Semantic Boundaries Dataset and Benchmark,
Online2011.
Dataset, Segmentation.
HTML Version. or:
HTML Version.
See also Semantic contours from inverse detectors. Related to:
See also Berkeley Segmentation Dataset and Benchmark, The.
See also PASCAL Visual Object Classes Challenge 2012, The.
BibRef
1100
Sinclair, D.A.,
Blake, A.,
Isoperimetric Normalization of Planar Curves,
PAMI(16), No. 8, August 1994, pp. 769-777.
IEEE DOI
See also Planar Region Detection and Motion Recovery.
BibRef
9408
Sinclair, D.A.,
Blake, A.,
Quantitative Planar Region Detection,
IJCV(18), No. 1, April 1996, pp. 77-91.
Springer DOI
9605
BibRef
Ronfard, R.,
Region-Based Strategies for Active Contour Models,
IJCV(13), No. 2, October 1994, pp. 229-251.
Springer DOI Introduces heuristic rules to derive equations for a snake,
using local statistics of the regions around the contour.
BibRef
9410
Ivins, J.P.[Jim P.],
Porrill, J.[John],
Active-Region Models for Segmenting Textures and Colors,
IVC(13), No. 5, June 1995, pp. 431-438.
Elsevier DOI
BibRef
9506
And:
Active-Region Models for Segmenting Medical Images,
ICIP94(II: 227-231).
IEEE DOI
9411
BibRef
Earlier:
Statistical Snakes: Active Region Models,
BMVC94(xx-yy).
PDF File.
9409
BibRef
And: A1, Only:
Ph.D.Thesis, Univ. of Sheffield, 1996.
See also Semiautomatic Tool for 3-D Medical Image Analysis Using Active Contour Models, A.
BibRef
Ivins, J.P.[Jim P.],
Porrill, J.[John],
Constrained Active Region Models for Fast Tracking in
Color Image Sequences,
CVIU(72), No. 1, October 1998, pp. 54-71.
DOI Link
BibRef
9810
Zhu, S.C.[Song-Chun],
Yuille, A.L.[Alan L.],
Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for
Multiband Image Segmentation,
PAMI(18), No. 9, September 1996, pp. 884-900.
IEEE DOI
BibRef
9609
Earlier:
Add A2:
Lee, T.S.,
ICCV95(416-423).
IEEE DOI
Award, ICCV Test of Time.
BibRef
And:
Region Competition and its Analysis:
A Unified Theory for Image Segmentation,
HarvardTR-95-07, 1995.
Bayes Nets.
Region Growing.
Minimum Description Length.
Color Models. These are the same if viewed in the right way.
Problems with different size regions.
BibRef
Tu, Z.W.[Zhuo-Wen],
Chen, X.R.[Xiang-Rong],
Yuille, A.L.[Alan L.],
Zhu, S.C.[Song-Chun],
Image Parsing: Unifying Segmentation, Detection, and Recognition,
IJCV(63), No. 2, July 2005, pp. 113-140.
Springer DOI
0501
BibRef
And:
CLOR06(545-576).
Springer DOI
0711
BibRef
Earlier:
ICCV03(18-25).
IEEE DOI
0311
Award, Marr Prize.
BibRef
Dubinskiy, A.,
Zhu, S.C.[Song Chun],
A multi-scale generative model for animate shapes and parts,
ICCV03(249-256).
IEEE DOI
0311
Model shapes and parts.
BibRef
Chan, F.H.Y.,
Lam, F.K.,
Poon, P.W.F.,
Zhu, H.,
Chan, K.H.,
Object Boundary Location by Region and Contour Deformation,
VISP(143), No. 6, December 1996, pp. 353-360.
9702
BibRef
Milroy, M.J.,
Bradley, C.,
Vickers, G.W.,
Segmentation of a Wrap-Around Model Using an Active Contour,
CAD(29), No. 4, April 1997, pp. 299-320.
9703
BibRef
Grzeszczuk, R.P.[Robert P.],
Levin, D.N.[David N.],
Brownian Strings:
Segmenting Images with Stochastically Deformable Contours,
PAMI(19), No. 10, October 1997, pp. 1100-1114.
IEEE DOI
9710
Use simulated annealing so less dependant on initial contour.
BibRef
Levin, D.N.[David N.],
Grzeszczuk, R.P.[Robert P.],
Method and apparatus for segmenting images using stochastically
deformable contours,
US_Patent5,768,413, Jun 16, 1998
WWW Link. arbitrarily shaped contour is deformed stochastically until it
approximates the contour of a target object
BibRef
9806
Ip, H.H.S.[Horace H.S.],
Shen, D.G.[Ding-Gang],
An Affine-Invariant Active Contour Model (AI-Snake) for
Model-Based Segmentation,
IVC(16), No. 2, February 20 1998, pp. 135-146.
Elsevier DOI
9803
See also Hopfield Neural-Network for Adaptive Image Segmentation: An Active Surface Paradigm, A.
BibRef
Vilarino, D.L.,
Brea, V.M.,
Cabello, D.,
Pardo, J.M.,
Discrete-Time CNN for Image Segmentation by Active Contours,
PRL(19), No. 8, June 1998, pp. 721-734.
9808
BibRef
Pardo, X.M.,
Cabello, D.,
Biomedical active segmentation guided by edge saliency,
PRL(21), No. 6-7, June 2000, pp. 559-572.
0006
BibRef
Vilariño, D.L.[David L.],
Cabello, D.[Diego],
Pardo, X.M.[Xose M.],
Brea, V.M.[Victof M.],
Cellular neural networks and active contours:
A tool for image segmentation,
IVC(21), No. 2, February 2003, pp. 189-204.
Elsevier DOI
0301
BibRef
Earlier:
Pixel-level Snakes,
ICPR00(Vol I: 640-643).
IEEE DOI
0009
BibRef
Ngoi, K.P.,
Jia, J.C.,
An active contour model for colour region extraction in natural scenes,
IVC(17), No. 13, 1 November 1999, pp. 955-966.
Elsevier DOI
9911
BibRef
Earlier:
A Robust Active Contour Model for Natural Scene Contour Extraction
with Automatic Thresholding,
ECCV96(II:335-346).
Springer DOI Extract various objects from images.
BibRef
Sclaroff, S.[Stan],
Liu, L.F.[Li-Feng],
Deformable Shape Detection and Description via Model-Based Region
Grouping,
PAMI(23), No. 5, May 2001, pp. 475-489.
IEEE DOI
0105
BibRef
And:
Corrections:
PAMI(23), No. 6, June 2001, pp. 686.
IEEE DOI
0106
BibRef
Earlier: A2, A1:
CVPR99(II: 21-27).
IEEE DOI Partition the image using deformable shape templates.
By using learned templates, shapes are segmented from background.
BibRef
Liu, L.F.[Li-Feng],
Sclaroff, S.[Stan],
Deformable model-guided region split and merge of image regions,
IVC(22), No. 4, 1 April 2004, pp. 343-354.
Elsevier DOI
0402
BibRef
Earlier:
Region Segmentation via Deformable Model-Guided Split and Merge,
ICCV01(I: 98-104).
IEEE DOI
0106
BibRef
And:
Shape-Guided Split and Merge of Image Regions,
VF01(367 ff.).
Springer DOI
0209
BibRef
Germain, O.[Olivier],
Réfrégier, P.[Philippe],
Statistical active grid for segmentation refinement,
PRL(22), No. 10, August 2001, pp. 1125-1132.
Elsevier DOI
0108
BibRef
Jang, J.H.[Jeong-Hun],
Hong, K.S.[Ki-Sang],
Detection of curvilinear structures and reconstruction of their regions
in gray-scale images,
PR(35), No. 4, April 2002, pp. 807-824.
Elsevier DOI
0201
See also Linear band detection based on the Euclidean distance transform and a new line segment extraction method.
BibRef
Ji, L.[Lilian],
Yan, H.[Hong],
Robust Topology-adaptive Snakes for Image Segmentation,
IVC(20), No. 2, February 2002, pp. 147-164.
Elsevier DOI
0202
BibRef
Earlier:
ICIP01(II: 797-800).
IEEE DOI
0108
BibRef
Ji, L.[Lilian],
Yan, H.[Hong],
Attractable snakes based on the greedy algorithm for contour extraction,
PR(35), No. 4, April 2002, pp. 791-806.
Elsevier DOI
0201
BibRef
Ji, L.[Lilian],
Yan, H.[Hong],
Loop-free snakes for highly irregular object shapes,
PRL(23), No. 5, March 2002, pp. 579-591.
Elsevier DOI
0202
BibRef
Earlier:
Loop-Free Snakes for Image Segmentation,
ICIP99(III:193-197).
IEEE DOI
BibRef
Mahamud, S.[Shyjan],
Williams, L.R.[Lance R.],
Thornber, K.K.[Karvel K.],
Xu, K.L.[Kang-Lin],
Segmentation of multiple salient closed contours from real images,
PAMI(25), No. 4, April 2003, pp. 433-444.
IEEE Abstract.
0304
BibRef
Earlier: A1, A3, A2, Only:
Segmentation of Salient Closed Contours from Real Images,
ICCV99(891-897).
IEEE DOI Based on a global property, identify smooth closed contours.
BibRef
Bergtholdt, M.[Martin],
Kappes, J.H.[Jörg H.],
Schmidt, S.[Stefan],
Schnörr, C.[Christoph],
A Study of Parts-Based Object Class Detection Using Complete Graphs,
IJCV(87), No. 1-2, March 2010, pp. xx-yy.
Springer DOI
1001
Part based.
BibRef
Andres, B.[Bjoern],
Kappes, J.H.[Jorg H.],
Beier, T.[Thorsten],
Kothe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Probabilistic image segmentation with closedness constraints,
ICCV11(2611-2618).
IEEE DOI
1201
BibRef
Kappes, J.H.[Jörg Hendrik],
Swoboda, P.[Paul],
Savchynskyy, B.[Bogdan],
Hazan, T.[Tamir],
Schnörr, C.[Christoph],
Multicuts and Perturb and MAP for Probabilistic Graph Clustering,
JMIV(56), No. 2, October 2016, pp. 221-237.
Springer DOI
1609
BibRef
Earlier:
Probabilistic Correlation Clustering and Image Partitioning Using
Perturbed Multicuts,
SSVM15(231-242).
Springer DOI
1506
BibRef
Kappes, J.H.[Jörg Hendrik],
Speth, M.[Markus],
Andres, B.[Björn],
Reinelt, G.[Gerhard],
Schnörr, C.[Christoph],
Globally Optimal Image Partitioning by Multicuts,
EMMCVPR11(31-44).
Springer DOI
1107
BibRef
Savchynskyy, B.[Bogdan],
Kappes, J.H.[Jörg Hendrik],
Schmidt, S.[Stefan],
Schnörr, C.[Christoph],
A study of Nesterov's scheme for Lagrangian decomposition and MAP
labeling,
CVPR11(1817-1823).
IEEE DOI
1106
BibRef
Earlier: A3, A1, A2, A4:
Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy
Minimization,
EMMCVPR11(89-103).
Springer DOI
1107
BibRef
Earlier: A2, A3, A4, Only:
MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation,
ECCV10(III: 735-747).
Springer DOI
1009
BibRef
Earlier: A2, A4, Only:
MAP-Inference for Highly-Connected Graphs with DC-Programming,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Bergtholdt, M.[Martin],
Kappes, J.H.[Jörg H.],
Schnörr, C.[Christoph],
Learning of Graphical Models and Efficient Inference for Object Class
Recognition,
DAGM06(273-283).
Springer DOI
0610
BibRef
Agnus, V.[Vincent],
Segmentation d'images par cooperation contours-regions,
M.S.Thesis, 1997, Strasbourg, France.
Study an approach based on combining edge and regions techniques.
PS File.
BibRef
9700
Feddern, C.[Christian],
Weickert, J.[Joachim],
Burgeth, B.[Bernhard],
Welk, M.[Martin],
Curvature-Driven PDE Methods for Matrix-Valued Images,
IJCV(69), No. 1, August 2006, pp. 93-107.
Springer DOI
0606
BibRef
Earlier: A3, A4, A1, A2:
Morphological Operations on Matrix-Valued Images,
ECCV04(Vol IV: 155-167).
Springer DOI
0405
Applied to diffusion tensor magnetic resonance imaging.
Detecting edges in tensor fields.
Tensorial active contours.
See also Tensor-driven Active Contour Model for Moving Object Segmentation, A.
BibRef
Burgeth, B.[Bernhard],
Bruhn, A.[Andres],
Didas, S.[Stephan],
Weickert, J.[Joachim],
Welk, M.[Martin],
Morphology for matrix data: Ordering versus PDE-based approach,
IVC(25), No. 4, April 2007, pp. 496-511.
Elsevier DOI
0702
Mathematical morphology; Dilation; Erosion; Matrix-valued images;
Diffusion tensor MRI; Loewner ordering; Nonlinear partial differential equation
BibRef
Zagorchev, L.[Lyubomir],
Goshtasby, A.[Ardeshir],
Satter, M.[Martin],
R-snakes,
IVC(25), No. 6, 1 June 2007, pp. 945-959.
Elsevier DOI
0704
Image segmentation; Energy minimizing contours; R-snakes
BibRef
Li, B.[Bing],
Acton, S.T.[Scott T.],
Active Contour External Force Using Vector Field Convolution for Image
Segmentation,
IP(16), No. 8, August 2007, pp. 2096-2106.
IEEE DOI
0709
BibRef
Earlier:
Vector Field Convolution for Image Segmentation using Snakes,
ICIP06(1637-1640).
IEEE DOI
0610
BibRef
Earlier:
Feature Weighted Active Contours for Image Segmentation,
Southwest06(188-192).
IEEE DOI
0603
BibRef
Widynski, N.[Nicolas],
Mignotte, M.[Max],
A Multi-Scale Particle Filter Framework for Contour Detection,
PAMI(36), No. 10, October 2014, pp. 1922-1935.
IEEE DOI
1410
BibRef
Earlier:
A Particle Filter Framework for Contour Detection,
ECCV12(I: 780-793).
Springer DOI
1210
Bayes methods
BibRef
Destrempes, F.[Francois],
Mignotte, M.[Max],
Angers, J.F.[Jean-Francois],
Localization of Shapes Using Statistical Models and Stochastic
Optimization,
PAMI(29), No. 9, September 2007, pp. 1603-1615.
IEEE DOI
0709
Color segmentation based on deformations.
BibRef
Ferrari, V.[Vittorio],
Fevrier, L.,
Jurie, F.[Frederic],
Schmid, C.[Cordelia],
Groups of Adjacent Contour Segments for Object Detection,
PAMI(30), No. 1, January 2008, pp. 36-51.
IEEE DOI
0711
Scale invariant features from chains of straight line segments.
BibRef
Ferrari, V.[Vittorio],
Jurie, F.[Frederic],
Schmid, C.[Cordelia],
From Images to Shape Models for Object Detection,
IJCV(87), No. 3, May 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Earlier:
Accurate Object Detection with Deformable Shape Models Learnt from
Images,
CVPR07(1-8).
IEEE DOI
0706
Object detector: learn models from the image.
Shape Matching: find the boundaries.
Training only needs bounding boxes, not boundaries.
BibRef
Kalogeiton, V.[Vicky],
Ferrari, V.[Vittorio],
Schmid, C.[Cordelia],
Analysing Domain Shift Factors between Videos and Images for Object
Detection,
PAMI(38), No. 11, November 2016, pp. 2327-2334.
IEEE DOI
1610
Issues of using still and video for model creation.
Computer vision
BibRef
Kalogeiton, V.[Vicky],
Weinzaepfel, P.,
Ferrari, V.[Vittorio],
Schmid, C.[Cordelia],
Joint Learning of Object and Action Detectors,
ICCV17(2001-2010)
IEEE DOI
1802
image motion analysis, learning (artificial intelligence),
object detection, object recognition, action detection benefit,
Videos
BibRef
Bergo, F.P.G.[Felipe P.G.],
Falcão, A.X.[Alexandre X.],
de Miranda, P.A.V.[Paulo A.V.],
Rocha, L.M.[Leonardo M.],
Automatic Image Segmentation by Tree Pruning,
JMIV(29), No. 2-3, November 2007, pp. 141-162.
Springer DOI
0712
BibRef
de Miranda, P.A.V.[Paulo A.V.],
Falcão, A.X.[Alexandre X.],
Links Between Image Segmentation Based on Optimum-Path Forest and
Minimum Cut in Graph,
JMIV(35), No. 2, October 2009, pp. xx-yy.
Springer DOI
0907
See also Synergistic arc-weight estimation for interactive image segmentation using graphs.
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Udupa, J.K.[Jayaram K.],
Falcão, A.X.[Alexandre X.],
de Miranda, P.A.V.[Paulo A.V.],
Fuzzy Connectedness Image Segmentation in Graph Cut Formulation:
A Linear-Time Algorithm and a Comparative Analysis,
JMIV(44), No. 3, November 2012, pp. 375-398.
WWW Link.
1209
BibRef
And: A1, A4, A2, A3:
Image segmentation by combining the strengths of Relative Fuzzy
Connectedness and Graph Cut,
ICIP12(2005-2008).
IEEE DOI
1302
BibRef
Falcão, A.X.[Alexandre X.],
de Miranda, P.A.V.[Paulo A.V.],
Rocha, A.[Anderson],
A Linear-Time Approach for Image Segmentation Using Graph-Cut Measures,
ACIVS06(138-149).
Springer DOI
0609
BibRef
de Miranda, P.A.V.[Paulo A.V.],
Falcão, A.X.[Alexandre X.],
Spina, T.V.,
Riverbed: A Novel User-Steered Image Segmentation Method Based on
Optimum Boundary Tracking,
IP(21), No. 6, June 2012, pp. 3042-3052.
IEEE DOI
1202
BibRef
Condori, M.A.T.[Marcos A.T.],
Mansilla, L.A.C.[Lucy A. C.],
de Miranda, P.A.V.[Paulo A.V.],
Bandeirantes:
A Graph-Based Approach for Curve Tracing and Boundary Tracking,
ISMM17(95-106).
Springer DOI
1706
BibRef
de Miranda, P.A.V.[Paulo A. V.],
Mansilla, L.A.C.[Lucy A. C.],
Oriented Image Foresting Transform Segmentation by Seed Competition,
IP(23), No. 1, January 2014, pp. 389-398.
IEEE DOI
1402
BibRef
Earlier: A2, A1:
Image Segmentation by Oriented Image Foresting Transform with Geodesic
Star Convexity,
CAIP13(572-579).
Springer DOI
1308
graph theory
BibRef
de Moraes Braz, C.[Caio],
Miranda, P.A.V.[Paulo A.V.],
Image segmentation by image foresting transform with geodesic band
constraints,
ICIP14(4333-4337)
IEEE DOI
1502
Computer vision
BibRef
de Moraes Braz, C.[Caio],
Miranda, P.A.V.[Paulo A.V.],
Ciesielski, K.C.[Krzysztof Chris],
Cappabianco, F.A.M.[Fábio A.M.],
Graph-Based Segmentation with Local Band Constraints,
DGCI19(155-166).
Springer DOI
1905
BibRef
Bejar, H.H.C.[Hans H.C.],
Cappabianco, F.A.M.[Fábio A.M.],
Miranda, P.A.V.[Paulo A.V.],
Efficient Image Segmentation in Graphs with Localized Curvilinear
Features,
CIAP17(I:718-728).
Springer DOI
1711
BibRef
Mansilla, L.A.C.,
Miranda, P.A.V.[Paulo A.V.],
Cappabianco, F.A.M.[Fábio A.M.],
Oriented image foresting transform segmentation with connectivity
constraints,
ICIP16(2554-2558)
IEEE DOI
1610
Approximation algorithms
BibRef
Demario, C.L.,
Miranda, P.A.V.,
Relaxed Oriented Image Foresting Transform for Seeded Image
Segmentation,
ICIP19(1520-1524)
IEEE DOI
1910
Relaxed Segmentation, Oriented Image Foresting Transform, Random Walks
BibRef
Mansilla, L.A.C.[Lucy A.C.],
Jackowski, M.P.[Marcel P.],
Miranda, P.A.V.[Paulo A.V.],
Image foresting transform with geodesic star convexity for
interactive image segmentation,
ICIP13(4054-4058)
IEEE DOI
1402
fuzzy connectedness
BibRef
Le Guyader, C.[Carole],
Vese, L.A.[Luminita A.],
Self-Repelling Snakes for Topology-Preserving Segmentation Models,
IP(17), No. 5, May 2008, pp. 767-779.
IEEE DOI
0804
BibRef
Le Guyader, C.[Carole],
Apprato, D.,
Gout, C.,
On the Construction of Topology-Preserving Deformation Fields,
IP(21), No. 4, April 2012, pp. 1587-1599.
IEEE DOI
1204
BibRef
Le Guyader, C.[Carole],
Vese, L.A.[Luminita A.],
A Combined Segmentation and Registration Framework with a Nonlinear
Elasticity Smoother,
CVIU(115), No. 12, December 2011, pp. 1689-1709.
Elsevier DOI
1111
BibRef
Earlier:
SSVM09(600-611).
Springer DOI
0906
Image segmentation; Image registration; Nonlinear elasticity; Ogden
materials; Saint Venant–Kirchhoff materials; Calculus of variations;
Augmented Lagrangian
BibRef
Guillot, L.[Laurence],
Le Guyader, C.[Carole],
Extrapolation of Vector Fields Using the Infinity Laplacian and with
Applications to Image Segmentation,
SSVM09(87-99).
Springer DOI
0906
BibRef
Ozeré, S.[Solène],
Gout, C.[Christian],
Le Guyader, C.[Carole],
Joint Segmentation/Registration Model by Shape Alignment via Weighted
Total Variation Minimization and Nonlinear Elasticity,
SIIMS(8), No. 3, 2015, pp. 1981-2020.
DOI Link
1511
BibRef
Earlier: A1, A3, Only:
Nonlocal Joint Segmentation Registration Model,
SSVM15(348-359).
Springer DOI
1506
BibRef
Debroux, N.[Noémie],
Ozeré, S.[Solène],
Le Guyader, C.[Carole],
A Non-local Topology-Preserving Segmentation-Guided Registration Model,
JMIV(59), No. 3, November 2017, pp. 432-455.
Springer DOI
1710
BibRef
Debroux, N.[Noémie],
Le Guyader, C.[Carole],
A Joint Segmentation/Registration Model Based on a Nonlocal
Characterization of Weighted Total Variation and Nonlocal Shape
Descriptors,
SIIMS(11), No. 2, 2018, pp. 957-990.
DOI Link
1807
BibRef
Debroux, N.[Noémie],
Le Guyader, C.[Carole],
A Unified Hyperelastic Joint Segmentation/Registration Model Based on
Weighted Total Variation and Nonlocal Shape Descriptors,
SSVM17(614-625).
Springer DOI
1706
BibRef
Kokkinos, I.[Iasonas],
Evangelopoulos, G.[Georgios],
Maragos, P.[Petros],
Texture Analysis and Segmentation Using Modulation Features, Generative
Models, and Weighted Curve Evolution,
PAMI(31), No. 1, January 2009, pp. 142-157.
IEEE DOI
0812
BibRef
Earlier:
Advances in texture analysis- energy dominant component & multiple
hypothesis testing,
ICIP04(III: 1509-1512).
IEEE DOI
PDF File.
0505
BibRef
And:
Modulation-feature based textured image segmentation using curve
evolution,
ICIP04(II: 1201-1204).
IEEE DOI
PDF File.
0505
AM-FM texture models and
Dominant Component Analysis (DCA) paradigm for feature extraction.
Weighted curve evolution.
BibRef
Kokkinos, I.[Iasonas],
Maragos, P.[Petros],
Synergy between Object Recognition and Image Segmentation Using the
Expectation-Maximization Algorithm,
PAMI(31), No. 8, August 2009, pp. 1486-1501.
IEEE DOI
0906
BibRef
Earlier:
An Expectation Maximization Approach to the Synergy between Image
Segmentation and Object Categorization,
ICCV05(I: 617-624).
IEEE DOI
0510
BibRef
Kokkinos, I.[Iasonas],
Boundary Detection Using F-Measure-, Filter- and Feature- (F3) Boost,
ECCV10(II: 650-663).
Springer DOI
1009
BibRef
And:
Highly accurate boundary detection and grouping,
CVPR10(2520-2527).
IEEE DOI
1006
BibRef
Evangelopoulos, G.[Georgios],
Maragos, P.[Petros],
Image decomposition into structure and texture subcomponents with
multifrequency modulation constraints,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And:
Texture modulation-constrained image decomposition,
ICIP08(793-796).
IEEE DOI
0810
BibRef
Wang, X.F.[Xiao-Feng],
Huang, D.S.[De-Shuang],
Xu, H.[Huan],
An efficient local Chan-Vese model for image segmentation,
PR(43), No. 3, March 2010, pp. 603-618.
Elsevier DOI
1001
Extended structure tensor; Image segmentation; Intensity
inhomogeneity; Level set method; Local Chan-Vese model
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Lampert, T.A.[Thomas A.],
O'Keefe, S.E.M.[Simon E.M.],
An active contour algorithm for spectrogram track detection,
PRL(31), No. 10, 15 July 2010, pp. 1201-1206.
Elsevier DOI
1008
BibRef
Earlier:
Active contour detection of linear patterns in spectrogram images,
ICPR08(1-4).
IEEE DOI
0812
Active contour; Periodic time series; Remote sensing; Low
signal-to-noise ratio; Spectrogram; Statistical pattern recognition
See also detailed investigation into low-level feature detection in spectrogram images, A.
BibRef
Lampert, T.A.[Thomas A.],
O'Keefe, S.E.M.[Simon E.M.],
On the detection of tracks in spectrogram images,
PR(46), No. 5, May 2013, pp. 1396-1408.
Elsevier DOI
1302
Active contour; Energy minimisation; Remote sensing; Spectrogram;
Statistical pattern recognition; Structural pattern recognition
BibRef
Zheng, S.F.[Song-Feng],
Yuille, A.L.[Alan L.],
Tu, Z.W.[Zhuo-Wen],
Detecting Object Boundaries Using Low-, Mid-, and High-level
Information,
CVIU(114), No. 10, October 2010, pp. 1055-1067.
Elsevier DOI
1003
BibRef
Earlier: A1, A3, A2:
CVPR07(1-8).
IEEE DOI
0706
Boundary detection; Low-level information; High-level information;
Shape matching; Cue integration
BibRef
Martin, D.R.[David R.],
Fowlkes, C.C.[Charless C.],
Malik, J.[Jitendra],
Learning to detect natural image boundaries using local brightness,
color, and texture cues,
PAMI(26), No. 5, May 2004, pp. 530-549.
IEEE Abstract.
0404
BibRef
Earlier: A2, A1, A3:
Learning Affinity Functions for Image Segmentation:
Combining Patch-Based and Gradient-Based Approaches,
CVPR03(II: 54-61).
IEEE DOI
0307
BibRef
Earlier: A2, A1, A3:
Understanding Gestalt Cues and Ecological Statistics Using A Database
of Human Segmented Images,
PercOrg01(xx-yy).
0106
Detect and localize boundaries using local measurements.
BibRef
Arbelaez, P.[Pablo],
Fowlkes, C.C.[Charless C.], and
Martin, D.R.[David R.],
The Berkeley Segmentation Dataset and Benchmark,
Online2007.
Dataset, Segmentation.
Dataset, BSDS.
Code, Segmentation.
WWW Link.
The updated code and data for the earlier paper.
See also Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, A.
BibRef
0700
Martin, D.R.[David R.],
Fowlkes, C.C.[Charless C.],
Tal, D.[Doron],
Malik, J.[Jitendra],
A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms and Measuring Ecological Statistics,
ICCV01(II: 416-423).
IEEE DOI
0106
Award, Helmholtz Prize.
BibRef
And:
A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms,
PercOrg01(xx-yy).
Dataset, Human Segmentation. BSDS300 DAtaset
Multiple human segmentations and a segmentation consistency measure.
Human-human are consistent with the measure, different images are
not consistent.
Promised online availability.
1000 images with hand segmentations. Multiple hand segmentations.
BibRef
Martin, D.R.[David R.],
An Empirical Approach to Grouping and Segmentation,
Ph.D.dissertation, Univ. of California, Berkeley, 2002.
BibRef
0200
Arbelaez, P.[Pablo],
Maire, M.[Michael],
Fowlkes, C.C.[Charless C.],
Malik, J.[Jitendra],
Contour Detection and Hierarchical Image Segmentation,
PAMI(33), No. 1, January 2011, pp. 898-916.
IEEE DOI
1104
BibRef
Earlier:
From contours to regions: An empirical evaluation,
CVPR09(2294-2301).
IEEE DOI
0906
See also Using contours to detect and localize junctions in natural images. Contour detection and turn contours into hierarchy of regions.
BibRef
Maire, M.[Michael],
Yu, S.X.[Stella X.],
Perona, P.[Pietro],
Reconstructive Sparse Code Transfer for Contour Detection and Semantic
Labeling,
ACCV14(IV: 273-287).
Springer DOI
1504
BibRef
Maire, M.[Michael],
Yu, S.X.[Stella X.],
Progressive Multigrid Eigensolvers for Multiscale Spectral
Segmentation,
ICCV13(2184-2191)
IEEE DOI
1403
BibRef
Hariharan, B.[Bharath],
Arbelaez, P.[Pablo],
Bourdev, L.[Lubomir],
Maji, S.[Subhransu],
Malik, J.[Jitendra],
Semantic contours from inverse detectors,
ICCV11(991-998).
IEEE DOI
1201
Contours of category-specific objects.
See also Semantic Boundaries Dataset and Benchmark.
BibRef
Wei, K.,
Jing, Z.L.,
Li, Y.X.,
Tuo, H.Y.,
Extended scheme of Chan-Vese models for colour image segmentation,
IET-IPR(5), No. 7, 2011, pp. 583-597.
DOI Link
1108
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Yang, X.W.[Xing-Wei],
Liu, H.R.[Hai-Rong],
Latecki, L.J.[Longin Jan],
Contour-based object detection as dominant set computation,
PR(45), No. 5, May 2012, pp. 1927-1936.
Elsevier DOI
1201
Object detection; Shape similarity; Dominant sets
BibRef
Butenuth, M.[Matthias],
Heipke, C.[Christian],
Network snakes:
Graph-based object delineation with active contour models,
MVA(23), No. 1, January 2012, pp. 91-109.
WWW Link.
1201
BibRef
Earlier:
Network Snakes-Supported Extraction of Field Boundaries from Imagery,
DAGM05(417).
Springer DOI
0509
BibRef
Butenuth, M.[Matthias],
Topology-Preserving Network Snakes,
ISPRS08(B3a: 229 ff).
PDF File.
0807
BibRef
Earlier:
Segmentation of Imagery Using Network Snakes,
PCV06(xx-yy).
PDF File.
0609
BibRef
Pätz, T.[Torben],
Preusser, T.[Tobias],
Segmentation of Stochastic Images With a Stochastic Random Walker
Method,
IP(21), No. 5, May 2012, pp. 2424-2433.
IEEE DOI
1204
BibRef
Earlier:
Ambrosio-Tortorelli Segmentation of Stochastic Images,
ECCV10(V: 254-267).
Springer DOI
1009
See also Approximation of functionals depending on jumps by elliptic functionals via ..-convergence.
BibRef
Pätz, T.[Torben],
Kirby, R.M.[Robert M.],
Preusser, T.[Tobias],
Ambrosio-Tortorelli Segmentation of Stochastic Images: Model
Extensions, Theoretical Investigations and Numerical Methods,
IJCV(103), No. 2, June 2013, pp. 190-212.
WWW Link.
1306
BibRef
Pätz, T.[Torben],
Preusser, T.[Tobias],
Segmentation of Stochastic Images using Level Set Propagation with
Uncertain Speed,
JMIV(48), No. 3, March 2014, pp. 467-487.
WWW Link.
1403
BibRef
Wang, H.J.[Hai-Jun],
Liu, M.[Ming],
Medical Images Segmentation Using Active Contours Driven by Global and
Local Image Fitting Energy,
IJIG(12), No. 2, April 2012, pp. 1250015.
DOI Link
1205
BibRef
Gao, S.B.[Shang-Bing],
Yang, J.[Jian],
Yan, Y.Y.[Yun-Yang],
A local modified Chan-Vese model for segmenting inhomogeneous
multiphase images,
IJIST(22), No. 2, June 2012, pp. 103-113.
DOI Link
1202
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Gao, S.B.[Shang-Bing],
Yang, J.[Jian],
Saliency-seeded localizing region-based active contour for automatic
natural object segmentation,
ICPR12(3644-3647).
WWW Link.
1302
BibRef
Nakhmani, A.,
Tannenbaum, A.,
Self-Crossing Detection and Location for Parametric Active Contours,
IP(21), No. 7, July 2012, pp. 3150-3156.
IEEE DOI
1206
BibRef
Cardinale, J.[Janick],
Paul, G.[Grégory],
Sbalzarini, I.F.[Ivo F.],
Discrete Region Competition for Unknown Numbers of Connected Regions,
IP(21), No. 8, August 2012, pp. 3531-3545.
IEEE DOI
1208
BibRef
Paul, G.[Grégory],
Cardinale, J.[Janick],
Sbalzarini, I.F.[Ivo F.],
Coupling Image Restoration and Segmentation:
A Generalized Linear Model/Bregman Perspective,
IJCV(104), No. 1, August 2013, pp. 69-93.
Springer DOI
1307
BibRef
Mayer, C.[Christoph],
Timofte, R.[Radu],
Paul, G.[Grégory],
Towards closing the gap in weakly supervised semantic segmentation
with DCNNs: Combining local and global models,
CVIU(208-209), 2021, pp. 103209.
Elsevier DOI
2106
BibRef
Jung, M.[Miyoun],
Peyré, G.[Gabriel],
Cohen, L.D.[Laurent D.],
Non-local segmentation and inpaiting,
Nonlocal Active Contours,
SIIMS(5), No. 3 2012, pp. 1022-1054.
DOI Link
1209
BibRef
Earlier:
ICIP11(3373-3376).
IEEE DOI
1201
BibRef
Earlier:
Non-local Active Contours,
SSVM11(255-266).
Springer DOI
1201
BibRef
Earlier:
Texture Segmentation via Non-local Non-parametric Active Contours,
EMMCVPR11(74-88).
Springer DOI
1107
BibRef
Liu, J.[Jun],
Zhang, H.L.[Hai-Li],
Image Segmentation Using a Local GMM in a Variational Framework,
JMIV(46), No. 2, June 2013, pp. 161-176.
WWW Link.
1306
BibRef
Israel-Jost, V.[Vincent],
Darbon, J.[Jérôme],
Angelini, E.D.[Elsa D.],
Bloch, I.[Isabelle],
Conciliating syntactic and semantic constraints for multi-phase and
multi-channel region segmentation,
CVIU(117), No. 8, August 2013, pp. 819-826.
Elsevier DOI
1306
BibRef
And:
On the implementation of the multi-phase region segmentation, solving
the hidden phase problem,
ICIP14(4338-4342)
IEEE DOI
1502
Computational modeling
Segmentation; Piecewise-constant Mumford-Shah functional;
Multi-channel fusion; Syntax and semantics of segmentation
BibRef
Zhang, Y.[Yan],
Matuszewski, B.J.[Bogdan J.],
Histace, A.[Aymeric],
Precioso, F.[Frédéric],
Statistical Model of Shape Moments with Active Contour Evolution for
Shape Detection and Segmentation,
JMIV(47), No. 1-2, September 2013, pp. 35-47.
Springer DOI
1307
BibRef
Earlier:
Statistical Shape Model of Legendre Moments with Active Contour
Evolution for Shape Detection and Segmentation,
CAIP11(I: 51-58).
Springer DOI
1109
BibRef
Ksantini, R.[Riadh],
Boufama, B.S.[Boubakeur S.],
Memar, S.[Sara],
A new efficient active contour model without local initializations
for salient object detection,
JIVP(2013), No. 1, 2013, pp. 40.
DOI Link
1307
BibRef
Memar, S.[Sara],
Jin, K.[Karen],
Boufama, B.S.[Boubakeur S.],
Object Detection Using Active Contour Model with Depth Clue,
ICIAR13(640-647).
Springer DOI
1307
BibRef
Memar, S.[Sara],
Ksantini, R.[Riadh],
Boufama, B.S.[Boubakeur S.],
Feature-based active contour model and occluding object detection,
JOSA-A(33), No. 4, April 2016, pp. 648-662.
DOI Link
1604
BibRef
Earlier:
Multiple Object Detection with Occlusion Using Active Contour Model and
Fuzzy C-Mean,
ICIAR14(I: 224-233).
Springer DOI
1410
Image processing; Pattern recognition
BibRef
Ksantini, R.[Riadh],
Shariat, F.[Farnaz],
Boufama, B.S.[Boubakeur S.],
An Efficient and Fast Active Contour Model for Salient Object Detection,
CRV09(124-131).
IEEE DOI
0905
BibRef
Gao, Y.,
Bouix, S.[Sylvain],
Shenton, M.,
Tannenbaum, A.,
Sparse Texture Active Contour,
IP(22), No. 10, 2013, pp. 3866-3878.
IEEE DOI
1309
Active contour; Sparse representation; Texture representation
BibRef
Li, D.[Danyi],
Li, W.F.[Wei-Feng],
Liao, Q.M.[Qing-Min],
A Fuzzy Geometric Active Contour Method for Image Segmentation,
IEICE(E96-D), No. 9, September 2013, pp. 2107-2114.
WWW Link.
1309
BibRef
Mei, J.,
Si, Y.,
Gao, H.,
A Curve Evolution Approach for Unsupervised Segmentation of Images
With Low Depth of Field,
IP(22), No. 10, 2013, pp. 4086-4095.
IEEE DOI
1309
Image segmentation
BibRef
Zhang, H.G.[Hui-Gang],
Bai, X.[Xiao],
Zhou, J.[Jun],
Cheng, J.[Jian],
Zhao, H.J.[Hui-Jie],
Object Detection Via Structural Feature Selection and Shape Model,
IP(22), No. 12, 2013, pp. 4984-4995.
IEEE DOI
1312
image matching
BibRef
Bai, X.[Xiao],
Zhang, H.G.[Hui-Gang],
Zhou, J.[Jun],
VHR Object Detection Based on Structural Feature Extraction and Query
Expansion,
GeoRS(52), No. 10, October 2014, pp. 6508-6520.
IEEE DOI
1407
Feature extraction
BibRef
Zhang, H.G.[Hui-Gang],
Wang, J.X.[Jun-Xiu],
Bai, X.[Xiao],
Zhou, J.[Jun],
Cheng, J.[Jian],
Zhao, H.J.[Hui-Jie],
Object detection via foreground contour feature selection and
part-based shape model,
ICPR12(2524-2527).
WWW Link.
1302
BibRef
Bova, N.[Nicola],
Ibáñez, Ó.[Óscar],
Cordón, Ó.[Óscar],
Extended Topological Active Nets,
IVC(31), No. 12, 2013, pp. 905-920.
Elsevier DOI
1312
Deformable models integrating features of region and boundary based
segmentation.
BibRef
Balla-Arabe, S.,
Gao, X.,
Wang, B.,
Yang, F.,
Brost, V.,
Multi-Kernel Implicit Curve Evolution for Selected Texture Region
Segmentation in VHR Satellite Images,
GeoRS(52), No. 8, August 2014, pp. 5183-5192.
IEEE DOI
1403
Active contours
BibRef
Gueguen, L.[Lionel],
Velasco-Forero, S.[Santiago],
Soille, P.[Pierre],
Local Mutual Information for Dissimilarity-Based Image Segmentation,
JMIV(48), No. 3, March 2014, pp. 625-644.
Springer DOI
1403
BibRef
Wu, Q.,
An, J.,
An Active Contour Model Based on Texture Distribution for Extracting
Inhomogeneous Insulators From Aerial Images,
GeoRS(52), No. 6, June 2014, pp. 3613-3626.
IEEE DOI
1403
Active contours
BibRef
Tari, S.[Sibel],
Genctav, M.[Murat],
From a Non-Local Ambrosio-Tortorelli Phase Field to a Randomized Part
Hierarchy Tree,
JMIV(49), No. 1, May 2014, pp. 69-86.
WWW Link.
1404
BibRef
Earlier:
From a Modified Ambrosio-Tortorelli to a Randomized Part Hierarchy Tree,
SSVM11(267-278).
Springer DOI
1201
BibRef
Judah, A.[Aaron],
Hu, B.X.[Bao-Xin],
Wang, J.G.[Jian-Guo],
An Algorithm for Boundary Adjustment toward Multi-Scale Adaptive
Segmentation of Remotely Sensed Imagery,
RS(6), No. 5, 2014, pp. 3583-3610.
DOI Link
1407
BibRef
Liu, G.,
Zhou, Z.,
Zhong, H.,
Xie, S.,
Gradient descent with adaptive momentum for active contour models,
IET-CV(8), No. 4, August 2014, pp. 287-298.
DOI Link
1407
BibRef
Ge, Q.[Qi],
Xiao, L.[Liang],
Zhang, J.[Jun],
Wei, Z.H.[Zhi Hui],
An improved region-based model with local statistical features for
image segmentation,
PR(45), No. 4, 2012, pp. 1578-1590.
Elsevier DOI
1410
BibRef
Earlier: A1, A4, A2, A3:
An improved region-based model with local statistical feature,
ICIP11(3341-3344).
IEEE DOI
1201
Active contour model
BibRef
Benninghoff, H.[Heike],
Garcke, H.[Harald],
Efficient Image Segmentation and Restoration Using Parametric Curve
Evolution with Junctions and Topology Changes,
SIIMS(7), No. 3, 2014, pp. 1451-1483.
DOI Link
1410
BibRef
Benninghoff, H.[Heike],
Garcke, H.[Harald],
Image Segmentation Using Parametric Contours With Free Endpoints,
IP(25), No. 4, April 2016, pp. 1639-1648.
IEEE DOI
1604
image denoising
BibRef
Benninghoff, H.[Heike],
Garcke, H.[Harald],
Segmentation and Restoration of Images on Surfaces by Parametric Active
Contours with Topology Changes,
JMIV(55), No. 1, May 2016, pp. 105-124.
WWW Link.
1604
BibRef
Storath, M.[Martin],
Weinmann, A.[Andreas],
Fast Partitioning of Vector-Valued Images,
SIIMS(7), No. 3, 2014, pp. 1826-1852.
DOI Link
1410
BibRef
Storathc1, M.,
Weinmann, A.,
Frikel, J.,
Unser, M.,
Joint image reconstruction and segmentation using the Potts model,
Inverse Problems(31), 2015, pp. 025003.
DOI Link Piecewise Affine-Linear Mumford-Shah Model (PALMS)
See also PALMS Image Partitioning: A New Parallel Algorithm for the Piecewise Affine-Linear Mumford-Shah Model.
BibRef
1500
Storath, M.[Martin],
Weinmann, A.[Andreas],
Unser, M.[Michael],
Unsupervised texture segmentation using monogenic curvelets and the
Potts model,
ICIP14(4348-4352)
IEEE DOI
1502
Biomedical imaging
BibRef
Roy, S.[Sawrav],
Mukhopadhyay, S.[Susanta],
Mishra, M.K.[Manoj K.],
Enhancement of morphological snake based segmentation by imparting
image attachment through scale-space continuity,
PR(48), No. 7, 2015, pp. 2254-2268.
Elsevier DOI
1504
Object segmentation
BibRef
Subudhi, P.[Priyambada],
Mukhopadhyay, S.[Susanta],
Object Segmentation in Texture Images Using Texture Gradient Based
Active Contours,
PReMI17(124-131).
Springer DOI
1711
BibRef
Dai, L.Z.[Ling-Zheng],
Ding, J.D.[Jun-Di],
Yang, J.[Jian],
Inhomogeneity-embedded active contour for natural image segmentation,
PR(48), No. 8, 2015, pp. 2513-2529.
Elsevier DOI
1505
Active contour
BibRef
Saadatmand-Tarzjan, M.,
Self-affine snake for medical image segmentation,
PRL(59), No. 1, 2015, pp. 1-10.
Elsevier DOI
1505
Parametric active contours
BibRef
Lecca, M.[Michela],
Messelodi, S.[Stefano],
Serapioni, R.P.[Raul Paolo],
A New Region-based Active Contour Model for Object Segmentation,
JMIV(53), No. 2, October 2015, pp. 233-249.
Springer DOI
1508
BibRef
Garrido, L.[Luis],
Guerrieri, M.,
Igual, L.[Laura],
Image Segmentation With Cage Active Contours,
IP(24), No. 12, December 2015, pp. 5557-5566.
IEEE DOI
1512
Gaussian processes
BibRef
Antonelli, L.[Laura],
de Simone, V.[Valentina],
di Serafino, D.[Daniela],
On the Application of the Spectral Projected Gradient Method in Image
Segmentation,
JMIV(54), No. 1, January 2016, pp. 106-116.
Springer DOI
1601
BibRef
Chan, D.Y.[Din-Yuen],
Hsu, R.C.[Roy Chaoming],
Liu, C.T.[Cheng-Ting],
Tsai, C.H.[Cheng-Han],
Rectification-conducted adaptive snake for segmenting complex-boundary
objects from textured backgrounds,
SIViP(10), No. 1, February 2016, pp. 225-234.
Springer DOI
1601
BibRef
Hussain, S.,
Chun, Q.[Qi],
Asif, M.R.,
Khan, M.S.,
Active contours for image segmentation using complex domain-based
approach,
IET-IPR(10), No. 2, 2016, pp. 121-129.
DOI Link
1602
Gaussian processes
BibRef
Xia, G.S.,
Liu, G.,
Yang, W.,
Zhang, L.,
Meaningful Object Segmentation From SAR Images via a Multiscale
Nonlocal Active Contour Model,
GeoRS(54), No. 3, March 2016, pp. 1860-1873.
IEEE DOI
1603
Active contours
BibRef
Bui, T.D.[T. Duc],
Ahn, C.,
Shin, J.,
Fast localised active contour for inhomogeneous image segmentation,
IET-IPR(10), No. 6, 2016, pp. 483-494.
DOI Link
1606
computational complexity
BibRef
Fang, Z.W.[Zhi-Wen],
Cao, Z.G.[Zhi-Guo],
Xiao, Y.[Yang],
Zhu, L.[Lei],
Yuan, J.S.[Jun-Song],
Adobe Boxes: Locating Object Proposals Using Object Adobes,
IP(25), No. 9, September 2016, pp. 4116-4128.
IEEE DOI
1609
object detection. First get coarse object proposals. Then search in area
around proposals. Then converge bounding box.
BibRef
Heimowitz, A.,
Keller, Y.,
Image Segmentation via Probabilistic Graph Matching,
IP(25), No. 10, October 2016, pp. 4743-4752.
IEEE DOI
1610
graph theory
BibRef
Xu, Y.C.[Yong-Chao],
Géraud, T.[Thierry],
Najman, L.[Laurent],
Hierarchical image simplification and segmentation based on
Mumford-Shah-salient level line selection,
PRL(83, Part 3), No. 1, 2016, pp. 278-286.
Elsevier DOI
1609
BibRef
Earlier:
Salient level lines selection using the Mumford-Shah functional,
ICIP13(1227-1231)
IEEE DOI
1402
BibRef
Earlier:
Context-based energy estimator:
Application to object segmentation on the tree of shapes,
ICIP12(1577-1580).
IEEE DOI
1302
Level line
Image segmentation.
Given a family of closed contours find the correct one.
BibRef
Xu, Y.C.[Yong-Chao],
Carlinet, E.[Edwin],
Geraud, T.[Thierry],
Najman, L.[Laurent],
Meaningful disjoint level lines selection,
ICIP14(2938-2942)
IEEE DOI
1502
Algorithm design and analysis
BibRef
Jevnisek, R.J.[Roy Josef],
Avidan, S.[Shai],
Semi global boundary detection,
CVIU(152), No. 1, 2016, pp. 21-28.
Elsevier DOI
1609
Edge/Boundary detection
BibRef
Niu, S.[Sijie],
Chen, Q.A.[Qi-Ang],
de Sisternes, L.[Luis],
Ji, Z.X.[Ze-Xuan],
Zhou, Z.M.[Ze-Ming],
Rubin, D.L.[Daniel L.],
Robust noise region-based active contour model via local similarity
factor for image segmentation,
PR(61), No. 1, 2017, pp. 104-119.
Elsevier DOI
1705
Local similarity factor
BibRef
Hoogi, A.,
Subramaniam, A.,
Veerapaneni, R.,
Rubin, D.L.[Daniel L.],
Adaptive Estimation of Active Contour Parameters Using Convolutional
Neural Networks and Texture Analysis,
MedImg(36), No. 3, March 2017, pp. 781-791.
IEEE DOI
1703
Active contours
BibRef
Gao, G.W.[Guo-Wei],
Wen, C.L.[Cheng-Lin],
Wang, H.B.[Hui-Bin],
Fast and robust image segmentation with active contours and
Student's-t mixture model,
PR(63), No. 1, 2017, pp. 71-86.
Elsevier DOI
1612
Segmentation
BibRef
Bampis, C.G.[Christos G.],
Maragos, P.[Petros],
Bovik, A.C.,
Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation,
IP(26), No. 1, January 2017, pp. 35-50.
IEEE DOI
1612
BibRef
Earlier: A1, A2, Only:
Unifying the random walker algorithm and the SIR model for graph
clustering and image segmentation,
ICIP15(2265-2269)
IEEE DOI
1512
graph theory.
Random Walker
BibRef
Pratondo, A.[Agus],
Chui, C.K.[Chee-Kong],
Ong, S.H.[Sim-Heng],
Integrating machine learning with region-based active contour models
in medical image segmentation,
JVCIR(43), No. 1, 2017, pp. 1-9.
Elsevier DOI
1702
Machine learning
BibRef
Zhang, L.[Ling],
Peng, X.G.[Xin-Guang],
Li, G.[Gang],
Li, H.F.[Hai-Fang],
A Novel Active Contour Model for Image Segmentation Using Local and
Global Region-Based Information,
MVA(28), No. 1-2, February 2017, pp. 75-89.
WWW Link.
1702
BibRef
Huo, G.,
Yang, S.X.,
Li, Q.,
Zhou, Y.,
A Robust and Fast Method for Sidescan Sonar Image Segmentation Using
Nonlocal Despeckling and Active Contour Model,
Cyber(47), No. 4, April 2017, pp. 855-872.
IEEE DOI
1704
Active contours
BibRef
Gao, G.,
Wen, C.,
Wang, H.,
Xu, L.,
Fast Multiregion Image Segmentation Using Statistical Active Contours,
SPLetters(24), No. 4, April 2017, pp. 417-421.
IEEE DOI
1704
image segmentation
BibRef
Reska, D.[Daniel],
Boldak, C.[Cezary],
Kretowski, M.[Marek],
Towards multi-stage texture-based active contour image segmentation,
SIViP(11), No. 5, July 2017, pp. 809-816.
Springer DOI
1706
BibRef
Lv, P.[Peng],
Zhao, Q.J.[Qing-Jie],
Chen, Y.M.[Yan-Ming],
Zhao, L.J.[Liu-Jun],
Multiple cues-based active contours for target contour tracking under
sophisticated background,
VC(33), No. 9, September 2017, pp. 1103-1119.
WWW Link.
1708
BibRef
Niethammer, M.[Marc],
Pohl, K.M.[Kilian M.],
Janoos, F.[Firdaus],
Wells III, W.M.[William M.],
Active Mean Fields for Probabilistic Image Segmentation:
Connections with Chan-Vese and Rudin-Osher-Fatemi Models,
SIIMS(10), No. 3, 2017, pp. 1069-1103.
DOI Link
1710
BibRef
Sun, W.Y.[Wen-Yan],
Dong, E.Q.[En-Qing],
Qiao, H.J.[Hui-Jie],
A fuzzy energy-based active contour model with adaptive contrast
constraint for local segmentation,
SIViP(12), No. 1, January 2018, pp. 91-98.
WWW Link.
1801
BibRef
Wang, Q.[Qi],
Spratling, M.W.,
Contour detection refined by a sparse reconstruction-based
discrimination method,
SIViP(12), No. 2, February 2018, pp. 207-214.
Springer DOI
1802
BibRef
Onal, S.[Sinan],
Chen, X.[Xin],
Balasooriya, M.M.[Madagedara Maduka],
Interior point search for nonparametric image segmentation,
SIViP(12), No. 2, February 2018, pp. 363-370.
Springer DOI
1802
BibRef
Subudhi, P.[Priyambada],
Mukhopadhyay, S.[Susanta],
A novel texture segmentation method based on co-occurrence
energy-driven parametric active contour model,
SIViP(12), No. 4, May 2018, pp. 669-676.
WWW Link.
1805
BibRef
Cai, Q.[Qing],
Liu, H.Y.[Hui-Ying],
Zhou, S.P.[San-Ping],
Sun, J.F.[Jing-Feng],
Li, J.[Jing],
An adaptive-scale active contour model for inhomogeneous image
segmentation and bias field estimation,
PR(82), 2018, pp. 79-93.
Elsevier DOI
1806
Active contour model, Image segmentation,
Intensity inhomogeneous image, Adaptive scale operator, Bias field estimation
BibRef
Nguyen, T.T.[Tuan T.],
Dahl, V.A.[Vedrana A.],
Bærentzen, J.A.[J. Andreas],
Multi-phase image segmentation with the adaptive deformable mesh,
PRL(117), 2019, pp. 97-103.
Elsevier DOI
1901
Deformable model, Active contour, Explicit mesh, Triangle mesh,
Multi-phase, Adaptive mesh, Mumford-Shah
BibRef
Han, B.[Bin],
Wu, Y.Q.[Yi-Quan],
Active contours driven by global and local weighted signed pressure
force for image segmentation,
PR(88), 2019, pp. 715-728.
Elsevier DOI
1901
Active contour, GWSPF, LWSPF, Global and local within-class variances
BibRef
Ma, D.D.[Dong-Dong],
Liao, Q.M.[Qing-Min],
Chen, Z.Q.[Zi-Qin],
Liao, R.[Ran],
Ma, H.[Hui],
Adaptive local-fitting-based active contour model for medical image
segmentation,
SP:IC(76), 2019, pp. 201-213.
Elsevier DOI
1906
Segmentation, Active contour, Adaptive local fitting, Medical images
BibRef
Niu, Y.F.[Yue-Feng],
Cao, J.Z.[Jian-Zhong],
Local difference-based active contour model for medical image
segmentation and bias correction,
IET-IPR(13), No. 10, 22 August 2019, pp. 1755-1762.
DOI Link
1909
BibRef
Dong, B.[Bin],
Jin, R.[Ri],
Weng, G.R.[Gui-Rong],
Active contour model based on local bias field estimation for image
segmentation,
SP:IC(78), 2019, pp. 187-199.
Elsevier DOI
1909
Active contour model, Image segmentation,
Bias field estimation, Intensity inhomogeneous image, Fuzzy c-means
BibRef
Roberts, M.[Michael],
Spencer, J.[Jack],
Chan-Vese Reformulation for Selective Image Segmentation,
JMIV(61), No. 8, October 2019, pp. 1173-1196.
WWW Link.
1909
BibRef
Tan, L.[Lu],
Li, L.[Ling],
Liu, W.Q.[Wan-Quan],
Sun, J.[Jie],
Zhang, M.[Min],
A Novel Euler's Elastica-Based Segmentation Approach for Noisy Images
Using the Progressive Hedging Algorithm,
JMIV(62), No. 1, January 2020, pp. 98-119.
Springer DOI
2001
BibRef
Han, B.[Bin],
Wu, Y.[Yiquan],
Active contour model for inhomogenous image segmentation based on
Jeffreys divergence,
PR(107), 2020, pp. 107520.
Elsevier DOI
2008
Active contour model, Inhomogenous image segmentation,
Local and global data fitting energies, Jeffreys divergence, Adaptive weight
BibRef
Li, M.M.,
Li, B.Z.,
A Novel Active Contour Model for Noisy Image Segmentation Based on
Adaptive Fractional Order Differentiation,
IP(29), 2020, pp. 9520-9531.
IEEE DOI
1806
Image segmentation, Computational modeling, Adaptation models,
Active contours, Level set, Numerical models, Mathematical model,
variational method
BibRef
Xiao, L.[Ling],
Wu, B.[Bo],
Hu, Y.M.[You-Min],
OSED: Object-specific edge detection,
JVCIR(72), 2020, pp. 102918.
Elsevier DOI
2010
Region proposal, Edge detection, Deep supervision, Convolutional neural network
BibRef
Wang, T.R.[Tian-Ren],
Zhang, T.[Teng],
Lovell, B.C.[Brian C.],
EBIT: Weakly-supervised image translation with edge and boundary
enhancement,
PRL(138), 2020, pp. 534-539.
Elsevier DOI
2010
Weakly-supervised, GAN, Canny, Silhouette, Disentanglement
BibRef
Biswas, S.[Soumen],
Hazra, R.[Ranjay],
Active contours driven by modified LoG energy term and optimised
penalty term for image segmentation,
IET-IPR(14), No. 13, November 2020, pp. 3232-3242.
DOI Link
2012
BibRef
Chen, D.[Da],
Spencer, J.[Jack],
Mirebeau, J.M.[Jean-Marie],
Chen, K.[Ke],
Shu, M.L.[Ming-Lei],
Cohen, L.D.[Laurent D.],
A Generalized Asymmetric Dual-Front Model for Active Contours and
Image Segmentation,
IP(30), 2021, pp. 5056-5071.
IEEE DOI
2106
Image segmentation, Active contours, Measurement,
Mathematical model, Level set, Numerical models,
fast marching method
BibRef
Liu, L.[Li],
Chen, D.[Da],
Shu, M.[Minglei],
Cohen, L.D.[Laurent D.],
Grouping Boundary Proposals for Fast Interactive Image Segmentation,
IP(33), 2024, pp. 793-808.
IEEE DOI
2402
Image segmentation, Image edge detection, Proposals,
Adaptation models, Mathematical models, Trajectory,
Eikonal equation
BibRef
Liu, L.[Li],
Wang, M.Z.[Ming-Zhu],
Zhou, S.W.[Shu-Wang],
Shu, M.[Minglei],
Cohen, L.D.[Laurent D.],
Chen, D.[Da],
Curvilinear Structure Tracking Based on Dynamic Curvature-penalized
Geodesics,
PR(134), 2023, pp. 109079.
Elsevier DOI
2212
Curvature-penalized geodesics, Local bending constraint,
Coherence penalization, Curvilinear structures, Retinal vessels
BibRef
Dong, Z.H.[Zi-Hao],
Li, J.P.[Jin-Ping],
Fang, T.[Tiyu],
Shao, X.L.[Xiu-Li],
Lightweight boundary refinement module based on point supervision for
semantic segmentation,
IVC(110), 2021, pp. 104169.
Elsevier DOI
2106
Semantic segmentation, Boundary refinement, Point supervision,
Point convolution, Direction field
BibRef
Liu, H.X.[Hua-Xiang],
Fang, J.X.[Jiang-Xiong],
Zhang, Z.J.[Zi-Jian],
Lin, Y.C.[Yong-Cheng],
Localised edge-region-based active contour for medical image
segmentation,
IET-IPR(15), No. 7, 2021, pp. 1567-1582.
DOI Link
2106
BibRef
Liu, H.X.[Hua-Xiang],
Fu, Y.Y.[You-Yao],
Zhang, S.Q.[Shi-Qing],
Liu, J.[Jun],
Fang, J.X.[Jiang-Xiong],
Active contour driven by adaptive-scale local-energy signed pressure
force function based on bias correction for medical image
segmentation,
IET-IPR(16), No. 14, 2022, pp. 3929-3947.
DOI Link
2212
BibRef
Lei, Y.[Yu],
Weng, G.R.[Gui-Rong],
A Robust Hybrid Active Contour Model Based on Pre-Fitting Bias Field
Correction for Fast Image Segmentation,
SP:IC(97), 2021, pp. 116351.
Elsevier DOI
2107
Active contour model, Bias field,
Adaptive edge indicator function, Intensity inhomogeneity, Image segmentation
BibRef
Ge, P.Q.[Peng-Qiang],
Chen, Y.Y.[Yi-Yang],
Wang, G.[Guina],
Weng, G.R.[Gui-Rong],
A hybrid active contour model based on pre-fitting energy and
adaptive functions for fast image segmentation,
PRL(158), 2022, pp. 71-79.
Elsevier DOI
2205
Active contour models, Pre-fitting function, Level set method,
Adaptive functions
BibRef
Kim, N.[Namgil],
Kang, B.[Barom],
Cho, Y.[Yeonok],
Split-GCN: Effective Interactive Annotation for Segmentation of
Disconnected Instance,
PAMI(45), No. 7, July 2023, pp. 9256-9263.
IEEE DOI
2306
Initial polygon, but allow disconnected results.
Feature extraction, Topology, Annotations, Shape, Predictive models,
Level set, Decoding, human interactive learning, segmentation,
semi-auto labeling
BibRef
Budd, J.M.[Jeremy M.],
van Gennip, Y.[Yves],
Latz, J.[Jonas],
Parisotto, S.[Simone],
Schonlieb, C.B.[Carola-Bibiane],
Joint Reconstruction-Segmentation on Graphs,
SIIMS(16), No. 2, 2023, pp. 911-947.
DOI Link
2306
BibRef
Wang, J.Q.[Jia-Qi],
Zhang, W.W.[Wen-Wei],
Cao, Y.H.[Yu-Hang],
Chen, K.[Kai],
Pang, J.M.[Jiang-Miao],
Gong, T.[Tao],
Shi, J.P.[Jian-Ping],
Loy, C.C.[Chen Change],
Lin, D.H.[Da-Hua],
Side-aware Boundary Localization for More Precise Object Detection,
ECCV20(IV:403-419).
Springer DOI
2011
BibRef
Yuan, Y.H.[Yu-Hui],
Xie, J.Y.[Jing-Yi],
Chen, X.L.[Xi-Lin],
Wang, J.D.[Jing-Dong],
Segfix: Model-agnostic Boundary Refinement for Segmentation,
ECCV20(XII: 489-506).
Springer DOI
2010
BibRef
Lu, R.[Rui],
Xue, F.[Feng],
Zhou, M.H.[Meng-Han],
Ming, A.L.[An-Long],
Zhou, Y.[Yu],
Occlusion-Shared and Feature-Separated Network for Occlusion
Relationship Reasoning,
ICCV19(10342-10351)
IEEE DOI
2004
convolutional neural nets, edge detection, feature extraction,
learning (artificial intelligence), occlusion orientation,
BibRef
Ni, T.W.[Tian-Wei],
Xie, L.X.[Ling-Xi],
Zheng, H.J.[Huang-Jie],
Fishman, E.K.[Elliot K.],
Yuille, A.L.[Alan L.],
Elastic Boundary Projection for 3D Medical Image Segmentation,
CVPR19(2104-2113).
IEEE DOI
2002
BibRef
Kelm, A.P.[André Peter],
Rao, V.S.[Vijesh Soorya],
Zölzer, U.[Udo],
Object Contour and Edge Detection with RefineContourNet,
CAIP19(I:246-258).
Springer DOI
1909
BibRef
Antunes, D.[Daniel],
Lachaud, J.O.[Jacques-Olivier],
Talbot, H.[Hugues],
Digital Curvature Evolution Model for Image Segmentation,
DGCI19(15-26).
Springer DOI
1905
BibRef
Bougrine, A.,
Harba, R.,
Canals, R.,
Ledee, R.,
Jabloun, M.,
A joint snake and atlas-based segmentation of plantar foot thermal
images,
IPTA17(1-6)
IEEE DOI
1804
image segmentation, mean square error methods, DSC, RMSE,
Snake curve, Snake energy function, atlas-based segmentation,
Plantar foot thermal images
BibRef
Tremblay, M.[Maxime],
Zaccarin, A.[André],
Learning to segment on tiny datasets: A new shape model,
ICIP17(2384-2388)
IEEE DOI
1803
Computational modeling, Feature extraction, Histograms,
Image segmentation, Object segmentation, Shape, Training,
tiny data set
BibRef
Yang, C.,
Semantic boundary refinement by joint inference from edges and
regions,
ICIP17(3105-3109)
IEEE DOI
1803
Detectors, Image edge detection, Image segmentation, Pipelines,
Semantics, Task analysis, Tools
BibRef
Xu, W.,
Yue, X.,
Chen, Y.,
Reformat, M.,
Ensemble of active contour based image segmentation,
ICIP17(86-90)
IEEE DOI
1803
Active contours, Dictionaries, Image segmentation, Level set,
Mutual information, Probabilistic logic,
segmentation ensemble
BibRef
Dehkordi, M.T.,
A new active contour model for tumor segmentation,
IPRIA17(233-236)
IEEE DOI
1712
Gaussian processes, biomedical MRI, image filtering,
image segmentation, medical image processing, probability, tumours,
feature
BibRef
Premachandran, V.[Vittal],
Bonev, B.[Boyan],
Lian, X.C.[Xiao-Chen],
Yuille, A.L.[Alan L.],
PASCAL Boundaries:
A Semantic Boundary Dataset with a Deep Semantic Boundary Detector,
WACV17(73-81)
IEEE DOI
1609
Dataset, Edeg Detection.
See also Semantic Boundaries Dataset and Benchmark. Context, Databases, Detectors, Image edge detection,
Image segmentation, Semantics
Related to:
See also PASCAL Visual Object Classes Challenge 2012, The.
BibRef
Yuan, J.[Jing],
Yin, K.[Ke],
Bai, Y.G.[Yi-Guang],
Feng, X.C.[Xiang-Chu],
Tai, X.C.[Xue-Cheng],
Bregman-Proximal Augmented Lagrangian Approach to Multiphase Image
Segmentation,
SSVM17(524-534).
Springer DOI
1706
BibRef
Jiang, C.[Chuangbo],
Zheng, S.H.[Shen-Hai],
Li, L.Q.[La-Quan],
PET/CT Co-Segmentation Based on Hybrid Active Contour Model,
ICIP22(4143-4147)
IEEE DOI
2211
Image segmentation, Image edge detection, Computed tomography,
Lung cancer, Active contours, Tumors, Active contour model,
edge stop function
BibRef
Gao, M.Q.[Ming-Qi],
Chen, H.X.[Heng-Xin],
Zheng, S.H.[Shen-Hai],
Fang, B.[Bin],
A factorization based active contour model for texture segmentation,
ICIP16(4309-4313)
IEEE DOI
1610
Active contours
BibRef
Moinar, J.,
Szucs, A.I.,
Molnar, C.,
Horvath, P.,
Active contours for selective object segmentation,
WACV16(1-9)
IEEE DOI
1606
Active contours
BibRef
Gu, Y.[Ying],
Xiong, W.[Wei],
Wang, L.L.[Li-Lian],
Cheng, J.R.[Jie-Rong],
Du, J.[Jia],
Chen, W.Y.[Wen-Yu],
Wang, Y.[Yue],
Chia, S.[ShueChing],
A new Mumford-Shah type model involving a smoothing operator for
multiphase image segmentation,
ICIP15(1990-1994)
IEEE DOI
1512
Gaussian; Image segmentation; bilateral; smoothing operator
BibRef
Dogan, G.[Günay],
An Efficient Lagrangian Algorithm for an Anisotropic Geodesic Active
Contour Model,
SSVM17(408-420).
Springer DOI
1706
BibRef
Earlier:
Fast Minimization of Region-Based Active Contours Using the Shape
Hessian of the Energy,
SSVM15(307-319).
Springer DOI
1506
BibRef
And:
An Efficient Curve Evolution Algorithm for Multiphase Image
Segmentation,
EMMCVPR15(292-306).
Springer DOI
1504
BibRef
Khadidos, A.[Alaa],
Sanchez, V.[Victor],
Li, C.T.[Chang-Tsun],
Active contours based on weighted gradient vector flow and balloon
forces for medical image segmentation,
ICIP14(902-906)
IEEE DOI
1502
Active contours
BibRef
Cai, L.[Ling],
Wang, F.[Fengna],
Enescu, V.[Valentin],
Sahli, H.[Hichem],
Object Segmentation Based on Contour-Skeleton Duality,
ICPR14(2537-2542)
IEEE DOI
1412
Image edge detection
BibRef
Dahl, V.A.[Vedrana Andersen],
Dahl, A.B.[Anders Bjorholm],
A Probabilistic Framework for Curve Evolution,
SSVM17(421-432).
Springer DOI
1706
BibRef
Earlier: A2, A1:
Dictionary Based Image Segmentation,
SCIA15(26-37).
Springer DOI
1506
BibRef
Earlier: A2, A1:
Dictionary Snakes,
ICPR14(142-147)
IEEE DOI
1412
Active contours
BibRef
Stets, J.D.[Jonathan Dyssel],
Lyngby, R.A.[Rasmus Ahrenkiel],
Frisvad, J.R.[Jeppe Revall],
Dahl, A.B.[Anders Bjorholm],
Material-Based Segmentation of Objects,
SCIA19(152-163).
Springer DOI
1906
BibRef
Emerson, M.J.[Monica Jane],
Jespersen, K.M.[Kristine Munk],
Jørgensen, P.S.[Peter Stanley],
Larsen, R.[Rasmus],
Dahl, A.B.[Anders Bjorholm],
Dictionary Based Segmentation in Volumes,
SCIA15(504-515).
Springer DOI
1506
BibRef
Dahl, V.A.[Vedrana Andersen],
Christiansen, A.N.[Asger Nyman],
Baerentzen, J.A.[Jakob Andreas],
Multiphase Image Segmentation Using the Deformable Simplicial Complex
Method,
ICPR14(1002-1007)
IEEE DOI
1412
Deformable models
BibRef
Zhang, H.H.[Hong-Hui],
Wang, J.D.[Jing-Dong],
Tan, P.[Ping],
Wang, J.L.[Jing-Lu],
Quan, L.[Long],
Learning CRFs for Image Parsing with Adaptive Subgradient Descent,
ICCV13(3080-3087)
IEEE DOI
1403
Adaptive Subgradient Descent; Conditional Random Field; Image Parsing
BibRef
Li, Z.Y.[Zhen-Yang],
Gavves, E.[Efstratios],
van de Sande, K.E.A.[Koen E.A.],
Snoek, C.G.M.[Cees G.M.],
Smeulders, A.W.M.[Arnold W.M.],
Codemaps: Segment, Classify and Search Objects Locally,
ICCV13(2136-2143)
IEEE DOI
1403
link classification score and local neighborhood.
BibRef
Yanez, E.M.[Eva M.],
Cuevas, C.[Carlos],
Garcia, N.[Narciso],
A combined active contours method for segmentation using localization
and multiresolution,
ICIP13(1257-1261)
IEEE DOI
1402
Active contours
BibRef
Javed, U.[Umer],
Riaz, M.M.[M.Mohsin],
Khokher, M.R.[Muhammad Rizwan],
Ghafoor, A.[Abdul],
Cheema, T.A.[Tanveer A.],
Fuzzy logic and local features based medical image segmentation,
ICIP13(1148-1152)
IEEE DOI
1402
Active contours
BibRef
Derraz, F.[Foued],
Pinti, A.[Antonio],
Boussahla, M.[Miloud],
Peyrodie, L.[Laurent],
Toumi, H.[Hechmi],
Image Segmentation Using Active Contours and Evidential Distance,
CIARP13(I:472-479).
Springer DOI
1311
BibRef
Thomas, A.[Anu],
Oommen, B.J.[B. John],
A Novel Border Identification Algorithm Based on an 'Anti-Bayesian'
Paradigm,
CAIP13(196-203).
Springer DOI
1308
BibRef
Villeneuve, G.[Guillaume],
Bergevin, R.[Robert],
On Structuring Multiple Grouping Hypotheses in Generic Object
Detection,
CRV13(340-347)
IEEE DOI
1308
Complexity theory.
Contour grouping to detect unknown objects.
BibRef
Antunes, M.[Mário],
Lopes, L.S.[Luís Seabra],
Contour-Based Object Extraction and Clutter Removal for Semantic Vision,
ICIAR13(170-180).
Springer DOI
1307
BibRef
Antunes, M.[Mário],
Lopes, L.S.[Luís Seabra],
Unsupervised Internet-Based Category Learning for Object Recognition,
ICIAR13(766-773).
Springer DOI
1307
BibRef
Mori, F.[Fumihiko],
Mori, T.[Terunori],
Region Segmentation and Object Extraction Based on Virtual Edge and
Global Features,
CompPhot12(I:182-193).
Springer DOI
1304
BibRef
Naikal, N.[Nikhil],
Singaraju, D.[Dheeraj],
Sastry, S.S.[S. Shankar],
Using Models of Objects with Deformable Parts for Joint Categorization
and Segmentation of Objects,
ACCV12(II:79-93).
Springer DOI
1304
BibRef
Srikham, M.[Manassanan],
Active contours segmentation with edge based and local region based,
ICPR12(1989-1992).
WWW Link.
1302
BibRef
Shah, P.[Pratik],
Gupta, M.D.[Mithun Das],
Simultaneous Registration and Segmentation by L1 Minimization,
MLMI12(128-135).
Springer DOI
1211
BibRef
Aitfares, W.,
Herbulot, A.,
Devy, M.,
Bouyakhf, E.H.,
Regragui, F.,
A novel region-based active contour approach relying on local and global
information,
ICIP11(1029-1032).
IEEE DOI
1201
BibRef
Jager, F.[Fabian],
Contour-based segmentation and coding for depth map compression,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Asahi, T.[Takeshi],
Ortega, J.H.[Jaime H.],
Lecaros, R.[Rodrigo],
Multicolor image segmentation using Ambrosio-Tortorelli approximation,
ICIP11(2865-2868).
IEEE DOI
1201
BibRef
Schlecht, J.[Joseph],
Ommer, B.[Björn],
Contour-based object detection,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Shemesh, M.[Michal],
Ben-Shahar, O.[Ohad],
Free Boundary Conditions Active Contours with Applications for Vision,
ISVC11(I: 180-191).
Springer DOI
1109
BibRef
Guo, Y.R.[Yan-Rong],
Jiang, J.G.[Jian-Guo],
Hao, S.J.[Shi-Jie],
Zhan, S.[Shu],
Distribution-Based Active Contour Model for Medical Image Segmentation,
ICIG11(61-65).
IEEE DOI
1109
BibRef
Krajsek, K.[Kai],
Dedovic, I.[Ines],
Scharr, H.[Hanno],
An Estimation Theoretical Approach to Ambrosio-Tortorelli Image
Segmentation,
DAGM11(41-50).
Springer DOI
1109
See also Approximation of functionals depending on jumps by elliptic functionals via ..-convergence.
BibRef
Thieu, Q.T.[Quang Tung],
Luong, M.[Marie],
Rocchisani, J.M.[Jean-Marie],
Sirakov, N.M.[Nikolay Metodiev],
Viennet, E.[Emmanuel],
Segmentation by a Local and Global Fuzzy Gaussian Distribution Energy
Minimization of an Active Contour Model,
IWCIA12(298-312).
Springer DOI
1211
BibRef
Thieu, Q.T.[Quang Tung],
Luong, M.[Marie],
Rocchisani, J.M.[Jean-Marie],
Viennet, E.[Emmanuel],
Tran, D.,
Novel Convex Active Contour Model Using Local and Global Information,
DICTA11(346-351).
IEEE DOI
1205
BibRef
Thieu, Q.T.[Quang Tung],
Luong, M.[Marie],
Rocchisani, J.M.[Jean-Marie],
Viennet, E.[Emmanuel],
A Convex Active Contour Region-Based Model for Image Segmentation,
CAIP11(I: 135-143).
Springer DOI
1109
BibRef
Guevara, A.[Alvaro],
Conrad, C.[Christian],
Mester, R.[Rudolf],
Curvature oriented clustering of sparse motion vector fields,
Southwest12(161-164).
IEEE DOI
1205
BibRef
Earlier:
Boosting segmentation results by contour relaxation,
ICIP11(1405-1408).
IEEE DOI
1201
BibRef
Earlier: A3, A2, A1:
Multichannel Segmentation Using Contour Relaxation:
Fast Super-Pixels and Temporal Propagation,
SCIA11(250-261).
Springer DOI
1105
See also Learning multi-view correspondences from temporal coincidences.
BibRef
Gao, Y.[Yi],
Tannenbaum, A.R.[Allen R.],
Kikinis, R.[Ron],
Simultaneous Multi-object Segmentation Using Local Robust Statistics
and Contour Interaction,
MCV10(195-203).
Springer DOI
1009
BibRef
Saha, B.N.[Baidya Nath],
Ray, N.[Nilanjan],
Zhang, H.[Hong],
Automating Snakes for Multiple Objects Detection,
ACCV10(III: 39-51).
Springer DOI
1011
BibRef
Pont-Tuset, J.[Jordi],
Marques, F.[Ferran],
Contour detection using Binary Partition Trees,
ICIP10(1609-1612).
IEEE DOI
1009
BibRef
Yu, W.[Wei],
Franchetti, F.[Franz],
Chang, Y.J.[Yao-Jen],
Chen, T.H.[Tsu-Han],
Fast and robust active contours for image segmentation,
ICIP10(641-644).
IEEE DOI
1009
BibRef
Chen, G.[Gang],
Zhang, H.Y.[Hai-Ying],
Chen, I.[Iron],
Yang, W.[Wen],
Active Contours with Thresholding Value for Image Segmentation,
ICPR10(2266-2269).
IEEE DOI
1008
BibRef
Sargin, M.E.,
Bertelli, L.,
Manjunath, B.S.,
Rose, K.,
Probabilistic occlusion boundary detection on spatio-temporal lattices,
ICCV09(560-567).
IEEE DOI
0909
BibRef
Xu, Q.Z.[Qi-Zhi],
Hu, L.[Lei],
Li, B.[Bo],
Liu, Y.K.[Yang-Ke],
Object Contour Extraction Based on Intensity and Texture Information,
CISP09(1-6).
IEEE DOI
0910
BibRef
Wan, G.H.[Guo-Hong],
Huang, X.H.[Xin-Han],
Wang, M.[Min],
An Improved Active Contours Model Based on Morphology for Image
Segmentation,
CISP09(1-5).
IEEE DOI
0910
BibRef
Ouyang, C.S.[Cheng-Su],
Huang, Y.X.[Yong-Xuan],
Yuan, J.[Jun],
A Novel Snake Model for X-Ray Image Segmentation,
CISP09(1-4).
IEEE DOI
0910
BibRef
Yang, Q.X.[Qiu-Xia],
Tang, L.R.[Liang-Rui],
Yu, W.W.[Wen-Wen],
Waterdrops Shape Extraction of Hydrophobic Image Based on Snake Model,
CISP09(1-3).
IEEE DOI
0910
BibRef
de Vieilleville, F.[François],
Lachaud, J.O.[Jacques-Olivier],
Digital Deformable Model Simulating Active Contours,
DGCI09(203-216).
Springer DOI
0909
BibRef
Lachaud, J.O.[Jacques-Olivier],
Vialard, A.[Anne],
Discrete Deformable Boundaries for the Segmentation of Multidimensional
Images,
VF01(542 ff.).
Springer DOI
0209
BibRef
Suzuki, T.[Tetsuaki],
Hebert, M.[Martial],
Estimating object region from local contour configuration,
VCL-ViSU09(69-76).
IEEE DOI
0906
Boundary and region info to find foreground objects.
BibRef
Myronenko, A.[Andriy],
Song, X.[Xubo],
Global active contour-based image segmentation via probability
alignment,
CVPR09(2798-2804).
IEEE DOI
0906
BibRef
Wan, C.K.,
Yuan, B.Z.,
Miao, Z.J.,
A new algorithm for static camera foreground segmentation via active
coutours and GMM,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Vega-Pons, S.[Sandro],
Gil-Rodriguez, J.L.[Jose Luis],
Vera Perez, O.L.[Oscar Luis],
Active contour algorithm for texture segmentation using a texture
feature set,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bernardis, E.[Elena],
Yu, S.X.[Stella X.],
Finding dots: Segmentation as popping out regions from boundaries,
CVPR10(199-206).
IEEE DOI
1006
BibRef
And:
Structural correspondence as a contour grouping problem,
MMBIA10(194-199).
IEEE DOI
1006
BibRef
Earlier:
Robust Segmentation by Cutting across a Stack of Gamma Transformed
Images,
EMMCVPR09(249-260).
Springer DOI
0908
BibRef
Bernardis, E.[Elena],
Shi, J.B.[Jian-Bo],
Shape Extraction through Region-Contour Stitching,
ISVC08(I: 393-405).
Springer DOI
0812
BibRef
Le, T.V.[Thang V.],
Kulikowski, C.A.[Casimir A.],
Muchnik, I.B.[Ilya B.],
A Graph-Based Approach for Image Segmentation,
ISVC08(I: 278-287).
Springer DOI
0812
BibRef
Jain, A.[Arpit],
Gupta, A.[Abhinav],
Davis, L.S.[Larry S.],
Learning What and How of Contextual Models for Scene Labeling,
ECCV10(IV: 199-212).
Springer DOI
1009
predict importance of edges in region labeling.
BibRef
Ravishankar, S.[Saiprasad],
Jain, A.[Arpit],
Mittal, A.[Anurag],
Multi-stage Contour Based Detection of Deformable Objects,
ECCV08(I: 483-496).
Springer DOI
0810
BibRef
Farzinfar, M.[Mahshid],
Xue, Z.[Zhong],
Teoh, E.K.[Eam Khwang],
Joint Parametric and Non-parametric Curve Evolution for Medical Image
Segmentation,
ECCV08(I: 167-178).
Springer DOI
0810
BibRef
Zadicario, E.[Eyal],
Avidan, S.[Shai],
Shmueli, A.[Alon],
Cohen-Or, D.[Daniel],
Boundary snapping for robust image cutouts,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Vaudrey, T.[Tobi],
Gruber, D.[Daniel],
Wedel, A.[Andreas],
Klappstein, J.[Jens],
Space-Time Multi-Resolution Banded Graph-Cut for Fast Segmentation,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Zhu, Q.H.[Qi-Hui],
Song, G.[Gang],
Shi, J.B.[Jian-Bo],
Untangling Cycles for Contour Grouping,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Zhuang, Y.T.[Yue-Ting],
Chen, C.[Cheng],
Efficient Silhouette Extraction with Dynamic Viewpoint,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Li, Z.[Zhong],
Najarian, K.[Kayvan],
Biomedical Image Segmentation Based on Shape Stability,
ICIP07(VI: 281-284).
IEEE DOI
0709
BibRef
Hudy, C.[Christopher],
Campbell, J.[Jonathan],
Slater, J.[John],
Model-based Edge Tracking for Segmentation of Low Contrast Images,
IMVIP07(212-212).
IEEE DOI
0709
BibRef
Marques, J.S.[Jorge S.],
Figueiredo, M.A.T.[Mario A.T.],
Image super-segmentation:
Segmentation with multiple labels from shuffled observations,
ICIP11(2849-2852).
IEEE DOI
1201
BibRef
Silveira, M.[Margarida],
Marques, J.S.[Jorge S.],
Estimation of Multiple Objects at Unknown Locations with Active
Contours,
IbPRIA07(II: 372-379).
Springer DOI
0706
BibRef
Simon, I.[Ian],
Seitz, S.M.[Steven M.],
Scene Segmentation Using the Wisdom of Crowds,
ECCV08(II: 541-553).
Springer DOI
0810
BibRef
Earlier:
A Probabilistic Model for Object Recognition, Segmentation, and
Non-Rigid Correspondence,
CVPR07(1-7).
IEEE DOI
0706
BibRef
Corpetti, T.,
An Active Contour Method Based on Wavelet for Texture Boundaries,
ICIP06(1109-1112).
IEEE DOI
0610
BibRef
Kim, S.H.[Shin-Hyoung],
Jang, J.W.[Jong Whan],
Robust Contour Tracking Using a Modified Snake Model in Stereo Image
Sequences,
ICIAR07(307-317).
Springer DOI
0708
BibRef
And:
An Improved Snake-Based Method for Object Contour Detection,
ICIP07(I: 249-252).
IEEE DOI
0709
BibRef
Alattar, A.M.[Ashraf M.],
Jang, J.W.[Jong Whan],
A New Stereo Correspondence Method for Snake-Based Object Segmentation,
ICIP07(III: 381-384).
IEEE DOI
0709
BibRef
Kim, S.H.[Shin-Hyoung],
Alattar, A.M.[Ashraf M.],
Jang, J.W.[Jong Whan],
Snake-Based Objects Tracking in Stereo Sequences with the Optimization
of the Number of Snake Points,
ICIP06(193-196).
IEEE DOI
0610
BibRef
And:
Accurate Contour Detection Based on Snakes for Objects with Boundary
Concavities,
ICIAR06(I: 226-235).
Springer DOI
0610
BibRef
Han, D.F.[Dong-Feng],
Li, W.H.[Wen-Hui],
Lu, X.S.[Xiao-Suo],
Li, L.[Lin],
Wang, Y.[Yi],
Graph-Based Fast Image Segmentation,
SSPR06(468-474).
Springer DOI
0608
BibRef
Han, D.F.[Dong-Feng],
Li, W.H.[Wen-Hui],
Lu, X.S.[Xiao-Suo],
Wang, T.Z.[Tian-Zhu],
Wang, Y.[Yi],
Automatic Segmentation Based on AdaBoost Learning and Graph-Cuts,
ICIAR06(I: 215-225).
Springer DOI
0610
BibRef
Han, D.F.[Dong-Feng],
Li, W.H.[Wen-Hui],
Lu, X.S.[Xiao-Suo],
Wang, Y.[Yi],
Zou, X.Q.[Xiao-Qiang],
Certain Object Segmentation Based on AdaBoost Learning and Nodes
Aggregation Iterative Graph-Cuts,
AMDO06(196-202).
Springer DOI
0607
BibRef
Beaulieu, J.,
Pseudo-convex Contour Criterion for Hierarchical Segmentation of SAR
Images,
CRV06(29-29).
IEEE DOI
0607
BibRef
Awadallah, M.[Mahmoud],
Abbott, A.L.[A. Lynn],
Ghannam, S.[Sherin],
Segmentation of sparse noisy point clouds using active contour models,
ICIP14(6061-6065)
IEEE DOI
1502
Active contours
BibRef
Lee, S.M.[Sang-Mook],
Abbott, A.L.[A. Lynn],
Araman, P.A.[Philip A.],
Segmentation on statistical manifold with watershed transform,
ICIP08(625-628).
IEEE DOI
0810
BibRef
Earlier:
Dimensionality Reduction and Clustering on Statistical Manifolds,
ComponentAnalysis07(1-7).
IEEE DOI
0706
BibRef
Lee, S.M.[Sang-Mook],
Abbott, A.L.,
Clark, N.A.,
Araman, P.A.,
Diffusion on Statistical Manifolds,
ICIP06(233-236).
IEEE DOI
0610
BibRef
Earlier:
Active Contours on Statistical Manifolds And Texture Segmentation,
ICIP05(III: 828-831).
IEEE DOI
0512
BibRef
Jiang, C.Y.[Chun-Yan],
Zhang, X.H.[Xin-Hua],
Meinel, C.[Christoph],
Hybrid Framework for Medical Image Segmentation,
CAIP05(264).
Springer DOI
0509
BibRef
Gelautz, M.[Margrit],
Markovic, D.[Danijela],
Recognition of Object Contours from Stereo Images:
An Edge Combination Approach,
3DPVT04(774-780).
IEEE DOI
0412
Combine depth edges from stereo with intensity images from image.
Then active contours to get precise extraction.
BibRef
Bueno, G.[Gloria],
Martínez-Albalá, A.[Antonio],
Adán, A.[Antonio],
Fuzzy-Snake Segmentation of Anatomical Structures Applied to CT Images,
ICIAR04(II: 33-42).
Springer DOI
0409
BibRef
Tipwai, P.,
Madarasmi, S.,
Image search using deformable contours,
ICIP02(I: 437-440).
IEEE DOI
0210
BibRef
Gallo, G.,
Grasso, G.,
Nicotra, S.,
Pulvirenti, A.,
Remote sensed images segmentation through shape refinement,
CIAP01(137-144).
IEEE DOI
0210
BibRef
Tan, K.H.[Kar-Han],
Ahuja, N.[Narendra],
A Representation for Image Structure and Its Application to Object
Selection Using Freehand Sketches,
CVPR01(II:677-683).
IEEE DOI
0110
Rough outline of the desired object. Select the good segmentation.
BibRef
Fenster, S.D.,
Kuo, C.B.G.,
Kender, J.R.,
Nonparametric Training of Snakes to Find Indistinct Boundaries,
MMBIA01(xx-yy).
0110
BibRef
Ray, N.,
Havlicek, J.P.,
Acton, S.T.,
Pattichis, M.S.[Marios S.],
Active Contour Segmentation Guided by AM-FM Dominant Component Analysis,
ICIP01(I: 78-81).
IEEE DOI
0108
BibRef
Perez, P.[Patrick],
Blake, A.[Andrew],
Gangnet, M.[Michel],
JetStream: Probabilistic Contour Extraction with Particles,
ICCV01(II: 524-531).
IEEE DOI
0106
To do cutouts for picture editing or road extraction.
BibRef
Tan, K.H.[Kar-Han],
Ahuja, N.[Narendra],
Selecting Objects With Freehand Sketches,
ICCV01(I: 337-344).
IEEE DOI
0106
Select the rough object, then fit the exact area.
BibRef
da Costa, J.P.[Jean Pierre],
Germain, C.[Christian],
Baylou, P.[Pierre],
Level Curve Tracking Algorithm for Textural Feature Extraction,
ICPR00(Vol III: 909-912).
IEEE DOI
0009
BibRef
Kuo, C.H.[Chung-Hui],
Tewfik, A.H.[Ahmed H.],
Unsupervised Color Image Segmentation for Content-Based Application,
ICME00(WP5).
0007
BibRef
Earlier:
Multiscale Sigma Filter and Active Contour for Image Segmentation,
ICIP99(I:353-357).
IEEE DOI
BibRef
Belongie, S.J.[Serge J.],
Malik, J.,
Finding Boundaries in Natural Images:
A New Method Using Point Descriptors and Area Completion,
ECCV98(I: 751).
Springer DOI
HTML Version.
BibRef
9800
O'Donnell, T.[Thomas],
Dubuisson-Jolly, M.P.[Marie-Pierre], and
Gupta, A.[Alok],
A Cooperative Framework for Segmentation Using 2D Active Contours and
3D Hybrid Models as Applied to Branching Cylindrical Structures,
ICCV98(454-459).
IEEE DOI
BibRef
9800
Leung, T.,
Malik, J.,
Contour continuity in region-based image segmentation,
ECCV98(I: 544).
Springer DOI
PS File.
BibRef
9800
Zingaretti, P.[Primo],
Carbonaro, A.[Antonella],
Puliti, P.[Paolo],
Evolutionary image segmentation,
CIAP97(I: 247-254).
Springer DOI
9709
BibRef
Taylor, R.I.,
Lewis, P.H.,
Colour image segmentation using boundary relaxation,
ICPR92(III:721-724).
IEEE DOI
9208
BibRef
Taylor, R.I.,
Lewis, P.H.,
A Fractal Shape Signature,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Darrell, T.J.,
Sclaroff, S., and
Pentland, A.P.,
Segmentation by Minimal Description,
ICCV90(112-116).
IEEE DOI
BibRef
9000
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Active Contours and Snakes, Shape Priors for Segmentation .