Ledley, R.S.,
Analysis of Cells,
TC(21), No. 7, July 1972, pp. 740-752.
BibRef
7207
Patrick, E.A.[Edward A.],
Altman, J.[Joseph],
Wild, R.[Richard],
Computer output display of cells and cell features,
PR(4), No. 2, May 1972, pp. 211-226.
Elsevier DOI
0309
BibRef
Young, I.T., and
Paskowitz, I.L.,
Localization of cellular structures,
BiomedEng(22), No. 1, 1975, pp. 35-40.
BibRef
7500
Carayannopoulos, G.L.,
Patrick, E.A.,
An algorithm for segmentation of metaphase spreads,
PR(8), No. 3, July 1976, pp. 151-161.
Elsevier DOI
0309
BibRef
Tajima, J.[Johji],
Automatic classification of micro-organisms by shape and color, in
water quality control: A preliminary study,
PR(14), No. 1-6, 1981, pp. 211-217.
Elsevier DOI
0309
BibRef
Betz, J.W.,
Sengbusch, G.V.,
Ärtel, W.H.,
Low resolution slit-scan pattern recognition applying one-dimensional
multiparameter analysis,
PR(13), No. 1, 1981, pp. 89-93.
Elsevier DOI
0309
rapid pre-screening of gynecological cell samples.
BibRef
Sherman, A.B.[Andrew B.],
Koss, L.G.[Leopold G.],
Abbott, M.C.[Mark C.],
Liao, M.W.[Mary W.],
A method of boundary determination in digital images of urothelial
cells,
PR(13), No. 4, 1981, pp. 285-291.
Elsevier DOI
0309
BibRef
Meyer, F.,
Automatic Screening of Cytological Specimens,
CVGIP(35), No. 3, 1987, pp. 356-369.
Elsevier DOI
Morphology. Application of morphology technique.
TopHat filter.
BibRef
8700
Lester, J.M.[James M.],
Brenner, J.F.[John F.],
Selles, W.D.[William D.],
Local transforms for biomedical image analysis,
CGIP(13), No. 1, May 1980, pp. 17-30.
Elsevier DOI
0501
BibRef
Zimmer, H.G.[Hans-Georg],
Kronberg, H.[Harald],
Bernstein, R.[Reinhard],
Neuhoff, V.[Volker],
Improvements in microphotometry by digital signal processing,
PR(13), No. 1, 1981, pp. 79-82.
Elsevier DOI
0309
BibRef
Rüter, A.,
Harms, H.,
Aus, H.M.,
Standardized color measurement in automated cytophotometry with the
light micrscope,
PR(13), No. 4, 1981, pp. 315-323.
Elsevier DOI
0309
BibRef
Harms, H.,
Rüter, A.,
Aus, H.M.,
A microprocessor-controlled axiomat microscope for acquisition of cell
images,
PR(13), No. 4, 1981, pp. 325-329.
Elsevier DOI
0309
BibRef
Preston, Jr., K.[Kendall],
Tissue section analysis: Feature selection and image processing,
PR(13), No. 1, 1981, pp. 17-36.
Elsevier DOI
0309
BibRef
Preston, Jr., K.[Kendall],
Digital picture analysis in cytology,
DPA76(209-294).
Springer DOI
BibRef
7600
White, B.S.[Benjamin S.],
Castleman, K.R.[Kenneth R.],
Estimating cell populations,
PR(13), No. 5, 1981, pp. 365-370.
Elsevier DOI
0309
BibRef
Jordan, M.M.,
Perkins, W.J.,
Use of Models in Studying Macrophage Cell Images and the
Underlying Biological Processes,
IVC(5), No. 2, May 1987, pp. 139-144.
Elsevier DOI
BibRef
8705
Murray, C.[Carl],
O'Malley, M.[Mark],
Segmentation of plant cell pictures,
IVC(11), No. 3, April 1993, pp. 155-162.
Elsevier DOI
0401
BibRef
Wu, K.,
Gauthier, D., and
Levine, M.,
Live cell image segmentation,
BiomedEng(42), No. 1, 1995, pp. 1-12.
BibRef
9500
Wu, H.S.,
Gil, J.,
Barba, J.,
Optimal Segmentation of Cell Images,
VISP(145), No. 1, February 1998, pp. 50-56.
9804
BibRef
Garrido, A.,
de la Blanca, N.P.[N. Pérez],
Applying deformable templates for cell image segmentation,
PR(33), No. 5, May 2000, pp. 821-832.
Elsevier DOI
0003
BibRef
Garrido Carrido, A.[Antonio],
de la Blanca, N.P.[N. Pérez], and
García-Silvente, M.,
A new methodology to automatically segment biomedical images,
CIAP97(II: 372-379).
Springer DOI
9709
BibRef
And:
Cell Image Segmentation,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Strijk, T.[Tycho],
van Kreveld, M.[Marc],
Practical Extensions of Point Labeling in the Slider Model,
GeoInfo(6), No. 2, June 2002, pp. 181-197.
DOI Link Placing labels for a point feature.
0205
BibRef
Lessman, C.A.[Charles A.],
Use of Computer-Aided Screening for Detection of Motility Mutants in
Zebrafish Embryos,
RealTimeImg(8), No. 3, June 2002, pp. 189-201.
DOI Link
0208
BibRef
Jiang, T.Z.[Tian-Zi],
Yang, F.[Faguo],
An evolutionary tabu search for cell image segmentation,
SMC-B(32), No. 5, October 2002, pp. 675-678.
IEEE Top Reference.
0210
BibRef
Fiori, S.,
Information-theoretic learning for FAN network applied to eterokurtic
component analysis,
VISP(149), No. 6, December 2002, pp. 347-354.
IEEE Top Reference.
BibRef
0212
And:
Erratum:
VISP(150), No. 6, December 2003, pp. 370-370.
IEEE Abstract.
0304
BibRef
Zhang, B.,
Fadili, J.M.,
Starck, J.L.,
Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal,
IP(17), No. 7, July 2008, pp. 1093-1108.
IEEE DOI
0806
See also Undecimated Wavelet Decomposition and its Reconstruction, The.
BibRef
Long, X.[Xi],
Cleveland, W.L.[W. Louis],
Yao, Y.L.[Y. Lawrence],
Effective automatic recognition of cultured cells in bright field
images using fisher's linear discriminant preprocessing,
IVC(23), No. 13, 29 November 2005, pp. 1203-1213.
Elsevier DOI
0512
BibRef
Long, X.[Xi],
Cleveland, W.L.[W. Louis],
Yao, Y.L.[Y. Lawrence],
Multiclass cell detection in bright field images of cell mixtures with
ECOC probability estimation,
IVC(26), No. 4, April 2008, pp. 578-591.
Elsevier DOI
0711
Cell detection; Error Correcting Output Coding (ECOC);
Multiclass classification; Support vector machines
BibRef
Hodgson, S.[Simon],
Harrison, R.F.[Robert F.],
Cross, S.S.[Simon S.],
An automated pattern recognition system for the quantification of
inflammatory cells in hepatitis-C-infected liver biopsies,
IVC(24), No. 9, September 2006, pp. 1025-1038.
Elsevier DOI
0608
Liver biopsy analysis; Bayesian decision theory;
Gaussian mixture models; Sequential forward floating search
BibRef
Cho, S.B.[Sung-Bae],
Yoo, S.H.[Si-Ho],
Fuzzy Bayesian validation for cluster analysis of yeast cell-cycle data,
PR(39), No. 12, December 2006, pp. 2405-2414.
Elsevier DOI
0609
Fuzzy clustering; Fuzzy c-means algorithm; Fuzzy Bayesian validation method;
Yeast cell-cycle data
BibRef
Ranzato, M.,
Taylor, P.E.,
House, J.M.,
Flagan, R.C.,
Le Cun, Y.L.,
Perona, P.,
Automatic recognition of biological particles in microscopic images,
PRL(28), No. 1, 1 January 2007, pp. 31-39.
Elsevier DOI
0611
Biological particles; Feature; Non-linearity; Recognition; Cells;
Pollen; Mixture of Gaussians (MoG)
BibRef
Chan, Y.K.[Yung-Kuan],
Liau, D.L.[Duan-Li],
Chen, Y.F.[Yung-Fu],
Wu, H.C.[Hsien-Chu],
Chu, Y.P.[Yen-Ping],
A minute lossy method for 2D-gel images compression,
IJIST(16), No. 1, 2006, pp. 1-8.
DOI Link
0703
BibRef
Castanon, C.A.B.[Cesar A.B.],
Fraga, J.S.[Jane S.],
Fernandez, S.[Sandra],
Gruber, A.[Arthur],
da Fontoura Costa, L.[Luciano],
Biological shape characterization for automatic image recognition and
diagnosis of protozoan parasites of the genus Eimeria,
PR(40), No. 7, July 2007, pp. 1899-1910.
Elsevier DOI
0704
Shape analysis; Feature extraction; Pattern classification;
Image processing; Remote diagnosis; Real-time systems;
Eimeria; Avian coccidiosis
BibRef
Mosaliganti, K.,
Janoos, F.,
Sharp, R.,
Ridgway, R.,
Machiraju, R.,
Huang, K.,
Wenzel, P.,
de Bruin, A.,
Leone, G.,
Saltz, J.,
Detection and Visualization of Surface-Pockets to Enable Phenotyping
Studies,
MedImg(26), No. 9, September 2007, pp. 1283-1290.
IEEE DOI
0710
BibRef
Jafari-Khouzani, K.,
Soltanian-Zadeh, H.,
Fotouhi, F.,
Parrish, J.R.,
Finley, Jr., R.L.,
Automated Segmentation and Classification of High Throughput Yeast
Assay Spots,
MedImg(26), No. 10, October 2007, pp. 1401-1411.
IEEE DOI
0711
BibRef
Alcantara, D.A.[Dan A.],
Carmichael, O.T.[Owen T.],
Harcourt-Smith, W.[Will],
Sterner, K.[Kirstin],
Frost, S.R.[Stephen R.],
Dutton, R.A.[Rebecca A.],
Thompson, P.[Paul],
Delson, E.[Eric],
Amenta, N.[Nina],
Exploration of Shape Variation Using Localized Components Analysis,
PAMI(31), No. 8, August 2009, pp. 1510-1516.
IEEE DOI
0906
Shape variations of human brain regions. Preserves local variation.
BibRef
Shah, S.K.[Shishir K.],
Automatic Cell Segmentation Using a Shape-Classification Model in
Immunohistochemically Stained Cytological Images,
IEICE(E91-D), No. 7, July 2008, pp. 1955-1962.
DOI Link
0807
BibRef
Patterson, J.,
Stayton, P.S.,
Li, X.,
In Situ Characterization of the Degradation of PLGA Microspheres in
Hyaluronic Acid Hydrogels by Optical Coherence Tomography,
MedImg(28), No. 1, January 2009, pp. 74-81.
IEEE DOI
0901
BibRef
Luengo-Oroz, M.A.[Miguel A.],
Angulo, J.[Jesús],
Cyclic Mathematical Morphology in Polar-Logarithmic Representation,
IP(18), No. 5, May 2009, pp. 1090-1096.
IEEE DOI
0904
See also Hypercomplex Mathematical Morphology.
BibRef
Luengo-Oroz, M.A.[Miguel A.],
Angulo, J.[Jesús],
Flandrin, G.[Georges],
Klossa, J.[Jacques],
Mathematical Morphology in Polar-Logarithmic Coordinates. Application
to Erythrocyte Shape Analysis,
IbPRIA05(II:199).
Springer DOI
0509
BibRef
Kumar, S.,
Ong, S.H.,
Ranganath, S.,
Chew, F.T.,
Invariant texture classification for biomedical cell specimens via
non-linear polar map filtering,
CVIU(114), No. 1, January 2010, pp. 44-53.
Elsevier DOI
1001
Biomedical cells; Contrast-invariant; Polar map; Rotation invariant;
Scale-invariant; Texture classification; Support vector machine
BibRef
Kumar, S.,
Ong, S.H.,
Ranganath, S.,
Chew, F.T.,
Ong, T.C.,
Segmentation of microscope cell images via adaptive eigenfilters,
ICIP04(I: 135-138).
IEEE DOI
0505
BibRef
Smal, I.,
Grigoriev, I.,
Akhmanova, A.,
Niessen, W.J.,
Meijering, E.H.W.,
Microtubule Dynamics Analysis Using Kymographs and Variable-Rate
Particle Filters,
IP(19), No. 7, July 2010, pp. 1861-1876.
IEEE DOI
1007
intracellular dynamics.
BibRef
Wu, H.S.,
Fiel, M.I.,
Schiano, T.D.,
Ramer, M.,
Burstein, D.,
Gil, J.,
Segmentation of textured cell images based on frequency analysis,
IET-IPR(5), No. 2, April 2011, pp. 148-158.
DOI Link
1103
BibRef
Gallego, M.Á.[M. Ángeles],
Ibáñez, M.V.[M. Victoria],
Simó, A.[Amelia],
Non-homogeneous temporal Boolean models to study endocytosis,
PR(45), No. 4, April 2012, pp. 1245-1254.
Elsevier DOI
1112
Temporal Boolean model; Endocytosis; Spatial non-homogeneity;
Germ-grain model; Parameter estimation
BibRef
Gu, Q.Y.[Qing-Yi],
Takaki, T.[Takeshi],
Ishii, I.[Idaku],
A Fast Multi-Object Extraction Algorithm Based on Cell-Based Connected
Components Labeling,
IEICE(E95-D), No. 2, February 2012, pp. 636-645.
WWW Link.
1202
BibRef
Earlier:
2000-fps multi-object extraction based on cell-based labeling,
ICIP10(3761-3764).
IEEE DOI
1009
Label cells, scan image once for moment features.
BibRef
Gu, Q.Y.[Qing-Yi],
Takaki, T.[Takeshi],
Ishii, I.[Idaku],
Fast FPGA-Based Multiobject Feature Extraction,
CirSysVideo(23), No. 1, January 2013, pp. 30-45.
IEEE DOI
1302
BibRef
Hagwood, C.,
Bernal, J.,
Halter, M.,
Elliott, J.,
Evaluation of Segmentation Algorithms on Cell Populations Using CDF
Curves,
MedImg(31), No. 2, February 2012, pp. 380-390.
IEEE DOI
1202
BibRef
Glaß, M.[Markus],
Möller, B.[Birgit],
Zirkel, A.[Anne],
Wächter, K.[Kristin],
Hüttelmaier, S.[Stefan],
Posch, S.[Stefan],
Cell migration analysis: Segmenting scratch assay images with level
sets and support vector machines,
PR(45), No. 9, September 2012, pp. 3154-3165.
Elsevier DOI
1206
BibRef
Earlier:
Scratch Assay Analysis with Topology-Preserving Level Sets and Texture
Measures,
IbPRIA11(100-108).
Springer DOI
1106
Scratch assay; Segmentation; Level sets; Texture; Topology; SVM
BibRef
Theriault, D.H.[Diane H.],
Walker, M.L.[Matthew L.],
Wong, J.Y.[Joyce Y.],
Betke, M.[Margrit],
Cell morphology classification and clutter mitigation in phase-contrast
microscopy images using machine learning,
MVA(23), No. 4, July 2012, pp. 659-673.
WWW Link.
1206
BibRef
Deepak, K.S.[K. Sai],
Medathati, N.V.K.[N.V. Kartheek],
Sivaswamy, J.[Jayanthi],
Detection and discrimination of disease-related abnormalities based on
learning normal cases,
PR(45), No. 10, October 2012, pp. 3707-3716.
Elsevier DOI
1206
Abnormality detection; Computer-aided diagnosis; Learning normal;
Medical images; Shape descriptor; Texture descriptor
BibRef
Meijering, E.,
Cell Segmentation: 50 Years Down the Road,
SPMag(29), No. 5, 2012, pp. 140-145.
IEEE DOI
1209
Survey, Cell Segmentation. Life Sciences. Review of the results.
BibRef
Randell, D.A.[David A.],
Landini, G.[Gabriel],
Galton, A.,
Discrete Mereotopology for Spatial Reasoning in Automated Histological
Image Analysis,
PAMI(35), No. 3, March 2013, pp. 568-581.
IEEE DOI
1303
parts and topology to model space.
BibRef
Nozaka, H.[Hiroyuki],
Miura, T.[Tomisato],
Zheng, Z.X.[Zhong-Xi],
Multi-Layer Virtual Slide Scanning System with Multi-Focus Image Fusion
for Cytopathology and Image Diagnosis,
IEICE(E96-D), No. 4, April 2013, pp. 856-863.
WWW Link.
1304
BibRef
Ferro, L.[Luís],
Marques, M.[Marco],
Leal, P.[Pedro],
Romão, S.[Susana],
Cruz, T.[Tânia],
Tomás, A.M.[Ana M.],
Automatic Spectral Unmixing of Leishmania Infection Macrophage Cell
Cultures Image,
ICIAR13(621-629).
Springer DOI
1307
BibRef
Leal, P.[Pedro],
Ferro, L.[Luís],
Marques, M.[Marco],
Romão, S.[Susana],
Cruz, T.[Tânia],
Tomá, A.M.[Ana M.],
Castro, H.[Helena],
Quelhas, P.[Pedro],
Automatic Assessment of Leishmania Infection Indexes on In Vitro
Macrophage Cell Cultures,
ICIAR12(II: 432-439).
Springer DOI
1206
BibRef
Filipczuk, P.[Pawel],
Krawczyk, B.[Bartosz],
Wozniak, M.[Michal],
Classifier ensemble for an effective cytological image analysis,
PRL(34), No. 14, 2013, pp. 1748-1757.
Elsevier DOI
1308
Pattern recognition
BibRef
White, A.G.,
Lees, B.,
Kao, H.L.[Huey-Ling],
Cipriani, P.G.,
Munarriz, E.,
Paaby, A.B.,
Erickson, K.,
Guzman, S.,
Rattanakorn, K.,
Sontag, E.,
Geiger, D.,
Gunsalus, K.C.,
Piano, F.,
DevStaR: High-Throughput Quantification of C. elegans Developmental
Stages,
MedImg(32), No. 10, 2013, pp. 1791-1803.
IEEE DOI
1311
biology computing
BibRef
Badsha, S.,
Mokhtar, N.,
Arof, H.,
Lim, Y.A.,
Mubin, M.,
Ibrahim, Z.,
Automatic Cryptosporidium and Giardia viability detection in treated
water,
JIVP(2013), No. 1, 2013, pp. 56.
DOI Link
1311
BibRef
Mualla, F.,
Scholl, S.,
Sommerfeldt, B.,
Maier, A.,
Hornegger, J.,
Automatic Cell Detection in Bright-Field Microscope Images Using
SIFT, Random Forests, and Hierarchical Clustering,
MedImg(32), No. 12, 2013, pp. 2274-2286.
IEEE DOI
1312
Couplings
BibRef
Hagwood, C.,
Bernal, J.,
Halter, M.,
Elliott, J.,
Brennan, T.,
Testing Equality of Cell Populations Based on Shape and Geodesic
Distance,
MedImg(32), No. 12, 2013, pp. 2230-2237.
IEEE DOI
1312
Extraterrestrial measurements
BibRef
Comic, L.[Lidija],
de Floriani, L.[Leila],
Iuricich, F.[Federico],
Fugacci, U.[Ulderico],
Topological modifications and hierarchical representation of cell
complexes in arbitrary dimensions,
CVIU(121), No. 1, 2014, pp. 2-12.
Elsevier DOI
1404
BibRef
Earlier: A1, A2, Only:
Topological Operators on Cell Complexes in Arbitrary Dimensions,
CTIC12(98-107).
Springer DOI
1206
Computational topology
BibRef
Fachada, N.[Nuno],
Figueiredo, M.A.T.[Mário A.T.],
Lopes, V.V.[Vitor V.],
Martins, R.C.[Rui C.],
Rosa, A.C.[Agostinho C.],
Spectrometric differentiation of yeast strains using minimum volume
increase and minimum direction change clustering criteria,
PRL(45), No. 1, 2014, pp. 55-61.
Elsevier DOI
1407
Clustering
BibRef
Chang, H.[Hang],
Wen, Q.[Quan],
Parvin, B.[Bahram],
Coupled segmentation of nuclear and membrane-bound macromolecules
through voting and multiphase level set,
PR(48), No. 3, 2015, pp. 882-893.
Elsevier DOI
1412
Segmentation of membrane-bound macromolecules
BibRef
Ortiz-de-Solórzano, C.,
Muñoz-Barrutia, A.,
Meijering, E.,
Kozubek, M.,
Toward a Morphodynamic Model of the Cell:
Signal processing for cell modeling,
SPMag(32), No. 1, January 2015, pp. 20-29.
IEEE DOI
1502
biomechanics
BibRef
Ziraldo, R.,
Link, N.,
Abrams, J.,
Ma, L.[Lan],
Towards automatic image analysis and assessment of the multicellular
apoptosis process,
IET-IPR(9), No. 5, 2015, pp. 424-433.
DOI Link
1506
biology computing
BibRef
Bise, R.,
Sato, Y.,
Cell Detection From Redundant Candidate Regions Under Nonoverlapping
Constraints,
MedImg(34), No. 7, July 2015, pp. 1417-1427.
IEEE DOI
1507
Image segmentation
BibRef
Saito, P.T.M.[Priscila T.M.],
Suzuki, C.T.N.[Celso T.N.],
Gomes, J.F.[Jancarlo F.],
de Rezende, P.J.[Pedro J.],
Falcão, A.X.[Alexandre X.],
Robust active learning for the diagnosis of parasites,
PR(48), No. 11, 2015, pp. 3572-3583.
Elsevier DOI
1506
Active learning
BibRef
Wang, Z.Z.[Zhen-Zhou],
A semi-automatic method for robust and efficient identification of
neighboring muscle cells,
PR(53), No. 1, 2016, pp. 300-312.
Elsevier DOI
1602
Segmentation
BibRef
Su, H.,
Yin, Z.,
Huh, S.,
Kanade, T.,
Zhu, J.,
Interactive Cell Segmentation Based on Active and Semi-Supervised
Learning,
MedImg(35), No. 3, March 2016, pp. 762-777.
IEEE DOI
1603
Complexity theory
BibRef
Ahmad, O.[Ola],
Collet, C.[Christophe],
Scale-space spatio-temporal random fields: Application to the
detection of growing microbial patterns from surface roughness,
PR(58), No. 1, 2016, pp. 27-38.
Elsevier DOI
1606
Spatio-temporal modeling
BibRef
Svensson, C.M.[Carl-Magnus],
Bondoc, K.G.[Karen Grace],
Pohnert, G.[Georg],
Figge, M.T.[Marc Thilo],
Segmentation of clusters by template rotation expectation
maximization,
CVIU(154), No. 1, 2017, pp. 64-72.
Elsevier DOI
1612
Segmentation of clusters of nearly identical objects.
BibRef
Hao, R.Q.[Ru-Qian],
Wang, X.Z.[Xiang-Zhou],
Zhang, J.[Jing],
Liu, J.X.[Juan-Xiu],
Ni, G.M.[Guang-Ming],
Du, X.[Xiao_Hui],
Liu, L.[Lin],
Liu, Y.[Yong],
Automatic detection of trichomonads based on an improved Kalman
background reconstruction algorithm,
JOSA-A(34), No. 5, May 2017, pp. 752-759.
DOI Link
1705
General Image processing
BibRef
Loewke, N.O.,
Pai, S.,
Cordeiro, C.,
Black, D.,
King, B.L.,
Contag, C.H.,
Chen, B.,
Baer, T.M.,
Solgaard, O.,
Automated Cell Segmentation for Quantitative Phase Microscopy,
MedImg(37), No. 4, April 2018, pp. 929-940.
IEEE DOI
1804
Adaptive optics, Biomedical optical imaging, Image segmentation,
Microscopy, Optical imaging, Optical microscopy, Optical sensors,
volumetric distribution
BibRef
Tareef, A.,
Song, Y.,
Huang, H.,
Feng, D.,
Chen, M.,
Wang, Y.,
Cai, W.,
Multi-Pass Fast Watershed for Accurate Segmentation of Overlapping
Cervical Cells,
MedImg(37), No. 9, September 2018, pp. 2044-2059.
IEEE DOI
1809
Image segmentation, Shape, Microscopy, Task analysis,
Image edge detection, Transforms, Active contours,
Chan-Vese active contour
BibRef
Tareef, A.,
Song, Y.,
Lee, M.Z.,
Feng, D.D.,
Chen, M.,
Cai, W.D.,
Morphological Filtering and Hierarchical Deformation for Partially
Overlapping Cell Segmentation,
DICTA15(1-7)
IEEE DOI
1603
cellular biophysics
BibRef
Zalev, J.,
Kolios, M.C.,
Image Reconstruction Combined With Interference Removal Using a
Mixed-Domain Proximal Operator,
SPLetters(25), No. 12, December 2018, pp. 1840-1844.
IEEE DOI
1812
biological tissues, biomedical optical imaging, gradient methods,
image reconstruction, medical image processing, minimisation,
proximal operator
BibRef
Hiramatsu, Y.,
Hotta, K.,
Imanishi, A.,
Matsuda, M.,
Terai, K.,
Cell Image Segmentation by Integrating Multiple CNNs,
Microscopy18(2286-22866)
IEEE DOI
1812
Image segmentation, Neural networks, Semantics, Training,
Biomembranes, Fluorescence, Kernel
BibRef
Awad, S.I.[Samer I.],
Abdallat, R.G.[Rula G.],
Smadi, O.A.[Othman A.],
Al-Momani, T.D.[Thakir D.],
Automated identification and counting of proliferating mesenchymal stem
cells in bone callus,
IJCVR(9), No. 1, 2019, pp. 1-13.
DOI Link
1903
BibRef
Winter, M.,
Mankowski, W.,
Wait, E.,
de la Hoz, E.C.,
Aguinaldo, A.,
Cohen, A.R.,
Separating Touching Cells Using Pixel Replicated Elliptical Shape
Models,
MedImg(38), No. 4, April 2019, pp. 883-893.
IEEE DOI
1904
Image segmentation, Transforms, Task analysis, Fluorescence,
Gaussian mixture model, Shape, Segmentation, cell segmentation,
segmenting touching objects
BibRef
Fehri, H.,
Gooya, A.,
Lu, Y.,
Meijering, E.,
Johnston, S.A.,
Frangi, A.F.,
Bayesian Polytrees With Learned Deep Features for Multi-Class Cell
Segmentation,
IP(28), No. 7, July 2019, pp. 3246-3260.
IEEE DOI
1906
Bayes methods, directed graphs, image classification,
image segmentation, learning (artificial intelligence),
error prediction
BibRef
Silva, R.R.V.[Romuere R.V.],
Araujo, F.H.D.[Flavio H.D.],
Ushizima, D.M.[Daniela M.],
Bianchi, A.G.C.[Andrea G.C.],
Carneiro, C.M.[Claudia M.],
Medeiros, F.N.S.[Fatima N.S.],
Radial feature descriptors for cell classification and recommendation,
JVCIR(62), 2019, pp. 105-116.
Elsevier DOI
1908
Radial feature descriptors, Cell classification,
Image retrieval, Convolutional neural networks
BibRef
Xue, Y.,
Bigras, G.,
Hugh, J.,
Ray, N.,
Training Convolutional Neural Networks and Compressed Sensing
End-to-End for Microscopy Cell Detection,
MedImg(38), No. 11, November 2019, pp. 2632-2641.
IEEE DOI
1911
Computer architecture, Microprocessors, Encoding, Microscopy,
Training, Compressed sensing, Backpropagation, Cell detection, CNN,
end-to-end training
BibRef
Banerjee, S.[Sriparna],
Chaudhuri, S.S.[Sheli Sinha],
Total contribution score and fuzzy entropy based two-stage selection of
FC, ReLU and inverseReLU features of multiple convolution neural
networks for erythrocytes detection,
IET-CV(13), No. 7, Octomber 2019, pp. 640-650.
DOI Link
1911
BibRef
Liu, Y.,
Yuan, H.,
Wang, Z.,
Ji, S.,
Global Pixel Transformers for Virtual Staining of Microscopy Images,
MedImg(39), No. 6, June 2020, pp. 2256-2266.
IEEE DOI
2006
Microscopy, Task analysis, Predictive models, Convolution, Fuses,
Tensors, Computational modeling, Cellular structures,
multi-scale inputs
BibRef
Borovec, J.,
Kybic, J.,
Arganda-Carreras, I.,
Sorokin, D.V.,
Bueno, G.,
Khvostikov, A.V.,
Bakas, S.,
Chang, E.I.C.,
Heldmann, S.,
Kartasalo, K.,
Latonen, L.,
Lotz, J.,
Noga, M.,
Pati, S.,
Punithakumar, K.,
Ruusuvuori, P.,
Skalski, A.,
Tahmasebi, N.,
Valkonen, M.,
Venet, L.,
Wang, Y.,
Weiss, N.,
Wodzinski, M.,
Xiang, Y.,
Xu, Y.,
Yan, Y.,
Yushkevich, P.,
Zhao, S.,
Muñoz-Barrutia, A.,
ANHIR: Automatic Non-Rigid Histological Image Registration Challenge,
MedImg(39), No. 10, October 2020, pp. 3042-3052.
IEEE DOI
2010
Image registration, Microscopy, Lung, Magnetic resonance imaging,
IEEE Senior Members, Robustness, Image resolution,
microscopy
BibRef
Huang, Y.L.[Ya-Li],
Hu, X.F.[Xue-Fang],
Hao, L.[Lei],
Gao, Y.H.[Yue-Hua],
Liu, Z.W.[Zhi-Wen],
Wang, P.G.[Pei-Guang],
Quantitative analysis of cell morphology based on the contourlet
transform,
IET-IPR(14), No. 12, October 2020, pp. 2826-2832.
DOI Link
2010
BibRef
Zhang, J.H.[Jing-Hua],
Li, C.[Chen],
Kosov, S.[Sergey],
Grzegorzek, M.[Marcin],
Shirahama, K.[Kimiaki],
Jiang, T.[Tao],
Sun, C.[Changhao],
Li, Z.[Zihan],
Li, H.[Hong],
LCU-Net: A novel low-cost U-Net for environmental microorganism image
segmentation,
PR(115), 2021, pp. 107885.
Elsevier DOI
2104
Environmental miroorganisms, Image segmentation,
Deep convolutional neural networks, Low-cost
BibRef
Mitra, S.[Shyamali],
Das, N.[Nibaran],
Dey, S.[Soumyajyoti],
Chakraborty, S.[Sukanta],
Nasipuri, M.[Mita],
Naskar, M.K.[Mrinal Kanti],
Cytology Image Analysis Techniques Toward Automation:
Systematically Revisited,
Surveys(54), No. 3, April 2021, pp. xx-yy.
DOI Link
2106
Survey, Cytology. Image classification, image segmentation,
computer aided diagnosis, malignant and benign
BibRef
Liu, J.F.[Jian-Fei],
Shen, C.[Christine],
Aguilera, N.[Nancy],
Cukras, C.[Catherine],
Hufnagel, R.B.[Robert B.],
Zein, W.M.[Wadih M.],
Liu, T.[Tao],
Tam, J.[Johnny],
Active Cell Appearance Model Induced Generative Adversarial Networks
for Annotation-Efficient Cell Segmentation and Identification on
Adaptive Optics Retinal Images,
MedImg(40), No. 10, October 2021, pp. 2820-2831.
IEEE DOI
2110
Image segmentation, Shape, Adaptive optics, Annotations, Retina,
Adaptation models, Training data, Active appearance model,
generative adversarial networks
BibRef
Zhao, T.Y.[Tian-Yi],
Yin, Z.Z.[Zhao-Zheng],
Weakly Supervised Cell Segmentation by Point Annotation,
MedImg(40), No. 10, October 2021, pp. 2736-2747.
IEEE DOI
2110
Image segmentation, Annotations, Training, Neural networks,
Task analysis, Deep learning, Computer architecture, human in the loop
BibRef
Wang, J.[Jie],
Zhang, M.X.[Ming-Xing],
Zhang, J.[Ji],
Wang, Y.[Yibo],
Gahlmann, A.[Andreas],
Acton, S.T.[Scott T.],
Graph-Theoretic Post-Processing of Segmentation With Application to
Dense Biofilms,
IP(30), 2021, pp. 8580-8594.
IEEE DOI
2110
Image segmentation, Microorganisms,
Feature extraction, Clustering algorithms, Biomedical imaging,
cell segmentation
BibRef
Bajla, I.[Ivan],
Teplan, M.[Michal],
Yeast cell detection in color microscopic images using ROC-optimized
decoloring and segmentation,
IET-IPR(16), No. 2, 2022, pp. 606-621.
DOI Link
2201
BibRef
Nguyen, E.H.[Ethan H.],
Yang, H.C.[Hai-Chun],
Deng, R.[Ruining],
Lu, Y.Z.[Yu-Zhe],
Zhu, Z.[Zheyu],
Roland, J.T.[Joseph T.],
Lu, L.[Le],
Landman, B.A.[Bennett A.],
Fogo, A.B.[Agnes B.],
Huo, Y.[Yuankai],
Circle Representation for Medical Object Detection,
MedImg(41), No. 3, March 2022, pp. 746-754.
IEEE DOI
2203
Object detection, Biomedical imaging, Head, Feature extraction,
Heating systems, Convolutional neural networks, Training, pathology
BibRef
Liu, Z.[Zhe],
Bagnaninchi, P.[Pierre],
Yang, Y.J.[Yun-Jie],
Impedance-Optical Dual-Modal Cell Culture Imaging With Learning-Based
Information Fusion,
MedImg(41), No. 4, April 2022, pp. 983-996.
IEEE DOI
2204
Electrical impedance tomography, Imaging, Image reconstruction,
Electrodes, Deep learning, Conductivity, Cell culture,
image processing
BibRef
Vicent, M.[Mabirizi],
Simon, K.[Kawuma],
Yonasi, S.[Safari],
An algorithm to detect overlapping red blood cells for sickle cell
disease diagnosis,
IET-IPR(16), No. 6, 2022, pp. 1669-1677.
DOI Link
2204
BibRef
Benazzouz, M.[Mourtada],
Benomar, M.L.[Mohammed Lamine],
Moualek, Y.[Youcef],
Modified U-Net for cytological medical image segmentation,
IJIST(32), No. 5, 2022, pp. 1761-1773.
DOI Link
2209
angiography, cytology, medical images, segmentation, U-Net
BibRef
Sathyan, R.R.[Remya Remani],
Menon, G.C.[Gopakumar Chandrasekhara],
Prasad, H.[Hari],
Sreedharan, H.[Hariharan],
Hemanth, D.J.[Duraisamy Jude],
Deep learning-based semantic segmentation of interphase cells and
debris from metaphase images,
IJIST(32), No. 6, 2022, pp. 2017-2033.
DOI Link
2212
automated karyotyping system (AKS), backbone networks,
deep learning, interphase cells, semantic segmentation
BibRef
Deng, X.[Ximu],
Srivastava, A.[Anuj],
Sarkar, R.[Rituparna],
Labruyère, E.[Elisabeth],
Olivo-Marin, J.C.[Jean-Christophe],
Characterizing Cell Shape Distributions Using k-Mode Kernel Mixtures,
ICPR22(2517-2523)
IEEE DOI
2212
Manifolds, Measurement, Shape, Microscopy, Sociology, Statistical distributions
BibRef
Mukherjee, S.[Suvadip],
Sarkar, R.[Rituparna],
Manich, M.[Maria],
Labruyère, E.[Elisabeth],
Olivo-Marin, J.C.[Jean-Christophe],
Domain Adapted Multitask Learning for Segmenting Amoeboid Cells in
Microscopy,
MedImg(42), No. 1, January 2023, pp. 42-54.
IEEE DOI
2301
Image segmentation, Microscopy, Task analysis, Multitasking,
Training, Imaging, Adaptation models, Cell segmentation, cell biology
BibRef
Kostrykin, L.[Leonid],
Rohr, K.[Karl],
Superadditivity and Convex Optimization for Globally Optimal Cell
Segmentation Using Deformable Shape Models,
PAMI(45), No. 3, March 2023, pp. 3831-3847.
IEEE DOI
2302
Shape, Minimization, Image segmentation, Deformable models,
Computational modeling, Microscopy, Cell cluster splitting, surface fitting
BibRef
Dawoud, Y.[Youssef],
Bouazizi, A.[Arij],
Ernst, K.[Katharina],
Carneiro, G.[Gustavo],
Belagiannis, V.[Vasileios],
Knowing What to Label for Few Shot Microscopy Image Cell Segmentation,
WACV23(3557-3566)
IEEE DOI
2302
Training, Image segmentation, Microscopy, Computational modeling,
Semisupervised learning, Predictive models,
Applications: Biomedical/healthcare/medicine
BibRef
Han, L.[Liang],
Su, H.[Hang],
Yin, Z.Z.[Zhao-Zheng],
Phase Contrast Image Restoration by Formulating Its Imaging Principle
and Reversing the Formulation With Deep Neural Networks,
MedImg(42), No. 4, April 2023, pp. 1068-1082.
IEEE DOI
2304
Image restoration, Microscopy, Imaging, Image segmentation,
Deep learning, Optical microscopy, Neural networks,
cell segmentation
BibRef
Zhu, Y.M.[Yan-Ming],
Yin, X.F.[Xue-Fei],
Meijering, E.[Erik],
A Compound Loss Function With Shape Aware Weight Map for Microscopy
Cell Segmentation,
MedImg(42), No. 5, May 2023, pp. 1278-1288.
IEEE DOI
2305
Image segmentation, Shape, Microscopy, Compounds, Microprocessors,
Annotations, Microscopy cell segmentation, deep learning,
shape aware weight map
BibRef
Yu, J.[Ji],
Point-Supervised Single-Cell Segmentation via Collaborative Knowledge
Sharing,
MedImg(42), No. 12, December 2023, pp. 3884-3894.
IEEE DOI Code:
WWW Link.
2312
BibRef
Liang, D.[Dan],
Pi, Y.J.[Yang-Jun],
Hu, K.[Kai],
Cui, Y.G.[Yu-Guo],
Huang, Y.[Ye],
Liang, D.T.[Dong-Tai],
Feng, S.L.[Shi-Liang],
Accurate and fast extraction of adhesive cells based on concave
points detection and matching,
IJIST(34), No. 1, 2024, pp. e22934.
DOI Link
2401
adhesive cell, concave detection, region extraction, segmentation
BibRef
Li, B.[Bo],
Zhang, Y.[Yong],
Zhang, C.Y.[Cheng-Yang],
Piao, X.L.[Xing-Lin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Multi-Scale Hypergraph-Based Feature Alignment Network for Cell
Localization,
PR(149), 2024, pp. 110260.
Elsevier DOI
2403
Cell localization, Feature alignment, Hypergraph neural network,
Multi-scale hypergraph attention, Stepwise adaptive fusion
BibRef
Kang, M.[Ming],
Ting, C.M.[Chee-Ming],
Ting, F.F.[Fung Fung],
Phan, R.C.W.[Raphaël C.W.],
ASF-YOLO: A novel YOLO model with attentional scale sequence fusion
for cell instance segmentation,
IVC(147), 2024, pp. 105057.
Elsevier DOI Code:
WWW Link.
2406
Medical image analysis, Small object segmentation,
You only look once (YOLO), Sequence feature fusion, Attention mechanism
BibRef
Wolf, S.[Steffen],
Lalit, M.[Manan],
McDole, K.[Katie],
Funke, J.[Jan],
Unsupervised Learning of Object-Centric Embeddings for Cell Instance
Segmentation in Microscopy Images,
ICCV23(21206-21215)
IEEE DOI
2401
BibRef
He, H.L.[Hong-Liang],
Wang, J.[Jun],
Wei, P.X.[Peng-Xu],
Xu, F.[Fan],
Ji, X.Y.[Xiang-Yang],
Liu, C.[Chang],
Chen, J.[Jie],
TopoSeg: Topology-Aware Nuclear Instance Segmentation,
ICCV23(21250-21259)
IEEE DOI Code:
WWW Link.
2401
BibRef
Pastore, V.P.[Vito Paolo],
Alfano, P.D.[Paolo Didier],
Oke, A.[Ashwini],
Capponi, S.[Sara],
Eltanan, D.[Daniel],
Woodruff-Madeira, X.[Xavier],
Nguyen, A.[Anita],
Fung, J.C.[Jennifer Carol],
Bianco, S.[Simone],
An Unsupervised Learning Approach to Resolve Phenotype to Genotype
Mapping in Budding Yeasts Vacuoles,
CIAP23(II:247-258).
Springer DOI
2312
BibRef
Fang, Y.T.[Ya-Ting],
Zhong, B.J.[Bao-Jiang],
Wang, Z.K.[Zi-Kai],
Ma, K.K.[Kai-Kuang],
A Multi-Scale Cell Segmentation Method for Detecting Hematological
Disorders,
ICIP23(141-145)
IEEE DOI
2312
BibRef
Zhou, D.H.[Dong-Hao],
Gu, C.B.[Chun-Bin],
Xu, J.[Junde],
Liu, F.[Furui],
Wang, Q.[Qiong],
Chen, G.Y.[Guang-Yong],
Heng, P.A.[Pheng-Ann],
RepMode: Learning to Re-Parameterize Diverse Experts for Subcellular
Structure Prediction,
CVPR23(3312-3322)
IEEE DOI
2309
BibRef
Jiang, H.[Hao],
Zhang, R.S.[Ru-Shan],
Zhou, Y.N.[Yan-Ning],
Wang, Y.[Yumeng],
Chen, H.[Hao],
DoNet: Deep De-Overlapping Network for Cytology Instance Segmentation,
CVPR23(15641-15650)
IEEE DOI
2309
BibRef
Tyagi, A.K.[Aayush Kumar],
Mohapatra, C.[Chirag],
Das, P.[Prasenjit],
Makharia, G.[Govind],
Mehra, L.[Lalita],
Prathosh, A.P.,
Mausam,
DeGPR: Deep Guided Posterior Regularization for Multi-Class Cell
Detection and Counting,
CVPR23(23913-23923)
IEEE DOI
2309
BibRef
Kato, S.[Sota],
Hotta, K.[Kazuhiro],
One-shot and Partially-Supervised Cell Image Segmentation Using Small
Visual Prompt,
CVMI23(4295-4304)
IEEE DOI
2309
BibRef
Abousamra, S.[Shahira],
Gupta, R.[Rajarsi],
Kurc, T.[Tahsin],
Samaras, D.[Dimitris],
Saltz, J.[Joel],
Chen, C.[Chao],
Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology,
CVPR23(3323-3333)
IEEE DOI
2309
BibRef
Casado-García, Á.[Ángela],
Carlos, E.[Estefanía],
Domínguez, C.[César],
Heras, J.[Jónathan],
Izco, M.[María],
Mata, E.[Eloy],
Pascual, V.[Vico],
Álvarez-Erviti, L.[Lydia],
Microgliaj: An Automatic Tool for Microglial Cell Detection and
Segmentation,
IbPRIA23(593-602).
Springer DOI
2307
BibRef
Golts, A.[Alona],
Livneh, I.[Ido],
Zohar, Y.[Yaniv],
Ciechanover, A.[Aaron],
Elad, M.[Michael],
Simultaneous Detection and Classification of Partially and Weakly
Supervised Cells,
MCV22(313-329).
Springer DOI
2304
BibRef
Chattopadhyay, N.[Nilanjan],
Gehlot, S.[Shiv],
Singhal, N.[Nitin],
Fusion: Fully Unsupervised Test-time Stain Adaptation via Fused
Normalization Statistics,
MIA-COVID19D22(566-576).
Springer DOI
2304
BibRef
Nguyen, T.P.[Tien-Phat],
Pham, T.T.[Trong-Thang],
Nguyen, T.[Tri],
Le, H.[Hieu],
Nguyen, D.[Dung],
Lam, H.[Hau],
Nguyen, P.[Phong],
Fowler, J.[Jennifer],
Tran, M.T.[Minh-Triet],
Le, N.[Ngan],
EmbryosFormer: Deformable Transformer and Collaborative
Encoding-Decoding for Embryos Stage Development Classification,
WACV23(1980-1989)
IEEE DOI
2302
Image segmentation, Embryo, Head, Computational modeling,
Source coding, Collaboration, Transformers
BibRef
Nishimura, K.[Kazuya],
Bise, R.[Ryoma],
Weakly Supervised Cell-Instance Segmentation with Two Types of Weak
Labels by Single Instance Pasting,
WACV23(3184-3193)
IEEE DOI
2302
Learning systems, Image segmentation, Costs, Image recognition,
Image analysis, Annotations
BibRef
Keaton, M.R.[Matthew R.],
Zaveri, R.J.[Ram J.],
Doretto, G.[Gianfranco],
CellTranspose: Few-shot Domain Adaptation for Cellular Instance
Segmentation,
WACV23(455-466)
IEEE DOI
2302
Training, Adaptation models, Annotations, Computational modeling,
Biological system modeling, Graphics processing units
BibRef
Zhou, Y.T.[Ya-Ting],
Li, W.J.[Wen-Jing],
Yang, G.[Ge],
SCTS: Instance Segmentation of Single Cells Using a Transformer-Based
Semantic-Aware Model and Space-Filling Augmentation,
WACV23(5933-5942)
IEEE DOI
2302
Training, Image segmentation, Adaptation models, Statistical analysis,
Shape, Semantics, Training data, Low-level and physics-based vision
BibRef
Liu, Y.[Yi],
Nie, Y.L.[Yuan-Liu],
Liu, N.[Ning],
Yao, F.Q.[Feng-Qin],
Zhu, J.R.[Jing-Ru],
Wang, S.K.[Sheng-Ke],
EA-UNet: A Macrophages Image Segmentation Model Based on U-Net with
External Attention,
ICIVC22(387-392)
IEEE DOI
2301
Training, Image segmentation, Adaptation models, Shape, Semantics,
Semisupervised learning, Feature extraction, external-attention
BibRef
Liu, R.[Rong],
Ao, B.[Bin],
Wen, Q.[Qing],
Wu, X.[Xin],
Yin, J.P.[Jian-Ping],
Li, K.[Kuan],
Combining ExtremeNet with Shape Constraints and Re-Discrimination to
Detect Cells from CD56 Images,
ICPR22(4587-4593)
IEEE DOI
2212
Training, Deep learning, Shape, Neurons, Object detection,
Convolutional neural networks, CD56 images, Re-Discrimination
BibRef
Xu, A.[An],
Li, W.Q.[Wen-Qi],
Guo, P.F.[Peng-Fei],
Yang, D.[Dong],
Roth, H.[Holger],
Hatamizadeh, A.[Ali],
Zhao, C.[Can],
Xu, D.G.[Da-Guang],
Huang, H.[Heng],
Xu, Z.Y.[Zi-Yue],
Closing the Generalization Gap of Cross-Silo Federated Medical Image
Segmentation,
CVPR22(20834-20843)
IEEE DOI
2210
Training, Image segmentation, Privacy, Image resolution,
Federated learning, Microscopy, Linear programming, Medical,
Privacy and federated learning
BibRef
Cerrone, L.[Lorenzo],
Vijayan, A.[Athul],
Mody, T.[Tejasvinee],
Schneitz, K.[Kay],
Hamprecht, F.A.[Fred A.],
CellTypeGraph: A New Geometric Computer Vision Benchmark,
CVPR22(20865-20875)
IEEE DOI
2210
Plants (biology), Supervised learning, Biological systems,
Computer architecture, Benchmark testing, Medical,
grouping and shape analysis
BibRef
Sugimoto, T.[Tatsuhiko],
Ito, H.[Hiroaki],
Teramoto, Y.[Yuki],
Yoshizawa, A.[Akihiko],
Bise, R.[Ryoma],
Multi-Class Cell Detection Using Modified Self-Attention,
CVMI22(1854-1862)
IEEE DOI
2210
Heating systems, Pathology, Aggregates, Feature extraction, Pattern recognition
BibRef
Zhou, Z.Q.[Zi-Qi],
Qi, L.[Lei],
Yang, X.[Xin],
Ni, D.[Dong],
Shi, Y.[Yinghuan],
Generalizable Cross-modality Medical Image Segmentation via Style
Augmentation and Dual Normalization,
CVPR22(20824-20833)
IEEE DOI
2210
Image segmentation, Adaptation models, Codes, Shape, Microscopy,
Computed tomography, Medical, biological and cell microscopy,
Transfer/low-shot/long-tail learning
BibRef
Liu, F.B.[Feng-Bei],
Tian, Y.[Yu],
Chen, Y.H.[Yuan-Hong],
Liu, Y.Y.[Yu-Yuan],
Belagiannis, V.[Vasileios],
Carneiro, G.[Gustavo],
ACPL: Anti-curriculum Pseudo-labelling for Semi-supervised Medical
Image Classification,
CVPR22(20665-20674)
IEEE DOI
2210
Training, Semisupervised learning, Thorax, Skin, Pattern recognition,
Lesions, Medical diagnostic imaging, Medical, biological and cell microscopy
BibRef
Tang, Y.C.[Yu-Cheng],
Yang, D.[Dong],
Li, W.Q.[Wen-Qi],
Roth, H.R.[Holger R.],
Landman, B.[Bennett],
Xu, D.G.[Da-Guang],
Nath, V.[Vishwesh],
Hatamizadeh, A.[Ali],
Self-Supervised Pre-Training of Swin Transformers for 3D Medical
Image Analysis,
CVPR22(20698-20708)
IEEE DOI
2210
Image segmentation, Image analysis, Computational modeling,
Computed tomography, Diversity reception,
biological and cell microscopy
BibRef
Ding, Z.P.[Zhi-Peng],
Niethammer, M.[Marc],
Aladdin: Joint Atlas Building and Diffeomorphic Registration Learning
with Pairwise Alignment,
CVPR22(20752-20761)
IEEE DOI
2210
Training, Image registration, Solid modeling, Buildings, Sociology,
Probabilistic logic, biological and cell microscopy, Medical
BibRef
Wu, Y.F.[Yi-Fan],
Jiahao, T.Z.[Tom Z.],
Wang, J.[Jiancong],
Yushkevich, P.A.[Paul A.],
Hsieh, M.A.[M. Ani],
Gee, J.C.[James C.],
NODEO: A Neural Ordinary Differential Equation Based Optimization
Framework for Deformable Image Registration,
CVPR22(20772-20781)
IEEE DOI
2210
Measurement, Image registration, Neural networks,
Ordinary differential equations, Benchmark testing,
biological and cell microscopy
BibRef
Wang, J.F.[Jian-Feng],
Lukasiewicz, T.[Thomas],
Rethinking Bayesian Deep Learning Methods for Semi-Supervised
Volumetric Medical Image Segmentation,
CVPR22(182-190)
IEEE DOI
2210
Deep learning, Training, Image segmentation, Microscopy,
Microprocessors, Computer architecture, Probabilistic logic,
biological and cell microscopy
BibRef
Kong, F.[Fanjie],
Henao, R.[Ricardo],
Efficient Classification of Very Large Images with Tiny Objects,
CVPR22(2374-2384)
IEEE DOI
2210
Satellites, Microscopy, Microprocessors, Machine vision,
Memory management, Convolutional neural networks,
biological and cell microscopy
BibRef
Gauthier, S.[Shanel],
Thérien, B.[Benjamin],
Alséne-Racicot, L.[Laurent],
Chaudhary, M.[Muawiz],
Rish, I.[Irina],
Belilovsky, E.[Eugene],
Eickenberg, M.[Michael],
Wolf, G.[Guy],
Parametric Scattering Networks,
CVPR22(5739-5748)
IEEE DOI
2210
Wavelet transforms, Uncertainty, Scattering, Filter banks,
Computer architecture, Stability analysis, Low-level vision,
biological and cell microscopy
BibRef
Matsoukas, C.[Christos],
Haslum, J.F.[Johan Fredin],
Sorkhei, M.[Moein],
Söderberg, M.[Magnus],
Smith, K.[Kevin],
What Makes Transfer Learning Work for Medical Images:
Feature Reuse & Other Factors,
CVPR22(9215-9224)
IEEE DOI
2210
Deep learning, Microscopy, Microprocessors, Transfer learning,
Computer architecture, Data models, Pattern recognition,
biological and cell microscopy
BibRef
Shen, Y.Q.[Yi-Qing],
Zhou, Y.Y.[Yu-Yin],
Yu, L.Q.[Le-Quan],
CD2-pFed: Cyclic Distillation-guided Channel Decoupling for Model
Personalization in Federated Learning,
CVPR22(10031-10040)
IEEE DOI
2210
Privacy, Image analysis, Distance learning, Microscopy,
Collaborative work, Data models, Privacy and federated learning,
biological and cell microscopy
BibRef
Yu, J.C.[Jun-Chi],
Cao, J.[Jie],
He, R.[Ran],
Improving Subgraph Recognition with Variational Graph Information
Bottleneck,
CVPR22(19374-19383)
IEEE DOI
2210
Training, Upper bound, Filtering, Perturbation methods,
Graph neural networks, Pattern recognition,
biological and cell microscopy
BibRef
Zhang, W.Q.[Wen-Qiao],
Zhu, L.[Lei],
Hallinan, J.[James],
Zhang, S.Y.[Sheng-Yu],
Makmur, A.[Andrew],
Cai, Q.P.[Qing-Peng],
Ooi, B.C.[Beng Chin],
BoostMIS: Boosting Medical Image Semi-supervised Learning with
Adaptive Pseudo Labeling and Informative Active Annotation,
CVPR22(20634-20644)
IEEE DOI
2210
Training, Adaptation models, Spinal cord, Annotations,
Semisupervised learning, Predictive models, Labeling, Medical,
biological and cell microscopy
BibRef
Gräbel, P.[Philipp],
Thull, J.[Julian],
Crysandt, M.[Martina],
Klinkhammer, B.M.[Barbara M.],
Boor, P.[Peter],
Brummendorf, T.H.[Tim H.],
Merhof, D.[Dorit],
Analysis of automatically generated embedding guides for cell
classification,
IPTA22(1-6)
IEEE DOI
2206
Representation learning, Training, Visualization, Microscopy,
Image processing, Prediction algorithms, Bones, em-bedding guides
BibRef
Anoshina, N.A.[Nadezhda A.],
Sorokin, D.V.[Dmitry V.],
Weak supervision using cell tracking annotation and image
registration improves cell segmentation,
IPTA22(1-5)
IEEE DOI
2206
Measurement, Training, Image segmentation, Image registration,
Annotations, Sociology, Neural networks, image registration,
weakly-supervised learning
BibRef
Nowara, E.M.[Ewa M.],
McDuff, D.[Daniel],
Veeraraghavan, A.[Ashok],
The Benefit of Distraction: Denoising Camera-Based Physiological
Measurements using Inverse Attention,
ICCV21(4935-4944)
IEEE DOI
2203
Heart rate, Noise reduction, Lighting, Physiology, Data mining,
Motion measurement, Vision applications and systems,
and cell microscopy
BibRef
Cheng, M.F.[Ming-Fei],
Zhao, K.[Kaili],
Guo, X.H.[Xu-Hong],
Xu, Y.J.[Ya-Jing],
Guo, J.[Jun],
Joint Topology-preserving and Feature-refinement Network for
Curvilinear Structure Segmentation,
ICCV21(7127-7136)
IEEE DOI
2203
Image segmentation, Network topology, Roads, Semantics, Refining,
Logic gates, Drives, Segmentation, grouping and shape, Medical,
and cell microscopy
BibRef
Panteli, A.[Andreas],
Teuwen, J.[Jonas],
Horlings, H.[Hugo],
Gavves, E.[Efstratios],
Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many
Localisations,
ICCV21(2793-2803)
IEEE DOI
2203
Pathology, Image resolution, Annotations, Computational modeling,
Supervised learning, Task analysis,
and cell microscopy
BibRef
Ma, T.Y.[Tian-Yu],
Dalca, A.V.[Adrian V.],
Sabuncu, M.R.[Mert R.],
Hyper-Convolution Networks for Biomedical Image Segmentation,
WACV22(1989-1998)
IEEE DOI
2202
Image segmentation, Convolution, Architecture,
Neural networks, Computer architecture,
Grouping and Shape Medical Imaging/Imaging for
Bioinformatics/Biological and Cell Microscopy
BibRef
Zhang, Q.[Qi],
Meng, Z.[Zhu],
Zhao, Z.C.[Zhi-Cheng],
Su, F.[Fei],
GSLD: A Global Scanner with Local Discriminator Network for Fast
Detection of Sparse Plasma Cell in Immunohistochemistry,
ICIP21(86-90)
IEEE DOI
2201
Deep learning, Image processing, Aggregates, Cells (biology),
Object detection, Plasmas, Immunohistochemistry, deep learning
BibRef
Zhu, Y.[Yuang],
Chen, Z.[Zhao],
Zheng, Y.X.[Yu-Xin],
Zhang, Q.H.[Qing-Hua],
Wang, X.[Xuan],
Real-Time Cell Counting in Unlabeled Microscopy Images,
CDPath21(694-703)
IEEE DOI
2112
Training, Deep learning, Adaptation models, Microscopy, Manuals,
Data structures, Real-time systems
BibRef
Bao, R.[Rina],
Al-Shakarji, N.M.[Noor M.],
Bunyak, F.[Filiz],
Palaniappan, K.[Kannappan],
DMNet: Dual-Stream Marker Guided Deep Network for Dense Cell
Segmentation and Lineage Tracking,
CVAMD21(3354-3363)
IEEE DOI
2112
Training, Image segmentation, Shape, Microscopy, Pipelines, Stem cells,
Streaming media
BibRef
Fujii, H.[Haruki],
Tanaka, H.[Hayato],
Ikeuchi, M.[Momoko],
Hotta, K.[Kazuhiro],
X-net with Different Loss Functions for Cell Image Segmentation,
CVMI21(3788-3795)
IEEE DOI
2109
Image segmentation, Convolution, Semantics, Memory management,
Object segmentation, Feature extraction, Decoding
BibRef
Bouyssoux, A.[Alexandre],
Fezzani, R.[Riadh],
Olivo-Marin, J.C.[Jean-Christophe],
Extended Depth of Field Preserving Color Fidelity For Automated
Digital Cytology,
ICPR21(1-7)
IEEE DOI
2105
Wavelet transforms, Image segmentation, Image color analysis,
Gray-scale, Task analysis, Image reconstruction
BibRef
Sarkar, R.[Rituparna],
Mukherjee, S.[Suvadip],
Labruyère, E.[Elisabeth],
Olivo-Marin, J.C.[Jean-Christophe],
Learning to segment clustered amoeboid cells from brightfield
microscopy via multi-task learning with adaptive weight selection,
ICPR21(3845-3852)
IEEE DOI
2105
Image segmentation, Adaptation models, Adaptive systems,
Microscopy, Neural networks, Predictive models, Tools
BibRef
Paolanti, M.[Marina],
Mameli, M.[Marco],
Frontoni, E.[Emanuele],
Gioacchini, G.[Giorgia],
Giorgini, E.[Elisabetta],
Notarstefano, V.[Valentina],
Zacà, C.[Carlotta],
Carnevali, O.[Oliana],
Borini, A.[Andrea],
Automatic Classification of Human Granulosa Cells in Assisted
Reproductive Technology using vibrational spectroscopy imaging,
ICPR21(209-216)
IEEE DOI
2105
Pregnancy, Spectroscopy, Cloud computing, Fourier transforms,
Statistical analysis, Subspace constraints, Imaging,
Granulosa Cells
BibRef
Lockhart, L.[Lisette],
Saeedi, P.[Parvaneh],
Au, J.[Jason],
Havelock, J.[Jon],
Human Embryo Cell Centroid Localization and Counting in Time-Lapse
Sequences,
ICPR21(8306-8311)
IEEE DOI
2105
Location awareness, Training, Pregnancy, Measurement, Visualization,
Embryo, Pattern recognition
BibRef
Cruz, D.[Daniel],
Claro, M.[Maíla],
Veras, R.[Rodrigo],
Vogado, L.[Luis],
Portela, H.[Helano],
Moura, N.[Nayara],
Luz, D.[Daniel],
P-fidenet: Plasmodium Falciparum Identification Neural Network,
ISVC20(I:369-380).
Springer DOI
2103
BibRef
Padhee, S.[Swati],
Alambo, A.[Amanuel],
Banerjee, T.[Tanvi],
Subramaniam, A.[Arvind],
Abrams, D.M.[Daniel M.],
Nave Jr., G.K.[Gary K.],
Shah, N.[Nirmish],
Pain Intensity Assessment in Sickle Cell Disease Patients Using Vital
Signs During Hospital Visits,
CAIHA20(77-85).
Springer DOI
2103
BibRef
Fujita, S.[Seiya],
Han, X.H.[Xian-Hua],
Cell Detection and Segmentation in Microscopy Images with Improved Mask
R-CNN,
MLCSA20(58-70).
Springer DOI
2103
BibRef
Wang, W.N.[Wei-Ning],
Guo, P.R.[Pei-Rong],
Li, L.[Lemin],
Tan, Y.[Yan],
Shi, H.X.[Hong-Xia],
Wei, Y.[Yan],
Xu, X.M.[Xiang-Min],
Attention-based Fine-grained Classification of Bone Marrow Cells,
ACCV20(V:652-668).
Springer DOI
2103
BibRef
Liu, Y.,
Nedo, A.,
Seward, K.,
Caplan, J.,
Kambhamettu, C.,
Quantifying Actin Filaments in Microscopic Images using Keypoint
Detection Techniques and A Fast Marching Algorithm,
ICIP20(2506-2510)
IEEE DOI
2011
Junctions, Image segmentation, Microscopy, Heating systems,
Neural networks, Machine learning, Feature extraction,
Quantification analysis
BibRef
Jiang, N.,
Yu, F.,
A Foreground Mask Network for Cell Counting,
ICIVC20(128-132)
IEEE DOI
2009
Convolution, Decoding, Frequency modulation, Kernel,
Feature extraction, Semantics, Computational modeling,
mask
BibRef
Jensen, P.M.,
Dahl, A.B.,
Dahl, V.A.,
Multi-object Graph-based Segmentation with Non-overlapping Surfaces,
Microscopy20(4204-4212)
IEEE DOI
2008
Image segmentation, Microscopy,
Optical microscopy, Shape, Image edge detection, Optimization
BibRef
Kulikov, V.,
Lempitsky, V.,
Instance Segmentation of Biological Images Using Harmonic Embeddings,
CVPR20(3842-3850)
IEEE DOI
2008
Training, Harmonic analysis, Image segmentation,
Biological information theory, Neural networks, Shape, Cells (biology)
BibRef
Lu, W.,
Graham, S.,
Bilal, M.,
Rajpoot, N.,
Minhas, F.,
Capturing Cellular Topology in Multi-Gigapixel Pathology Images,
DLGC20(1049-1058)
IEEE DOI
2008
Pathology, Machine learning, Visualization, Computational modeling,
Convolutional neural networks, Principal component analysis, Breast cancer
BibRef
Shibuya, E.,
Hotta, K.,
Feedback U-net for Cell Image Segmentation,
Microscopy20(4195-4203)
IEEE DOI
2008
Feature extraction, Image segmentation, Neurons, Convolution,
Decoding, Logic gates, Computer architecture
BibRef
Sulc, M.,
Picek, L.,
Matas, J.,
Jeppesen, T.S.,
Heilmann-Clausen, J.,
Fungi Recognition: A Practical Use Case,
WACV20(2305-2313)
IEEE DOI
2006
Fungi, Image recognition, Biodiversity, Agriculture,
Training, Visualization
BibRef
Fujitani, M.,
Mochizuki, Y.,
Iizuka, S.,
Simo-Serra, E.,
Kobayashi, H.,
Iwamoto, C.,
Ohuchida, K.,
Hashizume, M.,
Hontani, H.,
Ishikawa, H.,
Re-staining Pathology Images by FCNN,
MVA19(1-6)
DOI Link
1911
biological tissues, biomedical optical imaging,
convolutional neural nets, diseases, image colour analysis,
Chemicals
BibRef
Javed, S.,
Mahmood, A.,
Werghi, N.,
Rajpoot, N.,
Deep Multiresolution Cellular Communities for Semantic Segmentation
of Multi-Gigapixel Histology Images,
VRMI19(342-351)
IEEE DOI
2004
Feature extraction, Tumors, Image resolution, Cancer, Pathology,
Neural networks, Support vector machines, CANCER, HISTOLOGY,
microenvironment
BibRef
Rad, R.M.,
Saeedi, P.,
Au, J.,
Havelock, J.,
BLAST-NET: Semantic Segmentation of Human Blastocyst Components via
Cascaded Atrous Pyramid and Dense Progressive Upsampling,
ICIP19(1865-1869)
IEEE DOI
1910
Human Embryo, Blastocyst, IVF, Semantic Segmentation,
Medical Image Analysis, Deep Learning
BibRef
Scherzinger, A.[Aaron],
Hugenroth, P.[Philipp],
Rüder, M.[Marike],
Bogdan, S.[Sven],
Jiang, X.Y.[Xiao-Yi],
Multi-class Cell Segmentation Using CNNs with F1-measure Loss Function,
GCPR18(434-446).
Springer DOI
1905
BibRef
Klemm, S.[Sören],
Jiang, X.Y.[Xiao-Yi],
Risse, B.[Benjamin],
Deep Distance Transform to Segment Visually Indistinguishable Merged
Objects,
GCPR18(422-433).
Springer DOI
1905
BibRef
Caicedo, J.C.[Juan C.],
McQuin, C.[Claire],
Goodman, A.[Allen],
Singh, S.[Shantanu],
Carpenter, A.E.[Anne E.],
Weakly Supervised Learning of Single-Cell Feature Embeddings,
CVPR18(9309-9318)
IEEE DOI
1812
Compounds, Feature extraction, Biology, Training, Sociology,
Statistics, Microscopy
BibRef
Haehn, D.[Daniel],
Kaynig, V.[Verena],
Tompkin, J.[James],
Lichtman, J.W.[Jeff W.],
Pfister, H.[Hanspeter],
Guided Proofreading of Automatic Segmentations for Connectomics,
CVPR18(9319-9328)
IEEE DOI
1812
Image segmentation, Tools,
Error correction, Computer architecture, Visualization, Task analysis
BibRef
Yellin, F.,
Haeffele, B.D.,
Roth, S.,
Vidal, R.,
Multi-cell Detection and Classification Using a Generative
Convolutional Model,
CVPR18(8953-8961)
IEEE DOI
1812
Blood, Convolutional codes, Task analysis,
Biological system modeling, Sociology, Statistics
BibRef
Oraibi, Z.A.,
Yousif, H.,
Hafiane, A.,
Seetharaman, G.,
Palaniappan, K.,
Learning Local and Deep Features for Efficient Cell Image
Classification Using Random Forests,
ICIP18(2446-2450)
IEEE DOI
1809
Feature extraction, Radio frequency, Computer architecture,
Machine learning, Microprocessors, Task analysis, Forestry,
Image Classification
BibRef
Guerrero-Peña, F.A.,
Marrero Fernandez, P.D.,
Ing Ren, T.,
Yui, M.,
Rothenberg, E.,
Cunha, A.,
Multiclass Weighted Loss for Instance Segmentation of Cluttered Cells,
ICIP18(2451-2455)
IEEE DOI
1809
Image segmentation, Training, Blood, Entropy, Surface acoustic waves,
Cells (biology), Deep learning, instance segmentation,
cell segmentation
BibRef
Ma, H.,
Beiter, R.,
Gaultier, A.,
Acton, S.T.,
Lin, Z.,
OSLO: Automatic Cell Counting and Segmentation for Oligodendrocyte
Progenitor Cells,
ICIP18(2431-2435)
IEEE DOI
1809
Image segmentation, Saliency detection, Optimization,
Image edge detection, Task analysis, Standards, Progenitor cells,
bioimage analysis
BibRef
Marcal, A.R.S.[André R. S.],
Martins, J.[Joana],
Selaru, E.[Elena],
Tavares, F.[Fernando],
Towards Automatic Calibration of Dotblot Images,
ICIAR18(39-46).
Springer DOI
1807
BibRef
Han, L.,
Murphy, R.F.,
Ramanan, D.,
Learning Generative Models of Tissue Organization with Supervised
GANs,
WACV18(682-690)
IEEE DOI
1806
Spatial orgainzation of cells in tissues.
biology computing, cellular biophysics, image classification,
image segmentation, learning (artificial intelligence),
Organizations
BibRef
Nissen, M.S.[Malte S.],
Krause, O.[Oswin],
Almstrup, K.[Kristian],
Kjærulff, S.[Søren],
Nielsen, T.T.[Torben T.],
Nielsen, M.[Mads],
Convolutional Neural Networks for Segmentation and Object Detection of
Human Semen,
SCIA17(I: 397-406).
Springer DOI
1706
BibRef
Krasheninnikov, V.R.,
Malenova, O.E.,
Yashina, A.S.,
Algorithms of Crescent Structure Detection in Human Biological Fluid
Facies,
PTVSBB17(169-172).
DOI Link
1805
BibRef
Sun, C.,
Bai, X.,
Cell segmentation based on spatial information improved
intuitionistic fcm combined with FOPSO,
ICIP17(4457-4461)
IEEE DOI
1803
Bioinformatics, Biology, Informatics,
Nonhomogeneous media, Silicon, Virtual reality,
spatial information
BibRef
Cheng, H.C.,
Cardone, A.,
Krokos, E.,
Stoica, B.,
Faden, A.,
Varshney, A.,
Deep-learning-assisted visualization for live-cell images,
ICIP17(1377-1381)
IEEE DOI
1803
Color, Feature extraction, Image color analysis, Tools, Trajectory,
Transfer functions, Visualization, Visualization, deep learning, live-cell images
BibRef
Wang, Q.,
Zhang, L.,
Xie, Y.,
Zheng, H.,
Zhou, W.,
Malignancy characterization of hepatocellular carcinoma using hybrid
texture and deep features,
ICIP17(4162-4166)
IEEE DOI
1803
Convolution, Feature extraction, Fuses, Kernel,
Training, Tumors, deep feature,
texture feature
BibRef
Rad, R.M.,
Saeedi, P.,
Au, J.,
Havelock, J.,
Coarse-to-fine texture analysis for inner cell mass identification in
human blastocyst microscopic images,
IPTA17(1-5)
IEEE DOI
1804
biology computing, cellular biophysics, feature extraction,
image segmentation, image texture, optical microscopy,
Inner Cell Mass
BibRef
Kheradmand, S.,
Singh, A.,
Saeedi, P.,
Au, J.,
Havelock, J.,
Inner cell mass segmentation in human HMC embryo images using fully
convolutional network,
ICIP17(1752-1756)
IEEE DOI
1803
Computer architecture, Convolution, Embryo, Image segmentation,
Indexes, Pipelines, Training, Blastocyst Segmentation,
IVF
BibRef
Xue, Y.,
Ray, N.,
Hugh, J.,
Bigras, G.,
A novel framework to integrate convolutional neural network with
compressed sensing for cell detection,
ICIP17(2319-2323)
IEEE DOI
1803
Compressed sensing,
Convolutional neural networks, Microscopy, Object detection,
L1 Minimization
BibRef
Lu, G.,
Ren, L.,
Caplan, J.,
Kambhamettu, C.,
Stromule branch tip detection based on accurate cell image
segmentation,
ICIP17(3300-3304)
IEEE DOI
1803
Active contours, Feature extraction, Image segmentation,
Iterative closest point algorithm, Microscopy, Shape
BibRef
Lee, H.G.,
Orzikulova, A.,
Park, B.G.,
Lee, S.C.,
Modeling structural dissimilarity based on shape embodiment for cell
segmentation,
ICIP17(3844-3848)
IEEE DOI
1803
Gaussian mixture model, Image segmentation, Microscopy,
Sensitivity, Shape, Cell segmentation,
embodied cell
BibRef
Sailem, H.,
Arias-Garcia, M.,
Bakal, C.,
Zisserman, A.,
Rittscher, J.,
Discovery of Rare Phenotypes in Cellular Images Using Weakly
Supervised Deep Learning,
BioIm17(49-55)
IEEE DOI
1802
Convolution, Detectors, Feature extraction, Machine learning,
Sociology, Statistics, Training
BibRef
Yurchenko, V.,
Lempitsky, V.,
Parsing Images of Overlapping Organisms with Deep Singling-Out
Networks,
CVPR17(4752-4760)
IEEE DOI
1711
Grippers, Optimization, Organisms, Rendering (computer graphics),
Shape, Training
BibRef
Babaie, M.,
Kalra, S.,
Sriram, A.,
Mitcheltree, C.,
Zhu, S.,
Khatami, A.,
Rahnamayan, S.,
Tizhoosh, H.R.,
Classification and Retrieval of Digital Pathology Scans:
A New Dataset,
Microscopy17(760-768)
IEEE DOI
1709
Algorithm design and analysis, Biomedical imaging,
Feature extraction, Image resolution, Pathology, Testing, Training
BibRef
Yi, J.,
Wu, P.,
Hoeppner, D.J.,
Metaxas, D.,
Fast Neural Cell Detection Using Light-Weight SSD Neural Network,
Microscopy17(860-864)
IEEE DOI
1709
Adaptation models, Biological neural networks,
Computer architecture, Detectors, Feature extraction,
Microprocessors, Training
BibRef
Akash, F.R.[Fazly Rabby],
Sheikh, A.[Amin],
Rahman, H.[Habibur],
Ahmad, M.R.[Mohd Ridzuan],
Single cell mass measurement from deformation of nanofork,
IVPR17(1-4)
IEEE DOI
1704
Atmospheric measurements
BibRef
Neghina, C.,
Zamfir, M.,
Ciuc, M.,
Sultana, A.,
Popescu, M.,
Automatic monitoring system for the detection and evaluation of the
evolution of hemangiomas,
IPTA16(1-6)
IEEE DOI
1703
biomedical optical imaging
BibRef
Alqahtani, S.,
Barczak, A.,
Reyes, N.,
Susnjak, T.,
Ganley, A.,
Automatic alignment and comparison on images of petri dishes
containing cell colonies,
ICVNZ15(1-6)
IEEE DOI
1701
biology computing
BibRef
Memariani, A.,
Nikou, C.,
Endres, B.T.,
Bassères, E.,
Garey, K.W.,
Kakadiaris, I.A.,
DeTEC: Detection of Touching Elongated Cells in SEM Images,
ISVC16(I: 288-297).
Springer DOI
1701
BibRef
Molnar, J.[Jozsef],
Molnar, C.[Csaba],
Horvath, P.[Peter],
An Object Splitting Model Using Higher-Order Active Contours for
Single-Cell Segmentation,
ISVC16(I: 24-34).
Springer DOI
1701
BibRef
Sadanandan, S.K.[Sajith Kecheril],
Ranefall, P.[Petter],
Wählby, C.[Carolina],
Feature Augmented Deep Neural Networks for Segmentation of Cells,
BioImage16(I: 231-243).
Springer DOI
1611
BibRef
Xue, Y.[Yao],
Ray, N.[Nilanjan],
Hugh, J.[Judith],
Bigras, G.[Gilbert],
Cell Counting by Regression Using Convolutional Neural Network,
BioImage16(I: 274-290).
Springer DOI
1611
BibRef
Khan, A.[Aisha],
Gould, S.[Stephen],
Salzmann, M.[Mathieu],
Deep Convolutional Neural Networks for Human Embryonic Cell Counting,
BioImage16(I: 339-348).
Springer DOI
1611
BibRef
You, Z.,
Vandenberghe, M.E.,
Balbastre, Y.,
Souedet, N.,
Hantraye, P.,
Jan, C.,
Herard, A.S.,
Delzescaux, T.,
Automated cell individualization and counting in cerebral microscopic
images,
ICIP16(3389-3393)
IEEE DOI
1610
Decision support systems
BibRef
Bílková, Z.[Zuzana],
Soukup, J.[Jindrich],
Kucera, V.[Václav],
Cell Segmentation Using Level Set Methods with a New Variance Term,
ICIAR16(183-190).
Springer DOI
1608
BibRef
Delgado-Font, W.,
González-Hidalgo, M.,
Herold-Garcia, S.,
Jaume-i-Capó, A.,
Mir, A.,
Erythrocytes Morphological Classification Through HMM for Sickle Cell
Detection,
AMDO16(88-97).
Springer DOI
1608
BibRef
Mao, Y.,
Yin, Z.,
Schober, J.,
A deep convolutional neural network trained on representative samples
for circulating tumor cell detection,
WACV16(1-6)
IEEE DOI
1606
Blood
BibRef
Beheshti, M.,
Faichney, J.,
Gharipour, A.,
Bio-Cell Image Segmentation Using Bayes Graph-Cut Model,
DICTA15(1-5)
IEEE DOI
1603
Bayes methods
BibRef
Bayramoglu, N.[Neslihan],
Kannala, J.H.[Ju-Ho],
Akerfelt, M.[Malin],
Kaakinen, M.[Mika],
Eklund, L.[Lauri],
Nees, M.[Matthias],
Heikkila, J.[Janne],
A novel feature descriptor based on microscopy image statistics,
ICIP15(2695-2699)
IEEE DOI
1512
cell co-culture
BibRef
Pang, F.Q.[Feng-Qian],
Liu, Z.W.[Zhi-Wen],
Li, H.[Heng],
Shi, Y.G.[Yong-Gang],
The measurement of cell viability based on temporal bag of words for
image sequences,
ICIP15(4185-4189)
IEEE DOI
1512
Cell Deformation
BibRef
Mevenkamp, N.[Niklas],
Berkels, B.[Benjamin],
Unsupervised and Accurate Extraction of Primitive Unit Cells from
Crystal Images,
GCPR15(105-116).
Springer DOI
1511
BibRef
Khan, A.[Aisha],
Gould, S.[Stephen],
Salzmann, M.[Mathieu],
Detecting Abnormal Cell Division Patterns in Early Stage Human Embryo
Development,
MLMI15(161-169).
Springer DOI
1511
BibRef
Earlier:
A Linear Chain Markov Model for Detection and Localization of Cells
in Early Stage Embryo Development,
WACV15(526-533)
IEEE DOI
1503
Computational modeling
BibRef
Cicconet, M.,
Gunsalus, K.,
Geiger, D.,
Werman, M.,
Shape statistics for cell division detection in time-lapse videos of
early mouse embryo,
ICIP14(3622-3625)
IEEE DOI
1502
Dynamic programming
BibRef
Boukari, F.[Fatima],
Makrogiannis, S.[Sokratis],
Spatio-temporal Level-Set Based Cell Segmentation in Time-Lapse Image
Sequences,
ISVC14(II: 41-50).
Springer DOI
1501
BibRef
Moller, B.[Birgit],
Piltz, E.[Elisabeth],
Bley, N.[Nadine],
Quantification of Actin Structures Using Unsupervised Pattern
Analysis Techniques,
ICPR14(3251-3256)
IEEE DOI
1412
Feature extraction
BibRef
Yang, C.[Cong],
Li, C.[Chen],
Tiebe, O.[Oliver],
Shirahama, K.[Kimiaki],
Grzegorzek, M.[Marcin],
Shape-Based Classification of Environmental Microorganisms,
ICPR14(3374-3379)
IEEE DOI
1412
Feature extraction
BibRef
Molder, A.[Anna],
Czanner, S.[Silvester],
Costen, N.[Nicholas],
Hartshorne, G.[Geraldine],
Automatic Detection of Embryo Location in Medical Imaging Using
Trigonometric Rotation for Noise Reduction,
ICPR14(3239-3244)
IEEE DOI
1412
Accuracy; Biomedical imaging; Embryo; Image edge detection; Manuals; Shape
BibRef
Akram, S.U.[Saad Ullah],
Kannala, J.H.[Ju-Ho],
Kaakinen, M.[Mika],
Eklund, L.[Lauri],
Heikkilä, J.[Janne],
Segmentation of Cells from Spinning Disk Confocal Images Using a
Multi-stage Approach,
ACCV14(III: 300-314).
Springer DOI
1504
BibRef
Bayramoglu, N.[Neslihan],
Kaakinen, M.[Mika],
Eklund, L.[Lauri],
Akerfelt, M.[Malin],
Nees, M.[Matthias],
Kannala, J.H.[Ju-Ho],
Heikkila, J.[Janne],
Detection of Tumor Cell Spheroids from Co-cultures Using Phase
Contrast Images and Machine Learning Approach,
ICPR14(3345-3350)
IEEE DOI
1412
Feature extraction
BibRef
Singh, N.[Nikhil],
Couture, H.D.[Heather D.],
Marron, J.S.,
Perou, C.[Charles],
Niethammer, M.[Marc],
Topological Descriptors of Histology Images,
MLMI14(231-239).
Springer DOI
1410
BibRef
Chen, T.[Ting],
Chefd'hotel, C.[Christophe],
Deep Learning Based Automatic Immune Cell Detection for
Immunohistochemistry Images,
MLMI14(17-24).
Springer DOI
1410
BibRef
Chen, K.C.[Kuan-Chieh],
Qiu, M.H.[Min-Hua],
Kovacevic, J.[Jelena],
Yang, G.[Ge],
Computational Image Modeling for Characterization and Analysis of
Intracellular Cargo Transport,
CompIMAGE14(292-303).
Springer DOI
1407
BibRef
Ng, S.K.[Shu-Kay],
Lam, A.K.,
Automatic Segmentation of Molecular Pathology Images Using a Robust
Mixture Model with Markov Random Fields,
DICTA13(1-8)
IEEE DOI
1402
Markov processes
BibRef
Li, C.[Chen],
Shirahama, K.[Kimiaki],
Grzegorzek, M.[Marcin],
Ma, F.S.[Fang-Shu],
Zhou, B.[Beihai],
Classification of environmental microorganisms in microscopic images
using shape features and support vector machines,
ICIP13(2435-2439)
IEEE DOI
1402
Environmental Microorganism Classification
BibRef
Nápoles, G.[Gonzalo],
Bello, R.[Rafael],
Vanhoof, K.[Koen],
Learning Stability Features on Sigmoid Fuzzy Cognitive Maps through a
Swarm Intelligence Approach,
CIARP13(I:270-277).
Springer DOI
1311
BibRef
Thibault, G.[Guillaume],
Iljin, K.[Kristiina],
Arthur, C.[Christopher],
Shafran, I.[Izhak],
Gray, J.[Joe],
Adaptive H-Extrema for Automatic Immunogold Particle Detection,
CIARP13(II:238-245).
Springer DOI
1311
BibRef
Torres-Boza, D.[Diana],
Ferrer, C.A.[Carlos A.],
Improvements to the HNR Estimation Based-on Generalized Variogram,
CIARP13(I:519-526).
Springer DOI
1311
BibRef
Gonzalez-Moreira, E.[Eduardo],
Torres-Boza, D.[Diana],
Ferrer, C.A.[Carlos A.],
Ruiz, Y.[Yusely],
Improving Dysarthria Classification by Pattern Recognition Techniques
Based on a Bionic Model,
CIARP13(II:246-253).
Springer DOI
1311
BibRef
Štepka, K.[Karel],
Automated Cell Counting in Bürker Chamber,
SCIA13(236-245).
Springer DOI
1311
BibRef
Alioscha-Perez, M.[Mitchel],
Willaert, R.[Ronnie],
Tournu, H.[Helene],
van Dijck, P.[Patrick],
Sahli, H.[Hichem],
Oriented Polar Snakes for Phase Contrast Cell Images Segmentation,
CIARP13(II:25-32).
Springer DOI
1311
BibRef
Soukup, J.[Jindrich],
Císar, P.[Petr],
Šroubek, F.[Filip],
Segmentation of Time-Lapse Images with Focus on Microscopic Images of
Cells,
CIAP13(II:71-80).
Springer DOI
1309
BibRef
Esménio, S.[Sofia],
Figueiredo, J.[Joana],
Seruca, R.[Raquel],
Sanches, J.M.[J. Miguel],
E-Cadherin Radial Distribution Characterization for Mutation Detection
Purposes,
IbPRIA13(173-180).
Springer DOI
1307
BibRef
Buyssens, P.[Pierre],
El Moataz, A.[Abderrahim],
Lézoray, O.[Olivier],
Multiscale Convolutional Neural Networks for Vision-Based
Classification of Cells,
ACCV12(II:342-352).
Springer DOI
1304
BibRef
de Floriani, L.[Leila],
Iuricich, F.[Federico],
Discrete Morse versus Watershed Decompositions of Tessellated Manifolds,
CIAP13(II:339-348).
Springer DOI
1309
BibRef
Comic, L.[Lidija],
de Floriani, L.[Leila],
Iuricich, F.[Federico],
Simplification Operators on a Dimension-Independent Graph-Based
Representation of Morse Complexes,
ISMM13(13-24).
Springer DOI
1305
BibRef
And:
Multi-resolution Cell Complexes Based on Homology-Preserving Euler
Operators,
DGCI13(323-334).
Springer DOI
1304
BibRef
Bel haj ali, W.[Wafa],
Giampaglia, D.[Dario],
Barlaud, M.[Michel],
Piro, P.[Paolo],
Nock, R.[Richard],
Pourcher, T.[Thierry],
Classification of biological cells using bio-inspired descriptors,
ICPR12(3353-3357).
WWW Link.
1302
BibRef
Atupelage, C.,
Nagahashi, H.,
Yamaguchi, M.,
Abe, T.,
Hashiguchi, A.,
Sakamoto, M.,
Multifractal feature descriptor for grading Hepatocellular carcinoma,
ICPR12(129-132).
WWW Link.
1302
BibRef
Asarnow, D.[Daniel],
Singh, R.[Rahul],
Segmentation of Parasites for High-content Screening Using Phase
Congruency and Grayscale Morphology,
ISVC12(I: 51-60).
Springer DOI
1209
BibRef
Ao, J.Q.[Jing-Qi],
Mitra, S.[Sunanda],
Long, R.[Rodney],
Nutter, B.[Brian],
Antani, S.[Sameer],
A hybrid watershed method for cell image segmentation,
Southwest12(29-32).
IEEE DOI
1205
BibRef
Rosado-Toro, J.A.[Jose A.],
Rodriguez, J.J.[Jeffrey J.],
Cell splitting using dynamic programming,
Southwest12(33-36).
IEEE DOI
1205
BibRef
Pan, K.Y.[Kang-Yu],
Kokaram, A.[Anil],
Gilmore, K.[Kerry],
Higgins, M.J.[Michael J.],
Kapsa, R.[Robert],
Wallace, G.G.[Gordon G.],
Cellsnake: A new active contour technique for cell/fibre segmentation,
ICIP11(2153-2156).
IEEE DOI
1201
BibRef
Ghosh, M.[Madhumala],
Das, D.[Devkumar],
Chakraborty, C.[Chandan],
Ray, A.K.[Ajoy K.],
Plasmodium vivax segmentation using modified fuzzy divergence,
ICIIP11(1-5).
IEEE DOI
1112
BibRef
Hu, N.[Na],
Wang, Y.[Yan],
Zhang, X.K.[Xi-Kun],
Zhang, Y.[Yu],
Feng, Y.M.[Yuan-Ming],
Quantitative stereological analysis of confocal laser scanning
microscopic images of cells,
IASP11(332-335).
IEEE DOI
1112
BibRef
Chakraborty, A.[Anirban],
Liu, M.[Min],
Mkrtchyan, K.[Katya],
Reddy, G.V.[G. Venugopala],
Roy-Chowdhury, A.K.[Amit K.],
Cell volume estimation from a sparse collection of noisy confocal image
slices,
ICCVGIP10(183-189).
DOI Link
1111
BibRef
Moody-Davis, A.[Asher],
Mennillo, L.[Laurent],
Singh, R.[Rahul],
Region-Based Segmentation of Parasites for High-throughput Screening,
ISVC11(I: 43-53).
Springer DOI
1109
BibRef
Nguyen, N.H.[Nhat H.],
Norris, E.[Eric],
Clemens, M.G.[Mark G.],
Shin, M.C.[Min C.],
Rapidly Adaptive Cell Detection Using Transfer Learning with a Global
Parameter,
MLMI11(209-216).
Springer DOI
1109
BibRef
Quelhas, P.[Pedro],
Nieuwland, J.[Jeroen],
Dewitte, W.[Walter],
Mendonça, A.M.[Ana Maria],
Murray, J.[Jim],
Campilho, A.[Aurélio],
Arabidopsis Thaliana Automatic Cell File Detection and Cell Length
Estimation,
ICIAR11(II: 1-11).
Springer DOI
1106
BibRef
Esmaeilsabzali, H.[Hadi],
Sakaki, K.[Kelly],
Dechev, N.[Nikolai],
Burke, R.D.[Robert D.],
Park, E.J.[Edward J.],
A Machine Vision Framework for Automated Localization of Microinjection
Sites on Low-Contrast Single Adherent Cells,
ICIAR11(II: 12-20).
Springer DOI
1106
BibRef
Vallotton, P.[Pascal],
Mililli, L.[Lisa],
Turnbull, L.[Lynne],
Whitchurch, C.[Cynthia],
Segmentation of Dense 2D Bacilli Populations,
DICTA10(82-86).
IEEE DOI
1012
BibRef
Basile, T.M.A.[Teresa M.A.],
Esposito, F.[Floriana],
Caponetti, L.[Laura],
A Multi-relational Learning Approach for Knowledge Extraction in in
Vitro Fertilization Domain,
ISVC10(I: 571-581).
Springer DOI
1011
BibRef
Peskin, A.P.[Adele P.],
Dima, A.A.[Alden A.],
Chalfoun, J.[Joe],
Elliott, J.T.[John T.],
Predicting Segmentation Accuracy for Biological Cell Images,
ISVC10(I: 549-560).
Springer DOI
1011
BibRef
Xiong, W.[Wei],
Lim, J.H.[Joo Hwee],
Ong, S.H.,
Liu, J.[Jiang],
Jing, Y.[Yin],
Tan, K.S.W.[Kevin S.W.],
Automatic cell classification and population estimation in blastocystis
autophagy images,
ICIP10(4349-4352).
IEEE DOI
1009
BibRef
Xiong, W.[Wei],
Wang, Y.B.[Yan-Bo],
Ong, S.H.,
Lim, J.H.[Joo Hwee],
Jiang, L.J.[Li-Jun],
Learning cell geometry models for cell image simulation:
An unbiased approach,
ICIP10(1897-1900).
IEEE DOI
1009
BibRef
Uyar, A.[Asli],
Bener, A.[Ayse],
Ciray, H.N.[H. Nadir],
Bahceci, M.[Mustafa],
Bayesian Networks for Predicting IVF Blastocyst Development,
ICPR10(2772-2775).
IEEE DOI
1008
BibRef
Can, A.[Ali],
Bello, M.O.[Musodiq O.],
Gerdes, M.J.[Michael J.],
Quantification of Subcellular Molecules in Tissue Microarray,
ICPR10(2548-2551).
IEEE DOI
1008
BibRef
Xiong, W.[Wei],
Ong, S.H.[Sim-Heng],
Lim, J.H.[Joo-Hwee],
A Recursive and Model-Constrained Region Splitting Algorithm for Cell
Clump Decomposition,
ICPR10(4416-4419).
IEEE DOI
1008
BibRef
Moller, B.[Birgit],
Stohr, N.[Nadine],
Huettelmaier, S.[Stefan],
Posch, S.[Stefan],
Cascaded Segmentation of Grained Cell Tissue with Active Contour Models,
ICPR10(1481-1484).
IEEE DOI
1008
BibRef
Becattini, G.[Gabriele],
Mattos, L.S.[Leonardo S.],
Caldwell, D.G.[Darwin G.],
Anisotropic Contour Completion for Cell Microinjection Targeting,
ICPR10(2262-2265).
IEEE DOI
1008
BibRef
Kennel, P.,
Subsol, G.,
Gueroult, M.,
Guéroult, M.,
Borianne, P.,
Automatic identification of cell files in light microscopic images of
conifer wood,
IPTA10(98-103).
IEEE DOI
1007
BibRef
Houben, S.[Sebastian],
Kirchgeßner, N.[Norbert],
Merkel, R.[Rudolf],
Estimating Force Fields of Living Cells: Comparison of Several
Regularization Schemes Combined with Automatic Parameter Choice,
DAGM10(71-80).
Springer DOI
1009
BibRef
White, A.G.[Amelia G.],
Cipriani, P.G.[Patricia G.],
Kao, H.L.[Huey-Ling],
Lees, B.[Brandon],
Geiger, D.[Davi],
Sontag, E.[Eduardo],
Gunsalus, K.C.[Kristin C.],
Piano, F.[Fabio],
Rapid and accurate developmental stage recognition of C. elegans from
high-throughput image data,
CVPR10(3089-3096).
IEEE DOI
1006
BibRef
Liu, M.[Min],
Roy-Chowdhury, A.K.[Amit K.],
Multilinear feature extraction and classification of multi-focal
images, with applications in nematode taxonomy,
CVPR10(2823-2830).
IEEE DOI
1006
BibRef
Roula, M.A.,
Cellular proteomic characterization using Active Shape and
Non-Gaussinan stochastic texture models,
ICIP09(3389-3392).
IEEE DOI
0911
BibRef
Gelas, A.,
Mosaliganti, K.,
Gouaillard, A.,
Souhait, L.,
Noche, R.,
Obholzer, N.,
Megason, S.G.,
Variational level-set with gaussian shape model for cell segmentation,
ICIP09(1089-1092).
IEEE DOI
0911
BibRef
Cheng, E.D.[Eric Dahai],
Challa, S.[Subhash],
Chakravorty, R.[Rajib],
Microscopic Cell Segmentation and Dead Cell Detection Based on CFSE and
PI Images by Using Distance and Watershed Transforms,
DICTA09(32-39).
IEEE DOI
0912
BibRef
Rizvandi, N.B.,
Pizurica, A.,
Philips, W.,
Ochoa, D.,
Edge Linking Based Method to Detect and Separate Individual C. Elegans
Worms in Culture,
DICTA08(65-70).
IEEE DOI
0812
BibRef
Ho, Q.R.[Qi-Rong],
Yu, W.M.[Wei-Miao],
Lee, H.K.[Hwee Kuan],
Region Graph Spectra as Geometric Global Image Features,
ISVC09(I: 253-264).
Springer DOI
0911
Cell assays.
BibRef
Giusti, A.[Alessandro],
Corani, G.[Giorgio],
Gambardella, L.M.[Luca Maria],
Magli, C.[Cristina],
Gianaroli, L.[Luca],
Lighting-Aware Segmentation of Microscopy Images for In Vitro
Fertilization,
ISVC09(I: 576-585).
Springer DOI
0911
BibRef
Peskin, A.P.[Adele P.],
Kafadar, K.[Karen],
Dima, A.[Alden],
A Quality Pre-processor for Biological Cell Images,
ISVC09(II: 1051-1062).
Springer DOI
0911
BibRef
Li, N.[Na],
Li, X.P.[Xue-Ping],
Mechanism of Enzyme Reaction Based on Dynamics Molecular,
CISP09(1-3).
IEEE DOI
0910
BibRef
Xia, R.H.[Rui-Hua],
Wang, P.[Ping],
Lai, Q.W.[Qing-Wu],
One kind of macrophages images edge detection method,
IASP10(280-283).
IEEE DOI
1004
BibRef
Xia, R.H.[Rui-Hua],
Wang, P.[Ping],
Chen, R.L.[Rong-Ling],
Guo, F.[Fei],
One Kind of Macrophages Images Segmentation and Labeling Method,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zhu, W.H.[Wei-Hua],
Zhao, Z.M.[Zhi-Min],
Guo, X.[Xin],
Hong, X.Q.[Xiao-Qin],
Study on Hyperlipidemia Serum Ultraviolet Visible Absorption Spectra
Based on Wavelet Transform,
CISP09(1-5).
IEEE DOI
0910
BibRef
Hirimutugoda, Y.M.,
Wijayarathna, G.,
Artificial Intelligence-Based Approach for Determination of
Haematologic Diseases,
CISP09(1-5).
IEEE DOI
0910
BibRef
Shi, J.[Jing],
Bao, Y.L.[Yong-Li],
Yu, C.L.[Chun-Lei],
Li, Y.X.[Yu-Xin],
Yin, Y.H.[Yu-He],
A Novel Image Analyzer of SRID Assay for the Quantification of
Hemagglutinin in Influenza Vaccine,
CISP09(1-4).
IEEE DOI
0910
BibRef
Xue, H.[Heru],
Li, H.[Hai],
Wang, Y.D.[Yue-Dong],
Zhao, T.[Ting],
The Segmentation of the Color Milk Somatic Cells Images,
CISP09(1-4).
IEEE DOI
0910
BibRef
Sankaran, P.,
Asari, V.K.,
Adaptive Thresholding Based Cell Segmentation for Cell-Destruction
Activity Verification,
AIPR06(14-14).
IEEE DOI
0610
BibRef
Wirjadi, O.[Oliver],
Kim, Y.J.[Yoo-Jin],
Breuel, T.[Thomas],
Spatial Statistics for Tumor Cell Counting and Classification,
DAGM09(492-501).
Springer DOI
0909
BibRef
Xia, R.H.[Rui-Hua],
Wang, P.[Ping],
Zhang, W.[Wu],
Xiong, Q.[Qi],
A novel overlapping mice macrophages images segmentation method,
IASP09(40-43).
IEEE DOI
0904
BibRef
Martinez, G.[Geovanni],
Frerichs, J.G.[Jan-Gerd],
Rudolph, G.[Guido],
Scheper, T.[Thomas],
Three-dimensional cell counting for in-situ microscopy,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Miyamoto, T.[Takanobu],
Fujita, Y.[Yusuke],
Uchimura, S.J.[Shun-Ji],
Hamamoto, Y.[Yoshihiko],
Iizuka, N.[Norio],
Oka, M.[Masaaki],
Visualization of transitions of developing of hepatitis C
virus-associated hepatocellular carcinoma,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ruusuvuori, P.[Pekka],
Seppala, J.[Jenni],
Erkkila, T.[Timo],
Lehmussola, A.[Antti],
Puhakka, J.A.[Jaakko A.],
Yli-Harja, O.[Olli],
Efficient automated method for image-based classification of microbial
cells,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kuijper, A.[Arjan],
Heise, B.[Bettina],
An automatic cell segmentation method for differential interference
contrast microscopy,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Dufour, A.,
Meas-Yedid, V.,
Grassart, A.,
Olivo-Marin, J.C.,
Automated quantification of cell endocytosis using active contours and
wavelets,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Syed, T.Q.,
Vigneron, V.,
Lelandais, S.,
Barlovatz-Meimon, G.,
Malo, M.,
Charriere-Bertrand, C.,
Montagne, C.,
Detection and Counting of 'in vivo' cells to predict cell migratory
potential,
IPTA08(1-8).
IEEE DOI
0811
BibRef
Kovacs, D.[David],
Brassart, E.[Eric],
Drocourt, C.[Cyril],
Automatic detection of chemotaxis cells in angiogenesis process,
IPTA08(1-7).
IEEE DOI
0811
BibRef
Tran, D.[Dat],
Pham, T.[Tuan],
Zhou, X.B.[Xiao-Bo],
Subspace Vector Quantization and Markov Modeling for Cell Phase
Classification,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Zhou, Z.[Zhi],
Du, Y.Z.[Ying-Zi],
Rodney, G.G.[George G.],
Schneider, M.F.[Martin F.],
Ca2+ Sparks Detection and Classification using Gaussian-Mexican Hat
Wavelet,
ICIP07(VI: 253-256).
IEEE DOI
0709
BibRef
Olding, B.P.[Benjamin P.],
Wolfe, P.J.[Patrick J.],
Joint Localization and Parameter Estimation for Localized Calcium
Release Events in Video Microscopy,
ICIP07(VI: 257-260).
IEEE DOI
0709
BibRef
Soda, P.[Paolo],
A Hybrid Approach Handling Imbalanced Datasets,
CIAP09(209-218).
Springer DOI
0909
BibRef
Tscherepanow, M.[Marko],
Jensen, N.[Nickels],
Kummert, F.[Franz],
Recognition of Unstained Live Drosophila Cells in Microscope Images,
IMVIP07(169-176).
IEEE DOI
0709
BibRef
Chang, H.[Hang],
Parvin, B.[Bahram],
Segmentation of Three Dimensional Cell Culture Models from a Single
Focal Plane,
ISVC06(II: 586-595).
Springer DOI
0611
BibRef
Bell, A.A.,
Kaftan, J.N.,
Aach, T.,
Meyer-Ebrecht, D.,
Bocking, A.,
High Dynamic Range Images as a Basis for Detection of Argyrophilic
Nucleolar Organizer Regions Under Varying Stain Intensities,
ICIP06(2541-2544).
IEEE DOI
0610
BibRef
Kong, K.Y.[Koon Yin],
Marcus, A.I.,
Hong, J.Y.[Jin Young],
Giannakakou, P.,
Wang, M.D.,
Ceulular Imaging Data Analysis: Mircotubule Dynamics in Living Cell,
ICIP06(2545-2548).
IEEE DOI
0610
BibRef
Smereka, M.[Marcin],
Glab, G.[Grzegorz],
Detection of Pathological Cells in Phase Contrast Cytological Images,
ACIVS06(821-832).
Springer DOI
0609
BibRef
Liu, J.S.[Jin-Shuo],
van der Putten, P.[Peter],
Hagen, F.[Ferry],
Chen, X.[Xinmeng],
Boekhout, T.[Teun],
Detecting Virulent Cells of Cryptococcus Neoformans Yeast:
Clustering Experiments,
ICPR06(I: 1112-1115).
IEEE DOI
0609
BibRef
Huang, J.[Jing],
A New Kernel Based on Weighted Cross-Correlation Coefficient for SVMs
and Its Application on Prediction of T-cell Epitopes,
ICPR06(II: 691-694).
IEEE DOI
0609
BibRef
Lerner, B.[Boaz],
Malka, R.[Roy],
Learning Bayesian Networks for Cytogenetic Image Classification,
ICPR06(II: 772-775).
IEEE DOI
0609
BibRef
Gurevich, I.,
Kharazishvili, D.,
Murashov, D.,
Salvetti, O.,
Vorobjev, I.,
Technology for Automated Morphologic Analysis of Cytological Slides.
Methods and Results,
ICPR06(IV: 711-714).
IEEE DOI
0609
BibRef
Nakauchi, S.[Shigeki],
Spectral Imaging Technique for Visualizing the Invisible Information,
SCIA05(55-64).
Springer DOI
0506
BibRef
Miyazawa, K.[Kanae],
Kobayashi, K.I.[Ken-Ichi],
Nakauchi, S.[Shigeki],
Hiraishi, A.[Akira],
In Situ Detection and Identification of Microorganisms at Single Colony
Resolution Using Spectral Imaging Technique,
SCIA05(419-428).
Springer DOI
0506
BibRef
Liu, Z.Q.[Zhen-Qiu],
Chen, D.C.[De-Chang],
Tian, J.J.[Jian-Jun],
Classification of Proteomic Data with Logistic Kernel Partial Least
Squares Algorithm,
BioInfo05(III: 145-145).
IEEE DOI
0507
BibRef
Ropers, S.O.,
Bell, A.A.,
Wurfinger, T.,
Bocking, A.,
Meyer-Ebrecht, D.,
Automatic Scene Comparison and Matching in Multimodal Cytopathological
Microscopic Images,
ICIP05(I: 1145-1148).
IEEE DOI
0512
BibRef
Kachouie, N.N.[Nezamoddin N.],
Lee, L.J.[Leo J.],
Fieguth, P.W.[Paul W.],
A Probabilistic Living Cell Segmentation Model,
ICIP05(I: 1137-1140).
IEEE DOI
0512
BibRef
Kemkemer, R.,
Estrada, G.G.,
Kaufmann, D.,
Ulrich, D.,
Gruler, H.,
Feature Extraction of Non-Stained Melanocyte Cells,
ICIP05(III: 605-608).
IEEE DOI
0512
BibRef
Iles, P.J.W.[Peter J. W.],
Clausi, D.A.[David A.],
Puddister, S.M.[Shannon M.],
Brodland, G.W.[G. Wayne],
Average Cell Orientation, Shape and Size Estimated from Tissue Images,
CRV05(378-385).
IEEE DOI
0505
BibRef
Iles, P.J.W.,
Clausi, D.A.,
Brodland, G.W.,
Estimation of average cell shape from digital images of cellular
surfaces,
CRV04(273-278).
IEEE DOI
0408
BibRef
Jones, T.R.[Thouis R.],
Carpenter, A.[Anne],
Golland, P.[Polina],
Voronoi-Based Segmentation of Cells on Image Manifolds,
CVBIA05(535-543).
Springer DOI
0601
BibRef
Sánchez, L.[Lidia],
Petkov, N.[Nicolai],
Alegre, E.[Enrique],
Statistical Approach to Boar Semen Head Classification Based on
Intracellular Intensity Distribution,
CAIP05(88).
Springer DOI
0509
BibRef
Perner, P.,
Perner, H.,
Janichen, S.,
Buhring, A.,
Recognition of airborne fungi spores in digital microscopic images,
ICPR04(III: 566-569).
IEEE DOI
0409
BibRef
Gadkari, M.S.,
Refai, H.H.,
Sluss, Jr., J.,
Broughan, T.A.,
Teague, T.K.,
Naukam, R.,
The detection of single hepatocytes within clusters in microscopic
images,
Southwest04(192-195).
IEEE DOI
0411
BibRef
Refai, H.H.,
Li, L.[Lun],
Teague, T.K.,
Naukam, R.,
Automatic count of hepatocytes in microscopic images,
ICIP03(II: 1101-1104).
IEEE DOI
0312
BibRef
Bamford, P.,
Empirical comparison of cell segmentation algorithms using an annotated
dataset,
ICIP03(II: 1073-1076).
IEEE DOI
0312
BibRef
Bergner, S.,
Pohle, R.,
Al-Zubi, S.,
Tönnies, K.D.,
Eitner, A.,
Neu, T.R.,
Segmenting Microorganisms in Multi-modal Volumetric Datasets Using a
Modified Watershed Transform,
DAGM02(429 ff.).
Springer DOI
0303
BibRef
Boucher, A.,
Garbay, C.,
A Multiagent System to Segment Living Cells,
ICPR96(III: 558-562).
IEEE DOI
9608
(Laboratoire TIMC/IMAG, F)
BibRef
Alvarez, T.,
Martin, Y.,
Perez, S.,
Santos, F.,
Tadeo, F.,
Gonzalez, S.,
Arribas, J.,
Vega, P.,
Classification of Microorganisms Using Image Processing Techniques,
ICIP01(I: 329-332).
IEEE DOI
0108
BibRef
Alvarez-Borrego, J.,
Mouriño-Pérez, R.R.,
Cristóbal, G.,
Pech-Pacheco, J.L.,
Invariant Optical Color Correlation for Recognition of Vibrio Cholerae
O1,
ICPR00(Vol II: 283-286).
IEEE DOI
0009
BibRef
Shang, C.,
Daly, C.,
McGrath, J.,
Barker, J.,
Analysis and Classification of Tissue Section Images Using Directional
Fractal Dimension Features,
ICIP00(Vol I: 164-167).
IEEE DOI
0008
BibRef
Anoraganingrum, D.,
Cell segmentation with median filter and mathematical morphology
operation,
CIAP99(1043-1046).
IEEE DOI
9909
BibRef
Young, D.,
Gray, A.J., and
Glasbey, C.A.,
Construction of Templates for Identifying Non-Transparent Cells
in DIC Microscope Images,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Earlier: A1, A2, Only:
Cell Identification in Differential Interference Contrast Microscope Images
Using Edge Detection,
BMVC96(Poster Session 1).
9608
University of Strathclyde
BibRef
Fernandez, G.,
Kunt, M.,
Zryd, J.P.,
Multi-Spectral Based Cell Segmentation and Analysis,
PBMCV95(SESSION 6)
BibRef
9500
Taylor, C.C.,
Faghihi, M.R.,
Dryden, I.L.,
An understanding of muscle fibre images,
CIAP95(223-228).
Springer DOI
9509
BibRef
Scholz, T.,
Jähne, B.,
Suhr, H.,
Wehnert, G.,
Geissler, P.,
Schneider, K.,
In situ determination of cell concentration in bioreactors with a new
depth from focus technique,
CAIP95(392-399).
Springer DOI
9509
BibRef
Fernàndez, G.,
Kunt, M.,
Zrÿd, J.P.,
A new plant cell image segmentation algorithm,
CIAP95(229-234).
Springer DOI
9509
BibRef
Veelaert, P.,
Arrays of low-level inequality based feature detecting cells,
ICPR94(B:500-502).
IEEE DOI
9410
BibRef
Haouari, A.,
Chassery, J.M.,
A two pass labeling algorithm for automatic schistosome egg detection
and counting,
ICPR88(II: 827-829).
IEEE DOI
8811
BibRef
Li, S.X.[Shu-Xiang],
Liu, J.P.[Jian-Ping],
Huang, Y.M.[Yi-Min],
Schistosome egg recognition using the top-down search strategy,
ICPR88(II: 798-800).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Stem Cell Analysis .