4.10.1.8 Noise Removal, Wavelet Techniques

Chapter Contents (Back)
Noise Removal. Denoising. Wavelets. Wavelet Denoising.

Xu, Y.S.[Yan-Sun], Weaver, J.B., Healy, D.M., Lu, J.[Jian],
Wavelet transform domain filters: a spatially selective noise filtration technique,
IP(3), No. 6, November 1994, pp. 747-758.
IEEE DOI 0402
BibRef

Banham, M.R., Galatsanos, N.P., Gonzalez, H.L., Katsaggelos, A.K.,
Multichannel restoration of single channel images using a wavelet-based subband decomposition,
IP(3), No. 6, November 1994, pp. 821-833.
IEEE DOI 0402
BibRef

Malfait, M., Roose, D.,
Wavelet-Based Image Denoising Using a Markov Random-Field a-Priori Model,
IP(6), No. 4, April 1997, pp. 549-565.
IEEE DOI 9704
BibRef

Mohcak, M.K., Kozintsev, I., Ramchandran, K., Moulin, P.,
Low-Complexity Image Denoising Based on Statistical Modeling of Wavelet Coefficients,
SPLetters(6), No. 12, December 1999, pp. 300.
IEEE Top Reference. 9911
BibRef

Liu, J.[Juan], Moulin, P.[Pierre],
Image Denoising Based on Scale-Space Mixture Modeling of Wavelet Coefficients,
ICIP99(I:386-390).
IEEE DOI BibRef 9900

Carré, P.[Philippe], Fernandez-Maloigne, C.[Christine],
Use of the angle information in the wavelet transform maxima for image de-noising,
IVC(18), No. 13, October 2000, pp. 1055-1065.
Elsevier DOI 0008
BibRef

Fan, G.L.[Guo-Liang], Xia, X.G.[Xiang-Gen],
Image Denoising Using a Local Contextual Hidden Markov Model in the Wavelet Domain,
SPLetters(8), No. 5, May 2001, pp. 125-128.
IEEE Top Reference. 0105
BibRef
Earlier:
Wavelet-based Image Denoising Using Hidden Markov Models,
ICIP00(Vol III: 258-261).
IEEE DOI 0008

See also Unsupervised Bayesian Image Segmentation Using Wavelet-Domain Hidden Markov Models. BibRef

Weng, W.G., Fan, W.C., Liao, G.X., Qin, J.,
Wavelet-based image denoising in (digital) particle image velocimetry,
SP(81), No. 7, July 2001, pp. 1503-1512.
Elsevier DOI 0110
BibRef

Pizurica, A.[Aleksandra], Philips, W.[Wilfried], Lemahieu, I., Acheroy, M.,
A joint inter- and intrascale statistical model for bayesian wavelet based image denoising,
IP(11), No. 5, May 2002, pp. 545-557.
IEEE DOI 0206

See also Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures. BibRef

Jovanov, L.[Ljubomir], Pizurica, A.[Aleksandra], Philips, W.[Wilfried],
Wavelet Based Joint Denoising of Depth and Luminance Images,
3DTV07(1-5).
IEEE DOI 0705
BibRef

Schulte, S.[Stefan], Huysmans, B.[Bruno], Pižurica, A.[Aleksandra], Kerre, E.E.[Etienne E.], Philips, W.[Wilfried],
A New Fuzzy-Based Wavelet Shrinkage Image Denoising Technique,
ACIVS06(12-23).
Springer DOI 0609
BibRef

Pizurica, A., Philips, W., Lemahieu, I.,
A Wavelet-Based Image Denoising Technique Using Spatial Priors,
ICIP00(Vol III: 296-299).
IEEE DOI 0008
BibRef

Simoncelli, E.P.,
Bayesian Denoising of Visual Images in the Wavelet Domain,
BIWBM(18), Spring, 1999, pp. 291-308.
HTML Version. BibRef 9900

Simoncelli, E.P.[Eero P.], Adelson, E.H.,
Noise Removal via Bayesian Wavelet Coring,
ICIP96(I: 379-382).
IEEE DOI shrinkage, coring, threshold.
HTML Version. or for postscript version:
PS File. Or Look under
HTML Version. BibRef 9600

Wainwright, M.J., and Simoncelli, E.P.,
Scale Mixtures of Gaussians and the Statistics of Natural Images,
ANIPS(12), May, 2000, pp. 855-861.
HTML Version. BibRef 0005

Wainwright, M.J., Simoncelli, E.P., Willsky, A.S.,
Random Cascades of Gaussian Scale Mixtures and Their Use in Modeling Natural Images with Application to Denoising,
ICIP00(Vol I: 260-263).
IEEE DOI
HTML Version. 0008
BibRef

Wainwright, M.J., Simoncelli, E.P., and Willsky, A.S.,
Random Cascades on Wavelet Trees and Their Use in Modeling and Analyzing Natural Imagery,
SPIE(40??), 45th Annual Meeting, July, 2000. The SPIE site doesn't list it anywhere.
HTML Version. BibRef 0007

Simoncelli, E.P.,
Modeling the Joint Statistics of Images in the Wavelet Domain,
SPIE(3813), July, 1999, pp. 188-195.
HTML Version. BibRef 9907

Simoncelli, E.P., and Schwartz, O.,
Image Statistics and Cortical Normalization Models,
ANIPS(11), 1999, pp. 153-159.
HTML Version. BibRef 9900

Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.,
Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain,
TRTR2002-831, Computer Science Dept, New York University. 2002. Bayesian, non-Gaussian
HTML Version. And
PDF File. BibRef 0200

Sendur, L., Selesnick, I.W.,
Bivariate Shrinkage Functions for Wavelet-Based Denoising Exploiting Interscale Dependency,
TSP(50), No. 11, November 2002, pp. 2744-2756. BibRef 0211
Earlier:
Subband adaptive image denoising via bivariate shrinkage,
ICIP02(III: 577-580).
IEEE DOI 0210
BibRef

Lo, W.Y.[Wan Yee], Selesnick, I.W.,
Wavelet-Domain Soft-Thresholding for Non-Stationary Noise,
ICIP06(1441-1444).
IEEE DOI 0610
BibRef

Shi, F.[Fei], Selesnick, I.W.,
Multivariate Quasi-Laplacian Mixture Models For Wavelet-Based Image Denoising,
ICIP06(2625-2628).
IEEE DOI 0610
BibRef

Selesnick, I.W., van Slyke, R., Guleryuz, O.G.,
Pixel recovery via el minimization in the wavelet domain,
ICIP04(III: 1819-1822).
IEEE DOI 0505
BibRef

Selesnick, I.W.,
Laplace Random Vectors, Gaussian Noise, and the Generalized Incomplete Gamma Function,
ICIP06(2097-2100).
IEEE DOI 0610
BibRef

Selesnick, I.W.,
A new complex-directional wavelet transform and its application to image denoising,
ICIP02(III: 573-576).
IEEE DOI 0210
BibRef

Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.,
Image denoising using scale mixtures of gaussians in the wavelet domain,
IP(12), No. 11, November 2003, pp. 1338-1351.
IEEE DOI 0311
Implementation:
See also Analysis and Improvement of the BLS-GSM Denoising Method, An. BibRef

Portilla, J.,
Full blind denoising through noise covariance estimation using gaussian scale mixtures in the wavelet domain,
ICIP04(II: 1217-1220).
IEEE DOI 0505
BibRef

Guerrero-Colon, J.A., Mancera, L., Portilla, J.,
Image Restoration Using Space-Variant Gaussian Scale Mixtures in Overcomplete Pyramids,
IP(17), No. 1, January 2008, pp. 27-41.
IEEE DOI 0712
BibRef
Earlier: A1, A3, Only:
Deblurring-by-Denoising using Spatially Adaptive Gaussian Scale Mixtures in Overcomplete Pyramids,
ICIP06(625-628).
IEEE DOI 0610
BibRef
Earlier: A1, A3, Only:
Two-Level Adaptive Denoising Using Gaussian Scale Mixtures in Overcomplete Oriented Pyramids,
ICIP05(I: 105-108).
IEEE DOI 0512
BibRef

Guerrero-Colon, J.A.[Jose A.], Simoncelli, E.P.[Eero P.], Portilla, J.[Javier],
Image denoising using mixtures of Gaussian scale mixtures,
ICIP08(565-568).
IEEE DOI 0810
BibRef

Strela, V., Portilla, J., Simoncelli, E.P.,
Image Denoising Using a Local Gaussian Scale Mixture Model in the Wavelet Domain,
SPIE(4119), pp. 363-371, December 2000.
HTML Version. BibRef 0012

Portilla, J., Simoncelli, E.P.,
Image restoration using gaussian scale mixtures in the wavelet domain,
ICIP03(II: 965-968).
IEEE DOI 0312
BibRef

Hammond, D.K., Simoncelli, E.P.,
Image Modeling and Denoising With Orientation-Adapted Gaussian Scale Mixtures,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI 0810
BibRef
Earlier:
Image Denoising with an Orientation-Adaptive Gaussian Scale Mixture Model,
ICIP06(1433-1436).
IEEE DOI 0610
BibRef

Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.,
Adaptive Wiener Denoising Using a Gaussian Scale Mixture Model in the Wavelet Domain,
ICIP01(II: 37-40).
IEEE DOI
HTML Version. And
PS File. 0108
BibRef

Portilla, J., Simoncelli, E.P.,
Image Denoising Via Adjustment of Wavelet Coefficient Magnitude Correlation,
ICIP00(Vol III: 277-280).
IEEE DOI 0008

HTML Version. And
PS File. BibRef

Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.,
A versatile wavelet domain noise filtration technique for medical imaging,
MedImg(22), No. 3, March 2003, pp. 323-331.
IEEE Abstract. 0306
BibRef

Kazubek, M.,
Wavelet domain image denoising by thresholding and wiener filtering,
SPLetters(10), No. 11, November 2003, pp. 324-326.
IEEE Abstract. 0310
BibRef

Ghazel, M., Freeman, G.H., Vrscay, E.R.,
Fractal image denoising,
IP(12), No. 12, December 2003, pp. 1560-1578.
IEEE DOI 0402
BibRef
Earlier:
Fractal-wavelet image denoising,
ICIP02(I: 836-839).
IEEE DOI 0210
BibRef

Ghazel, M., Freeman, G.H., Vrscay, E.R.,
Fractal-Wavelet Image Denoising Revisited,
IP(15), No. 9, August 2006, pp. 2669-2675.
IEEE DOI 0608
BibRef

Ghazel, M., Freeman, G.H., Vrscay, E.R., Ward, R.K.,
Wavelet Image Denoising Using Localized Thresholding Operators,
ICIAR05(149-158).
Springer DOI 0509
BibRef

La Torre, D., Vrscay, E.R., Ebrahimi, M., Barnsley, M.F.,
Measure-Valued Images, Associated Fractal Transforms, and the Affine Self-Similarity of Images,
SIIMS(2), No. 2, 2009, pp. 470-507.
DOI Link 0905
measure-valued images, multifunctions, nonlocal image processing; self-similarity, nonlocal-means denoising, fractal transforms; iterated function systems BibRef

Otero, D.[Daniel], Michailovich, O.V.[Oleg V.], Vrscay, E.R.[Edward R.],
An Examination of Several Methods of Hyperspectral Image Denoising: Over Channels, Spectral Functions and Both Domains,
ICIAR14(I: 131-140).
Springer DOI 1410
BibRef

Otero, D.[Daniel], La Torre, D.[Davide], Vrscay, E.R.[Edward R.],
Structural Similarity-Based Optimization Problems with L1-Regularization: Smoothing Using Mollifiers,
ICIAR15(33-42).
Springer DOI 1507
BibRef
Earlier: A1, A3, Only:
Unconstrained Structural Similarity-Based Optimization,
ICIAR14(I: 167-176).
Springer DOI 1410
BibRef

Otero, D.[Daniel], La Torre, D.[Davide], Michailovich, O.V.[Oleg V.], Vrscay, E.R.[Edward R.],
Alternate Direction Method of Multipliers for Unconstrained Structural Similarity-Based Optimization,
ICIAR18(20-29).
Springer DOI 1807
BibRef

Otero, D.[Daniel], La Torre, D.[Davide], Vrscay, E.R.[Edward R.],
Image Denoising Using Euler-Lagrange Equations for Function-Valued Mappings,
ICIAR16(110-119).
Springer DOI 1608
BibRef
And: A3, A1, A2:
Hyperspectral Images as Function-Valued Mappings, Their Self-similarity and a Class of Fractal Transforms,
ICIAR13(225-234).
Springer DOI 1307
BibRef

Glew, D., Vrscay, E.R.[Edward R.],
Self-similarity of Images in the Wavelet Domain in Terms of L2 and Structural Similarity (SSIM),
ICIAR12(I: 131-140).
Springer DOI 1206
BibRef

Glew, D., Vrscay, E.R.[Edward R.],
Max and Min Values of the Structural Similarity Function S(x,a) on the L2 Sphere SR(a), a ? RN,
ICIAR12(I: 69-78).
Springer DOI 1206
BibRef

Xie, J.C.[Jie-Cheng], Zhang, D.[Dali], Xu, W.L.[Wen-Li],
Spatially adaptive wavelet denoising using the minimum description length principle,
IP(13), No. 2, February 2004, pp. 179-187.
IEEE DOI 0404
BibRef

Scheunders, P.,
Wavelet Thresholding of Multivalued Images,
IP(13), No. 4, April 2004, pp. 475-483.
IEEE DOI 0404
BibRef

Scheunders, P.,
Wavelet-based enhancement and denoising using multiscale structure tensor,
ICIP02(III: 569-572).
IEEE DOI 0210
BibRef

Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.[Richard G.],
Multiple Wavelet Basis Image Denoising Using Besov Ball Projections,
SPLetters(11), No. 9, September 2004, pp. 717-720.
IEEE Abstract. 0409
BibRef
Earlier:
Multiple Basis Wavelet Denoising using Besov Projections,
ICIP99(I:595-599).
IEEE DOI BibRef

Zhang, J.H., Janschek, K., Bohme, J.F., Zeng, Y.J.,
Multi-resolution dyadic wavelet denoising approach for extraction of visual evoked potentials in the brain,
VISP(151), No. 3, June 2004, pp. 180-186.
IEEE Abstract. 0409
BibRef

Chen, G.Y.[Guang-Yi], Bui, T.D., Krzyzak, A.,
Image denoising with neighbour dependency and customized wavelet and threshold,
PR(38), No. 1, January 2005, pp. 115-124.
Elsevier DOI 0410
BibRef

Chen, G.Y.[Guang-Yi], Kégl, B.,
Image denoising with complex ridgelets,
PR(40), No. 2, February 2007, pp. 578-585.
Elsevier DOI 0611
Image denoising, Wavelets, Ridgelets, Complex ridgelets BibRef

de Stefano, A., White, P.R., Collis, W.B.,
Selection of Thresholding Scheme for Image Noise Reduction on Wavelet Components Using Bayesian Estimation,
JMIV(21), No. 3, November 2004, pp. 225-233.
DOI Link 0410
BibRef

Eom, I.K.[Il Kyu], Kim, Y.S.[Yoo Shin],
Wavelet-based denoising with nearly arbitrarily shaped windows,
SPLetters(11), No. 12, December 2004, pp. 937-940.
IEEE Abstract. 0412
BibRef

Fadili, J.M., Boubchir, L.,
Analytical Form for a Bayesian Wavelet Estimator of Images Using the Bessel K Form Densities,
IP(14), No. 2, February 2005, pp. 231-240.
IEEE DOI 0501
BibRef
Earlier: A2, A1:
Bayesian Denoising Based on the Map Estimation In Wavelet-Domain Using Bessel K Form Prior,
ICIP05(I: 113-116).
IEEE DOI 0512
BibRef

Boubchir, L.[Larbi], Nait-Ali, A.[Amine], Petit, E.[Eric],
Multivariate statistical modeling of images in sparse multiscale transforms domain,
ICIP10(1877-1880).
IEEE DOI 1009
BibRef

Boubchir, L.[Larbi], Boumaza, R.[Rachid], Pumo, B.[Besnik],
Multivariate statistical modeling of images in wavelet and curvelet domain using the Bessel K Form densities,
ICIP09(3957-3960).
IEEE DOI 0911
BibRef

Boubchir, L.[Larbi], Fadili, J.M.[Jalal M.],
A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate alpha-stable prior,
PRL(27), No. 12, September 2006, pp. 1370-1382.
Elsevier DOI 0606
BibRef
And: Reply to Comments: PRL(28), No. 13, 1 October 2007, pp. 1848-1851.
Elsevier DOI 0709
Wavelets, Bayesian denoiser, [alpha]-stable, Gaussian mixture model, Posterior conditional mean
See also Comments on A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate [alpha]-stable prior. BibRef

Boubchir, L.[Larbi], Fadili, J.M.[Jalal M.], Bloyet, D.,
Bayesian denoising in the wavelet-domain using an analytical approximate alpha-stable prior,
ICPR04(IV: 889-892).
IEEE DOI 0409
BibRef

Achim, A.[Alin], Kuruoglu, E.E.[Ercan E.], Bezerianos, A.[Anastasios], Tsakalides, P.[Panagiotis],
Comments on 'A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate [alpha]-stable prior',
PRL(28), No. 13, 1 October 2007, pp. 1845-1847.
Elsevier DOI 0709
Alpha-stable distributions, Image denoising, Bayesian estimation, Wavelet transform
See also closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate alpha-stable prior, A. BibRef

Achim, A.[Alin], Kuruoglu, E.E.[Ercan E.],
Image denoising using bivariate alpha-stable distributions in the complex wavelet domain,
SPLetters(12), No. 1, January 2005, pp. 17-20.
IEEE Abstract. 0501
BibRef

Achim, A., Herranz, D., Kuruoglu, E.E.,
Astrophysical image denoising using bivariate isotropic Cauchy distributions in the undecimated wavelet domain,
ICIP04(II: 1225-1228).
IEEE DOI 0505
BibRef

Cho, D.W.[Dong-Wook], Bui, T.D.[Tien D.],
Multivariate statistical modeling for image denoising using wavelet transforms,
SP:IC(20), No. 1, January 2005, pp. 77-89.
Elsevier DOI 0501
BibRef

Huang, K.Q.[Kai-Qi], Wu, Z.Y.[Zhen-Yang], Fung, G.S.K.[George S.K.], Chan, F.H.Y.[Francis H.Y.],
Color image denoising with wavelet thresholding based on human visual system model,
SP:IC(20), No. 2, February 2005, pp. 115-127.
Elsevier DOI 0501
BibRef

Zhang, L., Bao, P., Wu, X.,
Multiscale LMMSE-Based Image Denoising With Optimal Wavelet Selection,
CirSysVideo(15), No. 4, April 2005, pp. 469-481.
IEEE Abstract. 0501
BibRef

Bharath, A.A.[Anil A.], Ng, J.[Jeffrey],
A Steerable Complex Wavelet Construction and Its Application to Image Denoising,
IP(14), No. 7, July 2005, pp. 948-959.
IEEE DOI 0506

See also Extrapolative Spatial Models for Detecting Perceptual Boundaries in Colour Images.
See also Obtaining medial responses from steerable filters. BibRef

Ranta, R., Louis-Dorr, V., Heinrich, C., Wolf, D.,
Iterative Wavelet-Based Denoising Methods and Robust Outlier Detection,
SPLetters(12), No. 8, August 2005, pp. 557-560.
IEEE DOI 0508
BibRef

Mrázek, P.[Pavel], Weickert, J.[Joachim], Steidl, G.[Gabriele],
Diffusion-Inspired Shrinkage Functions and Stability Results for Wavelet Denoising,
IJCV(64), No. 2-3, September 2005, pp. 171-186.
Springer DOI 0510
BibRef
And:
Correspondences between Wavelet Shrinkage and Nonlinear Diffusion,
ScaleSpace03(101-116).
Springer DOI 0310
BibRef

Mrázek, P.[Pavel], Weickert, J.[Joachim],
Rotationally Invariant Wavelet Shrinkage,
DAGM03(156-163).
Springer DOI 0310
BibRef

Welk, M.[Martin], Weickert, J.[Joachim], Steidl, G.[Gabriele],
From Tensor-Driven Diffusion to Anisotropic Wavelet Shrinkage,
ECCV06(I: 391-403).
Springer DOI 0608
BibRef

Steidl, G.[Gabriele], Weickert, J.[Joachim],
Relations between Soft Wavelet Shrinkage and Total Variation Denoising,
DAGM02(198 ff.).
Springer DOI 0303
BibRef

Benazza-Benyahia, A., Pesquet, J.C.,
Building Robust Wavelet Estimators for Multicomponent Images Using Stein's Principle,
IP(14), No. 11, November 2005, pp. 1814-1830.
IEEE DOI 0510
BibRef

Chaux, C.[Caroline], Pesquet, J.C.[Jean-Christophe], Pustelnik, N.[Nelly],
Nested Iterative Algorithms For Convex Constrained Image Recovery Problems,
SIIMS(2), No. 2, 2009, pp. 730-762.
DOI Link wavelets, dual-trees, restoration, deconvolution, optimization, convex analysis, iterative algorithms, forward-backward, Douglas-Rachford; variational methods, Bayesian approaches, maximum a posteriori; Poisson noise
See also Image Analysis Using a Dual-Tree M-Band Wavelet Transform. BibRef 0900

Pustelnik, N.[Nelly], Chaux, C.[Caroline], Pesquet, J.C.[Jean-Christophe],
Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization,
IP(20), No. 9, September 2011, pp. 2450-2462.
IEEE DOI 1109
BibRef

Benazza-Benyahia, A.[Amel], Pesquet, J.C.[Jean-Christophe], Chaux, C.,
Image Denoising in the Wavelet Transform Domain Based on Stein's Principle,
IPTA08(1-9).
IEEE DOI 0811
BibRef

Shui, P.L.[Peng-Lang],
Image denoising algorithm via doubly local Wiener filtering with directional windows in wavelet domain,
SPLetters(12), No. 10, October 2005, pp. 681-684.
IEEE DOI 0510
BibRef

Shui, P.L.,
Image denoising using 2-D separable oversampled DFT modulated filter banks,
IET-IPR(3), No. 3, June 2009, pp. 163-173.
DOI Link 0906
BibRef

Shui, P.L.[Peng-Lang], Zhou, Z.F., Li, J.X.,
Image denoising algorithm via best wavelet packet base using Wiener cost function,
IET-IPR(1), No. 3, September 2007, pp. 311-318.
DOI Link 0905
BibRef

Lian, N.X.[Nai-Xiang], Zagorodnov, V.[Vitali], Tan, Y.P.[Yap-Peng],
Color Image Denoising Using Wavelets and Minimum Cut Analysis,
SPLetters(12), No. 11, November 2005, pp. 741-744.
IEEE DOI 0510
BibRef

Lian, N.X., Zagorodnov, V., Tan, Y.P.,
Edge-Preserving Image Denoising via Optimal Color Space Projection,
IP(15), No. 9, August 2006, pp. 2575-2587.
IEEE DOI 0608
BibRef

Balster, E.J., Zheng, Y.F., Ewing, R.L.,
Feature-Based Wavelet Shrinkage Algorithm for Image Denoising,
IP(14), No. 12, December 2005, pp. 2024-2039.
IEEE DOI 0512
BibRef
And: Corrections: IP(15), No. 3, March 2006, pp. 789-789.
IEEE DOI 0604
BibRef

Balster, E.J., Zheng, Y.F., Ewing, R.L.,
Combined spatial and temporal domain wavelet shrinkage algorithm for video denoising,
CirSysVideo(16), No. 2, February 2006, pp. 220-230.
IEEE DOI 0604
BibRef

Charnigo, R., Sun, J., Muzic, Jr., R.,
A Semi-Local Paradigm for Wavelet Denoising,
IP(15), No. 3, March 2006, pp. 666-677.
IEEE DOI 0604
BibRef

Bioucas-Dias, J.M.[José M.],
Bayesian Wavelet-Based Image Deconvolution: A GEM Algorithm Exploiting a Class of Heavy-Tailed Priors,
IP(15), No. 4, April 2006, pp. 937-951.
IEEE DOI 0604
BibRef

Bala, E.[Erdem], Ertüzün, A.[Aysin],
A Multivariate Thresholding Technique for Image Denoising Using Multiwavelets,
JASP(2005), No. 8, 2005, pp. 1205-1211.
WWW Link. 0603
BibRef
Earlier:
Applications of multiwavelet techniques to image denoising,
ICIP02(III: 581-584).
IEEE DOI 0210
BibRef

Kim, D., Lee, Y., Oh, H.S.,
Hierarchical-Likelihood-Based Wavelet Method for Denoising Signals With Missing Data,
SPLetters(13), No. 6, June 2006, pp. 361-364.
IEEE DOI 0606
BibRef

Zlokolica, V., Pizurica, A., Philips, W.,
Wavelet-Domain Video Denoising Based on Reliability Measures,
CirSysVideo(16), No. 8, August 2006, pp. 993-1007.
IEEE DOI 0609
BibRef
Earlier: A2, A1, A3:
Combined wavelet domain and temporal video denoising,
AVSBS03(334-341).
IEEE DOI 0310
BibRef

Jovanov, L., Pizurica, A., Schulte, S., Schelkens, P., Munteanu, A., Kerre, E., Philips, W.,
Combined Wavelet-Domain and Motion-Compensated Video Denoising Based on Video Codec Motion Estimation Methods,
CirSysVideo(19), No. 3, March 2009, pp. 417-421.
IEEE DOI 0903

See also Complexity Scalability in Motion-Compensated Wavelet-Based Video Coding. BibRef

Shan, T.[Tan], Jiao, L.C.[Li-Cheng],
Image denoising using the ridgelet bi-frame,
JOSA-A(23), No. 10, October 2006, pp. 2449-2461.
WWW Link. 0610
BibRef
Earlier:
Monoscale Dual Ridgelet Frame,
ICIAR05(263-269).
Springer DOI 0509
BibRef

Shan, T.[Tan], Jiao, L.C.[Li-Cheng], Feng, X.C.[Xiang-Chu],
Ridgelets Frame,
ICIAR04(I: 479-486).
Springer DOI 0409
BibRef

Liu, K.[Kang], Jiao, L.C.[Li-Cheng],
Adaptive Curved Feature Detection Based on Ridgelet,
ICIAR04(I: 487-494).
Springer DOI 0409
BibRef

Bruni, V.[Vittoria], Vitulano, D.[Domenico],
Combined image compression and denoising using wavelets,
SP:IC(22), No. 1, January 2007, pp. 86-101.
Elsevier DOI 0703
BibRef
Earlier:
Wavelet Atoms Approximation for Simultaneous Image Compression and De-Noising,
ICIP05(III: 333-336).
IEEE DOI 0512
BibRef
Earlier:
Image De-noising via Overlapping Wavelet Atoms,
ICIAR04(I: 179-186).
Springer DOI 0409
Image restoration, Image compression, Wavelets, Thresholding, Overlapping effects principle, Minimum description BibRef

Bruni, V.[Vittoria], Vitulano, D.[Domenico],
Time-Scale Similarities for Robust Image De-noising,
JMIV(44), No. 1, September 2012, pp. 52-64.
WWW Link. 1206
BibRef
Earlier:
Image Denoising Using Similarities in the Time-Scale Plane,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef
And:
Transients Detection in the Time-Scale Domain,
ICISP08(254-262).
Springer DOI 0807
BibRef

Bruni, V.[Vittoria], Piccoli, B.[Benedetto], Vitulano, D.[Domenico],
Wavelets and partial differential equations for image denoising,
ELCVIA(6), No. 2, September 2007, pp. 36-53.
DOI Link 0804

See also fast computation method for time scale signal denoising, A. BibRef

Bruni, V.[Vittoria], Rossi, E.[Elisa], Vitulano, D.[Domenico],
Optimal Image Restoration Using HVS-Based Rate-Distortion Curves,
CAIP11(II: 269-276).
Springer DOI 1109
BibRef

Bruni, V.[Vittoria], de Canditiis, D.[Daniela], Vitulano, D.[Domenico],
Phase Information and Space Filling Curves in Noisy Motion Estimation,
IP(18), No. 7, July 2009, pp. 1660-1664.
IEEE DOI 0906
BibRef

Bruni, V.[Vittoria], de Canditiis, D.[Daniela], Vitulano, D.[Domenico],
Human Visual System for Complexity Reduction of Image and Video Restoration,
CAIP11(II: 261-268).
Springer DOI 1109
BibRef

Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.,
Spatially Adaptive Wavelet-Based Method Using the Cauchy Prior for Denoising the SAR Images,
CirSysVideo(17), No. 4, April 2007, pp. 500-507.
IEEE DOI 0705
BibRef

Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.,
Wavelet-based image denoising with the normal inverse Gaussian prior and linear MMSE estimator,
IET-IPR(2), No. 4, August 2008, pp. 203-217.
DOI Link 0905
BibRef

Rahman, S.M.M.[S. M. Mahbubur], Ahmad, M.O.[M. Omair], Swamy, M.N.S.,
Bayesian Wavelet-Based Image Denoising Using the Gauss-Hermite Expansion,
IP(17), No. 10, October 2008, pp. 1755-1771.
IEEE DOI 0809
BibRef
Earlier:
Locally Adaptive Wavelet-Based Image Denoising using the Gram-Charlier Prior Function,
ICIP07(III: 549-552).
IEEE DOI 0709
BibRef

Rahman, S.M.M., Ahmad, M.O., Swamy, M.N.S.,
A New Statistical Detector for DWT-Based Additive Image Watermarking Using the Gauss-Hermite Expansion,
IP(18), No. 8, August 2009, pp. 1782-1796.
IEEE DOI 0907
BibRef

Gupta, N., Swamy, M.N.S., Plotkin, E.I.,
Wavelet domain-based video noise reduction using temporal discrete cosine transform and hierarchically adapted thresholding,
IET-IPR(1), No. 1, March 2007, pp. 2-12.
DOI Link 0905
BibRef
Earlier: A1, A3, A2:
Temporally-Adaptive MAP Estimation for Video Denoising in the Wavelet Domain,
ICIP06(1449-1452).
IEEE DOI 0610
BibRef

de Backer, S.[Steve], Pizurica, A.[Aleksandra], Huysmans, B.[Bruno], Philips, W.[Wilfried], Scheunders, P.[Paul],
Denoising of multicomponent images using wavelet least-squares estimators,
IVC(26), No. 7, 2 July 2008, pp. 1038-1051.
Elsevier DOI 0804
Multicomponent images, Denoising, Wavelets, Bayesian estimation, Least squares estimators BibRef

Scheunders, P.[Paul], de Backer, S.[Steve],
Wavelet Denoising of Multicomponent Images Using Gaussian Scale Mixture Models and a Noise-Free Image as Priors,
IP(16), No. 7, July 2007, pp. 1865-1872.
IEEE DOI 0707
BibRef
Earlier:
Wavelet Denoising of Multicomponent Images, using a Noise-Free Image,
ICIP06(2617-2620).
IEEE DOI 0610
BibRef
Earlier:
Wavelet denoising of multicomponent images, using a Gaussian Scale Mixture model,
ICPR06(III: 754-757).
IEEE DOI 0609
BibRef

Mignotte, M.[Max],
A Post-Processing Deconvolution Step for Wavelet-Based Image Denoising Methods,
SPLetters(14), No. 9, September 2007, pp. 621-624.
IEEE DOI 0709
BibRef

Tan, S.[Shan], Jiao, L.C.[Li-Cheng],
Multivariate Statistical Models for Image Denoising in the Wavelet Domain,
IJCV(75), No. 2, November 2007, pp. 209-230.
Springer DOI 0710
BibRef

Jia, J.[Jian], Jiao, L.C.[Li-Cheng],
Using Shear Invariant for Image Denoising in the Contourlet Domain,
IWICPAS06(377-386).
Springer DOI 0608
BibRef

Wu, J.[Jiao], Liu, F.[Fang], Jiao, L.C., Wang, X.D.[Xiao-Dong], Hou, B.[Biao],
Multivariate Compressive Sensing for Image Reconstruction in the Wavelet Domain: Using Scale Mixture Models,
IP(20), No. 12, December 2011, pp. 3483-3494.
IEEE DOI 1112
BibRef

Zhang, S.[Sibo], Jiao, L.C.[Li-Cheng], Liu, F.[Fang], Wang, S.[Shuang],
Global Low-Rank Image Restoration With Gaussian Mixture Model,
Cyber(48), No. 6, June 2018, pp. 1827-1838.
IEEE DOI 1805
Gaussian mixture model, Image restoration, Indexes, Minimization, Numerical models, low-rank recovery BibRef

Lu, X.L.[Xiao-Liang], Liu, R.G.[Rong-Gao], Liu, J.Y.[Ji-Yuan], Liang, S.L.[Shun-Lin],
Removal of Noise by Wavelet Method to Generate High Quality Temporal Data of Terrestrial MODIS Products,
PhEngRS(73), No. 10, October 2007, pp. 1129-1140.
WWW Link. 0709
A new method to enhance the ability to remove noise in time-series data products. BibRef

Figueiredo, M.A.T., Nowak, R.D.,
Wavelet-Based Image Estimation: An Empirical Bayes Approach Using Jeffreys' Noninformative Prior,
IP(10), No. 9, September 2001, pp. 1322-1331.
IEEE DOI 0108
BibRef
Earlier:
Image restoration under wavelet-domain priors: An expectation-maximization approach,
ICIP02(I: 337-340).
IEEE DOI 0210
BibRef

Figueiredo, M.A.T., Nowak, R.D.,
An EM algorithm for wavelet-based image restoration,
IP(12), No. 8, August 2003, pp. 906-916.
IEEE DOI 0308
BibRef

Figueiredo, M.A.T.[Mário A.T.],
Bayesian Image Segmentation Using Gaussian Field Priors,
EMMCVPR05(74-89).
Springer DOI 0601
BibRef
And:
Bayesian Image Segmentation Using Wavelet-Based Priors,
CVPR05(I: 437-443).
IEEE DOI 0507
BibRef

Figueiredo, M.A.T., Bioucas-Dias, J.M., Nowak, R.D.,
Majorization-Minimization Algorithms for Wavelet-Based Image Restoration,
IP(16), No. 12, December 2007, pp. 2980-2991.
IEEE DOI 0711
BibRef

Hel-Or, Y.[Yacov], Shaked, D.[Doron],
A Discriminative Approach for Wavelet Denoising,
IP(17), No. 4, April 2008, pp. 443-457.
IEEE DOI 0803
BibRef

Tan, S., Jiao, L., Kakadiaris, I.A.,
Wavelet-Based Bayesian Image Estimation: From Marginal and Bivariate Prior Models to Multivariate Prior Models,
IP(17), No. 4, April 2008, pp. 469-481.
IEEE DOI 0803
BibRef

Vonesch, C., Unser, M.,
A Fast Thresholded Landweber Algorithm for Wavelet-Regularized Multidimensional Deconvolution,
IP(17), No. 4, April 2008, pp. 539-549.
IEEE DOI 0803
3-D deconvolution. BibRef

Vonesch, C., Unser, M.,
A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration,
IP(18), No. 3, March 2009, pp. 509-523.
IEEE DOI 0903
BibRef

Kamilov, U.S., Bostan, E., Unser, M.,
Wavelet Shrinkage With Consistent Cycle Spinning Generalizes Total Variation Denoising,
SPLetters(19), No. 4, April 2012, pp. 187-190.
IEEE DOI 1203
BibRef

Kamilov, U.S.,
A Parallel Proximal Algorithm for Anisotropic Total Variation Minimization,
IP(26), No. 2, February 2017, pp. 539-548.
IEEE DOI 1702
gradient methods BibRef

Kazerouni, A., Kamilov, U.S., Bostan, E., Unser, M.,
Bayesian Denoising: From MAP to MMSE Using Consistent Cycle Spinning,
SPLetters(20), No. 3, March 2013, pp. 249-252.
IEEE DOI 1303
BibRef

Bayram, I., Guerquin-Kern, M., Terres-Cristofani, R., Unser, M.,
Accelerated wavelet-regularized deconvolution for 3-D fluorescence microcopy,
ICIP10(581-584).
IEEE DOI 1009
BibRef

Marusic, B.[Bostjan], Skocir, P.[Primoz], Tasic, J.[Jurij], Kosir, A.[Andrej],
Video Post-Processing with Adaptive 3-D Filters for Wavelet Ringing Artifact Removal,
IEICE(E88-D), No. 5, May 2005, pp. 1031-1040.
DOI Link 0505
BibRef

Khare, A.[Ashish], Tiwary, U.S.[Uma Shanker],
Daubechies Complex Wavelet Transform Based Technique For Denoising Of Medical Images,
IJIG(7), No. 4, October 2007, pp. 663-687. 0710
BibRef

Lu, J.M.[Jian-Ming], Wang, L.[Ling], Li, Y.Q.[Ye-Qiu], Yahagi, T.[Takashi],
Noise Removal For Medical X-ray Images In Multiwavelet Domain,
IJIG(8), No. 1, January 2008, pp. 25-46. 0801
BibRef

Zhou, D.W.[Deng-Wen], Cheng, W.G.[Wen-Gang],
Image denoising with an optimal threshold and neighbouring window,
PRL(29), No. 11, 1 August 2008, pp. 1694-1697.
Elsevier DOI 0804
Image denoising, Adaptive, Dual tree, Wavelet transforms, Neighbourhood BibRef

Meena, S.[Srinivasan], Annadurai, S.,
Improved spatially adaptive MDL denoising of images using normalized maximum likelihood density,
IVC(26), No. 11, 1 November 2008, pp. 1524-1529.
Elsevier DOI 0804
Minimum description length, Wavelet denoising, Normalized maximum likelihood BibRef

Borsdorf, A.[Anja], Raupach, R.[Rainer], Flohr, T., Hornegger, J.[Joachim],
Wavelet Based Noise Reduction in CT-Images Using Correlation Analysis,
MedImg(27), No. 12, December 2008, pp. 1685-1703.
IEEE DOI 0812
BibRef
Earlier: A1, A2, A4, Only:
Wavelet Based Noise Reduction by Identification of Correlations,
DAGM06(21-30).
Springer DOI 0610
BibRef

Smith, C.B., Agaian, S., Akopian, D.,
A Wavelet-Denoising Approach Using Polynomial Threshold Operators,
SPLetters(15), No. 1, 2008, pp. 906-909.
IEEE DOI 0901
BibRef

Goossens, B.[Bart], Pizurica, A.[Aleksandra], Philips, W.[Wilfried],
Removal of Correlated Noise by Modeling the Signal of Interest in the Wavelet Domain,
IP(18), No. 6, June 2009, pp. 1153-1165.
IEEE DOI 0905
BibRef
Earlier:
Removal of Correlated Noise by Modeling Spatial Correlations and Interscale Dependencies in the Complex Wavelet Domain,
ICIP07(I: 317-320).
IEEE DOI 0709
BibRef
Earlier:
Wavelet Domain Image Denoising for Non-Stationary Noise and Signal-Dependent Noise,
ICIP06(1425-1428).
IEEE DOI 0610

See also Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures. BibRef

Goossens, B.[Bart], Pizurica, A.[Aleksandra], Philips, W.[Wilfried],
A filter design technique for improving the directional selectivity of the first scale of the Dual-Tree complex wavelet transform,
ICIP09(3805-3808).
IEEE DOI 0911
BibRef

Yang, J.Y.[Jing-Yu], Wang, Y.[Yao], Xu, W.L.[Wen-Li], Dai, Q.H.[Qiong-Hai],
Image and Video Denoising Using Adaptive Dual-Tree Discrete Wavelet Packets,
CirSysVideo(19), No. 5, May 2009, pp. 642-655.
IEEE DOI 0906
BibRef
Earlier: A1, A3, A2, A4:
2-D Anisotropic Dual-Tree Complex Wavelet Packets and Its Application to Image Denoising,
ICIP08(2328-2331).
IEEE DOI 0810

See also Face Recognition Using Anisotropic Dual-Tree Complex Wavelet Packets.
See also Image Coding Using Dual-Tree Discrete Wavelet Transform. BibRef

Raja, S.S.[S. Selvakumar], John, M.[Mala],
EM algorithm-based adaptive custom thresholding for image denoising in wavelet domain,
IJIST(19), No. 3, September 2009, pp. 175-178.
DOI Link 0909
BibRef

Yu, H., Zhao, L., Wang, H.,
Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain,
IP(18), No. 10, October 2009, pp. 2364-2369.
IEEE DOI 0909
BibRef

Gao, J., Sultan, H., Hu, J., Tung, W.W.,
Denoising Nonlinear Time Series by Adaptive Filtering and Wavelet Shrinkage: A Comparison,
SPLetters(17), No. 1, January 2010, pp. 237-240.
IEEE DOI 1001
BibRef

Yu, S.G.[Shi-Gong], Ahmad, M.O., Swamy, M.N.S.,
Video Denoising Using Motion Compensated 3-D Wavelet Transform With Integrated Recursive Temporal Filtering,
CirSysVideo(20), No. 6, June 2010, pp. 780-791.
IEEE DOI 1007
BibRef

Nikpour, M., Hassanpour, H.,
Using diffusion equations for improving performance of wavelet-based image denoising techniques,
IET-IPR(4), No. 6, December 2010, pp. 452-462.
DOI Link 1101
BibRef

Wang, X.T., Shi, G.M., Niu, Y., Zhang, L.,
Robust adaptive directional lifting wavelet transform for image denoising,
IET-IPR(5), No. 3, June 2011, pp. 249-260.
DOI Link 1105
BibRef

Dong, W.S.[Wei-Sheng], Zhang, L.[Lei], Shi, G.M.[Guang-Ming], Li, X.[Xin],
Nonlocally Centralized Sparse Representation for Image Restoration,
IP(22), No. 4, April 2013, pp. 1620-1630.
IEEE DOI 1303
BibRef
Earlier: A1, A2, A3, Only:
Centralized sparse representation for image restoration,
ICCV11(1259-1266).
IEEE DOI 1201

See also Nonlocal back-projection for adaptive image enlargement. BibRef

Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming], Ma, Y.[Yi], Li, X.[Xin],
Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture,
IJCV(114), No. 2-3, September 2015, pp. 217-232.
Springer DOI 1509
BibRef
Earlier: A1, A4, A3, A2:
Image restoration via Bayesian structured sparse coding,
ICIP14(4018-4022)
IEEE DOI 1502
Bayes methods
See also Image reconstruction with locally adaptive sparsity and nonlocal robust regularization. BibRef

Li, Y., Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming], Xie, X.,
Learning Parametric Distributions for Image Super-Resolution: Where Patch Matching Meets Sparse Coding,
ICCV15(450-458)
IEEE DOI 1602
Dictionaries BibRef

Dong, W.S.[Wei-Sheng], Zhang, L.[Lei], Lukac, R., Shi, G.M.[Guang-Ming],
Sparse Representation Based Image Interpolation With Nonlocal Autoregressive Modeling,
IP(22), No. 4, April 2013, pp. 1382-1394.
IEEE DOI 1303

See also Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. BibRef

Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming], Wu, X.L.[Xiao-Lin], Zhang, L.[Lei],
A learning-based method for compressive image recovery,
JVCIR(24), No. 7, 2013, pp. 1055-1063.
Elsevier DOI 1309
BibRef
Earlier: A1, A4, A2, A3:
Nonlocal back-projection for adaptive image enlargement,
ICIP09(349-352).
IEEE DOI 0911

See also Centralized sparse representation for image restoration. Compressive sensing BibRef

Dong, W.S.[Wei-Sheng], Shi, G.M.[Guang-Ming], Li, X.[Xin], Zhang, L.[Lei], Wu, X.L.[Xiao-Lin],
Image reconstruction with locally adaptive sparsity and nonlocal robust regularization,
SP:IC(27), No. 10, November 2012, pp. 1109-1122.
Elsevier DOI 1211
BibRef
Earlier: A1, A3, A4, A5, Only:
Sparsity-based image deblurring with locally adaptive and nonlocally robust regularization,
ICIP11(1841-1844).
IEEE DOI 1201
BibRef
Earlier: A1, A3, A4, A5, Only:
Sparsity-based image denoising via dictionary learning and structural clustering,
CVPR11(457-464).
IEEE DOI 1106
Sparse representation, Local dictionary learning, Nonlocal regularization, Image reconstruction
See also Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture.
See also Two-stage image denoising by principal component analysis with local pixel grouping. BibRef

Dong, W.S.[Wei-Sheng], Wu, X.L.[Xiao-Lin], Shi, G.M.[Guang-Ming], Zhang, L.[Lei],
Context-based bias removal of statistical models of wavelet coefficients for image denoising,
ICIP09(3841-3844).
IEEE DOI 0911
BibRef

Fahmy, M.F., Fahmy, G.[Gamal], Fahmy, O.F.,
B-spline wavelets for signal denoising and image compression,
SIViP(5), No. 2, June 2011, pp. 141-153.
WWW Link. 1101
BibRef

Fahmy, M.F., Fahmy, G.[Gamal],
Exponential spline perfect reconstruction, decomposition and reconstruction with applications in compression and denoising,
SIViP(8), No. 6, September 2014, pp. 1111-1120.
WWW Link. 1408
BibRef

Li, Y.R.[Yan-Ran], Shen, L.X.[Li-Xin], Dai, D.Q.[Dao-Qing], Suter, B.W.,
Framelet Algorithms for De-Blurring Images Corrupted by Impulse Plus Gaussian Noise,
IP(20), No. 7, July 2011, pp. 1822-1837.
IEEE DOI 1107
BibRef

Bhutada, G.G., Anand, R.S., Saxena, S.C.,
Image enhancement by wavelet-based thresholding neural network with adaptive learning rate,
IET-IPR(5), No. 7, 2011, pp. 573-582.
DOI Link 1108
BibRef

Bhutada, G.G., Anand, R.S., Saxena, S.C.,
PSO-based learning of sub-band adaptive thresholding function for image denoising,
SIViP(6), No. 1, March 2012, pp. 1-7.
WWW Link. 1203
BibRef

Kim, D., Oh, H.S., Naveau, P.,
Hybrid wavelet denoising procedure of discontinuous surfaces,
IET-IPR(5), No. 8, 2011, pp. 684-692.
DOI Link 1108
BibRef

Kim, D.[Donghoh], Park, M.[Minjeong], Oh, H.S.[Hee-Seok],
Bidimensional Statistical Empirical Mode Decomposition,
SPLetters(19), No. 4, April 2012, pp. 191-194.
IEEE DOI 1203
BibRef

Yu, G.S.[Guo-Shen], Sapiro, G.[Guillermo],
DCT image denoising: a simple and effective image denoising algorithm,
IPOL(2011), No. 1, 2011, pp. xx-yy.
DOI Link 1202
Code, Denoising.
See also Ideal spatial adaptation via wavelets shrinkage. BibRef

Fathi, A., Naghsh-Nilchi, A.R.,
Efficient Image Denoising Method Based on a New Adaptive Wavelet Packet Thresholding Function,
IP(21), No. 9, September 2012, pp. 3981-3990.
IEEE DOI 1208
BibRef

Fornasier, M., Kim, Y., Langer, A., Schönlieb, C.B.,
Wavelet Decomposition Method for L_2/TV-Image Deblurring,
SIIMS(5), No. 3 2012, pp. 857-885.
DOI Link 1208
BibRef

Chen, G., Zhu, W.P., Xie, W.,
Wavelet-based image denoising using three scales of dependency,
IET-IPR(6), No. 6, 2012, pp. 756-760.
DOI Link 1210
BibRef

Rabbani, H., Gazor, S.,
Video denoising in three-dimensional complex wavelet domain using a doubly stochastic modelling,
IET-IPR(6), No. 9, 2012, pp. 1262-1274.
DOI Link 1302
BibRef

Rabbani, H., Vafadust, M., Gazor, S.,
Image Denoising Based on a Mixture of Laplace Distributions with Local Parameters in Complex Wavelet Domain,
ICIP06(2597-2600).
IEEE DOI 0610
BibRef

Ho, J.[Jinn], Hwang, W.L.[Wen-Liang],
Wavelet Bayesian Network Image Denoising,
IP(22), No. 4, April 2013, pp. 1277-1290.
IEEE DOI 1303
BibRef

Fierro, M., Ha, H.G., Ha, Y.H.,
Noise Reduction Based on Partial-Reference, Dual-Tree Complex Wavelet Transform Shrinkage,
IP(22), No. 5, May 2013, pp. 1859-1872.
IEEE DOI 1303
BibRef

Yang, S., Min, W., Zhao, L., Wang, Z.,
Image Noise Reduction via Geometric Multiscale Ridgelet Support Vector Transform and Dictionary Learning,
IP(22), No. 11, 2013, pp. 4161-4169.
IEEE DOI 1310
Ridgelet support vector machine BibRef

Kumar, B.K.S.[B. K. Shreyamsha],
Image denoising based on gaussian/bilateral filter and its method noise thresholding,
SIViP(7), No. 6, November 2013, pp. 1159-1172.
WWW Link. 1310

See also Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. BibRef

You, S.J., Cho, N.I.,
An adaptive bandwidth nonlocal means image denoising in wavelet domain,
JIVP(2013), No. 1, 2013, pp. 60.
DOI Link 1311
BibRef

Yan, R.M.[Ruo-Mei], Shao, L.[Ling], Liu, Y.[Yan],
Nonlocal Hierarchical Dictionary Learning Using Wavelets for Image Denoising,
IP(22), No. 12, 2013, pp. 4689-4698.
IEEE DOI 1312
image denoising BibRef

Shi, Y.[Yan], Yang, X.Y.[Xiao-Yuan], Guo, Y.H.[Yu-Hua],
Translation Invariant Directional Framelet Transform Combined With Gabor Filters for Image Denoising,
IP(23), No. 1, January 2014, pp. 44-55.
IEEE DOI 1402
Gabor filters BibRef

Zhang, X.B.[Xiao-Bo], Feng, X.C.[Xiang-Chu],
Multiple-step local Wiener filter with proper stopping in wavelet domain,
JVCIR(25), No. 2, 2014, pp. 254-262.
Elsevier DOI 1402
Image denoising BibRef

Swami, P.D.[Preety D.], Jain, A.[Alok],
Image denoising by supervised adaptive fusion of decomposed images restored using wave atom, curvelet and wavelet transform,
SIViP(8), No. 3, March 2014, pp. 443-459.
WWW Link. 1403
BibRef

Rajaei, B.[Boshra],
An Analysis and Improvement of the BLS-GSM Denoising Method,
IPOL(2014), No. 2014, pp. 44-70.
DOI Link 1404
Code, Denoising. Bayesian least squares, Gaussian scale mixture
See also Image denoising using scale mixtures of gaussians in the wavelet domain. BibRef

Liu, Y.X.[Yun-Xia], Law, N.F.[Ngai-Fong], Siu, W.C.[Wan Chi],
Patch based image denoising using the finite ridgelet transform for less artifacts,
JVCIR(25), No. 5, 2014, pp. 1006-1017.
Elsevier DOI 1406
Image denoising BibRef

Prakash, O.[Om], Khare, A.[Ashish],
Medical Image Denoising Based on Soft Thresholding Using Biorthogonal Multiscale Wavelet Transform,
IJIG(14), No. 1-2, 2014, pp. 1450002.
DOI Link 1406
BibRef

Sharmila, T.S.[T. Sree], Ramar, K.,
Efficient analysis of hybrid directional lifting technique for satellite image denoising,
SIViP(8), No. 7, October 2014, pp. 1399-1404.
WWW Link. 1410
BibRef

Kadiri, M.[Mohammed], Djebbouri, M.[Mohamed], Carre, P.[Philippe],
Magnitude-phase of the dual-tree quaternionic wavelet transform for multispectral satellite image denoising,
JIVP(2014), No. 1, 2014, pp. 41.
DOI Link 1410
BibRef

Islam, M.[Md], Chong, U.[Uipil],
Noise reduction of continuous wave radar and pulse radar using matched filter and wavelets,
JIVP(2014), No. 1, 2014, pp. 43.
DOI Link 1410
BibRef

Remenyi, N., Nicolis, O., Nason, G., Vidakovic, B.,
Image Denoising With 2D Scale-Mixing Complex Wavelet Transforms,
IP(23), No. 12, December 2014, pp. 5165-5174.
IEEE DOI 1412
Bayes methods BibRef

Om, H.[Hari], Biswas, M.[Mantosh],
A generalized image denoising method using neighbouring wavelet coefficients,
SIViP(9), No. 1, January 2015, pp. 191-200.
WWW Link. 1503
BibRef

Cheng, W., Hirakawa, K.,
Minimum Risk Wavelet Shrinkage Operator for Poisson Image Denoising,
IP(24), No. 5, May 2015, pp. 1660-1671.
IEEE DOI 1504
AWGN BibRef

Cheng, W., Hirakawa, K.,
Towards Optimal Denoising of Image Contrast,
IP(27), No. 7, July 2018, pp. 3446-3458.
IEEE DOI 1805
Data models, Noise measurement, Noise reduction, Photonics, Wavelet domain, Wavelet transforms, MMI, Poisson distribution, wavelet transform BibRef

Cetin, A., Tofighi, M.,
Projection-Based Wavelet Denoising,
SPMag(32), No. 5, September 2015, pp. 120-124.
IEEE DOI 1509
Lecture Notes. Cost function BibRef

Huang, L.D.[Li-Dong], Zhao, W.[Wei], Wang, J.[Jun], Sun, Z.B.[Ze-Bin],
Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement,
IET-IPR(9), No. 10, 2015, pp. 908-915.
DOI Link 1511
decomposition BibRef

Starosolski, R.[Roman],
Application of reversible denoising and lifting steps to DWT in lossless JPEG 2000 for improved bitrates,
SP:IC(39, Part A), No. 1, 2015, pp. 249-263.
Elsevier DOI 1512
Reversible denoising and lifting step BibRef

Rodriguez-Hernandez, M.A.[Miguel A.], Emeterio, J.L.S.[José L. San],
Noise reduction using wavelet cycle spinning: Analysis of useful periodicities in the z-transform domain,
SIViP(10), No. 3, March 2016, pp. 519-526.
WWW Link. 1602
BibRef

Fang, D.S.[Dong-Sheng], Lv, X.L.[Xiao-Lei], Wang, Y.[Yong], Lin, X.[Xue], Qian, J.[Jiang],
A Sparsity-Based InSAR Phase Denoising Algorithm Using Nonlocal Wavelet Shrinkage,
RS(8), No. 10, 2016, pp. 830.
DOI Link 1609
BibRef

Pyka, K.[Krystian],
Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and Close Range Images,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Pyka, K.[Krystian], Siedlik, J.,
The Use of Wavelets for Noise Detection in the Images Taken by the Analog and Digital Photogrammetric Cameras,
ISPRS08(B1: 77 ff).
PDF File. 0807
BibRef

Habib, W.[Wajiha], Sarwar, T.[Tabinda], Siddiqui, A.M.[Adil Masood], Touqir, I.[Imran],
Wavelet denoising of multiframe optical coherence tomography data using similarity measures,
IET-IPR(11), No. 1, January 2017, pp. 64-79.
DOI Link 1703
BibRef

Khmag, A.[Asem], Ramli, A.R.[Abd Rahman], Al-haddad, S.A.R., Yusoff, S.[Suhaimi], Kamarudin, N.H.,
Denoising of natural images through robust wavelet thresholding and genetic programming,
VC(33), No. 9, September 2017, pp. 1141-1154.
Springer DOI 1708
BibRef

Wang, M.[Min], Zhou, S.[Shudao],
Image Denoising Using Block-Rotation-Based SVD Filtering in Wavelet Domain,
IEICE(E101-D), No. 6, June 2018, pp. 1621-1628.
WWW Link. 1806
BibRef

Fahmy, M.F.[Mamdouh F.], Fahmy, O.M.[Omar M.],
Efficient bivariate image denoising technique using new orthogonal CWT filter design,
IET-IPR(12), No. 8, August 2018, pp. 1354-1360.
DOI Link 1808
BibRef

Rabbouch, H.[Hana], Saâdaoui, F.[Foued],
A wavelet-assisted subband denoising for tomographic image reconstruction,
JVCIR(55), 2018, pp. 115-130.
Elsevier DOI 1809
Denoising, Wavelets, Non-local means, Radon transform, Tomography, Medical imaging, Simulation BibRef

He, L.T.[Liang-Tian], Wang, Y.L.[Yi-Lun], Xiang, Z.Y.[Zhao-Yin],
Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients,
VC(35), No. 2, February 2019, pp. 151-174.
WWW Link. 1906
BibRef

Lyu, Z.Y.[Zhi-Yu], Zhang, C.K.[Cheng-Kun], Han, M.[Min],
A nonsubsampled countourlet transform based CNN for real image denoising,
SP:IC(82), 2020, pp. 115727.
Elsevier DOI 2001
Nonsubsampled countourlet transform, Convolutional Neural Networks, Image denoising, Gaussian noise BibRef

Liu, X.[Xinwu], Chen, Y.[Yue],
NLTV-Gabor-based models for image decomposition and denoising,
SIViP(14), No. 2, March 2020, pp. 305-313.
WWW Link. 2003
BibRef

Wang, C., Yan, Z., Pedrycz, W., Zhou, M., Li, Z.,
A Weighted Fidelity and Regularization-Based Method for Mixed or Unknown Noise Removal From Images on Graphs,
IP(29), 2020, pp. 5229-5243.
IEEE DOI 2004
Image denoising, Wavelet transforms, Noise reduction, Computational modeling, Wavelet domain, Dictionaries, image denoising BibRef

Nisha, S.S.[S. Shajun], Raja, S.P., Kasthuri, A.,
Static Thresholded Pulse Coupled Neural Networks in Contourlet Domain: A New Framework for Medical Image Denoising,
IJIG(20), No. 3, July 2020, pp. 2050025.
DOI Link 2008
BibRef

Golilarz, N.A.[Noorbakhsh Amiri], Gao, H.[Hui], Pirasteh, S.[Saied], Yazdi, M.[Mohammad], Zhou, J.L.[Jun-Lin], Fu, Y.[Yan],
Satellite Multispectral and Hyperspectral Image De-Noising with Enhanced Adaptive Generalized Gaussian Distribution Threshold in the Wavelet Domain,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Pimpalkhute, V.A., Page, R., Kothari, A., Bhurchandi, K.M., Kamble, V.M.,
Digital Image Noise Estimation Using DWT Coefficients,
IP(30), 2021, pp. 1962-1972.
IEEE DOI 2101
Estimation, Image edge detection, Discrete cosine transforms, Standards, Noise level, Discrete wavelet transforms, polynomial regression BibRef

Venkanna, M.[Mood], Rao, R.[Rameshwar], Sekhar, P.C.[P. Chandra],
Design of filter for image de-noising using discrete wavelet transform for ASIP,
IJCVR(11), No. 2, 2021, pp. 201-213.
DOI Link 2103
BibRef

Song, J.Y.[Joon-Young], Jeong, J.H.[Jae-Heon], Park, D.S.[Dae-Soon], Kim, H.H.[Hyun-Ho], Seo, D.C.[Doo-Chun], Ye, J.C.[Jong Chul],
Unsupervised Denoising for Satellite Imagery Using Wavelet Directional CycleGAN,
GeoRS(59), No. 8, August 2021, pp. 6823-6839.
IEEE DOI 2108
Noise reduction, Satellites, Satellite broadcasting, Noise measurement, Sensors, Machine learning, unsupervised learning BibRef

He, L.T.[Liang-Tian], Wang, Y.L.[Yi-Lun], Mei, J.J.[Jin-Jin], Liu, J.[Jun], Wang, C.[Chao],
Wavelet Frame-Based Image Restoration via L_2-Relaxed Truncated L_0 Regularization and Nonlocal Estimation,
SPLetters(28), 2021, pp. 1605-1609.
IEEE DOI 2108
Estimation, Image restoration, Minimization, Analytical models, Signal processing algorithms, Numerical models, Noise reduction, nonlocal estimation BibRef

Panigrahi, S.K.[Susant Kumar], Gupta, S.[Supratim],
Joint Bilateral Filter for Signal Recovery from Phase Preserved Curvelet Coefficients for Image Denoising,
IJIG(21), No. 4, October 2021 2021, pp. 2150049.
DOI Link 2110
BibRef

Zhang, M.H.[Ming-Hui], Yang, C.[Cailian], Yuan, Y.[Yuan], Guan, Y.[Yu], Wang, S.Y.[Si-Yuan], Liu, Q.[Qiegen],
Multi-wavelet guided deep mean-shift prior for image restoration,
SP:IC(99), 2021, pp. 116449.
Elsevier DOI 2111
Image restoration, Deep mean-shift prior, Proximal gradient, Wavelet transform, Recurrent structure-preserving, Multi-view complementary aggregation BibRef

Benhassine, N.E.[Nasser Edinne], Boukaache, A.[Abdelnour], Boudjehem, D.[Djalil],
Medical image denoising using optimal thresholding of wavelet coefficients with selection of the best decomposition level and mother wavelet,
IJIST(31), No. 4, 2021, pp. 1906-1920.
DOI Link 2112
CSA, denoising, medical image, MSE, optimization, PSNR, SSIM, SSO, thresholding, wavelet decomposition BibRef

Huang, J.J.[Jun-Jie], Dragotti, P.L.[Pier Luigi],
WINNet: Wavelet-Inspired Invertible Network for Image Denoising,
IP(31), 2022, pp. 4377-4392.
IEEE DOI 2207
Noise reduction, Wavelet transforms, Image denoising, Noise level, Noise measurement, Neural networks, Image restoration, invertible neural networks BibRef

Tian, C.[Chunwei], Zheng, M.[Menghua], Zuo, W.M.[Wang-Meng], Zhang, B.[Bob], Zhang, Y.N.[Yan-Ning], Zhang, D.[David],
Multi-stage image denoising with the wavelet transform,
PR(134), 2023, pp. 109050.
Elsevier DOI 2212
Image denoising, CNN, Wavelet transform, Dynamic convolution, Signal processing BibRef

Wu, W.W.[Wei-Wen], Wang, Y.[Yanyang], Liu, Q.[Qiegen], Wang, G.[Ge], Zhang, J.[Jianjia],
Wavelet-Improved Score-Based Generative Model for Medical Imaging,
MedImg(43), No. 3, March 2024, pp. 966-979.
IEEE DOI Code:
WWW Link. 2403
Image reconstruction, Training, Biomedical imaging, Noise measurement, Computed tomography, regularization constraint BibRef

Huang, Y.[Yi], Huang, J.C.[Jian-Cheng], Liu, J.Z.[Jian-Zhuang], Yan, M.[Mingfu], Dong, Y.[Yu], Lv, J.X.[Jia-Xi], Chen, C.Q.[Chao-Qi], Chen, S.F.[Shi-Feng],
WaveDM: Wavelet-Based Diffusion Models for Image Restoration,
MultMed(26), 2024, pp. 7058-7073.
IEEE DOI 2405
Image restoration, Wavelet transforms, Computational modeling, Task analysis, Transforms, Training, Degradation, Diffusion models, wavelet transform BibRef

Guo, L.Q.[Lan-Qing], Huang, S.[Siyu], Liu, H.[Haosen], Wen, B.[Bihan],
Toward Robust Image Denoising via Flow-Based Joint Image and Noise Model,
CirSysVideo(34), No. 7, July 2024, pp. 6105-6115.
IEEE DOI 2407
Noise reduction, Image denoising, Noise measurement, Task analysis, Wavelet transforms, Neural networks, Image restoration, disentanglement BibRef

Ding, S.F.[Shi-Fei], Wang, Q.D.[Qi-Dong], Guo, L.[Lili], Li, X.[Xuan], Ding, L.[Ling], Wu, X.D.[Xin-Dong],
Wavelet and Adaptive Coordinate Attention Guided Fine-Grained Residual Network for Image Denoising,
CirSysVideo(34), No. 7, July 2024, pp. 6156-6166.
IEEE DOI 2407
Noise reduction, Wavelet transforms, Feature extraction, Image denoising, Estimation, Image restoration, Task analysis, residual connection BibRef

Le, H.T.V.[Hoang Trieu Vy], Repetti, A.[Audrey], Pustelnik, N.[Nelly],
Unfolded Proximal Neural Networks for Robust Image Gaussian Denoising,
IP(33), 2024, pp. 4475-4487.
IEEE DOI 2408
Noise reduction, Image restoration, Task analysis, Robustness, Optimization, Artificial neural networks, Wavelet transforms, inertial methods BibRef


Jia, F.[Fan], Wong, W.H.[Wing Hong], Zeng, T.Y.[Tie-Yong],
DDUNet: Dense Dense U-Net with Applications in Image Denoising,
NeruArch21(354-364)
IEEE DOI 2112
Wavelet transforms, Image segmentation, Image color analysis, Image edge detection, Superresolution, Gray-scale, Image restoration BibRef

Li, Q.F.[Qiu-Fu], Shen, L.L.[Lin-Lin], Guo, S.[Sheng], Lai, Z.H.[Zhi-Hui],
WaveCNet: Wavelet Integrated CNNs to Suppress Aliasing Effect for Noise-Robust Image Classification,
IP(30), 2021, pp. 7074-7089.
IEEE DOI 2108
BibRef
Earlier:
Wavelet Integrated CNNs for Noise-Robust Image Classification,
CVPR20(7243-7252)
IEEE DOI 2008
Discrete wavelet transforms, Robustness, Feature extraction, Task analysis, Noise robustness, Convolution, Wavelet analysis, CNN, basic object structure. Noise reduction, Robustness. BibRef

Liu, W., Yan, Q., Zhao, Y.,
Densely Self-guided Wavelet Network for Image Denoising,
NTIRE20(1742-1750)
IEEE DOI 2008
Pattern recognition BibRef

Zhao, R., Lam, K., Lun, D.P.K.,
Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral Analysis,
ICIP19(1124-1128)
IEEE DOI 1910
Image denoising, convolutional neural networks, spatial-spectral analysis, discrete wavelet transform BibRef

Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.,
Multi-level Wavelet-CNN for Image Restoration,
Restoration18(886-88609)
IEEE DOI 1812
Discrete wavelet transforms, Image restoration, Task analysis, Image denoising, Transform coding BibRef

Tay, P.C., Yan, Y.,
Wavelet Denoising Using a Conjointly Space and 2D Frequency Localized Filterbank,
ICIP18(520-524)
IEEE DOI 1809
Noise reduction, Time-frequency analysis, AWGN, Frequency modulation, Indexes, time-frequency measure BibRef

Preciozzi, J., González, M., Almansa, A., Musé, P.,
Joint denoising and decompression: A patch-based Bayesian approach,
ICIP17(1252-1256)
IEEE DOI 1803
Image coding, Image restoration, Imaging, Noise reduction, Quantization (signal), Satellites, Wavelet domain, Satellite Imaging BibRef

Zhang, Y., He, N., Zhen, X., Sun, X.,
Image Denoising Based on the Wavelet Semi-soft Threshold and Total Variation,
ICVISP17(55-62)
IEEE DOI 1712
Image edge detection, Image reconstruction, Noise reduction, TV, Wavelet coefficients, image denoising, total variation (TV), wavelet transform BibRef

Zidi, A., Marot, J., Bourennane, S., Spinnler, K.,
Automatic rank estimation of Parafac decomposition and application to multispectral image wavelet denoising,
ICIP16(3101-3105)
IEEE DOI 1610
Decision support systems BibRef

Bitenc, M., Kieffer, D.S., Khoshelham, K.,
Evaluation Of Wavelet And Non-local Mean Denoising Of Terrestrial Laser Scanning Data For Small-scale Joint Roughness Estimation,
ISPRS16(B3: 181-186).
DOI Link 1610
BibRef

Fassold, H.[Hannes], Schallauer, P.[Peter],
A hybrid wavelet and temporal fusion algorithm for film and video denoising,
MVA15(275-278)
IEEE DOI 1507
Noise BibRef

Boubchir, L., Al-Maadeed, S., Bouridane, A.,
Undecimated wavelet-based Bayesian denoising in mixed Poisson-Gaussian noise with application on medical and biological images,
IPTA14(1-5)
IEEE DOI 1503
Bayes methods BibRef

Iizuka, Y.[Yuki], Tanaka, Y.[Yuichi],
Depth map denoising using collaborative graph wavelet shrinkage on connected image patches,
ICIP14(828-832)
IEEE DOI 1502
Collaboration BibRef

Yang, K.[Kun], Deng, C.X.[Cai-Xia], Chen, Y.[Yu], Xu, L.X.[Li-Xiang],
The de-noising method of threshold function based on wavelet,
ICWAPR14(87-92)
IEEE DOI 1402
Noise BibRef

Wang, J.F.[Jian-Fei],
A wavelet denoising method based on the improved threshold function,
ICWAPR14(70-74)
IEEE DOI 1402
Image denoising BibRef

Ansari, R.A., Mohan, B.K.,
Noise Filtering of Remotely Sensed Images using Iterative Thresholding of Wavelet and Curvelet Transforms,
LandImaging14(57-64).
DOI Link 1411
BibRef

Gajbhar, S.S., Joshi, M.V.,
Image denoising using redundant finer directional wavelet transform,
NCVPRIPG13(1-4)
IEEE DOI 1408
Bayes methods BibRef

Ray, P.[Partha], Maitra, A.K., Basuray, A.[Arijit],
A new threshold function for de-noising partial discharge signal based on wavelet transform,
ICSIPR13(185-189).
IEEE DOI 1304
BibRef

Mudugamuwa, D.J.[Damith J.], He, X.J.[Xiang-Jian], Jia, W.J.[Wen-Jing],
Battle-Lemarie wavelet pyramid for improved GSM image denoising,
ICPR12(3156-3159).
WWW Link. 1302
cell phone signals. BibRef

Bhandari, A.K., Gadde, M., Kumar, A., Singh, G.K.,
Comparative analysis of different wavelet filters for low contrast and brightness enhancement of multispectral remote sensing images,
IMVIP12(81-86).
IEEE DOI 1302
BibRef

Shi, S., Gong, W., Lv, L., Zhu, B., Song, S.,
Signal Noise Reduction Based on Wavelet Transform in Two-Wavelength Lidar System,
ISPRS12(XXXIX-B7:449-452).
DOI Link 1209
BibRef

Tran, M.P.[Minh-Phuong], Péteri, R.[Renaud], Bergounioux, M.[Maitine],
Denoising 3D Medical Images Using a Second Order Variational Model and Wavelet Shrinkage,
ICIAR12(II: 138-145).
Springer DOI 1206
BibRef

Aravind, B.N., Suresh, K.V.,
Wavelet Based Image Denoising Using Multi-Spinning,
NCVPRIPG11(118-121).
IEEE DOI 1205
BibRef

Xiang, Z.J.[Zhen James], Zhang, Z.[Zhuo], Xu, P.M.[Ping-Mei], Ramadge, P.J.[Peter J.],
Learning a wavelet tree for multichannel image denoising,
ICIP11(2565-2568).
IEEE DOI 1201
BibRef

Pan, X.[Xun], Zhang, J.Y.[Jing-Yuan],
Denoising method for acoustic wake based on correlation of multiwavelet coefficient,
IASP11(474-479).
IEEE DOI 1112
BibRef

Xi, Z.Q.[Zi-Qiang], Fu, Z.J.[Zhong-Jia], Qi, L.[Lei], Wang, S.[Sha],
A study on 2D signal noise reduction method for wavelet analysis,
IASP11(248-251).
IEEE DOI 1112
BibRef

Abid, M., Cagnazzo, M., Pesquet-Popescu, B.,
Image denoising by adaptive lifting schemes,
EUVIP10(108-113).
IEEE DOI 1110
BibRef

Zhang, X.[Xi], Tanaka, A.[Atsushi],
Flicker reduction for motion JPEG2000 using wavelet thresholding,
ICIP10(2529-2532).
IEEE DOI 1009
BibRef

Chen, G.Y.[Guang-Yi], Bui, T.D.[Tien D.], Krzyzak, A.[Adam],
Denoising of Three Dimensional Data Cube Using Bivariate Wavelet Shrinking,
ICIAR10(I: 45-51).
Springer DOI 1006
BibRef

Li, L.L.[Ling-Ling], Han, T.[Tao], Lou, L.T.[Lian-Tang],
Remote Sensing Image Enhancement Based on Wavelet and Nonlinear Iteration,
IASP10(660-662).
IEEE DOI 1004
BibRef

Ouarti, N.[Nizar], Peyre, G.[Gabriel],
Best basis denoising with non-stationary wavelet packets,
ICIP09(3825-3828).
IEEE DOI 0911
BibRef

Conci, A., Kubrusly, C.S., Rauber, T.W.,
Influence of the Wavelet Family in the Compression-Denoising Technique on Synthetic and Natural Images,
WSSIP09(1-4).
IEEE DOI 0906
BibRef

Song, J.P.[Jin-Ping], Luo, S.S.[Shou-Sheng], Yang, X.Y.[Xiao-Yi],
Wavelet-Based Multi-Scale Variation Image Noise Removal Model and the Image Geometry-Adapted Method for Multi-Scale Parameters Determining,
CISP09(1-5).
IEEE DOI 0910
BibRef

Liu, X.X.[Xin-Xia], Han, F.L.[Fu-Lian], Wang, J.G.[Jin-Gui],
Wavelet Extended EMD Noise Reduction Model for Signal Trend Extraction,
CISP09(1-5).
IEEE DOI 0910
BibRef

Yang, Z.J.[Zhi-Jun], Dai, G.[Guang], Zhao, H.L.[Hai-Long], Jiang, Y.B.[Yan-Biao],
Research of Magnetic Flux Leakage Signal Processing Based on Wavelet De-Noising and EMD,
CISP09(1-4).
IEEE DOI 0910
BibRef

Yan, Y.[Yan], Cui, Z.Z.[Zhan-Zhong],
Noise and Zero Excursion Elimination of Electrostatic Detection Signals Based on EMD and Wavelet Transform,
CISP09(1-5).
IEEE DOI 0910
BibRef

Dai, J.X.[Jian-Xin],
Image Denoising Based on Combining Neighbouring Wavelet Coefficients,
CISP09(1-3).
IEEE DOI 0910
BibRef

Ren, S.K.[Shang-Kun], Zhu, Z.B.[Zhi-Bin], Lin, T.H.[Tian-Hua], Song, K.[Kai], Ren, J.L.[Ji-Lin],
Design for the ACFM Sensor and the Signal Processing Based on Wavelet De-Noise,
CISP09(1-4).
IEEE DOI 0910
BibRef

Shang, L.[Li], Zhang, J.F.[Jin-Feng], Huai, W.J.[Wen-Jun], Chen, J.[Jie], Du, J.X.[Ji-Xiang],
Natural Image Denoising Using Sparse ICA Based on 2-D Gabor Wavelet,
CISP09(1-5).
IEEE DOI 0910
BibRef

Wang, Z.L.[Ze-Long], Yan, F.X.[Feng-Xia], Liu, J.Y.[Ji-Ying], Zhu, J.[Jubo],
A New Approach for Wavelet Denoising Based on Training,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wu, B.S.[Bing-Sheng], Cai, C.Z.[Chao-Zhi],
Wavelet Denoising and Its Implementation in LabVIEW,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wu, W.[Wei], Chen, F.[Fuyi],
Improving Wavelet De-Noise By Means of Shifting-Scale-Method,
CISP09(1-4).
IEEE DOI 0910
BibRef

Xu, B.L.[Bing-Lian], Zhang, Q.S.[Qiu-Sheng],
Image denoising based on a new symmetrical second-generation wavelet,
IASP09(1-4).
IEEE DOI 0904
BibRef

Minamoto, T.[Teruya], Fujii, S.[Satoshi],
A Digital Image Denoising Method with Edge Preservation Using Dyadic Lifting Schemes,
PSIVT09(283-294).
Springer DOI 0901
BibRef

Laparra, V.[Valero], Gutierrez, J.[Juan], Camps-Valls, G.[Gustavo], Malo, J.[Jesus],
Recovering wavelet relations using SVM for image denoising,
ICIP08(541-544).
IEEE DOI 0810

See also PCA Gaussianization for image processing. BibRef

Ashamol, V.G., Sreelekha, G., Sathidevi, P.S.,
Diffusion-based image denoising combining curvelet and wavelet,
WSSIP08(169-172).
IEEE DOI 0806
BibRef

Fu, G.Y.[Guo-Yi], Hojjat, A.[Ali], Colchester, A.[Alan],
Wavelet Noise Reduction Based on Energy Features,
ICIAR08(xx-yy).
Springer DOI 0806
BibRef

Ghazal, M.[Mohammed], Amer, A.[Aishy],
Total Occlusion Correction using Invariant Wavelet Features,
ICIP07(III: 345-348).
IEEE DOI 0709
BibRef

Saito, T.[Takahiro], Ishii, Y.[Yuki], Aizawa, H.[Haruya], Yamada, D.[Daisuke], Komatsu, T.[Takashi],
Image-processing approach via nonlinear image-decomposition for a digital color camera,
ICIP08(905-908).
IEEE DOI 0810
BibRef

Ishii, Y.[Yuki], Saito, T.[Takahiro], Komatsu, T.[Takashi],
Denoising Via Nonlinear Image Decomposition for a Digital Color Camera,
ICIP07(I: 309-312).
IEEE DOI 0709
BibRef

Rapantzikos, K.[Konstantinos], Avrithis, Y.S.[Yannis S.], Kollias, S.D.[Stefanos D.],
salienShrink: Saliency-Based Wavelet Shrinkage,
ICIP07(I: 305-308).
IEEE DOI 0709
BibRef

Li, J., Mohamed, S.S., Salama, M.M.A., Freeman, G.H.,
Subband-Adaptive and Spatially-Adaptive Wavelet Thresholding for Denoising and Feature Preservation of Texture Images,
ICIAR07(24-37).
Springer DOI 0708
BibRef

Tan, X.[Xi], He, H.[Hong],
Image Denoising Based on the Ridgelet Frame Using the Generalized Cross Validation Technique,
ICIAR07(38-45).
Springer DOI 0708
BibRef

Wu, J.Y.[Ji-Ying], Ruan, Q.Q.[Qiu-Qi],
Combining Adaptive PDE and Wavelet Shrinkage in Image Denoising with Edge Enhancing Property,
ICPR06(III: 718-721).
IEEE DOI 0609
BibRef

Raghavendra, B.S., Bhat, P.S.[P. Subbanna],
Shift-Invariant Image Denoising Using Mixture of Laplace Distributions in Wavelet-Domain,
ACCV06(I:180-188).
Springer DOI 0601
BibRef

Jin, F.[Fu], Fieguth, P.W.[Paul W.], Winger, L.L.[Lowell L.],
Image Denoising Using Complex Wavelets and Markov Prior Models,
ICIAR05(73-80).
Springer DOI 0509
BibRef
Earlier:
Motion-Compensated Wavelet Video Denoising,
ICIAR04(I: 572-579).
Springer DOI 0409
BibRef

Tao, Q.C.[Qing-Chuan], He, X.H.[Xiao-Hai], Deng, H.B.[Hong-Bin], Liu, Y.[Ying], Zhao, J.[Jia],
Wavelet Transform Based Gaussian Point Spread Function Estimation,
ISVC05(396-405).
Springer DOI 0512
BibRef

Nezamoddini-Kachouie, N.[Nezamoddin], Fieguth, P.W.[Paul W.], Jernigan, E.[Edward],
BayesShrink Ridgelets for Image Denoising,
ICIAR04(I: 163-170).
Springer DOI 0409
BibRef

Chen, P.[Pei], Suter, D.,
Shift-invariant wavelet denoising using interscale dependency,
ICIP04(II: 1005-1008).
IEEE DOI 0505
BibRef

Shetty, P.K., Ramu, T.S.,
An undecimated wavelet transform based denoising, PPCAa based pulse modeling and detection-classification of PD signals,
ICPR04(IV: 873-876).
IEEE DOI 0409
BibRef

Yuan, X.H.[Xiao-Hui], Buckles, B.P.,
Subband noise estimation for adaptive wavelet shrinkage,
ICPR04(IV: 885-888).
IEEE DOI 0409
BibRef

Ye, Z.[Zhen], Lu, C.C.[Cheng-Chang],
A wavelet domain hierarchical hidden Markov model,
ICIP04(V: 3491-3494).
IEEE DOI 0505
BibRef
Earlier:
A complex wavelet domain markov model for image denoising,
ICIP03(III: 365-368).
IEEE DOI 0312
BibRef

Qin, J.H.[Jin-Hui], El-Sakka, M.R.,
A new wavelet-based method for contrast-edge enhancement,
ICIP03(III: 397-400).
IEEE DOI 0312
BibRef

Zhu, H.L.[Hai-Long], Kwok, J.T., Qu, L.[LiangSheng],
Improving de-noising by coefficient de-noising and dyadic wavelet transform,
ICPR02(II: 273-276).
IEEE DOI 0211
BibRef

Fletcher, A.K., Ramchandran, K., Goyal, V.K.,
Wavelet denoising by recursive cycle spinning,
ICIP02(II: 873-876).
IEEE DOI 0210
BibRef

Achim, A., Bezerianos, A., Tsakalides, P.,
Wavelet-based Ultrasound Image Denoising Using an Alpha-stable Prior Probability Model,
ICIP01(II: 221-224).
IEEE DOI 0108
BibRef

Berkner, K., Gormish, M., Schwartz, E., Boliek, M.,
A New Wavelet-based Approach to Sharpening and Smoothing of Images in Besov Spaces with Applications to Deblurring,
ICIP00(Vol III: 797-800).
IEEE DOI 0008
BibRef

Zhong, S.,
Image Denoising Using Wavelet Thresholding and Model Selection,
ICIP00(Vol III: 262-265).
IEEE DOI 0008
BibRef

Zhang, H.P.[Hui-Pin], Nosratinia, A., Wells, Jr., R.O.,
Modelling the Autocorrelation of Wavelet Coefficients for Image Denoising,
ICIP00(Vol III: 304-307).
IEEE DOI 0008
BibRef

Huang, X., Woolsey, G.A.,
Image Denoising Using Wiener Filtering and Wavelet Thresholding,
ICME00(WP11). 0007
BibRef

Han, K.J., Tewfik, A.H.,
Hybrid wavelet transform filter for image recovery,
ICIP98(I: 540-543).
IEEE DOI 9810
BibRef

Nowak, R.D., Timmermann, K.E.,
Stationary wavelet-based intensity models for photon-limited imaging,
ICIP98(I: 620-624).
IEEE DOI 9810
BibRef

Li, W.Z.[Wen-Zhe], Lin, J.N.[Ji-Nan], Unbehauen, R.,
Wavelet based nonlinear image enhancement for Gaussian and uniform noise,
ICIP98(I: 550-554).
IEEE DOI 9810
BibRef

DeVore, R.A., Lucier, B.J.,
Classifying the Smoothness of Images: Theory and Applications to Wavelet Image Processing,
ICIP94(II: 6-10).
IEEE DOI 9411
BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Curvelet Transform .


Last update:Aug 28, 2024 at 16:02:19