Shensa, M.J.,
The Discrete Wavelet Transform:
Wedding the a Trous and Mallat Algorithms,
TSP(40), October 1992, pp. 2464-2482.
BibRef
9210
Coifman, R.R., and
Wickerhauser, M.V.,
Entropy-based algorithms for best basis selection,
IT(38), No. 2, March 1992, pp. 713.718.
IEEE DOI
BibRef
9203
Ramchandran, K.,
Vetterli, M.,
Best Wavelet Packet Bases in a Rate-Distortion Sense,
IP(2), No. 2, April 1993, pp. 160-175.
IEEE DOI
BibRef
9304
Gopinath, R.A.,
Burrus, C.S.,
On cosine-modulated wavelet orthonormal bases,
IP(4), No. 2, February 1995, pp. 162-176.
IEEE DOI
0402
BibRef
Tay, D.B.H.,
Kingsbury, N.G.,
Design of Nonseparable 3-D Filter Banks Wavelet Bases Using
Transformations of Variables,
VISP(143), No. 1, February 1996, pp. 51-61.
BibRef
9602
Candčs, E.,
Ridgelets: Theory and Applications,
Ph.D.Dissertation, Stanford. Univ, August. 1998.
The original discussion of Ridgelets.
BibRef
9808
Tay, D.B.H.,
Kingsbury, N.G.,
Palaniswami, M.,
Orthonormal Hilbert-Pair of Wavelets With (Almost) Maximum Vanishing
Moments,
SPLetters(13), No. 9, September 2006, pp. 533-536.
IEEE DOI
0608
BibRef
Kingsbury, N.G.,
Design of Q-shift complex wavelets for image processing using frequency
domain energy minimization,
ICIP03(I: 1013-1016).
IEEE DOI
0312
BibRef
Tay, D.B.H.,
Analytical design of 3-D wavelet filter banks using the multivariate
Bernstein polynomial,
VISP(147), No. 2, April 2000, pp. 122.
0005
BibRef
Tay, D.B.H.,
Two-stage, least squares design of biorthogonal filter banks,
VISP(149), No. 6, December 2002, pp. 341-346.
IEEE Top Reference.
0304
BibRef
Tay, D.B.H.,
Zero-Pinning the Bernstein Polynomial:
A Simple Design Technique for Orthonormal Wavelets,
SPLetters(12), No. 12, December 2005, pp. 835-838.
IEEE DOI
0512
BibRef
Zalevsky, Z.,
Ouzieli, I.,
Mendlovic, D.,
Wavelet-Transform-Based Composite Filters for
Invariant Pattern-Recognition,
AppOpt(35), No. 17, June 10 1996, pp. 3141-3147.
9607
BibRef
Lazar, M.S.,
Bruton, L.T.,
Combining the Discrete Wavelet Transform and Mixed-Domain Filtering,
IP(5), No. 7, July 1996, pp. 1124-1136.
IEEE DOI
9607
BibRef
Lamarque, C.H.,
Robert, F.,
Image-Analysis Using Space-Filling Curves and 1D Wavelet Bases,
PR(29), No. 8, August 1996, pp. 1309-1322.
Elsevier DOI
9608
BibRef
Olkkonen, H.,
Pesola, P.,
Gaussian Pyramid Wavelet Transform for
Multiresolution Analysis of Images,
GMIP(58), No. 4, July 1996, pp. 394-398.
9609
BibRef
Basu, S.,
Levy, B.,
Multidimensional Filter Banks and Wavelets:
Research Developments and Applications - Preface,
MultiSP(8), No. 1-2, January 1997, pp. 7-10.
9703
Special issue.
BibRef
Park, H.,
Kalker, T.,
Vetterli, M.,
Grobner Bases and Multidimensional FIR Multirate Systems,
MultiSP(8), No. 1-2, January 1997, pp. 11-30.
9703
BibRef
Micchelli, C.A.,
Xu, Y.S.,
Reconstruction and Decomposition Algorithms for
Biorthogonal Multiwavelets,
MultiSP(8), No. 1-2, January 1997, pp. 31-69.
9703
BibRef
Marshall, T.G.,
Zero-Phase Filter Bank and Wavelet Code R-Matrices:
Properties, Triangular Decompositions, and a Fast Algorithm,
MultiSP(8), No. 1-2, January 1997, pp. 71-88.
9703
BibRef
And:
Correction:
MultiSP(8), No. 3, July 1997, pp. U2.
BibRef
Fridman, J.,
Manolakos, E.S.,
On the Scalability of 2-D Discrete Wavelet Transform Algorithms,
MultiSP(8), No. 1-2, January 1997, pp. 185-217.
9703
BibRef
Vrhel, M.J.,
Lee, C.,
Unser, M.,
Fast Continuous Wavelet Transform: A Least-Squares Formulation,
SP(57), No. 2, March 1997, pp. 103-119.
9705
BibRef
Cooklev, T.,
Nishihara, A.,
Sablatash, M.,
Regular Orthonormal and Biorthogonal Wavelet Filters,
SP(57), No. 2, March 1997, pp. 121-137.
9705
BibRef
Cooklev, T.,
An Efficient Architecture for Orthogonal Wavelet Transforms,
SPLetters(13), No. 2, February 2006, pp. 77-79.
IEEE DOI
0602
BibRef
Watanabe, S.,
A Finite Wavelet Decomposition Method,
ECJ-III(80), No. 7, July 1997, pp. 1-10.
9708
BibRef
Zhang, X.,
Yoshikawa, T.,
Iwakura, H.,
Recursive Orthonormal Wavelet Bases with Vanishing Moments,
IEICE(E80-A), No. 8, August 1997, pp. 1472-1477.
9709
BibRef
He, W.J.,
Lai, M.J.,
Digital-Filters Associated with Bivariate Box Spline-Wavelets,
JEI(6), No. 4, October 1997, pp. 453-466.
9807
BibRef
Cho, C.S.,
Ha, S.W.,
Kim, J.C.,
Yoon, T.H.,
Nam, K.G.,
Optoelectronic Difference-of-Gaussian Wavelet Transform System,
OptEng(36), No. 12, December 1997, pp. 3471-3475.
9801
BibRef
Chan, S.C.,
Luo, Y.,
Ho, K.L.,
M-Channel Compactly Supported Biorthogonal
Cosine-Modulated Wavelet Bases,
TSP(46), No. 4, April 1998, pp. 1142-1151.
9804
BibRef
Aldroubi, A.,
Abry, P.,
Unser, M.,
Construction Of Biorthogonal Wavelets Starting from
Any 2 Multiresolutions,
TSP(46), No. 4, April 1998, pp. 1130-1133.
9804
BibRef
Jiang, Q.T.,
Orthogonal Multiwavelets with Optimum Time-Frequency Resolution,
TSP(46), No. 4, April 1998, pp. 830-844.
9804
BibRef
Faugere, J.C.,
de Saint-Martin, F.M.,
Rouillier, F.,
Design Of Regular Nonseparable Bidimensional Wavelets Using
Grobner Basis Techniques,
TSP(46), No. 4, April 1998, pp. 845-856.
9804
BibRef
Polyak, N.,
Pearlman, W.A.,
Filters and Filter Banks for Periodic Signals, the Zak Transform, and
Fast Wavelet Decomposition,
TSP(46), No. 4, April 1998, pp. 857-873.
9804
BibRef
Earlier:
Wavelet decomposition and reconstruction using arbitrary kernels: a new
approach,
ICIP98(III: 866-870).
IEEE DOI
9810
BibRef
Earlier:
ICIP97(I: 660-662).
IEEE DOI
BibRef
Zurbenko, I.G.,
Porter, P.S.,
Construction of High Resolution Wavelets,
SP(65), No. 2, March 1998, pp. 315-327.
9806
BibRef
Liu, L.T.,
Hsu, H.T.,
Gao, B.X.,
A New Family of Orthonormal Wavelet Bases,
Geodesy(72), No. 5, May 1998, pp. 294-303.
9807
BibRef
Chen, G.Y.[Guang-Yi],
Bui, T.D.[Tien D.],
Invariant Fourier-wavelet descriptor for pattern recognition,
PR(32), No. 7, July 1999, pp. 1083-1088.
Elsevier DOI
BibRef
9907
Chen, G.Y.,
Bhattacharya, P.,
Invariant Texture Classification Using Ridgelet Packets,
ICPR06(II: 464-467).
IEEE DOI
0609
BibRef
Chen, G.Y.[Guang-Yi],
Bui, T.D.[Tien D.],
Krzyzak, A.,
Invariant Ridgelet-Fourier Descriptor for Pattern Recognition,
ICPR06(II: 768-771).
IEEE DOI
0609
BibRef
Donoho, D.L.[David L.],
Wavelet Shrinkage: Asymptopia?,
RoyalStat(B-57), No. 2, 1995, pp. 301-369.
BibRef
9500
Donoho, D.L.,
Johnstone, I.M.,
Ideal spatial adaptation via wavelets shrinkage,
Biometrika(81), 1994, pp. 425-455.
DOI Link
See also DCT image denoising: a simple and effective image denoising algorithm.
BibRef
9400
Donoho, D.L.,
Johnstone, I.M.,
Adapting to unknown smoothness via wavelets shrinkage,
ASAJ(90), No. 432, 1995, pp. 1200-1224.
BibRef
9500
Donoho, D.L.[David L.],
Duncan, M.R.[Mark Reynold],
Huo, X.M.[Xiao-Ming],
Levi, O.[Ofer],
Wavelab,
Online Book1999.
WWW Link.
Code, Wavelets.
Code, Wavelets, Matlab. A collection of Matlab functions to implement various algorithms
for wavelet analysis.
BibRef
9900
Chang, L.W.[Long-Wen],
Shen, Y.E.[Yuh-Erl],
Numerical solutions for orthogonal wavelet filters by Newton method,
SP:IC(14), No. 10, August 1999, pp. 879-887.
Elsevier DOI
BibRef
9908
Xiong, H.,
Zhang, T.,
Moon, Y.S.,
A Translation- and Scale-Invariant Adaptive Wavelet Transform,
IP(9), No. 12, December 2000, pp. 2100-2108.
IEEE DOI
0011
See also Comments on A translation- and scale-invariant adaptive wavelet transform.
BibRef
Zhao, Y.,
Swamy, M.N.S.,
New technique for designing nearly-orthogonal wavelet filter banks with
linear phase,
VISP(147), No. 6, December 2000, pp. 527-533.
0101
BibRef
Selesnick, I.W.,
Hilbert transform pairs of wavelet bases,
SPLetters(8), No. 6, June 2001, pp. 170-173.
IEEE Top Reference.
0106
BibRef
Attakitmongcol, K.,
Hardin, D.P.,
Wilkes, D.M.,
Multiwavelet prefilters-part II: optimal orthogonal prefilters,
IP(10), No. 10, October 2001, pp. 1476-1487.
IEEE DOI
0110
BibRef
Jones, E.[Eric],
Runkle, P.[Paul],
Dasgupta, N.[Nilanjan],
Couchman, L.[Luise],
Carin, L.[Lawrence],
Genetic Algorithm Wavelet Design for Signal Classification,
PAMI(23), No. 8, August 2001, pp. 890-895.
IEEE DOI
0109
Design of wavelet filters using a genetic algorithm.
BibRef
Zervas, N.D.,
Anagnostopoulos, G.P.,
Spiliotopoulos, V.,
Andreopoulos, Y.,
Goutis, C.E.,
Evaluation of design alternatives for the 2-D-discrete wavelet
transform,
CirSysVideo(11), No. 12, December 2001, pp. 1246-1262.
IEEE Top Reference.
0201
BibRef
Andreopoulos, Y.[Yiannis],
van der Schaar, M.[Mihaela],
Incremental Refinement of Computation for the Discrete Wavelet
Transform,
ICIP07(IV: 53-56).
IEEE DOI
0709
BibRef
Andreopoulos, Y.,
Zervas, N.D.,
Lafruit, G.,
Schelkens, P.,
Stouraitis, T.,
Goutis, C.E.,
Cornelis, J.P.H.,
A Local Wavelet Transform Implementation Versus an Optimal Row-column
Algorithm for the 2-D Multilevel Decomposition,
ICIP01(III: 330-333).
IEEE DOI
0108
BibRef
Munteanu, A.[Adrian],
Surdu, O.M.[Oana Maria],
Cornelis, J.P.H.[Jan P.H.],
Schelkens, P.[Peter],
Segmentation-Driven Direction-Adaptive Discrete Wavelet Transform,
ICIP07(I: 437-440).
IEEE DOI
0709
BibRef
van der Auwera, G.,
Munteanu, A.,
Cornelis, J.P.H.,
Evaluation of a Quincunx Wavelet Filter Design Approach for
Quadtree-based Embedded Image Coding,
ICIP00(Vol III: 190-193).
IEEE DOI
0008
BibRef
Vandergheynst, P.,
Gobbers, J.F.,
Directional dyadic wavelet transforms: design and algorithms,
IP(11), No. 4, April 2002, pp. 363-372.
IEEE DOI
0205
BibRef
Özkaramanli, H.[Hüseyin],
Bhatti, A.[Asim],
Bilgehan, B.[Bulent],
Multi-wavelets from B-spline super-functions with approximation order,
SP(82), No. 8, August 2002, pp. 1029-1046.
Elsevier DOI
0206
BibRef
Özkaramanli, H.[Hüseyin],
Unified approach for constructing multiwavelets with approximation
order using refinable super-functions,
VISP(150), No. 3, June 2003, pp. 143-152.
IEEE Abstract.
0308
BibRef
Kharitonenko, I.,
Zhang, X.[Xing],
Twelves, S.,
A wavelet transform with point-symmetric extension at tile boundaries,
IP(11), No. 12, December 2002, pp. 1357-1364.
IEEE DOI
0301
BibRef
Kharitonenko, I.,
Zhang, X.,
A Low Complexity Wavelet Transform with Point-symmetric Extension at
Tile Boundaries,
ICIP01(II: 269-272).
IEEE DOI
0108
BibRef
Do, M.N.,
Vetterli, M.,
The finite ridgelet transform for image representation,
IP(12), No. 1, January 2003, pp. 16-28.
IEEE DOI
0301
BibRef
Liebling, M.,
Blu, T.,
Unser, M.,
Fresnelets: new multiresolution wavelet bases for digital holography,
IP(12), No. 1, January 2003, pp. 29-43.
IEEE DOI
0301
BibRef
Nealand, J.H.,
Bradley, A.B.,
Lech, M.,
Overlap-save convolution applied to wavelet analysis,
SPLetters(10), No. 2, February 2003, pp. 47-49.
IEEE Top Reference.
0301
BibRef
Hsung, T.C.,
Lun, D.P.K.,
Boundary filter design for multiwavelets,
VISP(149), No. 5, October 2002, pp. 315-320.
IEEE Top Reference.
0304
BibRef
Hsung, T.C.,
Sun, M.C.,
Lun, D.P.K.,
Siu, W.C.,
Symmetric prefilters for multiwavelets,
VISP(150), No. 1, February 2003, pp. 59-68.
IEEE Top Reference.
0304
BibRef
Tian, J.[Jun],
Comments on 'A translation- and scale-invariant adaptive wavelet
transform',
IP(12), No. 9, September 2003, pp. 1091-1093.
IEEE DOI
0308
See also Translation- and Scale-Invariant Adaptive Wavelet Transform, A.
BibRef
Bala, E.,
Cetin, A.E.,
Computationally Efficient Wavelet Affine Invariant Functions for Shape
Recognition,
PAMI(26), No. 8, August 2004, pp. 1095-1099.
IEEE Abstract.
0407
BibRef
Earlier:
Computationally efficient wavelet affine invariant functions for 2D
object recognition,
ICIP03(I: 1061-1064).
IEEE DOI
0312
BibRef
Lam, E.Y.,
Statistical modelling of the wavelet coefficients with different bases
and decomposition levels,
VISP(151), No. 3, June 2004, pp. 203-206.
IEEE Abstract.
0409
BibRef
Ates, H.F.[Hasan F.],
Orchard, M.T.[Michael T.],
An adaptive edge model in the wavelet domain for wavelet image coding,
SP:IC(20), No. 2, February 2005, pp. 169-185.
Elsevier DOI
0501
BibRef
Earlier:
Nonlinear modeling of wavelet coefficients around edges,
ICIP03(I: 641-644).
IEEE DOI
0312
BibRef
Ates, H.F.[Hasan F.],
Orchard, M.T.[Michael T.],
Spherical Coding Algorithm for Wavelet Image Compression,
IP(18), No. 5, May 2009, pp. 1015-1024.
IEEE DOI
0904
BibRef
Earlier:
Wavelet Image Coding Using the Spherical Representation,
ICIP05(I: 89-92).
IEEE DOI
0512
BibRef
Fernandes, F.C.A.,
van Spaendonck, R.L.C.,
Burrus, C.S.,
Multidimensional, Mapping-Based Complex Wavelet Transforms,
IP(14), No. 1, January 2005, pp. 110-124.
IEEE DOI
0501
BibRef
Fernandes, F.C.A.,
van Spaendonck, R.L.C.,
Burrus, C.S.,
A Directional, Shift-insensitive, Low-redundancy, Wavelet Transform,
ICIP01(I: 618-621).
IEEE DOI
0108
BibRef
van Spaendonck, R.L.C.,
Non-redundant, Directionally Selective, Complex Wavelets,
ICIP00(Vol II: 379-382).
IEEE DOI
0008
BibRef
Feilner, M.,
van de Ville, D.,
Unser, M.,
An Orthogonal Family of Quincunx Wavelets With Continuously Adjustable
Order,
IP(14), No. 4, April 2005, pp. 499-510.
IEEE DOI
0501
BibRef
Unser, M.,
van de Ville, D.,
The Pairing of a Wavelet Basis With a Mildly Redundant Analysis via
Subband Regression,
IP(17), No. 11, November 2008, pp. 1-13.
IEEE DOI
0810
BibRef
van de Ville, D.,
Unser, M.,
Complex Wavelet Bases, Steerability, and the Marr-Like Pyramid,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI
0810
BibRef
Unser, M.,
Chenouard, N.,
van de Ville, D.,
Steerable Pyramids and Tight Wavelet Frames in L_2(BBR^d),
IP(20), No. 10, October 2011, pp. 2705-2721.
IEEE DOI
1110
BibRef
Chenouard, N.,
Unser, M.,
3D Steerable Wavelets in Practice,
IP(21), No. 11, November 2012, pp. 4522-4533.
IEEE DOI
1210
BibRef
Unser, M.[Michael],
Chenouard, N.[Nicolas],
A Unifying Parametric Framework for 2D Steerable Wavelet Transforms,
SIIMS(6), No. 1, 2013, pp. 102-135.
DOI Link
1304
BibRef
Sarukhanyan, H.[Hakob],
Petrosian, A.[Arthur],
Construction and Application of Hybrid Wavelet and Other Parametric
Orthogonal Transforms,
JMIV(23), No. 1, July 2005, pp. 25-46.
Springer DOI
0505
BibRef
Fowler, J.E.,
The Redundant Discrete Wavelet Transform and Additive Noise,
SPLetters(12), No. 9, September 2005, pp. 629-632.
IEEE DOI
0508
BibRef
Li, H.,
Liu, G.,
Zhang, Z.,
Optimization of Integer Wavelet Transforms Based on Difference
Correlation Structures,
IP(14), No. 11, November 2005, pp. 1831-1847.
IEEE DOI
0510
BibRef
Kamstra, L.[Lute],
Nonlinear Discrete Wavelet Transforms over Finite Sets and an
Application to Binary Image Compression,
JMIV(23), No. 3, November 2005, pp. 321-343.
Springer DOI
0510
BibRef
Earlier:
The design of linear binary wavelet transforms and their application to
binary image compression,
ICIP03(III: 241-244).
IEEE DOI
0312
BibRef
Earlier:
Nonlinear binary wavelet transforms and their application to binary
image compression,
ICIP02(III: 593-596).
IEEE DOI
0210
BibRef
Ahuja, N.,
Lertrattanapanich, S.,
Bose, N.K.,
Properties determining choice of mother wavelet,
VISP(152), No. 5, October 2005, pp. 659-664.
DOI Link
0512
BibRef
Chen, H.W.,
Olson, T.,
New aggressive way to search for the best base in wavelet packets,
VISP(152), No. 6, December 2005, pp. 827-836.
DOI Link
0512
BibRef
Ramos Terrades, O.,
Valveny, E.,
A new use of the ridgelets transform for describing linear
singularities in images,
PRL(27), No. 6, 15 April 2006, pp. 587-596.
Elsevier DOI
BibRef
0604
And:
Local norm features based on ridgelets transform,
ICDAR05(II: 700-704).
IEEE DOI
0508
Ridgelets transform, Wavelets transform, Radon transform, Graphics
recognition, Symbol recognition
0604
BibRef
Eslami, R.[Ramin],
Radha, H.[Hayder],
A New Family of Nonredundant Transforms Using Hybrid Wavelets and
Directional Filter Banks,
IP(16), No. 4, April 2007, pp. 1152-1167.
IEEE DOI
0704
BibRef
And:
Regular Hybrid Wavelets and Directional Filter Banks:
Extensions and Applications,
ICIP06(1609-1612).
IEEE DOI
0610
BibRef
Earlier:
New Image Transforms Using Hybrid Wavelets and Directional Filter
Banks: Analysis and Design,
ICIP05(I: 733-736).
IEEE DOI
0512
See also Translation-Invariant Contourlet Transform and Its Application to Image Denoising.
BibRef
Eslami, R.[Ramin],
Wu, X.L.[Xiao-Lin],
Video denoising using 3-D Hybrid Wavelets and Directional filter banks,
ICIP08(2340-2343).
IEEE DOI
0810
BibRef
Carré, P.[Philippe],
Andres, E.[Eric],
Discrete analytical ridgelet transform,
SP(84), No. 11, November 2004, pp. xx-yy.
BibRef
0411
Helbert, D.[David],
Carré, P.[Philippe],
Andres, E.[Eric],
3-D Discrete Analytical Ridgelet Transform,
IP(15), No. 12, December 2006, pp. 3701-3714.
IEEE DOI
0611
Use Fourier to comput Radon
BibRef
Starck, J.L.,
Fadili, J.M.,
Murtagh, F.,
The Undecimated Wavelet Decomposition and its Reconstruction,
IP(16), No. 2, February 2007, pp. 297-309.
IEEE DOI
0702
See also Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal.
BibRef
Olkkonen, H.,
Olkkonen, J.T.,
Pesola, P.,
FFT-Based Computation of Shift Invariant Analytic Wavelet Transform,
SPLetters(14), No. 3, March 2007, pp. 177-180.
IEEE DOI
0703
BibRef
Liu, Z.D.[Zai-De],
Zheng, N.N.[Nan-Ning],
Parametrization construction of biorthogonal wavelet filter banks for
image coding,
SIViP(1), No. 1, April 2007, pp. 63-76.
Springer DOI
0706
BibRef
Earlier:
Parametrization Construction of Integer Wavelet Transforms for Embedded
Image Coding,
IWICPAS06(435-445).
Springer DOI
0608
BibRef
Liu, Z.D.[Zai-De],
Gao, C.X.[Cheng-Xiu],
Construction of parametric biorthogonal wavelet filter banks with two
parameters for image coding,
SIViP(2), No. 3, September 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Lin, J.Y.[Jian-Yu],
Smith, M.J.T.[Mark J. T.],
New Perspectives and Improvements on the Symmetric Extension Filter
Bank for Subband/Wavelet Image Compression,
IP(17), No. 2, February 2008, pp. 177-189.
IEEE DOI
0801
BibRef
Earlier:
Cyclic Filter Bank Implementations of Symmetric Extension for
Subband/Wavelet Image Compression,
ICIP07(I: 429-432).
IEEE DOI
0709
BibRef
Lin, J.Y.[Jian-Yu],
Smith, M.J.T.[Mark J.T.],
Efficient Block-Based Frequency Domain Wavelet Transform
Implementations,
IP(18), No. 8, August 2009, pp. 1717-1723.
IEEE DOI
0907
BibRef
Lin, J.Y.[Jian-Yu],
Smith, M.J.T.[Mark J.T.],
A Two-Channel Overlapped Block Transform for Image Compression,
IP(19), No. 11, November 2010, pp. 3064-3071.
IEEE DOI
1011
BibRef
Lin, J.Y.[Jian-Yu],
Smith, M.J.T.[Mark J.T.],
Two-Band Hybrid FIR-IIR Filters for Image Compression,
IP(20), No. 11, November 2011, pp. 3063-3072.
IEEE DOI
1110
BibRef
Mrazek, P.[Pavel],
Weickert, J.[Joachim],
From two-dimensional nonlinear diffusion to coupled Haar wavelet
shrinkage,
JVCIR(18), No. 2, April 2007, pp. 162-175.
Elsevier DOI
0711
Nonlinear diffusion, Wavelet shrinkage, Rotation invariance;
Colour, Vector- and tensor-valued data
BibRef
Chen, Y.J.[Yi-Jiao],
Wang, Y.Y.[Yuan-Yuan],
Doppler embolic signal detection using the adaptive wavelet packet
basis and neurofuzzy classification,
PRL(29), No. 10, 15 July 2008, pp. 1589-1595.
Elsevier DOI
0711
Adaptive wavelet packet basis, Decision score, Emboli detection,
Neurofuzzy, Transcranial Doppler
BibRef
Jiang, Q.,
Compactly Supported Orthogonal and Biorthogonal sqrt-5-Refinement
Wavelets With 4-Fold Symmetry,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI
0810
BibRef
Wang, H.W.[Hua-Wei],
Tang, K.[Kai],
Biorthogonal wavelet construction for hybrid quad/triangle meshes,
VC(25), No. 4, April 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Bahrampour, A.R.,
Mirzaee, S.M.A.[S. Mohammad Ali],
A variational method for designing adaptive bandlimited wavelets,
SIViP(3), No. 4, December 2009, pp. xx-yy.
Springer DOI
0911
BibRef
Fujinoki, K.[Kensuke],
Vasilyev, O.V.[Oleg V.],
Triangular Wavelets:
An Isotropic Image Representation with Hexagonal Symmetry,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
1002
BibRef
Tanaka, Y.[Yuichi],
Hasegawa, M.[Madoka],
Kato, S.[Shigeo],
Ikehara, M.[Masaaki],
Nguyen, T.Q.[Truong Q.],
Adaptive Directional Wavelet Transform Based on Directional
Prefiltering,
IP(19), No. 4, April 2010, pp. 934-945.
IEEE DOI
1003
BibRef
Earlier:
Adaptive Directional-Wavelet Transform Using Pre-Directional Filtering,
ICIP09(1-4).
IEEE DOI
0911
BibRef
Tanaka, Y.[Yuichi],
Ikehara, M.[Masaaki],
Nguyen, T.Q.[Truong Q.],
A new combination of 1D and 2D filter banks for effective
multiresolution image representation,
ICIP08(2820-2823).
IEEE DOI
0810
BibRef
Yang, J.Y.[Jing-Yu],
Xu, W.L.[Wen-Li],
Dai, Q.H.[Qiong-Hai],
Fast adaptive wavelet packets using interscale embedding of
decomposition structures,
PRL(31), No. 11, 1 August 2010, pp. 1481-1486.
Elsevier DOI
1008
Basis selection, Adaptive wavelet packets, Anisotropic decomposition;
Isotropic decomposition
BibRef
Makaremi, I.[Iman],
Ahmadi, M.[Majid],
Blur invariants: A novel representation in the wavelet domain,
PR(43), No. 12, December 2010, pp. 3950-3957.
Elsevier DOI
1003
Blur invariant moment, Direct analysis, Feature extraction, Wavelet transform
BibRef
Makaremi, I.[Iman],
Ahmadi, M.[Majid],
Wavelet-Domain Blur Invariants for Image Analysis,
IP(21), No. 3, March 2012, pp. 996-1006.
IEEE DOI
1203
BibRef
Makaremi, I.[Iman],
Leboeuf, K.[Karl],
Ahmadi, M.[Majid],
Wavelet Domain Blur Invariants for 1D Discrete Signals,
ICIAR11(I: 69-79).
Springer DOI
1106
BibRef
Tomassi, D.,
Milone, D.H.,
Forzani, L.,
Minimum classification error learning for sequential data in the
wavelet domain,
PR(43), No. 12, December 2010, pp. 3998-4010.
Elsevier DOI
1003
Hidden Markov models, Hidden Markov trees, Discriminative training;
Minimum classification error, Wavelet transform
BibRef
Plonka, G.,
Tenorth, S.,
Rosca, D.,
A New Hybrid Method for Image Approximation Using the Easy Path Wavelet
Transform,
IP(20), No. 2, February 2011, pp. 372-381.
IEEE DOI
1102
BibRef
Lisowska, A.[Agnieszka],
Moments-Based Fast Wedgelet Transform,
JMIV(39), No. 2, February 2011, pp. 180-192.
WWW Link.
1103
BibRef
Li, B.,
Peng, L.,
Balanced Multiwavelets with Interpolatory Property,
IP(20), No. 5, May 2011, pp. 1450-1457.
IEEE DOI
1104
BibRef
Hwang, J.I.G.,
Yang, N.,
Yen, C.C.,
Solvability of the Zero-Pinning Technique to Orthonormal Wavelet Design,
SPLetters(18), No. 8, August 2011, pp. 451-453.
IEEE DOI
1107
BibRef
Zhang, X.[Xi],
A New Phase-Factor Design Method for Hilbert-Pairs of Orthonormal
Wavelets,
SPLetters(18), No. 9, September 2011, pp. 529-532.
IEEE DOI
1108
BibRef
Earlier:
Design of Hilbert transform pairs of orthonormal wavelet bases using
Remez exchange algorithm,
ICIP09(3813-3816).
IEEE DOI
0911
BibRef
Zhang, X.[Xi],
Ge, D.F.[Dong Fang],
Hilbert Transform Pairs of Orthonormal Symmetric Wavelet Bases using
Allpass Filters,
ICIP07(I: 425-428).
IEEE DOI
0709
BibRef
Mondal, D.,
Percival, D.B.,
Wavelet Variance Analysis for Random Fields on a Regular Lattice,
IP(21), No. 2, February 2012, pp. 537-549.
IEEE DOI
1201
BibRef
Thon, K.,
Geilhufe, M.,
Percival, D.B.,
A Multiscale Wavelet-Based Test for Isotropy of Random Fields on a
Regular Lattice,
IP(24), No. 2, February 2015, pp. 694-708.
IEEE DOI
1502
image processing
BibRef
Easley, G.R.,
Labate, D.,
Critically Sampled Wavelets With Composite Dilations,
IP(21), No. 2, February 2012, pp. 550-561.
IEEE DOI
1201
BibRef
Maleki, A.,
Rajaei, B.,
Pourreza, H.R.,
Rate-Distortion Analysis of Directional Wavelets,
IP(21), No. 2, February 2012, pp. 588-600.
IEEE DOI
1201
BibRef
Lee, D.U.,
Kim, L.W.,
Villasenor, J.D.,
Precision-Aware Self-Quantizing Hardware Architectures for the Discrete
Wavelet Transform,
IP(21), No. 2, February 2012, pp. 768-777.
IEEE DOI
1201
BibRef
Ram, I.,
Elad, M.,
Cohen, I.,
Redundant Wavelets on Graphs and High Dimensional Data Clouds,
SPLetters(19), No. 5, May 2012, pp. 291-294.
IEEE DOI
1204
BibRef
Wang, X.K.[Xiao-Kai],
Gao, J.H.[Jing-Huai],
Chen, W.C.[Wen-Chao],
A New Tiling Scheme for 2-D Continuous Wavelet Transform With Different
Rotation Parameters at Different Scales Resulting in a Tighter Frame,
SPLetters(19), No. 7, July 2012, pp. 407-410.
IEEE DOI
1206
BibRef
Sheridan, P.[Phillip],
Thornton, B.[Barry],
Contextual modulation via low-level vision processing,
IVC(30), No. 4-5, May 2012, pp. 367-377.
Elsevier DOI
1206
Gabor wavelet, Contextual modulation, Primary visual cortex;
Computational model, Orientation pinwheels
BibRef
Franco, J.[Joaquín],
Bernabé, G.[Gregorio],
Fernández, J.[Juan],
Ujaldón, M.[Manuel],
The 2D wavelet transform on emerging architectures: GPUs and multicores,
RealTimeIP(7), No. 3, September 2012, pp. 145-152.
WWW Link.
1208
BibRef
Naik, A.K.,
Holambe, R.S.,
Design of Low-Complexity High-Performance Wavelet Filters for Image
Analysis,
IP(22), No. 5, May 2013, pp. 1848-1858.
IEEE DOI
1303
BibRef
Naik, A.K.,
Holambe, R.S.,
New Approach to the Design of Low Complexity 9/7 Tap Wavelet Filters
With Maximum Vanishing Moments,
IP(23), No. 12, December 2014, pp. 5722-5732.
IEEE DOI
1412
data compression
BibRef
Roy, S.[Sanjit],
Howlader, T.[Tamanna],
Rahman, S.M.M.[S.M. Mahbubur],
Image fusion technique using multivariate statistical model for wavelet
coefficients,
SIViP(7), No. 2, March 2013, pp. 355-365.
WWW Link.
1303
BibRef
Shukla, K.K.,
Tiwari, A.K.[Arvind K.],
Efficient Algorithms for Discrete Wavelet Transform:
With Applications to Denoising and Fuzzy Inference Systems,
Springer2013.
ISBN 978-1-4471-4940-8
Bosch, E.[Edward],
Castrodad, A.[Alexey],
Cooper, J.[John],
Dobrosotskaya, J.[Julia],
Czaja, W.[Wojciech],
Multiscale and multidirectional tight frames for image analysis,
SPIE(Newsroom), May 29, 2013
DOI Link
1308
A model for constructing 2D tight frames provides a new way to
analyze, visualize, and process data at multiple scales and
directions.
BibRef
Hadmi, A.[Azhar],
Puech, W.[William],
Said, B.A.E.[Brahim Ait Es],
Ouahman, A.A.[Abdellah Ait],
A robust and secure perceptual hashing system based on a quantization
step analysis,
SP:IC(28), No. 8, 2013, pp. 929-948.
Elsevier DOI
1309
BibRef
Earlier:
Statistical analysis of the quantization stage of robust perceptual
image hashing,
EUVIP11(274-279).
IEEE DOI
1110
BibRef
Earlier:
Analysis of the robustness of wavelet-based perceptual signatures,
IPTA10(112-117).
IEEE DOI
1007
Robust hashing
BibRef
Yang, H.,
Ying, L.,
Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition,
SIIMS(6), No. 4, 2013, pp. 1979-2009.
DOI Link
1402
BibRef
Gilles, J.,
Tran, G.,
Osher, S.,
2D Empirical Transforms. Wavelets, Ridgelets, and Curvelets Revisited,
SIIMS(7), No. 1, 2014, pp. 157-186.
DOI Link
1404
BibRef
Tay, D.B.H.,
Lin, Z.,
Murugesan, S.,
Orthogonal Wavelet Filters with Minimum RMS Bandwidth,
SPLetters(21), No. 7, July 2014, pp. 819-823.
IEEE DOI
1405
Bandwidth
BibRef
Tay, D.B.H.,
Lin, Z.,
Design of Near Orthogonal Graph Filter Banks,
SPLetters(22), No. 6, June 2015, pp. 701-704.
IEEE DOI
1411
Bipartite graph
BibRef
Tay, D.B.H.,
Lin, Z.,
Almost Tight Rational Coefficients Biorthogonal Wavelet Filters,
SPLetters(25), No. 6, June 2018, pp. 748-752.
IEEE DOI
1806
adders, channel bank filters, shift registers, wavelet transforms,
adders, biorthogonal filters, biorthogonal wavelet filters,
wavelets
BibRef
Tay, D.B.H.,
Tanaka, Y.,
Sakiyama, A.,
Near Orthogonal Oversampled Graph Filter Banks,
SPLetters(23), No. 2, February 2016, pp. 277-281.
IEEE DOI
1602
channel bank filters
BibRef
Han, B.[Bin],
Zhao, Z.P.[Zhen-Peng],
Tensor Product Complex Tight Framelets with Increasing Directionality,
SIIMS(7), No. 2, 2014, pp. 997-1034.
DOI Link
1407
BibRef
Han, B.[Bin],
Mo, Q.[Qun],
Zhao, Z.P.[Zhen-Peng],
Zhuang, X.S.[Xiao-Sheng],
Directional Compactly Supported Tensor Product Complex Tight
Framelets with Applications to Image Denoising and Inpainting,
SIIMS(12), No. 4, 2019, pp. 1739-1771.
DOI Link
1912
BibRef
Shen, Y.[Yi],
Han, B.[Bin],
Braverman, E.[Elena],
Removal of Mixed Gaussian and Impulse Noise Using Directional Tensor
Product Complex Tight Framelets,
JMIV(54), No. 1, January 2016, pp. 64-77.
WWW Link.
1601
BibRef
Auli-Llinas, F.[Francesc],
Entropy-Based Evaluation of Context Models for Wavelet-Transformed
Images,
IP(24), No. 1, January 2015, pp. 57-67.
IEEE DOI
1502
codecs
BibRef
Auli-Llinas, F.[Francesc],
Enfedaque, P.[Pablo],
Serra-Sagrista, J.[Joan],
Sanchez, V.[Victor],
Evaluation of context models to code wavelet-transformed
hyperspectral images,
ICIP14(4827-4831)
IEEE DOI
1502
Context
BibRef
Bostan, E.[Emrah],
Unser, M.[Michael],
Ward, J.P.,
Divergence-Free Wavelet Frames,
SPLetters(22), No. 8, August 2015, pp. 1142-1146.
IEEE DOI
1502
fast Fourier transforms
BibRef
Fageot, J.[Julien],
Bostan, E.[Emrah],
Unser, M.[Michael],
Wavelet Statistics of Sparse and Self-Similar Images,
SIIMS(8), No. 4, 2015, pp. 2951-2975.
DOI Link
1601
BibRef
Earlier:
Statistics of Wavelet Coefficients for Sparse Self-Similar Images,
ICIP14(6096-6100)
IEEE DOI
1502
Compounds
BibRef
Pad, P.[Pedram],
Uhlmann, V.[Virginie],
Unser, M.[Michael],
VOW: Variance-optimal wavelets for the steerable pyramid,
ICIP14(2973-2977)
IEEE DOI
1502
Approximation methods
BibRef
Shi, J.[Jun],
Liu, X.P.[Xiao-Ping],
Zhang, N.[Naitong],
Multiresolution analysis and orthogonal wavelets associated with
fractional wavelet transform,
SIViP(9), No. 1, January 2015, pp. 211-220.
WWW Link.
1503
BibRef
Kakoty, N.M.[Nayan M.],
Saikia, A.[Adity],
Hazarika, S.M.[Shyamanta M.],
Exploring a family of wavelet transforms for EMG-based grasp
recognition,
SIViP(9), No. 3, March 2015, pp. 553-559.
WWW Link.
1503
BibRef
Gopalan, B.,
Chilambuchelvan, A.,
Vijayan, S.,
Gowrison, G.,
Performance Improvement of Average Based Spatial Filters through
Multilevel Preprocessing using Wavelets,
SPLetters(22), No. 10, October 2015, pp. 1698-1702.
IEEE DOI
1506
Gaussian noise
BibRef
Ahrabian, A.,
Mandic, D.P.,
Selective Time-Frequency Reassignment Based on Synchrosqueezing,
SPLetters(22), No. 11, November 2015, pp. 2039-2043.
IEEE DOI
1509
signal representation
BibRef
Chen, Y.[Yang],
Cheng, C.[Cheng],
Sun, Q.Y.[Qi-Yu],
Reconstruction of Sparse Wavelet Signals From Partial Fourier
Measurements,
SPLetters(22), No. 12, December 2015, pp. 2299-2303.
IEEE DOI
1512
Fourier transforms
BibRef
Gawande, J.P.[Jayanand P.],
Rahulkar, A.D.[Amol D.],
Holambe, R.S.[Raghunath S.],
Design of new class of regular biorthogonal wavelet filter banks using
generalized and hybrid lifting structures,
SIViP(9), No. 1 Supp, December 2015, pp. 265-273.
Springer DOI
1601
BibRef
Escande, P.[Paul],
Weiss, P.[Pierre],
Sparse Wavelet Representations of Spatially Varying Blurring
Operators,
SIIMS(8), No. 4, 2015, pp. 2976-3014.
DOI Link
1601
BibRef
Escande, P.[Paul],
Weiss, P.[Pierre],
Approximation of Integral Operators Using Product-Convolution
Expansions,
JMIV(58), No. 3, July 2017, pp. 333-348.
Springer DOI
1706
BibRef
Ghribi, S.F.[Sameh Fakhfakh],
Jammoussi, A.Y.[Ameni Yangui],
Masmoudi, D.S.[Dorra Sellami],
Multiobjective genetic algorithm-based adaptive wavelet design,
IJCVR(6), No. 1-2, 2016, pp. 127-145.
DOI Link
1601
BibRef
Puspoki, Z.,
Uhlmann, V.,
Vonesch, C.,
Unser, M.,
Design of Steerable Wavelets to Detect Multifold Junctions,
IP(25), No. 2, February 2016, pp. 643-657.
IEEE DOI
1601
Biomedical imaging
BibRef
Kale, M.C.[Mehmet Cemil],
A general biorthogonal wavelet based on Karhunen-Loéve transform
approximation,
SIViP(10), No. 4, April 2016, pp. 791-794.
Springer DOI
1604
BibRef
Adcock, B.,
Hansen, A.C.,
Roman, B.,
A Note on Compressed Sensing of Structured Sparse Wavelet
Coefficients From Subsampled Fourier Measurements,
SPLetters(23), No. 5, May 2016, pp. 732-736.
IEEE DOI
1604
Coherence
BibRef
Bastounis, A.[Alexander],
Hansen, A.C.[Anders C.],
On the Absence of Uniform Recovery in Many Real-World Applications of
Compressed Sensing and the Restricted Isometry Property and Nullspace
Property in Levels,
SIIMS(10), No. 1, 2017, pp. 335-371.
DOI Link
1704
BibRef
Zhang, Y.F.[Yong-Fei],
Cao, H.H.[Hai-Heng],
Jiang, H.X.[Hong-Xu],
Li, B.[Bo],
Memory-efficient high-speed VLSI implementation of multi-level
discrete wavelet transform,
JVCIR(38), No. 1, 2016, pp. 297-306.
Elsevier DOI
1605
DWT
BibRef
Jayachandra, D.,
Makur, A.[Anamitra],
Reduction of transients during lifting based spatial switching of
two-channel filter banks,
SP:IC(47), No. 1, 2016, pp. 229-241.
Elsevier DOI
1610
Wavelets
BibRef
Püspöki, Z.[Zsuzsanna],
Ward, J.P.[John Paul],
Sage, D.[Daniel],
Unser, M.[Michael],
On the Continuous Steering of the Scale of Tight Wavelet Frames,
SIIMS(9), No. 3, 2016, pp. 1042-1062.
DOI Link
1610
BibRef
Folberth, J.,
Becker, S.,
Efficient Adjoint Computation for Wavelet and Convolution Operators,
SPMag(33), No. 6, November 2016, pp. 135-147.
IEEE DOI
1609
[Lecture Notes]. Blind equalizers
BibRef
Kumar, N.[Neeraj],
Verma, R.[Ruchika],
Sethi, A.[Amit],
Convolutional neural networks for wavelet domain super resolution,
PRL(90), No. 1, 2017, pp. 65-71.
Elsevier DOI
1704
BibRef
Earlier: A1, A3, Only:
On spatial neighborhood of patch-based super resolution,
ICIP15(497-501)
IEEE DOI
1512
Super resolution.
Group Method of Data Handling
BibRef
Kumar, N.[Neeraj],
Rai, N.K.[Naveen Kumar],
Sethi, A.[Amit],
Learning to predict super resolution wavelet coefficients,
ICPR12(3468-3471).
WWW Link.
1302
BibRef
Hamzah, F.A.B.[Fairoza Amira Binti],
Yoshida, T.[Taichi],
Iwahashi, M.[Masahiro],
Non-separable four-dimensional integer wavelet transform with reduced
rounding noise,
SP:IC(58), No. 1, 2017, pp. 123-133.
Elsevier DOI
1710
Wavelet
BibRef
Mehra, I.[Isha],
Fatima, A.[Areeba],
Nishchal, N.K.[Naveen K.],
Gyrator wavelet transform,
IET-IPR(12), No. 3, March 2018, pp. 432-437.
DOI Link
1802
BibRef
Gupta, P.[Praful],
Moorthy, A.K.[Anush Krishna],
Soundararajan, R.[Rajiv],
Bovik, A.C.[Alan Conrad],
Generalized Gaussian scale mixtures: A model for wavelet coefficients
of natural images,
SP:IC(66), 2018, pp. 87-94.
Elsevier DOI
1806
Generalized Gaussian scale mixture model,
Distorted image modeling, Distortion-identification,
No-reference image quality assessment
BibRef
Liu, B.[Bin],
Liu, W.J.[Wei-Jie],
Factoring two-dimensional two-channel non-separable stripe filter banks
into lifting steps,
IET-IPR(12), No. 7, July 2018, pp. 1185-1194.
DOI Link
1806
BibRef
Barina, D.[David],
Zemcik, P.[Pavel],
Vectorization and parallelization of 2-D wavelet lifting,
RealTimeIP(15), No. 2, August 2018, pp. 349-361.
WWW Link.
1808
BibRef
Earlier:
Diagonal vectorisation of 2-D wavelet lifting,
ICIP14(2978-2982)
IEEE DOI
1502
Central Processing Unit
BibRef
Rubino, E.M.[Eduardo M.],
Álvares, A.J.[Alberto J.],
Sanz, R.[Raul],
Marín, R.[Raul],
A general scheme for finding the static rate-distortion optimized
ordering for the bits of the coefficients of all subbands of an
N-level dyadic biorthogonal DWT,
SP:IC(67), 2018, pp. 210-230.
Elsevier DOI
1808
DWT, PDF, Bitmap, Laplace distribution, Uniform distribution,
Exponential power distribution, Rate-distortion optimized
BibRef
Biswas, R.,
Malreddy, S.R.,
Banerjee, S.,
A High-Precision Low-Area Unified Architecture for Lossy and Lossless
3D Multi-Level Discrete Wavelet Transform,
CirSysVideo(28), No. 9, September 2018, pp. 2386-2396.
IEEE DOI
1809
Discrete wavelet transforms, Image coding,
FPGA
BibRef
Chen, Y.,
Li, D.,
Zhang, J.Q.,
Complementary Color Wavelet: A Novel Tool for the Color Image/Video
Analysis and Processing,
CirSysVideo(29), No. 1, January 2019, pp. 12-27.
IEEE DOI
1901
Image color analysis, Color, Wavelet transforms, Tools,
Wavelet analysis, Gray-scale, Color wavelets, complementary color,
filter banks
BibRef
Savic, G.[Goran],
Prokin, M.[Milan],
Rajovic, V.[Vladimir],
Prokin, D.[Dragana],
Novel one-dimensional and two-dimensional forward discrete wavelet
transform 5/3 filter architectures for efficient hardware
implementation,
RealTimeIP(16), No. 5, October 2019, pp. 1459-1478.
Springer DOI
1911
BibRef
Ibraheem, M.S.[Mohammed Shaaban],
Hachicha, K.[Khalil],
Ahmed, S.Z.[Syed Zahid],
Lambert, L.[Laurent],
Garda, P.[Patrick],
High-throughput parallel DWT hardware architecture implemented on an
FPGA-based platform,
RealTimeIP(16), No. 6, December 2019, pp. 2043-2057.
Springer DOI
1912
BibRef
Arfaoui, S.[Sabrine],
Ben Mabrouk, A.[Anouar],
Cattani, C.[Carlo],
New Type of Gegenbauer-Hermite Monogenic Polynomials and Associated
Clifford Wavelets,
JMIV(62), No. 1, January 2020, pp. 73-97.
Springer DOI
2001
BibRef
Sharma, R.R.[Rishi Raj],
Kalyani, A.[Avinash],
Pachori, R.B.[Ram Bilas],
An empirical wavelet transform-based approach for cross-terms-free
Wigner-Ville distribution,
SIViP(14), No. 2, March 2020, pp. 249-256.
WWW Link.
2003
BibRef
Samantaray, A.K.[Aswini K.],
Rahulkar, A.D.[Amol D.],
New design of adaptive Gabor wavelet filter bank for medical image
retrieval,
IET-IPR(14), No. 4, 27 March 2020, pp. 679-687.
DOI Link
2003
BibRef
Divakara, S.S.,
Patilkulkarni, S.[Sudarshan],
Raj, C.P.[Cyril Prasanna],
Novel DWT/IDWT Architecture for 3D with Nine Stage 2D Parallel
Processing using Split Distributed Arithmetic,
IJIG(20), No. 3, July 2020, pp. 2050017.
DOI Link
2008
BibRef
Xue, Y.J.,
Pirogova, A.,
Cao, J.X.,
Wang, X.J.,
Q-Factor Estimation by Compensation of Amplitude Spectra in
Synchrosqueezed Wavelet Domain,
GeoRS(59), No. 3, March 2021, pp. 2657-2665.
IEEE DOI
2103
Attenuation, Estimation, Continuous wavelet transforms, Q-factor,
Time-frequency analysis, Inverse Q filtering, quality factor,
synchrosqueezed wavelet transform (SSWT)
BibRef
Samantaray, A.K.[Aswini K.],
Edavoor, P.J.[Pranose J.],
Rahulkar, A.D.[Amol D.],
A New Approach to the Design and Implementation of a Family of
Multiplier Free Orthogonal Wavelet Filter Banks,
CirSysVideo(32), No. 4, April 2022, pp. 1942-1954.
IEEE DOI
2204
Hardware, Discrete wavelet transforms,
Delays, Time-frequency analysis, Adders, VLSI architecture
BibRef
Saydjari, A.K.[Andrew K.],
Finkbeiner, D.P.[Douglas P.],
Equivariant Wavelets:
Fast Rotation and Translation Invariant Wavelet Scattering Transforms,
PAMI(45), No. 2, February 2023, pp. 1716-1731.
IEEE DOI
2301
Scattering, Wavelet transforms, Transforms, Training, Correlation,
Wavelet analysis, Dimensionality reduction, Wavelet transforms,
machine learning
BibRef
Fang, Y.T.[Yue-Tong],
Wang, Z.Q.[Zi-Qing],
Zhang, L.F.[Ling-Feng],
Cao, J.H.[Jia-Hang],
Chen, H.L.[Hong-Lei],
Xu, R.J.[Ren-Jing],
Spiking Wavelet Transformer,
ECCV24(LXXVI: 19-37).
Springer DOI
2412
BibRef
Parracho, J.O.[Joao O.],
da Silva, E.A.B.[Eduardo A. B.],
Thomaz, L.A.[Lucas A.],
Tavora, L.M.N.[Luis M. N.],
Faria, S.M.M.[Sergio M. M.],
Non-Separablewavelet Transform Using Learnable Convolutional Lifting
Steps,
ICIP24(214-220)
IEEE DOI Code:
WWW Link.
2411
Wavelet transforms, Convolutional codes, Image coding, Convolution,
Design methodology, Computational modeling, Focusing,
Lossless image coding
BibRef
Versaci, F.[Francesco],
Wavetf: A Fast 2d Wavelet Transform for Machine Learning in Keras,
CADL20(605-618).
Springer DOI
2103
BibRef
Wei, Z.,
Zhang, J.,
Xu, Z.,
Liu, Y.,
Wavelet Decomposition optimization via Exponential Decay Constraint
for Compressively Sensed Image Reconstruction,
CVIDL20(160-164)
IEEE DOI
2102
compressed sensing, discrete wavelet transforms,
image reconstruction, wavelet decomposition optimization
BibRef
Bastidas Rodriguez, M.X.,
Gruson, A.,
Polanía, L.F.,
Fujieda, S.,
Ortiz, F.P.,
Takayama, K.,
Hachisuka, T.,
Deep Adaptive Wavelet Network,
WACV20(3100-3108)
IEEE DOI
2006
Wavelet transforms, Multiresolution analysis, Task analysis,
Convolution, Adaptive systems, Neural networks
BibRef
Recoskie, D.,
Mann, R.,
Learning Filters for the 2D Wavelet Transform,
CRV18(198-205)
IEEE DOI
1812
Discrete wavelet transforms,
Convolution, Neural networks, Approximation algorithms, wavelets,
filter banks
BibRef
Grandits, T.[Thomas],
Pock, T.[Thomas],
Optimizing Wavelet Bases for Sparser Representations,
EMMCVPR17(249-262).
Springer DOI
1805
BibRef
Li, Z.X.[Zheng-Xin],
Wu, S.H.[Shi-Hui],
Zhou, Y.[Yu],
Li, C.[Chao],
A combined filtering search for DTW,
ICIVC17(884-888)
IEEE DOI
1708
Complexity theory, Discrete wavelet transforms,
dynamic time warping, early-abandon, filtering search,
lower-bounding, time, series
BibRef
Ali, H.H.S.M.,
Sharif, S.M.,
Computation reduction of haar wavelet coefficients,
ICIVC17(832-835)
IEEE DOI
1708
Multiresolution analysis, computing wavelet coefficients,
conjugate filters, maximal overlap discrete wavelet transform,
multiresolution, analysis
BibRef
Regli, J.B.,
Nelson, J.D.B.,
Scattering convolutional hidden Markov trees,
ICIP16(1883-1887)
IEEE DOI
1610
Convolution
BibRef
Nelson, J.D.B.,
Gibberd, A.J.,
Introducing the locally stationary dual-tree complex wavelet model,
ICIP16(3583-3587)
IEEE DOI
1610
Computational modeling
BibRef
Zhang, X.,
A novel design of biorthogonal graph wavelet filter banks,
ICIP16(1529-1533)
IEEE DOI
1610
Algorithm design and analysis
BibRef
Tay, P.C.[Peter C.],
A conjointly well localized quadrature mirror filterbank,
ICIP15(3725-3729)
IEEE DOI
1512
Quadrature Mirror Filter-bank, Wavelet Transform, time-frequency measure
BibRef
Bahri, M.,
Ashimo, R.,
Convolution and correlation theorems for continuous reduced
biquaternion wavelet transform,
ICWAPR15(81-86)
IEEE DOI
1511
wavelet transforms
BibRef
Zheng, Y.[Yan],
Fujimoto, S.,
Rinoshika, A.,
Comparing wavelet transform with proper orthogonal decomposition,
ICWAPR15(117-123)
IEEE DOI
1511
shear turbulence
BibRef
Marinucci, D.[Domenico],
Vadlamani, S.[Sreekar],
Statistical properties of spherical wavelets systems,
ICIP14(6011-6015)
IEEE DOI
1502
Data analysis
BibRef
Zhang, Z.[Zhong],
Suzuki, J.,
Akiduki, T.,
Miyake, T.[Tetsuo],
Consideration of composing method of the optimized real-signal mother
wavelet,
ICWAPR16(107-113)
IEEE DOI
1611
Continuous wavelet transforms
BibRef
Toda, H.[Hiroshi],
Zhang, Z.[Zhong],
High flexible orthonormal basis of wavelets and its Hilbert transform
pair,
ICWAPR16(134-139)
IEEE DOI
1611
Pattern recognition
BibRef
Shirasuna, M.,
Zhang, Z.[Zhong],
Toda, H.[Hiroshi],
Miyake, T.[Tetsuo],
Approximate tight wavelet frame using Gabor wavelet,
ICWAPR15(105-110)
IEEE DOI
1511
approximation theory
BibRef
Zhang, Z.[Zhong],
Shimasue, K.[Kosuke],
Toda, H.[Hiroshi],
Miyake, T.[Tetsuo],
Achieving complex discrete wavelet transform by lifting scheme using
Meyer wavelet,
ICWAPR14(170-175)
IEEE DOI
1402
Discrete wavelet transforms
BibRef
Kato, T.[Takeshi],
Zhang, Z.[Zhong],
Toda, H.[Hiroshi],
Imamura, T.[Takashi],
Miyake, T.[Tetsuo],
The novel directional selection based on complex discrete wavelet
transform,
ICWAPR14(164-169)
IEEE DOI
1402
Discrete wavelet transforms
BibRef
Fujinoki, K.[Kensuke],
Image restoration with triangular orthogonal wavelets,
ICWAPR15(124-127)
IEEE DOI
1511
BibRef
Earlier:
A design of triangular biorthogonal wavelet filters with average
interpolation scheme,
ICWAPR14(159-163)
IEEE DOI
1402
AWGN.
Image processing
BibRef
Toda, H.[Hiroshi],
Zhang, Z.[Zhong],
A new type of orthonormal wavelet basis having customizable frequency
bands,
ICWAPR15(99-104)
IEEE DOI
1511
BibRef
Earlier:
Study of arbitrary real dilation factor of orthonorma wavelet basis,
ICWAPR14(140-145)
IEEE DOI
1402
frequency-domain analysis.
Equations
BibRef
Morimoto, A.[Akira],
Ashino, R.[Ryuichi],
Mandai, T.[Takeshi],
Image separation using N-tree wavelet transforms,
ICWAPR15(93-98)
IEEE DOI
1511
Hilbert transforms
BibRef
Morimoto, A.[Akira],
Ashino, R.[Ryuichi],
Ikebe, K.[Kazuma],
Mandai, T.[Takeshi],
Tatsumi, M.[Motoi],
Filter coefficients of the fractional Hilbert transforms of
biorthogonal wavelets,
ICWAPR14(134-139)
IEEE DOI
1402
Biorthogonal wavelets
BibRef
Fujita, K.[Keiko],
Gabor transformation on the circle,
ICWAPR14(122-126)
IEEE DOI
1402
Fourier transforms
BibRef
Bahri, M.[Mawardi],
Ashino, R.[Ryuichi],
Logarithmic uncertainty principle for quaternion linear canonical
transform,
ICWAPR16(140-145)
IEEE DOI
1611
BibRef
Earlier:
Relationship between quaternion linear canonical and quaternion
fourier transforms,
ICWAPR14(116-121)
IEEE DOI
1402
Algebra.
Convolution
BibRef
Lian, J.A.[Jian-Ao],
Wang, Y.H.[Yong-Hui],
Construction of energy preserving QMF,
ICWAPR14(24-29)
IEEE DOI
1402
Filter banks
BibRef
Iwahashi, M.[Masahiro],
Orachon, T.[Teerapong],
Kiya, H.[Hitoshi],
Three dimensional discrete wavelet transform with deduced number of
lifting steps,
ICIP13(1651-1654)
IEEE DOI
1402
3D, coding, medical, wavelet
BibRef
Stutz, T.[Thomas],
Uhl, A.[Andreas],
Complexity analysis of the Key-dependent Wavelet Packet Transform for
JPEG2000 encryption,
ICIP12(2633-2636).
IEEE DOI
1302
BibRef
Ye, W.X.[Wen-Xing],
Entezari, A.[Alireza],
Design of bivariate sinc wavelets,
ICIP12(2477-2480).
IEEE DOI
1302
BibRef
Rao, N.S.[Nikhil S.],
Nowak, R.D.[Robert D.],
Wright, S.J.[Stephen J.],
Kingsbury, N.G.[Nick G.],
Convex approaches to model wavelet sparsity patterns,
ICIP11(1917-1920).
IEEE DOI
1201
BibRef
Kwitt, R.[Roland],
Meerwald, P.[Peter],
Uhl, A.[Andreas],
Verdoolaege, G.[Geert],
Testing a multivariate model for wavelet coefficients,
ICIP11(1277-1280).
IEEE DOI
1201
BibRef
Unaldi, N.[Numan],
Asari, V.K.[Vijayan K.],
Undecimated Wavelet Transform-Based Image Interpolation,
ISVC10(III: 474-483).
Springer DOI
1011
BibRef
Jing, M.L.[Ming-Li],
Huang, H.[Hua],
Liu, W.[WuLing],
Qi, C.[Chun],
Orthogonal 4-tap integer multiwavelet transforms using matrix
factorization,
ICIP10(393-396).
IEEE DOI
1009
BibRef
Papari, G.[Giuseppe],
Campisi, P.[Patrizio],
Petkov, N.[Nicolai],
Closed form of the steered elongated Hermite-Gauss wavelets,
ICIP10(377-380).
IEEE DOI
1009
BibRef
Kopenkov, V.N.[Vasiliy N.],
Myasnikov, V.V.[Vladislav V.],
Research the Performance of a Recursive Algorithm of the Local Discrete
Wavelet Transform,
ICPR10(4452-4455).
IEEE DOI
1008
BibRef
Baradarani, A.[Aryaz],
Mendapara, P.[Pankajkumar],
Wu, Q.M.J.[Q.M. Jonathan],
On the Design of a Class of Odd-Length Biorthogonal Wavelet Filter
Banks for Signal and Image Processing,
ICPR10(2282-2285).
IEEE DOI
1008
BibRef
Bhavsar, J.K.[Jignesh K.],
Mitra, S.K.[Suman K.],
Deriving Sparse Coefficients of Wavelet Pyramid Taking Clues from Hough
Transform,
PReMI09(327-332).
Springer DOI
0912
BibRef
Vosoughi, A.[Arash],
Shamsollahi, M.B.[Mohammad B.],
Vosoughi, A.[Azadeh],
Nonsubsampled higher-density discrete wavelet transform:
Filter design and application in image contrast enhancement,
ICIP09(3165-3168).
IEEE DOI
0911
BibRef
El-Shehaby, I.A.[Iman A.],
Tran, T.D.[Trac D.],
Implementation and application of local computation of wavelet
coefficients in the dual-tree complex wavelets,
ICIP09(3885-3888).
IEEE DOI
0911
BibRef
Kravchenko, V.[Victor],
Meana, H.P.[Hector Perez],
Ponomaryov, V.[Volodymyr],
Churikov, D.[Dmitry],
Spectral Estimation of Digital Signals by the Orthogonal Kravchenko
Wavelets {ha(t)~},
CIARP09(989-996).
Springer DOI
0911
BibRef
Ma, Q.[Qin],
Mei, S.L.[Shu-Li],
Zhu, D.H.[De-Hai],
Construction of Quasi Interval Wavelet Based on Constrained Variational
Principle,
CISP09(1-5).
IEEE DOI
0910
BibRef
Xiao, H.Y.[Hong-Ying],
A Recursive Approach to Generate Univariate Orthonormal Wavelet,
CISP09(1-4).
IEEE DOI
0910
BibRef
Zhang, W.B.[Wen-Bin],
Shen, L.[Lu],
Li, J.S.[Jun-Sheng],
Cai, Q.[Qun],
Wang, H.J.[Hong-Jun],
Morphological Undecimated Wavelet Decomposition for Fault Feature
Extraction of Rolling Element Bearing,
CISP09(1-5).
IEEE DOI
0910
BibRef
Liu, S.G.[Shu-Guang],
Qu, P.G.[Ping-Ge],
Construction of Two Types of Wavelets Based on Edge Detector,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, J.J.[Jin-Jun],
Zhu, S.H.[Sheng-Huo],
Gong, Y.H.[Yi-Hong],
Resolution-Invariant Image Representation and its applications,
CVPR09(2512-2519).
IEEE DOI
0906
Multiple resolution bases from training images, use to represent image.
BibRef
Adams, M.D.[Michael D.],
On the coding gain of separable 2D wavelet filter banks,
ICIP08(1204-1207).
IEEE DOI
0810
BibRef
Patel, V.M.[Vishal M.],
Easley, G.R.[Glenn R.],
Healy, D.M.[Dennis M.],
A new multiresolution generalized directional filter bank design and
application in image enhancement,
ICIP08(2816-2819).
IEEE DOI
0810
BibRef
Sigari, M.H.[Mohamad Hoseyn],
Best wavelength selection for Gabor wavelet using GA for EBGM
algorithm,
ICMV07(35-39).
IEEE DOI
0712
BibRef
Byröd, M.[Martin],
Josephson, K.[Klas],
Ĺström, K.[Kalle],
A Column-Pivoting Based Strategy for Monomial Ordering in Numerical
Gröbner Basis Calculations,
ECCV08(IV: 130-143).
Springer DOI
0810
BibRef
Earlier:
Improving Numerical Accuracy of Grobner Basis Polynomial Equation
Solvers,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Bede, B.[Barnabas],
Nobuhara, H.[Hajime],
Schwab, E.D.[Emil Daniel],
Multichannel Image Decomposition by using Pseudo-Linear Haar Wavelets,
ICIP07(VI: 17-20).
IEEE DOI
0709
BibRef
Zergainoh, A.,
Duhamel, P.,
Compactly Supported Non-Uniform Spline Wavelet for Irregularly
Sub-Sampled Image Representation,
ICIP06(1621-1624).
IEEE DOI
0610
BibRef
Yin, X.X.,
Ng, B.W.H.,
Ferguson, B.,
Mickan, S.P.,
Abbott, D.,
Statistical Model for the Classification of the Wavelet Transforms of
T-ray Pulses,
ICPR06(III: 236-239).
IEEE DOI
0609
BibRef
Huang, C.P.[Chin-Pan],
Li, C.C.[Ching-Chung],
A Secret Image Sharing Method using Integer Multiwavelet Transform,
ICIP06(1969-1972).
IEEE DOI
0610
BibRef
Earlier:
A Secret Image Sharing Method Using Integer-to-Integer Wavelet
Transform,
ICPR06(III: 802-805).
IEEE DOI
0609
BibRef
Amiri, M.,
Azimifar, Z.,
Fieguth, P.W.,
Correlated non-linear wavelet shrinkage,
ICIP08(2348-2351).
IEEE DOI
0810
BibRef
Azimifar, Z.,
Fieguth, P.W.,
Jernigan, E.,
Correlated Wavelet Shrinkage:
Models of Local Random Fields Across Multiple Resolutions,
ICIP05(III: 157-160).
IEEE DOI
0512
BibRef
Earlier:
Wavelet Shrinkage with Correlated Wavelet Coefficients,
ICIP01(III: 162-165).
IEEE DOI
0108
BibRef
Martina, M.,
Masera, G.,
Low-Complexity, Efficient 9/7 Wavelet Filters Implementation,
ICIP05(III: 1000-1003).
IEEE DOI
0512
BibRef
Durand, S.,
Orthonormal Bases of Non-Separable Wavelets with Sharp Directions,
ICIP05(I: 449-452).
IEEE DOI
0512
BibRef
Chan, W.L.[Wai Lam],
Choi, H.H.[Hyeok-Ho],
Baraniuk, R.G.,
Quaternion wavelets for image analysis and processing,
ICIP04(V: 3057-3060).
IEEE DOI
0505
BibRef
van de Ville, D.,
Blu, T.,
Forster, B.,
Unser, M.,
Isotropic-polyharmonic B-splines and wavelets,
ICIP04(I: 661-664).
IEEE DOI
0505
BibRef
Kutil, R.,
Anisotropic 3-d wavelet packet bases for video coding,
ICIP03(II: 73-76).
IEEE DOI
0312
BibRef
Care, P.,
Helbert, D.,
Andres, E.,
3-D fast ridgelet transform,
ICIP03(I: 1021-1024).
IEEE DOI
0312
BibRef
Cho, S.Y.[Seong-Yun],
Han, S.Y.[Su-Young],
Coefficient Partitioning Scanning Order Wavelet Packet Algorithm for
Satellite Images,
CAIP03(278-284).
Springer DOI
0311
BibRef
Wang, H.J.[Hong-Jian],
Chen, T.[Tao],
Peng, S.L.[Si-Long],
A novel method for designing adaptive compaction orthogonal wavelet
filter banks,
ICIP03(I: 1041-1044).
IEEE DOI
0312
BibRef
Kim, H.C.[Hyung Cook],
Delp, E.J.,
A comparison of fixed-point 2D 9x7 discrete wavelet transform
implementations,
ICIP02(I: 389-392).
IEEE DOI
0210
BibRef
Zhou, D.,
DeBrunner, V.,
Havlicek, J.P.,
A spatially selective filter based on the undecimated wavelet transform
that is robust to noise estimation error,
Southwest04(162-166).
IEEE DOI
0411
BibRef
Tay, P.C.,
Havlicek, J.P.,
Frequency implementation of discrete wavelet transforms,
Southwest04(167-171).
IEEE DOI
0411
BibRef
Tay, P.C.,
Havlicek, J.P.,
Joint uncertainty measures for maximally decimated M-channel prime
factor cascaded wavelet filter banks,
ICIP03(I: 1033-1036).
IEEE DOI
0312
BibRef
Tay, P.C.,
Havlicek, J.P.,
DeBrunner, V.,
A wavelet filter bank which minimizes a novel translation invariant
discrete uncertainty measure,
Southwest02(173-177).
IEEE Top Reference.
0208
BibRef
Law, N.F.,
Liew, A.W.C.,
Siu, W.C.,
Fast Algorithm for Binary Field Wavelet Transform for Image Processing,
ICIP01(II: 281-284).
IEEE DOI
0108
BibRef
Carré, P.[Philippe],
Andres, E.,
Fernandez-Maloigne, C.[Christine],
Discrete Rotation for Directional Orthogonal Wavelet Packets,
ICIP01(II: 257-260).
IEEE DOI
0108
BibRef
Hawwar, Y.,
Reza, A.,
Nonlinear Filtering in the Wavelet Transform Domain,
ICIP00(Vol III: 266-269).
IEEE DOI
0008
BibRef
Monro, D.,
Visual Embedding of Wavelet Transform Coefficients,
ICIP00(Vol III: 186-189).
IEEE DOI
0008
BibRef
Kacker, D.,
Ufak Agar, A.,
Allebach, J.P.,
Lucier, B.J.,
Wavelet decomposition based representation of nonlinear color
transformations and comparison with sequential linear interpolation,
ICIP98(I: 186-190).
IEEE DOI
9810
BibRef
Karam, L.J.[Lina J.],
Design of Complex Multi-Dimensional FIR Filters by Transformation,
ICIP96(I: 573-576).
IEEE DOI
BibRef
9600
Srinivasan, S.[Sridhar],
Design of Optimal Cascaded Multirate Filter Banks in the
Presence of Quantization,
ICIP96(I: 617-620).
IEEE DOI
BibRef
9600
Zervakis, M.E.,
Kwon, T.M.[Taek Mu],
Savakis, A.E.,
Operator decomposition using the wavelet transform:
Fundamental properties and image restoration applications,
ICIP94(I: 56-60).
IEEE DOI
9411
BibRef
Lau, P.,
Papanikolopoulos, N.P.,
Boley, D.L.,
A note on the Gabor-QR decomposition,
ICIP94(I: 815-819).
IEEE DOI
9411
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Wavelets Filters, Parallel, Hardware Implementations .