[Xiao-Xiao],
Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Ha, T.[Thuan], Shen, Y.B.[Yan-Ben], Duddu, H.[Hema], Johnson, E.[Eric], Shirtliffe, S.J.[Steven J.],
Quantifying Hail Damage in Crops Using Sentinel-2 Imagery,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Ke, Q.T.[Qing-Tian], Zhang, P.[Peng],
Hybrid-TransCD: A Hybrid Transformer Remote Sensing Image Change Detection Network via Token Aggregation,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Li, J.[Jun], Qin, T.T.[Ting-Ting], Zhang, C.Y.[Cheng-Ye], Zheng, H.Y.[Hui-Yu], Guo, J.T.[Jun-Ting], Xie, H.Z.[Hui-Zhen], Zhang, C.Y.[Cai-Yue], Zhang, Y.C.[Yi-Cong],
A New Method for Quantitative Analysis of Driving Factors for Vegetation Coverage Change in Mining Areas: GWDF-ANN,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Zhang, Y.J.[Yang-Jian], Wang, L.[Li], He, Y.H.[Yuan-Huizi], Huang, N.[Ni], Li, W.[Wang], Xu, S.G.[Shi-Guang], Zhou, Q.[Quan], Song, W.J.[Wan-Juan], Duan, W.S.[Wen-Sheng], Wang, X.Y.[Xiao-Yue], Muhammad, S.[Shakir], Nath, B.[Biswajit], Zhu, L.[Luying], Tang, F.[Feng], Du, H.L.[Hui-Lin], Wang, L.[Lei], Niu, Z.[Zheng],
A Continuous Change Tracker Model for Remote Sensing Time Series Reconstruction,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Nyborg, J.[Joachim], Pelletier, C.[Charlotte], Lefčvre, S.[Sébastien], Assent, I.[Ira],
TimeMatch: Unsupervised cross-region adaptation by temporal shift estimation,
PandRS(188), 2022, pp. 301-313.
Elsevier DOI 2205
Satellite image time series, Temporal shift, Crop classification, Domain adaptation, Deep learning BibRef

Moncrieff, G.R.[Glenn R.],
Continuous Land Cover Change Detection in a Critically Endangered Shrubland Ecosystem Using Neural Networks,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Guerrisi, G.[Giorgia], del Frate, F.[Fabio], Schiavon, G.[Giovanni],
Satellite On-Board Change Detection via Auto-Associative Neural Networks,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Zhang, Z.[Zheng], Tang, P.[Ping], Hu, C.M.[Chang-Miao], Liu, Z.Q.[Zhi-Qiang], Zhang, W.X.[Wei-Xiong], Tang, L.[Liang],
Seeded Classification of Satellite Image Time Series with Lower-Bounded Dynamic Time Warping,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Jing, W.P.[Wei-Peng], Zhu, S.Y.[Song-Yu], Kang, P.L.[Pei-Lun], Wang, J.[Jian], Cui, S.J.[Sheng-Jia], Chen, G.S.[Guang-Sheng], Song, H.[Houbing],
Remote Sensing Change Detection Based on Unsupervised Multi-Attention Slow Feature Analysis,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Zhang, H.B.[He-Bing], Yuan, H.Y.[Hong-Yi], Du, W.B.[Wei-Bing], Lyu, X.X.[Xiao-Xuan],
Crop Identification Based on Multi-Temporal Active and Passive Remote Sensing Images,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Fu, W.Q.[Wei-Qi], Shao, P.[Pan], Dong, T.[Ting], Liu, Z.W.[Zhe-Wei],
Novel Higher-Order Clique Conditional Random Field to Unsupervised Change Detection for Remote Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Radoi, A.[Anamaria],
Multimodal Satellite Image Time Series Analysis Using GAN-Based Domain Translation and Matrix Profile,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zhang, Y.Q.[Yu-Qi], Li, W.[Wei], Wang, Y.H.[Yao-Hua], Wang, Z.B.[Zhi-Bin], Li, H.[Hao],
Beyond Classifiers: Remote Sensing Change Detection with Metric Learning,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Tian, J.[Juan], Peng, D.[Daifeng], Guan, H.Y.[Hai-Yan], Ding, H.Y.[Hai-Yong],
RACDNet: Resolution- and Alignment-Aware Change Detection Network for Optical Remote Sensing Imagery,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Zhou, Y.[Yong], Wang, F.K.[Feng-Kai], Zhao, J.Q.[Jia-Qi], Yao, R.[Rui], Chen, S.[Silin], Ma, H.P.[He-Ping],
Spatial-Temporal Based Multihead Self-Attention for Remote Sensing Image Change Detection,
CirSysVideo(32), No. 10, October 2022, pp. 6615-6626.
IEEE DOI 2210
Feature extraction, Remote sensing, Task analysis, Imaging, Transformers, Interference, Building change detection, attention mechanism BibRef

Li, B.[Bin], Wang, G.H.[Guang-Hui], Zhang, T.[Tao], Yang, H.[Huachao], Zhang, S.[Shubi],
Remote Sensing Image-Change Detection with Pre-Generation of Depthwise-Separable Change-Salient Maps,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

van Duynhoven, A.[Alysha], Dragicevic, S.[Suzana],
Assessing the Impact of Neighborhood Size on Temporal Convolutional Networks for Modeling Land Cover Change,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Wang, Y.D.[Yi-Dan], Zhou, X.W.[Xue-Wen], Ao, Z.R.[Zu-Rui], Xiao, K.[Kun], Yan, C.X.[Chen-Xi], Xin, Q.C.[Qin-Chuan],
Gap-Filling and Missing Information Recovery for Time Series of MODIS Data Using Deep Learning-Based Methods,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Li, J.L.[Jin-Long], Yuan, X.C.[Xiao-Chen], Li, J.F.[Jin-Feng], Huang, G.H.[Guo-Heng], Li, P.[Ping], Feng, L.[Li],
CD-SDN: Unsupervised Sensitivity Disparity Networks for Hyper-Spectral Image Change Detection,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Xiong, S.[Sitian], Baltezar, P.[Priscilla], Crowley, M.A.[Morgan A.], Cecil, M.[Michael], Crema, S.C.[Stefano C.], Baldwin, E.[Eli], Cardille, J.A.[Jeffrey A.], Estes, L.[Lyndon],
Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Feng, S.[Shou], Fan, Y.Z.[Yuan-Ze], Tang, Y.J.[Ying-Jie], Cheng, H.[Hao], Zhao, C.H.[Chun-Hui], Zhu, Y.[Yaoxuan], Cheng, C.H.[Chun-Hua],
A Change Detection Method Based on Multi-Scale Adaptive Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Mao, Z.[Zan], Tong, X.Y.[Xin-Yu], Luo, Z.[Ze], Zhang, H.H.[Hong-Hai],
MFATNet: Multi-Scale Feature Aggregation via Transformer for Remote Sensing Image Change Detection,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Patra, R.K.[Raj Kumar], Patil, S.N.[Sujata N.], Falkowski-Gilski, P.[Przemyslaw], Lubniewski, Z.[Zbigniew], Poongodan, R.[Rachana],
Feature Weighted Attention: Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Adil, E.[Elyar], Yang, X.L.[Xiang-Li], Huang, P.P.[Ping-Ping], Liu, X.L.[Xiao-Long], Tan, W.X.[Wei-Xian], Yang, J.X.[Jian-Xi],
Cascaded U-Net with Training Wheel Attention Module for Change Detection in Satellite Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
Change. BibRef

Shrestha, M.[Megha], Mitra, C.[Chandana], Rahman, M.[Mahjabin], Marzen, L.[Luke],
Mapping and Predicting Land Cover Changes of Small and Medium Size Cities in Alabama Using Machine Learning Techniques,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Lv, Z.Y.[Zhi-Yong], Huang, H.T.[Hai-Tao], Li, X.H.[Xing-Hua], Zhao, M.H.[Ming-Hua], Benediktsson, J.A.[Jón Atli], Sun, W.[WeiWei], Falco, N.[Nicola],
Land Cover Change Detection With Heterogeneous Remote Sensing Images: Review, Progress, and Perspective,
PIEEE(110), No. 12, December 2022, pp. 1976-1991.
IEEE DOI 2301
Remote sensing, Optical sensors, Optical imaging, Terrain factors, Heterogeneous networks, Earthquakes, Adaptive optics, multiresolution change detection BibRef

Xing, H.Q.[Hua-Qiao], Wang, H.H.[Hai-Hang], Zhang, J.H.[Jin-Hua], Hou, D.Y.[Dong-Yang],
Monitoring Land Cover Change by Leveraging a Dynamic Service-Oriented Computing Model,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Yuan, S.Y.[Shi-Ying], Zhong, R.F.[Ruo-Fei], Li, Q.Y.[Qing-Yang], Dong, Y.X.[Ya-Xin],
MFGFNet: A Multi-Scale Remote Sensing Change Detection Network Using the Global Filter in the Frequency Domain,
RS(15), No. 6, 2023, pp. 1682.
DOI Link 2304
BibRef

Mohammadi, S.[Sina], Belgiu, M.[Mariana], Stein, A.[Alfred],
Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks,
PandRS(198), 2023, pp. 272-283.
Elsevier DOI 2304
Crop mapping, Deep learning, Fully convolutional neural networks, Time series BibRef

Zhang, Q.[Qi], Lu, Y.[Yao], Shao, S.C.[Si-Cheng], Shen, L.[Li], Wang, F.[Fei], Zhang, X.T.[Xue-Tao],
MFNet: Mutual Feature-Aware Networks for Remote Sensing Change Detection,
RS(15), No. 8, 2023, pp. 2145.
DOI Link 2305
BibRef

Tian, L.W.[Ling-Wen], Meng, Y.Y.[Yuan-Yuan], Zhu, L.H.[Li-Hong], Zou, X.Y.[Xin-Yu], Liu, X.N.[Xiang-Nan],
Graph-based spatial pattern multi-type change detection,
PandRS(199), 2023, pp. 258-271.
Elsevier DOI 2305
Spatial pattern, Graph-based, Change detection, Time series, Spatial relationship BibRef

Cardama, F.J.[F. Javier], Heras, D.B.[Dora B.], Argüello, F.[Francisco],
Consensus Techniques for Unsupervised Binary Change Detection Using Multi-Scale Segmentation Detectors for Land Cover Vegetation Images,
RS(15), No. 11, 2023, pp. 2889.
DOI Link 2306
BibRef

Shahbandeh, M.[Mahsa], Kaim, D.[Dominik], Kozak, J.[Jacek],
Using CORONA Imagery to Study Land Use and Land Cover Change: A Review of Applications,
RS(15), No. 11, 2023, pp. 2793.
DOI Link 2306
BibRef

Liu, X.L.[Xiao-Le], Wang, G.J.[Guang-Jun], Shi, Y.[Yu], Liang, S.[Sihai], Jia, J.Z.[Jin-Zhang],
Vegetation Types Variations to the South of Ngoring Lake from 2013 to 2020, Analyzed by Hyperspectral Imaging,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
BibRef

Xu, M.Z.[Ming-Zhu], Shang, R.[Rong], Chen, J.M.[Jing M.], Zeng, L.F.[Ling-Fang],
LACC2.0: Improving the LACC Algorithm for Reconstructing Satellite-Derived Time Series of Vegetation Biochemical Parameters,
RS(15), No. 13, 2023, pp. 3277.
DOI Link 2307
BibRef

Li, K.Y.[Kai-Yuan], Zhao, W.Z.[Wen-Zhi], Chen, J.[Jiage], Zhang, L.Q.[Li-Qiang], Hu, D.D.[Duo-Duo], Wang, Q.[Qiao],
Predicting Crop Growth Patterns with Spatial-Temporal Deep Feature Exploration for Early Mapping,
RS(15), No. 13, 2023, pp. 3285.
DOI Link 2307
BibRef

Cheng, X.L.[Xing-Lu], Sun, Y.H.[Yong-Hua], Zhang, W.K.[Wang-Kuan], Wang, Y.H.[Yi-Han], Cao, X.Y.[Xu-Yue], Wang, Y.Z.[Yan-Zhao],
Application of Deep Learning in Multitemporal Remote Sensing Image Classification,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link 2308
BibRef

He, Y.[You], Zhang, H.[Hanchao], Ning, X.G.[Xiao-Gang], Zhang, R.Q.[Rui-Qian], Chang, D.[Dong], Hao, M.H.[Ming-Hui],
Spatial-Temporal Semantic Perception Network for Remote Sensing Image Semantic Change Detection,
RS(15), No. 16, 2023, pp. 4095.
DOI Link 2309
BibRef

Suwanlee, S.R.[Savittri Ratanopad], Keawsomsee, S.[Surasak], Pengjunsang, M.[Morakot], Homtong, N.[Nudthawud], Prakobya, A.[Amornchai], Borgogno-Mondino, E.[Enrico], Sarvia, F.[Filippo], Somard, J.[Jaturong],
Monitoring Agricultural Land and Land Cover Change from 2001-2021 of the Chi River Basin, Thailand Using Multi-Temporal Landsat Data Based on Google Earth Engine,
RS(15), No. 17, 2023, pp. 4339.
DOI Link 2310
BibRef

Chang, S.Z.[Shi-Zhen], Ghamisi, P.[Pedram],
Changes to Captions: An Attentive Network for Remote Sensing Change Captioning,
IP(32), 2023, pp. 6047-6060.
IEEE DOI Code:
WWW Link. 2311
BibRef

Chen, M.[Min], Zhang, Q.[Qiangjiang], Ge, X.M.[Xu-Ming], Xu, B.[Bo], Hu, H.[Han], Zhu, Q.[Qing], Zhang, X.[Xin],
A Full-Scale Connected CNN-Transformer Network for Remote Sensing Image Change Detection,
RS(15), No. 22, 2023, pp. 5383.
DOI Link 2311
BibRef

Chen, H.R.X.[Hong-Rui-Xuan], Song, J.[Jian], Wu, C.[Chen], Du, B.[Bo], Yokoya, N.[Naoto],
Exchange means change: An unsupervised single-temporal change detection framework based on intra- and inter-image patch exchange,
PandRS(206), 2023, pp. 87-105.
Elsevier DOI 2312
Single-temporal change detection, Image patch exchange, Adaptive clustering, Deep learning, Convolutional neural network BibRef

Maiwald, F.[Ferdinand], Feurer, D.[Denis], Eltner, A.[Anette],
Solving photogrammetric cold cases using AI-based image matching: New potential for monitoring the past with historical aerial images,
PandRS(206), 2023, pp. 184-200.
Elsevier DOI Code:
WWW Link. 2312
Historical aerial images, Feature matching, Neural networks, Structure-from-motion, Digital surface model, Multi-temporal BibRef

Cai, C.[Chen], Wang, Y.[Yi], Yap, K.H.[Kim-Hui],
Interactive Change-Aware Transformer Network for Remote Sensing Image Change Captioning,
RS(15), No. 23, 2023, pp. 5611.
DOI Link 2312
BibRef

Matyukira, C.[Charles], Mhangara, P.[Paidamwoyo],
Land Cover and Landscape Structural Changes Using Extreme Gradient Boosting Random Forest and Fragmentation Analysis,
RS(15), No. 23, 2023, pp. 5520.
DOI Link 2312
BibRef

Zhu, D.[Daoye], Han, B.[Bing], Silva, E.A.[Elisabete A.], Li, S.[Shuang], Huang, M.[Min], Ren, F.[Fuhu], Cheng, C.Q.[Cheng-Qi],
Novel Grid Collection and Management Model of Remote Sensing Change Detection Samples,
RS(15), No. 23, 2023, pp. 5528.
DOI Link 2312
BibRef

Ma, H.L.[Hang-Ling], Zhao, L.R.[Ling-Ran], Li, B.Q.[Bing-Quan], Niu, R.Q.[Rui-Qing], Wang, Y.Y.[Yue-Yue],
Change Detection Needs Neighborhood Interaction in Transformer,
RS(15), No. 23, 2023, pp. 5459.
DOI Link 2312
BibRef

Qu, F.[Fang], Sun, Y.Q.[You-Qiang], Zhou, M.[Man], Liu, L.[Liu], Yang, H.M.[Hua-Min], Zhang, J.Q.[Jun-Qing], Huang, H.[He], Hong, D.F.[Dan-Feng],
Vegetation Land Segmentation with Multi-Modal and Multi-Temporal Remote Sensing Images: A Temporal Learning Approach and a New Dataset,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
multi-temporal; multi-modal; Vegetation Knowledge Graph (VKG); VRS-Sys; VRSFormer BibRef

Racic, M.[Matej], Oštir, K.[Krištof], Zupanc, A.[Anže], Zajc, L.C.[Luka Cehovin],
Multi-Year Time Series Transfer Learning: Application of Early Crop Classification,
RS(16), No. 2, 2024, pp. 270.
DOI Link 2402
BibRef

Wang, Y.K.[Yu-Kun], Wang, M.M.[Meng-Meng], Hao, Z.[Zhonghu], Wang, Q.[Qiang], Wang, Q.W.[Qian-Wen], Ye, Y.Y.X.[Yuan-Yan-Xin],
MSGFNet: Multi-Scale Gated Fusion Network for Remote Sensing Image Change Detection,
RS(16), No. 3, 2024, pp. 572.
DOI Link 2402
BibRef

Cao, B.[Bo], Wang, Y.[Yan], Zhang, X.L.[Xiao-Long], Shen, Y.J.[Yan-Jun],
Spatial Heterogeneity and the Increasing Trend of Vegetation and Their Driving Mechanisms in the Mountainous Area of Haihe River Basin,
RS(16), No. 3, 2024, pp. 587.
DOI Link 2402
BibRef

Wang, L.K.[Lu-Kang], Zhang, M.[Min], Gao, X.[Xu], Shi, W.Z.[Wen-Zhong],
Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms,
RS(16), No. 5, 2024, pp. 804.
DOI Link 2403
BibRef

Zhou, M.[Meng], Qian, W.X.[Wei-Xian], Ren, K.[Kan],
Multistage Interaction Network for Remote Sensing Change Detection,
RS(16), No. 6, 2024, pp. 1077.
DOI Link 2403
BibRef

Kumawat, M.[Manisha], Khaparde, A.[Arti],
Time-Variant Satellite Vegetation Classification Enabled by Hybrid Metaheuristic-Based Adaptive Time-Weighted Dynamic Time Warping,
IJIG(24), No. 2, March 2024, pp. 2450016.
DOI Link 2404
BibRef

Oubara, A.[Amel], Wu, F.[Falin], Maleki, R.[Reza], Ma, B.[Boyi], Amamra, A.[Abdenour], Yang, G.[Gongliu],
Enhancing Adversarial Learning-Based Change Detection in Imbalanced Datasets Using Artificial Image Generation and Attention Mechanism,
IJGI(13), No. 4, 2024, pp. 125.
DOI Link 2405
BibRef

Dubrovin, K.[Konstantin], Verkhoturov, A.[Andrey], Stepanov, A.[Alexey], Aseeva, T.[Tatiana],
Multi-Year Cropland Mapping Based on Remote Sensing Data: A Case Study for the Khabarovsk Territory, Russia,
RS(16), No. 9, 2024, pp. 1633.
DOI Link 2405
BibRef

Che, X.[Xianghong], Zhang, H.K.[Hankui K.], Li, Z.B.B.[Zhong-Bin B.], Wang, Y.[Yong], Sun, Q.[Qing], Luo, D.[Dong], Wang, H.[Hao],
Linearly interpolating missing values in time series helps little for land cover classification using recurrent or attention networks,
PandRS(212), 2024, pp. 73-95.
Elsevier DOI 2406
Satellite image time series, Linear interpolation, Missing values, Landsat and Sentinel-2, Transformer BibRef

Lin, L.J.[Lu-Jun], Liu, L.[Lei], Liu, M.[Ming], Zhang, Q.J.[Qun-Jia], Feng, M.[Min], Khalil, Y.S.[Yasir Shaheen], Yin, F.[Fang],
DEDNet: Dual-Encoder DeeplabV3+ Network for Rock Glacier Recognition Based on Multispectral Remote Sensing Image,
RS(16), No. 14, 2024, pp. 2603.
DOI Link 2408
BibRef


Zheng, Z.[Zhuo], Tian, S.Q.[Shi-Qi], Ma, A.[Ailong], Zhang, L.P.[Liang-Pei], Zhong, Y.F.[Yan-Fei],
Scalable Multi-Temporal Remote Sensing Change Data Generation via Simulating Stochastic Change Process,
ICCV23(21761-21770)
IEEE DOI 2401
BibRef

Arja, S.[Sami], Marcireau, A.[Alexandre], Balthazor, R.L.[Richard L.], McHarg, M.G.[Matthew G.], Afshar, S.[Saeed], Cohen, G.[Gregory],
Density Invariant Contrast Maximization for Neuromorphic Earth Observations,
EventVision23(3984-3994)
IEEE DOI 2309
BibRef

Diaw, M.[Moustapha], Landré, J.[Jérôme], Delahaies, A.[Agnčs], Morain-Nicolier, F.[Frédéric], Retraint, F.[Florent],
Satellite Image Change Detection Using Disjoint Information and Local Dissimilarity Map,
ICIP22(36-40)
IEEE DOI 2211
Deep learning, Satellites, Change detection, Disjoint Information, Local Dissimilarity Map, Weibull threshold BibRef

Toker, A.[Aysim], Kondmann, L.[Lukas], Weber, M.[Mark], Eisenberger, M.[Marvin], Camero, A.[Andrés], Hu, J.L.[Jing-Liang], Hoderlein, A.P.[Ariadna Pregel], Senaras, Ç.[Çaglar], Davis, T.[Timothy], Cremers, D.[Daniel], Marchisio, G.[Giovanni], Zhu, X.X.[Xiao Xiang], Leal-Taixé, L.[Laura],
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation,
CVPR22(21126-21135)
IEEE DOI 2210
Image segmentation, Satellites, Protocols, Annotations, Semantics, Training data, Semisupervised learning, Datasets and evaluation BibRef

Zheng, Z.[Zhuo], Ma, A.L.[Ai-Long], Zhang, L.P.[Liang-Pei], Zhong, Y.F.[Yan-Fei],
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery,
ICCV21(15173-15182)
IEEE DOI 2203
Image segmentation, Supervised learning, Semantics, Detectors, Solids, Representation learning BibRef

Olayinka, D.N., Omolaye, K.L., Ilesanmi, A.J., Okolie, C.J., Arungwa, I.D.,
Application of UAV Surveys for Evaluating the Productivity Levels of Traditional and Mechanised Farmers in a Customary Land Tenure System,
ISPRS21(B3-2021: 617-622).
DOI Link 2201
BibRef

Qadeer, M.U.[Muhammad Usman], Saeed, S.[Salar], Taj, M.[Murtaza], Muhammad, A.[Abubakr],
Spatio-Temporal Crop Classification on Volumetric Data,
ICIP21(3812-3816)
IEEE DOI 2201
Solid modeling, Satellites, Image processing, Benchmark testing, Developing countries, Satellite data, CNN, Crop Classification BibRef

Verma, S.[Sagar], Panigrahi, A.[Akash], Gupta, S.[Siddharth],
QFabric: Multi-Task Change Detection Dataset,
EarthVision21(1052-1061)
IEEE DOI 2109
Dataset, Change Detection. Deep learning, Urban areas, Predictive models, Benchmark testing, Metadata, Pattern recognition BibRef

Tuna, C., Merciol, F.[François], Lefčvre, S.[Sébastien],
Spatio-Temporal Object Stability for Monitoring Evolving Areas In Satellite Image Time Series,
ISPRS20(B2:1273-1280).
DOI Link 2012
BibRef

Karakizi, C., Tsiotas, I.A., Kandylakis, Z., Vaiopoulos, A., Karantzalos, K.,
Assessing the Contribution of Spectral and Temporal Features for Annual Land Cover and Crop Type Mapping,
ISPRS20(B3:1555-1562).
DOI Link 2012
BibRef

Molinari, M.E., Monti-Guarnieri, A., Manzoni, M.,
A Novel Index for Temporal Stability Analysis In Space and Time Of SAR-derived Scenes,
ISPRS20(B3:1577-1583).
DOI Link 2012
BibRef

Mondal, M.S., Sharma, N., Kappas, M., Garg, P.K.,
Cellular Automata (ca) Contiguity Filters Impacts on CA Markov Modeling Of Land Use Land Cover Change Predictions Results,
ISPRS20(B3:1585-1591).
DOI Link 2012
BibRef

Belgiu, M., Zhou, Y., Marshall, M., Stein, A.,
Dynamic Time Warping for Crops Mapping,
ISPRS20(B3:947-951).
DOI Link 2012
BibRef

Rimba, A.B., Atmaja, T., Mohan, G., Chapagain, S.K., Arumansawang, A., Payus, C., Fukushi, K.,
Identifying Land Use and Land Cover (LULC) Change From 2000 to 2025 Driven By Tourism Growth: A Study Case In Bali,
ISPRS20(B3:1621-1627).
DOI Link 2012
BibRef

Nguyen, H.T.T., Pham, T.A., Doan, M.T., Tran, P.T.X.,
Land Use/land Cover Change Prediction Using Multi-temporal Satellite Imagery and Multi-layer Perceptron Markov Model,
Gi4DM20(99-105).
DOI Link 2012
BibRef

Nasirzadehdizaji, R., Sanli, F.B., Cakir, Z.,
Application of Sentinel-1 Multi-temporal Data for Crop Monitoring And Mapping,
SMPR19(803-807).
DOI Link 1912
BibRef

Najafi, Z., Fatehi, P., Darvishsefat, A.A.,
Vegetation Dynamics Trend Using Satellite Time Series Imagery,
SMPR19(783-788).
DOI Link 1912
BibRef

Kerdegari, H.[Hamideh], Razaak, M.[Manzoor], Argyriou, V.[Vasileios], Remagnino, P.[Paolo],
Smart Monitoring of Crops Using Generative Adversarial Networks,
CAIP19(I:554-563).
Springer DOI 1909
BibRef

Ouyang, S., Fan, K., Wang, H., Wang, Z.,
Change Detection of Remote Sensing Images By DT-CWT and MRF,
Hannover17(3-10).
DOI Link 1805
BibRef

Dumitru, C.O., Schwarz, G., Datcu, M.,
Machine Learning Techniques for Knowledge Extraction From Satellite Images: Application to Specific Area Types,
ISPRS21(B3-2021: 455-462).
DOI Link 2201
BibRef
And:
Image representation alternatives for the analysis of satellite image time series,
MultiTemp17(1-4)
IEEE DOI 1712
data analysis, feature extraction, geophysical image processing, geophysical techniques, image representation, semantics BibRef

Kukawska, E., Lewinski, S., Krupinski, M., Malinowski, R., Nowakowski, A., Rybicki, M., Kotarba, A.,
Multitemporal Sentinel-2 data: remarks and observations,
MultiTemp17(1-4)
IEEE DOI 1712
land cover, ESA, European Space Agency, Sentinel-2 system, data end users, land cover data base, Time series analysis BibRef

Pelletier, C., Valero, S., Inglada, J., Dedieu, G., Champion, N.,
Filtering mislabeled data for improving time series classification,
MultiTemp17(1-4)
IEEE DOI 1712
vegetation, accurate land cover maps, filtering mislabeled data, geographical area, improving time series classification, Vegetation BibRef

Luppino, L.T.[Luigi Tommaso], Anfinsen, S.N.[Stian Normann], Moser, G.[Gabriele], Jenssen, R.[Robert], Bianchi, F.M.[Filippo Maria], Serpico, S.[Sebastiano], Mercier, G.[Gregoire],
A Clustering Approach to Heterogeneous Change Detection,
SCIA17(II: 181-192).
Springer DOI 1706
heterogeneous multitemporal satellite images. BibRef

Diaz, P.M.A., Feitosa, R.Q., Sanches, I.D., Costa, G.A.O.P.,
A Method To Estimate Temporal Interaction In A Conditional Random Field Based Approach For Crop Recognition,
ISPRS16(B7: 205-211).
DOI Link 1610
BibRef

Ding, Y.L.[Yu-Lin], Lin, H.[Hui], Li, R.R.[Rong-Rong],
Change Semantic Constrained Online Data Cleaning Method For Real-time Observational Data Stream,
ISPRS16(B2: 177-183).
DOI Link 1610
BibRef

Xie, Z.L.[Zhen-Lei], Shi, R.M.[Ruo-Ming], Zhu, L.[Ling], Peng, S.[Shu], Chen, X.[Xu],
Comparison Of Pixel-based And Object-oriented Land Cover Change Detection Methods,
ISPRS16(B7: 579-583).
DOI Link 1610
BibRef

Zhang, H.P.[Hao-Peng], Jiang, Z.G.[Zhi-Guo], Cheng, Y.[Yan],
Land Cover Change Detection Using Saliency and Wavelet Transformation,
ISPRS16(B7: 601-605).
DOI Link 1610
BibRef

Colomo-Jiménez, C., Pérez-García, J.L., Fernández-del Castillo, T., Gómez-López, J.M., Mozas-Calvache, A.T.,
Methodology For Orientation And Fusion Of Photogrammetric And Lidar Datas For Multitemporal Studies,
ISPRS16(B7: 639-645).
DOI Link 1610
BibRef

Areshkina, L.V., Belazerskii, L.A., Oreshkin, N.,
The Automation of the Process of Land Area Change Detection in Permanent Monitoring Systems,
Geospatial15(619-624).
DOI Link 1602
BibRef

Moller, M., Gerstmann, H., Thurkow, D., Gao, F.[Feng], Forster, M.,
Coupling of phenological information and synthetically generated time-series for crop types as indicator for vegetation coverage information,
MultiTemp15(1-4)
IEEE DOI 1511
crops BibRef

Gressin, A.[Adrien], Vincent, N.[Nicole], Mallet, C.[Clement], Paparoditis, N.[Nicolas],
A unified framework for land-cover database update and enrichment using satellite imagery,
ICIP14(5057-5061)
IEEE DOI 1502
Accuracy BibRef

Iwaniak, A., Lukowicz, J., Strzelecki, M., Kaczmarek, I.,
Ontology Driven Analysis of Spatio-temporal Phenomena, Aimed At Spatial Planning And Environmental Forecasting,
SSG13(119-124).
DOI Link 1402
BibRef

Hyun, C.U., Lee, J.S., Lee, I.,
Assessment of hydrogen fluoride damage to vegetation using optical remote sensing data,
SSG13(115-118).
DOI Link 1402
BibRef

Kesikoglu, M.H., Atasever, Ü.H., Özkan, C.,
Unsupervised change detection in satellite images using fuzzy c-means clustering and principal component analysis,
SSG13(129-132).
DOI Link 1402
BibRef

Sasagawa, A., Baltsavias, E., Kocaman Aksakal, S., Wegner, J.D.,
Investigation on automatic change detection using pixel-changes and DSM-changes with ALOS-PRISM triplet images,
SSG13(213-217).
DOI Link 1402
BibRef

Vahidi, H., Monabbati, E.,
Contextual Image Classification Approach for Monitoring of Agricultural Land Cover by Support Vector Machines and Markov Random Fields,
SMPR13(441-446).
DOI Link 1311
BibRef

Luzi, G., Crosetto, M., Devanthéry, N., Cuevas, M., Meng, X.,
Change Detection and Dynamic Analysis Based on Remote Sensing Images,
IWIDF13(185-188).
DOI Link 1311
BibRef

Choi, G.M.[Gveong Min], Junz, H.I.[Hvun Il], Kim, R.K.[Rae Kwang], Oh, W.G.[Weon Geun],
Image modeling system development for robust descriptor of environmental change,
FCV13(64-66).
IEEE DOI 1304
BibRef

Madhava Rao, V., Hermon, R.R., Kesava Rao, P., Phanindra Kumar, T.,
Impact Assessment of Watershed In Desert Region,
ISPRS12(XXXIX-B8:327-331).
DOI Link 1209
BibRef

Braun, A.C., Weidner, U., Hinz, S.,
Kernel-composition For Change Detection In Medium Resolution Remote Sensing Data,
ISPRS12(XXXIX-B7:281-286).
DOI Link 1209
BibRef

Wang, J., Koizumi, H., Kamiya, T.,
Accuracy Improvement of Change Detection Based on Color Analysis,
ISPRS12(XXXIX-B7:357-361).
DOI Link 1209
BibRef

Artese, G., Achilli, V., Fabris, M., Perrelli, M.,
A Semiautomatic Anomalous Change Detection Method For Monitoring Aims,
ISPRS12(XXXIX-B7:263-268).
DOI Link 1209
BibRef

Šafár, V., Ždímal, V.,
Identification Of Land Cover In The Past Using Infrared Images At Present,
ISPRS12(XXXIX-B7:229-234).
DOI Link 1209
BibRef

Salleh, S.A., Abd Latif, Z., Wan Mohd, W.M.N., Chan, A.,
Albedo Pattern Recognition And Time-series Analyses In Malaysia,
ISPRS12(XXXIX-B7:235-240).
DOI Link 1209
BibRef

Waldhoff, G., Curdt, C., Hoffmeister, D., Bareth, G.,
Analysis of Multitemporal and Multisensor Remote Sensing Data for Crop Rotation Mapping,
AnnalsPRS(I-7), No. 2012, pp. 177-182.
DOI Link 1209
BibRef

Zhu, B.[Bo], Gong, W.[Wei], Shi, S.[Shuo], Song, S.L.[Sha-Lei], Ma, Y.Y.[Ying-Ying],
A New Effective Way On Vegetation Mornitoring Using Multi-spectral Canopy Lidar,
ISPRS12(XXXIX-B1:83-85).
DOI Link 1209
BibRef

Rodrigues, A.[Arlete], Marcal, A.R.S.[Andre R. S.], Cunha, M.[Mario],
PhenoSat: A tool for vegetation temporal analysis from satellite image data,
MultiTemp11(45-48).
IEEE DOI 1109
BibRef

Small, C.[Christopher],
Spatiotemporal dimensionality and time-space characterization of vegetation phenology from multitemporal MODIS EVI,
MultiTemp11(65-68).
IEEE DOI 1109
BibRef

Aiazzi, B., Alparone, L., Baronti, S., Carla, R., Garzelli, A., Santurri, L., Selva, M.,
Effects of multitemporal scene changes on pansharpening fusion,
MultiTemp11(73-76).
IEEE DOI 1109
BibRef

Ruiz, L.A., Recio, J.A., Hermosilla, T., Fernández-Sarría, A.,
Identification of Agricultural and Land Cover Database Changes Using Object-oriented Classification Techniques,
RSE09(xx-yy)
PDF File. 1204
BibRef

Masse, A.[Antoine], Ducrot, D.[Danielle], Marthon, P.[Philippe],
Tools for multitemporal analysis and classification of multisource satellite imagery,
MultiTemp11(209-212).
IEEE DOI 1109
BibRef

Caccetta, P., Collings, S., Hingee, K., McFarlane, D., Wu, X.L.[Xiao-Liang],
Fine-Scale Monitoring of Complex Environments Using Remotely Sensed Aerial, Satellite, and Other Spatial Data,
ISIDF11(1-5).
IEEE DOI 1111
BibRef

Cui, S.Y.[Shi-Yong], Datcu, M.,
Mining Satellite Image Time Series: Statistical Modeling and Evolution Analysis,
ISIDF11(1-4).
IEEE DOI 1111
BibRef

Ma, Y.[Yuan], Li, H.T.[Hai-Tao], Gu, H.Y.[Hai-Yan],
A Study of Fast Change Detection Algorithm Based on Feature Library of Remote Sensing Imagery,
ISIDF11(1-3).
IEEE DOI 1111
BibRef

Li, S.[Shuang], Xie, Y.C.[Yi-Chun], Meng, L.K.[Ling-Kui],
Monitoring land cover changes in Hulun Buir by using object-oriented method,
MultiTemp11(29-32).
IEEE DOI 1109
BibRef

He, F.Q.[Fen-Qin], Yin, J.Z.[Jian-Zhong],
Research on CA Differencing for Remote Sensing Change Detection,
CISP09(1-4).
IEEE DOI 0910
BibRef

Parulekar, R., Davis, L.S., Chellappa, R., Saltz, J., Sussman, A., Townshend, J.,
High performance computing for land cover dynamics,
ICPR94(C:234-238).
IEEE DOI 9410
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Very High Resolution Land Cover Change Analysis .


Last update:Aug 28, 2024 at 16:02:19