Jing, X.Y.[Xiao-Yuan],
Li, S.[Sheng],
Zhang, D.,
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
Supervised and Unsupervised Parallel Subspace Learning for Large-Scale
Image Recognition,
CirSysVideo(22), No. 10, October 2012, pp. 1497-1511.
IEEE DOI
1210
BibRef
Lee, W.Y.[Wen-Yu],
Hsieh, L.C.[Liang-Chi],
Wu, G.L.[Guan-Long],
Hsu, W.[Winston],
Graph-based semi-supervised learning with multi-modality propagation
for large-scale image datasets,
JVCIR(24), No. 3, April 2013, pp. 295-302.
Elsevier DOI
1303
Image retrieval; MapReduce; Semi-supervised learning; Large-scale data;
Multi-label; Image annotation; Landmark retrieval; Distributed
computing
BibRef
Negrel, R.[Romain],
Picard, D.[David],
Gosselin, P.H.[Philippe-Henri],
Web-Scale Image Retrieval Using Compact Tensor Aggregation of Visual
Descriptors,
MultMedMag(20), No. 3, 2013, pp. 24-33.
IEEE DOI
1309
Internet
BibRef
Negrel, R.[Romain],
Picard, D.[David],
Gosselin, P.H.[Philippe-Henri],
Dimensionality reduction of visual features using sparse projectors
for content-based image retrieval,
ICIP14(2192-2196)
IEEE DOI
1502
BibRef
Earlier:
Efficient Metric Learning Based Dimension Reduction Using Sparse
Projectors for Image Near Duplicate Retrieval,
ICPR14(738-743)
IEEE DOI
1412
Approximation methods.
Convergence
BibRef
Picard, D.[David],
Preserving local spatial information in image similarity using tensor
aggregation of local features,
ICIP16(201-205)
IEEE DOI
1610
Convolutional codes
BibRef
Gong, Y.C.[Yun-Chao],
Lazebnik, S.[Svetlana],
Gordo, A.[Albert],
Perronnin, F.[Florent],
Iterative Quantization: A Procrustean Approach to Learning Binary
Codes for Large-Scale Image Retrieval,
PAMI(35), No. 12, 2013, pp. 2916-2929.
IEEE DOI
1311
BibRef
Earlier: A1, A2, Only:
Iterative quantization: A procrustean approach to learning binary codes,
CVPR11(817-824).
IEEE DOI
1106
Binary codes.
Efficient retrieval in large-scale image collections.
Find rotation to zero-centered data.
BibRef
Zhou, N.,
Fan, J.,
Jointly Learning Visually Correlated Dictionaries for Large-Scale
Visual Recognition Applications,
PAMI(36), No. 4, April 2014, pp. 715-730.
IEEE DOI
1404
Clustering algorithms
BibRef
Wang, H.[Han],
Wu, X.X.[Xin-Xiao],
Jia, Y.D.[Yun-De],
Video Annotation via Image Groups from the Web,
MultMed(16), No. 5, August 2014, pp. 1282-1291.
IEEE DOI
1410
BibRef
Earlier:
Annotating videos from the web images,
ICPR12(2801-2804).
WWW Link.
1302
Transfer info from web image labels to adjacent videos.
learning (artificial intelligence).
BibRef
Mantziou, E.[Eleni],
Papadopoulos, S.[Symeon],
Kompatsiaris, Y.[Yiannis],
Learning to detect concepts with Approximate Laplacian Eigenmaps in
large-scale and online settings,
MultInfoRetr(4), No. 2, June 2015, pp. 95-111.
Springer DOI
1506
BibRef
Shen, L.[Li],
Sun, G.[Gang],
Huang, Q.M.[Qing-Ming],
Wang, S.H.[Shu-Hui],
Lin, Z.C.[Zhou-Chen],
Wu, E.[Enhua],
Multi-Level Discriminative Dictionary Learning With Application to
Large Scale Image Classification,
IP(24), No. 10, October 2015, pp. 3109-3123.
IEEE DOI
1507
computational complexity
BibRef
Tung, F.[Frederick],
Little, J.J.[James J.],
Improving scene attribute recognition using web-scale object
detectors,
CVIU(138), No. 1, 2015, pp. 86-91.
Elsevier DOI
1506
Affordances. By parts section.
BibRef
Martinez, J.[Julieta],
Clement, J.[Joris],
Hoos, H.H.[Holger H.],
Little, J.J.[James J.],
Revisiting Additive Quantization,
ECCV16(II: 137-153).
Springer DOI
1611
BibRef
Tung, F.[Frederick],
Little, J.J.[James J.],
Factorized Binary Codes for Large-Scale Nearest Neighbor Search,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
And:
SSP: Supervised Sparse Projections for Large-Scale Retrieval in High
Dimensions,
ACCV16(I: 338-352).
Springer DOI
1704
BibRef
Tung, F.[Frederick],
Martinez, J.[Julieta],
Hoos, H.H.[Holger H.],
Little, J.J.[James J.],
Bank of Quantization Models: A Data-Specific Approach to Learning
Binary Codes for Large-Scale Retrieval Applications,
WACV15(566-571)
IEEE DOI
1503
Adaptation models
BibRef
Ristin, M.[Marko],
Guillaumin, M.[Matthieu],
Gall, J.[Juergen],
Van Gool, L.J.[Luc J.],
Incremental Learning of Random Forests for Large-Scale Image
Classification,
PAMI(38), No. 3, March 2016, pp. 490-503.
IEEE DOI
1602
BibRef
Earlier:
Incremental Learning of NCM Forests for Large-Scale Image
Classification,
CVPR14(3654-3661)
IEEE DOI
1409
Accuracy.
Incremental learning
BibRef
Liu, L.[Li],
Yu, M.Y.[Meng-Yang],
Shao, L.[Ling],
Learning Short Binary Codes for Large-scale Image Retrieval,
IP(26), No. 3, March 2017, pp. 1289-1299.
IEEE DOI
1703
BibRef
Earlier:
Projection Bank:
From High-Dimensional Data to Medium-Length Binary Codes,
ICCV15(2821-2829)
IEEE DOI
1602
Binary codes. Lower dimensional feature representation.
See also Kernelized Multiview Projection for Robust Action Recognition.
BibRef
Guo, H.Y.[Hai-Yun],
Wang, J.Q.[Jin-Qiao],
Lu, H.Q.[Han-Qing],
Multiple deep features learning for object retrieval in surveillance
videos,
IET-CV(10), No. 4, 2016, pp. 268-271.
DOI Link
1608
BibRef
Earlier:
Learning deep compact descriptor with bagging auto-encoders for
object retrieval,
ICIP15(3175-3179)
IEEE DOI
1512
binary codes.
Object retrieval; auto-encoder; bagging
BibRef
Mai, T.D.[Tien-Dung],
Ngo, T.D.[Thanh Duc],
Le, D.D.[Duy-Dinh],
Duong, D.A.[Duc Anh],
Hoang, K.[Kiem],
Satoh, S.[Shin'ichi],
Efficient large-scale multi-class image classification by learning
balanced trees,
CVIU(156), No. 1, 2017, pp. 151-161.
Elsevier DOI
1702
BibRef
Earlier:
Using node relationships for hierarchical classification,
ICIP16(514-518)
IEEE DOI
1610
BibRef
Earlier:
Learning Balanced Trees for Large Scale Image Classification,
CIAP15(II:3-13).
Springer DOI
1511
BibRef
Earlier: A3, A1, A6, A2, A4, Only:
Efficient Large Scale Image Classification via Prediction Score
Decomposition,
ECCV16(VI: 770-785).
Springer DOI
1611
Large-scale image classification
BibRef
Xu, X.[Xing],
Shen, F.M.[Fu-Min],
Yang, Y.[Yang],
Shen, H.T.[Heng Tao],
Li, X.L.[Xue-Long],
Learning Discriminative Binary Codes for Large-scale Cross-modal
Retrieval,
IP(26), No. 5, May 2017, pp. 2494-2507.
IEEE DOI
1704
Binary codes
BibRef
Shen, F.M.[Fu-Min],
Xu, Y.[Yan],
Liu, L.[Li],
Yang, Y.[Yang],
Huang, Z.[Zi],
Shen, H.T.[Heng Tao],
Unsupervised Deep Hashing with Similarity-Adaptive and Discrete
Optimization,
PAMI(40), No. 12, December 2018, pp. 3034-3044.
IEEE DOI
1811
Binary codes, Optimization, Image retrieval, Quantization (signal),
Adaptation models, Data models, Semantics, Unsupervised learning,
image retrieval
BibRef
Zhang, L.[Liang],
Ma, B.P.[Bing-Peng],
Li, G.R.[Guo-Rong],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Cross-Modal Retrieval Using Multiordered Discriminative Structured
Subspace Learning,
MultMed(19), No. 6, June 2017, pp. 1220-1233.
IEEE DOI
1705
Correlation, Data models, Feature extraction, Manifolds, Measurement,
Multimedia communication, Semantics, Cross-modal retrieval,
documents and images, multimedia
BibRef
Zhang, L.[Liang],
Ma, B.P.[Bing-Peng],
Li, G.R.[Guo-Rong],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Generalized Semi-supervised and Structured Subspace Learning for
Cross-Modal Retrieval,
MultMed(20), No. 1, January 2018, pp. 128-141.
IEEE DOI
1801
information retrieval, learning (artificial intelligence),
GSS-SL, class indicator matrices, cross-modal retrieval,
semi-supervised learning
BibRef
Wei, P.X.[Peng-Xu],
Qin, F.[Fei],
Wan, F.[Fang],
Zhu, Y.[Yi],
Jiao, J.B.[Jian-Bin],
Ye, Q.X.[Qi-Xiang],
Correlated Topic Vector for Scene Classification,
IP(26), No. 7, July 2017, pp. 3221-3234.
IEEE DOI
1706
Correlation, Feature extraction, Image coding, Image recognition,
Kernel, Semantics, Visualization, Correlated topic vector,
Fisher kernel, generative feature learning, semantic correlation.
BibRef
Qu, Y.,
Lin, L.,
Shen, F.,
Lu, C.,
Wu, Y.,
Xie, Y.,
Tao, D.,
Joint Hierarchical Category Structure Learning and Large-Scale Image
Classification,
IP(26), No. 9, September 2017, pp. 4331-4346.
IEEE DOI
1708
image classification, learning (artificial intelligence),
Caltech 256 benchmark dataset, ILSVRC2010 benchmark dataset,
hierarchical spectral clustering,
joint hierarchical category structure learning,
large-scale multiclass classification efficiency improvement,
visual tree, Clustering algorithms, Feature extraction,
Image representation, Measurement, Prediction algorithms,
Semantics, Visualization, Hierarchical learning, N-best path,
deep features, large-scale image classification,
BibRef
Ma, L.,
Li, H.,
Meng, F.,
Wu, Q.,
Ngan, K.N.,
Learning Efficient Binary Codes From High-Level Feature
Representations for Multilabel Image Retrieval,
MultMed(19), No. 11, November 2017, pp. 2545-2560.
IEEE DOI
1710
Binary codes, Manifolds, Matrix decomposition,
Quantization (signal), Semantics, Training, Efficient binary codes,
image semantic retrieval, nonnegative, matrix, factorization
BibRef
Luo, M.N.[Min-Nan],
Chang, X.J.[Xiao-Jun],
Li, Z.H.[Zhi-Hui],
Nie, L.Q.[Li-Qiang],
Hauptmann, A.G.[Alexander G.],
Zheng, Q.H.[Qing-Hua],
Simple to complex cross-modal learning to rank,
CVIU(163), No. 1, 2017, pp. 67-77.
Elsevier DOI
1712
Cross-modal retrieval
BibRef
Younessian, E.[Ehsan],
Mitamura, T.[Teruko],
Hauptmann, A.G.[Alexander G.],
Multimodal knowledge-based analysis in multimedia event detection,
ICMR12(51).
DOI Link
1301
Multimedia Event Detection (MED) for retrieval task
BibRef
Karpathy, A.[Andrej],
Fei-Fei, L.[Li],
Deep Visual-Semantic Alignments for Generating Image Descriptions,
PAMI(39), No. 4, April 2017, pp. 664-676.
IEEE DOI
1703
BibRef
Earlier:
CVPR15(3128-3137)
IEEE DOI
1510
Analytical models
BibRef
Karpathy, A.[Andrej],
Toderici, G.[George],
Shetty, S.[Sanketh],
Leung, T.[Thomas],
Sukthankar, R.[Rahul],
Fei-Fei, L.[Li],
Large-Scale Video Classification with Convolutional Neural Networks,
CVPR14(1725-1732)
IEEE DOI
1409
action
BibRef
Liang, T.M.[Tian-Ming],
Xu, X.Z.[Xin-Zheng],
Xiao, P.C.[Peng-Cheng],
A new image classification method based on modified condensed nearest
neighbor and convolutional neural networks,
PRL(94), No. 1, 2017, pp. 105-111.
Elsevier DOI
1708
Large-scale, image, classification
BibRef
Ercoli, S.,
Bertini, M.,
del Bimbo, A.,
Compact Hash Codes for Efficient Visual Descriptors Retrieval in
Large Scale Databases,
MultMed(19), No. 11, November 2017, pp. 2521-2532.
IEEE DOI
1710
Indexing, Neural networks, Vector quantization,
Visualization, Convolutional neural network (CNN), SIFT, hashing,
nearest neighbor search, retrieval
BibRef
Wang, J.D.[Jing-Dong],
Zhang, T.[Ting],
Song, J.K.[Jing-Kuan],
Sebe, N.[Nicu],
Shen, H.T.[Heng Tao],
A Survey on Learning to Hash,
PAMI(40), No. 4, April 2018, pp. 769-790.
IEEE DOI
1804
learning (artificial intelligence), query processing,
data points, evaluation protocols,
quantization
BibRef
Vo, P.D.[Phong D.],
Ginsca, A.L.[Alexandru Lucian],
Le Borgne, H.[Hervé],
Popescu, A.[Adrian],
Harnessing noisy Web images for deep representation,
CVIU(164), No. 1, 2017, pp. 68-81.
Elsevier DOI
1801
Representation learning
BibRef
Ginsca, A.L.[Alexandru Lucian],
Popescu, A.[Adrian],
Le Borgne, H.[Hervé],
Ballas, N.[Nicolas],
Vo, P.D.[Phong D.],
Kanellos, I.[Ioannis],
Large-Scale Image Mining with Flickr Groups,
MMMod15(I: 318-334).
Springer DOI
1501
BibRef
Hsu, C.C.,
Lin, C.W.,
CNN-Based Joint Clustering and Representation Learning with Feature
Drift Compensation for Large-Scale Image Data,
MultMed(20), No. 2, February 2018, pp. 421-429.
IEEE DOI
1801
Clustering methods, Complexity theory,
Feature extraction, Training, Visualization,
unsupervised learning
BibRef
Li, Y.Q.[Ye-Qing],
Liu, W.[Wei],
Huang, J.Z.[Jun-Zhou],
Sub-Selective Quantization for Learning Binary Codes in Large-Scale
Image Search,
PAMI(40), No. 6, June 2018, pp. 1526-1532.
IEEE DOI
1805
Binary codes, Encoding, Explosives, Image retrieval,
Linear matrix inequalities, Principal component analysis,
large-scale machine learning
BibRef
Fu, Q.[Qiang],
Luo, Y.[Yong],
Wen, Y.G.[Yong-Gang],
Tao, D.C.[Da-Cheng],
Li, Y.[Ying],
Duan, L.Y.[Ling-Yu],
Toward Intelligent Product Retrieval for TV-to-Online (T2O)
Application: A Transfer Metric Learning Approach,
MultMed(20), No. 8, August 2018, pp. 2114-2125.
IEEE DOI
1808
Product on TV, buy it...
data handling, Internet, learning (artificial intelligence),
pattern classification, pattern matching, query processing,
ranking-based loss
BibRef
Jiang, H.J.[Hua-Jie],
Wang, R.P.[Rui-Ping],
Li, Y.[Yan],
Liu, H.M.[Hao-Miao],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Attribute annotation on large-scale image database by active
knowledge transfer,
IVC(78), 2018, pp. 1-13.
Elsevier DOI
1809
Attribute, Annotation, Relationship, Active learning, Transfer learning
BibRef
Dong, J.,
Li, X.,
Xu, D.,
Cross-Media Similarity Evaluation for Web Image Retrieval in the Wild,
MultMed(20), No. 9, September 2018, pp. 2371-2384.
IEEE DOI
1809
image matching, image retrieval,
learning (artificial intelligence), query processing,
cross-media similarity computation
BibRef
Yang, H.F.[Huei-Fang],
Lin, K.[Kevin],
Chen, C.S.[Chu-Song],
Supervised Learning of Semantics-Preserving Hash via Deep
Convolutional Neural Networks,
PAMI(40), No. 2, February 2018, pp. 437-451.
IEEE DOI
1801
constructs binary hash codes from labeled data for large-scale image search.
Binary codes, Convolutional codes, Machine learning,
Neural networks, Semantics, Synchronous digital hierarchy,
supervised hashing
BibRef
Peng, Y.X.[Yu-Xin],
Qi, J.W.[Jin-Wei],
Huang, X.[Xin],
Yuan, Y.X.[Yu-Xin],
CCL: Cross-modal Correlation Learning With Multigrained Fusion by
Hierarchical Network,
MultMed(20), No. 2, February 2018, pp. 405-420.
IEEE DOI
1801
Birds, Boats, Correlation, Multimedia communication, Optimization,
Semantics, Streaming media, Cross-modal retrieval,
multi-task learning
BibRef
Peng, Y.X.[Yu-Xin],
Qi, J.W.[Jin-Wei],
Yuan, Y.X.[Yu-Xin],
Modality-Specific Cross-Modal Similarity Measurement With Recurrent
Attention Network,
IP(27), No. 11, November 2018, pp. 5585-5599.
IEEE DOI
1809
information retrieval, learning (artificial intelligence),
natural language processing, recurrent neural nets,
adaptive fusion
BibRef
Peng, Y.X.[Yu-Xin],
Qi, J.W.[Jin-Wei],
Ye, Z.D.[Zhao-Da],
Zhuo, Y.K.[Yun-Kan],
Hierarchical Visual-Textual Knowledge Distillation for Life-Long
Correlation Learning,
IJCV(129), No. 4, April 2021, pp. 921-941.
Springer DOI
2104
Cross-modal and cross-domain.
BibRef
Li, Y.S.[Yan-Sheng],
Zhang, Y.J.[Yong-Jun],
Huang, X.[Xin],
Zhu, H.[Hu],
Ma, J.Y.[Jia-Yi],
Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural
Networks,
GeoRS(56), No. 2, February 2018, pp. 950-965.
IEEE DOI
1802
Image retrieval, Learning systems, Machine learning, Manuals,
Neural networks, Remote sensing,
transfer learning
BibRef
Li, Y.S.[Yan-Sheng],
Zhang, Y.J.[Yong-Jun],
Huang, X.[Xin],
Ma, J.Y.[Jia-Yi],
Learning Source-Invariant Deep Hashing Convolutional Neural Networks
for Cross-Source Remote Sensing Image Retrieval,
GeoRS(56), No. 11, November 2018, pp. 6521-6536.
IEEE DOI
1811
Remote sensing, Optimization, Image retrieval,
Convolutional neural networks, Big Data, Learning systems,
source-invariant deep hashing convolutional neural networks (SIDHCNNs)
BibRef
Hu, H.,
Wang, K.,
Lv, C.,
Wu, J.,
Yang, Z.,
Semi-Supervised Metric Learning-Based Anchor Graph Hashing for
Large-Scale Image Retrieval,
IP(28), No. 2, February 2019, pp. 739-754.
IEEE DOI
1811
data structures, gradient methods, graph theory, image processing,
image retrieval, learning (artificial intelligence),
stochastic gradient descent
BibRef
Cevikalp, H.[Hakan],
Elmas, M.[Merve],
Ozkan, S.[Savas],
Large-scale image retrieval using transductive support vector
machines,
CVIU(173), 2018, pp. 2-12.
Elsevier DOI
1901
BibRef
Earlier:
Towards Category Based Large-Scale Image Retrieval Using Transductive
Support Vector Machines,
WebScale16(I: 621-637).
Springer DOI
1611
Image retrieval, Hashing, Transductive support vector machines,
Semi-supervised learning, Ramp loss.
binary hierarchical trees.
BibRef
Wu, G.,
Han, J.,
Guo, Y.,
Liu, L.,
Ding, G.,
Ni, Q.,
Shao, L.,
Unsupervised Deep Video Hashing via Balanced Code for Large-Scale
Video Retrieval,
IP(28), No. 4, April 2019, pp. 1993-2007.
IEEE DOI
1901
binary codes, cryptography, feature extraction,
image representation, pattern clustering, unsupervised learning,
deep learning
BibRef
Xu, J.[Jian],
Wang, C.H.[Chun-Heng],
Qi, C.Z.[Cheng-Zuo],
Shi, C.Z.[Cun-Zhao],
Xiao, B.H.[Bai-Hua],
Iterative Manifold Embedding Layer Learned by Incomplete Data for
Large-Scale Image Retrieval,
MultMed(21), No. 6, June 2019, pp. 1551-1562.
IEEE DOI
1906
Manifolds, Image retrieval, Learning systems,
Computational efficiency, Dimensionality reduction,
incomplete data
BibRef
Chen, B.H.[Bing-Hui],
Deng, W.H.[Wei-Hong],
Deep embedding learning with adaptive large margin N-pair loss for
image retrieval and clustering,
PR(93), 2019, pp. 353-364.
Elsevier DOI
1906
Embedding learning, Adaptive margin, Virtual point generating,
Discriminative feature
BibRef
Keisler, R.[Ryan],
Skillman, S.W.[Samuel W.],
Gonnabathula, S.[Sunny],
Poehnelt, J.[Justin],
Rudelis, X.[Xander],
Warren, M.S.[Michael S.],
Visual search over billions of aerial and satellite images,
CVIU(187), 2019, pp. 102790.
Elsevier DOI
1909
Visual search, Remote sensing, Machine learning
BibRef
Kan, S.C.[Shi-Chao],
Cen, L.H.[Li-Hui],
Zheng, X.W.[Xin-Wei],
Cen, Y.[Yigang],
Zhu, Z.[Zhenmin],
Wang, H.[Hengyou],
A supervised learning to index model for approximate nearest neighbor
image retrieval,
SP:IC(78), 2019, pp. 494-502.
Elsevier DOI
1909
Supervised learning to index,
Approximate K-nearest neighbor search, Image relabeling, Codebook learning
BibRef
Al-Barazanchi, H.A.[Hussein A.],
Qassim, H.[Hussam],
Verma, A.[Abhishek],
Large-scale scene image categorisation with deep learning-based model,
IJCVR(10), No. 3, 2020, pp. 185-201.
DOI Link
2005
BibRef
Li, Q.[Qing],
Peng, X.J.[Xiao-Jiang],
Cao, L.L.[Liang-Liang],
Du, W.B.[Wen-Bin],
Xing, H.[Hao],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
Product image recognition with guidance learning and noisy
supervision,
CVIU(196), 2020, pp. 102963.
Elsevier DOI
2006
BibRef
Chiu, C.Y.[Chih-Yi],
Prayoonwong, A.[Amorntip],
Liao, Y.C.[Yin-Chih],
Learning to Index for Nearest Neighbor Search,
PAMI(42), No. 8, August 2020, pp. 1942-1956.
IEEE DOI
2007
Indexing, Artificial neural networks, Vector quantization,
Hash functions, Binary codes, Approximate nearest neighbor,
residual vector quantization
BibRef
Prayoonwong, A.[Amorntip],
Wang, C.H.[Cheng-Hsien],
Chiu, C.Y.[Chih-Yi],
Learning to Index in Large-Scale Datasets,
MMMod18(I:305-316).
Springer DOI
1802
BibRef
Wang, H.[Han],
Song, H.[Hao],
Wu, X.X.[Xin-Xiao],
Jia, Y.D.[Yun-De],
Incremental transfer learning for video annotation via grouped
heterogeneous sources,
IET-CV(14), No. 1, February 2020, pp. 26-35.
DOI Link
2002
BibRef
Earlier:
Video Annotation by Incremental Learning from Grouped Heterogeneous
Sources,
ACCV14(V: 493-507).
Springer DOI
1504
BibRef
Feng, S.H.[Song-He],
Feng, Z.Y.[Zhe-Yun],
Jin, R.[Rong],
Learning to Rank Image Tags With Limited Training Examples,
IP(24), No. 4, April 2015, pp. 1223-1234.
IEEE DOI
1503
image classification
BibRef
Feng, Z.Y.[Zhe-Yun],
Jin, R.[Rong],
Jain, A.[Anil],
Large-Scale Image Annotation by Efficient and Robust Kernel Metric
Learning,
ICCV13(1609-1616)
IEEE DOI
1403
Efficient
BibRef
Chatfield, K.[Ken],
Arandjelovic, R.[Relja],
Parkhi, O.M.[Omkar M.],
Zisserman, A.[Andrew],
On-the-fly learning for visual search of large-scale image and video
datasets,
MultInfoRetr(4), No. 2, June 2015, pp. 75-93.
Springer DOI
1506
BibRef
Zisserman, A.[Andrew],
Towards on-the-fly Large Scale Video Search,
BMVC13(xx-yy).
DOI Link
1412
BibRef
Chatfield, K.[Ken],
Zisserman, A.[Andrew],
VISOR: Towards On-the-Fly Large-Scale Object Category Retrieval,
ACCV12(II:432-446).
Springer DOI
1304
BibRef
Husain, S.S.[Syed Sameed],
Bober, M.[Miroslaw],
REMAP: Multi-Layer Entropy-Guided Pooling of Dense CNN Features for
Image Retrieval,
IP(28), No. 10, October 2019, pp. 5201-5213.
IEEE DOI
1909
Feature extraction, Training, Entropy,
Image retrieval, Visualization, Aggregates,
KL-divergence
BibRef
Zhu, H.P.[Hong-Peng],
Massive-scale image retrieval based on deep visual feature
representation,
JVCIR(70), 2020, pp. 102738.
Elsevier DOI
2007
Image retrieval, Visual feature, DNN
BibRef
Li, S.Y.[Si-Yang],
Guo, Y.[Yu],
Ren, H.[Hao],
Wang, Z.[Ziyi],
Ren, K.Y.[Ke-Yan],
Liu, C.S.[Chun-Sheng],
Lin, H.[Hua],
Shi, J.B.[Jian-Bo],
FCNet: A feature context network based on ensemble framework for
image retrieval,
IET-CV(16), No. 4, 2022, pp. 295-306.
DOI Link
2205
convolution, image retrieval, learning (artificial intelligence)
BibRef
Janani, T.,
Brindha, M.,
SEcure Similar Image Matching (SESIM): An Improved Privacy Preserving
Image Retrieval Protocol over Encrypted Cloud Database,
MultMed(24), 2022, pp. 3794-3806.
IEEE DOI
2208
Image retrieval, Cloud computing, Feature extraction, Protocols,
Privacy, Image matching, Encryption, Image matching, feature vectors,
similarity matching and cloud
BibRef
Chen, B.[Bin],
Feng, Y.[Yan],
Dai, T.[Tao],
Bai, J.[Jiawang],
Jiang, Y.[Yong],
Xia, S.T.[Shu-Tao],
Wang, X.[Xuan],
Adversarial Examples Generation for Deep Product Quantization
Networks on Image Retrieval,
PAMI(45), No. 2, February 2023, pp. 1388-1404.
IEEE DOI
2301
WWW Link. Quantization (signal), Image retrieval, Perturbation methods,
Feature extraction, Task analysis, Databases, KL divergence
BibRef
Xu, H.H.[Hong-Hao],
Lai, Z.H.[Zhi-Hui],
Kong, H.[Heng],
Jointly sparse fast hashing with orthogonal learning for large-scale
image retrieval,
SP:IC(119), 2023, pp. 117062.
Elsevier DOI
2310
Hash learning, Regression model, Feature extraction, Image retrieval
BibRef
Song, C.H.[Chull Hwan],
Han, H.J.[Hye Joo],
Avrithis, Y.S.[Yannis S.],
All the attention you need:
Global-local, spatial-channel attention for image retrieval,
WACV22(439-448)
IEEE DOI
2202
Training, Representation learning, Tensors, Image retrieval,
Pipelines, Focusing, Network architecture,
Image/Video Indexing and Retrieval Deep Learning
BibRef
Avrithis, Y.S.[Yannis S.],
Kalantidis, Y.[Yannis],
Anagnostopoulos, E.,
Emiris, I.Z.,
Web-Scale Image Clustering Revisited,
ICCV15(1502-1510)
IEEE DOI
1602
Artificial neural networks
BibRef
Li, H.K.[Hong-Kai],
Bai, C.[Cong],
Huang, L.[Ling],
Jiang, Y.G.[Yu-Gang],
Chen, S.Y.[Sheng-Yong],
Instance Image Retrieval with Generative Adversarial Training,
MMMod20(I:381-392).
Springer DOI
2003
retrieve similar images
BibRef
Zhen, L.L.[Liang-Li],
Hu, P.[Peng],
Wang, X.[Xu],
Peng, D.Z.[De-Zhong],
Deep Supervised Cross-Modal Retrieval,
CVPR19(10386-10395).
IEEE DOI
2002
BibRef
Morozov, S.[Stanislav],
Babenko, A.[Artem],
Unsupervised Neural Quantization for Compressed-Domain Similarity
Search,
ICCV19(3036-3045)
IEEE DOI
2004
data compression, image coding, image retrieval,
neural net architecture, quantisation (signal), table lookup, Databases
BibRef
Yu, T.[Tan],
Yuan, J.S.[Jun-Song],
Fang, C.[Chen],
Jin, H.L.[Hai-Lin],
Product Quantization Network for Fast Image Retrieval,
ECCV18(I: 191-206).
Springer DOI
1810
BibRef
Jose, A.,
Lopez, R.D.,
Heisterklaus, I.,
Wien, M.,
Pyramid Pooling of Convolutional Feature Maps for Image Retrieval,
ICIP18(480-484)
IEEE DOI
1809
Feature extraction, Convolutional codes, Image retrieval,
Neural networks, Poles and towers, Spatial resolution,
deep learning
BibRef
Jose, A.,
Yan, S.,
Heisterklaus, I.,
Binary hashing using siamese neural networks,
ICIP17(2916-2920)
IEEE DOI
1803
Binary codes, Convolutional codes, Feature extraction, Feeds,
Neural networks, Training, Training data, Binary hashing,
Similar image pairs
BibRef
Veit, A.,
Alldrin, N.,
Chechik, G.,
Krasin, I.,
Gupta, A.,
Belongie, S.J.[Serge J.],
Learning from Noisy Large-Scale Datasets with Minimal Supervision,
CVPR17(6575-6583)
IEEE DOI
1711
Cleaning, Neural networks, Noise measurement, Robustness,
Visualization
BibRef
Yuan, T.T.[Tong-Tong],
Deng, W.H.[Wei-Hong],
Hu, J.[Jiani],
Supervised hashing with extreme learning machine,
VCIP17(1-4)
IEEE DOI
1804
binary codes, computational complexity, cryptography,
file organisation, image coding, image retrieval,
Target code learning
BibRef
Zhou, Y.F.[Yue-Fu],
Huang, S.S.[Shan-Shan],
Zhang, Y.[Ya],
Wang, Y.F.[Yan-Feng],
Deep hashing with triplet quantization loss,
VCIP17(1-4)
IEEE DOI
1804
binary codes, file organisation, image representation,
image retrieval, learning (artificial intelligence),
supervised hashing
BibRef
Zhu, H.[Hao],
Wang, F.[Feng],
Xiang, X.[Xiang],
Tran, T.D.[Trac D.],
Supervised hashing with jointly learning embedding and quantization,
ICIP17(3715-3719)
IEEE DOI
1803
Binary codes, Image color analysis, Linear programming,
Optimization, Quantization (signal), Semantics, Training,
Supervised Hashing
BibRef
Raziperchikolaei, R.,
Carreira-Perpiñán, M.Á.,
Learning supervised binary hashing: Optimization vs diversity,
ICIP17(3695-3699)
IEEE DOI
1803
Approximation algorithms, Binary codes, Laplace equations,
Linear programming, Minimization, Optimization, Training,
optimization
BibRef
Da, C.,
Yang, Y.,
Ding, K.,
Huo, C.,
Xiang, S.,
Pan, C.,
Efficient similarity learning for asymmetric hashing,
ICIP17(865-869)
IEEE DOI
1803
Binary codes, Closed-form solutions, Databases,
Dimensionality reduction, Measurement, Semantics, Training,
bilinear similarity measure
BibRef
Kazi, A.[Anees],
Conjeti, S.[Sailesh],
Katouzian, A.[Amin],
Navab, N.[Nassir],
Coupled Manifold Learning for Retrieval Across Modalities,
Manifold17(1321-1328)
IEEE DOI
1802
BibRef
Noh, H.,
Araujo, A.,
Sim, J.,
Weyand, T.,
Han, B.,
Large-Scale Image Retrieval with Attentive Deep Local Features,
ICCV17(3476-3485)
IEEE DOI
1802
feature extraction, image matching, image retrieval,
learning (artificial intelligence), neural nets,
Visualization
BibRef
Ahmed, K.[Karim],
Torresani, L.[Lorenzo],
BranchConnect: Image Categorization with Learned Branch Connections,
WACV18(1244-1253)
IEEE DOI
1806
feature extraction, feedforward neural nets,
image classification, learning (artificial intelligence),
Training
BibRef
Ahmed, K.[Karim],
Baig, M.H.[Mohammad Haris],
Torresani, L.[Lorenzo],
Network of Experts for Large-Scale Image Categorization,
ECCV16(VII: 516-532).
Springer DOI
1611
BibRef
Fu, J.L.[Jian-Long],
Wu, Y.[Yue],
Mei, T.[Tao],
Wang, J.Q.[Jin-Qiao],
Lu, H.Q.[Han-Qing],
Rui, Y.[Yong],
Relaxing from Vocabulary: Robust Weakly-Supervised Deep Learning for
Vocabulary-Free Image Tagging,
ICCV15(1985-1993)
IEEE DOI
1602
Machine learning. Tagging web images.
BibRef
Xia, Y.[Yan],
Cao, X.D.[Xu-Dong],
Wen, F.[Fang],
Hua, G.[Gang],
Sun, J.[Jian],
Learning Discriminative Reconstructions for Unsupervised Outlier
Removal,
ICCV15(1511-1519)
IEEE DOI
1602
Outlier images from collection.
BibRef
Luo, J.W.[Jian-Wei],
Jiang, Z.G.[Zhi-Guo],
Learning Semantic Binary Codes by Encoding Attributes for Image
Retrieval,
ICPR14(279-284)
IEEE DOI
1412
Binary codes
BibRef
Ushiku, Y.[Yoshitaka],
Hidaka, M.[Masatoshi],
Harada, T.[Tatsuya],
Three Guidelines of Online Learning for Large-Scale Visual
Recognition,
CVPR14(3574-3581)
IEEE DOI
1409
BibRef
Movshovitz-Attias, Y.[Yair],
Kanade, T.[Takeo],
Sheikh, Y.[Yaser],
How Useful Is Photo-Realistic Rendering for Visual Learning?,
DeepLearn16(III: 202-217).
Springer DOI
1611
BibRef
Chen, X.[Xinlei],
Shrivastava, A.[Abhinav],
Gupta, A.[Abhinav],
Enriching Visual Knowledge Bases via Object Discovery and
Segmentation,
CVPR14(2035-2042)
IEEE DOI
1409
BibRef
Earlier:
NEIL: Extracting Visual Knowledge from Web Data,
ICCV13(1409-1416)
IEEE DOI
1403
Never Ending Image Learner.
Runs on web, collecting visual features from web images.
See also Building Part-Based Object Detectors via 3D Geometry.
BibRef
Xia, T.[Tian],
Tang, Y.Y.,
Wei, Y.[Yantao],
Li, H.[Hong],
Li, L.Q.[Luo-Qing],
Object categorization based on hierarchical learning,
ICPR12(1419-1422).
WWW Link.
1302
local coding, maximum pooling.
BibRef
Zhang, L.[Lei],
Ma, J.[Jun],
Cui, C.R.[Chao-Ran],
Li, P.[Piji],
Active learning through notes data in Flickr: an effortless training
data acquisition approach for object localization,
ICMR11(46).
DOI Link
1301
BibRef
Cao, S.[Song],
Snavely, N.[Noah],
Learning to Match Images in Large-Scale Collections,
WebScale12(I: 259-270).
Springer DOI
1210
BibRef
Collins, B.[Brendan],
Deng, J.[Jia],
Li, K.[Kai],
Fei-Fei, L.[Li],
Towards Scalable Dataset Construction: An Active Learning Approach,
ECCV08(I: 86-98).
Springer DOI
0810
Separate relevant images from noise (e.g. internet search)
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Social Media Search, Large Scale Systems, Web-Scale System .