Mahalanobis, P.C.,
On the Generalized Distance in Statistics,
Proc.
Natl. Inst. Science(12), Calcutta, 1936, pp. 49-55.
Mahalanobis Distance.
BibRef
3600
Dempster, A.P.,
New Methods for Reasoning Towards Posterior Distributions
Based on Sample Data,
AMS(37), No. 2, 1966. pp. 355-374.
BibRef
6600
Dempster, A.P.,
Upper and Lower Probabilities Induced by a Multivalued Mapping,
AMS(38), No. 2, 1967. pp. 325-339.
BibRef
6700
Dempster, A.P.,
Upper and Lower Probabilities Generalized by a Random Closed Interval,
AMS(39), No. 3, 1968. pp. 957-966.
BibRef
6800
Dempster, A.P.,
Upper and Lower Probability Inferences for Families of
Hypotheses with Monotone Density Ratios,
AMS(40), No. 3, 1969. pp. 953-969.
BibRef
6900
Dempster, A.P.,
On Direct Probabilities,
RoyalStat(B-20), 1963, pp. 102-107.
BibRef
6300
Dempster, A.P.,
On the difficulties Inherent in Fisher's Fiducial Argument,
ASAJ(59), 1964, pp. 56-66.
BibRef
6400
Dempster, A.P.,
Covariance Selection,
Biometrics(28), 1972, pp. 157-175.
BibRef
7200
Dempster, A.P.,
Laird, N.M.,
Rubin, D.B.,
Maximum Likelihood from Incomplete Data via the EM Algorithm,
RoyalStat(B-39), No. 1, 1977, pp. 1-38.
BibRef
7700
Shafer, G.[Glenn],
A Mathematical Theory of Evidence,
Princeton Univ. PressPrinceton, NJ, 1976.
Dempster-Shafer.
BibRef
7600
Book
This technique gives an upper and a lower bound on the possibility
and a means to combine them. It is designed to eliminate the
problems encountered by standard probability based systems.
This is a rewording and clarification of the earlier Dempster papers.
It is much more readable for a non-probability theory researcher.
BibRef
Shafer, G.[Glenn], and
Logan, R.,
Implementing Dempster's Rule for Hierarchical Evidence,
AI(33), No. 3, November 1987, pp. 271-298.
Elsevier DOI
BibRef
8711
Shafer, G.,
Hierarchical Evidence,
CAIA85(16-21).
BibRef
8500
Michalski, R.S.,
A Variable-Valued Logic System as Applied to Picture Description
and Recognition,
TC(21), No. 7, July 1972, pp. 20-47.
(Pages can't be right.)
BibRef
7207
Voorbraak, F.[Frans],
On the justification of Dempster's rule of combination,
AI(48), No. 2, March 1991, pp. 171-197.
Elsevier DOI
BibRef
9103
Hummel, R.A., and
Landy, M.S.,
A Statistical Viewpoint on the Theory of Evidence,
PAMI(10), No. 2, March 1988, pp. 235-247.
IEEE DOI
Dempster-Shafer. This paper discusses Dempster-Shafer theory but does not give an
absolute conclusion about how best to use it or if it is worth it.
See also Mathematical Theory of Evidence, A.
BibRef
8803
Hummel, R.A., and
Manevitz, L.M.,
Combining Bodies of Dependent Information,
IJCAI87(1015-1017).
BibRef
8700
Bowen, J.B.,
Mayhew, J.E.W.,
Consistency Maintenance in the Revgraph Environment,
IVC(6), No. 3, August 1988, pp. 139-150.
Elsevier DOI
BibRef
8808
Barnett, J.A.,
Calculating Dempster-Shafer Plausibility,
PAMI(13), No. 6, June 1991, pp. 599-602.
IEEE DOI
See also Mathematical Theory of Evidence, A.
BibRef
9106
Jain, R.C., and
Haynes, S.M.,
Imprecision in Computer Vision,
Computer(15), No. 8, August 1982, pp. 39-48.
Uncertainty.
Survey, Uncertainty. General survey about how it is used.
BibRef
8208
Sher, D.B.,
Hull, J.J.,
Quantifying the unimportance of prior probabilities in a computer
vision problem,
ICPR90(I: 662-664).
IEEE DOI
9006
BibRef
Sher, D.B.[David B.],
Evidence Combination Using Likelihood Generators,
DARPA87(655-662).
BibRef
8700
Earlier:
Evidence Combination for Vision Using Likelihood Generators,
DARPA85(255-270).
The use of likelihoods from several detectors improves results.
(Maybe this should be under edge detection.)
BibRef
Kittler, J.V., and
Hancock, E.R.,
Combining Evidence in Probabilistic Relaxation,
PRAI(3), 1989, pp. 29-51.
See also Edge-Labeling Using Dictionary-Based Relaxation.
BibRef
8900
Kittler, J.V., and
Föglein, J.,
On Compatibility and Support Functions in Probabilistic Relaxation,
CVGIP(34), No. 3, June 1986, pp. 257-267.
Elsevier DOI
BibRef
8606
Earlier:
Contextual Decision Rules for Objects in Lattice Configurations,
ICPR84(270-272).
Relaxation is compared to a compound decision rule and a number
of problems arise with heuristic compatibility and support functions. The
paper is only concerned with image based post processing type relaxation.
BibRef
Kittler, J.V.,
Compatibility and Support Functions in Probabilistic Relaxation,
ICPR86(186-189).
BibRef
8600
Kittler, J.V., and
Hancock, E.R.,
Contextual Decision Rule for Image Analysis,
IVC(5), No. 2, May 1987, pp. 145-153.
Elsevier DOI
BibRef
8705
Christmas, W.J.,
Kittler, J.V.,
Petrou, M.[Maria],
Structural Matching in Computer Vision Using Probabilistic Relaxation,
PAMI(17), No. 8, August 1995, pp. 749-764.
IEEE DOI
BibRef
9508
Earlier: A2, A3, A1:
ASSPR(471-480).
Attributed Graphs. Apply to road networks.
BibRef
Gilks, W.,
Richardson, S.,
Spiegelhalter, D.,
Markov Chain Monte Carlo in Practice,
Chapman and Hall1996.
Markov Chain.
MCMC.
BibRef
9600
Ambrosio, L.,
Existence theory for a new class of variational problems,
Arch. Rational Mech. Anal.(111), No. 4, 1990, pp. 291-322..
BibRef
9000
Ambrosio, L.,
Fusco, N.,
Pallara, D.,
Functions of bounded variation and free discontinuity problems,
Clarendon PressOxford, 2000.
BibRef
0001
Ambrosio, L.,
Tortorelli, V.M.,
Approximation of functionals depending on jumps by elliptic functionals
via ..-convergence,
Comm. Pure Appl. Math.(43), No. 8, 1990, pp. 999-1036.
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
9000
Ambrosio, L.,
Tortorelli, V.M.,
On the approximation of free discontinuity problems,
Boll. Un. Mat. Ital. B(6), No. 1, 1992, pp. 105-123.
BibRef
9200
Christmas, W.J.,
Kittler, J.V.,
Petrou, M.,
Probabilistic Feature-Labeling Schemes:
Modeling Compatibility Coefficient Distributions,
IVC(14), No. 8, August 1996, pp. 617-625.
Elsevier DOI
9609
BibRef
Earlier:
Modelling Compatibility Coefficient Distributions for
Probabilistic Feature-Labelling Schemes,
BMVC95(603-612).
PDF File.
BibRef
Kittler, J.V.,
Petrou, M.,
Christmas, W.J.,
A Noniterative Probabilistic Method for
Contextual Correspondence Matching,
PR(31), No. 10, October 1998, pp. 1455-1468.
Elsevier DOI
9808
BibRef
Christmas, W.J.,
Kittler, J.V.[Josef V.],
Petrou, M.[Maria],
Exploiting Temporal Context in Vision-Based Navigation,
SPIE(2736), 1996, pp. 154-161
BibRef
9600
Earlier:
Non-Iterative Contextual Correspondence Matching,
ECCV94(B:137-142).
Springer DOI
BibRef
Kittler, J.V.,
Christmas, W.J., and
Petrou, M.,
Probabilistic Relaxation for Matching Problems in Computer Vision,
ICCV93(666-673).
IEEE DOI Examples of line matching.
BibRef
9300
Christmas, W.J.,
Kittler, J.V.,
Petrou, M.,
Labelling 2-D Geometric Primitives Using Probabilistic Relaxation:
Reducing the Computational Requirements,
Electronic Letters(32), No. 4, 1996, pp. 312-314.
BibRef
9600
And:
Matching of Road Segments Using Probabilistic Relaxation:
A Hierarchical Approach,
SPIE(2304), July 1994, pp. 166-174.
BibRef
And:
Matching of Road Segments Using Probabilistic Relaxation:
Reducing the Computational Requirements,
SPIE(2220), April 1994, pp. 169-179.
BibRef
And:
Location of Objects in a Cluttered Scene Using Probabilistic Relaxation,
AVFP94(119-128).
BibRef
Kostin, A.[Alexey],
Kittler, J.V.[Josef V.],
Christmas, W.J.[William J.],
Object recognition by symmetrised graph matching using relaxation
labelling with an inhibitory mechanism,
PRL(26), No. 3, February 2005, pp. 381-393.
Elsevier DOI
0501
BibRef
Sofer, D.,
Constraint Networks in Vision,
TC(40), 1991, pp. 1359-1367.
BibRef
9100
Smets, P.,
The combination of evidence in the transferable belief model,
PAMI(12), No. 5, May 1990, pp. 447-458.
IEEE DOI
0401
BibRef
Elouedi, Z.,
Mellouli, K.,
Smets, P.,
Assessing Sensor Reliability for Multisensor Data Fusion Within the
Transferable Belief Model,
SMC-B(34), No. 1, February 2004, pp. 782-787.
IEEE Abstract.
0403
How reliable is a sensor in a data fusion application.
BibRef
Delmotte, F.,
Smets, P.,
Target Identification Based on the Transferable Belief Model
Interpretation of Dempster-Shafer Model,
SMC-A(34), No. 4, July 2004, pp. 457-471.
IEEE Abstract.
0407
BibRef
Abramson, B.,
Expected-outcome: a general model of static evaluation,
PAMI(12), No. 2, February 1990, pp. 182-193.
IEEE DOI
0401
BibRef
Bhatnagar, R.,
Kanal, L.N.,
Structural and probabilistic knowledge for abductive reasoning,
PAMI(15), No. 3, March 1993, pp. 233-245.
IEEE DOI
0401
BibRef
Fertig, K.W.,
Breese, J.S.,
Probability intervals over influence diagrams,
PAMI(15), No. 3, March 1993, pp. 280-286.
IEEE DOI
0401
BibRef
Heckerman, D.,
Horvitz, E.,
Middleton, B.,
An approximate nonmyopic computation for value of information,
PAMI(15), No. 3, March 1993, pp. 292-298.
IEEE DOI
0401
BibRef
Provan, G.M.,
Clarke, J.R.,
Dynamic network construction and updating techniques for the diagnosis
of acute abdominal pain,
PAMI(15), No. 3, March 1993, pp. 299-307.
IEEE DOI
0401
BibRef
Lee, W.T.,
Tenorio, M.F.,
On an asymptotically optimal adaptive classifier design criterion,
PAMI(15), No. 3, March 1993, pp. 312-318.
IEEE DOI
0401
BibRef
Sucar, L.E.,
Gillies, D.F.,
Probabilistic Reasoning in High-Level Vision,
IVC(12), No. 1, January-February 1994, pp. 42-60.
Elsevier DOI
BibRef
9401
Caelli, T.M.[Terry M.],
Dreier, A.,
Variations on the Evidence-Based Object Recognition Theme,
PR(27), No. 2, February 1994, pp. 185-204.
Elsevier DOI
BibRef
9402
Earlier:
Some new techniques for evidence-based object recognition: EB-ORS1,
ICPR92(II:450-454).
IEEE DOI
9208
BibRef
Bloch, I.,
Some Aspects of Dempster-Shafer Evidence Theory for Classification
of Multimodality Medical Images Taking Partial Volume Effect into Account,
PRL(17), No. 8, July 1 1996, pp. 905-919.
9608
See also Mathematical Theory of Evidence, A.
BibRef
Fixsen, D.,
Mahler, R.P.S.,
The Modified Dempster-Shafer Approach to Classification,
SMC-A(27), No. 1, January 1997, pp. 96-104.
IEEE Top Reference.
9701
BibRef
Hand, D.J.,
Recent Advances in Error Rate Estimation,
PRL(4), 1986, pp. 335-346.
BibRef
8600
Cheng, Y.Z.[Yi-Zong],
Kashyap, R.L.,
A Study of Associative Evidential Reasoning,
PAMI(11), No. 6, June 1989, pp. 623-631.
IEEE DOI
BibRef
8906
Earlier:
Construction and Interpretations of Formulas for Combining Evidence,
ICPR86(1226-1229).
BibRef
Mogre, A.,
McLaren, R.,
Keller, J.M.,
Krishnapuram, R.,
Uncertainty Management for Rule-Based Systems with
Applications to Image Analysis,
SMC(24), 1994, pp. 470-481.
BibRef
9400
Bauer, M.,
Approximation Algorithms and Decision-Making in the
Dempster-Shafer Theory of Evidence: An Empirical-Study,
ApproximateR(17), No. 2-3, August/October 1997, pp. 217-237.
9706
See also Mathematical Theory of Evidence, A.
BibRef
Ménard, M.[Michel],
Courboulay, V.[Vincent],
Dardignac, P.A.[Pierre-André],
Possibilistic and probabilistic fuzzy clustering: unification within
the framework of the non-extensive thermostatistics,
PR(36), No. 6, June 2003, pp. 1325-1342.
Elsevier DOI
0304
BibRef
Masson, M.H.[Marie-Hélčne],
Denoeux, T.[Thierry],
Clustering interval-valued proximity data using belief functions,
PRL(25), No. 2, January 2004, pp. 163-171.
Elsevier DOI
0401
BibRef
Félix, P.,
Barro, S.,
Marín, R.,
Fuzzy constraint networks for signal pattern recognition,
AI(148), No. 1-2, August 2003, pp. 103-140.
Elsevier DOI
0401
BibRef
Cuzzolin, F.,
Geometry of Dempster's Rule of Combination,
SMC-B(34), No. 2, April 2004, pp. 961-977.
IEEE Abstract.
0404
BibRef
Cuzzolin, F.,
Two New Bayesian Approximations of Belief Functions Based on Convex
Geometry,
SMC-B(37), No. 4, August 2007, pp. 993-1008.
IEEE DOI
0707
BibRef
Boudraa, A.O.[Abdel-Ouahab],
Bentabet, A.[Ayachi],
Salzenstein, F.[Fabien],
Dempster-Shafer's Basic Probability Assignment Based on Fuzzy
Membership Functions,
ELCVIA(4), No. 1, October 2004, pp. xx-yy.
DOI Link
0410
BibRef
Draper, B.A.,
Elliott, D.L.,
Hayes, J.,
Baek, K.,
EM in High-Dimensional Spaces,
SMC-B(35), No. 3, June 2005, pp. 571-577.
IEEE DOI
0508
BibRef
Pieczynski, W.[Wojciech],
Benboudjema, D.[Dalila],
Multisensor triplet Markov fields and theory of evidence,
IVC(24), No. 1, 1 January 2006, pp. 61-69.
Elsevier DOI
0602
BibRef
Guo, H.,
Shi, W.,
Deng, Y.,
Evaluating Sensor Reliability in Classification Problems Based on
Evidence Theory,
SMC-B(36), No. 5, October 2006, pp. 970-981.
IEEE DOI
0609
BibRef
Ghosh, D.,
Pados, D.A.,
Acharya, R.,
Llinas, J.,
On Dempster-Shafer and bayesian detectors,
SMC-C(36), No. 5, September 2006, pp. 688-692.
IEEE DOI
0609
BibRef
Schonfeld, D.,
Bouaynaya, N.,
A New Method for Multidimensional Optimization and Its Application in
Image and Video Processing,
SPLetters(13), No. 8, August 2006, pp. 485-488.
IEEE DOI
0606
BibRef
Xu, G.P.[Guo-Ping],
Tian, W.F.[Wei-Feng],
Qian, L.[Li],
Zhang, X.F.[Xiang-Fen],
A novel conflict reassignment method based on grey relational analysis
(GRA),
PRL(28), No. 15, 1 November 2007, pp. 2080-2087.
Elsevier DOI
0711
Evidence theory; Belief functions; Grey relational analysis;
Conflict reassignment; Target recognition; Reliability evaluation
BibRef
Olsson, C.[Carl],
Eriksson, A.P.[Anders P.],
Kahl, F.[Fredrik],
Improved spectral relaxation methods for binary quadratic optimization
problems,
CVIU(112), No. 1, October 2008, pp. 3-13.
Elsevier DOI
0810
BibRef
Earlier:
Solving Large Scale Binary Quadratic Problems:
Spectral Methods vs. Semidefinite Programming,
CVPR07(1-8).
IEEE DOI
0706
BibRef
And:
Efficient Optimization for L-inf-problems using Pseudoconvexity,
ICCV07(1-8).
IEEE DOI
0710
For relaxation implementations.
Quadratic binary optimization; Spectral relaxation; Image
partitioning; Subgraph matching; Trust region problem; Semidefinite
programming; Discrete optimization; Binary restoration
BibRef
Olsson, C.[Carl],
Eriksson, A.P.[Anders P.],
Hartley, R.I.[Richard I.],
Outlier removal using duality,
CVPR10(1450-1457).
IEEE DOI
1006
In large scale reconstructions.
BibRef
Olsson, C.[Carl],
Eriksson, A.P.[Anders P.],
Triangulating a Plane,
SCIA11(13-23).
Springer DOI
1105
BibRef
Olsson, C.[Carl],
Eriksson, A.P.[Anders P.],
Solving quadratically constrained geometrical problems using lagrangian
duality,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Eriksson, A.P.[Anders P.],
Olsson, C.[Carl],
Kahl, F.[Fredrik],
Efficiently Solving the Fractional Trust Region Problem,
ACCV07(II: 796-805).
Springer DOI
0711
BibRef
Hartley, R.I.[Richard I.],
Kahl, F.[Fredrik],
Global Optimization through Rotation Space Search,
IJCV(82), No. 1, April 2009, pp. xx-yy.
Springer DOI
0902
BibRef
Earlier:
Global Optimization through Searching Rotation Space and Optimal
Estimation of the Essential Matrix,
ICCV07(1-8).
IEEE DOI
0710
Branch-and-bound search over rotations.
BibRef
Mantrach, A.[Amin],
Yen, L.[Luh],
Callut, J.[Jerome],
Francoisse, K.[Kevin],
Shimbo, M.[Masashi],
Saerens, M.[Marco],
The Sum-over-Paths Covariance Kernel:
A Novel Covariance Measure between Nodes of a Directed Graph,
PAMI(32), No. 6, June 2010, pp. 1112-1126.
IEEE DOI
1004
BibRef
Senelle, M.,
Garcia-Diez, S.,
Mantrach, A.,
Shimbo, M.,
Saerens, M.,
Fouss, F.,
The Sum-over-Forests Density Index:
Identifying Dense Regions in a Graph,
PAMI(36), No. 6, June 2014, pp. 1268-1274.
IEEE DOI
1406
Correlation
BibRef
Kanatani, K.[Kenichi],
Sugaya, Y.[Yasuyuki],
Niitsuma, H.[Hirotaka],
Optimization without Minimization Search: Constraint Satisfaction by
Orthogonal Projection with Applications to Multiview Triangulation,
IEICE(E93-D), No. 10, October 2010, pp. 2836-2845.
WWW Link.
1011
BibRef
Esser, E.[Ernie],
Zhang, X.[Xiaoqun],
Chan, T.F.[Tony F.],
A General Framework for a Class of First Order Primal-Dual
Algorithms for Convex Optimization In Imaging Science,
SIIMS(3), No. 4, 2010, pp. 1015-1046.
WWW Link.
DOI Link convex optimization; total variation minimization; primal-dual
methods; operator splitting; L_1 basis pursuit
BibRef
1000
Enqvist, O.[Olof],
Kahl, F.[Fredrik],
Olsson, C.[Carl],
Astrom, K.[Kalle],
Global Optimization For One-Dimensional Structure And Motion Problems,
SIIMS(3), No. 4, 2010, pp. 1075-1095.
WWW Link.
DOI Link structure and motion; one-dimensional vision; simultaneous
localization and mapping; geometry
BibRef
1000
Astrom, K.[Kalle],
Enqvist, O.[Olof],
Olsson, C.[Carl],
Kahl, F.[Fredrik],
Hartley, R.I.[Richard I.],
An L-inf to Structure and Motion Problems in 1D-Vision,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Olsson, C.[Carl],
Enqvist, O.[Olof],
Stable Structure from Motion for Unordered Image Collections,
SCIA11(524-535).
Springer DOI
1105
BibRef
Becker, S.[Stephen],
Bobin, J.[Jerome],
Candes, E.J.[Emmanuel J.],
Nesta: A Fast And Accurate First-Order Method For Sparse Recovery,
SIIMS(4), No. 1, 2011, pp. 1-39.
WWW Link.
DOI Link Nesterov's method; smooth approximations of nonsmooth functions; L_1
minimization; duality in convex optimization; continuation methods;
compressed sensing; total-variation minimization
BibRef
1100
Hager, W.W.[William W.],
Phan, D.T.[Dzung T.],
Zhang, H.C.[Hong-Chao],
Gradient-Based Methods For Sparse Recovery,
SIIMS(4), No. 1, 2011, pp. 146-165.
WWW Link.
DOI Link sparse reconstruction by separable approximation; iterative shrinkage
thresholding algorithm; sparse recovery; sublinear convergence; linear
convergence; image reconstruction; denoising; compressed sensing;
nonsmooth optimization; nonmonotone convergence; BB method
BibRef
1100
Liu, M.[Meng],
Chen, Y.M.[Yun-Mei],
Ouyang, Y.Y.[Yu-Yuan],
Ye, X.J.[Xiao-Jing],
Huang, F.[Feng],
An enhanced approach for simultaneous image reconstruction and
sensitivity map estimation in partially parallel imaging,
ICIP13(2314-2318)
IEEE DOI
1402
SENSE
BibRef
Yashtini, M.[Maryam],
Hager, W.W.[William W.],
Chen, Y.M.[Yun-Mei],
Ye, X.J.[Xiao-Jing],
Partially parallel image reconstruction using sensitivity encoding,
ICIP12(2077-2080).
IEEE DOI
1302
BibRef
Felzenszwalb, P.F.[Pedro F.],
McAuley, J.J.[Julian J.],
Fast Inference with Min-Sum Matrix Product,
PAMI(33), No. 12, December 2011, pp. 2549-2554.
IEEE DOI
1110
MAP inference on graphs. Rather than the N^3 limit, a N^2logN time.
BibRef
Wickramarathne, T.L.,
Premaratne, K.,
Murthi, M.N.,
Toward Efficient Computation of the Dempster-Shafer Belief Theoretic
Conditionals,
Cyber(43), No. 2, April 2013, pp. 712-724.
IEEE DOI
1303
BibRef
Rusu, C.,
Design of Incoherent Frames via Convex Optimization,
SPLetters(20), No. 7, 2013, pp. 673-676.
IEEE DOI
1307
incoherent frames; Grassmannian frames
BibRef
Lu, S.F.[Shao-Feng],
Hillmansen, S.,
Ho, T.K.,
Roberts, C.,
Single-Train Trajectory Optimization,
ITS(14), No. 2, 2013, pp. 743-750.
IEEE DOI
1307
ant colony optimization algorithm
BibRef
Horng, S.C.,
Lin, S.Y.,
Lee, L.H.,
Chen, C.H.,
Memetic Algorithm for Real-Time Combinatorial Stochastic Simulation
Optimization Problems With Performance Analysis,
Cyber(43), No. 5, 2013, pp. 1495-1509.
IEEE DOI
1309
Real-time suboptimal solution for large optimization problems.
BibRef
Zhang, X.Y.[Xu-Yao],
Yang, P.P.[Pei-Pei],
Zhang, Y.M.[Yan-Ming],
Huang, K.Z.[Kai-Zhu],
Liu, C.L.[Cheng-Lin],
Combination of Classification and Clustering Results with Label
Propagation,
SPLetters(21), No. 5, May 2014, pp. 610-614.
IEEE DOI
1404
graph theory
BibRef
Lu, Y.[Yao],
Huang, K.Z.[Kai-Zhu],
Liu, C.L.[Cheng-Lin],
A fast projected fixed-point algorithm for large graph matching,
PR(60), No. 1, 2016, pp. 971-982.
Elsevier DOI
1609
Graph matching
BibRef
Fu, B.[Bin],
Wang, Z.H.[Zhi-Hai],
Xu, G.D.[Guan-Dong],
Cao, L.B.[Long-Bing],
Multi-label learning based on iterative label propagation over graph,
PRL(42), No. 1, 2014, pp. 85-90.
Elsevier DOI
1404
Multi-label learning
BibRef
Kim, K.H.[Kye-Hyeon],
Choi, S.J.[Seung-Jin],
Label propagation through minimax paths for scalable semi-supervised
learning,
PRL(45), No. 1, 2014, pp. 17-25.
Elsevier DOI
1407
Label propagation
BibRef
Tar, P.[Paul],
Thacker, N.A.[Neil A.],
Linear Poisson Models:
A Pattern Recognition Solution to the Histogram Composition Problem,
BMVA(2014), No. 1, 2014, pp. 1-22.
PDF File.
1408
BibRef
Besse, F.[Frederic],
Rother, C.[Carsten],
Fitzgibbon, A.W.[Andrew W.],
Kautz, J.[Jan],
PMBP: PatchMatch Belief Propagation for Correspondence Field Estimation,
IJCV(110), No. 1, October 2014, pp. 2-13.
Springer DOI
WWW Link.
1410
BibRef
Earlier:
BMVC12(132).
DOI Link
1301
Award, BMVC, Best Impact.
BibRef
Hornácek, M.[Michael],
Besse, F.[Frederic],
Kautz, J.[Jan],
Fitzgibbon, A.W.[Andrew W.],
Rother, C.[Carsten],
Highly Overparameterized Optical Flow Using PatchMatch Belief
Propagation,
ECCV14(III: 220-234).
Springer DOI
1408
BibRef
Yazidi, A.[Anis],
Granmo, O.C.[Ole-Christoffer],
Oommen, B.J.[B. John],
Goodwin, M.,
A Novel Strategy for Solving the Stochastic Point Location Problem
Using a Hierarchical Searching Scheme,
Cyber(44), No. 11, November 2014, pp. 2202-2220.
IEEE DOI
1411
Optimization process.
Determining the optimal point on the line when the only input it
receives are stochastic signals about the direction in which it should
move.
BibRef
Yazidi, A.[Anis],
Oommen, B.J.[B. John],
Goodwin, M.,
On Solving the Problem of Identifying Unreliable Sensors Without a
Knowledge of the Ground Truth: The Case of Stochastic Environments,
Cyber(47), No. 7, July 2017, pp. 1604-1617.
IEEE DOI
1706
Bayes methods, Learning automata, Redundancy, Reliability theory,
Sensor fusion, Learning automata (LA), sensor, fusion
BibRef
Yazidi, A.[Anis],
Pinto-Orellana, M.A.[Marco Antonio],
Hammer, H.[Hugo],
Mirtaheri, P.[Peyman],
Herrera-Viedma, E.[Enrique],
Solving Sensor Identification Problem Without Knowledge of the Ground
Truth Using Replicator Dynamics,
Cyber(52), No. 1, January 2022, pp. 16-24.
IEEE DOI
2201
Sociology, Statistics, Reliability theory, Sensor fusion,
Convergence, Mathematical model, Distributed learning,
sensor fusion
BibRef
Yazidi, A.[Anis],
Oommen, B.J.[B. John],
Horn, G.[Geir],
Granmo, O.C.[Ole-Christoffer],
Stochastic discretized learning-based weak estimation:
A novel estimation method for non-stationary environments,
PR(60), No. 1, 2016, pp. 430-443.
Elsevier DOI
1609
Weak estimators
BibRef
Denoux, T.,
El Zoghby, N.,
Cherfaoui, V.,
Jouglet, A.,
Optimal Object Association in the Dempster-Shafer Framework,
Cyber(44), No. 12, December 2014, pp. 2521-2531.
IEEE DOI
1412
belief maintenance
BibRef
Roy, P.C.,
Islam, M.M.,
Murase, K.,
Yao, X.,
Evolutionary Path Control Strategy for Solving Many-Objective
Optimization Problem,
Cyber(45), No. 4, April 2015, pp. 702-715.
IEEE DOI
1503
Euclidean distance
BibRef
Nayeem, M.A.,
Islam, M.M.,
Yao, X.,
Solving Transit Network Design Problem Using Many-Objective
Evolutionary Approach,
ITS(20), No. 10, October 2019, pp. 3952-3963.
IEEE DOI
1910
Optimization, Linear programming, Urban areas,
Evolutionary computation, Complexity theory, Local government,
evolutionary algorithm
BibRef
Gong, W.,
Cai, Z.,
Liang, D.,
Adaptive Ranking Mutation Operator Based Differential Evolution for
Constrained Optimization,
Cyber(45), No. 4, April 2015, pp. 716-727.
IEEE DOI
1503
Benchmark testing
BibRef
Wei, X.,
Tao, Z.,
Zhang, C.,
Cao, X.,
Structured Saliency Fusion Based on Dempster-Shafer Theory,
SPLetters(22), No. 9, September 2015, pp. 1345-1349.
IEEE DOI
1503
Benchmark testing
BibRef
Gould, S.,
Learning Weighted Lower Linear Envelope Potentials in Binary Markov
Random Fields,
PAMI(37), No. 7, July 2015, pp. 1336-1346.
IEEE DOI
1506
Computational modeling
BibRef
Komodakis, N.[Nikos],
Xiang, B.,
Paragios, N.[Nikos],
A Framework for Efficient Structured Max-Margin Learning of
High-Order MRF Models,
PAMI(37), No. 7, July 2015, pp. 1425-1441.
IEEE DOI
1506
Analytical models
BibRef
Werner, T.,
Marginal Consistency:
Upper-Bounding Partition Functions over Commutative Semirings,
PAMI(37), No. 7, July 2015, pp. 1455-1468.
IEEE DOI
1506
Abstracts
BibRef
Liang, Y.C.[Yu-Chen],
Zhang, Z.[Zhao],
Jiang, W.M.[Wei-Ming],
Zhao, M.B.[Ming-Bo],
Li, F.Z.[Fan-Zhang],
Bilinear Embedding Label Propagation:
Towards Scalable Prediction of Image Labels,
SPLetters(22), No. 12, December 2015, pp. 2411-2415.
IEEE DOI
1512
image classification
BibRef
Çakmak, B.,
Urup, D.N.,
Meyer, F.,
Pedersen, T.,
Fleury, B.H.,
Hlawatsch, F.,
Cooperative Localization for Mobile Networks: A Distributed Belief
Propagation: Mean Field Message Passing Algorithm,
SPLetters(23), No. 6, June 2016, pp. 828-832.
IEEE DOI
1606
Gaussian processes
BibRef
Liu, Y.L.[Yu-Lang],
Zhao, Z.Q.[Zhi-Qin],
Yang, Y.H.[Yao-Hui],
Wang, B.W.[Bing-Wen],
Zhu, X.Z.[Xiao-Zhang],
Nie, Z.P.[Zai-Ping],
Liu, Q.H.[Qing Huo],
A Frequency-Hopping Subspace-Based Optimization Method for
Reconstruction of 2-D Large Uniaxial Anisotropic Scatterers With TE
Illumination,
GeoRS(54), No. 10, October 2016, pp. 6091-6099.
IEEE DOI
1610
anisotropic media
BibRef
Ke, X.[Xiao],
Zhou, M.K.[Ming-Ke],
Niu, Y.Z.[Yu-Zhen],
Guo, W.Z.[Wen-Zhong],
Data equilibrium based automatic image annotation by fusing deep
model and semantic propagation,
PR(71), No. 1, 2017, pp. 60-77.
Elsevier DOI
1707
SAE: stacked auto-encoder.
BibRef
Knoll, C.,
Mehta, D.,
Chen, T.,
Pernkopf, F.,
Fixed Points of Belief Propagation:
An Analysis via Polynomial Homotopy Continuation,
PAMI(40), No. 9, September 2018, pp. 2124-2136.
IEEE DOI
1808
Mathematical model, Convergence, Belief propagation,
Graphical models, Probabilistic logic, Computational modeling,
dynamical equations
BibRef
Belle, V.[Vaishak],
Levesque, H.J.[Hector J.],
Reasoning about discrete and continuous noisy sensors and effectors
in dynamical systems,
AI(262), 2018, pp. 189-221.
Elsevier DOI
1809
Knowledge representation, Reasoning about action,
Reasoning about knowledge, Reasoning about uncertainty,
Cognitive robotics.
Reasoning about the results after the animal is not there.
BibRef
Yu, L.[Lei],
Yang, T.Y.[Tian-Yu],
Chan, A.B.[Antoni B.],
Density-Preserving Hierarchical EM Algorithm: Simplifying Gaussian
Mixture Models for Approximate Inference,
PAMI(41), No. 6, June 2019, pp. 1323-1337.
IEEE DOI
1905
Mixture models, Approximation algorithms, Clustering algorithms,
Bayes methods, Inference algorithms, Gaussian mixture model,
recursive Bayesian filtering
BibRef
Ayoobi, H.[Hamed],
Rezaeian, M.[Mehdi],
Swift distance transformed belief propagation using a novel dynamic
label pruning method,
IET-IPR(14), No. 9, 20 July 2020, pp. 1822-1831.
DOI Link
2007
BibRef
Pereyra, M.[Marcelo],
Mieles, L.V.[Luis Vargas],
Zygalakis, K.C.[Konstantinos C.],
Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit
Stabilized Method,
SIIMS(13), No. 2, 2020, pp. 905-935.
DOI Link
2007
MCMC
BibRef
Holden, M.[Matthew],
Pereyra, M.[Marcelo],
Zygalakis, K.C.[Konstantinos C.],
Bayesian Imaging with Data-Driven Priors Encoded by Neural Networks,
SIIMS(15), No. 2, 2022, pp. 892-924.
DOI Link
2207
BibRef
Shen, R.B.[Ruo-Bing],
Tang, B.[Bo],
Lodi, A.[Andrea],
Tramontani, A.[Andrea],
Ben Ayed, I.[Ismail],
An ILP Model for Multi-Label MRFs With Connectivity Constraints,
IP(29), 2020, pp. 6909-6917.
IEEE DOI
2007
Computational modeling, Optimization, Semantics,
Machine learning, Labeling, Particle separators,
Markov random fields
BibRef
Kárný, M.[Miroslav],
On assigning probabilities to new hypotheses,
PRL(150), 2021, pp. 170-175.
Elsevier DOI
2109
Minimum relative-entropy principle, Prior probability, Hypothesis
BibRef
Knoll, C.[Christian],
Weller, A.[Adrian],
Pernkopf, F.[Franz],
Self-Guided Belief Propagation: A Homotopy Continuation Method,
PAMI(45), No. 4, April 2023, pp. 5139-5157.
IEEE DOI
2303
Computational modeling, Belief propagation, Probabilistic logic, Convergence,
Graphical models, Couplings, Random variables, inference algorithms
BibRef
Liu, R.S.[Ri-Sheng],
Liu, X.[Xuan],
Zeng, S.Z.[Shang-Zhi],
Zhang, J.[Jin],
Zhang, Y.X.[Yi-Xuan],
Value-Function-Based Sequential Minimization for Bi-Level
Optimization,
PAMI(45), No. 12, December 2023, pp. 15930-15948.
IEEE DOI
2311
BibRef
Zhang, Z.[Zhuo],
Wang, H.F.[Hong-Fei],
Geng, J.[Jie],
Deng, X.Y.[Xin-Yang],
Jiang, W.[Wen],
A New Data Augmentation Method Based on Mixup and Dempster-Shafer
Theory,
MultMed(26), 2024, pp. 4998-5013.
IEEE DOI
2404
Uncertainty, Training, Data augmentation,
Artificial neural networks, Training data, Task analysis,
deep neural network
BibRef
Yang, Y.D.[Yi-Ding],
Qiu, J.Y.[Jia-Yan],
Song, M.L.[Ming-Li],
Tao, D.C.[Da-Cheng],
Wang, X.C.[Xin-Chao],
Learning Propagation Rules for Attribution Map Generation,
ECCV20(XX:672-688).
Springer DOI
2011
BibRef
Nijkamp, E.[Erik],
Pang, B.[Bo],
Han, T.[Tian],
Zhou, L.Q.[Lin-Qi],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Learning Multi-layer Latent Variable Model via Variational Optimization
of Short Run MCMC for Approximate Inference,
ECCV20(VI:361-378).
Springer DOI
2011
BibRef
Eyzaguirre, C.[Cristóbal],
Soto, Á.[Álvaro],
Differentiable Adaptive Computation Time for Visual Reasoning,
CVPR20(12814-12822)
IEEE DOI
2008
Computational modeling, Adaptation models, Visualization,
Pipelines, Mathematical model, Computer architecture, Cognition
BibRef
Knöbelreiter, P.,
Sormann, C.,
Shekhovtsov, A.,
Fraundorfer, F.,
Pock, T.,
Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems,
CVPR20(7897-7906)
IEEE DOI
2008
Computational modeling, Belief propagation, Semantics,
Task analysis, Training, Schedules, Neural networks
BibRef
Millane, R.P.,
Taylor, J.T.,
Arnal, R.D.,
Wojtas, D.H.,
Clare, R.M.,
Iterative projection algorithms for solving constraint satisfaction
problems: Effect of constraint convexity,
IVCNZ19(1-5)
IEEE DOI
2004
concave programming, constraint satisfaction problems,
constraint theory, image processing, inverse problems,
optimization
BibRef
Ghandeharioun, A.[Asma],
Eoff, B.[Brian],
Jou, B.[Brendan],
Picard, R.[Rosalind],
Characterizing Sources of Uncertainty to Proxy Calibration and
Disambiguate Annotator and Data Bias,
VXAI19(4202-4206)
IEEE DOI
2004
How to learn when human annotation disagrees.
learning (artificial intelligence), Monte Carlo methods,
proxy calibration, disambiguate annotator, data bias, Monte-Carlo-Dropout
BibRef
Trusheim, F.[Felix],
Condurache, A.[Alexandru],
Mertins, A.[Alfred],
Boosting Black-Box Variational Inference by Incorporating the Natural
Gradient,
ICPR18(19-24)
IEEE DOI
1812
Inference algorithms, Approximation algorithms,
Mathematical model, Monte Carlo methods, Manifolds,
Stochastic processes
BibRef
Wannenwetsch, A.S.[Anne S.],
Kiefel, M.[Martin],
Gehler, P.V.[Peter V.],
Roth, S.[Stefan],
Learning Task-Specific Generalized Convolutions in the Permutohedral
Lattice,
GCPR19(345-359).
Springer DOI
1911
BibRef
Plötz, T.[Tobias],
Wannenwetsch, A.S.[Anne S.],
Roth, S.[Stefan],
Stochastic Variational Inference with Gradient Linearization,
CVPR18(1566-1575)
IEEE DOI
1812
Stochastic processes, Mathematical model, Uncertainty,
Optimization, Computational modeling, Standards
BibRef
Laude, E.,
Lange, J.,
Schüpfer, J.,
Domokos, C.,
Leal-Taixé, L.,
Schmidt, F.R.,
Andres, B.,
Cremers, D.,
Discrete-Continuous ADMM for Transductive Inference in Higher-Order
MRFs,
CVPR18(1614-1624)
IEEE DOI
1812
Task analysis, Optimization, Labeling, Training,
Computational modeling, Convex functions, Image segmentation
BibRef
Zach, C.[Christopher],
Limited-Memory Belief Propagation via Nested Optimization,
EMMCVPR17(517-532).
Springer DOI
1805
BibRef
Badami, I.,
Tom, M.,
Mathias, M.,
Leibe, B.,
3D Semantic Segmentation of Modular Furniture Using rjMCMC,
WACV17(64-72)
IEEE DOI
1609
Image edge detection, Image segmentation, Optimization, Proposals,
Semantics, Shape, Three-dimensional, displays
BibRef
Zhang, R.N.[Ruo-Nan],
Wang, W.[Wenmin],
An MCMC-based prior sub-hypergraph matching in presence of outliers,
ICPR16(799-804)
IEEE DOI
1705
Benchmark testing, Markov processes, Optimization,
Probability distribution, Proposals, Robustness, Tensile, stress
BibRef
Zhang, M.H.[Miao-Hua],
Gao, Y.S.[Yong-Sheng],
Sun, C.M.[Chang-Ming],
La Salle, J.,
Liang, J.,
Robust tensor factorization using maximum correntropy criterion,
ICPR16(4184-4189)
IEEE DOI
1705
Covariance matrices, Kernel, Linear programming, Optimization,
Principal component analysis, Robustness, Tensile, stress
BibRef
Nguyen, M.[Minh],
Yan, W.Q.[Wei Qi],
Gong, R.[Rui],
Delmas, P.[Patrice],
Toward a real-time belief propagation stereo reconstruction for
computers, robots, and beyond,
ICVNZ15(1-6)
IEEE DOI
1701
Markov processes
BibRef
Cadoni, S.[Sara],
Chouzenoux, E.[Emilie],
Pesquet, J.C.[Jean-Christophe],
Chaux, C.[Caroline],
A block parallel majorize-minimize memory gradient algorithm,
ICIP16(3194-3198)
IEEE DOI
1610
Parallel implementation of optimization.
BibRef
Tang, K.[Keke],
Zhao, Z.[Zhe],
Chen, X.P.[Xiao-Ping],
Label Propagation for Large Scale 3D Indoor Scenes,
ISVC15(I: 253-264).
Springer DOI
1601
BibRef
Zhang, Z.[Zhao],
Jiang, W.M.[Wei-Ming],
Li, F.Z.[Fan-Zhang],
Zhang, L.[Li],
Zhao, M.B.[Ming-Bo],
Jia, L.[Lei],
Projective Label Propagation by Label Embedding,
CAIP15(II:470-481).
Springer DOI
1511
BibRef
Xiong, X.[Xuehan],
de la Torre, F.[Fernando],
Global supervised descent method,
CVPR15(2664-2673)
IEEE DOI
1510
BibRef
Tabib, R.A.,
Patil, U.,
Ganihar, S.A.,
Trivedi, N.,
Mudenagudi, U.,
Decision fusion for robust horizon estimation using Dempster Shafer
Combination Rule,
NCVPRIPG13(1-4)
IEEE DOI
1408
Gaussian processes
BibRef
Herman, G.T.[Gabor T.],
Superiorization for Image Analysis,
IWCIA14(1-7).
Springer DOI
1405
Constrained optimization.
BibRef
Leng, B.[Biao],
Zhang, X.Y.[Xiang-Yang],
Yao, M.[Ming],
Xiong, Z.[Zhang],
3D Object Classification Using Deep Belief Networks,
MMMod14(II: 128-139).
Springer DOI
1405
BibRef
Carneiro, G.,
Liao, Z.B.[Zhi-Bin],
Chin, T.J.[Tat-Jun],
Closed-Loop Deep Vision,
DICTA13(1-8)
IEEE DOI
1402
belief networks
BibRef
Olsson, C.[Carl],
Ulen, J.[Johannes],
Boykov, Y.Y.[Yuri Y.],
Kolmogorov, V.[Vladimir],
Partial Enumeration and Curvature Regularization,
ICCV13(2936-2943)
IEEE DOI
1403
BibRef
Gupta, M.D.[Mithun Das],
Kumar, S.[Sanjeev],
Non-convex P-Norm Projection for Robust Sparsity,
ICCV13(1593-1600)
IEEE DOI
1403
BibRef
Yang, H.C.[Hai-Chuan],
Bai, X.[Xiao],
Liu, C.T.[Chun-Tian],
Zhou, J.[Jun],
Label propagation hashing based on p-stable distribution and
coordinate descent,
ICIP13(2674-2678)
IEEE DOI
1402
Coordinate descent;Hashing;Image retrieval;p-stable distribution
BibRef
Nascimento, J.C.[Jacinto C.],
Barăo, M.[Miguel],
Marques, J.S.[Jorge S.],
Lemos, J.M.[Joăo M.],
Efficient Optimization Algorithm for Space-Variant Mixture of Vector
Fields,
IbPRIA13(79-88).
Springer DOI
1307
BibRef
Kanatani, K.[Kenichi],
Statistical Optimization for Geometric Estimation:
Minimization vs. Non-minimization,
ICPR14(1-8)
IEEE DOI
1412
BibRef
Earlier:
Optimization Techniques for Geometric Estimation: Beyond Minimization,
SSSPR12(11-30).
Springer DOI
1211
Cost function
BibRef
Kuznetsova, A.[Alina],
Pons-Moll, G.[Gerard],
Rosenhahn, B.[Bodo],
PCA-enhanced Stochastic Optimization Methods,
DAGM12(377-386).
Springer DOI
1209
BibRef
Sun, J.[Jun],
Li, H.D.[Hong-Dong],
He, X.M.[Xu-Ming],
Analysis on Tree Structure Selection for MRF Inference in Low-level
Vision,
DICTA11(66-71).
IEEE DOI
1205
BibRef
Goodman, N.D.[Noah D.],
Learning and the language of thought,
SIG11(694).
IEEE DOI
1201
Invited talk.
BibRef
Gamal-Eldin, A.[Ahmed],
Descombes, X.[Xavier],
Charpiat, G.[Guillaume],
Zerubia, J.B.[Josiane B.],
A fast Multiple Birth and Cut algorithm using belief propagation,
ICIP11(2813-2816).
IEEE DOI
1201
BibRef
Bouchon-Meunier, B.[Bernadette],
Similarity and prototype:
Two key issues in perceptive and subjective information,
EUVIP11(222).
IEEE DOI
1110
BibRef
Chen, Q.A.[Qi-Ang],
Song, Z.[Zheng],
Dong, J.,
Huang, Z.Y.[Zhong-Yang],
Hua, Y.[Yang],
Yan, S.C.[Shui-Cheng],
Contextualizing Object Detection and Classification,
PAMI(37), No. 1, January 2015, pp. 13-27.
IEEE DOI
1412
BibRef
Earlier: A2, A1, A4, A5, A6:
Contextualizing object detection and classification,
CVPR11(1585-1592).
IEEE DOI
1106
Computational modeling.
Boost classification by using results from a different task.
Context-SVM. Object classification and extraction tasks so they are
related.
BibRef
Lasowski, R.[Ruxandra],
Tevs, A.[Art],
Wand, M.[Michael],
Seidel, H.P.[Hans-Peter],
Wavelet belief propagation for large scale inference problems,
CVPR11(1921-1928).
IEEE DOI
1106
BibRef
Xiao, P.D.[Peng-Dong],
Barnes, N.M.[Nick M.],
Lieby, P.[Paulette],
Caetano, T.S.[Tiberio S.],
Sparse Update for Loopy Belief Propagation: Fast Dense Registration for
Large State Spaces,
DICTA10(546-551).
IEEE DOI
1012
BibRef
Ogawara, K.[Koichi],
Approximate Belief Propagation by Hierarchical Averaging of Outgoing
Messages,
ICPR10(1368-1372).
IEEE DOI
1008
BibRef
Woodford, O.J.[Oliver J.],
Rother, C.[Carsten],
Kolmogorov, V.[Vladimir],
A global perspective on MAP inference for low-level vision,
ICCV09(2319-2326).
IEEE DOI
0909
Maximum a posteriori framework rather than MRF probability model.
Create Marginal Probability Field -- a MRF generalization.
BibRef
Cao, L.L.[Liang-Liang],
Luo, J.B.[Jie-Bo],
Liang, F.[Feng],
Huang, T.S.[Thomas S.],
Heterogeneous feature machines for visual recognition,
ICCV09(1095-1102).
IEEE DOI
0909
Model and compare heterogeneous features.
BibRef
Huang, Y.[Yihu],
Zhang, G.[Genmin],
Wang, J.[Jinli],
An Optimization Dijkstra Algorithm Based on Two-Function Limitation
Strategy,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wu, J.C.[Jin-Cheng],
APSK Optimization in the Presence of Phase Noise,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zhang, L.[Liang],
Huang, S.X.[Si-Xun],
Generalized Variational Optimization Analysis for Improving
Scatterometer Surface Wind Field,
CISP09(1-3).
IEEE DOI
0910
BibRef
Jin, W.G.[Wen-Guang],
Zhang, B.[Bin],
Zhu, D.Q.[De-Qing],
Hu, K.L.[Kai-Liang],
Multilevel Optimization of DSP Based SPEEX Decoder,
CISP09(1-4).
IEEE DOI
0910
BibRef
Sun, F.R.[Feng-Rong],
Zhang, M.Q.A.[Ming-Qi-Ang],
Numerical Method of an Orthogonal Array Optimization,
CISP09(1-3).
IEEE DOI
0910
BibRef
Matsumoto, M.,
Parameter Optimization of Median epsilon-Filter Based on Correlation
Maximization,
CISP09(1-5).
IEEE DOI
0910
BibRef
Yang, R.G.[Rong-Gen],
Ren, M.W.[Ming-Wu],
Improved Non Convex Optimization Algorithm for Reconstruction of Sparse
Signals,
CISP09(1-5).
IEEE DOI
0910
BibRef
Liang, C.K.[Chia-Kai],
Cheng, C.C.[Chao-Chung],
Lai, Y.C.[Yen-Chieh],
Chen, L.G.[Liang-Gee],
Chen, H.H.[Homer H.],
Hardware-efficient belief propagation,
CVPR09(80-87).
IEEE DOI
0906
Split NRF into tiles with minimal interaction between them.
BibRef
Tipwai, P.,
Madarasmi, S.,
A dual belief propagation method for shape recognition,
CIIP09(88-95).
IEEE DOI
0903
BibRef
Klinker, G.[Gudrun],
SudokuVis How to Explore Relationships of Mutual Exclusion,
ISVC08(II: 55-64).
Springer DOI
0812
BibRef
Chandraker, M.[Manmohan],
Kriegman, D.J.[David J.],
Globally optimal bilinear programming for computer vision applications,
CVPR08(1-8).
IEEE DOI
0806
Apply to:
exemplar-based face reconstruction and non-rigid structure from motion
BibRef
Agarwal, S.[Sameer],
Snavely, N.[Noah],
Seitz, S.M.[Steven M.],
Fast algorithms for L-inf problems in multiview geometry,
CVPR08(1-8).
IEEE DOI
0806
Optimization problems.
See also Efficient Optimization for L-inf-problems using Pseudoconvexity.
See also Modeling the World from Internet Photo Collections.
BibRef
Leordeanu, M.[Marius],
Hebert, M.[Martial],
Smoothing-based Optimization,
CVPR08(1-8).
IEEE DOI
0806
Search for maximum in scale space.
BibRef
Yu, T.L.[Tian-Li],
Lin, R.S.[Ruei-Sung],
Super, B.[Boaz],
Tang, B.[Bei],
Efficient Message Representations for Belief Propagation,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Kotb, Y.T.,
Beauchemin, S.S.,
Barron, J.L.,
Petri Net-Based Cooperation In Multi-Agent Systems,
CRV07(123-130).
IEEE DOI
0705
BibRef
Gangaputra, S.[Sachin],
Geman, D.[Donald],
Self-normalized linear tests,
CVPR04(II: 616-622).
IEEE DOI
0408
Find the threshold (with changes in illumination) to do the linear
combination.
BibRef
Sudderth, E.B.[Erik B.],
Mandel, M.I.[Michael I.],
Freeman, W.T.[William T.],
Willsky, A.S.[Alan S.],
Visual Hand Tracking Using Nonparametric Belief Propagation,
GenModel04(189).
IEEE DOI
0406
BibRef
And:
Distributed Occlusion Reasoning for Tracking with Nonparametric
Belief Propogation,
NIPS04(xx-yy).
See also Describing Visual Scenes Using Transformed Objects and Parts.
BibRef
Sudderth, E.B.[Erik B.],
Ihler, A.T.[Alexander T.],
Freeman, W.T.[William T.],
Willsky, A.S.[Alan S.],
Nonparametric belief propagation,
CVPR03(I: 605-612).
IEEE DOI
0307
BibRef
Earlier:
Nonparametric Belief Propagation and Facial Appearance Estimation,
MIT AIMAIM-2002-020, December 2002.
WWW Link. Drawing on ideas from regularized particle filters and belief propagation (BP), this paper develops a nonparametric
belief propagation (NBP) algorithm applicable to general graphs.
0306
BibRef
Orr, M.J.L.[Mark J.L.],
Fisher, R.B.[Robert B.],
Hallam, J.[John],
Computing with Uncertainty: Intervals versus Probabilities,
BMVC91(351-354).
PDF File.
9109
BibRef
Edinburgh
BibRef
Waite, M.,
Orr, M.,
Fisher, R.B.,
Hallam, J.,
Statistical Partial Constraints for 3D Model Matching and
Pose Estimation Problems,
BMVC93(105-114).
PDF File.
BibRef
9300
Edinburgh
BibRef
Murphy, R.R.[Robin R.],
Hawkins, D.K.[Dale K.],
Schoppers, M.J.[Marcel J.],
Reactive Combination of Belief Over Time Using Direct Perception,
IJCAI97(1353-1359).
BibRef
9700
Semmar, N.,
Applying contextual constraints to extract symbolic representation for
image understanding,
CIAP95(721-730).
Springer DOI
9509
BibRef
Besserer, B.,
Estable, S.,
Ulmer, B.,
Multiple knowledge sources and evidential reasoning for shape
recognition,
ICCV93(624-631).
IEEE DOI
0403
Uncertainty handling, combining, and propagation form the heart of the method.
BibRef
Qian, J., and
Ehrich, R.W.,
A Framework for Uncertainty Reasoning in
Hierarchical Visual Evidence Space,
ICPR90(I: 119-124).
IEEE DOI
BibRef
9000
Betz, J.W.,
Prince, J.L.,
Bello, M.G.,
Representation and transformation of uncertainty in an evidence theory
framework,
CVPR89(646-652).
IEEE DOI
0403
BibRef
Crowley, J.L.,
Ramparany, F.,
Mathematical Tools For Representing Uncertainty In Perception,
SRMSF87(293-302).
BibRef
8700
Eshera, M.A.,
Hierarchical Inference Scheme For High-Level Image Understanding,
ICPR88(II: 882-884).
IEEE DOI
8811
BibRef
Landy, M.S.,
Hummel, R.A.,
A Brief Survey of Knowledge Aggregation Methods,
ICPR86(248-252).
BibRef
8600
Cohen, F.S.,
Cooper, D.B.,
A Decision Theoretic Approach for 3-D Vision,
CVPR88(964-972).
IEEE DOI
BibRef
8800
Huang, C.Z.[Cheng-Zhi],
Li, Y.[Yanda],
Chang, T.[Tong],
Solving the stiff problem in computer vision by trade-off optimization,
ICPR88(I: 160-162).
IEEE DOI
8811
Linear Inverse problems.
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Fuzzy Sets, Fuzzy Logic .