Roman-Roldan, R.,
Bernaolagalvan, P.,
Oliver, J.L.,
Application of Information-Theory to DNA-Sequence Analysis: A Review,
PR(29), No. 7, July 1996, pp. 1187-1194.
Elsevier DOI
9607
BibRef
Zhang, L.,
Kuljis, J.,
Liu, X.,
Information Visualization for DNA Microarray Data Analysis:
A Critical Review,
SMC-C(38), No. 1, January 2008, pp. 42-54.
IEEE DOI
0712
BibRef
FIRE Fundus Image Registration Dataset,
2016
WWW Link.
Dataset, Retinal.
Dataset, Registration.
1610
134 retinal image pairs and ground truth for registration.
Akita, K.[Koichiro],
Kuga, H.[Hideki],
A computer method of understanding ocular fundus images,
PR(15), No. 6, 1982, pp. 431-443.
Elsevier DOI
0309
BibRef
Tamura, S.[Shinichi],
Tanaka, K.[Kokichi],
Ohmori, S.[Seiji],
Okazaki, K.[Kozo],
Okada, A.[Akira],
Hoshi, M.[Mitsuru],
Semiautomatic Leakage Analyzing System for Time Series Fluorescein
Ocular Fundus Angiography,
PR(16), No. 2, 1983, pp. 149-162.
Elsevier DOI
0309
BibRef
Kawai, H.[Hideo],
Tamura, S.[Shinichi],
Kani, K.[Kazutaka],
Kariya, K.[Komyo],
Eye movement analysis system using fundus images,
PR(19), No. 1, 1986, pp. 77-84.
Elsevier DOI
0309
BibRef
Jasiobedzki, P.[Piotr],
Taylor, C.J.[Chris J.],
Brunt, J.N.H.[John N.H.],
Automated analysis of retinal images,
IVC(11), No. 3, April 1993, pp. 139-144.
Elsevier DOI
0401
BibRef
Earlier: A1, A2, Only:
BMVC91(xx-yy).
PDF File.
9109
BibRef
Yamany, S.M.,
Khiani, K.J.,
Farag, A.A.,
Application of Neural Networks and Genetic Algorithms in the
Classification of Endothelial Cells,
PRL(18), No. 11-13, November 1997, pp. 1205-1210.
9806
BibRef
Abramoff, M.D.,
Niessen, W.J.,
Viergever, M.A.,
Objective quantification of the motion of soft tissues in the orbit,
MedImg(19), No. 10, October 2000, pp. 986-995.
IEEE Top Reference.
0110
BibRef
Abramoff, M.D.,
Viergever, M.A.,
Computation and visualization of three-dimensional soft tissue motion
in the orbit,
MedImg(21), No. 4, April 2002, pp. 296-304.
IEEE Top Reference.
0206
BibRef
Sbeh, Z.B.[Zakaria Ben],
Cohen, L.D.,
Mimoun, G.,
Coscas, G.,
A new approach of geodesic reconstruction for drusen segmentation in
eye fundus images,
MedImg(20), No. 12, December 2001, pp. 1321-1333.
IEEE Top Reference.
0201
BibRef
Sbeh, Z.B.,
Cohen, L.D.,
Mimoun, G.,
Coscas, G.,
Soubrane, G.,
An adaptive contrast method for segmentation of drusen,
ICIP97(I: 255-258).
IEEE DOI
9710
BibRef
Wendling, L.[Laurent],
Tabbone, S.A.[Salvatore A.],
Matsakis, P.[Pascal],
Fast and robust recognition of orbit and sinus drawings using
histograms of forces,
PRL(23), No. 14, December 2002, pp. 1687-1693.
Elsevier DOI
0208
BibRef
Coelho, R.C.[Regina Celia],
di Gesů, V.[Vito],
lo Bosco, G.[Giosuč],
Tanaka, J.S.[Júlia Sawaki],
Valenti, C.[Cesare],
Shape-Based Features for Cat Ganglion Retinal Cells Classification,
RealTimeImg(8), No. 3, June 2002, pp. 213-226.
DOI Link
0208
BibRef
Coelho, R.C.,
Valenti, C.,
Tanaka, J.S.,
da Fontoura Costa, L.[Luciano],
Classification of cat ganglion retinal cells and implications for
shape-function relationship,
CIAP01(517-522).
IEEE DOI
0210
BibRef
Catlin, D.[David],
Dainty, C.[Christopher],
High-resolution imaging of the human retina with a Fourier
deconvolution technique,
JOSA-A(19), No. 8, August 2002, pp. 1515-1523.
WWW Link.
0208
BibRef
Taleb-Ahmedand, A.,
Bigand, A.,
Telemedicine and fuzzy logic: application in ophthalmology,
PRL(24), No. 15, November 2003, pp. 2731-2742.
Elsevier DOI
0308
BibRef
Li, H.Q.[Hui-Qi],
Chutatape, O.[Opas],
Boundary detection of optic disk by a modified ASM method,
PR(36), No. 9, September 2003, pp. 2093-2104.
Elsevier DOI
0307
BibRef
Lowell, J.,
Hunter, A.,
Steel, D.,
Basu, A.,
Ryder, R.,
Fletcher, E.,
Kennedy, L.,
Optic Nerve Head Segmentation,
MedImg(23), No. 2, February 2004, pp. 256-264.
IEEE Abstract.
0403
See also Measurement of Retinal Vessel Widths from Fundus Images Based on 2-D Modeling.
BibRef
Berestov, A.L.[Alexander L.],
Garland, H.T.[Harry T.],
Automated stereo fundus evaluation,
US_Patent6,714,672, Mar 30, 2004
WWW Link.
BibRef
0403
Cano, D.[Daniel],
Barbero, S.[Sergio],
Marcos, S.[Susana],
Comparison of real and computer-simulated outcomes of LASIK refractive
surgery,
JOSA-A(21), No. 6, June 2004, pp. 926-936.
WWW Link.
0409
BibRef
Matsopoulos, G.K.,
Asvestas, P.A.,
Mouravliansky, N.A.,
Delibasis, K.K.,
Multimodal registration of retinal images using self organizing maps,
MedImg(23), No. 12, December 2004, pp. 1557-1563.
IEEE Abstract.
0412
BibRef
Feng, P.[Peng],
Pan, Y.J.[Ying-Jun],
Wei, B.[Biao],
Jin, W.[Wei],
Mi, D.[Deling],
Enhancing retinal image by the Contourlet transform,
PRL(28), No. 4, 1 March 2007, pp. 516-522.
Elsevier DOI
0701
The Contourlet transform; Anisotropy and directionality;
Contrast enhancement; Retinal imaging
BibRef
Tobin, K.W.,
Chaum, E.,
Govindasamy, V.P.,
Karnowski, T.P.,
Detection of Anatomic Structures in Human Retinal Imagery,
MedImg(26), No. 12, December 2007, pp. 1729-1739.
IEEE DOI
0712
BibRef
Xue, B.[Bai],
Choi, S.S.[Stacey S.],
Doble, N.[Nathan],
Werner, J.S.[John S.],
Photoreceptor counting and montaging of en-face retinal images from an
adaptive optics fundus camera,
JOSA-A(24), No. 5, May 2007, pp. 1364-1372.
WWW Link.
0801
BibRef
Chenegros, G.[Guillaume],
Mugnier, L.M.[Laurent M.],
Lacombe, F.[François],
Glanc, M.[Marie],
3D phase diversity: a myopic deconvolution method for short-exposure
images: application to retinal imaging,
JOSA-A(24), No. 5, May 2007, pp. 1349-1357.
WWW Link.
0801
BibRef
Li, K.Y.[Kaccie Y.],
Roorda, A.[Austin],
Automated identification of cone photoreceptors in adaptive optics
retinal images,
JOSA-A(24), No. 5, May 2007, pp. 1358-1363.
WWW Link.
0801
BibRef
Bueno, J.M.[Juan M.],
Hunter, J.J.[Jennifer J.],
Cookson, C.J.[Christopher J.],
Kisilak, M.L.[Marsha L.],
Campbell, M.C.W.[Melanie C. W.],
Improved scanning laser fundus imaging using polarimetry,
JOSA-A(24), No. 5, May 2007, pp. 1337-1348.
WWW Link.
0801
BibRef
Carroll, J.[Joseph],
Drexler, W.[Wolfgang],
Roorda, A.[Austin],
Advances in Retinal Imaging: introduction,
JOSA-A(24), No. 5, May 2007, pp. 1223-1224.
WWW Link.
0801
BibRef
Wade, N.J.[Nicholas J.],
Image, eye, and retina,
JOSA-A(24), No. 5, May 2007, pp. 1229-1249.
WWW Link.
0801
Survey, Retinal Imaging. Invited Review.
BibRef
Delori, F.C.[François C.],
Webb, R.H.[Robert H.],
Sliney, D.H.[David H.],
Maximum permissible exposures for ocular safety (ANSI 2000), with
emphasis on ophthalmic devices,
JOSA-A(24), No. 5, May 2007, pp. 1250-1265.
WWW Link.
0801
BibRef
Corbett, A.D.[Alexander D.],
Wilkinson, T.D.[Timothy D.],
Zhong, J.J.[Jiang J.],
Diaz-Santana, L.[Luis],
Designing a holographic modal wavefront sensor for the detection of
static ocular aberrations,
JOSA-A(24), No. 5, May 2007, pp. 1266-1275.
WWW Link.
0801
BibRef
Zhang, Y.H.[Yu-Hua],
Roorda, A.[Austin],
Photon signal detection and evaluation in the adaptive optics scanning
laser ophthalmoscope,
JOSA-A(24), No. 5, May 2007, pp. 1276-1283.
WWW Link.
0801
BibRef
Hunter, J.J.[Jennifer J.],
Cookson, C.J.[Christopher J.],
Kisilak, M.L.[Marsha L.],
Bueno, J.M.[Juan M.],
Campbell, M.C.W.[Melanie C. W.],
Characterizing image quality in a scanning laser ophthalmoscope with
differing pinholes and induced scattered light,
JOSA-A(24), No. 5, May 2007, pp. 1284-1295.
WWW Link.
0801
BibRef
Wanek, J.M.[Justin M.],
Mori, M.[Marek],
Shahidi, M.[Mahnaz],
Effect of aberrations and scatter on image resolution assessed by
adaptive optics retinal section imaging,
JOSA-A(24), No. 5, May 2007, pp. 1296-1304.
WWW Link.
0801
BibRef
Chen, D.C.[Diana C.],
Jones, S.M.[Steven M.],
Silva, D.A.[Dennis A.],
Olivier, S.S.[Scot S.],
High-resolution adaptive optics scanning laser ophthalmoscope with dual
deformable mirrors Multimedia,
JOSA-A(24), No. 5, May 2007, pp. 1305-1312.
WWW Link.
0801
BibRef
Vilupuru, A.S.[Abhiram S.],
Rangaswamy, N.V.[Nalini V.],
Frishman, L.J.[Laura J.],
Smith III, E.L.[Earl L.],
Harwerth, R.S.[Ronald S.],
Roorda, A.[Austin],
Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of
lamina cribrosa,
JOSA-A(24), No. 5, May 2007, pp. 1417-1425.
WWW Link.
0801
BibRef
Baraas, R.C.[Rigmor C.],
Carroll, J.[Joseph],
Gunther, K.L.[Karen L.],
Chung, M.[Mina],
Williams, D.R.[David R.],
Foster, D.H.[David H.],
Neitz, M.[Maureen],
Adaptive optics retinal imaging reveals S-cone dystrophy in tritan
color-vision deficiency,
JOSA-A(24), No. 5, May 2007, pp. 1438-1447.
WWW Link.
0801
BibRef
Dalhaus, R.N.[Rob N.],
Gunther, K.L.[Karen L.],
A tritan Waldo would be easier to detect in the periphery than a
red/green one: evidence from visual search,
JOSA-A(29), No. 2, February 2012, pp. A298-A305.
WWW Link.
1202
BibRef
Cideciyan, A.V.[Artur V.],
Swider, M.[Malgorzata],
Aleman, T.S.[Tomas S.],
Roman, M.I.[Marisa I.],
Sumaroka, A.[Alexander],
Schwartz, S.B.[Sharon B.],
Stone, E.M.[Edwin M.],
Jacobson, S.G.[Samuel G.],
Reduced-illuminance autofluorescence imaging in ABCA4-associated
retinal degenerations,
JOSA-A(24), No. 5, May 2007, pp. 1457-1467.
WWW Link.
0801
BibRef
Lam, B.S.Y.,
Yan, H.,
A Novel Vessel Segmentation Algorithm for Pathological Retina Images
Based on the Divergence of Vector Fields,
MedImg(27), No. 2, February 2008, pp. 237-246.
IEEE DOI
0802
BibRef
Tang, L.[Li],
Garvin, M.K.,
Lee, K.[Kyungmoo],
Alward, W.L.W.,
Kwon, Y.H.,
Abramoff, M.D.,
Robust Multiscale Stereo Matching from Fundus Images with Radiometric
Differences,
PAMI(33), No. 11, November 2011, pp. 2245-2258.
IEEE DOI
1110
Stereo for retinal images. Uses features.
BibRef
Sukkaew, L.[Lassada],
Uyyanonvara, B.[Bunyarit],
Makhanov, S.S.[Stanislav S.],
Barman, S.[Sarah],
Pangputhipong, P.[Pannet],
Automatic Tortuosity-Based Retinopathy of Prematurity Screening System,
IEICE(E91-D), No. 12, December 2008, pp. 2868-2874.
DOI Link
0804
BibRef
Nagayoshi, H.[Hiroto],
Hiramatsu, Y.[Yoshitaka],
Sako, H.[Hiroshi],
Himaga, M.[Mitsutoshi],
Kato, S.[Satoshi],
Detection of Fundus Lesions Using Classifier Selection,
IEICE(E92-D), No. 5, May 2009, pp. 1168-1176.
WWW Link.
0907
BibRef
Moscaritolo, M.,
Jampel, H.,
Knezevich, F.,
Zeimer, R.,
An Image Based Auto-Focusing Algorithm for Digital Fundus Photography,
MedImg(28), No. 11, November 2009, pp. 1703-1707.
IEEE DOI
0911
BibRef
Nair, G.[Govind],
Shen, Q.A.[Qi-Ang],
Duong, T.Q.[Timothy Q.],
Relaxation time constants and apparent diffusion coefficients of rat
retina at 7 Tesla,
IJIST(20), No. 2, June 2010, pp. 126-130.
DOI Link
1006
MRI analysis of retina.
BibRef
Quellec, G.,
Russell, S.R.,
Abramoff, M.D.,
Optimal Filter Framework for Automated, Instantaneous Detection of
Lesions in Retinal Images,
MedImg(30), No. 2, February 2011, pp. 523-533.
IEEE DOI
1102
BibRef
Kim, S.K.,
Kim, D.M.,
Suh, M.H.,
Kim, M.,
Kim, H.C.,
Retinal Oximetry Based on Nonsimultaneous Image Acquisition Using a
Conventional Fundus Camera,
MedImg(30), No. 8, August 2011, pp. 1577-1580.
IEEE DOI
1108
BibRef
Niemeijer, M.,
Xu, X.,
Dumitrescu, A.V.,
Gupta, P.,
van Ginneken, B.,
Folk, J.C.,
Abramoff, M.D.,
Automated Measurement of the Arteriolar-to-Venular Width Ratio in
Digital Color Fundus Photographs,
MedImg(30), No. 11, November 2011, pp. 1941-1950.
IEEE DOI
1111
BibRef
Nieto, A.[Alejandro],
Brea, V.[Victor],
Vilarińo, D.L.[David L.],
Osorio, R.R.[Roberto R.],
Performance analysis of massively parallel embedded hardware
architectures for retinal image processing,
JIVP(2011), No. 1 2011, pp. xx-yy.
DOI Link
1203
BibRef
Nieto, A.,
Vilarino, D.L.,
Brea, V.M.,
Feature detection and matching on an SIMD/MIMD hybrid embedded
processor,
ECVW12(21-26).
IEEE DOI
1207
BibRef
Chen, X.,
Niemeijer, M.,
Zhang, L.,
Lee, K.,
Abramoff, M.D.,
Sonka, M.,
Three-Dimensional Segmentation of Fluid-Associated Abnormalities in
Retinal OCT: Probability Constrained Graph-Search-Graph-Cut,
MedImg(31), No. 8, August 2012, pp. 1521-1531.
IEEE DOI
1208
BibRef
Welfer, D.[Daniel],
Scharcanski, J.[Jacob],
Marinho, D.R.[Diane Ruschel],
A morphologic two-stage approach for automated optic disk detection in
color eye fundus images,
PRL(34), No. 5, 1 April 2013, pp. 476-485.
Elsevier DOI
1303
Mathematical morphology; Color images; Optic disk detection; Eye fundus
image
BibRef
Ghassabi, Z.[Zeinab],
Sedaghat, A.[Amin],
Shanbehzadeh, J.[Jamshid],
Fatemizadeh, E.[Emad],
An efficient approach for robust multimodal retinal image registration
based on UR-SIFT features and PIIFD descriptors,
JIVP(2013), No. 1, 2013, pp. 25.
DOI Link
1305
BibRef
Nath, M.K.[Malaya Kumar],
Dandapat, S.[Samarendra],
Multiscale ICA for fundus image analysis,
IJIST(23), No. 4, 2013, pp. 327-337.
DOI Link
1312
independent component analysis
BibRef
Alipour, S.H.M.[Shirin Hajeb Mohammad],
Rabbani, H.[Hossein],
Akhlaghi, M.[Mohammadreza],
A new combined method based on curvelet transform and morphological
operators for automatic detection of foveal avascular zone,
SIViP(8), No. 2, February 2014, pp. 205-222.
Springer DOI
1402
BibRef
Dashtbozorg, B.[Behdad],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
An Automatic Graph-Based Approach for Artery/Vein Classification in
Retinal Images,
IP(23), No. 3, March 2014, pp. 1073-1083.
IEEE DOI
1403
BibRef
Earlier:
Automatic Estimation of the Arteriolar-to-Venular Ratio in Retinal
Images Using a Graph-Based Approach for Artery/Vein Classification,
ICIAR13(530-538).
Springer DOI
1307
blood vessels
BibRef
Dashtbozorg, B.[Behdad],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Assessment of Retinal Vascular Changes Through Arteriolar-to-Venular
Ratio Calculation,
ICIAR15(335-343).
Springer DOI
1507
BibRef
Mendonça, A.M.[Ana Maria],
Cardoso, F.[Filipe],
Sousa, A.V.[António V.],
Campilho, A.[Aurélio],
Automatic Localization of the Optic Disc in Retinal Images Based on the
Entropy of Vascular Directions,
ICIAR12(II: 424-431).
Springer DOI
1206
BibRef
Marrugo, A.G.[Andres Guillermo],
Millan, M.S.[Maria Sagrario],
Retinal Image Analysis Oriented to the Clinical Task,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Ghannoum, A.,
Ghafar-Zadeh, E.,
Sawan, M.,
Image processing system dedicated to a visual intra-cortical
stimulator,
IET-IPR(8), No. 12, 2014, pp. 846-855.
DOI Link
1412
Microstimulation to counter visual impairment.
Gaussian processes.
BibRef
Mariotti, L.[Letizia],
Devaney, N.[Nicholas],
Performance analysis of cone detection algorithms,
JOSA-A(32), No. 4, April 2015, pp. 497-506.
DOI Link
1504
Active or adaptive optics; Image processing; Ophthalmology
BibRef
Muangnak, N.,
Aimmanee, P.,
Makhanov, S.,
Uyyanonvara, B.,
Vessel transform for automatic optic disk detection in retinal images,
IET-IPR(9), No. 9, 2015, pp. 743-750.
DOI Link
1509
biomedical optical imaging
BibRef
Mayrhofer-Reinhartshuber, M.[Michael],
Cornforth, D.J.[David J.],
Ahammer, H.[Helmut],
Jelinek, H.F.[Herbert F.],
Multiscale analysis of tortuosity in retinal images using wavelets
and fractal methods,
PRL(68, Part 1), No. 1, 2015, pp. 132-138.
Elsevier DOI
1512
Retina
BibRef
Lazareva, A.[Anfisa],
Liatsis, P.[Panos],
Rauscher, F.G.[Franziska G.],
Hessian-LoG filtering for enhancement and detection of photoreceptor
cells in adaptive optics retinal images,
JOSA-A(33), No. 1, January 2016, pp. 84-94.
DOI Link
1601
BibRef
Earlier:
An automated image processing system for the detection of
photoreceptor cells in adaptive optics retinal images,
WSSIP15(196-199)
IEEE DOI
1603
adaptive optics
Digital image processing
BibRef
Rahman, R.,
Kabir, S.M.R.[S. M. Raiyan],
Quadir, A.[Anita],
Application of fuzzy inference and active contour model for detection
of fovea and its center in a fundus image,
SIViP(10), No. 1, February 2016, pp. 397-404.
WWW Link.
1601
BibRef
Wang, S.,
Jin, K.,
Lu, H.,
Cheng, C.,
Ye, J.,
Qian, D.,
Human Visual System-Based Fundus Image Quality Assessment of Portable
Fundus Camera Photographs,
MedImg(35), No. 4, April 2016, pp. 1046-1055.
IEEE DOI
1604
biomedical optical imaging
BibRef
Coudrillier, B.,
Geraldes, D.M.,
Vo, N.T.,
Atwood, R.,
Reinhard, C.,
Campbell, I.C.,
Raji, Y.,
Albon, J.,
Abel, R.L.,
Ethier, C.R.,
Phase-Contrast Micro-Computed Tomography Measurements of the
Intraocular Pressure-Induced Deformation of the Porcine Lamina
Cribrosa,
MedImg(35), No. 4, April 2016, pp. 988-999.
IEEE DOI
1604
biological tissues
BibRef
Garcia-Guerra, C.E.[Carlos E.],
Aldaba, M.[Mikel],
Arjona, M.[Montserrat],
Diaz-Douton, F.[Fernando],
Martinez-Roda, J.A.[Joan A.],
Pujol, J.[Jaume],
Response for light scattered in the ocular fundus from double-pass
and Hartmann-Shack estimations,
JOSA-A(33), No. 11, November 2016, pp. 2150-2157.
DOI Link
1609
Visual optics, metrology ; Visual optics, modeling
BibRef
ter Haar Romeny, B.M.[Bart M.],
Bekkers, E.J.[Erik J.],
Zhang, J.[Jiong],
Abbasi-Sureshjani, S.[Samaneh],
Huang, F.[Fan],
Duits, R.[Remco],
Dashtbozorg, B.[Behdad],
Berendschot, T.T.J.M.[Tos T. J. M.],
Smit-Ockeloen, I.[Iris],
Eppenhof, K.A.J.[Koen A. J.],
Feng, J.H.[Jing-Han],
Hannink, J.[Julius],
Schouten, J.[Jan],
Tong, M.M.[Meng-Meng],
Wu, H.H.[Han-Hui],
van Triest, H.W.[Han W.],
Zhu, S.S.[Shan-Shan],
Chen, D.[Dali],
He, W.[Wei],
Xu, L.[Ling],
Han, P.[Ping],
Kang, Y.[Yan],
Brain-inspired algorithms for retinal image analysis,
MVA(27), No. 8, November 2016, pp. 1117-1135.
Springer DOI
1612
BibRef
Manivannan, S.,
Cobb, C.,
Burgess, S.,
Trucco, E.,
Subcategory Classifiers for Multiple-Instance Learning and Its
Application to Retinal Nerve Fiber Layer Visibility Classification,
MedImg(36), No. 5, May 2017, pp. 1140-1150.
IEEE DOI
1705
Biomarkers, Biomedical optical imaging, Dementia, Optical fibers,
Optical imaging, Retina, Retinopathy, Image classification,
multiple-instance learning(MIL),
retinal biomarkers for dementia, retinal image processing,
retinal, nerve, fiber, layer, (RNFL)
BibRef
Novosel, J.,
Yzer, S.,
Vermeer, K.A.,
van Vliet, L.J.,
Segmentation of Locally Varying Numbers of Outer Retinal Layers by a
Model Selection Approach,
MedImg(36), No. 6, June 2017, pp. 1306-1315.
IEEE DOI
1706
Biomarkers, Complexity theory, Data models, Diseases,
Image segmentation, Maximum likelihood estimation, Retina,
Akaike information criteria, Bayesian information criteria,
attenuation coefficient, information complexity,
maximum likelihood estimation, model selection, retinitis pigmentosa
BibRef
Soomro, T.A.[Toufique Ahmed],
Khan, M.A.U.[Mohammad A. U.],
Gao, J.B.[Jun-Bin],
Khan, T.M.[Tariq M.],
Paul, M.[Manoranjan],
Contrast normalization steps for increased sensitivity of a retinal
image segmentation method,
SIViP(11), No. 8, November 2017, pp. 1509-1517.
Springer DOI
1710
BibRef
Bekkers, E.J.[Erik J.],
Loog, M.[Marco],
ter Haar Romeny, B.M.[Bart M.],
Duits, R.[Remco],
Template Matching via Densities on the Roto-Translation Group,
PAMI(40), No. 2, February 2018, pp. 452-466.
IEEE DOI
1801
BibRef
Earlier: A1, A4, A2, Only:
Training of Templates for Object Recognition in Invertible Orientation
Scores: Application to Optic Nerve Head Detection in Retinal Images,
EMMCVPR15(464-477).
Springer DOI
1504
BibRef
Earlier: A1, A4, A3, Only:
Optic Nerve Head Detection via Group Correlations in Multi-orientation
Transforms,
ICIAR14(II: 293-302).
Springer DOI
1410
Linear regression, Pattern matching, Retina, Smoothing methods,
Splines (mathematics), Wavelet transforms, Template matching,
retina
BibRef
Abbasi-Sureshjani, S.[Samaneh],
Smit-Ockeloen, I.[Iris],
Zhang, J.[Jiong],
ter Haar Romeny, B.M.[Bart M.],
Biologically-Inspired Supervised Vasculature Segmentation in SLO
Retinal Fundus Images,
ICIAR15(325-334).
Springer DOI
1507
BibRef
Abdel-Hamid, L.[Lamiaa],
El-Rafei, A.[Ahmed],
El-Ramly, S.[Salwa],
Michelson, G.[Georg],
Performance dependency of retinal image quality assessment algorithms
on image resolution: analyses and solutions,
SIViP(12), No. 1, January 2018, pp. 9-16.
Springer DOI
1801
BibRef
Saha, S.[Sajib],
Fletcher, A.[Alexander],
Xiao, D.[Di],
Kanagasingam, Y.[Yogesan],
A novel method for automated correction of non-uniform/poor
illumination of retinal images without creating false artifacts,
JVCIR(51), 2018, pp. 95-103.
Elsevier DOI
1802
Color fundus image, Color correction, Illumination correction,
Automated analysis of retinal image
BibRef
Zhao, H.,
Li, H.,
Maurer-Stroh, S.,
Guo, Y.,
Deng, Q.,
Cheng, L.,
Supervised Segmentation of Un-Annotated Retinal Fundus Images by
Synthesis,
MedImg(38), No. 1, January 2019, pp. 46-56.
IEEE DOI
1901
Image segmentation, Training, Logic gates,
Generators, Retina, Machine learning, Biomedical optical imaging,
phantoms
BibRef
Hu, J.,
Chen, Y.,
Zhong, J.,
Ju, R.,
Yi, Z.,
Automated Analysis for Retinopathy of Prematurity by Deep Neural
Networks,
MedImg(38), No. 1, January 2019, pp. 269-279.
IEEE DOI
1901
Diseases, Feature extraction, Neural networks, Retina, Pediatrics,
Biomedical imaging, Computer architecture,
medical image analysis
BibRef
Palanisamy, G.[Gopinath],
Ponnusamy, P.[Palanisamy],
Gopi, V.P.[Varun P.],
An improved luminosity and contrast enhancement framework for feature
preservation in color fundus images,
SIViP(13), No. 4, June 2019, pp. 719-726.
Springer DOI
1906
BibRef
Wang, R.Z.[Ren-Zhen],
Chen, B.Z.[Ben-Zhi],
Meng, D.Y.[De-Yu],
Wang, L.S.[Li-Sheng],
Weakly Supervised Lesion Detection From Fundus Images,
MedImg(38), No. 6, June 2019, pp. 1501-1512.
IEEE DOI
1906
Lesions, Retina, Noise measurement, Diseases, Biomedical imaging,
Task analysis, Blood vessels, Computer-aided detection,
mixture of Gaussian
BibRef
Wei, Q.J.[Qi-Jie],
Li, X.R.[Xi-Rong],
Wang, H.[Hao],
Ding, D.Y.[Da-Yong],
Yu, W.H.[Wei-Hong],
Chen, Y.X.[You-Xin],
Laser Scar Detection in Fundus Images Using Convolutional Neural
Networks,
ACCV18(IV:191-206).
Springer DOI
1906
BibRef
Raj, A.[Aditya],
Tiwari, A.K.[Anil Kumar],
Martini, M.G.[Maria G.],
Fundus image quality assessment: survey, challenges, and future scope,
IET-IPR(13), No. 8, 20 June 2019, pp. 1211-1224.
DOI Link
1906
BibRef
Sukhia, K.N.[Komal Nain],
Riaz, M.M.[Muhammad Mohsin],
Ghafoor, A.[Abdul],
Content-based retinal image retrieval,
IET-IPR(13), No. 9, 18 July 2019, pp. 1525-1534.
DOI Link
1907
BibRef
Gong, C.,
Erichson, N.B.,
Kelly, J.P.,
Trutoiu, L.,
Schowengerdt, B.T.,
Brunton, S.L.,
Seibel, E.J.,
RetinaMatch: Efficient Template Matching of Retina Images for
Teleophthalmology,
MedImg(38), No. 8, August 2019, pp. 1993-2004.
IEEE DOI
1908
Retina, Principal component analysis, Dimensionality reduction,
Optimization, Feature extraction, Imaging, Optics,
health monitoring
BibRef
Brancati, N.[Nadia],
Frucci, M.[Maria],
Riccio, D.[Daniel],
di Perna, L.[Luigi],
Simonelli, F.[Francesca],
Segmentation of Pigment Signs in Fundus Images for Retinitis Pigmentosa
Analysis by Using Deep Learning,
CIAP19(II:437-445).
Springer DOI
1909
BibRef
Linares, O.C.,
Hamann, B.,
Neto, J.B.[J. Batista],
Segmenting Cellular Retinal Images by Optimizing Super-Pixels,
Multi-Level Modularity, and Cell Boundary Representation,
IP(29), No. , 2020, pp. 809-818.
IEEE DOI
1910
Image segmentation, Retina, Clustering algorithms, Optimization,
Microscopy, Image edge detection, Method of moments,
retina
BibRef
Playout, C.,
Duval, R.,
Cheriet, F.,
A Novel Weakly Supervised Multitask Architecture for Retinal Lesions
Segmentation on Fundus Images,
MedImg(38), No. 10, October 2019, pp. 2434-2444.
IEEE DOI
1910
Lesions, Retina, Image segmentation, Diseases, Training, Task analysis,
Feature extraction, Computer-aided diagnostic, fundus imaging,
screening
BibRef
Zhao, H.[He],
Li, H.Q.[Hui-Qi],
Cheng, L.[Li],
Improving retinal vessel segmentation with joint local loss by
matting,
PR(98), 2020, pp. 107068.
Elsevier DOI
1911
Vessel segmentation, Retinal images, Deep learning, Local matting loss
BibRef
Lin, H.,
Li, Z.,
Shih, M.,
Sun, Y.,
Shen, T.,
Pupil Localization for Ophthalmic Diagnosis Using Anchor Ellipse
Regression,
MVA19(1-5)
DOI Link
1806
convolutional neural nets, eye, image segmentation,
infrared imaging, learning (artificial intelligence), Deep learning
BibRef
Ghosh, S.K.[Swarup Kr],
Biswas, B.[Biswajit],
Ghosh, A.[Anupam],
SDCA: a novel stack deep convolutional autoencoder- an application on
retinal image denoising,
IET-IPR(13), No. 14, 12 December 2019, pp. 2778-2789.
DOI Link
1912
BibRef
Hu, X.Q.[Xin-Qi],
Yang, Q.A.[Qi-Ang],
Modeling and optimization of closed-loop retinal motion tracking in
scanning light ophthalmoscopy,
JOSA-A(36), No. 5, May 2019, pp. 716-721.
DOI Link
1912
Adaptive optics, Eye models, Eye movements, Image metrics,
Optical coherence tomography, Power spectral density
BibRef
Zhang, F.[Fang],
Xu, X.[Xu],
Xiao, Z.[Zhitao],
Wu, J.[Jun],
Geng, L.[Lei],
Wang, W.[Wen],
Liu, Y.B.[Yan-Bei],
Automated quality classification of colour fundus images based on a
modified residual dense block network,
SIViP(14), No. 1, February 2020, pp. 215-223.
Springer DOI
2001
BibRef
Cherukuri, V.,
BG, V.K.[V. Kumar],
Bala, R.,
Monga, V.,
Deep Retinal Image Segmentation With Regularization Under Geometric
Priors,
IP(29), 2020, pp. 2552-2567.
IEEE DOI
2001
Image segmentation, Task analysis, Retinal vessels, Deep learning,
Training, Feature extraction, Retinal images, deep learning, priors
BibRef
Jain, P.[Prakhar],
Bauskar, S.[Shubham],
Gyanchandani, M.[Manasi],
Neural network based non-invasive method to detect anemia from images
of eye conjunctiva,
IJIST(30), No. 1, 2020, pp. 112-125.
DOI Link
2002
anemia detection, artificial neural network,
backpropagation rules, hyper parameters tuning, image augmentation
BibRef
Chen, B.Z.[Ben-Zhi],
Wang, L.S.[Li-Sheng],
Wang, X.Y.[Xiu-Ying],
Sun, J.[Jian],
Huang, Y.J.[Yi-Jie],
Feng, D.D.[David Dagan],
Xu, Z.B.[Zong-Ben],
Abnormality detection in retinal image by individualized background
learning,
PR(102), 2020, pp. 107209.
Elsevier DOI
2003
Retinal abnormality detection, Retinal lesion detection,
Computer-aided detection, Dictionary learning, Retinal image reading
BibRef
Keerthiveena, B.,
Esakkirajan, S.,
Selvakumar, K.,
Yogesh, T.,
Computer-aided diagnosis of retinal diseases using multidomain
feature fusion,
IJIST(30), No. 2, 2020, pp. 367-379.
DOI Link
2005
feature fusion, intensity hue saturation,
support vector machine, wavelet packet transform,
weighted principal component analysis
BibRef
Ramli, R.[Roziana],
Idris, M.Y.I.[Mohd Yamani Idna],
Hasikin, K.[Khairunnisa],
Karim, N.K.A.[Noor Khairiah A.],
Wahab, A.W.A.[Ainuddin Wahid Abdul],
Ahmedy, I.[Ismail],
Ahmedy, F.[Fatimah],
Arof, H.[Hamzah],
Local descriptor for retinal fundus image registration,
IET-CV(14), No. 4, June 2020, pp. 144-153.
DOI Link
2005
BibRef
Li, X.,
Jia, M.,
Islam, M.T.,
Yu, L.,
Xing, L.,
Self-Supervised Feature Learning via Exploiting Multi-Modal Data for
Retinal Disease Diagnosis,
MedImg(39), No. 12, December 2020, pp. 4023-4033.
IEEE DOI
2012
Diseases, Image color analysis, Task analysis, Retina,
Medical diagnosis, Photography, Learning systems,
multi-modal data
BibRef
Wang, S.,
Yu, L.,
Li, K.,
Yang, X.,
Fu, C.W.,
Heng, P.A.,
DoFE: Domain-Oriented Feature Embedding for Generalizable Fundus
Image Segmentation on Unseen Datasets,
MedImg(39), No. 12, December 2020, pp. 4237-4248.
IEEE DOI
2012
Image segmentation, Training, Feature extraction, Task analysis,
Biomedical optical imaging, Optical imaging, feature embedding
BibRef
Cao, Z.[Zheng],
Sun, C.B.[Chuan-Bin],
Wang, W.Z.[Wen-Zhe],
Zheng, X.S.[Xiang-Shang],
Wu, J.[Jian],
Gao, H.H.[Hong-Hao],
Multi-modality fusion learning for the automatic diagnosis of optic
neuropathy,
PRL(142), 2021, pp. 58-64.
Elsevier DOI
2101
Multi-modality, Deep learning, Optic neuropathy, Computer-aided diagnosis
BibRef
Labounkova, I.,
Labounek, R.,
Nestrasil, I.,
Odstrcilik, J.,
Tornow, R.P.,
Kolar, R.,
Blind Source Separation of Retinal Pulsatile Patterns in Optic Nerve
Head Video-Recordings,
MedImg(40), No. 3, March 2021, pp. 852-864.
IEEE DOI
2103
Retina, Hemodynamics, Biomedical optical imaging,
Integrated optics, Veins, Optical imaging, Blood,
spontaneous venous pulsations
BibRef
Shen, Z.,
Fu, H.,
Shen, J.,
Shao, L.,
Modeling and Enhancing Low-Quality Retinal Fundus Images,
MedImg(40), No. 3, March 2021, pp. 996-1006.
IEEE DOI
2103
Degradation, Training, Image segmentation, Image analysis,
Uncertainty, Retina, Medical diagnostic imaging,
deep neural network
BibRef
Bala, A.A.[A Anilet],
Priya, P.A.[P Aruna],
Maik, V.[Vivek],
Retinal image enhancement using adaptive histogram equalization tuned
with nonsimilar grouping curvelet,
IJIST(31), No. 2, 2021, pp. 1050-1064.
DOI Link
2105
contrast-limited adaptive histogram equalization,
curvelet transform, denoising, retinal image
BibRef
Keerthiveena, B.,
Esakkirajan, S.,
Subudhi, B.N.[Badri Narayan],
Veerakumar, T.,
A hybrid BPSO-SVM for feature selection and classification of ocular
health,
IET-IPR(15), No. 2, 2021, pp. 542-555.
DOI Link
2106
BibRef
Si, Z.[Ze],
Fu, D.M.[Dong-Mei],
Liu, Y.[Yang],
Huang, Z.C.[Zhi-Cheng],
Hard exudate segmentation in retinal image with attention mechanism,
IET-IPR(15), No. 3, 2021, pp. 587-597.
DOI Link
2106
BibRef
Touahri, R.[Radia],
Azizi, N.[Nabiha],
Hammami, N.E.[Nacer Eddine],
Aldwairi, M.[Monther],
Benzebouchi, N.E.[Nacer Eddine],
Moumene, O.[Ouided],
Multi source retinal fundus image classification using convolution
neural networks fusion and Gabor-based texture representation,
IJCVR(11), No. 4, 2021, pp. 401-428.
DOI Link
2108
BibRef
Lv, Y.[Yan],
Ma, H.[Hui],
Li, J.[Jianian],
Liu, S.C.[Shuang-Cai],
Fusing dense and ReZero residual networks for super-resolution of
retinal images,
PRL(149), 2021, pp. 120-129.
Elsevier DOI
2108
Retinal images, Super-resolution reconstruction,
Dense and ReZero residual networks
BibRef
Li, X.M.[Xiao-Meng],
Hu, X.W.[Xiao-Wei],
Qi, X.J.[Xiao-Juan],
Yu, L.Q.[Le-Quan],
Zhao, W.[Wei],
Heng, P.A.[Pheng-Ann],
Xing, L.[Lei],
Rotation-Oriented Collaborative Self-Supervised Learning for Retinal
Disease Diagnosis,
MedImg(40), No. 9, September 2021, pp. 2284-2294.
IEEE DOI
2109
Task analysis, Retina, Diseases, Medical diagnosis,
Medical diagnostic imaging, Feature extraction, Annotations,
retinal disease classification
BibRef
Ju, L.[Lie],
Wang, X.[Xin],
Zhao, X.[Xin],
Bonnington, P.[Paul],
Drummond, T.[Tom],
Ge, Z.Y.[Zong-Yuan],
Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis
Models via Adversarial Learning and Pseudo-Labeling,
MedImg(40), No. 10, October 2021, pp. 2911-2925.
IEEE DOI
2110
Retina, Diseases, Imaging, Task analysis, Training,
Generative adversarial networks,
ultra-widefield fundus images
BibRef
Zhang, J.K.[Jun-Kang],
Wang, Y.Q.[Yi-Qian],
Dai, J.[Ji],
Cavichini, M.[Melina],
Bartsch, D.U.G.[Dirk-Uwe G.],
Freeman, W.R.[William R.],
Nguyen, T.Q.[Truong Q.],
An, C.[Cheolhong],
Two-Step Registration on Multi-Modal Retinal Images via Deep Neural
Networks,
IP(31), 2022, pp. 823-838.
IEEE DOI
2201
Retina, Image segmentation, Training,
Convolutional neural networks, Transformers, Pipelines,
convolutional neural networks
BibRef
Ju, L.[Lie],
Wang, X.[Xin],
Wang, L.[Lin],
Mahapatra, D.[Dwarikanath],
Zhao, X.[Xin],
Zhou, Q.[Quan],
Liu, T.L.[Tong-Liang],
Ge, Z.Y.[Zong-Yuan],
Improving Medical Images Classification With Label Noise Using
Dual-Uncertainty Estimation,
MedImg(41), No. 6, June 2022, pp. 1533-1546.
IEEE DOI
2206
Noise measurement, Uncertainty, Training, Medical services,
Estimation, Medical diagnostic imaging, Diseases, Label noise,
retinal diseases
BibRef
Pal, M.N.[Mahua Nandy],
Banerjee, M.[Minakshi],
Sarkar, A.[Ankit],
Quantum neural network application for exudate affected retinal image
patch identification,
IJCVR(12), No. 4, 2022, pp. 360-376.
DOI Link
2207
BibRef
Meng, Q.[Qier],
Liao, L.[Liang],
Satoh, S.[Shin'Ichi],
Weakly-Supervised Learning With Complementary Heatmap for Retinal
Disease Detection,
MedImg(41), No. 8, August 2022, pp. 2067-2078.
IEEE DOI
2208
Heating systems, Lesions, Diseases, Retina, Annotations, Training,
Image segmentation, Lesion detection, Grad-CAM,
complementary heatmap
BibRef
Wen, Y.[Yang],
Chen, L.T.[Lei-Ting],
Qiao, L.F.[Li-Feng],
Deng, Y.[Yu],
Chen, H.S.[Hai-Sheng],
Zhang, T.[Tian],
Zhou, C.[Chuan],
FLeak-Seg: Automated Fundus Fluorescein Leakage Segmentation via
Cross-Modal Attention Learning,
MultMedMag(29), No. 2, April 2022, pp. 114-123.
IEEE DOI
2208
Image segmentation, Linguistics, Visualization, Optical imaging,
Feature extraction, Biomedical optical imaging, Training data,
Attention learning
BibRef
Pappu, G.P.[Geetha Pavani],
Krishna, T.[Talabhakthula],
Biswal, B.[Birendra],
Karn, P.K.[Prakash Kumar],
Biswal, P.K.[Pradyut Kumar.],
Hasan, S.[Shazia],
Nayak, D.[Debasish],
A deeply supervised maximum response texton based SegNet for
simultaneous multi retinal lesion segmentation,
IJIST(32), No. 5, 2022, pp. 1709-1726.
DOI Link
2209
diabetic retinopathy, IDRiD dataset,
maximum response texton filter bank, multi retinal lesion segmentation
BibRef
Coppin, T.[Thomas],
Palmer, D.W.[Douglas W.],
Rana, K.[Krishan],
Dansereau, D.G.[Donald G.],
Collins, M.J.[Michael J.],
Atchison, D.A.[David A.],
Roberts, J.[Jonathan],
Crawford, R.[Ross],
Jaiprakash, A.[Anjali],
Design of a focused light field fundus camera for retinal imaging,
SP:IC(109), 2022, pp. 116869.
Elsevier DOI
2210
Light field imaging, Optical design, Retinal imaging
BibRef
Zhu, M.,
Zeng, K.,
Lin, G.,
Gong, Y.,
Hao, T.,
Wattanachote, K.,
Luo, X.,
IterNet++: An improved model for retinal image segmentation by
curvelet enhancing, guided filtering, offline hard-sample mining, and
test-time augmenting,
IET-IPR(16), No. 13, 2022, pp. 3617-3633.
DOI Link
2210
BibRef
Yang, B.Y.[Bing-Yu],
Zhao, H.[He],
Cao, L.C.[Lv-Chen],
Liu, H.R.[Han-Ruo],
Wang, N.L.[Ning-Li],
Li, H.Q.[Hui-Qi],
Retinal image enhancement with artifact reduction and structure
retention,
PR(133), 2023, pp. 108968.
Elsevier DOI
2210
Retinal image enhancement, Generative adversarial networks, High frequency
BibRef
He, A.[Along],
Wang, K.[Kai],
Li, T.[Tao],
Bo, W.[Wang],
Kang, H.[Hong],
Fu, H.Z.[Hua-Zhu],
Progressive Multiscale Consistent Network for Multiclass Fundus
Lesion Segmentation,
MedImg(41), No. 11, November 2022, pp. 3146-3157.
IEEE DOI
2211
Lesions, Image segmentation, Feature extraction, Task analysis,
Optical imaging, Biomedical optical imaging, Semantics,
consistent multi-scale
BibRef
Mahapatra, S.[Sakambhari],
Agrawal, S.[Sanjay],
An optimal statistical feature-based transformation function for
enhancement of retinal images using adaptive enhanced leader particle
swarm optimization,
IJIST(32), No. 6, 2022, pp. 2163-2183.
DOI Link
2212
enhancement, intensity transformation, PSO, retinal image
BibRef
Sundar, S.[Sumod],
Sumathy, S.[Subramanian],
An effective deep learning model for grading abnormalities in retinal
fundus images using variational auto-encoders,
IJIST(33), No. 1, 2023, pp. 92-107.
DOI Link
2301
Diabetic macular edema, Diabetic retinopathy,
Region proposal network, retinal image grading, variational auto-encoder
BibRef
Liu, Q.[Qing],
Liu, H.T.[Hao-Tian],
Ke, W.[Wei],
Liang, Y.X.[Yi-Xiong],
Automated lesion segmentation in fundus images with many-to-many
reassembly of features,
PR(136), 2023, pp. 109191.
Elsevier DOI
2301
Feature reassembly, Upsampling operator, Downsampling operator,
Lesion segmentation, Fundus image analysis
BibRef
Zhang, H.T.[Hao-Tian],
Jia, N.[Ning],
Zhuo, K.Q.[Ke-Qiang],
Zhao, W.D.[Wei-Dong],
Retinal fundus image registration framework using Bayesian
integration and asymmetric Gaussian mixture model,
IJIST(33), No. 1, 2023, pp. 403-418.
DOI Link
2301
asymmetric Gaussian mixture model, Bayesian integration,
retinal image registration framework
BibRef
Xiang, D.[Dehui],
Yan, S.S.[Shen-Shen],
Guan, Y.[Ying],
Cai, M.[Mulin],
Li, Z.Q.[Zhe-Qing],
Liu, H.Y.[Hai-Yun],
Chen, X.J.[Xin-Jian],
Tian, B.[Bei],
Semi-Supervised Dual Stream Segmentation Network for Fundus Lesion
Segmentation,
MedImg(42), No. 3, March 2023, pp. 713-725.
IEEE DOI
2303
Image segmentation, Retina, Lesions, Feature extraction, Fuses,
Streaming media, Training, Semi-supervised learning,
optical coherence tomography
BibRef
Du, Y.C.[Yu-Chen],
Wang, L.S.[Li-Sheng],
Meng, D.Y.[De-Yu],
Chen, B.Z.[Ben-Zhi],
An, C.Y.[Cheng-Yang],
Liu, H.[Hao],
Liu, W.P.[Wei-Ping],
Xu, Y.P.[Yu-Peng],
Fan, Y.[Ying],
Feng, D.D.[David Dagan],
Wang, X.Y.[Xiu-Ying],
Xu, X.[Xun],
Individualized Statistical Modeling of Lesions in Fundus Images for
Anomaly Detection,
MedImg(42), No. 4, April 2023, pp. 1185-1196.
IEEE DOI
2304
Lesions, Image reconstruction, Anomaly detection,
Adaptation models, Measurement, Solid modeling, Sociology,
normal personalized variations
BibRef
Liu, R.[Ruhan],
Wang, T.Q.[Tian-Qin],
Li, H.[Huating],
Zhang, P.[Ping],
Li, J.[Jing],
Yang, X.K.[Xiao-Kang],
Shen, D.G.[Ding-Gang],
Sheng, B.[Bin],
TMM-Nets: Transferred Multi- to Mono-Modal Generation for Lupus
Retinopathy Diagnosis,
MedImg(42), No. 4, April 2023, pp. 1083-1094.
IEEE DOI
2304
Lesions, Transfer learning, Retinopathy, Image synthesis, Training,
Data models, Biomedical imaging, Lupus retinopathy,
unmatched multi-modal data
BibRef
Guo, E.[Erjian],
Fu, H.Z.[Hua-Zhu],
Zhou, L.P.[Lu-Ping],
Xu, D.[Dong],
Bridging Synthetic and Real Images: A Transferable and Multiple
Consistency Aided Fundus Image Enhancement Framework,
MedImg(42), No. 8, August 2023, pp. 2189-2199.
IEEE DOI
2308
Retina, Image enhancement, Task analysis, Adaptation models,
Deep learning, Transformers, Computer architecture, Fundus image,
image enhancement
BibRef
Chen, S.[Shaobin],
Wu, Z.[Zhenquan],
Li, M.Z.[Ming-Zhu],
Zhu, Y.[Yun],
Xie, H.[Hai],
Yang, P.[Peng],
Zhao, C.[Cheng],
Zhang, Y.T.[Yong-Tao],
Zhang, S.C.[Shao-Chong],
Zhao, X.Y.[Xin-Yu],
Lu, L.[Lin],
Zhang, G.M.[Guo-Ming],
Lei, B.[Baiying],
FIT-Net: Feature Interaction Transformer Network for Pathologic
Myopia Diagnosis,
MedImg(42), No. 9, September 2023, pp. 2524-2538.
IEEE DOI
2310
BibRef
Bi, Q.[Qi],
Sun, X.[Xu],
Yu, S.[Shuang],
Ma, K.[Kai],
Bian, C.[Cheng],
Ning, M.[Munan],
He, N.[Nanjun],
Huang, Y.W.[Ya-Wen],
Li, Y.X.[Yue-Xiang],
Liu, H.[Hanruo],
Zheng, Y.F.[Ye-Feng],
MIL-ViT: A multiple instance vision transformer for fundus image
classification,
JVCIR(97), 2023, pp. 103956.
Elsevier DOI Code:
WWW Link.
2312
Vision transformer, Multiple instance learning, Fundus image,
Attention aggregation, Calibrated attention mechanism
BibRef
Ju, L.[Lie],
Yu, Z.[Zhen],
Wang, L.[Lin],
Zhao, X.[Xin],
Wang, X.[Xin],
Bonnington, P.[Paul],
Ge, Z.Y.[Zong-Yuan],
Hierarchical Knowledge Guided Learning for Real-World Retinal Disease
Recognition,
MedImg(43), No. 1, January 2024, pp. 335-350.
IEEE DOI
2401
BibRef
Tang, Z.[Zhiri],
Wong, H.S.[Hau-San],
Yu, Z.[Zekuan],
Ocular Disease Recognition via Differential Privacy and Unsupervised
Domain Regularizer,
SPLetters(31), 2024, pp. 136-140.
IEEE DOI
2401
BibRef
Zhang, W.T.[Wen-Tian],
Liu, H.Z.[Hao-Zhe],
Xie, J.H.[Jin-Heng],
Huang, Y.W.[Ya-Wen],
Zhang, Y.[Yu],
Li, Y.X.[Yue-Xiang],
Ramachandra, R.[Raghavendra],
Zheng, Y.F.[Ye-Feng],
Anomaly detection via gating highway connection for retinal fundus
images,
PR(148), 2024, pp. 110167.
Elsevier DOI Code:
WWW Link.
2402
Anomaly detection, Feature prediction, Fundus image, Skip connection
BibRef
Shaik, N.S.[Nagur Shareef],
Cherukuri, T.K.[Teja Krishna],
Gated contextual transformer network for multi-modal retinal image
clinical description generation,
IVC(143), 2024, pp. 104946.
Elsevier DOI
2403
Clinical description generation, Expert-defined clinical keywords,
Gated contextual attention, Visual explanation
BibRef
Sau, P.C.[Paresh Chandra],
Gupta, M.[Manish],
Bansal, A.[Atul],
Optimized ResUNet++-Enabled Blood Vessel Segmentation for Retinal
Fundus Image Based on Hybrid Meta-Heuristic Improvement,
IJIG(24), No. 3, May 2024, pp. 2450033.
DOI Link
2406
BibRef
Xia, X.[Xue],
Li, Y.[Ying],
Xiao, G.[Guobei],
Zhan, K.[Kun],
Yan, J.H.[Jin-Hua],
Cai, C.[Chao],
Fang, Y.M.[Yu-Ming],
Huang, G.[Guofu],
Benchmarking deep models on retinal fundus disease diagnosis and a
large-scale dataset,
SP:IC(127), 2024, pp. 117151.
Elsevier DOI Code:
WWW Link.
2408
Dataset, Benchmark, Ocular disease diagnosis,
Medical image analysis, Attention network
BibRef
Gadde, S.S.[Sai Sudha],
Kiran, K.V.D.,
Entropy-Based Feature Extraction Model for Fundus Images with Deep
Learning Model,
IJIG(24), No. 5, September 2024, pp. 2340006.
DOI Link
2410
BibRef
Huang, K.[Kun],
Ma, X.[Xiao],
Zhang, Z.[Zetian],
Zhang, Y.H.[Yu-Han],
Yuan, S.T.[Song-Tao],
Fu, H.Z.[Hua-Zhu],
Chen, Q.[Qiang],
Diverse Data Generation for Retinal Layer Segmentation With Potential
Structure Modeling,
MedImg(43), No. 10, October 2024, pp. 3584-3595.
IEEE DOI Code:
WWW Link.
2411
Image segmentation, Retina, Data models, Diseases, Pathology, Training,
Task analysis, Optical coherence tomography, layer segmentation,
contrast learning
BibRef
Rong, Y.B.[Yi-Biao],
Lin, T.[Tian],
Chen, H.Y.[Hao-Yu],
Fan, Z.[Zhun],
Chen, X.J.[Xin-Jian],
Searching Discriminative Regions for Convolutional Neural Networks in
Fundus Image Classification With Genetic Algorithms,
IP(33), 2024, pp. 5949-5958.
IEEE DOI
2411
Image classification, Visualization, Glaucoma, Genetic algorithms,
Deep learning, Convolutional neural networks, Search problems,
fundus image classification
BibRef
Zhang, X.F.[Xin-Feng],
Zhang, J.[JiaMing],
Shao, J.[Jie],
Li, H.[Hui],
Liu, X.M.[Xiao-Min],
Jia, M.[Maoshen],
A semi-supervised segmentation network fusing pseudo-label with
multi-level feature consistency correction for hard exudates,
IET-IPR(18), No. 13, 2024, pp. 4411-4421.
DOI Link
2411
image segmentation, medical image processing
BibRef
Go, S.[Sojung],
Ji, Y.[Younghoon],
Park, S.J.[Sang Jun],
Lee, S.[Soochahn],
Generation of Structurally Realistic Retinal Fundus Images with
Diffusion Models,
EnhanceMedIm24(2335-2344)
IEEE DOI
2410
Image segmentation, Data privacy, Accuracy, Retina, Diffusion models,
Retinal Fundus Image, Diffusion Model, Artery/Vein Mask, Image Generation
BibRef
Bao, J.[Jinan],
Sun, H.[Hanshi],
Deng, H.Q.[Han-Qiu],
He, Y.S.[Yin-Sheng],
Zhang, Z.X.[Zhao-Xiang],
Li, X.Y.[Xing-Yu],
BMAD: Benchmarks for Medical Anomaly Detection,
VAND24(4042-4053)
IEEE DOI Code:
WWW Link.
2410
Benchmark testing, Video surveillance, Retina,
Medical diagnosis, Medical diagnostic imaging, Anomaly detection,
benchmark
BibRef
Li, L.[Lingrui],
Zhou, Y.F.[Yan-Feng],
Yang, G.[Ge],
Robust Source-Free Domain Adaptation for Fundus Image Segmentation,
WACV24(7825-7834)
IEEE DOI Code:
WWW Link.
2404
Training, Image segmentation, Adaptation models, Costs, Computational modeling,
Source coding, Applications, Biomedical / healthcare / medicine
BibRef
Akinniyi, O.[Oluwatunmise],
Razzak, I.[Imran],
Rahman, M.M.[Md Mahmudur],
Sandhu, H.[Harpal],
El-Baz, A.[Ayman],
Khalifa, F.[Fahmi],
Multi-Classification of Retinal Diseases Using a Pyramidal Ensemble
Deep Framework,
ICIP23(1945-1949)
IEEE DOI
2312
BibRef
Zhang, J.[Junkang],
Wen, B.[Bo],
Kalaw, F.G.P.[Fritz Gerald P.],
Cavichini, M.[Melina],
Bartsch, D.U.G.[Dirk-Uwe G.],
Freeman, W.R.[William R.],
Nguyen, T.Q.[Truong Q.],
An, C.[Cheolhong],
Accurate Registration between Ultra-Wide-Field and Narrow Angle
Retina Images with 3D Eyeball Shape Optimization,
ICIP23(2750-2754)
IEEE DOI
2312
BibRef
Wu, T.W.[Ting-Wei],
Huang, J.H.[Jia-Hong],
Lin, J.[Joseph],
Worring, M.[Marcel],
Expert-defined Keywords Improve Interpretability of Retinal Image
Captioning,
WACV23(1859-1868)
IEEE DOI
2302
Heating systems, Measurement, Medical services, Predictive models,
Retina, Biomedical imaging, Applications: Biomedical/healthcare/medicine
BibRef
Avramidis, K.[Kleanthis],
Rostami, M.[Mohammad],
Chang, M.[Melinda],
Narayanan, S.[Shrikanth],
Automating Detection of Papilledema in Pediatric Fundus Images with
Explainable Machine Learning,
ICIP22(3973-3977)
IEEE DOI
2211
Integrated optics, Deep learning, Training, Location awareness,
Optical imaging, Feature extraction, Robustness, human-centered AI,
multi-view learning
BibRef
Jeon, M.[Minkyu],
Park, H.[Hyeonjin],
Kim, H.W.J.[Hyun-Woo J.],
Morley, M.[Michael],
Cho, H.[Hyunghoon],
k-SALSA: k-Anonymous Synthetic Averaging of Retinal Images via Local
Style Alignment,
ECCV22(XXI:661-678).
Springer DOI
2211
BibRef
Li, M.J.[Ming-Jie],
Cai, W.J.[Wen-Jia],
Verspoor, K.[Karin],
Pan, S.R.[Shi-Rui],
Liang, X.D.[Xiao-Dan],
Chang, X.J.[Xiao-Jun],
Cross-modal Clinical Graph Transformer for Ophthalmic Report
Generation,
CVPR22(20624-20633)
IEEE DOI
2210
Training, Visualization, Unified modeling language,
Benchmark testing, Writing, Transformers, Image restoration, Medical,
Vision + language
BibRef
Sangiovanni, M.[Mara],
Frucci, M.[Maria],
Riccio, D.[Daniel],
di Perna, L.[Luigi],
Simonelli, F.[Francesca],
Brancati, N.[Nadia],
Exploring a Transformer Approach for Pigment Signs Segmentation in
Fundus Images,
MEDXF22(329-339).
Springer DOI
2208
BibRef
Haraburda, P.[Patrycja],
Dabala, L.[Lukasz],
Eye Diseases Classification Using Deep Learning,
CIAP22(I:160-172).
Springer DOI
2205
BibRef
Huang, J.H.[Jia-Hong],
Wu, T.W.[Ting-Wei],
Yang, C.H.H.[C.H. Huck],
Shi, Z.L.[Zeng-Lin],
Lin, I.H.[I-Hung],
Tegner, J.[Jesper],
Worring, M.[Marcel],
Non-local Attention Improves Description Generation for Retinal
Images,
WACV22(3250-3259)
IEEE DOI
2202
Measurement, Computational modeling, Retina,
Task analysis, Medical diagnostic imaging, Mutual information,
Vision Systems and Applications
BibRef
Huang, J.H.[Jia-Hong],
Wu, T.W.[Ting-Wei],
Yang, C.H.H.[Chao-Han Huck],
Worring, M.[Marcel],
Deep Context-Encoding Network for Retinal Image Captioning,
ICIP21(3762-3766)
IEEE DOI
2201
Measurement, Image coding, Retina, Decoding, Task analysis,
Biomedical imaging, Image Captioning, Medical Report Generation,
and Context-Encoding
BibRef
Zhao, S.[Shu],
Chen, W.Y.[Wei-Yang],
Retinal Image Segmentation Based on Multiple Features Method,
ICIVC21(124-128)
IEEE DOI
2112
Integrated optics, Image segmentation,
Biomedical optical imaging, Veins, Blood vessels, Retina,
standard deviation
BibRef
Kamran, S.A.[Sharif Amit],
Hossain, K.F.[Khondker Fariha],
Tavakkoli, A.[Alireza],
Zuckerbrod, S.L.[Stewart Lee],
Baker, S.A.[Salah A.],
VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction
using Vision Transformers,
CVAMD21(3228-3238)
IEEE DOI
2112
Integrated optics, In vivo, Computer architecture, Retina,
Generative adversarial networks, Transformers, Optical imaging
BibRef
Forero, M.G.[Manuel G.],
Beltrán, C.E.[Carlos E.],
Troncoso, A.[Armando],
González-Santos, C.[Christian],
Classification of Cattleya Trianae and Its Varieties by Using
Colorimetry,
MCPR20(35-44).
Springer DOI
2007
BibRef
Chelaramani, S.[Sahil],
Gupta, M.[Manish],
Agarwal, V.[Vipul],
Gupta, P.[Prashant],
Habash, R.[Ranya],
Multi-Task Knowledge Distillation for Eye Disease Prediction,
WACV21(3982-3992)
IEEE DOI
2106
Measurement, Retinopathy, Training data, Melanoma, Predictive models,
Retina, Data models
BibRef
Huang, J.H.[Jia-Hong],
Yang, C.H.H.[C.H. Huck],
Liu, F.Y.[Fang-Yu],
Tian, M.[Meng],
Liu, Y.C.[Yi-Chieh],
Wu, T.W.[Ting-Wei],
Lin, I.H.[I-Hung],
Wang, K.[Kang],
Morikawa, H.[Hiromasa],
Chang, H.[Hernghua],
Tegner, J.[Jesper],
Worring, M.[Marcel],
DeepOpht: Medical Report Generation for Retinal Images via Deep
Models and Visual Explanation,
WACV21(2441-2451)
IEEE DOI
2106
Visualization, Retina, Generators,
Medical diagnostic imaging, Diseases
BibRef
Ferrari, C.[Claudio],
Berlincioni, L.[Lorenzo],
Bertini, M.[Marco],
del Bimbo, A.[Alberto],
Inner Eye Canthus Localization for Human Body Temperature Screening,
ICPR21(8833-8840)
IEEE DOI
2105
Temperature measurement, Solid modeling, Privacy,
Annotations, Manuals, Cameras
BibRef
Zhao, R.[Ruohan],
Li, Q.[Qin],
You, J.[Jane],
Robust Localization of Retinal Lesions via Weakly-supervised Learning,
ICPR21(4613-4618)
IEEE DOI
2105
Location awareness, Training, Pathology, Solid modeling, Annotations,
Semantics, Retina
BibRef
Wei, Q.J.[Qi-Jie],
Li, X.R.[Xi-Rong],
Yu, W.H.[Wei-Hong],
Zhang, X.[Xiao],
Zhang, Y.P.[Yong-Peng],
Hu, B.[Bojie],
Mo, B.[Bin],
Gong, D.[Di],
Chen, N.[Ning],
Ding, D.[Dayong],
Chen, Y.X.[You-Xin],
Learn to Segment Retinal Lesions and Beyond,
ICPR21(7403-7410)
IEEE DOI
2105
Image segmentation, Art, Retinopathy, Semantics, Training data, Retina
BibRef
Le, N.[Ngan],
Le, T.[Trung],
Yamazaki, K.[Kashu],
Bui, T.[Toan],
Luu, K.[Khoa],
Savides, M.[Marios],
Offset Curves Loss for Imbalanced Problem in Medical Segmentation,
ICPR21(9189-9195)
IEEE DOI
2105
Image segmentation, Fitting, Semantics,
Object segmentation, Retina, Brain modeling
BibRef
Fang, X.[Xi],
Yang, J.C.[Jian-Cheng],
Ni, B.B.[Bing-Bing],
Stochastic Label Refinery: Toward Better Target Label Distribution,
ICPR21(9115-9121)
IEEE DOI
2105
Training, Retinopathy, Supervised learning, Neural networks,
Refining, Stochastic processes, Training data
BibRef
Ilyasova, N.[Nataly],
Shirokanev, A.[Alexandr],
Demin, N.[Nikita],
Zolotarev, A.[Andrey],
High-performance Algorithms Application for Retinal Image Segmentation
Based on Texture Features,
IMTA20(198-210).
Springer DOI
2103
BibRef
Zhou, K.[Kang],
Xiao, Y.T.[Yu-Ting],
Yang, J.L.[Jian-Long],
Cheng, J.[Jun],
Liu, W.[Wen],
Luo, W.X.[Wei-Xin],
Gu, Z.W.[Zai-Wang],
Liu, J.[Jiang],
Gao, S.H.[Sheng-Hua],
Encoding Structure-texture Relation with P-net for Anomaly Detection in
Retinal Images,
ECCV20(XX:360-377).
Springer DOI
2011
BibRef
Meng, Q.,
Shin'ichi, S.,
ADINet: Attribute Driven Incremental Network for Retinal Image
Classification,
CVPR20(4032-4041)
IEEE DOI
2008
Diseases, Retina, Training, Entropy, Predictive models,
Knowledge engineering, Biomedical imaging
BibRef
Peskine, Y.[Youri],
Boucher, M.C.[Marie-Carole],
Cheriet, F.[Farida],
An Interpretable Data-driven Score for the Assessment of Fundus Images
Quality,
ICIAR20(II:325-331).
Springer DOI
2007
BibRef
ElMahmoudy, S.[Safinaz],
Abdel-Hamid, L.[Lamiaa],
El-Rafei, A.[Ahmed],
El-Ramly, S.[Salwa],
Wavelet-based Retinal Image Enhancement,
ICIAR20(II:313-324).
Springer DOI
2007
BibRef
Gaudio, A.[Alex],
Smailagic, A.[Asim],
Campilho, A.[Aurélio],
Enhancement of Retinal Fundus Images via Pixel Color Amplification,
ICIAR20(II:299-312).
Springer DOI
2007
BibRef
Truong, P.,
Apostolopoulos, S.,
Mosinska, A.,
Stucky, S.,
Ciller, C.,
Zanet, S.D.,
GLAMpoints: Greedily Learned Accurate Match Points,
ICCV19(10731-10740)
IEEE DOI
2004
convolutional neural nets, diseases, eye, feature extraction,
greedy algorithms, image matching, image registration, diagnostic imaging
BibRef
Kaplan, S.[Sinan],
Lensu, L.[Lasse],
Laaksonen, L.[Lauri],
Uusitalo, H.[Hannu],
Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images,
ACIVS20(262-273).
Springer DOI
2003
BibRef
Lai, X.[Xin],
Li, X.R.[Xi-Rong],
Qian, R.[Rui],
Ding, D.[Dayong],
Wu, J.[Jun],
Xu, J.P.[Jie-Ping],
Four Models for Automatic Recognition of Left and Right Eye in Fundus
Images,
MMMod19(I:507-517).
Springer DOI
1901
BibRef
Liu, Y.[Yun],
Ren, G.[Gang],
Yang, G.P.[Gong-Ping],
Xi, X.M.[Xiao-Ming],
Chen, X.J.[Xin-Jian],
Yin, Y.L.[Yi-Long],
Fully Convolutional Network and Graph-Based Method for
Co-Segmentation of Retinal Layer on Macular OCT Images,
ICPR18(3081-3085)
IEEE DOI
1812
Retina, Image segmentation, Image edge detection,
Computer architecture, Computational modeling, Task analysis,
retinal layer segmentation
BibRef
Zhang, H.,
Liu, X.,
Wang, G.,
Chen, Y.,
Zhao, W.,
An Automated Point Set Registration Framework for Multimodal Retinal
Image,
ICPR18(2857-2862)
IEEE DOI
1812
Feature extraction, Retina, Image registration, Task analysis,
Estimation, Imaging, Measurement, multimodal retinal image,
adaptive mismatches removing
BibRef
da Silva, I.F.S.[Italo Francyles Santos],
de Almeida, J.D.S.[Joăo Dallyson Sousa],
Teixeira, J.A.M.[Jorge Antonio Meireles],
Junior, G.B.[Geraldo Braz],
de Paiva, A.C.[Anselmo Cardoso],
Segmentation of the Retinal Reflex in Brückner Test Images Using U-Net
Convolutional Network,
ICIAR18(679-686).
Springer DOI
1807
BibRef
Razgulin, A.V.,
Iroshnikov, N.G.,
Larichev, A.V.,
Romanenko, T.E.,
Goncharov, A.S.,
Fourier Domain Iterative Approach to Optical Sectioning of 3d
Translucent Objects for Ophthalmology Purposes,
PTVSBB17(173-177).
DOI Link
1805
BibRef
Nasonov, A.,
Chesnakov, K.,
Krylov, A.,
CNN Based Retinal Image Upscaling Using Zero Component Analysis,
PTVSBB17(27-31).
DOI Link
1805
BibRef
Colomer, A.,
Naranjo, V.,
Angulo, J.,
Colour normalization of fundus images based on geometric
transformations applied to their chromatic histogram,
ICIP17(3135-3139)
IEEE DOI
1803
biomedical optical imaging, diseases, eye, image colour analysis,
image segmentation, image texture, medical image processing,
fundus images
BibRef
Samagaio, G.[Gabriela],
de Moura, J.[Joaquim],
Novo, J.[Jorge],
Ortega, M.[Marcos],
Optical Coherence Tomography Denoising by Means of a Fourier
Butterworth Filter-Based Approach,
CIAP17(II:422-432).
Springer DOI
1711
BibRef
Katona, M.[Melinda],
Kovács, A.[Attila],
Dégi, R.[Rózsa],
Nyúl, L.G.[László G.],
Automatic Detection of Subretinal Fluid and Cyst in Retinal Images,
CIAP17(I:606-616).
Springer DOI
1711
BibRef
Caramihale, T.[Traian],
Popescu, D.[Dan],
Ichim, L.[Loretta],
Interconnected Neural Networks Based on Voting Scheme and Local
Detectors for Retinal Image Analysis and Diagnosis,
CIAP17(II:753-764).
Springer DOI
1711
BibRef
Ai, W.W.[Wen-Wen],
Shao, F.J.[Feng-Jing],
Sun, R.C.[Ren-Cheng],
Discovering the pathological mechanism based on the locus interaction
networks with differential analysis,
ICIVC17(288-294)
IEEE DOI
1708
Bioinformatics, Databases, Diseases, Genomics, Pathology, Switches,
differential network, locus genotypes interaction networks,
retinitis Pigmentosa
BibRef
Lazareva, A.[Anfisa],
Asad, M.[Muhammad],
Slabaugh, G.[Greg],
Learning to Deblur Adaptive Optics Retinal Images,
ICIAR17(497-506).
Springer DOI
1706
BibRef
Ilyasova, N.[Nataly],
Paringer, R.[Rustam],
Kupriyanov, A.[Alexander],
Regions of Interest in a Fundus Image Selection Technique Using the
Discriminative Analysis Methods,
ICCVG16(408-417).
Springer DOI
1611
BibRef
Roy, P.K.[Pallab K.],
Chakravorty, R.,
Sedai, S.[Suman],
Mahapatra, D.[Dwarikanath],
Garnavi, R.[Rahil],
Automatic Eye Type Detection in Retinal Fundus Image Using Fusion of
Transfer Learning and Anatomical Features,
DICTA16(1-7)
IEEE DOI
1701
Adaptive optics
BibRef
Mahapatra, D.[Dwarikanath],
Roy, P.K.[Pallab K.],
Sedai, S.[Suman],
Garnavi, R.[Rahil],
Retinal Image Quality Classification Using Saliency Maps and CNNs,
MLMI16(172-179).
Springer DOI
1611
BibRef
Mokhtari, M.,
Rabbani, H.,
Mehri-Dehnavi, A.,
Alignment of optic nerve head optical coherence tomography B-scans in
right and left eyes,
ICIP17(2279-2283)
IEEE DOI
1803
BibRef
Earlier:
ICIP16(2355-2359)
IEEE DOI
1610
biomedical optical imaging, blood vessels, diseases, eye,
feature extraction, medical image processing, optical tomography,
alignment
BibRef
Joshi, V.,
Agurto, C.,
Barriga, E.,
Nemeth, S.,
Soliz, P.,
Clinical utilization of automated image analysis software for
improving retinal reader's performance,
Southwest16(145-148)
IEEE DOI
1605
Graphical user interfaces
BibRef
Hassan, H.A.,
Tahir, N.M.,
Yassin, I.,
Yahaya, C.H.C.,
Shafie, S.M.,
Visualisation of exudates in fundus images using radar chart and
color auto correlogram technique,
ICCVIA15(1-6)
IEEE DOI
1603
diseases
BibRef
Mahmudi, T.[Tahereh],
Kafieh, R.[Rahele],
Rabbani, H.[Hossein],
Mehri, A.[Alireza],
Akhlagi, M.[Mohammadreza],
Asymmetry evaluation of fundus images in right and left eyes using
radon transform and fractal analysis,
ICIP15(163-167)
IEEE DOI
1512
Asymmetry Analysis; Fractal Dimension; Fundus images; Radon Transform
BibRef
Ong, E.P.[Ee Ping],
Xu, Y.[Yanwu],
Wong, D.W.K.[Damon Wing Kee],
Liu, J.[Jiang],
Retina verification using a combined points and edges approach,
ICIP15(2720-2724)
IEEE DOI
1512
Least-Median-Squares estimator
BibRef
Kannan, R.,
Ghinea, G.,
Kannaiyan, S.,
Swaminathan, S.,
CLRF: Compressed Local Retinal Features for image description,
ICAPR15(1-5)
IEEE DOI
1511
data compression
BibRef
Chen, X.Y.[Xiang-Yu],
Xu, Y.[Yanwu],
Duan, L.X.[Li-Xin],
Yan, S.C.[Shui-Cheng],
Zhang, Z.[Zhuo],
Wong, D.W.K.[Damon Wing Kee],
Liu, J.[Jiang],
Multiple Ocular Diseases Classification with Graph Regularized
Probabilistic Multi-label Learning,
ACCV14(IV: 127-142).
Springer DOI
1504
BibRef
Thapa, D.[Damber],
Raahemifar, K.[Kaamran],
Lakshminarayanan, V.[Vasudevan],
Performance analysis of unconventional dictionary on retinal images,
ICIP14(2275-2279)
IEEE DOI
1502
Dictionaries
BibRef
Remeseiro, B.[Beatriz],
Oliver, K.M.[Katherine M.],
Martin, E.[Eilidh],
Tomlinson, A.[Alan],
Villaverde, D.G.[Daniel G.],
Penedo, M.G.[Manuel G.],
Automatic Tear Film Segmentation Based on Texture Analysis and Region
Growing,
ICIAR14(II: 185-192).
Springer DOI
1410
Dry eye syndrome.
BibRef
González-López, A.[Ana],
Ortega, M.[Marcos],
Penedo, M.G.[Manuel G.],
Charlón, P.[Pablo],
Automatic Robust Segmentation of Retinal Layers in OCT Images with
Refinement Stages,
ICIAR14(II: 337-345).
Springer DOI
1410
BibRef
Cancela, B.,
Ortega, M.,
Penedo, M.G.,
A Wavefront Marching Method for Solving the Eikonal Equation on
Cartesian Grids,
ICCV15(1832-1840)
IEEE DOI
1602
Complexity theory
BibRef
Haleem, M.S.[Muhammad Salman],
Han, L.X.[Liang-Xiu],
van Hemert, J.[Jano],
Li, B.H.[Bai-Hua],
Fleming, A.[Alan],
Superpixel Based Retinal Area Detection in SLO Images,
ICCVG14(254-261).
Springer DOI
1410
BibRef
Sattar, F.,
Campilho, A.[Aurélio],
Kamel, M.,
Optic Disk Localization for Gray-Scale Retinal Images Based on Patch
Filtering,
ICIAR14(II: 277-284).
Springer DOI
1410
BibRef
Ramakanth, S.A.,
Babu, R.V.,
OD-Match: PatchMatch based Optic Disk detection,
NCVPRIPG13(1-4)
IEEE DOI
1408
approximation theory
BibRef
Figueiredo, I.N.[Isabel N.],
Neves, J.S.[Júlio S.],
Moura, S.[Susana],
Oliveira, C.M.[Carlos Manta],
Ramos, J.D.[Joăo Diogo],
Pattern Classes in Retinal Fundus Images Based on Function Norms,
CompIMAGE14(95-105).
Springer DOI
1407
BibRef
Kolar, R.[Radim],
Hoeher, B.[Bernhard],
Odstrcilik, J.[Jan],
Schmauss, B.[Bernhard],
Jan, J.[Jiri],
Registration of Image Sequences from Experimental Low-Cost Fundus
Camera,
WBIR14(174-183).
Springer DOI
1407
BibRef
Adal, K.M.[Kedir M.],
Ensing, R.M.[Ronald M.],
Couvert, R.[Rosalie],
van Etten, P.[Peter],
Martinez, J.P.[Jose P.],
Vermeer, K.A.[Koenraad A.],
van Vliet, L.J.,
A Hierarchical Coarse-to-Fine Approach for Fundus Image Registration,
WBIR14(93-102).
Springer DOI
1407
BibRef
Pappas, O.[Odysseas],
Anantrasirichai, N.[Nantheera],
Nicholson, L.[Lindsay],
Morgan, J.E.[James E],
Erchova, I.[Irina],
Achim, A.[Alin],
Curvelet domain image fusion of OCT and fundus imagery using
convolution of Meridian distributions,
ICIP13(1423-1427)
IEEE DOI
1402
Curvelets;Fundus Photography;Image fusion;Meridian distribution;OCT
BibRef
Rahaman, G.M.A.[G.M. Atiqur],
Parkkinen, J.[Jussi],
Hauta-Kasari, M.[Markku],
Norberg, O.[Ole],
Retinal Spectral Image Analysis Methods Using Spectral Reflectance
Pattern Recognition,
CCIW13(224-238).
Springer DOI
1304
BibRef
Wong, D.W.K.[Damon W. K.],
Liu, J.[Jiang],
Tan, N.M.[Ngan-Meng],
Yin, F.[Fengshou],
Lee, B.H.[Beng-Hai],
Tham, Y.C.[Yih Chung],
Cheung, C.[Carol],
Wong, T.Y.[Tien Yin],
Detecting the optic cup excavation in retinal fundus images by
automatic detection of vessel kinking,
ICPR12(73-76).
WWW Link.
1302
BibRef
Wong, D.W.K.[Damon W. K.],
Liu, J.[Jiang],
Tan, N.M.[Ngan-Meng],
Yin, F.[Fengshou],
Cheng, X.G.[Xian-Gang],
Cheung, G.C.M.[Gemmy C. M.],
Bhargava, M.,
Wong, T.Y.[Tien Yin],
Automatic localization of the macula in a supervised graph-based
approach with contextual superpixel features,
ICPR12(2063-2066).
WWW Link.
1302
BibRef
Abdallah, M.B.[Mariem Ben],
Malek, J.[Jihene],
Tourki, R.[Rached],
Krissian, K.[Karl],
Restoration of retinal images using anisotropic diffusion like
algorithms,
CVRS12(116-121).
IEEE DOI
1302
BibRef
Joshi, G.D.[Gopal Datt],
Sivaswamy, J.[Jayanthi],
Prashanth, R.,
Krishnadas, S.R.,
Detection of Peri-Papillary Atrophy and RNFL Defect from Retinal Images,
ICIAR12(II: 400-407).
Springer DOI
1206
BibRef
Loquin, K.[Kevin],
Bloch, I.[Isabelle],
Nakashima, K.[Kiyoko],
Rossant, F.[Florence],
Boelle, P.Y.[Pierre-Yves],
Paques, M.[Michel],
Automatic Photoreceptor Detection in In-Vivo Adaptive Optics Retinal
Images: Statistical Validation,
ICIAR12(II: 408-415).
Springer DOI
1206
BibRef
Remeseiro, B.,
Ramos, L.,
Penas, M.,
Martinez, E.,
Penedo, M.G.,
Mosquera, A.,
Colour Texture Analysis for Classifying the Tear Film Lipid Layer:
A Comparative Study,
DICTA11(268-273).
IEEE DOI
1205
BibRef
Chen, L.[Li],
Xiang, Y.[Yang],
Chen, Y.J.[Yao-Jie],
Zhang, X.L.[Xiao-Long],
Retinal image registration using bifurcation structures,
ICIP11(2169-2172).
IEEE DOI
1201
BibRef
Giancardo, L.,
Meriaudeau, F.,
Kamowski, T.P.,
Li, Y.,
Tobin, K.W.,
Chaum, E.,
Automatic quality enhancement and nerve fibre layer artefacts removal
in retina fundus images by off axis imaging,
ICIP11(49-52).
IEEE DOI
1201
BibRef
Wendt, M.[Mark],
Shah, S.K.[Shishir K.],
Segmentation of crystalline lens in photorefraction video,
ICCVGIP10(322-329).
DOI Link
1111
human eye. Properties of the lens.
BibRef
Turpin, A.[Alan],
Morrow, P.[Philip],
Scotney, B.W.[Bryan W.],
Anderson, R.[Roger],
Wolsley, C.[Clive],
Automated Identification of Photoreceptor Cones Using Multi-scale
Modelling and Normalized Cross-Correlation,
CIAP11(I: 494-503).
Springer DOI
1109
BibRef
Semashko, A.S.,
Krylov, A.S.,
Rodin, A.S.,
Using Blood Vessels Location Information in Optic Disk Segmentation,
CIAP11(II: 384-393).
Springer DOI
1109
BibRef
Marrugo, A.G.[Andrés G.],
Millán, M.S.[María S.],
Cristóbal, G.[Gabriel],
Gabarda, S.[Salvador],
Abril, H.C.[Héctor C.],
No-reference Quality Metrics for Eye Fundus Imaging,
CAIP11(I: 486-493).
Springer DOI
1109
BibRef
Yamakawa, A.[Ai],
Tsuruoka, S.[Shinji],
Kawanaka, H.[Hiroharu],
Okuyama, F.[Fumio],
Yagi, T.[Toshiki],
Automatic Extraction of Layer Structure for Retina in OCT Image Using
Morphological Operation and Active Net,
MVA09(42-).
PDF File.
0905
BibRef
Jeffers, J.[Jason],
Arakala, A.[Arathi],
Horadam, K.J.,
Entropy of Feature Point-Based Retina Templates,
ICPR10(213-216).
IEEE DOI
1008
BibRef
Akram, M.U.[M. Usman],
Khan, A.[Aftab],
Iqbal, K.[Khalid],
Butt, W.H.[Wasi Haider],
Retinal Images: Optic Disk Localization and Detection,
ICIAR10(II: 40-49).
Springer DOI
1006
BibRef
Liu, J.,
Lu, S.,
Lim, J.H.,
Zhang, Z.,
Meng, T.N.,
Wong, D.W.K.,
Li, H.,
Wong, T.Y.,
Photometric correction of retinal images by polynomial interpolation,
ICIP09(3893-3896).
IEEE DOI
0911
BibRef
Martinez, J.J.,
Toledo, J.,
Garrigos, J.,
Ferrandez, J.,
Fernandez-Jover, E.,
Model and hardware emulation of the first synapse of the retina using
Discrete-Time Cellular Neural Networks,
ICIP09(2705-2708).
IEEE DOI
0911
BibRef
Lu, Z.Q.[Zong-Qing],
Liao, Q.M.[Qing-Min],
Yang, F.[Fan],
A variational approach to automatic segmentation of RNFL on OCT data
sets of the retina,
ICIP09(3345-3348).
IEEE DOI
0911
BibRef
Lam, B.S.Y.[Benson S. Y.],
Gao, Y.S.[Yong-Sheng],
Liew, A.W.C.[Alan Wee-Chung],
Optimizing Sharpness Measure for Bright Lesion Detection in Retinal
Image Analysis,
DICTA09(19-24).
IEEE DOI
0912
BibRef
Yedidya, T.,
Hartley, R.I.,
Guillon, J.P.,
Automatic Detection of Pre-ocular Tear Film Break-Up Sequence in Dry
Eyes,
DICTA08(442-448).
IEEE DOI
0812
BibRef
Zhou, S.[Sheng],
Wang, X.C.[Xiao-Chun],
Wang, Y.Q.[Yan-Qun],
Yang, J.[Jun],
A Signal Processing System Used in Digital Ophthalmology
Ultrasonography,
CISP09(1-5).
IEEE DOI
0910
BibRef
Arakala, A.,
Culpepper, J.S.,
Jeffers, J.,
Turpin, A.,
Boztas, S.,
Horadam, K.J.,
McKendrick, A.M.,
Entropy of the Retina Template,
ICB09(1250-1259).
Springer DOI
0906
BibRef
Kande, G.B.[Giri Babu],
Subbaiah, P.V.[P. Venkata],
Savithri, T.S.[T. Satya],
Segmentation of Exudates and Optic Disk in Retinal Images,
ICCVGIP08(535-542).
IEEE DOI
0812
BibRef
Balasubramanian, S.,
Pradhan, S.[Sandip],
Chandrasekaran, V.,
Red lesions detection in digital fundus images,
ICIP08(2932-2935).
IEEE DOI
0810
BibRef
Fleming, I.N.[Ioana N.],
Voros, S.[Sandrine],
Vagvolgyi, B.[Balazs],
Pezzementi, Z.[Zach],
Handa, J.[Jim],
Taylor, R.[Russell],
Hager, G.D.[Gregory D.],
Intraoperative Visualization of Anatomical Targets in Retinal Surgery,
WACV08(1-6).
IEEE DOI
0801
BibRef
Schaefer, G.[Gerald],
Leung, E.[Edmond],
Neural Networks for Exudate Detection in Retinal Images,
ISVC07(II: 298-306).
Springer DOI
0711
BibRef
Vu, N.[Nhat],
Ghosh, P.[Pratim],
Manjunath, B.S.,
Retina Layer Segmentation and Spatial Alignment of Antibody Expression
Levels,
ICIP07(II: 421-424).
IEEE DOI
0709
BibRef
Martins, S.F.[Sergio F.],
Sousa, L.A.[Leonel A.],
Martins, J.C.[Joao C.],
Additive Logistic Regression Applied to Retina Modelling,
ICIP07(III: 309-312).
IEEE DOI
0709
BibRef
Bertelli, L.[Luca],
Byun, J.[Jiyun],
Manjunath, B.S.,
A Variational Approach to Exploit Prior Information in
Object-Background Segregation: Application to Retinal Images,
ICIP07(VI: 61-64).
IEEE DOI
0709
BibRef
Xu, J.[Juan],
Sung, E.,
Chutatape, O.,
Zheng, C.[Ce],
Chew, P.,
Automated Optic Disk Segmentation Via a Modified Snake Technique,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Zhang, X.[Xin],
Fan, G.L.[Guo-Liang],
Retinal Spot Lesion Detection Using Adaptive Multiscale Morphological
Processing,
ISVC06(II: 490-501).
Springer DOI
0611
BibRef
Yang, X.Y.[Xiao-Yun],
Morrow, P.J.,
Scotney, B.W.,
Optic Nerve Head Segmentation in HRT Images,
ICIP06(65-68).
IEEE DOI
0610
BibRef
Tang, Y.D.[Yan-Dong],
Li, X.M.[Xiao-Mao],
von Freyberg, A.[Axel],
Goch, G.[Gert],
Automatic Segmentation of the Papilla in a Fundus Image Based on the
C-V Model and a Shape Restraint,
ICPR06(I: 183-186).
IEEE DOI
0609
BibRef
Zhang, K.[Kai],
Xi, X.[Xu],
Li, Z.[Zhang],
Wang, G.P.[Guo-Ping],
Stereo Matching and 3-D Reconstruction for Optic Disk Images,
CVBIA05(517-525).
Springer DOI
0601
BibRef
Trucco, E.,
Kamat, P.J.,
Locating the optic disk in retinal images via plausible detection and
constraint satisfaction,
ICIP04(I: 155-158).
IEEE DOI
0505
BibRef
Fang, B.[Bin],
Hsu, W.,
Lee, M.L.[Mong Li],
Techniques for temporal registration of retinal images,
ICIP04(II: 1089-1092).
IEEE DOI
0505
BibRef
Earlier:
Reconstruction of vascular structures in retinal images,
ICIP03(II: 157-160).
IEEE DOI
0312
BibRef
Li, H.Q.[Hui-Qi],
Chutatape, O.,
A model-based approach for automated feature extraction in fundus
images,
ICCV03(394-399).
IEEE DOI
0311
BibRef
Chanwimaluang, T.,
Fan, G.L.[Guo-Liang],
An efficient algorithm for extraction of anatomical structures in
retinal images,
ICIP03(I: 1093-1096).
IEEE DOI
0312
BibRef
Li, H.Q.[Hui-Qi],
Hsu, W.[Wynne],
Lee, M.L.[Mong Li],
Wang, H.Y.[Hong-Yu],
A piecewise Gaussian model for profiling and differentiating retinal
vessels,
ICIP03(I: 1069-1072).
IEEE DOI
0312
BibRef
Olsen, N.H.[Niels Holm],
Sporring, J.[Jon],
Nielsen, M.[Mads],
Hnida, C.[Christina],
Ziebe, S.[Seren],
Reconstructing the Optical Thickness from Hoffman Modulation Contrast
Images,
SCIA03(526-533).
Springer DOI
0310
BibRef
Wang, L.[Li],
Bhalerao, A.H.[Abhir H.],
Model Based Segmentation for Retinal Fundus Images,
SCIA03(422-429).
Springer DOI
0310
BibRef
Dahlem, M.A.[Markus A.],
Wörgötter, F.[Florentin],
Rotation-Invariant Optical Flow by Gaze-Depended Retino-Cortical
Mapping,
BMCV02(137 ff.).
Springer DOI
0303
BibRef
Gutiérrez, J.,
Epifanio, I.,
de Ves, E.,
Ferri, F.J.,
An Active Contour Model for the Automatic Detection of the Fovea in
Fluorescein Angiographies,
ICPR00(Vol IV: 312-315).
IEEE DOI
0009
BibRef
Li, H.,
Chutatape, O.,
Automatic Location of Optic Disk in Retinal Images,
ICIP01(II: 837-840).
IEEE DOI
0108
BibRef
Wang, H.[Huan],
Hsu, W.[Wynne],
Goh, K.G.[Kheng Guan],
Lee, M.L.[Mong Li],
An Effective Approach to Detect Lesions in Color Retinal Images,
CVPR00(II: 181-186).
IEEE DOI
0005
BibRef
Guest, R.M.,
Fairhurst, M.C.,
Potter, J.M.,
Donnelly, N.,
Analysing Constructional Aspects of Figure Completion for the Diagnosis
of Visuospatial Neglect,
ICPR00(Vol IV: 316-319).
IEEE DOI
0009
BibRef
Deguchi, K.,
Noami, J.,
Hontani, H.,
3d Fundus Pattern Reconstruction and Display from Multiple Fundus
Images,
ICPR00(Vol IV: 94-97).
IEEE DOI
0009
BibRef
Ege, B.M.,
Larsen, O.V.,
Hejlesen, O.K.,
Cavan, D.,
Detection of Abnormalities in Retinal Images using Digital Image
Analysis,
SCIA99(Biological Applications).
BibRef
9900
Deguchi, K.,
Kawamata, D.,
Mizutani, K.,
Hontani, H.,
Wakabayashi, K.,
3D Fundus Shape Reconstruction and Display from Stereo Fundus Images,
MVA98(xx-yy).
BibRef
9800
Barry, C.,
Yogesan, K.[Kanagasingam],
Eikelboom, R.,
Texture Analysis of Retinal Images to Determine Nerve Fibre Loss,
ICPR98(Vol II: 1665-1667).
IEEE DOI
9808
BibRef
Goldbaum, M.[Michael],
Moezzi, S.,
Taylor, A.,
Chatterjee, S.,
Boyd, J.,
Hunter, E.,
Jain, R.,
Automated Diagnosis and Image Understanding with Object Extraction,
Object Classification, and Inferencing in Retinal Images,
ICIP96(III: 695-698).
IEEE DOI
BibRef
9600
Hart, W.E.,
Goldbaum, M.H.,
Registering retinal images using automatically selected control point
pairs,
ICIP94(III: 576-580).
IEEE DOI
9411
BibRef
Harbarth, U.P.,
Reiter, K.,
Zyzyck, J.,
Zhou, Q.Y.[Qien-Yuan],
Morris, B.,
Dreher, A.W.,
Confocal laser scanning and advanced image processing in ophthalmology,
ICIP96(III: 683-686).
IEEE DOI
9610
BibRef
Petrig, B.[Benno],
Bigün, J.[Josef],
Curchod, M.G.[Marc G.],
Motion Estimation of Ocular Fundus Images,
ICIP96(III: 691-694).
IEEE DOI
BibRef
9600
Meseure, P.,
Rouland, J.F.,
Dubois, P.,
Karpf, S.,
Chaillou, C.,
Sophocle: A Retinal Laser Photocoagulation Simulator: Overview,
CVRMed95(XX-YY)
BibRef
9500
Barrett, S.F.,
Rylander, III, H.G.[H. Grady],
Welch, A.J.,
Automated lesion data base building for the treatment of retinal
disorders,
ICIP94(I: 426-430).
IEEE DOI
9411
BibRef
Okutomi, M.,
Yoshzaki, O.,
Tomita, G.,
Color Stereo Matching and Its Application to 3-D Measurement
of Optic Nerve Head,
ICPR92(I:509-513).
IEEE DOI
BibRef
9200
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Eye, Cornea, Corneal Images .