Biederman, I.[Irving],
Human Image Understanding: Recent Research and a Theory,
CVGIP(32), No. 1, October 1985, pp. 29-73.
Elsevier DOI
Descriptions, Geons.
BibRef
8510
Biederman, I.[Irving],
Recognition by Components: A Theory of Human Image Understanding,
PsychR(94), No. 2, 1987, pp. 115-147.
The psychological description of how to describe
objects by components and to recognize them.
BibRef
8700
Biederman, I.[Irving],
Geon Based Object Recognition,
BMVC93(xx).
(USC)
BibRef
9300
Biederman, I.[Irving],
Matching Image Edges to Object Memory,
ICCV87(384-392).
BibRef
8700
Biederman, I.[Irving],
Hummel, J.E.[John E.],
Gerhardstein, P.C.[Peter C.],
Cooper, E.E.[Eric E.],
From Image Edges to Geons to Viewpoint-Invariant Object Models:
A Neural Net Implementation,
SPIE(1708), 1992, pp. 570-578.
BibRef
9200
Cannon, T.P.<.[Tsaiyun Phillips/A1>,
Decomposition and Approximation of Three-Dimensional Solids,
CVGIP(33), No. 3, March 1986, pp. 307-317.
Elsevier DOI properties of a rock from serial cross sections.
BibRef
8603
Rivlin, E.[Ehud],
Dickinson, S.J.[Sven J.],
Rosenfeld, A.[Azriel],
Recognition by Functional Parts,
CVIU(62), No. 2, September 1995, pp. 164-176.
DOI Link
BibRef
9509
And: A1, A2 Only:
CVPR94(267-274).
IEEE DOI
BibRef
And: A2, A1, A3:
Object Recognition by Functional Parts,
ARPA94(II:1531-1539).
BibRef
And:
UMDTR3222, 1994.
WWW Link.
Recognition by Function.
Descriptions, Parts. An extension of recognition by parts to support function.
Combine functional primitives with volumetric shape primitives.
BibRef
Froimovich, G.,
Rivlin, E.,
Shimshoni, I.,
Object classification by functional parts,
3DPVT02(648-655).
IEEE DOI
0206
BibRef
Dickinsona, S.J.[Sven J.],
Bergevin, R.[Robert],
Biederman, I.[Irving],
Eklundh, J.O.[Jan-Olof],
Munck-Fairwood, R.C.[Roger C.],
Jain, A.K.[Anil K.],
Pentland, A.P.[Alex P.],
Panel Report: The Potential Of Geons For Generic 3-D Object Recognition,
IVC(15), No. 4, April 1997, pp. 277-292.
Elsevier DOI
9706
BibRef
Dickinson, S.J.[Sven J.],
Biederman, I.,
Pentland, A.P.[Alex P.],
Eklundh, J.O.,
Bergevin, R., and
Munck-Fairwood, R.C.,
The Use of Geons for Generic 3-D Object Recognition,
IJCAI93(1693-1699).
BibRef
9300
Zerroug, M.[Mourad],
Medioni, G.[Gérard],
The challenge of generic object recognition,
ORCV94(217-232).
Springer DOI
9412
BibRef
Bennett, B.M.,
Hoffman, D.D.,
Shape Decomposition for Visual Recognition: The Role of Transversality,
IU87(215-256).
BibRef
8700
Levine, M.D.,
Bergevin, R., and
Nguyen, Q.L.,
Shape Description Using Geons as 3D Primitives,
VF91(363-377).
Geons.
BibRef
9100
Nguyen, Q.L.,
Levine, M.D.,
Representing 3-D Objects in Range Images Using Geons,
CVIU(63), No. 1, January 1996, pp. 158-168.
DOI Link
BibRef
9601
Earlier:
3-D Object Representation in Range Images Using Geons,
ICPR92(I:149-153).
IEEE DOI
BibRef
Wu, K.N.,
Levine, M.D.,
3D Part Segmentation Using Simulated Electrical Charge Distributions,
PAMI(19), No. 11, November 1997, pp. 1223-1235.
IEEE DOI
9712
BibRef
Earlier:
ICPR96(I: 14-18).
IEEE DOI
9608
(McGill Univ., CDN)
From single or multiple view range data, use simulated electical charge
densities on the surface to find local charge density minima, decompose
at these points.
BibRef
Wu, K.,
Levine, M.D.,
Recovering Parametric Geons from Multiview Range Data,
CVPR94(159-166).
IEEE DOI
BibRef
9400
And:
Shape Approximation: From Multiview Range Images to Parametric Geons,
ICPR94(A:622-625).
IEEE DOI
BibRef
Earlier:
3D Object Representation Using Parametric Geons,
McGillCIM-93-13, 1993.
BibRef
Tagare, H.D.,
Vos, F.M.,
Jaffe, C.C.,
Duncan, J.S.,
Arrangement: A Spatial Relation Between Parts for Evaluating Similarity
of Tomographic Section,
PAMI(17), No. 9, September 1995, pp. 880-893.
IEEE DOI
Descriptions, Parts.
Voronoi.
Database.
BibRef
9509
Tagare, H.D.,
Jaffe, C.C.,
Duncan, J.S.,
Arrangement: A Spatial Relation for Describing and
Comparing Part Embeddings,
ICPR92(I:91-94).
IEEE DOI
BibRef
9200
Munck-Fairwood, R.C.[Roger C.],
Du, L.[Li],
Shape Using Volumetric Primitives,
IVC(11), No. 6, July-August 1993, pp. 364-371.
Elsevier DOI
BibRef
9307
Wang, D.M.[De Min],
Haese-Coat, V.[Veronique],
Ronsin, J.[Joseph],
Shape Decomposition and Representation Using a
Recursive Morphological Operation,
PR(28), No. 11, November 1995, pp. 1783-1792.
Elsevier DOI Use structuring element.
BibRef
9511
Ayoung-Chee, N.[Nigel],
Dudek, G.[Gregory],
Ferrie, F.P.[Frank P.],
A Hybrid Approach to 3D Representation,
ORCV96(321)
9611
BibRef
Ferrie, F.P.,
Mathur, S.,
Soucy, G.,
Feature Extraction for 3D Model Building and Recognition,
3DORS93(xx).
BibRef
9300
Arcelli, C.[Carlo],
Serino, L.[Luca],
From Discs to Parts of Visual Form,
IVC(15), No. 1, January 1997, pp. 1-10.
Elsevier DOI
9702
BibRef
Wu, K.N.[Ke-Nong],
Levine, M.D.[Martin D.],
3-D Shape Approximation Using Parametric Geons,
IVC(15), No. 2, February 1997, pp. 143-158.
Elsevier DOI
9702
Approximate shape by a set of prescribed models.
BibRef
Nishida, H.[Hirobumi],
Structural Feature-Extraction Using Multiple Bases,
CVIU(62), No. 1, July 1995, pp. 78-89.
DOI Link
BibRef
9507
Nishida, H.[Hirobumi],
A Structural Approach to Representation of Curved Objects,
PR(30), No. 1, January 1997, pp. 45-56.
Elsevier DOI
9702
BibRef
Pilu, M.,
Fisher, R.B.,
Part Segmentation from 2D Edge Images by the MDL Criterion,
IVC(15), No. 8, August 1997, pp. 563-573.
Elsevier DOI
9708
BibRef
Earlier:
BMVC96(Features, Segmentation).
9608
BibRef
And:
DAINo. 817, July 1996.
BibRef
EdinburghUniversity of Edinburgh
Filter hypotheses to retain only those likely to correspond to
actual parts.
BibRef
Pilu, M.,
Fisher, R.B.,
Recognition of Geons by Parametric Deformable Contour Models,
ECCV96(I:71-82).
Springer DOI
BibRef
9600
And:
Recovery of Generic Solid Parts by Parametrically Deformable Aspects,
DAINo. 801.
BibRef
EdinburghFind the geons.
BibRef
Pilu, M.,
Fisher, R.B.,
Model-Driven Grouping and Recognition of Generic Object Parts from a
Single Image,
RobAS(21), 1997, pp. 107-122.
BibRef
9700
Earlier:
DAINo. 805, May 1996.
Perceptual Grouping.
BibRef
EdinburghGrouping applied to edge images using models of the parts.
PS File.
BibRef
Havaldar, P.[Parag],
Medioni, G.[Gerard],
Full Volumetric Descriptions from Three Intensity Images,
PAMI(20), No. 5, May 1998, pp. 540-545.
IEEE DOI
9806
BibRef
Earlier:
Inference of Segmented, Volumetric Shape from Intensity Images,
CVPR96(278-284).
IEEE DOI
BibRef
And:
ARPA96(1057-1064).
Stereo analysis, but segmented descriptions.
PDF File. Three closely spaced images, derive generalized cylinders.
Match the views, label the contours as true or limb edges.
BibRef
Havaldar, P.[Parag],
Medioni, G.[Gerard],
Segmented Shape Description from 3-View Stereo,
ICCV95(102-108).
IEEE DOI
Trinocular Stereo. Generalized cylinder descriptions.
PDF File.
BibRef
9500
Cucchiara, R.[Rita],
Piccardi, M.[Massimo],
Eliciting visual primitives for detection of elongated shapes,
IVC(17), No. 5/6, April 1999, pp. 347-355.
Elsevier DOI
BibRef
9904
Earlier:
Detection of luminosity profiles of elongated shapes,
ICIP96(III: 635-638).
IEEE DOI
9610
BibRef
Cucchiara, R.[Rita],
Piccardi, M.[Massimo],
Bariani, M.[Michele],
Mello, P.[Paola],
Learning for feature selection and shape detection,
CIAP97(I: 535-542).
Springer DOI
9709
BibRef
Zerroug, M.[Mourad],
Nevatia, R.[Ramakant],
Part-Based 3D Descriptions of Complex Objects from a Single Image,
PAMI(21), No. 9, September 1999, pp. 835-848.
IEEE DOI
BibRef
9909
USC Computer Vision
Generalized Cylinder.
BibRef
Earlier:
From an Intensity Image to 3-D Segmented Descriptions,
ORCV96(11)
9611
BibRef
Earlier:
ICPR94(A:108-113).
IEEE DOI
BibRef
USC Computer Vision
PDF File. Exploit the properties of generalized cylinders and the
intersections between them.
See also Volumetric Descriptions from a Single Intensity Image.
BibRef
Nevatia, R.[Ramakant], and
Zerroug, M.[Mourad],
Three-Dimensional Part-Based Descriptions from a Real Intensity Image,
ARPA94(II:1367-1374).
BibRef
9400
USC Computer Vision
BibRef
van der Meiden, H.A.[Hilderick A.],
Bronsvoort, W.F.[Willem F.],
An efficient method to determine the intended solution for
a system of geometric constraints,
CompGeomApp(15), No. 3, 2005, pp. 279-298.
DOI Link Generating decompositions.
BibRef
0500
van der Meiden, H.A.[Hilderick A.],
Bronsvoort, W.F.[Willem F.],
Solving Systems of 3D Geometric Constraints with Non-rigid Clusters,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Vasanthanayaki, C.,
Annadurai, S.,
Optimal Morphological Shape Decomposition Scheme,
GVIP(05), No. V7, 2005, pp. 1-7
HTML Version.
BibRef
0500
Svensson, S.[Stina],
A decomposition scheme for 3D fuzzy objects based on fuzzy distance
information,
PRL(28), No. 2, 15 January 2007, pp. 224-232.
Elsevier DOI
0611
Fuzzy shape analysis; Fuzzy (reverse) distance transform;
Hierarchical clustering; Cryo electron tomography; Immunoglobulin G
BibRef
Svensson, S.[Stina],
Aspects on the reverse fuzzy distance transform,
PRL(29), No. 7, 1 May 2008, pp. 888-896.
Elsevier DOI
0804
Fuzzy distance; Region growing; Watershed segmentation
BibRef
Amit, Y., and
Geman, D.,
Shape quantization and recognition with randomized trees,
NeurComp(9), 1997, pp. 1545-1588.
DOI Link
BibRef
9700
Amit, Y., and
Geman, D.,
A computational model for visual selection,
NeurComp(11), 1999, pp. 1691-1715.
DOI Link
BibRef
9900
Amit, Y.[Yali],
Trouvé, A.[Alain],
POP: Patchwork of Parts Models for Object Recognition,
IJCV(75), No. 2, November 2007, pp. 267-282.
Springer DOI
0710
BibRef
Earlier:
Generative Models for Labeling Multi-object Configurations in Images,
CLOR06(362-381).
Springer DOI
0711
A deformable template model.
Define model with small number of local submodels that may shift.
Characters and faces.
BibRef
Bernstein, E.J.[Elliot Joel],
Amit, Y.[Yali],
Part-Based Statistical Models for Object Classification and Detection,
CVPR05(II: 734-740).
IEEE DOI
0507
BibRef
Dechter, R.[Rina],
Mateescu, R.[Robert],
AND/OR search spaces for graphical models,
AI(171), No. 2-3, February 2007, pp. 73-106.
Elsevier DOI
0802
Search; AND/OR search; Decomposition; Graphical models;
Bayesian networks; Constraint networks
BibRef
Bar-Hillel, A.[Aharon],
Weinshall, D.[Daphna],
Efficient Learning of Relational Object Class Models,
IJCV(77), No. 1-3, May 2008, pp. 175-198.
Springer DOI
0803
BibRef
Earlier:
Add A2:
Hertz, T.[Tomer],
ICCV05(II: 1762-1769).
IEEE DOI
0510
BibRef
Sudderth, E.B.[Erik B.],
Torralba, A.B.[Antonio B.],
Freeman, W.T.[William T.],
Willsky, A.S.[Alan S.],
Describing Visual Scenes Using Transformed Objects and Parts,
IJCV(77), No. 1-3, May 2008, pp. 291-330.
Springer DOI
0803
BibRef
Earlier:
Depth from Familiar Objects: A Hierarchical Model for 3D Scenes,
CVPR06(II: 2410-2417).
IEEE DOI
0606
BibRef
Earlier:
Learning Hierarchical Models of Scenes, Objects, and Parts,
ICCV05(II: 1331-1338).
IEEE DOI
0510
See also Visual Hand Tracking Using Nonparametric Belief Propagation.
BibRef
Kivinen, J.J.[Jyri J.],
Sudderth, E.B.[Erik B.],
Jordan, M.I.[Michael I.],
Learning Multiscale Representations of Natural Scenes Using Dirichlet
Processes,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Reniers, D.[Dennie],
Telea, A.C.[Alexandru C.],
Hierarchical part-type segmentation using voxel-based curve skeletons,
VC(24), No. 6, June 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Earlier:
Segmenting Simplified Surface Skeletons,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Earlier:
Tolerance-Based Feature Transforms,
VISAPP06(187-200).
Springer DOI
0711
All close feature values.
BibRef
Pan, X.[Xiang],
Chen, Q.H.[Qi Hua],
Liu, Z.[Zhi],
3D shape recursive decomposition by Poisson equation,
PRL(30), No. 1, 1 January 2009, pp. 11-17.
Elsevier DOI
0811
3D shape; Poisson equation; Recursive decomposition; Graph cut
BibRef
Pan, X.[Xiang],
You, Q.[Qian],
Liu, Z.[Zhi],
Chen, Q.H.[Qi Hua],
3D shape retrieval by Poisson histogram,
PRL(32), No. 6, 15 April 2011, pp. 787-794.
Elsevier DOI
1103
3D shape retrieval; Shape descriptor; Poisson histogram; Part structure
BibRef
Wang, S.[Su],
Lu, H.Y.[Hong-Yu],
Liang, Z.R.[Zheng-Rong],
A theoretical solution to MAP-EM partial volume segmentation of medical
images,
IJIST(19), No. 2, June 2009, pp. 111-119.
DOI Link
0905
Mixed voxel effect in volume segmentation.
BibRef
Bergevin, R.[Robert],
Bernier, J.F.[Jean-Francois],
Detection of unexpected multi-part objects from segmented contour maps,
PR(42), No. 11, November 2009, pp. 2403-2420.
Elsevier DOI
0907
BibRef
Earlier: A2, A1:
Generic Detection of Multi-Part Objects,
ICPR06(I: 840-843).
IEEE DOI
0609
BibRef
And: A2, A1:
Generic Detection of Multi-Part Objects by High-Level Analysis,
CRV06(2-2).
IEEE DOI
0607
Multi-part object detection; Segmented contour map; Grouping
constraints; Global shape grouping criteria
BibRef
Randrianarisoa, V.[Veneree],
Bernier, J.F.[Jean-Francois],
Bergevin, R.[Robert],
Detection of Multi-Part Objects by Top-Down Perceptual Grouping,
CRV05(536-543).
IEEE DOI
0505
BibRef
Wuhrer, S.[Stefanie],
Brunton, A.[Alan],
Segmenting animated objects into near-rigid components,
VC(26), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
BibRef
Shapira, L.[Lior],
Shalom, S.[Shy],
Shamir, A.[Ariel],
Cohen-Or, D.[Daniel],
Zhang, H.,
Contextual Part Analogies in 3D Objects,
IJCV(89), No. 2-3, September 2010, pp. xx-yy.
Springer DOI
1006
BibRef
Earlier: A2, A1, A3, A4, Only:
Part Analogies in Sets of Objects,
3DOR08(33-40)
DOI Link
1301
Partition into parts, find analogous parts in other objects.
BibRef
Reuter, M.[Martin],
Hierarchical Shape Segmentation and Registration via Topological
Features of Laplace-Beltrami Eigenfunctions,
IJCV(89), No. 2-3, September 2010, pp. xx-yy.
Springer DOI
1006
Part based segmentation for articulated shapes. Then matching of these
representation.
BibRef
Ferreira, A.[Alfredo],
Marini, S.[Simone],
Attene, M.[Marco],
Fonseca, M.J.[Manuel J.],
Spagnuolo, M.[Michela],
Jorge, J.A.[Joaquim A.],
Falcidieno, B.[Bianca],
Thesaurus-based 3D Object Retrieval with Part-in-Whole Matching,
IJCV(89), No. 2-3, September 2010, pp. xx-yy.
Springer DOI
1006
BibRef
Lourenço, T.[Tiago],
Ferreira, A.[Alfredo],
Fonseca, M.J.[Manuel J.],
A Framework For 3d Object Retrieval Algorithm Analysis,
3DOR11(121-124)
DOI Link
1301
BibRef
Giorgi, D.[Daniela],
Frosini, P.,
Spagnuolo, M.[Michela],
Falcidieno, B.[Bianca],
3D relevance feedback via multilevel relevance judgements,
VC(26), No. 10, October 2010, pp. 1321-1338.
WWW Link.
1101
BibRef
Giorgi, D.[Daniela],
Mortara, M.[Michela],
Spagnuolo, M.[Michela],
3D shape retrieval based on best view selection,
3DOR10(9-14).
DOI Link
1111
BibRef
Engel, K.[Karin],
Tönnies, K.D.[Klaus D.],
Hierarchical vibrations for part-based recognition of complex objects,
PR(43), No. 8, August 2010, pp. 2681-2691.
Elsevier DOI
1006
BibRef
Earlier:
Hierarchical Vibrations:
A Structural Decomposition Approach for Image Analysis,
EMMCVPR09(317-330).
Springer DOI
0908
Segmentation; Part-based recognition; Shape decomposition; FEM; Optimization
BibRef
Dornheim, L.,
Tonnies, K.D.,
Dornheim, J.,
Stable Dynamic 3D Shape Models,
ICIP05(III: 1276-1279).
IEEE DOI
0512
BibRef
Al-Zubi, S.[Stephan],
Brömme, A.[Arslan],
Tönnies, K.D.[Klaus D.],
Using an Active Shape Structural Model for Biometric Sketch Recognition,
DAGM03(187-195).
Springer DOI
0310
BibRef
Al-Zubi, S.[Stephan],
Tönnies, K.D.[Klaus D.],
Generalizing the Active Shape Model by Integrating Structural Knowledge
to Recognize Hand Drawn Sketches,
CAIP03(320-328).
Springer DOI
0311
BibRef
Earlier:
Extending Active Shape Models to Incorporate a-priori Knowledge about
Structural Variability,
DAGM02(338 ff.).
Springer DOI
0303
BibRef
Bergner, S.,
Al-Zubi, S.,
Tonnies, K.D.,
Deformable structural models,
ICIP04(III: 1875-1878).
IEEE DOI
0505
BibRef
Passino, G.[Giuseppe],
Patras, I.[Ioannis],
Izquierdo, E.[Ebroul],
Aspect coherence for graph-based semantic image labelling,
IET-CV(4), No. 3, September 2010, pp. 183-194.
DOI Link
1008
BibRef
Earlier:
Latent Semantics Local Distribution for CRF-based Image Semantic
Segmentation,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Earlier:
On the role of structure in part-based object detection,
ICIP08(65-68).
IEEE DOI
0810
Segmentation by pixel classification. Appearence and spatial dependencies.
BibRef
Kamiya, Y.[Yasunori],
Takahashi, T.[Tomokazu],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
A Multimodal Constellation Model for Object Image Classification,
JIVP(2010), No. 2010, pp. xx-yy.
DOI Link
1003
Constellation part based model.
BibRef
Sohn, B.S.[Bong-Soo],
Hybrid Parallel Extraction of Isosurface Components from 3D Rectilinear
Volume Data,
IEICE(E94-D), No. 12, December 2011, pp. 2553-2556.
WWW Link.
1112
BibRef
Sohn, B.S.[Bong-Soo],
Contour Gradient Tree for Automatic Extraction of Salient Object
Surfaces from 3D Imaging Data,
IEICE(E98-D), No. 11, November 2015, pp. 2038-2042.
WWW Link.
1512
BibRef
Yang, K.,
Wang, M.,
Hua, X.S.,
Yan, S.,
Zhang, H.J.,
Assemble New Object Detector With Few Examples,
IP(20), No. 12, December 2011, pp. 3341-3349.
IEEE DOI
1112
Performance is degraded with fewer examples. Use pretrained auxiliary
detectors. Part models.
BibRef
Liu, Y.H.[Ying-Ho],
Lee, A.J.T.[Anthony J.T.],
Chang, F.[Fu],
Object recognition using discriminative parts,
CVIU(116), No. 7, July 2012, pp. 854-867.
Elsevier DOI
1202
Object recognition; Discriminative part; Interest point; Prototype
feature vector; C4.5 decision tree; Incremental learning
BibRef
Zhang, J.G.[Jun-Ge],
Huang, Y.Z.[Yong-Zhen],
Huang, K.Q.[Kai-Qi],
Wu, Z.F.[Zi-Feng],
Tan, T.N.[Tie-Niu],
Data Decomposition and Spatial Mixture Modeling for Part Based Model,
ACCV12(I:123-137).
Springer DOI
1304
BibRef
Ren, Z.[Zhou],
Yuan, J.S.[Jun-Song],
Liu, W.Y.[Wen-Yu],
Minimum Near-Convex Shape Decomposition,
PAMI(35), No. 10, 2013, pp. 2546-2552.
IEEE DOI
1309
Shape decomposition;discrete optimization;shape representation
BibRef
Ren, Z.[Zhou],
Yuan, J.S.[Jun-Song],
Li, C.Y.[Chun-Yuan],
Liu, W.Y.[Wen-Yu],
Minimum near-convex decomposition for robust shape representation,
ICCV11(303-310).
IEEE DOI
1201
decompose 2-D or 3-D into near-convex parts
BibRef
Igual, L.[Laura],
Perez-Sala, X.[Xavier],
Escalera, S.[Sergio],
Angulo, C.[Cecilio],
de la Torre, F.[Fernando],
Continuous Generalized Procrustes analysis,
PR(47), No. 2, 2014, pp. 659-671.
Elsevier DOI
1311
BibRef
And: A2, A5, A1, A3, A4:
Subspace Procrustes Analysis,
ChaLearn14(654-668).
Springer DOI
1504
BibRef
Earlier: A1, A5, Only:
Continuous procrustes analysis to learn 2D shape models from 3D objects,
NORDIA10(17-22).
IEEE DOI
1006
Procrustes analysis.
To deal with rigid transforms.
BibRef
Perez-Sala, X.[Xavier],
de la Torre, F.[Fernando],
Igual, L.[Laura],
Escalera, S.[Sergio],
Angulo, C.[Cecilio],
Subspace Procrustes Analysis,
IJCV(121), No. 3, February 2017, pp. 327-343.
Springer DOI
1702
BibRef
Tejera, M.[Margara],
Casas, D.,
Hilton, A.[Adrian],
Animation Control of Surface Motion Capture,
Cyber(43), No. 6, 2013, pp. 1532-1545.
IEEE DOI
1312
BibRef
Earlier: A1, A3, Only:
Learning Part-Based Models for Animation from Surface Motion Capture,
3DV13(159-166)
IEEE DOI
1311
Laplace equations
BibRef
Maji, S.[Subhransu],
Shakhnarovich, G.[Gregory],
Part and Attribute Discovery from Relative Annotations,
IJCV(108), No. 1-2, May 2014, pp. 82-96.
WWW Link.
1405
BibRef
Earlier:
Part Discovery from Partial Correspondence,
CVPR13(931-938)
IEEE DOI
1309
parts of objects taht can be used in matching.
BibRef
Xu, J.L.[Jiao-Long],
Ramos, S.[Sebastian],
Vazquez, D.[David],
Lopez, A.M.[Antonio M.],
Domain Adaptation of Deformable Part-Based Models,
PAMI(36), No. 12, December 2014, pp. 2367-2380.
IEEE DOI
1411
BibRef
And:
Cost-Sensitive Structured SVM for Multi-category Domain Adaptation,
ICPR14(3886-3891)
IEEE DOI
1412
BibRef
Earlier:
Incremental Domain Adaptation of Deformable Part-based Models,
BMVC14(xx-yy).
HTML Version.
1410
Accuracy. Adaptation models.
BibRef
Xu, J.L.[Jiao-Long],
Ramos, S.[Sebastian],
Vázquez, D.[David],
López, A.M.[Antonio M.],
Hierarchical Adaptive Structural SVM for Domain Adaptation,
IJCV(119), No. 2, September 2016, pp. 159-178.
Springer DOI
1608
BibRef
Liu, Y.Z.[Ya-Zhou],
Lasang, P.,
Siegel, V.,
Sun, Q.S.[Quan-Sen],
Geodesic Invariant Feature: A Local Descriptor in Depth,
IP(24), No. 1, January 2015, pp. 236-248.
IEEE DOI
1502
BibRef
Liu, Y.Z.[Ya-Zhou],
Lasang, P.[Pongsak],
Sun, Q.S.[Quan-Sen],
Siegel, M.[Mel],
Learning Hierarchical Feature Representation in Depth Image,
ACCV14(III: 593-608).
Springer DOI
1504
differential geometry. Descriptor for depth images.
BibRef
Shen, E.[Enya],
Xia, J.Z.[Jia-Zhi],
Cheng, Z.Q.[Zhi-Quan],
Martin, R.R.[Ralph R.],
Wang, Y.H.[Yun-Hai],
Li, S.[Sikun],
Model-driven multicomponent volume exploration,
VC(31), No. 4, April 2015, pp. 441-454.
Springer DOI
1503
BibRef
Tabernik, D.[Domen],
Leonardis, A.[Aleš],
Boben, M.[Marko],
Skocaj, D.[Danijel],
Kristan, M.[Matej],
Adding discriminative power to a generative hierarchical
compositional model using histograms of compositions,
CVIU(138), No. 1, 2015, pp. 102-113.
Elsevier DOI
1506
Hierarchical compositional model
BibRef
Ozay, M.[Mete],
Aktas, U.R.[Umit Rusen],
Wyatt, J.L.[Jeremy L.],
Leonardis, A.[Aleš],
Compositional Hierarchical Representation of Shape Manifolds for
Classification of Non-manifold Shapes,
ICCV15(1662-1670)
IEEE DOI
1602
BibRef
Earlier: A2, A1, A4, A3:
A Graph Theoretic Approach for Object Shape Representation in
Compositional Hierarchies Using a Hybrid Generative-Descriptive Model,
ECCV14(III: 566-581).
Springer DOI
1408
Computational modeling
BibRef
Leonardis, A.[Aleš],
Hierarchical Compositional Representations of Object Structure,
SSSPR12(31-32).
Springer DOI
1211
BibRef
Earlier:
Learning a hierarchical compositional representation of multiple object
classes,
SIG09(2-2).
IEEE DOI
0906
BibRef
Fidler, S.[Sanja],
Boben, M.[Marko],
Leonardis, A.[Aleš],
A Coarse-to-Fine Taxonomy of Constellations for Fast Multi-class Object
Detection,
ECCV10(V: 687-700).
Springer DOI
1009
BibRef
Earlier:
Optimization framework for learning a hierarchical shape vocabulary for
object class detection,
BMVC09(xx-yy).
PDF File.
0909
BibRef
And:
A bottom-up and top-down optimization framework for learning a
compositional hierarchy of object classes,
SIG09(3-3).
IEEE DOI
0906
BibRef
Earlier:
Similarity-based cross-layered hierarchical representation for object
categorization,
CVPR08(1-8).
IEEE DOI
0806
Spatial arrangement of similar objects.
BibRef
Fidler, S.[Sanja],
Leonardis, A.[Ales],
Towards Scalable Representations of Object Categories:
Learning a Hierarchy of Parts,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Kraft, D.[Dirk],
Mustafa, W.[Wail],
Popovic, M.[Mila],
Jessen, J.B.[Jeppe Barsře],
Buch, A.G.[Anders Glent],
Savarimuthu, T.R.[Thiusius Rajeeth],
Pugeault, N.[Nicolas],
Krüger, N.[Norbert],
Using surfaces and surface relations in an Early Cognitive Vision
system,
MVA(26), No. 7-8, November 2015, pp. 933-954.
Springer DOI
1511
Hierarchical representation.
BibRef
Sirakov, N.[Nikolay],
Arslan, A.N.[Abdullah N.],
Hempelmann, C.F.[Christian F.],
Attardo, S.[Salvatore],
Blount, G.P.[Grady P.],
Firearms identification through partonomy,
SPIE(Newsroom), August 11, 2015
DOI Link
1511
Considering individual parts as functional equivalents of the whole
helps automatic image recognition of partially hidden weapons for
threat assessment.
BibRef
Li, D.[Dong],
Li, Y.[Yali],
Wang, S.J.[Sheng-Jin],
Discriminative Middle-Level Parts Mining for Object Detection,
IEICE(E98-D), No. 11, November 2015, pp. 1950-1957.
WWW Link.
1512
BibRef
Mettes, P.S.[Pascal S.],
van Gemert, J.C.[Jan C.],
Snoek, C.G.M.[Cees G.M.],
No spare parts: Sharing part detectors for image categorization,
CVIU(152), No. 1, 2016, pp. 131-141.
Elsevier DOI
1609
Image categorization
BibRef
Tang, Y.X.[Yu-Xing],
Wang, X.F.[Xiao-Fang],
Dellandréa, E.[Emmanuel],
Chen, L.M.[Li-Ming],
Weakly Supervised Learning of Deformable Part-Based Models for Object
Detection via Region Proposals,
MultMed(19), No. 2, February 2017, pp. 393-407.
IEEE DOI
1702
image classification
BibRef
Tang, Y.X.[Yu-Xing],
Wang, X.F.[Xiao-Fang],
Dellandrea, E.[Emmanuel],
Masnou, S.[Simon],
Chen, L.M.[Li-Ming],
Fusing generic objectness and deformable part-based models for weakly
supervised object detection,
ICIP14(4072-4076)
IEEE DOI
1502
Accuracy
BibRef
Yao, H.T.[Han-Tao],
Zhang, D.M.[Dong-Ming],
Li, J.T.[Jin-Tao],
Zhou, J.S.[Jian-She],
Zhang, S.L.[Shi-Liang],
Zhang, Y.D.[Yong-Dong],
DSP: Discriminative Spatial Part modeling for Fine-Grained Visual
Categorization,
IVC(63), No. 1, 2017, pp. 24-37.
Elsevier DOI
1706
Orientational, Spatial, Part model
BibRef
Meng, F.M.[Fan-Man],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Luo, B.[Bing],
Ngan, K.N.[King Ngi],
Weakly Supervised Part Proposal Segmentation From Multiple Images,
IP(26), No. 8, August 2017, pp. 4019-4031.
IEEE DOI
1707
image matching, image segmentation, pose estimation,
shape recognition, MRF-based single-image segmentation term,
NCuts-based part segmentation term, approximation solution,
graph matching-based part assignment, multiple-images,
multiple-local part modeling, object pose variations,
shape feature-based foreground consistency term,
BibRef
Shi, H.C.[Heng-Can],
Li, H.L.[Hong-Liang],
Meng, F.M.[Fan-Man],
Wu, Q.B.[Qing-Bo],
Key-Word-Aware Network for Referring Expression Image Segmentation,
ECCV18(VI: 38-54).
Springer DOI
1810
BibRef
Shi, H.C.[Heng-Can],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Ngan, K.N.[King Ngi],
Query Reconstruction Network for Referring Expression Image
Segmentation,
MultMed(23), 2021, pp. 995-1007.
IEEE DOI
2103
Segment from a natural language query.
Image segmentation, Image reconstruction, Visualization,
Task analysis, Feature extraction, Natural languages, Semantics,
reconstruction
BibRef
Gonzalez-Garcia, A.[Abel],
Modolo, D.[Davide],
Ferrari, V.[Vittorio],
Do Semantic Parts Emerge in Convolutional Neural Networks?,
IJCV(126), No. 5, May 2018, pp. 476-494.
Springer DOI
1804
Analyze layers in NN.
BibRef
Modolo, D.[Davide],
Ferrari, V.[Vittorio],
Learning Semantic Part-Based Models from Google Images,
PAMI(40), No. 6, June 2018, pp. 1502-1509.
IEEE DOI
1805
Adaptation models, Google, Head, Magnetic heads, Predictive models,
Semantics, Training, Part detection, curriculum learning, web learning
BibRef
Li, Y.L.[Yue-Long],
Hancock, E.R.[Edwin R.],
Xiao, Z.T.[Zhi-Tao],
Geng, L.[Lei],
Wu, J.[Jun],
Zhang, F.[Fang],
Li, C.Q.[Chun-Qing],
Vertex-level three-dimensional shape deformability measurement based on
line segment advection,
IET-CV(12), No. 4, June 2018, pp. 520-526.
DOI Link
1805
partition shape into small components.
BibRef
Fouhey, D.F.[David F.],
Gupta, A.[Abhinav],
Zisserman, A.[Andrew],
From Images to 3D Shape Attributes,
PAMI(41), No. 1, January 2019, pp. 93-106.
IEEE DOI
1812
BibRef
Earlier:
3D Shape Attributes,
CVPR16(1516-1524)
IEEE DOI
1612
Shape, Measurement,
Solid modeling, Training, 3D understanding, shape perception,
convolutional neural networks.
Sculptures.
BibRef
Li, C.[Chi],
Zia, M.Z.[M. Zeeshan],
Tran, Q.H.[Quoc-Huy],
Yu, X.[Xiang],
Hager, G.D.[Gregory D.],
Chandraker, M.[Manmohan],
Deep Supervision with Intermediate Concepts,
PAMI(41), No. 8, August 2019, pp. 1828-1843.
IEEE DOI
1907
BibRef
Earlier:
Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object
Parsing,
CVPR17(388-397)
IEEE DOI
1711
Add domain structure to CNN analysis.
Solid modeling, Task analysis, Shape,
Rendering (computer graphics),
object pose estimation.
Shape.
BibRef
Corcoran, P.[Padraig],
Žunic, J.[Joviša],
Rosin, P.L.[Paul L.],
A multi-scale topological shape model for single and multiple
component shapes,
JVCIR(64), 2019, pp. 102617.
Elsevier DOI
1911
Multiple component shapes, Topology, Multi-scale, Persistent homology
BibRef
Mordan, T.[Taylor],
Thome, N.[Nicolas],
Henaff, G.[Gilles],
Cord, M.[Matthieu],
End-to-End Learning of Latent Deformable Part-Based Representations for
Object Detection,
IJCV(127), No. 11-12, December 2019, pp. 1659-1679.
Springer DOI
1911
BibRef
Zhang, Y.B.[Ya-Bin],
Jia, K.[Kui],
Wang, Z.X.[Zhi-Xin],
Part-Aware Fine-Grained Object Categorization Using Weakly Supervised
Part Detection Network,
MultMed(22), No. 5, May 2020, pp. 1345-1357.
IEEE DOI
2005
Proposals, Detectors, Task analysis, Streaming media,
Feature extraction, Benchmark testing, Supervised learning,
weakly supervised learning
BibRef
Liu, X.,
Han, Z.,
Liu, Y.S.,
Zwicker, M.,
Fine-Grained 3D Shape Classification With Hierarchical Part-View
Attention,
IP(30), 2021, pp. 1744-1758.
IEEE DOI
2101
Shape, Semantics, Feature extraction,
Proposals, Automobiles, Airplanes, recurrent neural network
BibRef
Zhao, Y.F.[Yi-Fan],
Li, J.[Jia],
Zhang, Y.[Yu],
Song, Y.F.[Ya-Fei],
Tian, Y.H.[Yong-Hong],
Ordinal Multi-Task Part Segmentation With Recurrent Prior Generation,
PAMI(43), No. 5, May 2021, pp. 1636-1648.
IEEE DOI
2104
Feature extraction, Task analysis, Shape, Automobiles,
Solid modeling, Image segmentation, Semantics,
part relationship
BibRef
Meng, M.[Meng],
Zhang, T.Z.[Tian-Zhu],
Yang, W.F.[Wen-Fei],
Zhao, J.[Jian],
Zhang, Y.D.[Yong-Dong],
Wu, F.[Feng],
Diverse Complementary Part Mining for Weakly Supervised Object
Localization,
IP(31), 2022, pp. 1774-1788.
IEEE DOI
2202
Location awareness, Task analysis, Proposals, Learning systems,
Training, Object detection, Detectors, Part discovery,
weakly supervised object localization
BibRef
Sharma, G.[Gopal],
Goyal, R.[Rishabh],
Liu, D.[Difan],
Kalogerakis, E.[Evangelos],
Maji, S.[Subhransu],
Neural Shape Parsers for Constructive Solid Geometry,
PAMI(44), No. 5, May 2022, pp. 2628-2640.
IEEE DOI
2204
BibRef
Earlier:
CSGNet: Neural Shape Parser for Constructive Solid Geometry,
CVPR18(5515-5523)
IEEE DOI
1812
Shape, Grammar, Task analysis, Decoding, Solid modeling,
Constructive solid geometry, reinforcement learning, shape parsing.
Visualization, Neural networks, Solids
BibRef
Dong, J.H.[Jia-Hua],
Cong, Y.[Yang],
Sun, G.[Gan],
Zhang, T.[Tao],
Tang, X.[Xu],
Xu, X.W.[Xiao-Wei],
Evolving Metric Learning for Incremental and Decremental Features,
CirSysVideo(32), No. 4, April 2022, pp. 2290-2302.
IEEE DOI
2204
Measurement, Data models, Robot sensing systems, Task analysis,
Feature extraction, Extraterrestrial measurements, Optimization,
low-rank constraint
BibRef
Michieli, U.[Umberto],
Zanuttigh, P.[Pietro],
Edge-Aware Graph Matching Network for Part-Based Semantic Segmentation,
IJCV(130), No. 11, November 2022, pp. 2797-2821.
Springer DOI
2210
BibRef
Chen, W.T.[Wen-Tao],
Zhang, Z.[Zhang],
Wang, W.[Wei],
Wang, L.[Liang],
Wang, Z.[Zilei],
Tan, T.N.[Tie-Niu],
Few-shot learning with unsupervised part discovery and part-aligned
similarity,
PR(133), 2023, pp. 108986.
Elsevier DOI
2210
Few-shot learning, Self-supervised learning,
Part discovery network, Part-aligned similarity
BibRef
Rao, Y.M.[Yong-Ming],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
PointGLR: Unsupervised Structural Representation Learning of 3D Point
Clouds,
PAMI(45), No. 2, February 2023, pp. 2193-2207.
IEEE DOI
2301
BibRef
Earlier:
Global-Local Bidirectional Reasoning for Unsupervised Representation
Learning of 3D Point Clouds,
CVPR20(5375-5384)
IEEE DOI
2008
BibRef
Earlier:
Spherical Fractal Convolutional Neural Networks for Point Cloud
Recognition,
CVPR19(452-460).
IEEE DOI
2002
Point cloud compression, Cognition, Task analysis, Semantics,
Solid modeling, Representation learning, Point cloud, 3D scene understanding.
Semantics, Feature extraction, Shape, Measurement
BibRef
Li, X.[Xiao],
Wang, Z.Q.[Zi-Qi],
Zhang, B.[Bo],
Sun, F.C.[Fu-Chun],
Hu, X.L.[Xiao-Lin],
Recognizing Object by Components with Human Prior Knowledge Enhances
Adversarial Robustness of Deep Neural Networks,
PAMI(45), No. 7, July 2023, pp. 8861-8873.
IEEE DOI
2306
Rocks, Birds, Robustness, Object recognition, Image segmentation, Dogs,
Adaptation models, Adversarial robustness, part-based model
BibRef
Tertikas, K.[Konstantinos],
Paschalidou, D.[Despoina],
Pan, B.X.[Bo-Xiao],
Park, J.J.[Jeong Joon],
Uy, M.A.[Mikaela Angelina],
Emiris, I.[Ioannis],
Avrithis, Y.[Yannis],
Guibas, L.J.[Leonidas J.],
Generating Part-Aware Editable 3D Shapes without 3D Supervision,
CVPR23(4466-4478)
IEEE DOI
2309
BibRef
Ma, Y.C.[Yin-Chao],
He, J.F.[Jian-Feng],
Yang, D.W.[Da-Wei],
Zhang, T.Z.[Tian-Zhu],
Wu, F.[Feng],
Adaptive Part Mining for Robust Visual Tracking,
PAMI(45), No. 10, October 2023, pp. 11443-11457.
IEEE DOI
2310
Get parts for tracking.
BibRef
Song, X.H.[Xin-Hang],
Liu, C.L.[Chen-Long],
Zeng, H.T.[Hai-Tao],
Zhu, Y.H.[Yao-Hui],
Chen, G.W.[Gong-Wei],
Qin, X.R.[Xiao-Rong],
Jiang, S.Q.[Shu-Qiang],
Composite Object Relation Modeling for Few-Shot Scene Recognition,
IP(32), 2023, pp. 5678-5691.
IEEE DOI
2310
BibRef
Mishra, S.[Samarth],
Zhu, P.[Pengkai],
Saligrama, V.[Venkatesh],
Interpretable Compositional Representations for Robust Few-Shot
Generalization,
PAMI(46), No. 3, March 2024, pp. 1496-1512.
IEEE DOI
2402
Image recognition, Task analysis, Image coding, Semantics, Cognition,
Training, Predictive models, Explainable AI, few-shot learning,
computer vision
BibRef
Han, X.[Xuan],
You, M.Y.[Ming-Yu],
Lu, P.[Ping],
Improving the Conditional Fine-Grained Image Generation With Part
Perception,
MultMed(26), 2024, pp. 4792-4804.
IEEE DOI
2403
Image synthesis, Task analysis, Semantics, Generators, Training,
Benchmark testing, Indexes, Fine-grained image generation, part perception
BibRef
Xia, J.H.[Jia-Hao],
Huang, W.J.[Wen-Jian],
Xu, M.[Min],
Zhang, J.G.[Jian-Guo],
Zhang, H.[Haimin],
Sheng, Z.Y.[Zi-Yu],
Xu, D.[Dong],
Unsupervised Part Discovery via Dual Representation Alignment,
PAMI(46), No. 12, December 2024, pp. 10597-10613.
IEEE DOI
2411
Semantics, Task analysis, Image segmentation, Generative adversarial networks,
Feature extraction, Layout, vision transformer
BibRef
Swaminathan, A.[Archana],
Gupta, A.[Anubhav],
Gupta, K.[Kamal],
Maiya, S.R.[Shishira R.],
Agarwal, V.[Vatsal],
Shrivastava, A.[Abhinav],
LEIA: Latent View-invariant Embeddings for Implicit 3d Articulation,
ECCV24(XVI: 210-227).
Springer DOI
2412
BibRef
Xie, Y.F.[Yun-Fei],
Xie, C.[Cihang],
Yuille, A.L.[Alan L.],
Mei, J.[Jieru],
From Pixels to Objects: A Hierarchical Approach for Part and Object
Segmentation Using Local and Global Aggregation,
ECCV24(LXVI: 341-356).
Springer DOI
2412
BibRef
Li, S.Q.[Si-Qi],
Chen, X.X.[Xiao-Xue],
Cheng, H.Y.[Hao-Yu],
Zhou, G.[Guyue],
Zhao, H.[Hao],
Tian, G.Z.[Guan-Zhong],
Locate N' Rotate: Two-stage Openable Part Detection with Foundation
Model Priors,
ACCV24(VII: 93-108).
Springer DOI
2412
BibRef
Wu, X.J.[Xin-Jian],
Zhang, R.[Ruisong],
Qin, J.[Jie],
Ma, S.J.[Shi-Jie],
Liu, C.L.[Cheng-Lin],
WPS-SAM:
Towards Weakly-supervised Part Segmentation with Foundation Models,
ECCV24(XLIV: 314-333).
Springer DOI
2412
BibRef
Wang, R.Q.[Rui-Qi],
Patil, A.G.[Akshay Gadi],
Yu, F.G.[Feng-Gen],
Zhang, H.[Hao],
Active Coarse-to-fine Segmentation of Moveable Parts from Real Images,
ECCV24(XXXIV: 111-127).
Springer DOI
2412
BibRef
Kim, H.[Hyunjin],
Sung, M.[Minhyuk],
Partstad: 2d-to-3d Part Segmentation Task Adaptation,
ECCV24(V: 422-439).
Springer DOI
2412
BibRef
Ng, K.W.[Kam Woh],
Zhu, X.T.[Xia-Tian],
Song, Y.Z.[Yi-Zhe],
Xiang, T.[Tao],
Partcraft: Crafting Creative Objects by Parts,
ECCV24(IX: 420-437).
Springer DOI
2412
BibRef
Thai, A.[Anh],
Wang, W.Y.[Wei-Yao],
Tang, H.[Hao],
Stojanov, S.[Stefan],
Rehg, J.M.[James M.],
Feiszli, M.[Matt],
3X2: 3d Object Part Segmentation by 2d Semantic Correspondences,
ECCV24(XXXVIII: 149-166).
Springer DOI
2412
BibRef
Lei, J.[Jiahui],
Wang, Y.[Yufu],
Pavlakos, G.[Georgios],
Liu, L.J.[Ling-Jie],
Daniilidis, K.[Kostas],
GART: Gaussian Articulated Template Models,
CVPR24(19876-19887)
IEEE DOI
2410
Deformable models, Training, Geometry, Deformation, Computational modeling
BibRef
Cheng, J.F.[Jun-Feng],
Stathaki, T.[Tania],
G-FARS: Gradient-Field-Based Auto-Regressive Sampling for 3D Part
Grouping,
CVPR24(27642-27651)
IEEE DOI Code:
WWW Link.
2410
Training, Codes, Shape, Graph neural networks,
3D Point Cloud Processing, 3D Part Grouping, Score-based Models
BibRef
Sun, X.H.[Xiao-Hao],
Jiang, H.X.[Han-Xiao],
Savva, M.[Manolis],
Chang, A.[Angel],
OPDMulti: Openable Part Detection for Multiple Objects,
3DV24(169-178)
IEEE DOI
2408
Correlation, Transformers, Task analysis, Artificial intelligence, Robots
BibRef
Gaarsdal, J.[Jesper],
Haurum, J.B.[Joakim Bruslund],
Wolff, S.[Sune],
Madsen, C.B.[Claus Brřndgaard],
AssemblyNet: A Point Cloud Dataset and Benchmark for Predicting Part
Directions in an Exploded Layout,
WACV24(5824-5833)
IEEE DOI Code:
WWW Link.
2404
Point cloud compression, Solid modeling, Manuals,
Benchmark testing, Predictive models, Network architecture,
Datasets and evaluations
BibRef
Wu, R.[Ruihai],
Tie, C.R.[Chen-Rui],
Du, Y.S.[Yu-Shi],
Zhao, Y.[Yan],
Dong, H.[Hao],
Leveraging SE(3) Equivariance for Learning 3D Geometric Shape
Assembly,
ICCV23(14265-14274)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, A.[Abiao],
Lv, C.L.[Chen-Lei],
Fang, Y.M.[Yu-Ming],
Zuo, Y.F.[Yi-Fan],
Laptran: Transformer Embedding Graph Laplacian for Point Cloud Part
Segmentation,
ICIP23(3070-3074)
IEEE DOI
2312
BibRef
Tabib, R.A.[Ramesh Ashok],
Upasi, N.[Nitishkumar],
Anvekar, T.[Tejas],
Hegde, D.[Dikshit],
Mudenagudi, U.[Uma],
IPD-Net: SO(3) Invariant Primitive Decompositional Network for 3D
Point Clouds,
StruCo3D23(2736-2744)
IEEE DOI
2309
BibRef
Wang, L.[Likang],
Chen, L.[Lei],
Dionysus: Recovering Scene Structures by Dividing into Semantic
Pieces,
CVPR23(12576-12587)
IEEE DOI
2309
BibRef
Li, Y.H.[Yu-Han],
Dou, Y.[Yishun],
Chen, X.H.[Xuan-Hong],
Ni, B.B.[Bing-Bing],
Sun, Y.L.[Yi-Lin],
Liu, Y.T.[Yu-Tian],
Wang, F.Z.[Fu-Zhen],
Generalized Deep 3D Shape Prior via Part-Discretized Diffusion
Process,
CVPR23(16784-16794)
IEEE DOI
2309
BibRef
Tang, C.[Chuan],
Yang, X.[Xi],
Wu, B.J.[Bo-Jian],
Han, Z.Z.[Zhi-Zhong],
Chang, Y.[Yi],
Parts2Words: Learning Joint Embedding of Point Clouds and Texts by
Bidirectional Matching Between Parts and Words,
CVPR23(6884-6893)
IEEE DOI
2309
BibRef
Pan, T.Y.[Tai-Yu],
Liu, Q.[Qing],
Chao, W.L.[Wei-Lun],
Price, B.[Brian],
Towards Open-World Segmentation of Parts,
CVPR23(15392-15401)
IEEE DOI
2309
BibRef
Ramanathan, V.[Vignesh],
Kalia, A.[Anmol],
Petrovic, V.[Vladan],
Wen, Y.[Yi],
Zheng, B.X.[Bai-Xue],
Guo, B.[Baishan],
Wang, R.[Rui],
Marquez, A.[Aaron],
Kovvuri, R.[Rama],
Kadian, A.[Abhishek],
Mousavi, A.[Amir],
Song, Y.W.[Yi-Wen],
Dubey, A.[Abhimanyu],
Mahajan, D.[Dhruv],
PACO: Parts and Attributes of Common Objects,
CVPR23(7141-7151)
IEEE DOI
2309
BibRef
Geng, H.R.[Hao-Ran],
Li, Z.M.[Zi-Ming],
Geng, Y.R.[Yi-Ran],
Chen, J.Y.[Jia-Yi],
Dong, H.[Hao],
Wang, H.[He],
PartManip: Learning Cross-Category Generalizable Part Manipulation
Policy from Point Cloud Observations,
CVPR23(2978-2988)
IEEE DOI
2309
BibRef
Xu, X.H.[Xiang-Hao],
Guerrero, P.[Paul],
Fisher, M.[Matthew],
Chaudhuri, S.[Siddhartha],
Ritchie, D.[Daniel],
Unsupervised 3D Shape Reconstruction by Part Retrieval and Assembly,
CVPR23(8559-8567)
IEEE DOI
2309
BibRef
He, J.[Ju],
Chen, J.[Jieneng],
Lin, M.X.[Ming-Xian],
Yu, Q.H.[Qi-Hang],
Yuille, A.L.[Alan L.],
Compositor: Bottom-Up Clustering and Compositing for Robust Part and
Object Segmentation,
CVPR23(11259-11268)
IEEE DOI
2309
BibRef
Wu, C.Z.[Cheng-Zhi],
Zheng, J.W.[Jun-Wei],
Pfrommer, J.[Julius],
Beyerer, J.[Jürgen],
Attention-based Part Assembly for 3D Volumetric Shape Modeling,
StruCo3D23(2717-2726)
IEEE DOI
2309
BibRef
Alsudays, N.[Njuod],
Wu, J.[Jing],
Lai, Y.K.[Yu-Kun],
Ji, Z.[Ze],
AFPSNet: Multi-Class Part Parsing based on Scaled Attention and
Feature Fusion,
WACV23(4022-4031)
IEEE DOI
2302
Training, Location awareness, Fuses, Semantics, Focusing, Benchmark testing
BibRef
Kawana, Y.[Yuki],
Mukuta, Y.[Yusuke],
Harada, T.[Tatsuya],
Unsupervised Pose-aware Part Decomposition for Man-Made Articulated
Objects,
ECCV22(III:558-575).
Springer DOI
2211
BibRef
Chen, Y.C.[Yun-Chun],
Li, H.[Haoda],
Turpin, D.[Dylan],
Jacobson, A.[Alec],
Garg, A.[Animesh],
Neural Shape Mating: Self-Supervised Object Assembly with Adversarial
Shape Priors,
CVPR22(12714-12723)
IEEE DOI
2210
Point cloud compression, Training, Surface reconstruction, Shape,
Semantics, Pipelines, Visual reasoning, Datasets and evaluation
BibRef
Jones, R.K.[R. Kenny],
Habib, A.[Aalia],
Hanocka, R.[Rana],
Ritchie, D.[Daniel],
The Neurally-Guided Shape Parser: Grammar-based Labeling of 3D Shape
Regions with Approximate Inference,
CVPR22(11604-11613)
IEEE DOI
2210
Training, Solid modeling, Shape, Semantics, Neural networks,
Search problems, Segmentation, grouping and shape analysis, Vision+graphics
BibRef
Singh, R.[Rishubh],
Gupta, P.[Pranav],
Shenoy, P.[Pradeep],
Sarvadevabhatla, R.[Ravikiran],
FLOAT: Factorized Learning of Object Attributes for Improved
Multi-object Multi-part Scene Parsing,
CVPR22(1435-1445)
IEEE DOI
2210
Codes, Scalability, Semantics, Focusing, Benchmark testing,
Segmentation, grouping and shape analysis, Scene analysis and understanding
BibRef
Ziegler, A.[Adrian],
Asano, Y.M.[Yuki M.],
Self-Supervised Learning of Object Parts for Semantic Segmentation,
CVPR22(14482-14491)
IEEE DOI
2210
Image segmentation, Semantics, Merging, Self-supervised learning,
Benchmark testing, Image representation, Transformers,
retrieval
BibRef
Zoran, D.[Daniel],
Kabra, R.[Rishabh],
Lerchner, A.[Alexander],
Rezende, D.J.[Danilo J.],
PARTS: Unsupervised segmentation with slots, attention and
independence maximization,
ICCV21(10419-10427)
IEEE DOI
2203
Solid modeling, Visualization, Analytical models,
Image color analysis, Motion segmentation, Predictive models,
Neural generative models
BibRef
Yao, C.H.[Chun-Han],
Hung, W.C.[Wei-Chih],
Jampani, V.[Varun],
Yang, M.H.[Ming-Hsuan],
Discovering 3D Parts from Image Collections,
ICCV21(12961-12970)
IEEE DOI
2203
Geometry, Codes, Shape, Cognition, Task analysis,
3D from a single image and shape-from-x,
BibRef
Roberts, D.[Dominic],
Danielyan, A.[Ara],
Chu, H.[Hang],
Golparvar-Fard, M.[Mani],
Forsyth, D.A.[David A.],
LSD-StructureNet: Modeling Levels of Structural Detail in 3D Part
Hierarchies,
ICCV21(5816-5825)
IEEE DOI
2203
Fabrication, Solid modeling, Limiting, Shape, Computational modeling,
Neural generative models, Representation learning,
Vision applications and systems
BibRef
Gadre, S.Y.[Samir Yitzhak],
Ehsani, K.[Kiana],
Song, S.[Shuran],
Act the Part: Learning Interaction Strategies for Articulated Object
Part Discovery,
ICCV21(15732-15741)
IEEE DOI
2203
Couplings, Codes, Motion segmentation, Computational modeling,
Semantics, Data models, Vision + other modalities
BibRef
Wang, X.G.[Xiao-Gang],
Sun, X.[Xun],
Cao, X.Y.[Xin-Yu],
Xu, K.[Kai],
Zhou, B.[Bin],
Learning Fine-Grained Segmentation of 3D Shapes without Part Labels,
CVPR21(10271-10280)
IEEE DOI
2111
Training, Solid modeling, Shape,
Semantics, Graph neural networks
BibRef
Braun, S.[Sandro],
Esser, P.[Patrick],
Ommer, B.[Björn],
Unsupervised Part Discovery by Unsupervised Disentanglement,
GCPR20(345-359).
Springer DOI
2110
BibRef
Naha, S.[Shujon],
Xiao, Q.Y.[Qing-Yang],
Banik, P.[Prianka],
Reza, M.A.[Md Alimoor],
Crandall, D.J.[David J.],
Part Segmentation of Unseen Objects using Keypoint Guidance,
WACV21(1741-1749)
IEEE DOI
2106
Training, Annotations, Animals,
Transfer learning, Data models
BibRef
Hayden, D.S.,
Pacheco, J.,
Fisher, III, J.W.,
Nonparametric Object and Parts Modeling With Lie Group Dynamics,
CVPR20(7424-7433)
IEEE DOI
2008
Hidden Markov models, Dynamics,
Computational modeling, Bayes methods, Indexes
BibRef
Deng, B.Y.[Bo-Yang],
Genova, K.[Kyle],
Yazdani, S.[Soroosh],
Bouaziz, S.[Sofien],
Hinton, G.[Geoffrey],
Tagliasacchi, A.[Andrea],
CvxNet: Learnable Convex Decomposition,
CVPR20(31-41)
IEEE DOI
2008
Shape, Geometry, Google, Training,
Image reconstruction, Computational modeling
BibRef
Gal, R.[Rinon],
Bermano, A.[Amit],
Zhang, H.[Hao],
Cohen-Or, D.[Daniel],
MRGAN: Multi-Rooted 3D Shape Representation Learning with
Unsupervised Part Disentanglement,
StruCo3D21(2039-2048)
IEEE DOI
2112
Training, Measurement, Codes, Shape,
Semantics, Generative adversarial networks
BibRef
Schor, N.[Nadav],
Katzir, O.[Oren],
Zhang, H.[Hao],
Cohen-Or, D.[Daniel],
CompoNet: Learning to Generate the Unseen by Part Synthesis and
Composition,
ICCV19(8758-8767)
IEEE DOI
2004
learning (artificial intelligence), neural nets,
object recognition, CompoNet, data-driven generative modeling,
Neural networks
BibRef
Zhao, X.Y.[Xiang-Yun],
Yang, Y.[Yi],
Zhou, F.[Feng],
Tan, X.[Xiao],
Yuan, Y.C.[Yu-Chen],
Bao, Y.Z.[Ying-Ze],
Wu, Y.[Ying],
Recognizing Part Attributes With Insufficient Data,
ICCV19(350-360)
IEEE DOI
2004
image annotation, image recognition,
image representation, learning (artificial intelligence), Feature extraction
BibRef
Rampini, A.[Arianna],
Tallini, I.[Irene],
Ovsjanikov, M.[Maks],
Bronstein, A.M.[Alex M.],
Rodolŕ, E.[Emanuele],
Correspondence-Free Region Localization for Partial Shape Similarity
via Hamiltonian Spectrum Alignment,
3DV19(37-46)
IEEE DOI
1911
localizing relevant subsets of non-rigid geometric shapes given only
a partial 3D query as the input.
Shape, Eigenvalues and eigenfunctions,
Geometry, Laplace equations, Spectral geometry
BibRef
Yao, Q.[Qi],
Gong, X.J.[Xiao-Jin],
Exploiting LSTM for Joint Object and Semantic Part Detection,
ACCV18(V:498-512).
Springer DOI
1906
BibRef
Xie, S.N.[Sai-Ning],
Liu, S.N.[Sai-Nan],
Chen, Z.Y.[Ze-Yu],
Tu, Z.W.[Zhuo-Wen],
Attentional ShapeContextNet for Point Cloud Recognition,
CVPR18(4606-4615)
IEEE DOI
1812
Shape, Kernel, Neural networks
BibRef
Lu, C.,
Su, H.,
Li, Y.,
Lu, Y.,
Yi, L.,
Tang, C.,
Guibas, L.J.,
Beyond Holistic Object Recognition:
Enriching Image Understanding with Part States,
CVPR18(6955-6963)
IEEE DOI
1812
Semantics, Image segmentation, Task analysis, Visualization,
Training, Image color analysis, Object recognition
BibRef
Yang, L.W.[Lu-Wei],
Zhu, L.G.[Li-Geng],
Wei, Y.C.[Yi-Chen],
Liang, S.[Shuang],
Tan, P.[Ping],
Attribute Recognition from Adaptive Parts,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Kirillov, A.[Alexander],
Gavrikov, M.[Mikhail],
Lobacheva, E.[Ekaterina],
Osokin, A.[Anton],
Vetrov, D.[Dmitry],
Deep Part-Based Generative Shape Model with Latent Variables,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Vu, H.,
Pho, K.,
Le, B.,
Flexible 3D neighborhood cascade deformable part models for object
detection,
ICIP17(910-914)
IEEE DOI
1803
Computational modeling, Deformable models, Image resolution,
Object detection, Solid modeling, Strain,
Object Detection
BibRef
Cheng, H.C.,
Varshney, A.,
Volume segmentation using convolutional neural networks with limited
training data,
ICIP17(590-594)
IEEE DOI
1803
Encoding, Image segmentation, Kernel, Microscopy,
Training,
volume segmentation
BibRef
Song, Y.,
Chen, X.,
Li, J.,
Zhao, Q.,
Embedding 3D Geometric Features for Rigid Object Part Segmentation,
ICCV17(580-588)
IEEE DOI
1802
feature extraction, image segmentation, teaching,
2-stream CNN, 2-stream FCN, 2D appearance features,
BibRef
Shih, Y.F.[Ya-Fang],
Yeh, Y.M.[Yang-Ming],
Lin, Y.Y.[Yen-Yu],
Weng, M.F.[Ming-Fang],
Lu, Y.C.[Yi-Chang],
Chuang, Y.Y.[Yung-Yu],
Deep Co-occurrence Feature Learning for Visual Object Recognition,
CVPR17(7302-7311)
IEEE DOI
1711
Convolutional codes, Correlation, Feature extraction, Neurons,
Object recognition, Strain, Visualization
BibRef
Sicre, R.,
Rabin, J.,
Avrithis, Y.,
Furon, T.,
Jurie, F.,
Kijak, E.,
Automatic Discovery of Discriminative Parts as a Quadratic Assignment
Problem,
CEFR-LCV17(1059-1068)
IEEE DOI
1802
Entropy, Linear programming,
Minimization, Optimization, Training
BibRef
Sicre, R.,
Avrithis, Y.,
Kijak, E.,
Jurie, F.,
Unsupervised Part Learning for Visual Recognition,
CVPR17(3116-3124)
IEEE DOI
1711
Computational modeling, Image recognition,
Image retrieval, Neural networks, Training
BibRef
Yi, L.,
Su, H.,
Guo, X.,
Guibas, L.J.,
SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation,
CVPR17(6584-6592)
IEEE DOI
1711
Convolution, Kernel, Laplace equations, Shape, Solid modeling,
Spectral analysis,
BibRef
Ganapathi-Subramanian, V.[Vignesh],
Diamanti, O.[Olga],
Pirk, S.[Soeren],
Tang, C.C.[Cheng-Cheng],
Niessner, M.[Matthias],
Guibas, L.J.[Leonidas J.],
Parsing Geometry Using Structure-Aware Shape Templates,
3DV18(672-681)
IEEE DOI
1812
image colour analysis, image reconstruction, neural nets,
object recognition, parsing geometry,
Template Fitting
BibRef
Tulsiani, S.[Shubham],
Su, H.,
Guibas, L.J.[Leonidas J.],
Efros, A.A.[Alexei A.],
Malik, J.[Jitendra],
Learning Shape Abstractions by Assembling Volumetric Primitives,
CVPR17(1466-1474)
IEEE DOI
1711
Image reconstruction, Shape,
Visualization
BibRef
Sarvadevabhatla, R.K.[Ravi Kiran],
Venkatraman, S.[Shanthakumar],
Babu, R.V.[R. Venkatesh],
Partly First Among Equals: Semantic Part-Based Benchmarking for
State-of-the-Art Object Recognition Systems,
ACCV16(V: 181-197).
Springer DOI
1704
BibRef
Hoschl, C.,
Flusser, J.,
Decomposition of 3D Binary Objects into Rectangular Blocks,
DICTA16(1-8)
IEEE DOI
1701
Algorithm design and analysis
BibRef
Kulkarni, P.[Praveen],
Jurie, F.[Frédéric],
Zepeda, J.[Joaquin],
Pérez, P.[Patrick],
Chevallier, L.[Louis],
SPLeaP: Soft Pooling of Learned Parts for Image Classification,
ECCV16(VIII: 329-345).
Springer DOI
1611
BibRef
Ntouskos, V.[Valsamis],
Sanzari, M.[Marta],
Cafaro, B.[Bruno],
Nardi, F.[Federico],
Natola, F.[Fabrizio],
Pirri, F.[Fiora],
Ruiz, M.[Manuel],
Component-Wise Modeling of Articulated Objects,
ICCV15(2327-2335)
IEEE DOI
1602
Computational modeling. Model component parts.
BibRef
Ren, Z.,
Wang, C.,
Yuille, A.L.,
Scene-Domain Active Part Models for Object Representation,
ICCV15(2497-2505)
IEEE DOI
1602
Cameras
BibRef
Yang, L.X.[Ling-Xiao],
Xie, X.H.[Xiao-Hua],
Max-margin analysis based patch sampling for discovery of mid-level
parts,
ICIP15(2214-2218)
IEEE DOI
1512
Mid-level part; bag-of-parts; scene classification; visual code-book
BibRef
Rubio, J.C.[Jose C.],
Ommer, B.[Bjorn],
Regularizing max-margin exemplars by reconstruction and generative
models,
CVPR15(4213-4221)
IEEE DOI
1510
BibRef
Kitano, Y.,
Takiguchi, T.,
Ariki, Y.,
Estimation of object functions using deformable part model,
FCV15(1-4)
IEEE DOI
1506
object recognition
BibRef
Delabarre, B.[Bertrand],
Marchand, E.[Eric],
Dense non-rigid visual tracking with a robust similarity function,
ICIP14(4942-4946)
IEEE DOI
1502
Equations
BibRef
Zhang, Y.H.[Ying-Hua],
Cai, L.[Ling],
Chen, L.Y.[Lu-Yan],
Zhao, Y.M.[Yu-Ming],
A scene-specific deformable part-based model for object detection,
ICIP14(2324-2328)
IEEE DOI
1502
Adaptation models
BibRef
Jeong, H.[Hawook],
Yun, S.D.[Sang-Doo],
Yi, K.M.[Kwang Moo],
Choi, J.Y.[Jin Young],
Category Attentional Search for Fast Object Detection by Mimicking
Human Visual Perception,
WACV15(829-836)
IEEE DOI
1503
Computational modeling
BibRef
Yun, S.D.[Sang-Doo],
Jeong, H.[Hawook],
Kang, W.S.[Woo-Sung],
Heo, B.H.[Byeong-Ho],
Choi, J.Y.[Jin Young],
Self-Organizing Cascaded Structure of Deformable Part Models for Fast
Object Detection,
ICPR14(4246-4250)
IEEE DOI
1412
Accuracy
BibRef
Riabchenko, E.[Ekaterina],
Kamarainen, J.K.[Joni-Kristian],
Chen, K.[Ke],
Learning Generative Models of Object Parts from a Few Positive
Examples,
ICPR14(2287-2292)
IEEE DOI
1412
Estimation
BibRef
Boussaid, H.[Haithem],
Kokkinos, I.[Iasonas],
Fast and Exact:
ADMM-Based Discriminative Shape Segmentation with Loopy Part Models,
CVPR14(4058-4065)
IEEE DOI
1409
ADMM: Alternating Direction Method of Multipliers.
Segment organs.
BibRef
Liu, J.X.[Jiong-Xin],
Li, Y.X.[Yin-Xiao],
Belhumeur, P.N.[Peter N.],
Part-Pair Representation for Part Localization,
ECCV14(II: 456-471).
Springer DOI
1408
BibRef
Sun, C.B.[Chao-Bo],
Wang, X.J.[Xiao-Jie],
A Ranking Part Model for Object Detection,
SSSPR14(414-423).
Springer DOI
1408
BibRef
Fouhey, D.F.[David Ford],
Hussain, W.,
Gupta, A.[Abhinav],
Hebert, M.[Martial],
Single Image 3D without a Single 3D Image,
ICCV15(1053-1061)
IEEE DOI
1602
Detectors
BibRef
Fouhey, D.F.[David Ford],
Gupta, A.[Abhinav],
Hebert, M.[Martial],
Unfolding an Indoor Origami World,
ECCV14(VI: 687-702).
Springer DOI
1408
BibRef
Earlier:
Data-Driven 3D Primitives for Single Image Understanding,
ICCV13(3392-3399)
IEEE DOI
1403
What primitives to use.
BibRef
Xie, L.X.[Ling-Xi],
Tian, Q.[Qi],
Hong, R.C.[Ri-Chang],
Yan, S.C.[Shui-Cheng],
Zhang, B.[Bo],
Hierarchical Part Matching for Fine-Grained Visual Categorization,
ICCV13(1641-1648)
IEEE DOI
1403
Fine-Grained Visual Categorization
BibRef
Shrivastava, A.[Abhinav],
Gupta, A.[Abhinav],
Building Part-Based Object Detectors via 3D Geometry,
ICCV13(1745-1752)
IEEE DOI
1403
3D object detection
See also Enriching Visual Knowledge Bases via Object Discovery and Segmentation.
BibRef
Girshick, R.[Ross],
Malik, J.[Jitendra],
Training Deformable Part Models with Decorrelated Features,
ICCV13(3016-3023)
IEEE DOI
1403
BibRef
Zhang, N.[Ning],
Farrell, R.[Ryan],
Iandola, F.[Forrest],
Darrell, T.J.[Trevor J.],
Deformable Part Descriptors for Fine-Grained Recognition and
Attribute Prediction,
ICCV13(729-736)
IEEE DOI
1403
BibRef
Chai, Y.N.[Yu-Ning],
Lempitsky, V.[Victor],
Zisserman, A.[Andrew],
Symbiotic Segmentation and Part Localization for Fine-Grained
Categorization,
ICCV13(321-328)
IEEE DOI
1403
Detection; Fine-Grained; Object Recognition; Segmentation
BibRef
Xie, L.X.[Ling-Xi],
Tian, Q.[Qi],
Zhang, B.[Bo],
Feature normalization for part-based image classification,
ICIP13(2607-2611)
IEEE DOI
1402
Experiments
BibRef
Xiong, H.C.[Han-Chen],
Szedmak, S.[Sandor],
Piater, J.H.[Justus H.],
3D Object Class Geometry Modeling with Spatial Latent Dirichlet Markov
Random Fields,
GCPR13(51-60).
Springer DOI
1311
part-based geometry model
BibRef
Jiang, F.Y.[Fang-Yuan],
Enqvist, O.[Olof],
Kahl, F.[Fredrik],
Ĺström, K.[Kalle],
Improved Object Detection and Pose Using Part-Based Models,
SCIA13(396-407).
Springer DOI
1311
BibRef
Levi, D.[Dan],
Silberstein, S.[Shai],
Bar-Hillel, A.[Aharon],
Fast Multiple-Part Based Object Detection Using KD-Ferns,
CVPR13(947-954)
IEEE DOI
1309
Object Detection
BibRef
Wetzler, A.[Aaron],
Aflalo, Y.[Yonathan],
Dubrovina, A.[Anastasia],
Kimmel, R.[Ron],
The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape
Processing,
ISMM13(302-316).
Springer DOI
1305
Filtering
BibRef
Ma, C.[Chang],
Dong, Z.Q.[Zhong-Qian],
Jiang, T.T.[Ting-Ting],
Wang, Y.Z.[Yi-Zhou],
Gao, W.[Wen],
A Method of Perceptual-Based Shape Decomposition,
ICCV13(873-880)
IEEE DOI
1403
BibRef
Earlier: A3, A2, A1, A4, Only:
Toward Perception-Based Shape Decomposition,
ACCV12(II:188-201).
Springer DOI
1304
BibRef
Wang, X.,
Gillibert, L.,
Flin, F.,
Coeurjolly, D.,
Curvature-driven volumetric segmentation of binary shapes:
An application to snow microstructure analysis,
ICPR12(742-745).
WWW Link.
1302
BibRef
Zhang, H.G.[Hui-Gang],
Bai, X.[Xiao],
Cheng, J.[Jian],
Zhou, J.[Jun],
Zhao, H.J.[Hui-Jie],
An Incremental Structured Part Model for Image Classification,
SSSPR12(483-491).
Springer DOI
1211
incremental, using part model
BibRef
Maji, S.[Subhransu],
Discovering a Lexicon of Parts and Attributes,
WPA12(III: 21-30).
Springer DOI
1210
BibRef
Litany, O.[Or],
Bronstein, A.M.[Alexander M.],
Bronstein, M.M.[Michael M.],
Putting the Pieces Together: Regularized Multi-part Shape Matching,
NORDIA12(I: 1-11).
Springer DOI
1210
BibRef
Mottaghi, R.[Roozbeh],
Augmenting deformable part models with irregular-shaped object patches,
CVPR12(3116-3123).
IEEE DOI
1208
BibRef
Mottaghi, R.[Roozbeh],
Ranganathan, A.[Ananth],
Yuille, A.L.[Alan L.],
A compositional approach to learning part-based models of objects,
3DRR11(561-568).
IEEE DOI
1201
BibRef
Pandey, M.[Megha],
Lazebnik, S.[Svetlana],
Scene recognition and weakly supervised object localization with
deformable part-based models,
ICCV11(1307-1314).
IEEE DOI
1201
BibRef
Parkhi, O.M.[Omkar M.],
Vedaldi, A.[Andrea],
Zisserman, A.[Andrew],
Jawahar, C.V.,
Cats and dogs,
CVPR12(3498-3505).
IEEE DOI
1208
BibRef
Earlier: A1, A2, A4, A3:
The truth about cats and dogs,
ICCV11(1427-1434).
IEEE DOI
1201
Use templates for parts of highly
deformable objects, to get best of templates and bag of words.
BibRef
Ott, P.[Patrick],
Everingham, M.[Mark],
Shared parts for deformable part-based models,
CVPR11(1513-1520).
IEEE DOI
1106
BibRef
Venkateshkumar, S.K.,
Sridhar, M.,
Ott, P.,
Latent Hierarchical Part Based Models for Road Scene Understanding,
CVRoads15(115-123)
IEEE DOI
1602
Detectors
BibRef
Varanasi, K.[Kiran],
Boyer, E.[Edmond],
Temporally coherent segmentation of 3D reconstructions,
3DPVT10(xx-yy).
WWW Link.
1005
3D from multiple views and silhouettes. Describe motions of convex parts.
BibRef
Akcay, H.G.[Huseyin Gokhan],
Aksoy, S.[Selim],
Soille, P.[Pierre],
Hierarchical Segmentation of Complex Structures,
ICPR10(1120-1123).
IEEE DOI
1008
BibRef
Lu, W.H.[Wen-Hao],
Wang, S.J.[Sheng-Jin],
Ding, X.Q.[Xiao-Qing],
Part Detection, Description and Selection Based on Hidden Conditional
Random Fields,
ICPR10(657-660).
IEEE DOI
1008
BibRef
Lai, R.J.[Rong-Jie],
Shi, Y.G.[Yong-Gang],
Scheibel, K.[Kevin],
Fears, S.[Scott],
Woods, R.[Roger],
Toga, A.W.[Arthur W.],
Chan, T.F.[Tony F.],
Metric-induced optimal embedding for intrinsic 3D shape analysis,
CVPR10(2871-2878).
IEEE DOI
1006
Laplace-Beltrami (LB) embedding has problems.
BibRef
Xia, X.Z.[Xiao-Zhen],
Yang, W.Y.[Wu-Yi],
Li, H.P.[He-Ping],
Zhang, S.W.[Shu-Wu],
Part-Based Object Detection Using Cascades of Boosted Classifiers,
ACCV09(II: 556-565).
Springer DOI
0909
BibRef
Kumar, M.P.[M. Pawan],
Zisserman, A.[Andrew],
Torr, P.H.S.[Philip H.S.],
Efficient discriminative learning of parts-based models,
ICCV09(552-559).
IEEE DOI
0909
BibRef
Cheng, X.G.[Xian-Gang],
Hu, Y.Q.[Yi-Qun],
Chia, L.T.[Liang-Tien],
Hierarchical word image representation for parts-based object
recognition,
ICIP09(301-304).
IEEE DOI
0911
BibRef
Sullivan, J.,
Danielsson, O.,
Carlsson, S.,
Exploiting Part-Based Models and Edge Boundaries for Object Detection,
DICTA08(199-206).
IEEE DOI
0812
BibRef
Artner, N.M.[Nicole M.],
Ion, A.[Adrian],
Kropatsch, W.G.[Walter G.],
Spatio-Temporal Extraction of Articulated Models in a Graph Pyramid,
GbRPR11(215-224).
Springer DOI
1105
BibRef
Earlier:
Rigid Part Decomposition in a Graph Pyramid,
CIARP09(758-765).
Springer DOI
0911
BibRef
Stommel, M.,
Herzog, O.,
SIFT-based object recognition with fast alphabet creation and reduced
curse of dimensionality,
IVCNZ09(136-141).
IEEE DOI
0911
BibRef
Stommel, M.,
Kuhnert, K.D.,
Part aggregation in a compositional model based on the evaluation of
feature cooccurrence statistics,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Ma, W.[Wei],
Xiang, B.[Bo],
Zhang, X.P.[Xiao-Peng],
Zha, H.B.[Hong-Bin],
Decomposition of branching volume data by tip detection,
ICIP08(1948-1951).
IEEE DOI
0810
BibRef
Karlinsky, L.[Leonid],
Ullman, S.[Shimon],
Using Linking Features in Learning Non-parametric Part Models,
ECCV12(III: 326-339).
Springer DOI
1210
BibRef
Karlinsky, L.[Leonid],
Dinerstein, M.[Michael],
Harari, D.[Daniel],
Ullman, S.[Shimon],
The chains model for detecting parts by their context,
CVPR10(25-32).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Karlinsky, L.[Leonid],
Dinerstein, M.[Michael],
Ullman, S.[Shimon],
Unsupervised feature optimization (UFO): Simultaneous selection of
multiple features with their detection parameters,
CVPR09(1263-1270).
IEEE DOI
0906
BibRef
Karlinsky, L.[Leonid],
Dinerstein, M.[Michael],
Levi, D.[Dan],
Ullman, S.[Shimon],
Combined Model for Detecting, Localizing, Interpreting, and Recognizing
Faces,
Faces08(xx-yy).
0810
BibRef
Karlinsky, L.[Leonid],
Dinerstein, M.[Michael],
Levi, D.[Dan],
Ullman, S.[Shimon],
Unsupervised Classification and Part Localization by Consistency
Amplification,
ECCV08(II: 321-335).
Springer DOI
0810
Find images that contain the unknown object.
BibRef
Cour, T.[Timothee],
Shi, J.B.[Jian-Bo],
Recognizing objects by piecing together the Segmentation Puzzle,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Wu, T.F.[Tian-Fu],
Xia, G.S.[Gui-Song],
Zhu, S.C.[Song-Chun],
Compositional Boosting for Computing Hierarchical Image Structures,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Cinque, L.,
Sangineto, E.,
Tanimoto, S.,
Articulated Object Recognition: A General Framework and a Case Study,
AVSBS06(12-12).
IEEE DOI
0611
BibRef
Li, F.Y.[Fa-Yin],
Koˇsecka, J.[Jana],
Wechsler, H.[Harry],
Strangeness Based Feature Selection for Part Based Recognition,
BP06(22).
IEEE DOI
0609
BibRef
Kapoor, A.[Ashish],
Winn, J.[John],
Located Hidden Random Fields: Learning Discriminative Parts for Object
Detection,
ECCV06(III: 302-315).
Springer DOI
0608
Part-based segmentation of objects.
BibRef
Xie, L.X.[Le-Xing],
Perez, P.[Patrick],
Slightly Supervised Learning of Part-Based Appearance Models,
LCV04(107).
IEEE DOI
0406
BibRef
Al-Shaher, A.A.[Abdullah A.],
Hancock, E.R.[Edwin R.],
A Hierarchical Framework for Shape Recognition Using Articulated Shape
Mixtures,
ICIAR04(I: 335-343).
Springer DOI
0409
BibRef
And:
Articulated Shape Mixtures for Object Recognition,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
And:
A Probabilistic Framework for Articulated Shape Recognition,
AMDO04(62-75).
Springer DOI
0505
See also Arabic Character Recognition Using Structural Shape Decomposition.
BibRef
Kim, G.H.[Gun-Hee],
Huber, D.F.[Daniel F.],
Hebert, M.[Martial],
Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D
Data,
WACV08(1-8).
IEEE DOI
0801
BibRef
Donamukkala, R.,
Huber, D.F.,
Kapuria, A.,
Hebert, M.,
Automatic Class Selection and Prototyping for 3-D Object Classification,
3DIM05(64-71).
IEEE DOI
0508
BibRef
Earlier: A2, A3, A1, A4:
Parts-based 3D object classification,
CVPR04(II: 82-89).
IEEE DOI
0408
BibRef
Svensson, S.[Stina],
Sanniti di Baja, G.[Gabriella],
A Tool for Decomposing 3D Discrete Objects,
CVPR01(I:850-855).
IEEE DOI
0110
3d Model decomposition.
BibRef
Schnitzspan, P.[Paul],
Roth, S.[Stefan],
Schiele, B.[Bernt],
Automatic discovery of meaningful object parts with latent CRFs,
CVPR10(121-128).
IEEE DOI
1006
BibRef
Kruppa, H.,
Schiele, B.,
Hierarchical Combination of Object Models using Mutual Information,
BMVC01(Poster Session 1).
HTML Version. ETH Zurich
0110
BibRef
de Vries, G.,
Verbeek, P.W.,
Scale-adaptive Landmark Detection, Classification and Size Estimation
in 3d Object-background Images,
ICPR00(Vol III: 1014-1017).
IEEE DOI
0009
Gradient Square Tensor, based on rods, plates and surfaces.
Medical images.
BibRef
Bueno, G.,
Nikou, C.,
Musse, O.,
Heitz, F.,
Armspach, J.P.,
Construction of a 3d Physically-based Multi-object Deformable Model,
ICIP00(Vol I: 268-271).
IEEE DOI
0008
BibRef
Cutzu, F.[Florin],
Computing 3D Object Parts from Similarities among Object Views,
CVPR00(II: 95-100).
IEEE DOI
0005
Segmented 3-D model
BibRef
Borges, D.L.,
Fisher, R.B.,
Segmentation of 3D Articulated Objects by
Dynamic Grouping of Discontinuities,
BMVC93(279-287).
PDF File.
BibRef
9300
Edinburghrange data segmentation, articulated objects
BibRef
Lee, S.H.[Sun-Ho],
Hong, H.K.[Hyun-Ki],
Choi, J.S.[Jong-Soo],
A Study on Assembly Part Recognition using Part-based Superquadric
Model,
ICIP99(IV:78-82).
IEEE DOI
BibRef
9900
Hauck, A.,
Lanser, S.,
Zierl, C.,
Hierarchical Recognition of Articulated Objects from
Single Perspective Views,
CVPR97(870-876).
IEEE DOI
9704
BibRef
Forsyth, D.A.,
Fleck, M.M.,
Body Plans,
CVPR97(678-683).
IEEE DOI
9704
Human and animal descriptions, texture and color.
BibRef
Ashbrook, A.P.,
Fisher, R.B.,
Constructing Models of Articulating Objects: Range Data Partitioning,
3DIM97(7 - Geometric Processing)
9702
BibRef
And:
DAINo. 844. January 1997.
BibRef
EdinburghRegister the range data from several viewpoints after segmenting
the object into the rigid parts.
BibRef
Du, L.,
Munck-Fairwood, R.C.,
Geon Recognition Through Robust Feature Grouping,
SCIA95(715-722).
BibRef
9500
Rom, H.[Hillel], and
Medioni, G.[Gerard],
Part Decomposition and Description of 3D Shapes,
ARPA94(II:1505-1512).
BibRef
9400
And:
ICPR94(A:629-632).
IEEE DOI
See also Hierarchical Decomposition and Axial Shape Description.
BibRef
Burns, J.B.[J. Brian],
Nishihara, H.K.[H. Keith], and
Rosenschein, S.J.[Stanley J.],
Appropriate-Scale Local Centers:
A Foundation for Parts-Based Recognition,
SCV95(317-322).
IEEE DOI
BibRef
9500
And:
ARPA94(II:1281-1286).
Recognition by Parts. Teleos Research.
Local centers circles that fit the object.
BibRef
Kanehara, F.,
Satoh, S.,
Hamada, T.,
Shape Decomposition Based on Erosion Model,
PBMCV95(SESSION 5)
BibRef
9500
Paulus, D.W.R.[Dietrich W. R.],
Wolf, M.[Matthias],
Object-oriented volume segmentation,
CAIP93(669-673).
Springer DOI
9309
BibRef
Biederman, I.[Irving],
Cooper, E.E.[Eric E.],
Hummel, J.E.[John E.],
Fiser, J.[Jozsef],
Geon Theory as an Account of Shape Recognition in Mind, Brain and
Machine,
BMVC93(xx-yy).
PDF File.
9309
BibRef
Chen, L.H.,
Lin, W.C.,
Part Segmentation for Object Recognition,
ICPR92(I:272-275).
IEEE DOI
BibRef
9200
Walker, N.[Nicholas],
Using neural networks to learn shape decomposition by successive
prototypication,
ECCV90(610-612).
Springer DOI
9004
BibRef
Aubry, S.[Stephane], and
Hayward, V.[Vincent],
Building Hierarchical Solid Models from Sensor Data,
CRA89(196-201).
BibRef
8900
Pentland, A.P.[Alex P.],
Recognition by Parts,
ICCV87(612-620).
BibRef
8700
Adelfeld, B.,
Automatic 3D Reconstruction from 2D geometric Part Descriptions,
CVPR83(66-72).
BibRef
8300
Hebert, M.,
Ponce, J.,
A New Method for Segmenting 3-D Scenes into Primitives,
ICPR82(836-838).
BibRef
8200
Turner, K.J.,
Computer Perception of Curved Objects Using a Television Camera,
Ph.D.Thesis, Univ. of Edinburgh, 1974.
BibRef
7400
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Descriptions Based on Relational Network Structures .