Mattson, R.L., and
Firschein, O.,
Feature Word Construction for Use with Pattern Recognition Algorithms:
An Experimental Study,
JACM(10), No. 4, October 1963, pp. 458-477.
BibRef
6310
Dressler, R.F., and
Werner, W.,
Error Rates for Two Methods of Statistical Pattern Recognition,
JACM(11), No. 4, October 1964, pp. 471-480.
BibRef
6410
Bledsoe, W.W.,
Some Results on Multicategory Pattern Recognition,
JACM(13), No. 2 April 1966, pp. 304-316.
BibRef
6604
Hughes, G.F.,
On the Mean Accuracy of Statistical Pattern Recognizers,
IT(14), No. 1, January 1968, pp. 55-63.
BibRef
6801
Chow, C.K.,
On Optimum Recognition Error and Reject Trade-Offs,
IT(16), No. 1, January 1970, pp. 41-46.
Relationship between (False Rejection) FRR and (False Acceptance)
FAR error formulations.
See also Optimum Character Recognition System Using Decision Function, An.
BibRef
7001
Rand, W.M.,
Objective Criteria for the Evaluation of Clustering Methods,
ASAJ(66), No. 336, 1971, pp. 846-850.
BibRef
7100
Preston, K.,
A Comparison of Analog and Digital Techniques for Pattern Recognition,
PIEEE(60), No. 10, October 1972, pp. 1216-1231.
BibRef
7210
Sacco, W.J.[William J.],
Copes, W.S.[Wayne S.],
Reduction of the class of feature evaluation techniques in pattern
analysis,
PR(4), No. 3, October 1972, pp. 331-332.
Elsevier DOI
0309
Letter.
BibRef
Toussaint, G.T.[Godfried T.],
Bibliography on Estimation of Misclassification,
IT(20), 1974, pp. 472-479.
Survey, Evaluation. Complete listing of the research up to this time.
BibRef
7400
Slagle, J.R.,
Chang, C.L.,
Lee, C.T.,
Experiments with Some Cluster Analysis Algorithms,
PR(6), No. 3-4, December 1974, pp. 181-187.
Elsevier DOI 1-D clustering.
BibRef
7412
Milligan, G.W.[Glenn W.],
Isaac, P.D.[Paul D.],
The validation of four ultrametric clustering algorithms,
PR(12), No. 2, 1980, pp. 41-50.
Elsevier DOI
0309
BibRef
Bayne, C.K.[Charles K.],
Beauchamp, J.J.[John J.],
Begovich, C.L.[Connie L.],
Kane, V.E.[Victor E.],
Monte Carlo comparisons of selected clustering procedures,
PR(12), No. 2, 1980, pp. 51-62.
Elsevier DOI
0309
BibRef
Viscolani, B.[Bruno],
Computational length in pattern recognizers,
PR(15), No. 5, 1982, pp. 413-418.
Elsevier DOI
0309
BibRef
Viscolani, B.[Bruno],
Optimization of computational time in pattern recognizers,
PR(15), No. 5, 1982, pp. 419-424.
Elsevier DOI
0309
A sequential organization of the computations arising from pattern
recognizers by absolute comparison is suggested in order to reduce the
mean computational time involved.
BibRef
Viscolani, B.[Bruno],
Further results on optimization of recognition time,
PR(16), No. 3, 1983, pp. 337-339.
Elsevier DOI
0309
BibRef
Hanley, J.,
McNeil, B.,
The Meaning and Use of the Area under a
Receiver Operating Characteristic (ROC) Curve,
Radiology(143), 1982, pp. 29-36.
BibRef
8200
Goin, J.E.[James E.],
Fritz, S.L.[Steven L.],
A Matrix Approach to Data Base Exploration:
Analysis of Classifier Results,
PR(16), No. 2, 1983, pp. 243-252.
Elsevier DOI
0309
BibRef
Raveh, A.[Adi],
Preference structure analysis: A nonmetric approach,
PR(16), No. 2, 1983, pp. 253-259.
Elsevier DOI
0309
Suggest a nonmetric procedure in which goodness of discrimination is
higher than or equal to that of Fisher's discriminant function.
very different discriminant functions could yield the very same number
of errors.
BibRef
Fowlkes, E.B., and
Mallows, C.L.,
A Method for Comparing Two Hierarchical Clusterings,
ADAJ(78), No. 383, 1983, pp. 553-569.
BibRef
8300
Flick, T.E., and
Jones, L.K.,
A Combinatorial Approach for Classification of Patterns
with Missing Information and Random Orientation,
PAMI(8), No. 4, July 1986, pp. 482-490.
BibRef
8607
Flick, T.E.[Thomas E.],
Jones, L.K.[Lee K.],
Priest, R.G.[Richard G.],
Herman, C.[Charles],
Pattern classification using projection pursuit,
PR(23), No. 12, 1990, pp. 1367-1376.
Elsevier DOI
0401
BibRef
Wacker, A.G.,
El-Sheikh, T.S.,
Average Classification Accuracy over Collections of Gaussian Problems:
Common Covariance Matrix Case,
PR(17), No. 2, 1984, pp. 259-273.
Elsevier DOI
0309
BibRef
Chernick, M.C.,
Murthy, V.K., and
Nealy, C.D.,
Application of Bootstrap and Other Resampling Techniques:
Evaluation of Classifier Performance,
PRL(3), 1985, pp. 167-178.
BibRef
8500
Jain, A.K.,
Dubes, R.C., and
Chen, C.C.,
Bootstrap Techniques for Error Estimation,
PAMI(9), No. 5, September 1987, pp. 628-633.
BibRef
8709
Colussi, L.,
Correctness and Efficiency of Pattern Matching Algorithms,
InfoControl(95), 1991, pp. 225-251.
BibRef
9100
Srivastava, A.[Anurag],
Murty, M.N.,
A comparison between conceptual clustering and conventional clustering,
PR(23), No. 9, 1990, pp. 975-981.
Elsevier DOI
0401
BibRef
Tang, Y.Y.,
Qu, Y.Z.,
Suen, C.Y.,
Multiple-level information source and entropy-reduced transformation
models,
PR(24), No. 4, 1991, pp. 341-357.
Elsevier DOI
0401
Analyze systematically the changes in entropy which occur in the
different stages of a pattern recognizer.
BibRef
Gluhchev, G.,
Shalev, S.,
The Systematic-Error Detection as a Classification Problem,
PRL(17), No. 12, October 25 1996, pp. 1233-1238.
9612
BibRef
Duin, R.P.W.,
A Note on Comparing Classifiers,
PRL(17), No. 5, May 1 1996, pp. 529-536.
9606
BibRef
Richards, J.A.,
Classifier Performance and MAP Accuracy,
RSE(57), No. 3, September 1996, pp. 161-166.
9609
BibRef
Nyssen, E.,
Evaluation of Pattern Classifiers:
Testing the Significance of Classification Efficiency Using an
Exact Probability Technique,
PRL(17), No. 11, September 16 1996, pp. 1125-1129.
9611
BibRef
Nyssen, E.,
Evaluation of Pattern Classifiers:
Applying a Monte Carlo Significance Test to the Classification Efficiency,
PRL(19), No. 1, January 1998, pp. 1-6.
9807
BibRef
San Miguel-Ayanz, J.,
Biging, G.S.,
Comparison of Single-Stage and Multistage Classification Approaches for
Cover Type Mapping with TM and Spot Data,
RSE(59), No. 1, January 1997, pp. 92-104.
9701
BibRef
Denoeux, T.[Thierry],
Analysis of Evidence Theoretic Decision Rules for
Pattern-Classification,
PR(30), No. 7, July 1997, pp. 1095-1107.
Elsevier DOI
9707
BibRef
Bokka, V.,
Olariu, S.,
Schwing, J.L.,
Wilson, L.,
Zomaya, A.,
A Time-Optimal Solution to a Classification Problem in
Ordered Functional Domains, with Applications,
PR(30), No. 9, September 1997, pp. 1555-1564.
Elsevier DOI
9708
BibRef
Zhou, J.Y.[Jiang-Ying],
Lopresti, D.P.[Daniel P.],
Improving Classifier Performance Through Repeated Sampling,
PR(30), No. 10, October 1997, pp. 1637-1650.
Elsevier DOI
9712
BibRef
Lerner, B.[Boaz],
Guterman, H.[Hugo],
Aladjem, M.[Mayer],
Dinsteint, I.[Its'hak],
Romem, Y.[Yitzhak],
On Pattern Classification with Sammons Nonlinear Mapping:
An Experimental-Study,
PR(31), No. 4, April 1998, pp. 371-381.
Elsevier DOI
9803
See also nonlinear mapping for data structure analysis, A.
BibRef
Aladjem, M.[Mayer],
Dinstein, I.[Its'hak],
A multiclass extension of discriminant mappings,
ICPR92(II:101-104).
IEEE DOI
9208
BibRef
Stehman, S.V.,
Czaplewski, R.L.,
Design and Analysis for Thematic Map Accuracy Assessment:
Fundamental Principles,
RSE(64), No. 3, June 1998, pp. 331-344.
9806
BibRef
Adams, N.M.,
Hand, D.J.,
Comparing classifiers when the misallocation costs are uncertain,
PR(32), No. 7, July 1999, pp. 1139-1147.
Elsevier DOI
BibRef
9907
Smits, P.C.,
Dellepiane, S.G.,
Schowengerdt, R.A.,
Quality assessment of image classification algorithms for land-cover
mapping: a review and a proposal for a cost-based approach,
JRS(20), No. 8, May 1999, pp. 1461.
BibRef
9905
Sohn, S.Y.[So Young],
Meta Analysis of Classification Algorithms for Pattern Recognition,
PAMI(21), No. 11, November 1999, pp. 1137-1144.
IEEE DOI
9912
For sample size and dimensionality.
Meta model to compare different classification algorithms.
Traditional statistical, neural nets, and machine learning approaches.
BibRef
Srivastava, A.N.,
Su, R.,
Weigend, A.S.,
Data Mining for Features Using Scale-Sensitive Gated Experts,
PAMI(21), No. 12, December 1999, pp. 1268-1279.
IEEE DOI
0001
Data analysis to partition complex regression surface into simpler
surfaces (features).
See also Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra.
BibRef
Andersson, A.[Arne],
Davidsson, P.[Paul],
Lindén, J.[Johan],
Measure-based classifier performance evaluation,
PRL(20), No. 11-13, November 1999, pp. 1165-1173.
0001
BibRef
Lim, T.S.,
Loh, W.Y.,
Shil, Y.S.,
A Comparison of Prediction Accuracy, Complexity, and Training Time
of Thirty-Three Old and New Classification Algorithms,
MachLearn(40), No. 3, 2000, pp. 203-228.
0003
BibRef
Ong, S.H.,
Zhao, X.,
On post-clustering evaluation and modification,
PRL(21), No. 5, May 2000, pp. 365-373.
0005
BibRef
Raudys, S.J.[Sarunas J.],
Saudargiene, A.[Ausra],
First-Order Tree-Type Dependence between Variables and
Classification Performance,
PAMI(23), No. 2, February 2001, pp. 233-239.
IEEE DOI
0102
BibRef
Hubert-Moy, L.,
Cotonnec, A.,
Le Du, L.,
Chardin, A.,
Perez, P.,
A Comparison of Parametric Classification Procedures of Remotely Sensed
Data Applied on Different Landscape Units,
RSE(75), No. 2, 2001, pp. 174-187.
0102
BibRef
Tambouratzis, G.[George],
Improving the Clustering Performance of the Scanning n-Tuple Method by
Using Self-Supervised Algorithms to Introduce Subclasses,
PAMI(24), No. 6, June 2002, pp. 722-733.
IEEE DOI
0206
BibRef
Earlier:
Improving the Classification Accuracy of the Scanning N-tuple Method,
ICPR00(Vol II: 1046-1049).
IEEE DOI
0009
Extend work of:
See also Statistical Syntactic Methods for High-Performance OCR. Remove edge effects.
BibRef
Liu, M.Q.[Ming-Qin],
Samal, A.[Ashok],
Cluster validation using legacy delineations,
IVC(20), No. 7, May 2002, pp. 459-467.
Elsevier DOI
0206
BibRef
Berikov, V.B.[Vladimir B.],
An approach to the evaluation of the performance of a discrete
classifier,
PRL(23), No. 1-3, January 2002, pp. 227-233.
Elsevier DOI
0201
BibRef
Harvey, N.R.,
Theiler, J.,
Brumby, S.P.,
Perkins, S.,
Szymanski, J.J.,
Bloch, J.J.,
Porter, R.B.,
Galassi, M.,
Young, A.C.,
Comparison of GENIE and conventional supervised classifiers for
multispectral image feature extraction,
GeoRS(40), No. 2, February 2002, pp. 393-404.
IEEE Top Reference.
0205
BibRef
Muchoney, D.M.[Douglas M.],
Strahler, A.H.[Alan H.],
Pixel- and site-based calibration and validation methods for evaluating
supervised classification of remotely sensed data,
RSE(81), No. 2-3, August 2002, pp. 290-299.
HTML Version.
0206
BibRef
Alsing, S.G.[Stephen G.],
Bauer, Jr., K.W.[Kenneth W.],
Miller, J.O.[John O.],
A multinomial selection procedure for evaluating pattern recognition
algorithms,
PR(35), No. 11, November 2002, pp. 2397-2412.
Elsevier DOI
0208
BibRef
Maulik, U.[Ujjwal],
Bandyopadhyay, S.[Sanghamitra],
Performance Evaluation of Some Clustering Algorithms and Validity
Indices,
PAMI(24), No. 12, December 2002, pp. 1650-1654.
IEEE Abstract.
0212
Hard K-Means,
Single Linkage,
Simulated annealing
See also Optimization by Simulated Annealing.
BibRef
Sandri, L.[Laura],
Marzocchi, W.[Warner],
Testing the performance of some nonparametric pattern recognition
algorithms in realistic cases,
PR(37), No. 3, March 2004, pp. 447-461.
Elsevier DOI
0401
BibRef
Toh, K.A.[Kar-Ann],
Tran, Q.L.[Quoc-Long],
Srinivasan, D.[Dipti],
Benchmarking a Reduced Multivariate Polynomial Pattern Classifier,
PAMI(26), No. 6, June 2004, pp. 740-755.
IEEE Abstract.
0404
The simplified model worked well. Analyze it.
BibRef
Tran, Q.L.[Quoc-Long],
Toh, K.A.[Kar-Ann],
Srinivasan, D.[Dipti],
Wong, K.L.,
Low, S.Q.C.[Shaun Qiu-Cen],
An empirical comparison of nine pattern classifiers,
SMC-B(35), No. 5, October 2005, pp. 1079-1091.
IEEE DOI
0510
Algorithm RM. Reduced Multivariate.
BibRef
Attoor, S.N.[Sanju N.],
Dougherty, E.R.[Edward R.],
Classifier performance as a function of distributional complexity,
PR(37), No. 8, August 2004, pp. 1641-1651.
Elsevier DOI
0407
BibRef
Kim, D.W.[Dae-Won],
Lee, K.Y.[Ki Young],
Lee, D.[Doheon],
Lee, K.H.[Kwang H.],
Evaluation of the performance of clustering algorithms in
kernel-induced feature space,
PR(38), No. 4, April 2005, pp. 607-611.
Elsevier DOI
0501
BibRef
Kim, D.W.[Dae-Won],
Lee, K.Y.[Ki-Young],
Lee, D.[Doheon],
Lee, K.H.[Kwang H.],
A k-populations algorithm for clustering categorical data,
PR(38), No. 7, July 2005, pp. 1131-1134.
Elsevier DOI
0505
BibRef
Stein, A.,
Aryal, J.,
Gort, G.,
Use of the Bradley-Terry Model to Quantify Association in Remotely
Sensed Images,
GeoRS(43), No. 4, April 2005, pp. 852-856.
IEEE Abstract.
0501
BibRef
Caulfield, H.J.[H. John],
Heidary, K.[Kaveh],
Exploring margin setting for good generalization in multiple class
discrimination,
PR(38), No. 8, August 2005, pp. 1225-1238.
Elsevier DOI
0505
BibRef
Salman, A.[Ayed],
Omran, M.G.[Mahamed G.],
Engelbrecht, A.P.[Andries P.],
SIGT: Synthetic Image Generation Tool for Clustering Algorithms,
GVIP(05), No. V2, January 2005, pp. 33-44
HTML Version. Create images to test clustering.
BibRef
0501
Graaff, A.J.,
Engelbrecht, A.P.[Andries P.],
Clustering data in an uncertain environment using an artificial immune
system,
PRL(32), No. 2, 15 January 2011, pp. 342-351.
Elsevier DOI
1101
Uncertain environments; Non-stationary data; Immune networks;
Clustering performance measures
BibRef
Yousef, W.A.[Waleed A.],
Wagner, R.F.[Robert F.],
Loew, M.H.[Murray H.],
Estimating the uncertainty in the estimated mean area under the ROC
curve of a classifier,
PRL(26), No. 16, December 2005, pp. 2600-2610.
Elsevier DOI
0512
BibRef
Yousef, W.A.[Waleed A.],
Wagner, R.F.[Robert F.],
Loew, M.H.[Murray H.],
Assessing Classifiers from Two Independent Data Sets Using ROC
Analysis: A Nonparametric Approach,
PAMI(28), No. 11, November 2006, pp. 1809-1817.
IEEE DOI
0609
BibRef
Earlier:
Comparison of non-parametric methods for assessing classifier
performance in terms of ROC parameters,
AIPR04(190-195).
IEEE DOI
0410
3 Parameters: Conditional (an particular training set)
AUC (area under RO Curve), mean and variance of AUC.
BibRef
Baraldi, A.,
Bruzzone, L.,
Blonda, P.,
Carlin, L.,
Badly Posed Classification of Remotely Sensed Images:
An Experimental Comparison of Existing Data Labeling Systems,
GeoRS(44), No. 1, January 2006, pp. 214-235.
IEEE DOI
0601
BibRef
Baraldi, A.,
Bruzzone, L.,
Blonda, P.,
A Multiscale Expectation-Maximization Semisupervised Classifier
Suitable for Badly Posed Image Classification,
IP(15), No. 8, August 2006, pp. 2208-2225.
IEEE DOI
0606
BibRef
Fawcett, T.[Tom],
An introduction to ROC analysis,
PRL(27), No. 8, June 2006, pp. 861-874.
Elsevier DOI
0605
Survey, ROC Analysis. Classifier evaluation; Evaluation metrics
BibRef
Stathakis, D.,
Vasilakos, A.,
Comparison of Computational Intelligence Based Classification
Techniques for Remotely Sensed Optical Image Classification,
GeoRS(44), No. 8, August 2006, pp. 2305-2318.
IEEE DOI
0608
BibRef
Stathakis, D.[Demetris],
Kanellopoulos, I.[Ioannis],
Global Elevation Ancillary Data for Land-use Classification Using
Granular Neural Networks,
PhEngRS(74), No. 1, January 2008, pp. 55-64.
WWW Link.
0803
Initial guidelines for the construction of granular neural networks in
the remote sensing context.
BibRef
Stathakis, D.[Demetris],
Kanellopoulos, I.[Ioannis],
Global Optimization versus Deterministic Pruning for the Classification
of Remotely Sensed Imagery,
PhEngRS(74), No. 10, October 2008, pp. 1259-1266.
WWW Link.
0804
A method for optimal Multi Layer Perceptron topology determination
carried out by a genetic algorithm.
BibRef
Arbel, R.[Reuven],
Rokach, L.[Lior],
Classifier evaluation under limited resources,
PRL(27), No. 14, 15 October 2006, pp. 1619-1631.
Elsevier DOI
0609
Evaluation measures; Hit-rate; Recall; Receiver operating characteristic
BibRef
Nangendo, G.[Grace],
Skidmore, A.K.[Andrew K.],
van Oosten, H.[Henk],
Mapping East African tropical forests and woodlands:
A comparison of classifiers,
PandRS(61), No. 6, February 2007, pp. 393-404.
Elsevier DOI
0703
Forest classification; Conventional classifiers; Expert System;
Classification accuracy; East Africa
BibRef
An, S.J.[Sen-Jian],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Fast cross-validation algorithms for least squares support vector
machine and kernel ridge regression,
PR(40), No. 8, August 2007, pp. 2154-2162.
Elsevier DOI
0704
BibRef
Earlier:
Efficient Cross-validation of the Complete Two Stages in KFD Classifier
Formulation,
ICPR06(III: 240-244).
IEEE DOI
0609
Model selection; Cross-validation; Kernel methods
BibRef
An, S.[Senjian],
Peursum, P.[Patrick],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Efficient subwindow search with submodular score functions,
CVPR11(1409-1416).
IEEE DOI
1106
BibRef
Earlier:
Efficient algorithms for subwindow search in object detection and
localization,
CVPR09(264-271).
IEEE DOI
0906
BibRef
An, S.[Senjian],
Peursum, P.[Patrick],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Chen, X.M.[Xiao-Ming],
Exploiting Monge structures in optimum subwindow search,
CVPR10(926-933).
IEEE DOI
1006
BibRef
Pham, D.S.[Duc-Son],
Venkatesh, S.[Svetha],
Robust learning of discriminative projection for multicategory
classification on the Stiefel manifold,
CVPR08(1-7).
IEEE DOI
0806
BibRef
Pham, D.S.[Duc-Son],
Venkatesh, S.[Svetha],
Joint learning and dictionary construction for pattern recognition,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Bøcher, P.K.,
McCloy, K.R.,
Optimizing Image Resolution to Maximize the Accuracy of Hard
Classification,
PhEngRS(73), No. 8, August 2007, pp. 893-904.
WWW Link.
0709
The relationship between classification accuracy and within class
variances is investigated showing that within class variances are a
function of image resolution.
BibRef
Devarakota, P.R.R.[Pandu Ranga Rao],
Mirbach, B.[Bruno],
Ottersten, B.[Bjorn],
Reliability estimation of a statistical classifier,
PRL(29), No. 3, 1 February 2008, pp. 243-253.
Elsevier DOI
0801
Pattern classification; Local density estimation; Confidence intervals;
Binomial distribution; GMMs; Pattern rejection
BibRef
Sahiner, B.,
Chan, H.P.,
Hadjiiski, L.M.,
Performance Analysis of Three-Class Classifiers:
Properties of a 3-D ROC Surface and the Normalized Volume Under the
Surface for the Ideal Observer,
MedImg(27), No. 2, February 2008, pp. 215-227.
IEEE DOI
0802
BibRef
Volkovich, Z.,
Barzily, Z.,
Morozensky, L.,
A statistical model of cluster stability,
PR(41), No. 7, July 2008, pp. 2174-2188.
Elsevier DOI
0804
Cluster validation; Negative definite functions; Statistical model
BibRef
Akhbardeh, A.[Alireza],
Nikhil,
Koskinen, P.E.[Perttu E.],
Yli-Harja, O.[Olli],
Towards the experimental evaluation of novel supervised fuzzy adaptive
resonance theory for pattern classification,
PRL(29), No. 8, 1 June 2008, pp. 1082-1093.
Elsevier DOI
0804
Affine look-up table; Classification; Pre-classification;
Post-classification;
Supervised fuzzy adaptive resonance theory (SF-ART) network
Iris recognition.
BibRef
Ferri, C.,
Hernandez-Orallo, J.,
Modroiu, R.,
An experimental comparison of performance measures for classification,
PRL(30), No. 1, 1 January 2009, pp. 27-38.
Elsevier DOI
0811
Classification; Performance measures; Ranking; Calibration
BibRef
Lago-Fernandez, L.F.[Luis F.],
Corbacho, F.[Fernando],
Normality-based validation for crisp clustering,
PR(43), No. 3, March 2010, pp. 782-795.
Elsevier DOI
1001
Crisp clustering; Cluster validation; Negentropy
BibRef
Chen, J.[Jin],
Zhu, X.L.[Xiao-Lin],
Imura, H.[Hidefumi],
Chen, X.H.[Xue-Hong],
Consistency of accuracy assessment indices for soft classification:
Simulation analysis,
PandRS(65), No. 2, March 2010, pp. 156-164.
Elsevier DOI
1003
Soft classification; Accuracy assessment; Sub-pixel confusion matrix;
RMSE; Consistency
BibRef
Pascual, D.[Damaris],
Pla, F.[Filiberto],
Salvador Sánchez, J.,
Cluster validation using information stability measures,
PRL(31), No. 6, 15 April 2010, pp. 454-461.
Elsevier DOI
1004
BibRef
Earlier:
Cluster Stability Assessment Based on Theoretic Information Measures,
CIARP08(219-226).
Springer DOI
0809
Cluster validation; Stability index; Information theory
BibRef
Valverde-Albacete, F.J.[Francisco J.],
Pelaez-Moreno, C.[Carmen],
Two information-theoretic tools to assess the performance of
multi-class classifiers,
PRL(31), No. 12, 1 September 2010, pp. 1665-1671.
Elsevier DOI
1008
Multi-class classifier; Confusion matrix; Contingency table;
Performance measure; de Finetti diagram; Entropy triangle
BibRef
Lee, Y.R.[Young-Rok],
Lee, J.H.[Jeong-Hwa],
Jun, C.H.[Chi-Hyuck],
Stability-based validation of bicluster solutions,
PR(44), No. 2, February 2011, pp. 252-264.
Elsevier DOI
1011
Biclustering; Validation; Stability; Resampling
BibRef
Fu, X.[Xin],
Shen, Q.A.[Qi-Ang],
Fuzzy complex numbers and their application for classifiers performance
evaluation,
PR(44), No. 7, July 2011, pp. 1403-1417.
Elsevier DOI
1103
Fuzzy complex numbers; Performance evaluation; Feature selection;
Pattern classification
BibRef
Wicker, N.[Nicolas],
A note on ball segment picking related to clustering,
PRL(32), No. 5, 1 April 2011, pp. 651-655.
Elsevier DOI
1103
Density of points clustering; DPC; Ball segment picking; Curse of
dimensionality; Sampling
BibRef
Woloszynski, T.[Tomasz],
Kurzynski, M.[Marek],
A probabilistic model of classifier competence for dynamic ensemble
selection,
PR(44), No. 10-11, October-November 2011, pp. 2656-2668.
Elsevier DOI
1101
BibRef
Earlier:
A Measure of Competence Based on Randomized Reference Classifier for
Dynamic Ensemble Selection,
ICPR10(4194-4197).
IEEE DOI
1008
BibRef
Earlier:
On a New Measure of Classifier Competence Applied to the Design of
Multiclassifier Systems,
CIAP09(995-1004).
Springer DOI
0909
Probabilistic modelling; Classifier competence; Multiple classifier
system; Beta distribution
BibRef
Frasch, J.V.[Janick V.],
Lodwich, A.[Aleksander],
Shafait, F.[Faisal],
Breuel, T.M.[Thomas M.],
A Bayes-true data generator for evaluation of supervised and
unsupervised learning methods,
PRL(32), No. 11, 1 August 2011, pp. 1523-1531.
Elsevier DOI
1108
Synthetic data generation; Benchmarking; Experimental proofs
BibRef
Chudzian, P.[Pawel],
Evaluation measures for kernel optimization,
PRL(33), No. 9, 1 July 2012, pp. 1108-1116.
Elsevier DOI
1202
Kernel evaluation measures; Kernel optimization; Kernel methods; Radial
basis function kernel; Pattern classification
Transform pattern to feature space.
BibRef
Gey, S.[Servane],
Risk bounds for CART classifiers under a margin condition,
PR(45), No. 9, September 2012, pp. 3523-3534.
Elsevier DOI
1206
Classification; CART; Pruning; Margin; Risk bounds.
Classification And Regression Trees (CART)
BibRef
Liu, J.,
Zhang, Z.J.,
Yang, Y.,
Wang, M.,
Comments on 'Probabilities of false alarm and detection for the NAMF
operating in Gaussian clutter',
SPLetters(19), No. 10, October 2012, pp. 671.
IEEE DOI
1209
BibRef
de França, F.O.,
Coelho, G.P.,
von Zuben, F.J.,
Predicting missing values with biclustering: A coherence-based approach,
PR(46), No. 5, May 2013, pp. 1255-1266.
Elsevier DOI
1302
Biclustering; Missing data imputation; Knowledge discovery; Quadratic
programming
BibRef
Richards, J.A.,
Kingsbury, N.G.,
Is There a Preferred Classifier for Operational Thematic Mapping?,
GeoRS(52), No. 5, May 2014, pp. 2715-2725.
IEEE DOI
1403
Classification
BibRef
Liu, Q.B.[Qing-Bao],
Dong, G.Z.[Guo-Zhu],
CPCQ:
Contrast pattern based clustering quality index for categorical data,
PR(45), No. 4, 2012, pp. 1739-1748.
Elsevier DOI
1410
Clustering validation
BibRef
Wong, T.T.[Tzu-Tsung],
Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation,
PR(48), No. 9, 2015, pp. 2839-2846.
Elsevier DOI
1506
Classification
BibRef
Henriques, R.[Rui],
Antunes, C.[Cláudia],
Madeira, S.C.[Sara C.],
A structured view on pattern mining-based biclustering,
PR(48), No. 12, 2015, pp. 3941-3958.
Elsevier DOI
1509
Biclustering
BibRef
Soares, D.F.[Diogo F.],
Henriques, R.[Rui],
Madeira, S.C.[Sara C.],
Comprehensive assessment of triclustering algorithms for three-way
temporal data analysis,
PR(150), 2024, pp. 110303.
Elsevier DOI
2403
Triclustering, Temporal data, Three-way data
BibRef
Henriques, R.[Rui],
Madeira, S.C.[Sara C.],
FleBiC: Learning classifiers from high-dimensional biomedical data
using discriminative biclusters with non-constant patterns,
PR(115), 2021, pp. 107900.
Elsevier DOI
2104
Associative classification, Discriminative paterns,
Biclustering, Non-constant patterns, Biomedical data, High-dimensional data
BibRef
Park, N.W.[No-Wook],
Kyriakidis, P.C.[Phaedon C.],
Hong, S.Y.[Suk-Young],
Spatial Estimation of Classification Accuracy Using Indicator Kriging
with an Image-Derived Ambiguity Index,
RS(8), No. 4, 2016, pp. 320.
DOI Link
1604
BibRef
Condessa, F.[Filipe],
Bioucas-Dias, J.M.[José M.],
Kovacevic, J.[Jelena],
Performance measures for classification systems with rejection,
PR(63), No. 1, 2017, pp. 437-450.
Elsevier DOI
1612
Classification with rejection
BibRef
Lei, Y.[Yang],
Bezdek, J.C.[James C.],
Romano, S.[Simone],
Vinh, N.X.[Nguyen Xuan],
Chan, J.[Jeffrey],
Bailey, J.[James],
Ground truth bias in external cluster validity indices,
PR(65), No. 1, 2017, pp. 58-70.
Elsevier DOI
1702
External cluster validity indices
BibRef
Wong, T.T.[Tzu-Tsung],
Parametric methods for comparing the performance of two
classification algorithms evaluated by k-fold cross validation on
multiple data sets,
PR(65), No. 1, 2017, pp. 97-107.
Elsevier DOI
1702
Classification
BibRef
Kautz, T.[Thomas],
Eskofier, B.M.[Bjoern M.],
Pasluosta, C.F.[Cristian F.],
Generic performance measure for multiclass-classifiers,
PR(68), No. 1, 2017, pp. 111-125.
Elsevier DOI
1704
Classification
BibRef
Jiang, G.X.[Gao-Xia],
Wang, W.J.[Wen-Jian],
Error estimation based on variance analysis of k-fold
cross-validation,
PR(69), No. 1, 2017, pp. 94-106.
Elsevier DOI
1706
Error estimation
BibRef
Gossmann, A.[Alexej],
Zille, P.[Pascal],
Calhoun, V.[Vince],
Wang, Y.P.[Yu-Ping],
FDR-Corrected Sparse Canonical Correlation Analysis With Applications
to Imaging Genomics,
MedImg(37), No. 8, August 2018, pp. 1761-1774.
IEEE DOI
1808
False Discovery Rate.
Genomics, Bioinformatics, Correlation, Brain,
Functional magnetic resonance imaging, Testing, fMRI analysis,
probabilistic and statistical methods
BibRef
Boonprong, S.[Sornkitja],
Cao, C.X.[Chun-Xiang],
Chen, W.[Wei],
Ni, X.L.[Xi-Liang],
Xu, M.[Min],
Acharya, B.K.[Bipin Kumar],
The Classification of Noise-Afflicted Remotely Sensed Data Using
Three Machine-Learning Techniques: Effect of Different Levels and
Types of Noise on Accuracy,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Schlüter, R.[Ralf],
Beck, E.[Eugen],
Ney, H.[Hermann],
Upper and Lower Tight Error Bounds for Feature Omission with an
Extension to Context Reduction,
PAMI(41), No. 2, February 2019, pp. 502-514.
IEEE DOI
1901
Context modeling, Analytical models, Upper bound,
Feature extraction, Measurement uncertainty,
sequence classification
BibRef
Wang, Y.Q.[Yong-Qiao],
Li, L.S.[Li-Shuai],
Dang, C.Y.[Chuang-Yin],
Calibrating Classification Probabilities with Shape-Restricted
Polynomial Regression,
PAMI(41), No. 8, August 2019, pp. 1813-1827.
IEEE DOI
1907
Calibration, Computational modeling, Support vector machines,
Estimation, Symmetric matrices, Training data,
polynomial regression
BibRef
Zhang, Q.[Qi],
Zhang, P.L.[Peng-Lin],
An Uncertainty Descriptor for Quantitative Measurement of the
Uncertainty of Remote Sensing Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
Reliability of the classification.
BibRef
Gweon, H.[Hyukjun],
Yu, H.[Hao],
How reliable is your reliability diagram?,
PRL(125), 2019, pp. 687-693.
Elsevier DOI
1909
Probabilistic classifier evaluation, Statistical testing,
Reliability diagram, Poisson binomial
BibRef
Hanczar, B.[Blaise],
Performance visualization spaces for classification with rejection
option,
PR(96), 2019, pp. 106984.
Elsevier DOI
1909
Classification with reject option, Classifier performances
BibRef
Radoux, J.[Julien],
Waldner, F.[François],
Bogaert, P.[Patrick],
How Response Designs and Class Proportions Affect the Accuracy of
Validation Data,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Elmes, A.[Arthur],
Alemohammad, H.[Hamed],
Avery, R.[Ryan],
Caylor, K.[Kelly],
Eastman, J.R.[J. Ronald],
Fishgold, L.[Lewis],
Friedl, M.A.[Mark A.],
Jain, M.[Meha],
Kohli, D.[Divyani],
Bayas, J.C.L.[Juan Carlos Laso],
Lunga, D.[Dalton],
McCarty, J.L.[Jessica L.],
Pontius, R.G.[Robert Gilmore],
Reinmann, A.B.[Andrew B.],
Rogan, J.[John],
Song, L.[Lei],
Stoynova, H.[Hristiana],
Ye, S.[Su],
Yi, Z.F.[Zhuang-Fang],
Estes, L.[Lyndon],
Accounting for Training Data Error in Machine Learning Applied to
Earth Observations,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Soleymani, R.[Roghayeh],
Granger, E.[Eric],
Fumera, G.[Giorgio],
F-measure curves: A tool to visualize classifier performance under
imbalance,
PR(100), 2020, pp. 107146.
Elsevier DOI
2005
Pattern classification, Class imbalance, Performance metrics,
F-measure, Visualization tools, Video face recognition
BibRef
Jeong, M.,
Dytso, A.,
Cardone, M.,
Gradient of Error Probability of M-ary Hypothesis Testing Problems
Under Multivariate Gaussian Noise,
SPLetters(27), 2020, pp. 1909-1913.
IEEE DOI
2011
Error probability, Testing, Covariance matrices, Gaussian noise,
Random variables, Noise measurement, Matrices, Error probability,
multivariate Gaussian noise
BibRef
Radoux, J.[Julien],
Bogaert, P.[Patrick],
About the Pitfall of Erroneous Validation Data in the Estimation of
Confusion Matrices,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wang, P.[Pin],
Fan, E.[En],
Wang, P.[Peng],
Comparative analysis of image classification algorithms based on
traditional machine learning and deep learning,
PRL(141), 2021, pp. 61-67.
Elsevier DOI
2101
Traditional machine learning, Deep learning,
Support vector machines, Convolutional neural networks
BibRef
Tan, Q.L.[Qu-Lin],
Guo, B.[Bin],
Hu, J.[Jun],
Dong, X.F.[Xiao-Feng],
Hu, J.P.[Ji-Ping],
Object-oriented remote sensing image information extraction method
based on multi-classifier combination and deep learning algorithm,
PRL(141), 2021, pp. 32-36.
Elsevier DOI
2101
Multi-classifier combination, Deep learning algorithm,
Object-oriented, Remote sensing image, Information extraction
BibRef
Espinosa, S.[Sebastian],
Silva, J.F.[Jorge F.],
Piantanida, P.[Pablo],
Finite-Length Bounds on Hypothesis Testing Subject to Vanishing Type
I Error Restrictions,
SPLetters(28), 2021, pp. 229-233.
IEEE DOI
2102
Binary Hypothesis Testing (BHT).
Convergence, Error probability, Cascading style sheets,
Upper bound, Task analysis, Bayes methods, Tools, Error exponent,
concentration inequalities
BibRef
Yousef, W.A.[Waleed A.],
Estimating the standard error of cross-Validation-Based estimators of
classifier performance,
PRL(146), 2021, pp. 115-125.
Elsevier DOI
2105
Cross validation, CV, Uncertainty, Variance, Influence function,
Influence curve, Components of variance, Classification
BibRef
Tavakkol, B.[Behnam],
Choi, J.[Jeongsub],
Jeong, M.K.[Myong Kee],
Albin, S.L.[Susan L.],
Object-based cluster validation with densities,
PR(121), 2022, pp. 108223.
Elsevier DOI
2109
Clustering, Clustering validity index, Internal index,
Density-based cluster validation, Unsupervised
BibRef
Lee, J.[Jaemin],
Han, M.[Minseok],
Lee, J.S.[Jong-Seok],
Convergence analysis of connection center evolution and faster
clustering,
PR(127), 2022, pp. 108639.
Elsevier DOI
2205
Clustering, Center evolution, Convergence analysis,
Ergodic Markov chain, Faster algorithm
BibRef
Tank, A.[Alex],
Covert, I.[Ian],
Foti, N.[Nicholas],
Shojaie, A.[Ali],
Fox, E.B.[Emily B.],
Neural Granger Causality,
PAMI(44), No. 8, August 2022, pp. 4267-4279.
IEEE DOI
2207
Error analysis of reduced model and full model.
Time series analysis, Neural networks, Reactive power,
Recurrent neural networks, Predictive models, Estimation, interpretability
BibRef
Li, C.Y.[Cong-Yu],
Li, Z.[Zhen],
Liu, X.X.[Xin-Xin],
Li, S.T.[Shu-Tao],
The Influence of Image Degradation on Hyperspectral Image
Classification,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Foody, G.M.[Giles M.],
Global and Local Assessment of Image Classification Quality on an
Overall and Per-Class Basis without Ground Reference Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ali, M.[Mehdi],
Berrendorf, M.[Max],
Hoyt, C.T.[Charles Tapley],
Vermue, L.[Laurent],
Galkin, M.[Mikhail],
Sharifzadeh, S.[Sahand],
Fischer, A.[Asja],
Tresp, V.[Volker],
Lehmann, J.[Jens],
Bringing Light Into the Dark: A Large-Scale Evaluation of Knowledge
Graph Embedding Models Under a Unified Framework,
PAMI(44), No. 12, December 2022, pp. 8825-8845.
IEEE DOI
2212
All code and tests:
WWW Link. and
WWW Link. Evaluation of 21 models with benchmark testing.
Computational modeling, Benchmark testing,
Training, Predictive models, Task analysis, benchmarking
BibRef
Maldonado, S.[Sebastián],
Saltos, R.[Ramiro],
Vairetti, C.[Carla],
Delpiano, J.[José],
Mitigating the effect of dataset shift in clustering,
PR(134), 2023, pp. 109058.
Elsevier DOI
2212
Induced ordered weighted average, Kernel k-means,
OWA operators, Dataset shift, Clustering
BibRef
Yamaguchi, T.[Takumi],
Murakawa, M.[Masahiro],
Mixup gamblers+: Learning interpolated pseudo 'uncertainty' in latent
feature space for reliable inference,
PRL(164), 2022, pp. 191-199.
Elsevier DOI
2212
Reliability of inference results.
Selective classification, Classification with a reject option,
Metric learning, Mixup, Uncertainty estimation, Confidence calibration
BibRef
Ahmadzadeh, A.[Azim],
Kempton, D.J.[Dustin J.],
Martens, P.C.[Petrus C.],
Angryk, R.A.[Rafal A.],
Contingency Space: A Semimetric Space for Classification Evaluation,
PAMI(45), No. 2, February 2023, pp. 1501-1513.
IEEE DOI
2301
Measurement, Extraterrestrial measurements,
Performance evaluation, Analytical models, Indexes, Sensitivity,
knowledge representation formalisms and methods
BibRef
Wang, J.T.[Jie-Ting],
Qian, Y.H.[Yu-Hua],
Li, F.J.[Fei-Jiang],
Liang, J.[Jiye],
Zhang, Q.F.[Qing-Fu],
Generalization Performance of Pure Accuracy and its Application in
Selective Ensemble Learning,
PAMI(45), No. 2, February 2023, pp. 1798-1816.
IEEE DOI
2301
Loss measurement, Particle measurements,
Atmospheric measurements, Support vector machines,
selective ensemble learning
BibRef
Fränti, P.[Pasi],
Mariescu-Istodor, R.[Radu],
Soft precision and recall,
PRL(167), 2023, pp. 115-121.
Elsevier DOI
2303
Soft measures, Evaluation, Precision, Recall, F-score
BibRef
Masana, M.[Marc],
Liu, X.[Xialei],
Twardowski, B.[Bartlomiej],
Menta, M.[Mikel],
Bagdanov, A.D.[Andrew D.],
van de Weijer, J.[Joost],
Class-Incremental Learning: Survey and Performance Evaluation on
Image Classification,
PAMI(45), No. 5, May 2023, pp. 5513-5533.
IEEE DOI
2304
Task analysis, Training, Network architecture, Learning systems,
Image classification, Training data, Privacy,
catastrophic forgetting
BibRef
Viering, T.[Tom],
Loog, M.[Marco],
The Shape of Learning Curves: A Review,
PAMI(45), No. 6, June 2023, pp. 7799-7819.
IEEE DOI
2305
Training, Shape, Behavioral sciences, Training data,
Loss measurement, Computational modeling, Standards,
regression
BibRef
Chen, Q.Q.[Qing-Qiang],
Cao, F.Y.[Fu-Yuan],
Xing, Y.[Ying],
Liang, J.[Jiye],
Evaluating Classification Model Against Bayes Error Rate,
PAMI(45), No. 8, August 2023, pp. 9639-9653.
IEEE DOI
2307
Task analysis, Noise measurement, Estimation, Error analysis,
Reliability theory, Data models, Support vector machines,
percolation theory
BibRef
Zhou, J.K.[Jing-Kai],
Wang, P.C.[Pi-Chao],
Tang, J.S.[Jia-Sheng],
Wang, F.[Fan],
Liu, Q.[Qiong],
Li, H.[Hao],
Jin, R.[Rong],
What Limits the Performance of Local Self-attention?,
IJCV(131), No. 10, October 2023, pp. 2516-2528.
Springer DOI
2309
BibRef
Qu, H.X.[Hao-Xuan],
Foo, L.G.[Lin Geng],
Li, Y.C.[Yan-Chao],
Liu, J.[Jun],
Towards More Reliable Confidence Estimation,
PAMI(45), No. 11, November 2023, pp. 13152-13169.
IEEE DOI
2310
BibRef
Liu, S.X.[Shi-Xia],
Enhancing Training Data Quality With Visual Analytics,
Computer(56), No. 11, November 2023, pp. 4-6.
IEEE DOI
2310
BibRef
Campello, B.S.C.[Betania Silva Carneiro],
Duarte, L.T.[Leonardo Tomazeli],
Romano, J.M.T.[João Marcos Travassos],
Multicriteria decision support employing adaptive prediction in a
tensor-based feature representation,
PRL(174), 2023, pp. 52-56.
Elsevier DOI
2310
Adaptive prediction methods, Multi-criteria decision analysis,
MCDA, Temporal analysis, Multi-period, Dynamic multi-attribute decision making
BibRef
Zhang, X.[Xiao],
Wei, W.[Wei],
Zhang, Z.[Zhen],
Zhang, L.[Lei],
Li, W.[Wei],
Milstein-driven neural stochastic differential equation model with
uncertainty estimates,
PRL(174), 2023, pp. 71-77.
Elsevier DOI
2310
Uncertainty quantification, Stochastic differential equation,
Milstein-driven SDE-net
BibRef
Huang, Y.[Yan],
Zhang, Z.[Zhang],
Huang, Y.[Yan],
Wu, Q.[Qiang],
Huang, H.[Han],
Zhong, Y.[Yi],
Wang, L.[Liang],
Customized meta-dataset for automatic classifier accuracy evaluation,
PR(146), 2024, pp. 110026.
Elsevier DOI
2311
Auto-evaluation, Automatic classifier accuracy evaluation
BibRef
Montalvão, J.[Jugurta],
Duarte, D.[Dami],
Boccato, L.[Levy],
A coincidence detection perspective for the maximum mean discrepancy,
PRL(177), 2024, pp. 20-25.
Elsevier DOI
2401
Aids in interpretability.
Coincidence detection, Maximum mean discrepancy,
Collision entropy, Hypothesis test, Grassberger-Procaccia method
BibRef
Liu, Z.W.[Zi-Wei],
Miao, Z.Q.[Zhong-Qi],
Zhan, X.H.[Xiao-Hang],
Wang, J.Y.[Jia-Yun],
Gong, B.Q.[Bo-Qing],
Yu, S.X.[Stella X.],
Open Long-Tailed Recognition in a Dynamic World,
PAMI(46), No. 3, March 2024, pp. 1836-1851.
IEEE DOI
2402
BibRef
Earlier:
Large-Scale Long-Tailed Recognition in an Open World,
CVPR19(2532-2541).
IEEE DOI
2002
Tail, Visualization, Head, Training, Task analysis, Measurement,
Long-tailed recognition, few-shot learning, active learning
BibRef
Alon, I.[Itai],
Arnon, D.[David],
Wiesel, A.[Ami],
Learning Minimal Volume Uncertainty Ellipsoids,
SPLetters(31), 2024, pp. 1655-1659.
IEEE DOI
2407
Ellipsoids, Uncertainty, Training, Shape, Calibration, Estimation,
Covariance matrices, Uncertainty ellipsoid, conformal prediction
BibRef
Tiotsop, L.F.[Lohic Fotio],
Servetti, A.[Antonio],
Barkowsky, M.[Marcus],
Masala, E.[Enrico],
Modeling Subject Scoring Behaviors in Subjective Experiments Based on
a Discrete Quality Scale,
MultMed(26), 2024, pp. 8742-8757.
IEEE DOI
2408
Noise measurement, Probabilistic logic, Numerical models, Media,
Systematics, Recommender systems, Proposals, subject inconsistency
BibRef
Minatel, D.[Diego],
Parmezan, A.R.S.[Antonio R. S.],
Cúri, M.[Mariana],
de Andrade Lopes, A.[Alneu],
DIF-SR: A Differential Item Functioning-based Sample Reweighting Method,
CIARP23(I:630-645).
Springer DOI
2312
identify bias.
BibRef
Mukhoti, J.[Jishnu],
Kirsch, A.[Andreas],
van Amersfoort, J.[Joost],
Torr, P.H.S.[Philip H.S.],
Gal, Y.[Yarin],
Deep Deterministic Uncertainty: A New Simple Baseline,
CVPR23(24384-24394)
IEEE DOI
2309
BibRef
Jiang, Q.[Qian],
Chen, C.Y.[Chang-You],
Zhao, H.[Han],
Chen, L.Q.[Li-Qun],
Ping, Q.[Qing],
Tran, S.D.[Son Dinh],
Xu, Y.[Yi],
Zeng, B.[Belinda],
Chilimbi, T.[Trishul],
Understanding and Constructing Latent Modality Structures in
Multi-Modal Representation Learning,
CVPR23(7661-7671)
IEEE DOI
2309
BibRef
Wang, D.B.[Deng-Bao],
Li, L.Q.[Lan-Qing],
Zhao, P.L.[Pei-Lin],
Heng, P.A.[Pheng-Ann],
Zhang, M.L.[Min-Ling],
On the Pitfall of Mixup for Uncertainty Calibration,
CVPR23(7609-7618)
IEEE DOI
2309
BibRef
Agarwal, A.[Akshay],
Ratha, N.[Nalini],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Benchmarking Robustness Beyond LP Norm Adversaries,
AdvRob22(342-359).
Springer DOI
2304
BibRef
Risser-Maroix, O.[Olivier],
Chamand, B.[Benjamin],
What can we Learn by Predicting Accuracy?,
WACV23(2389-2398)
IEEE DOI
2302
Correlation, Pipelines, Machine learning, Feature extraction,
Linear programming, Task analysis, ethical computer vision
BibRef
Ueda, R.[Ryosuke],
Takeuchi, K.[Koh],
Kashima, H.[Hisashi],
Mitigating Observatio>
(1171-1177)
IEEE DOI
2212
Crowdsourcing, Costs, Correlation, Supervised learning, Robustness,
Complexity theory
BibRef
Pliushch, I.[Iuliia],
Mundt, M.[Martin],
Lupp, N.[Nicolas],
Ramesh, V.[Visvanathan],
When Deep Classifiers Agree:
Analyzing Correlations Between Learning Order and Image Statistics,
ECCV22(VIII:397-413).
Springer DOI
2211
BibRef
Zhu, F.[Fei],
Cheng, Z.[Zhen],
Zhang, X.Y.[Xu-Yao],
Liu, C.L.[Cheng-Lin],
Rethinking Confidence Calibration for Failure Prediction,
ECCV22(XXV:518-536).
Springer DOI
2211
WWW Link. Confidence.
BibRef
Moayeri, M.[Mazda],
Pope, P.[Phillip],
Balaji, Y.[Yogesh],
Feizi, S.[Soheil],
A Comprehensive Study of Image Classification Model Sensitivity to
Foregrounds, Backgrounds, and Visual Attributes,
CVPR22(19065-19075)
IEEE DOI
2210
Training, Location awareness, Adaptation models, Visualization,
Sensitivity, Annotations, Datasets and evaluation,
Visual reasoning
BibRef
Poms, F.[Fait],
Sarukkai, V.[Vishnu],
Mullapudi, R.T.[Ravi Teja],
Sohoni, N.S.[Nimit S.],
Mark, W.R.[William R.],
Ramanan, D.[Deva],
Fatahalian, K.[Kayvon],
Low-Shot Validation: Active Importance Sampling for Estimating
Classifier Performance on Rare Categories,
ICCV21(10685-10694)
IEEE DOI
2203
Monte Carlo methods, Machine learning algorithms, Costs,
Computational modeling, Training data, Machine learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Moraes, D.,
Benevides, P.,
Moreira, F.D.,
Costa, H.,
Caetano, M.,
Exploring the Use of Classification Uncertainty to Improve
Classification Accuracy,
ISPRS21(B3-2021: 81-86).
DOI Link
2201
BibRef
Wang, C.Y.[Chien-Yao],
Liao, H.Y.M.[Hong-Yuan Mark],
Yeh, I.H.[I-Hau],
Chuang, Y.Y.[Yung-Yu],
Lin, Y.L.[Youn-Long],
Exploring the power of lightweight YOLOv4,
LPCV21(779-788)
IEEE DOI
2112
Training, Learning systems, Power demand, Computational modeling,
Neural networks, Pipelines, Object detection
BibRef
Deng, W.J.[Wei-Jian],
Zheng, L.[Liang],
AutoEval: Are Labels Always Necessary for Classifier Accuracy
Evaluation?,
PAMI(46), No. 3, March 2024, pp. 1868-1880.
IEEE DOI
2402
BibRef
Earlier:
Are Labels Always Necessary for Classifier Accuracy Evaluation?,
CVPR21(15064-15073)
IEEE DOI
2111
Training, Correlation, Task analysis, Predictive models, Standards,
Neural networks, Image color analysis, dataset-level regression.
Computational modeling, Rendering (computer graphics), Object recognition
BibRef
Sensoy, M.[Murat],
Saleki, M.[Maryam],
Julier, S.[Simon],
Aydogan, R.[Reyhan],
Reid, J.[John],
Misclassification Risk and Uncertainty Quantification in Deep
Classifiers,
WACV21(2483-2491)
IEEE DOI
2106
Training, Deep learning, Uncertainty,
Decision making, Predictive models
BibRef
Shen, Y.C.[Yi-Chen],
Zhang, Z.L.[Zhi-Lu],
Sabuncu, M.R.[Mert R.],
Sun, L.[Lin],
Real-Time Uncertainty Estimation in Computer Vision via
Uncertainty-Aware Distribution Distillation,
WACV21(707-716)
IEEE DOI
2106
Deep learning, Training, Uncertainty,
Computational modeling, Semantics, Estimation
BibRef
Serrat, J.[Joan],
Ruiz, I.[Idoia],
Rank-based ordinal classification,
ICPR21(8069-8076)
IEEE DOI
2105
Some errors are worse than others.
Measurement, Satellites, Buildings, Estimation,
Network architecture, Benchmark testing
BibRef
Burghouts, G.J.[Gertjan J.],
Task-specific Novel Object Characterization,
HCAU20(447-455).
Springer DOI
2103
Deal with unknown objects.
BibRef
Gao, J.[Jian],
Hua, Y.[Yang],
Hu, G.S.[Guo-Sheng],
Wang, C.[Chi],
Robertson, N.M.[Neil M.],
Reducing Distributional Uncertainty by Mutual Information Maximisation
and Transferable Feature Learning,
ECCV20(XXIII:587-605).
Springer DOI
2011
Effect of distributions variations.
BibRef
Philion, J.[Jonah],
Kar, A.[Amlan],
Fidler, S.[Sanja],
Learning to Evaluate Perception Models Using Planner-Centric Metrics,
CVPR20(14052-14061)
IEEE DOI
2008
Code, Evaluation.
WWW Link. Detectors, Task analysis,
Object detection, Noise measurement, Trajectory
BibRef
Wang, P.[Pei],
Vasconcelos, N.M.[Nuno M.],
SCOUT: Self-Aware Discriminant Counterfactual Explanations,
CVPR20(8978-8987)
IEEE DOI
2008
Visualization, Heat Maps, Task analysis, Training, Protocols,
BibRef
Simon, D.,
Farber, M.,
Goldenberg, R.,
Auto-Annotation Quality Prediction for Semi-Supervised Learning with
Ensembles,
VL3W20(3984-3988)
IEEE DOI
2008
Training, Data models, Semantics, Manuals, Predictive models,
Task analysis, Labeling
BibRef
Branchaud-Charron, F.[Frederic],
Achkar, A.[Andrew],
Jodoin, P.M.[Pierre-Marc],
Spectral Metric for Dataset Complexity Assessment,
CVPR19(3210-3219).
IEEE DOI
2002
BibRef
Das, D.[Dipanjan],
Ghosh, R.[Ratul],
Bhowmick, B.[Brojeshwar],
Deep Representation Learning Characterized by Inter-Class Separation
for Image Clustering,
WACV19(628-637)
IEEE DOI
1904
feature extraction, image representation,
learning (artificial intelligence), neural nets,
Deep learning
BibRef
Chen, Z.Q.[Zhi-Qiang],
Du, C.D.[Chang-De],
Huang, L.J.[Li-Jie],
Li, D.[Dan],
He, H.G.[Hui-Guang],
Improving Image Classification Performance with Automatically
Hierarchical Label Clustering,
ICPR18(1863-1868)
IEEE DOI
1812
Task analysis, Training, Merging, Dogs, Labeling,
Machine learning, Clustering algorithms
BibRef
Fawzi, A.[Alhussein],
Frossard, P.[Pascal],
Measuring the effect of nuisance variables on classifiers,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Mendiola-Lau, V.[Victor],
Silva Mata, F.J.[Francisco José],
Calaña, Y.P.[Yenisel Plasencia],
Bustamante, I.T.[Isneri Talavera],
de Marsico, M.[Maria],
Bio-Chemical Data Classification by Dissimilarity Representation and
Template Selection,
CIARP17(374-381).
Springer DOI
1802
BibRef
Barddal, J.P.,
Gomes, H.M.,
de Souza Britto, A.,
Enembreck, F.,
A benchmark of classifiers on feature drifting data streams,
ICPR16(2180-2185)
IEEE DOI
1705
Adaptation models, Benchmark testing, Context, Decision trees,
Detectors, Feature extraction, Generators
BibRef
Wang, D.[Dong],
Tan, X.Y.[Xiao-Yang],
Label-Denoising Auto-encoder for Classification with Inaccurate
Supervision Information,
ICPR14(3648-3653)
IEEE DOI
1412
Data models
BibRef
Cabrera, G.F.[Guillermo F.],
Miller, C.J.[Christopher J.],
Schneider, J.[Jeff],
Systematic Labeling Bias: De-biasing Where Everyone is Wrong,
ICPR14(4417-4422)
IEEE DOI
1412
Accuracy; Gold; Labeling; Logistics; Spirals; Standards; Training
BibRef
Hajizadeh, S.[Siamak],
Li, Z.L.[Zi-Li],
Dollevoet, R.P.B.J.[Rolf P.B.J.],
Tax, D.M.J.[David M.J.],
Evaluating Classification Performance with only Positive and Unlabeled
Samples,
SSSPR14(233-242).
Springer DOI
1408
BibRef
Santos, J.M.[Jorge M.],
Embrechts, M.[Mark],
A Family of Two-Dimensional Benchmark Data Sets and Its Application to
Comparing Different Cluster Validation Indices,
MCPR14(41-50).
Springer DOI
1407
BibRef
Aghazadeh, O.[Omid],
Carlsson, S.[Stefan],
Properties of Datasets Predict the Performance of Classifiers,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Loyola-González, O.[Octavio],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[Jesús Ariel],
García-Borroto, M.[Milton],
A Novel Contrast Pattern Selection Method for Class Imbalance Problems,
MCPR17(42-52).
Springer DOI
1706
BibRef
Earlier:
Correlation of Resampling Methods for Contrast Pattern Based
Classifiers,
MCPR15(93-102).
Springer DOI
1506
BibRef
García-Borroto, M.[Milton],
Loyola-Gonzalez, O.[Octavio],
Martínez-Trinidad, J.F.[José Francisco],
Comparing Quality Measures for Contrast Pattern Classifiers,
CIARP13(I:311-318).
Springer DOI
1311
BibRef
Welinder, P.[Peter],
Welling, M.[Max],
Perona, P.[Pietro],
A Lazy Man's Approach to Benchmarking:
Semisupervised Classifier Evaluation and Recalibration,
CVPR13(3262-3269)
IEEE DOI
1309
BibRef
Wei, S.M.[Si-Ming],
Yu, Y.Z.[Yi-Zhou],
Subspace segmentation with a Minimal Squared Frobenius Norm
Representation,
ICPR12(3509-3512).
WWW Link.
1302
performs data clustering by solving a convex optimization problem
BibRef
Berrar, D.[Daniel],
Null QQ plots: A simple graphical alternative to significance testing
for the comparison of classifiers,
ICPR12(1852-1855).
WWW Link.
1302
BibRef
Li, J.[James],
Sonmez, A.[Abdullah],
Cataltepe, Z.[Zehra],
Bax, E.[Eric],
Validation of Network Classifiers,
SSSPR12(448-457).
Springer DOI
1211
probably approximately correct bounds for classifier
BibRef
Kallel, M.[Manel],
Naouai, M.[Mohamed],
Slama, Y.[Yosr],
New Metrics to Evaluate Pattern Recognition in Remote Sensing Images,
CIARP12(664-673).
Springer DOI
1209
BibRef
Ryazanov, V.V.[Vladimir V.],
Estimations of Clustering Quality via Evaluation of Its Stability,
CIARP14(432-439).
Springer DOI
1411
BibRef
Earlier:
Clustering of Incomplete Data and Evaluation of Clustering Quality,
CIARP12(146-153).
Springer DOI
1209
BibRef
Zhou, G.J.[Gui-Jun],
Wu, B.[Bo],
Li, M.M.[Meng-Meng],
Improved accuracy assessment indices for object-based high resolution
remotely sensed imagery classification,
IASP11(181-186).
IEEE DOI
1112
Evaluation using regions, not just pixels.
BibRef
Marsetic, A.,
Kokalj, Z.,
Ostir, K.,
The effect of lossy image compression on object based image classification:
WorldView-2 case study,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Weih, Jr., R.C.[Robert C.],
Riggan, Jr., N.D.[Norman D.],
Object-Based Classification vs. Pixel-Based Classification:
Comparitive Importance of Multi-Resolution Imagery,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Huang, H.Q.[Hai-Qiao],
Mok, P.Y.[Pik-Yin],
Kwok, Y.L.[Yi-Lin],
Au, S.C.[Sau-Chuen],
A Parameter Free Approach for Clustering Analysis,
CAIP09(816-823).
Springer DOI
0909
BibRef
Zhang, W.[Wei],
Deng, H.L.[Hong-Li],
Understanding visual dictionaries via Maximum Mutual Information curves,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhang, X.[Xiao],
Liang, L.[Lin],
Tang, X.[Xiaoou],
Shum, H.Y.[Heung-Yeung],
L1 regularized projection pursuit for additive model learning,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Su, Y.[Yu],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Gao, W.[Wen],
Classifiability-based Optimal Discriminatory Projection Pursuit,
CVPR08(1-7).
IEEE DOI
0806
BibRef
González-Guevara, V.I.[Víctor Iván],
Godoy-Calderon, S.[Salvador],
Alba-Cabrera, E.[Eduardo],
Ibarra-Fiallo, J.[Julio],
A Mixed Learning Strategy for Finding Typical Testors in Large Datasets,
CIARP15(716-723).
Springer DOI
1511
BibRef
Alba-Cabrera, E.[Eduardo],
Ibarra-Fiallo, J.[Julio],
Godoy-Calderon, S.[Salvador],
Cervantes-Alonso, F.[Fernando],
YYC: A Fast Performance Incremental Algorithm for Finding Typical
Testors,
CIARP14(416-423).
Springer DOI
1411
BibRef
Earlier: A1, A2, A3, Only:
A Theoretical and Practical Framework for Assessing the Computational
Behavior of Typical Testor-Finding Algorithms,
CIARP13(I:351-358).
Springer DOI
1311
BibRef
Godoy-Calderón, S.[Salvador],
Martínez-Trinidad, J.F.[José Francisco],
Cortés, M.L.[Manuel Lazo],
Proposal for a Unified Methodology for Evaluating Supervised and
Non-supervised Classification Algorithms,
CIARP06(674-685).
Springer DOI
0611
BibRef
Mouchere, H.[Harold],
Anquetil, E.[Eric],
A Unified Strategy to Deal with Different Natures of Reject,
ICPR06(II: 792-795).
IEEE DOI
0609
BibRef
Pugliese, L.[Luca],
Scarpetta, S.[Silvia],
Esposito, A.[Anna],
Marinaro, M.[Maria],
An Application of Neural and Probabilistic Unsupervised Methods to
Environmental Factor Analysis of Multi-spectral Images,
CIAP05(1190-1197).
Springer DOI
0509
compare 2 clustering methods for LANDSAT classification.
BibRef
Maillard, P.[Philippe],
Clausi, D.A.[David A.],
Comparing Classification Metrics for Labeling Segmented Remote Sensing
Images,
CRV05(421-428).
IEEE DOI
0505
BibRef
Kolsch, T.,
Keysers, D.,
Ney, H.,
Paredes, R.,
Enhancements for local feature based image classification,
ICPR04(I: 248-251).
IEEE DOI
0409
Decompose and analyze nearest neighbor search and direct voting
for classification.
BibRef
Mansilla, E.B.,
Ho, T.K.[Tin Kam],
On classifier domains of competence,
ICPR04(I: 136-139).
IEEE DOI
0409
Where are which classifiers competent.
BibRef
Johnson, A.Y.[Amos Y.],
Sun, J.[Jie],
Bobick, A.F.[Aaron F.],
Predicting Large Population Data Cumulative Match Characteristic
Performance from Small Population Data,
AVBPA03(821-829).
Springer DOI
0310
BibRef
Lucas, S.M.,
Web-based evaluation and deployment of pattern recognizers,
ICPR02(III: 419-422).
IEEE DOI
0211
BibRef
Duin, R.P.W.,
Pekalska, E.,
Tax, D.M.J.,
The characterization of classification problems by classifier
disagreements,
ICPR04(I: 140-143).
IEEE DOI
0409
BibRef
de Ridder, D.,
Pekalska, E.,
Duin, R.P.W.,
The economics of classification: error vs. complexity,
ICPR02(II: 244-247).
IEEE DOI
0211
BibRef
Varma, M.,
Zisserman, A.P.,
Classifying materials from images: to cluster or not to cluster?,
Texture02(139-144).
0207
BibRef
Yang, M.H.,
Roth, D.,
Ahuja, N.,
A Tale of Two Classifiers: SNoW vs. SVM in Visual Recognition,
ECCV02(IV: 685 ff.).
Springer DOI
0205
BibRef
Huijsmans, N.P.,
Sebe, N.,
Extended Performance Graphs for Cluster Retrieval,
CVPR01(I:26-31).
IEEE DOI
0110
In classification, issue of how to measure the performance
expecially when true negatives are dominant.
BibRef
Bromiley, P.A.,
Courtney, P.,
Thacker, N.A.,
A Case Study in the use of ROC curves for Algorithm Design,
BMVC01(Poster Session 1).
HTML Version. University of Manchester
0110
BibRef
Michaels, R.,
Boult, T.E.,
A Stratified Methodology for Classifier and Recognizer Evaluation,
EEMCV01(xx-yy).
0110
BibRef
Tang, M.,
Xiao, J.,
Ma, S.D.[Song De],
Two-step Classification Based on Scale Space,
ICPR00(Vol II: 899-902).
IEEE DOI
0009
BibRef
Scott, M.J.J.,
Niranjan, M.,
Prager, R.W.,
Realisable Classifiers:
Improving Operating Performance on Variable Cost Problems,
BMVC98(xx-yy).
BibRef
9800
Prager, R.W.,
CART/CMAC hybrid: regression trees with interpolation,
ICPR94(B:476-478).
IEEE DOI
9410
BibRef
Kraaijveld, M.A.[Martin A.],
An Experimental Comparison of Non-Parametric Classifiers for
Time-Constrained Classification Tasks,
ICPR98(Vol I: 428-435).
IEEE DOI
9808
BibRef
Lashkia, V.[Vakhtang],
Aleshin, S.,
Test Feature Classifiers: Performance and Applications,
ICPR98(Vol I: 341-343).
IEEE DOI
9808
Properties
BibRef
Zhao, W.Y.[Wen-Yi],
Chellappa, R.[Rama],
Nandhakumar, N.,
Empirical Performance Analysis of Linear Discriminant Classifiers,
CVPR98(164-169).
IEEE DOI
BibRef
9800
Gorski, N.,
Optimizing Error-Reject Trade-Off in Recognition Systems,
ICDAR97(1092-1096).
IEEE DOI
9708
BibRef
Altamirano-Robles, L.,
Eckstein, W.,
The Importance of Feature Visibility for the Evaluation of a
Matching Hypothesis,
ICPR96(I: 585-589).
IEEE DOI
9608
(Technical Univ. of Munich, D)
BibRef
Yu, S.[Shan],
Weigl, K.[Konrad],
Performance comparison of a deterministic and a stochastic method for
image classification,
CAIP95(826-831).
Springer DOI
9509
BibRef
Ford, S.J.,
Hampshire, II, J.B.,
McKeown, D.M.,
Performance Evaluation of Multispectral Analysis for Surface
Material Classification,
DARPA93(421-435).
Classification.
BibRef
9300
Niblack, W.,
Petkovic, D.,
Damian, D.,
Experiments and Evaluations of Rule Based Methods in Image Analysis,
CVPR88(123-128).
IEEE DOI
BibRef
8800
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Error Estimation, Classification Accuracy .