13.3.8.1 Evidence Theory, Combination Techniques, Optimization Techniques

Chapter Contents (Back)
Constraint Satisfaction. Probability. Uncertainty. Optimization Techniques. Belief Propogation. Evidence Theory. Matching, Theory.

Mahalanobis, P.C.,
On the Generalized Distance in Statistics,
Proc. Natl. Inst. Science(12), Calcutta, 1936, pp. 49-55. Mahalanobis Distance. BibRef 3600

Dempster, A.P.,
New Methods for Reasoning Towards Posterior Distributions Based on Sample Data,
AMS(37), No. 2, 1966. pp. 355-374. BibRef 6600

Dempster, A.P.,
Upper and Lower Probabilities Induced by a Multivalued Mapping,
AMS(38), No. 2, 1967. pp. 325-339. BibRef 6700

Dempster, A.P.,
Upper and Lower Probabilities Generalized by a Random Closed Interval,
AMS(39), No. 3, 1968. pp. 957-966. BibRef 6800

Dempster, A.P.,
Upper and Lower Probability Inferences for Families of Hypotheses with Monotone Density Ratios,
AMS(40), No. 3, 1969. pp. 953-969. BibRef 6900

Dempster, A.P.,
On Direct Probabilities,
RoyalStat(B-20), 1963, pp. 102-107. BibRef 6300

Dempster, A.P.,
On the difficulties Inherent in Fisher's Fiducial Argument,
ASAJ(59), 1964, pp. 56-66. BibRef 6400

Dempster, A.P.,
Covariance Selection,
Biometrics(28), 1972, pp. 157-175. BibRef 7200

Dempster, A.P., Laird, N.M., Rubin, D.B.,
Maximum Likelihood from Incomplete Data via the EM Algorithm,
RoyalStat(B-39), No. 1, 1977, pp. 1-38. BibRef 7700

Shafer, G.[Glenn],
A Mathematical Theory of Evidence,
Princeton Univ. PressPrinceton, NJ, 1976. Dempster-Shafer. BibRef 7600 Book This technique gives an upper and a lower bound on the possibility and a means to combine them. It is designed to eliminate the problems encountered by standard probability based systems. This is a rewording and clarification of the earlier Dempster papers. It is much more readable for a non-probability theory researcher. BibRef

Shafer, G.[Glenn], and Logan, R.,
Implementing Dempster's Rule for Hierarchical Evidence,
AI(33), No. 3, November 1987, pp. 271-298.
WWW Link. BibRef 8711

Shafer, G.,
Hierarchical Evidence,
CAIA85(16-21). BibRef 8500

Michalski, R.S.,
A Variable-Valued Logic System as Applied to Picture Description and Recognition,
TC(21), No. 7, July 1972, pp. 20-47. (Pages can't be right.) BibRef 7207

Voorbraak, F.[Frans],
On the justification of Dempster's rule of combination,
AI(48), No. 2, March 1991, pp. 171-197.
WWW Link. BibRef 9103

Hummel, R.A., and Landy, M.S.,
A Statistical Viewpoint on the Theory of Evidence,
PAMI(10), No. 2, March 1988, pp. 235-247.
IEEE DOI Dempster-Shafer. This paper discusses Dempster-Shafer theory but does not give an absolute conclusion about how best to use it or if it is worth it. See also Mathematical Theory of Evidence, A. BibRef 8803

Hummel, R.A., and Manevitz, L.M.,
Combining Bodies of Dependent Information,
IJCAI87(1015-1017). BibRef 8700

Bowen, J.B., Mayhew, J.E.W.,
Consistency Maintenance in the Revgraph Environment,
IVC(6), No. 3, August 1988, pp. 139-150.
WWW Link. BibRef 8808

Barnett, J.A.,
Calculating Dempster-Shafer Plausibility,
PAMI(13), No. 6, June 1991, pp. 599-602.
IEEE DOI See also Mathematical Theory of Evidence, A. BibRef 9106

Jain, R.C., and Haynes, S.M.,
Imprecision in Computer Vision,
Computer(15), No. 8, August 1982, pp. 39-48. Uncertainty. Survey, Uncertainty. General survey about how it is used. BibRef 8208

Sher, D.B., Hull, J.J.,
Quantifying the unimportance of prior probabilities in a computer vision problem,
ICPR90(I: 662-664).
IEEE DOI 9006
BibRef

Sher, D.B.[David B.],
Evidence Combination Using Likelihood Generators,
DARPA87(655-662). BibRef 8700
Earlier:
Evidence Combination for Vision Using Likelihood Generators,
DARPA85(255-270). The use of likelihoods from several detectors improves results. (Maybe this should be under edge detection.) BibRef

Kittler, J.V., and Hancock, E.R.,
Combining Evidence in Probabilistic Relaxation,
PRAI(3), 1989, pp. 29-51. See also Edge-Labeling Using Dictionary-Based Relaxation. BibRef 8900

Kittler, J.V., and Föglein, J.,
On Compatibility and Support Functions in Probabilistic Relaxation,
CVGIP(34), No. 3, June 1986, pp. 257-267.
WWW Link. BibRef 8606
Earlier:
Contextual Decision Rules for Objects in Lattice Configurations,
ICPR84(270-272). Relaxation is compared to a compound decision rule and a number of problems arise with heuristic compatibility and support functions. The paper is only concerned with image based post processing type relaxation. BibRef

Kittler, J.V.,
Compatibility and Support Functions in Probabilistic Relaxation,
ICPR86(186-189). BibRef 8600

Kittler, J.V., and Hancock, E.R.,
Contextual Decision Rule for Image Analysis,
IVC(5), No. 2, May 1987, pp. 145-153.
WWW Link. BibRef 8705

Christmas, W.J., Kittler, J.V., Petrou, M.[Maria],
Structural Matching in Computer Vision Using Probabilistic Relaxation,
PAMI(17), No. 8, August 1995, pp. 749-764.
IEEE DOI BibRef 9508
Earlier: A2, A3, A1: ASSPR(471-480). Attributed Graphs. Apply to road networks. BibRef

Gilks, W., Richardson, S., Spiegelhalter, D.,
Markov Chain Monte Carlo in Practice,
Chapman and Hall1996. Markov Chain. MCMC. BibRef 9600

Ambrosio, L.,
Existence theory for a new class of variational problems,
Arch. Rational Mech. Anal.(111), No. 4, 1990, pp. 291-322.. BibRef 9000

Ambrosio, L., Fusco, N., Pallara, D.,
Functions of bounded variation and free discontinuity problems,
Clarendon PressOxford, 2000. BibRef 0001

Ambrosio, L., Tortorelli, V.M.,
Approximation of functionals depending on jumps by elliptic functionals via ..-convergence,
Comm. Pure Appl. Math.(43), No. 8, 1990, pp. 999-1036. See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems. BibRef 9000

Ambrosio, L., Tortorelli, V.M.,
On the approximation of free discontinuity problems,
Boll. Un. Mat. Ital. B(6), No. 1, 1992, pp. 105-123. BibRef 9200

Christmas, W.J., Kittler, J.V., Petrou, M.,
Probabilistic Feature-Labeling Schemes: Modeling Compatibility Coefficient Distributions,
IVC(14), No. 8, August 1996, pp. 617-625.
WWW Link. 9609
BibRef
Earlier:
Modelling Compatibility Coefficient Distributions for Probabilistic Feature-Labelling Schemes,
BMVC95(603-612).
PDF File. BibRef

Kittler, J.V., Petrou, M., Christmas, W.J.,
A Noniterative Probabilistic Method for Contextual Correspondence Matching,
PR(31), No. 10, October 1998, pp. 1455-1468.
WWW Link. 9808
BibRef

Christmas, W.J., Kittler, J.V.[Josef V.], Petrou, M.[Maria],
Exploiting Temporal Context in Vision-Based Navigation,
SPIE(2736), 1996, pp. 154-161 BibRef 9600
Earlier:
Non-Iterative Contextual Correspondence Matching,
ECCV94(B:137-142).
Springer DOI BibRef

Kittler, J.V., Christmas, W.J., and Petrou, M.,
Probabilistic Relaxation for Matching Problems in Computer Vision,
ICCV93(666-673).
IEEE DOI Examples of line matching. BibRef 9300

Christmas, W.J., Kittler, J.V., Petrou, M.,
Labelling 2-D Geometric Primitives Using Probabilistic Relaxation: Reducing the Computational Requirements,
Electronic Letters(32), No. 4, 1996, pp. 312-314. BibRef 9600
And:
Matching of Road Segments Using Probabilistic Relaxation: A Hierarchical Approach,
SPIE(2304), July 1994, pp. 166-174. BibRef
And:
Matching of Road Segments Using Probabilistic Relaxation: Reducing the Computational Requirements,
SPIE(2220), April 1994, pp. 169-179. BibRef
And:
Location of Objects in a Cluttered Scene Using Probabilistic Relaxation,
AVFP94(119-128). BibRef

Kostin, A.[Alexey], Kittler, J.V.[Josef V.], Christmas, W.J.[William J.],
Object recognition by symmetrised graph matching using relaxation labelling with an inhibitory mechanism,
PRL(26), No. 3, February 2005, pp. 381-393.
WWW Link. 0501
BibRef

Sofer, D.,
Constraint Networks in Vision,
TC(40), 1991, pp. 1359-1367. BibRef 9100

Smets, P.,
The combination of evidence in the transferable belief model,
PAMI(12), No. 5, May 1990, pp. 447-458.
IEEE DOI 0401
BibRef

Elouedi, Z., Mellouli, K., Smets, P.,
Assessing Sensor Reliability for Multisensor Data Fusion Within the Transferable Belief Model,
SMC-B(34), No. 1, February 2004, pp. 782-787.
IEEE Abstract. 0403
How reliable is a sensor in a data fusion application. BibRef

Delmotte, F., Smets, P.,
Target Identification Based on the Transferable Belief Model Interpretation of Dempster-Shafer Model,
SMC-A(34), No. 4, July 2004, pp. 457-471.
IEEE Abstract. 0407
BibRef

Abramson, B.,
Expected-outcome: a general model of static evaluation,
PAMI(12), No. 2, February 1990, pp. 182-193.
IEEE DOI 0401
BibRef

Bhatnagar, R., Kanal, L.N.,
Structural and probabilistic knowledge for abductive reasoning,
PAMI(15), No. 3, March 1993, pp. 233-245.
IEEE DOI 0401
BibRef

Fertig, K.W., Breese, J.S.,
Probability intervals over influence diagrams,
PAMI(15), No. 3, March 1993, pp. 280-286.
IEEE DOI 0401
BibRef

Wellman, M.P., Henrion, M.,
Explaining 'explaining away',
PAMI(15), No. 3, March 1993, pp. 287-292.
IEEE DOI 0401
BibRef

Heckerman, D., Horvitz, E., Middleton, B.,
An approximate nonmyopic computation for value of information,
PAMI(15), No. 3, March 1993, pp. 292-298.
IEEE DOI 0401
BibRef

Provan, G.M., Clarke, J.R.,
Dynamic network construction and updating techniques for the diagnosis of acute abdominal pain,
PAMI(15), No. 3, March 1993, pp. 299-307.
IEEE DOI 0401
BibRef

Lee, W.T., Tenorio, M.F.,
On an asymptotically optimal adaptive classifier design criterion,
PAMI(15), No. 3, March 1993, pp. 312-318.
IEEE DOI 0401
BibRef

Sucar, L.E., Gillies, D.F.,
Probabilistic Reasoning in High-Level Vision,
IVC(12), No. 1, January-February 1994, pp. 42-60.
WWW Link. BibRef 9401

Caelli, T.M.[Terry M.], Dreier, A.,
Variations on the Evidence-Based Object Recognition Theme,
PR(27), No. 2, February 1994, pp. 185-204.
WWW Link. BibRef 9402
Earlier:
Some new techniques for evidence-based object recognition: EB-ORS1,
ICPR92(II:450-454).
IEEE DOI 9208
BibRef

Bloch, I.,
Some Aspects of Dempster-Shafer Evidence Theory for Classification of Multimodality Medical Images Taking Partial Volume Effect into Account,
PRL(17), No. 8, July 1 1996, pp. 905-919. 9608
See also Mathematical Theory of Evidence, A. BibRef

Fixsen, D., Mahler, R.P.S.,
The Modified Dempster-Shafer Approach to Classification,
SMC-A(27), No. 1, January 1997, pp. 96-104.
IEEE Top Reference. 9701
BibRef

Hand, D.J.,
Recent Advances in Error Rate Estimation,
PRL(4), 1986, pp. 335-346. BibRef 8600

Cheng, Y.Z.[Yi-Zong], Kashyap, R.L.,
A Study of Associative Evidential Reasoning,
PAMI(11), No. 6, June 1989, pp. 623-631.
IEEE DOI BibRef 8906
Earlier:
Construction and Interpretations of Formulas for Combining Evidence,
ICPR86(1226-1229). BibRef

Mogre, A., McLaren, R., Keller, J.M., Krishnapuram, R.,
Uncertainty Management for Rule-Based Systems with Applications to Image Analysis,
SMC(24), 1994, pp. 470-481. BibRef 9400

Bauer, M.,
Approximation Algorithms and Decision-Making in the Dempster-Shafer Theory of Evidence: An Empirical-Study,
ApproximateR(17), No. 2-3, August/October 1997, pp. 217-237. 9706
See also Mathematical Theory of Evidence, A. BibRef

Ménard, M.[Michel], Courboulay, V.[Vincent], Dardignac, P.A.[Pierre-André],
Possibilistic and probabilistic fuzzy clustering: unification within the framework of the non-extensive thermostatistics,
PR(36), No. 6, June 2003, pp. 1325-1342.
WWW Link. 0304
BibRef

Masson, M.H.[Marie-Hélène], Denoeux, T.[Thierry],
Clustering interval-valued proximity data using belief functions,
PRL(25), No. 2, January 2004, pp. 163-171.
WWW Link. 0401
BibRef

Félix, P., Barro, S., Marín, R.,
Fuzzy constraint networks for signal pattern recognition,
AI(148), No. 1-2, August 2003, pp. 103-140.
WWW Link. 0401
BibRef

Cuzzolin, F.,
Geometry of Dempster's Rule of Combination,
SMC-B(34), No. 2, April 2004, pp. 961-977.
IEEE Abstract. 0404
BibRef

Cuzzolin, F.,
Two New Bayesian Approximations of Belief Functions Based on Convex Geometry,
SMC-B(37), No. 4, August 2007, pp. 993-1008.
IEEE DOI 0707
BibRef

Matas, J.G.[Jirí G.], Chum, O.[Ondrej],
Randomized RANSAC with Td,d test,
IVC(22), No. 10, 1 September 2004, pp. 837-842.
WWW Link. 0409
BibRef
Earlier:
Randomized RANSAC with T(d,d) test,
BMVC02(Computer Vision Tools). 0208
Time savings from evaluating only a part of the points. BibRef

Chum, O.[Ondrej], Matas, J.G.[Jirí G.],
Optimal Randomized RANSAC,
PAMI(30), No. 8, August 2008, pp. 1472-1482.
IEEE DOI 0806
BibRef
Earlier:
Geometric Hashing with Local Affine Frames,
CVPR06(I: 879-884).
IEEE DOI 0606
BibRef
Earlier:
Matching with PROSAC: Progressive Sample Consensus,
CVPR05(I: 220-226).
IEEE DOI 0507
BibRef
And: A2, A1:
Randomized RANSAC with Sequential Probability Ratio Test,
ICCV05(II: 1727-1732).
IEEE DOI 0510
BibRef

Mikulik, A.[Andrej], Matas, J.G.[Jiri G.], Perdoch, M.[Michal], Chum, O.[Ondrej],
Construction of Precise Local Affine Frames,
ICPR10(3565-3569).
IEEE DOI 1008
BibRef

Chum, O.[Ondrej], Matas, J.G.[Jiri G.], Kittler, J.V.[Josef V.],
Locally Optimized RANSAC,
DAGM03(236-243).
Springer DOI 0310
BibRef

Chum, O.[Ondrej], Matas, J.G.[Jirí G.],
Planar Affine Rectification from Change of Scale,
ACCV10(IV: 347-360).
Springer DOI 1011
BibRef

Boudraa, A.O.[Abdel-Ouahab], Bentabet, A.[Ayachi], Salzenstein, F.[Fabien],
Dempster-Shafer's Basic Probability Assignment Based on Fuzzy Membership Functions,
ELCVIA(4), No. 1, October 2004, pp. xx-yy.
WWW Link. 0410
BibRef

Draper, B.A., Elliott, D.L., Hayes, J., Baek, K.,
EM in High-Dimensional Spaces,
SMC-B(35), No. 3, June 2005, pp. 571-577.
IEEE DOI 0508
BibRef

Pieczynski, W.[Wojciech], Benboudjema, D.[Dalila],
Multisensor triplet Markov fields and theory of evidence,
IVC(24), No. 1, 1 January 2006, pp. 61-69.
WWW Link. 0602
BibRef

Guo, H., Shi, W., Deng, Y.,
Evaluating Sensor Reliability in Classification Problems Based on Evidence Theory,
SMC-B(36), No. 5, October 2006, pp. 970-981.
IEEE DOI 0609
BibRef

Ghosh, D., Pados, D.A., Acharya, R., Llinas, J.,
On Dempster-Shafer and bayesian detectors,
SMC-C(36), No. 5, September 2006, pp. 688-692.
IEEE DOI 0609
BibRef

Schonfeld, D., Bouaynaya, N.,
A New Method for Multidimensional Optimization and Its Application in Image and Video Processing,
SPLetters(13), No. 8, August 2006, pp. 485-488.
IEEE DOI 0606
BibRef

Xu, G.P.[Guo-Ping], Tian, W.F.[Wei-Feng], Qian, L.[Li], Zhang, X.F.[Xiang-Fen],
A novel conflict reassignment method based on grey relational analysis (GRA),
PRL(28), No. 15, 1 November 2007, pp. 2080-2087.
WWW Link. 0711
Evidence theory; Belief functions; Grey relational analysis; Conflict reassignment; Target recognition; Reliability evaluation BibRef

Bhusnurmath, A.[Arvind], Taylor, C.J.[Camillo Jose],
Graph Cuts via L_1 Norm Minimization,
PAMI(30), No. 10, October 2008, pp. 1866-1871.
IEEE DOI 0810
BibRef
And:
Solving Image Registration Problems Using Interior Point Methods,
ECCV08(IV: 638-651).
Springer DOI 0810
Reformulate GC as L1 min for energy minimization problems. BibRef

Olsson, C.[Carl], Eriksson, A.P.[Anders P.], Kahl, F.[Fredrik],
Improved spectral relaxation methods for binary quadratic optimization problems,
CVIU(112), No. 1, October 2008, pp. 3-13.
WWW Link. 0810
BibRef
Earlier:
Solving Large Scale Binary Quadratic Problems: Spectral Methods vs. Semidefinite Programming,
CVPR07(1-8).
IEEE DOI 0706
BibRef
And:
Efficient Optimization for L-inf-problems using Pseudoconvexity,
ICCV07(1-8).
IEEE DOI 0710
For relaxation implementations. Quadratic binary optimization; Spectral relaxation; Image partitioning; Subgraph matching; Trust region problem; Semidefinite programming; Discrete optimization; Binary restoration BibRef

Olsson, C.[Carl], Eriksson, A.P.[Anders P.], Hartley, R.I.[Richard I.],
Outlier removal using duality,
CVPR10(1450-1457).
IEEE DOI 1006
In large scale reconstructions. BibRef

Olsson, C.[Carl], Eriksson, A.P.[Anders P.],
Triangulating a Plane,
SCIA11(13-23).
Springer DOI 1105
BibRef

Olsson, C.[Carl], Eriksson, A.P.[Anders P.],
Solving quadratically constrained geometrical problems using lagrangian duality,
ICPR08(1-5).
IEEE DOI 0812
BibRef

Eriksson, A.P.[Anders P.], Olsson, C.[Carl], Kahl, F.[Fredrik],
Efficiently Solving the Fractional Trust Region Problem,
ACCV07(II: 796-805).
Springer DOI 0711
BibRef

Hartley, R.I.[Richard I.], Kahl, F.[Fredrik],
Global Optimization through Rotation Space Search,
IJCV(82), No. 1, April 2009, pp. xx-yy.
Springer DOI 0902
BibRef
Earlier:
Global Optimization through Searching Rotation Space and Optimal Estimation of the Essential Matrix,
ICCV07(1-8).
IEEE DOI 0710
Branch-and-bound search over rotations. BibRef

Mantrach, A.[Amin], Yen, L.[Luh], Callut, J.[Jerome], Francoisse, K.[Kevin], Shimbo, M.[Masashi], Saerens, M.[Marco],
The Sum-over-Paths Covariance Kernel: A Novel Covariance Measure between Nodes of a Directed Graph,
PAMI(32), No. 6, June 2010, pp. 1112-1126.
IEEE DOI 1004
BibRef

Senelle, M., Garcia-Diez, S., Mantrach, A., Shimbo, M., Saerens, M., Fouss, F.,
The Sum-over-Forests Density Index: Identifying Dense Regions in a Graph,
PAMI(36), No. 6, June 2014, pp. 1268-1274.
IEEE DOI 1406
Correlation BibRef

Kanatani, K.[Kenichi], Sugaya, Y.[Yasuyuki], Niitsuma, H.[Hirotaka],
Optimization without Minimization Search: Constraint Satisfaction by Orthogonal Projection with Applications to Multiview Triangulation,
IEICE(E93-D), No. 10, October 2010, pp. 2836-2845.
WWW Link. 1011
BibRef

Esser, E.[Ernie], Zhang, X.[Xiaoqun], Chan, T.F.[Tony F.],
A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization In Imaging Science,
SIIMS(3), No. 4, 2010, pp. 1015-1046.
WWW Link.
DOI Link convex optimization; total variation minimization; primal-dual methods; operator splitting; L_1 basis pursuit BibRef 1000

Enqvist, O.[Olof], Kahl, F.[Fredrik], Olsson, C.[Carl], Astrom, K.[Kalle],
Global Optimization For One-Dimensional Structure And Motion Problems,
SIIMS(3), No. 4, 2010, pp. 1075-1095.
WWW Link.
DOI Link structure and motion; one-dimensional vision; simultaneous localization and mapping; geometry BibRef 1000

Astrom, K.[Kalle], Enqvist, O.[Olof], Olsson, C.[Carl], Kahl, F.[Fredrik], Hartley, R.I.[Richard I.],
An L-inf to Structure and Motion Problems in 1D-Vision,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Olsson, C.[Carl], Enqvist, O.[Olof],
Stable Structure from Motion for Unordered Image Collections,
SCIA11(524-535).
Springer DOI 1105
BibRef

Becker, S.[Stephen], Bobin, J.[Jerome], Candes, E.J.[Emmanuel J.],
Nesta: A Fast And Accurate First-Order Method For Sparse Recovery,
SIIMS(4), No. 1, 2011, pp. 1-39.
WWW Link.
DOI Link Nesterov's method; smooth approximations of nonsmooth functions; L_1 minimization; duality in convex optimization; continuation methods; compressed sensing; total-variation minimization BibRef 1100

Hager, W.W.[William W.], Phan, D.T.[Dzung T.], Zhang, H.C.[Hong-Chao],
Gradient-Based Methods For Sparse Recovery,
SIIMS(4), No. 1, 2011, pp. 146-165.
WWW Link.
DOI Link sparse reconstruction by separable approximation; iterative shrinkage thresholding algorithm; sparse recovery; sublinear convergence; linear convergence; image reconstruction; denoising; compressed sensing; nonsmooth optimization; nonmonotone convergence; BB method BibRef 1100

Liu, M.[Meng], Chen, Y.M.[Yun-Mei], Ouyang, Y.Y.[Yu-Yuan], Ye, X.J.[Xiao-Jing], Huang, F.[Feng],
An enhanced approach for simultaneous image reconstruction and sensitivity map estimation in partially parallel imaging,
ICIP13(2314-2318)
IEEE DOI 1402
SENSE BibRef

Yashtini, M.[Maryam], Hager, W.W.[William W.], Chen, Y.M.[Yun-Mei], Ye, X.J.[Xiao-Jing],
Partially parallel image reconstruction using sensitivity encoding,
ICIP12(2077-2080).
IEEE DOI 1302
BibRef

Felzenszwalb, P.F.[Pedro F.], McAuley, J.J.[Julian J.],
Fast Inference with Min-Sum Matrix Product,
PAMI(33), No. 12, December 2011, pp. 2549-2554.
IEEE DOI 1110
MAP inference on graphs. Rather than the N^3 limit, a N^2logN time. BibRef

Kobayashi, T.[Takumi], Watanabe, K.[Kenji], Otsu, N.[Nobuyuki],
Logistic label propagation,
PRL(33), No. 5, 1 April 2012, pp. 580-588.
Elsevier DOI 1202
Semi-supervised learning; Logistic function; Label propagation; Similarity; Gradient descent BibRef

Wickramarathne, T.L., Premaratne, K., Murthi, M.N.,
Toward Efficient Computation of the Dempster-Shafer Belief Theoretic Conditionals,
Cyber(43), No. 2, April 2013, pp. 712-724.
IEEE DOI 1303
BibRef

Rusu, C.,
Design of Incoherent Frames via Convex Optimization,
SPLetters(20), No. 7, 2013, pp. 673-676.
IEEE DOI 1307
incoherent frames; Grassmannian frames BibRef

Lu, S.F.[Shao-Feng], Hillmansen, S., Ho, T.K., Roberts, C.,
Single-Train Trajectory Optimization,
ITS(14), No. 2, 2013, pp. 743-750.
IEEE DOI 1307
ant colony optimization algorithm BibRef

Horng, S.C., Lin, S.Y., Lee, L.H., Chen, C.H.,
Memetic Algorithm for Real-Time Combinatorial Stochastic Simulation Optimization Problems With Performance Analysis,
Cyber(43), No. 5, 2013, pp. 1495-1509.
IEEE DOI 1309
Real-time suboptimal solution for large optimization problems. BibRef

Baidoo-Williams, H.E., Dasgupta, S., Mudumbai, R., Bai, E.[Erwei],
On the Gradient Descent Localization of Radioactive Sources,
SPLetters(20), No. 11, 2013, pp. 1046-1049.
IEEE DOI 1310
gradient methods BibRef

Zhang, X.Y.[Xu-Yao], Yang, P.P.[Pei-Pei], Zhang, Y.M.[Yan-Ming], Huang, K.Z.[Kai-Zhu], Liu, C.L.[Cheng-Lin],
Combination of Classification and Clustering Results with Label Propagation,
SPLetters(21), No. 5, May 2014, pp. 610-614.
IEEE DOI 1404
graph theory BibRef

Lu, Y.[Yao], Huang, K.Z.[Kai-Zhu], Liu, C.L.[Cheng-Lin],
A fast projected fixed-point algorithm for large graph matching,
PR(60), No. 1, 2016, pp. 971-982.
Elsevier DOI 1609
Graph matching BibRef

Fu, B.[Bin], Wang, Z.H.[Zhi-Hai], Xu, G.D.[Guan-Dong], Cao, L.B.[Long-Bing],
Multi-label learning based on iterative label propagation over graph,
PRL(42), No. 1, 2014, pp. 85-90.
Elsevier DOI 1404
Multi-label learning BibRef

Kim, K.H.[Kye-Hyeon], Choi, S.J.[Seung-Jin],
Label propagation through minimax paths for scalable semi-supervised learning,
PRL(45), No. 1, 2014, pp. 17-25.
Elsevier DOI 1407
Label propagation BibRef

Tar, P.[Paul], Thacker, N.A.[Neil A.],
Linear Poisson Models: A Pattern Recognition Solution to the Histogram Composition Problem,
BMVA(2014), No. 1, 2014, pp. 1-22.
PDF File. 1408
BibRef

Besse, F.[Frederic], Rother, C.[Carsten], Fitzgibbon, A.[Andrew], Kautz, J.[Jan],
PMBP: PatchMatch Belief Propagation for Correspondence Field Estimation,
IJCV(110), No. 1, October 2014, pp. 2-13.
Springer DOI
WWW Link. 1410
BibRef
Earlier: BMVC12(132).
DOI Link 1301
Award, BMVC, Best Impact. BibRef

Hornácek, M.[Michael], Besse, F.[Frederic], Kautz, J.[Jan], Fitzgibbon, A.[Andrew], Rother, C.[Carsten],
Highly Overparameterized Optical Flow Using PatchMatch Belief Propagation,
ECCV14(III: 220-234).
Springer DOI 1408
BibRef

Yazidi, A.[Anis], Granmo, O.C.[Ole-Christoffer], Oommen, B.J.[B. John], Goodwin, M.,
A Novel Strategy for Solving the Stochastic Point Location Problem Using a Hierarchical Searching Scheme,
Cyber(44), No. 11, November 2014, pp. 2202-2220.
IEEE DOI 1411
Optimization process. Determining the optimal point on the line when the only input it receives are stochastic signals about the direction in which it should move. BibRef

Yazidi, A.[Anis], Oommen, B.J.[B. John], Goodwin, M.,
On Solving the Problem of Identifying Unreliable Sensors Without a Knowledge of the Ground Truth: The Case of Stochastic Environments,
Cyber(47), No. 7, July 2017, pp. 1604-1617.
IEEE DOI 1706
Bayes methods, Learning automata, Redundancy, Reliability theory, Sensor fusion, Learning automata (LA), sensor, fusion BibRef

Yazidi, A.[Anis], Oommen, B.J.[B. John], Horn, G.[Geir], Granmo, O.C.[Ole-Christoffer],
Stochastic discretized learning-based weak estimation: A novel estimation method for non-stationary environments,
PR(60), No. 1, 2016, pp. 430-443.
Elsevier DOI 1609
Weak estimators BibRef

Denoux, T., El Zoghby, N., Cherfaoui, V., Jouglet, A.,
Optimal Object Association in the Dempster-Shafer Framework,
Cyber(44), No. 12, December 2014, pp. 2521-2531.
IEEE DOI 1412
belief maintenance BibRef

Roy, P.C., Islam, M.M., Murase, K., Yao, X.,
Evolutionary Path Control Strategy for Solving Many-Objective Optimization Problem,
Cyber(45), No. 4, April 2015, pp. 702-715.
IEEE DOI 1503
Euclidean distance BibRef

Gong, W., Cai, Z., Liang, D.,
Adaptive Ranking Mutation Operator Based Differential Evolution for Constrained Optimization,
Cyber(45), No. 4, April 2015, pp. 716-727.
IEEE DOI 1503
Benchmark testing BibRef

Wei, X., Tao, Z., Zhang, C., Cao, X.,
Structured Saliency Fusion Based on Dempster-Shafer Theory,
SPLetters(22), No. 9, September 2015, pp. 1345-1349.
IEEE DOI 1503
Benchmark testing BibRef

Gould, S.,
Learning Weighted Lower Linear Envelope Potentials in Binary Markov Random Fields,
PAMI(37), No. 7, July 2015, pp. 1336-1346.
IEEE DOI 1506
Computational modeling BibRef

Komodakis, N.[Nikos], Xiang, B., Paragios, N.[Nikos],
A Framework for Efficient Structured Max-Margin Learning of High-Order MRF Models,
PAMI(37), No. 7, July 2015, pp. 1425-1441.
IEEE DOI 1506
Analytical models BibRef

Werner, T.,
Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings,
PAMI(37), No. 7, July 2015, pp. 1455-1468.
IEEE DOI 1506
Abstracts BibRef

Liang, Y.C.[Yu-Chen], Zhang, Z.[Zhao], Jiang, W.M.[Wei-Ming], Zhao, M.B.[Ming-Bo], Li, F.Z.[Fan-Zhang],
Bilinear Embedding Label Propagation: Towards Scalable Prediction of Image Labels,
SPLetters(22), No. 12, December 2015, pp. 2411-2415.
IEEE DOI 1512
image classification BibRef

Çakmak, B., Urup, D.N., Meyer, F., Pedersen, T., Fleury, B.H., Hlawatsch, F.,
Cooperative Localization for Mobile Networks: A Distributed Belief Propagation: Mean Field Message Passing Algorithm,
SPLetters(23), No. 6, June 2016, pp. 828-832.
IEEE DOI 1606
Gaussian processes BibRef

Liu, Y.L.[Yu-Lang], Zhao, Z.Q.[Zhi-Qin], Yang, Y.H.[Yao-Hui], Wang, B.W.[Bing-Wen], Zhu, X.Z.[Xiao-Zhang], Nie, Z.P.[Zai-Ping], Liu, Q.H.[Qing Huo],
A Frequency-Hopping Subspace-Based Optimization Method for Reconstruction of 2-D Large Uniaxial Anisotropic Scatterers With TE Illumination,
GeoRS(54), No. 10, October 2016, pp. 6091-6099.
IEEE DOI 1610
anisotropic media BibRef

Ke, X.[Xiao], Zhou, M.K.[Ming-Ke], Niu, Y.Z.[Yu-Zhen], Guo, W.Z.[Wen-Zhong],
Data equilibrium based automatic image annotation by fusing deep model and semantic propagation,
PR(71), No. 1, 2017, pp. 60-77.
Elsevier DOI 1707
SAE: stacked auto-encoder. BibRef


Badami, I., Tom, M., Mathias, M., Leibe, B.,
3D Semantic Segmentation of Modular Furniture Using rjMCMC,
WACV17(64-72)
IEEE DOI 1609
Image edge detection, Image segmentation, Optimization, Proposals, Semantics, Shape, Three-dimensional, displays BibRef

Zhang, R.N.[Ruo-Nan], Wang, W.[Wenmin],
An MCMC-based prior sub-hypergraph matching in presence of outliers,
ICPR16(799-804)
IEEE DOI 1705
Benchmark testing, Markov processes, Optimization, Probability distribution, Proposals, Robustness, Tensile, stress BibRef

Zhang, M.[Miaohua], Gao, Y.S.[Yong-Sheng], Sun, C.M.[Chang-Ming], La Salle, J., Liang, J.,
Robust tensor factorization using maximum correntropy criterion,
ICPR16(4184-4189)
IEEE DOI 1705
Covariance matrices, Kernel, Linear programming, Optimization, Principal component analysis, Robustness, Tensile, stress BibRef

Nguyen, M.[Minh], Yan, W.Q.[Wei Qi], Gong, R.[Rui], Delmas, P.[Patrice],
Toward a real-time belief propagation stereo reconstruction for computers, robots, and beyond,
ICVNZ15(1-6)
IEEE DOI 1701
Markov processes BibRef

Cadoni, S.[Sara], Chouzenoux, E.[Emilie], Pesquet, J.C.[Jean-Christophe], Chaux, C.[Caroline],
A block parallel majorize-minimize memory gradient algorithm,
ICIP16(3194-3198)
IEEE DOI 1610
Parallel implementation of optimization. BibRef

Tang, K.[Keke], Zhao, Z.[Zhe], Chen, X.P.[Xiao-Ping],
Label Propagation for Large Scale 3D Indoor Scenes,
ISVC15(I: 253-264).
Springer DOI 1601
BibRef

Zhang, Z.[Zhao], Jiang, W.M.[Wei-Ming], Li, F.[Fanzhang], Zhang, L.[Li], Zhao, M.B.[Ming-Bo], Jia, L.[Lei],
Projective Label Propagation by Label Embedding,
CAIP15(II:470-481).
Springer DOI 1511
BibRef

Xiong, X.[Xuehan], de la Torre, F.[Fernando],
Global supervised descent method,
CVPR15(2664-2673)
IEEE DOI 1510
BibRef

Tabib, R.A., Patil, U., Ganihar, S.A., Trivedi, N., Mudenagudi, U.,
Decision fusion for robust horizon estimation using Dempster Shafer Combination Rule,
NCVPRIPG13(1-4)
IEEE DOI 1408
Gaussian processes BibRef

Herman, G.T.[Gabor T.],
Superiorization for Image Analysis,
IWCIA14(1-7).
Springer DOI 1405
Constrained optimization. BibRef

Leng, B.[Biao], Zhang, X.Y.[Xiang-Yang], Yao, M.[Ming], Xiong, Z.[Zhang],
3D Object Classification Using Deep Belief Networks,
MMMod14(II: 128-139).
Springer DOI 1405
BibRef

Carneiro, G., Liao, Z.B.[Zhi-Bin], Chin, T.J.[Tat-Jun],
Closed-Loop Deep Vision,
DICTA13(1-8)
IEEE DOI 1402
belief networks BibRef

Olsson, C.[Carl], Ulen, J.[Johannes], Boykov, Y.Y.[Yuri Y.], Kolmogorov, V.[Vladimir],
Partial Enumeration and Curvature Regularization,
ICCV13(2936-2943)
IEEE DOI 1403
BibRef

Gupta, M.D.[Mithun Das], Kumar, S.[Sanjeev],
Non-convex P-Norm Projection for Robust Sparsity,
ICCV13(1593-1600)
IEEE DOI 1403
BibRef

Yang, H.C.[Hai-Chuan], Bai, X.[Xiao], Liu, C.T.[Chun-Tian], Zhou, J.[Jun],
Label propagation hashing based on p-stable distribution and coordinate descent,
ICIP13(2674-2678)
IEEE DOI 1402
Coordinate descent;Hashing;Image retrieval;p-stable distribution BibRef

Nascimento, J.C.[Jacinto C.], Barão, M.[Miguel], Marques, J.S.[Jorge S.], Lemos, J.M.[João M.],
Efficient Optimization Algorithm for Space-Variant Mixture of Vector Fields,
IbPRIA13(79-88).
Springer DOI 1307
BibRef

Kanatani, K.[Kenichi],
Statistical Optimization for Geometric Estimation: Minimization vs. Non-minimization,
ICPR14(1-8)
IEEE DOI 1412
BibRef
Earlier:
Optimization Techniques for Geometric Estimation: Beyond Minimization,
SSSPR12(11-30).
Springer DOI 1211
Cost function BibRef

Kuznetsova, A.[Alina], Pons-Moll, G.[Gerard], Rosenhahn, B.[Bodo],
PCA-enhanced Stochastic Optimization Methods,
DAGM12(377-386).
Springer DOI 1209
BibRef

Sun, J.[Jun], Li, H.D.[Hong-Dong], He, X.M.[Xu-Ming],
Analysis on Tree Structure Selection for MRF Inference in Low-level Vision,
DICTA11(66-71).
IEEE DOI 1205
BibRef

Goodman, N.D.[Noah D.],
Learning and the language of thought,
SIG11(694).
IEEE DOI 1201
Invited talk. BibRef

Gamal-Eldin, A.[Ahmed], Descombes, X.[Xavier], Charpiat, G.[Guillaume], Zerubia, J.B.[Josiane B.],
A fast Multiple Birth and Cut algorithm using belief propagation,
ICIP11(2813-2816).
IEEE DOI 1201
BibRef

Bouchon-Meunier, B.[Bernadette],
Similarity and prototype: Two key issues in perceptive and subjective information,
EUVIP11(222).
IEEE DOI 1110
BibRef

Chen, Q.A.[Qi-Ang], Song, Z.[Zheng], Dong, J., Huang, Z.Y.[Zhong-Yang], Hua, Y.[Yang], Yan, S.C.[Shui-Cheng],
Contextualizing Object Detection and Classification,
PAMI(37), No. 1, January 2015, pp. 13-27.
IEEE DOI 1412
BibRef
Earlier: A2, A1, A4, A5, A6:
Contextualizing object detection and classification,
CVPR11(1585-1592).
IEEE DOI 1106
Computational modeling. Boost classification by using results from a different task. Context-SVM. Object classification and extraction tasks so they are related. BibRef

Lasowski, R.[Ruxandra], Tevs, A.[Art], Wand, M.[Michael], Seidel, H.P.[Hans-Peter],
Wavelet belief propagation for large scale inference problems,
CVPR11(1921-1928).
IEEE DOI 1106
BibRef

Xiao, P.D.[Peng-Dong], Barnes, N.M.[Nick M.], Lieby, P.[Paulette], Caetano, T.S.[Tiberio S.],
Sparse Update for Loopy Belief Propagation: Fast Dense Registration for Large State Spaces,
DICTA10(546-551).
IEEE DOI 1012
BibRef

Ogawara, K.[Koichi],
Approximate Belief Propagation by Hierarchical Averaging of Outgoing Messages,
ICPR10(1368-1372).
IEEE DOI 1008
BibRef

Woodford, O.J.[Oliver J.], Rother, C.[Carsten], Kolmogorov, V.[Vladimir],
A global perspective on MAP inference for low-level vision,
ICCV09(2319-2326).
IEEE DOI 0909
Maximum a posteriori framework rather than MRF probability model. Create Marginal Probability Field -- a MRF generalization. BibRef

Cao, L.L.[Liang-Liang], Luo, J.B.[Jie-Bo], Liang, F.[Feng], Huang, T.S.[Thomas S.],
Heterogeneous feature machines for visual recognition,
ICCV09(1095-1102).
IEEE DOI 0909
Model and compare heterogeneous features. BibRef

Huang, Y.[Yihu], Zhang, G.[Genmin], Wang, J.[Jinli],
An Optimization Dijkstra Algorithm Based on Two-Function Limitation Strategy,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wu, J.C.[Jin-Cheng],
APSK Optimization in the Presence of Phase Noise,
CISP09(1-5).
IEEE DOI 0910
BibRef

Zhang, L.[Liang], Huang, S.X.[Si-Xun],
Generalized Variational Optimization Analysis for Improving Scatterometer Surface Wind Field,
CISP09(1-3).
IEEE DOI 0910
BibRef

Jin, W.G.[Wen-Guang], Zhang, B.[Bin], Zhu, D.Q.[De-Qing], Hu, K.L.[Kai-Liang],
Multilevel Optimization of DSP Based SPEEX Decoder,
CISP09(1-4).
IEEE DOI 0910
BibRef

Sun, F.R.[Feng-Rong], Zhang, M.Q.A.[Ming-Qi-Ang],
Numerical Method of an Orthogonal Array Optimization,
CISP09(1-3).
IEEE DOI 0910
BibRef

Matsumoto, M.,
Parameter Optimization of Median epsilon-Filter Based on Correlation Maximization,
CISP09(1-5).
IEEE DOI 0910
BibRef

Yang, R.G.[Rong-Gen], Ren, M.W.[Ming-Wu],
Improved Non Convex Optimization Algorithm for Reconstruction of Sparse Signals,
CISP09(1-5).
IEEE DOI 0910
BibRef

Liang, C.K.[Chia-Kai], Cheng, C.C.[Chao-Chung], Lai, Y.C.[Yen-Chieh], Chen, L.G.[Liang-Gee], Chen, H.H.[Homer H.],
Hardware-efficient belief propagation,
CVPR09(80-87).
IEEE DOI 0906
Split NRF into tiles with minimal interaction between them. BibRef

Tipwai, P., Madarasmi, S.,
A dual belief propagation method for shape recognition,
CIIP09(88-95).
IEEE DOI 0903
BibRef

Klinker, G.[Gudrun],
SudokuVis How to Explore Relationships of Mutual Exclusion,
ISVC08(II: 55-64).
Springer DOI 0812
BibRef

Chandraker, M.[Manmohan], Kriegman, D.J.[David J.],
Globally optimal bilinear programming for computer vision applications,
CVPR08(1-8).
IEEE DOI 0806
Apply to: exemplar-based face reconstruction and non-rigid structure from motion BibRef

Agarwal, S.[Sameer], Snavely, N.[Noah], Seitz, S.M.[Steven M.],
Fast algorithms for L-inf problems in multiview geometry,
CVPR08(1-8).
IEEE DOI 0806
Optimization problems. See also Efficient Optimization for L-inf-problems using Pseudoconvexity. See also Modeling the World from Internet Photo Collections. BibRef

Leordeanu, M.[Marius], Hebert, M.[Martial],
Smoothing-based Optimization,
CVPR08(1-8).
IEEE DOI 0806
Search for maximum in scale space. BibRef

Yu, T.L.[Tian-Li], Lin, R.S.[Ruei-Sung], Super, B.[Boaz], Tang, B.[Bei],
Efficient Message Representations for Belief Propagation,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Kotb, Y.T., Beauchemin, S.S., Barron, J.L.,
Petri Net-Based Cooperation In Multi-Agent Systems,
CRV07(123-130).
IEEE DOI 0705
BibRef

Gangaputra, S.[Sachin], Geman, D.[Donald],
Self-normalized linear tests,
CVPR04(II: 616-622).
IEEE DOI 0408
Find the threshold (with changes in illumination) to do the linear combination. BibRef

Sudderth, E.B.[Erik B.], Mandel, M.I.[Michael I.], Freeman, W.T.[William T.], Willsky, A.S.[Alan S.],
Visual Hand Tracking Using Nonparametric Belief Propagation,
GenModel04(189).
IEEE DOI 0406
BibRef
And:
Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propogation,
NIPS04(xx-yy). See also Describing Visual Scenes Using Transformed Objects and Parts. BibRef

Sudderth, E.B.[Erik B.], Ihler, A.T.[Alexander T.], Freeman, W.T.[William T.], Willsky, A.S.[Alan S.],
Nonparametric belief propagation,
CVPR03(I: 605-612).
IEEE DOI 0307
BibRef
Earlier:
Nonparametric Belief Propagation and Facial Appearance Estimation,
MIT AIMAIM-2002-020, December 2002.
WWW Link. Drawing on ideas from regularized particle filters and belief propagation (BP), this paper develops a nonparametric belief propagation (NBP) algorithm applicable to general graphs. 0306
BibRef

Orr, M.J.L.[Mark J.L.], Fisher, R.B.[Robert B.], Hallam, J.[John],
Computing with Uncertainty: Intervals versus Probabilities,
BMVC91(351-354).
PDF File. 9109
BibRef Edinburgh BibRef

Waite, M., Orr, M., Fisher, R.B., Hallam, J.,
Statistical Partial Constraints for 3D Model Matching and Pose Estimation Problems,
BMVC93(105-114).
PDF File. BibRef 9300 Edinburgh BibRef

Murphy, R.R.[Robin R.], Hawkins, D.K.[Dale K.], Schoppers, M.J.[Marcel J.],
Reactive Combination of Belief Over Time Using Direct Perception,
IJCAI97(1353-1359). BibRef 9700

Semmar, N.,
Applying contextual constraints to extract symbolic representation for image understanding,
CIAP95(721-730).
Springer DOI 9509
BibRef

Besserer, B., Estable, S., Ulmer, B.,
Multiple knowledge sources and evidential reasoning for shape recognition,
ICCV93(624-631).
IEEE DOI 0403
Uncertainty handling, combining, and propagation form the heart of the method. BibRef

Qian, J., and Ehrich, R.W.,
A Framework for Uncertainty Reasoning in Hierarchical Visual Evidence Space,
ICPR90(I: 119-124).
IEEE DOI BibRef 9000

Betz, J.W., Prince, J.L., Bello, M.G.,
Representation and transformation of uncertainty in an evidence theory framework,
CVPR89(646-652).
IEEE DOI 0403
BibRef

Crowley, J.L., Ramparany, F.,
Mathematical Tools For Representing Uncertainty In Perception,
SRMSF87(293-302). BibRef 8700

Eshera, M.A.,
Hierarchical Inference Scheme For High-Level Image Understanding,
ICPR88(II: 882-884).
IEEE DOI 8811
BibRef

Landy, M.S., Hummel, R.A.,
A Brief Survey of Knowledge Aggregation Methods,
ICPR86(248-252). BibRef 8600

Cohen, F.S., Cooper, D.B.,
A Decision Theoretic Approach for 3-D Vision,
CVPR88(964-972).
IEEE DOI BibRef 8800

Huang, C.Z.[Cheng-Zhi], Li, Y.[Yanda], Chang, T.[Tong],
Solving the stiff problem in computer vision by trade-off optimization,
ICPR88(I: 160-162).
IEEE DOI 8811
Linear Inverse problems. BibRef

Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Fuzzy Sets, Fuzzy Logic .


Last update:Dec 15, 2017 at 20:32:53