Decker, H.,
A Difference Technique for Automatic Inspection of Casting Parts,
PRL(2), 1983, pp. 125-129.
BibRef
8300
Strecker, H.,
A Local Feature Method for the Detection of Flaws in Automated X-Ray
Inspection of Castings,
SP(5), 1983, pp. 423-431.
BibRef
8300
Batchelor, B.G.,
Cotter, S.M.,
Detection of Cracks Using Image Processing Algorithms
Implemented in Hardware,
IVC(1), No. 1, February 1983, pp. 21-29.
Elsevier DOI
BibRef
8302
Don, H.S.,
Fu, K.S.,
Liu, C.R., and
Lin, W.C.,
Metal Surface Inspection Using Image Processing Techniques,
SMC(14), No. 1, January/February 1984, pp. 139-145.
BibRef
8401
Suresh, B.R.,
Fundakowski, R.A.,
Levitt, T.S., and
Overland, J.E.,
A Real-Time Automated Visual Inspection System for Hot Steel Slabs,
PAMI(5), No. 6, November 1983, pp. 563-572.
Adaptive Threshold. Real time processing with off the shelf components - composed of a
small array processor for segmentation and feature analysis and a mini
for defect analysis. Roberts edge, adaptive threshold, find edges,
link between scan lines, classify imperfections.
BibRef
8311
Boerner, H., and
Strecker, H.,
Automated X-Ray Inspection of Aluminum Castings,
PAMI(10), No. 1, January 1988, pp. 79-91.
IEEE DOI
BibRef
8801
Okawa, Y.[Yoshikuni],
Automatic Inspection of the Surface Defects of Cast Metals,
CVGIP(25), No. 1, January 1984, pp. 89-112.
Elsevier DOI
BibRef
8401
Piirainen, T.,
Silven, O.,
Pietikainen, M.,
Laitinen, T.,
Strommer, E.,
Automated Visual Inspection Of Rolled Metal Surfaces,
MVA(3), No. 4, 1990, pp. xx-yy.
BibRef
9000
Marshall, A.D.,
Martin, R.R.,
Hutber, D.,
Automatic inspection of mechanical parts using geometric models and
laser range finder data,
IVC(9), No. 6, December 1991, pp. 385-405.
Elsevier DOI
0401
BibRef
Meriaudeau, F.,
Renier, E.,
Truchetet, F.,
Temperature Imaging and Image-Processing in the Steel-Industry,
OptEng(35), No. 12, December 1996, pp. 3470-3481.
9701
BibRef
Lee, C.,
Peters, W.H.,
Chao, Y.J.,
Sutton, M.A.,
Improved Digital Image Processing Techniques to Investigate
Plastic Zone Formation in Steel,
IVC(4), No. 4, November 1986, pp. 203-207.
Elsevier DOI
BibRef
8611
Fellows, T.C.[Todd C.],
Rittenhouse, N.E.[Norman E.],
Yablonsky, P.J.[Peter J.],
Optical inspection system utilizing dynamic
analog-to-digital thresholding,
US_Patent5,377,282, Dec 27, 1994
WWW Link.
BibRef
9412
Bahr, B.,
Motavalli, S.,
Arfi, T.,
Sensor Fusion for Monitoring Machine-Tool Conditions,
JCIM(10), No. 5, September/October 1997, pp. 314-323.
9709
BibRef
Lou, K.N.,
Lin, C.J.,
An Intelligent Sensor Fusion System for Tool Monitoring
on a Machining Center,
IJAMT(13), No. 8, 1997, pp. 556-565.
9712
BibRef
Garcia, D.F.,
Garcia, M.,
Obeso, F.,
Fernandez, V.,
Real-Time Flatness Inspection System for Steel Strip Production Lines,
RealTimeImg(5), No. 1, February 1999, pp. 35-47.
BibRef
9902
Kassim, A.A.[Ashraf A.],
Mannan, M.A.,
Jing, M.[Ma],
Machine tool condition monitoring using workpiece surface texture
analysis,
MVA(11), No. 5, 2000, pp. 257-263.
Springer DOI
0004
BibRef
Mannan, M.A.,
Mian, Z.[Zhu],
Kassim, A.A.,
Tool wear monitoring using a fast Hough transform of images of
machined surfaces,
MVA(15), No. 3, July 2004, pp. 156-163.
Springer DOI
0407
BibRef
Kassim, A.A.,
Mian, Z.[Zhu],
Mannan, M.A.,
Connectivity oriented fast Hough transform for tool wear monitoring,
PR(37), No. 9, September 2004, pp. 1925-1933.
Elsevier DOI
0407
BibRef
Kassim, A.A.,
Mian, Z.[Zhu],
Mannan, M.A.,
Tool condition classification using Hidden Markov Model based on
fractal analysis of machined surface textures,
MVA(17), No. 5, October 2006, pp. 327-336.
Springer DOI
0609
BibRef
Earlier:
Texture analysis using fractals for tool wear monitoring,
ICIP02(III: 105-108).
IEEE DOI
0210
BibRef
Mannan, M.A.,
Kassim, A.A.[Ashraf A.],
Jing, M.[Ma],
Application of image and sound analysis techniques to monitor the
condition of cutting tools,
PRL(21), No. 11, October 2000, pp. 969-979.
0010
BibRef
Kassim, A.A.,
Mannan, M.A.,
Mian, Z.[Zhu],
Texture analysis methods for tool condition monitoring,
IVC(25), No. 7, 1 July 2007, pp. 1080-1090.
Elsevier DOI
0705
Machine vision; Texture analysis; Tool wear monitoring
BibRef
Wiltschi, K.[Klaus],
Pinz, A.[Axel],
Lindeberg, T.[Tony],
An automatic assessment scheme for steel quality inspection,
MVA(12), No. 3, 2000, pp. 113-128.
Springer DOI
0010
BibRef
Li, X.,
Tso, S.K.,
Wang, J.,
Real-Time Tool Condition Monitoring Using Wavelet Transforms and Fuzzy
Techniques,
SMC-C(30), No. 3, August 2000, pp. 352-357.
IEEE Top Reference.
0011
BibRef
Katafuchi, N.[Norifumi],
Sano, M.[Mutsuo],
Ohara, S.[Shuichi],
Okudaira, M.[Masashi],
A method for inspecting industrial parts surfaces based on an optics
model,
MVA(12), No. 4, 2000, pp. 170-176.
Springer DOI
0101
BibRef
Lee, M.F.R.[Min-Fan Ricky],
de Silva, C.W.[Clarence W.],
Croft, E.A.[Elizabeth A.],
Wu, Q.M.J.[Q.M. Jonathan],
Machine vision system for curved surface inspection,
MVA(12), No. 4, 2000, pp. 177-188.
Springer DOI
0101
BibRef
Fraser, C.S.[Clive S.],
Riedel, B.[Björn],
Monitoring the thermal deformation of steel beams via vision metrology,
PandRS(55), No. 4, November 2000, pp. 268-276.
Monitored within 1mm.
0101
BibRef
Foresti, G.L.,
Visual inspection of sea bottom structures by an autonomous underwater
vehicle,
SMC-B(31), No. 5, October 2001, pp. 691-705.
IEEE Top Reference.
0111
BibRef
Muller, U.[Ulrich],
Peuker, G.[Gustav],
Sonnenschein, D.[Detlef],
Winter, D.[Detlef],
Degner, M.[Michael],
Thiemann, G.[Gerd],
Flatness measurement system for metal strip,
US_Patent6,286,349, Sep 11, 2001
WWW Link.
BibRef
0109
Seulin, R.[Ralph],
Merienne, F.[Frederic],
Gorria, P.[Patrick],
Simulation of Specular Surface Imaging Based on Computer Graphics:
Application on a Vision Inspection System,
JASP(2002), No. 7, July 2002, pp. 649-658.
0208
BibRef
Pernkopf, F.[Franz],
O'Leary, P.[Paul],
Visual Inspection of Machined Metallic High-Precision Surfaces,
JASP(2002), No. 7, July 2002, pp. 667-678.
0208
BibRef
Garcia, D.F.[Daniel F.],
Usamentiaga, R.[Rubén],
Marín, I.[Ignacio],
González, J.A.[Juan A.],
de Abajo, N.[Nicolas],
Shape Inspection System for Variable-Luminance Steel Plates with
Real-Time Adaptation Capabilities to Luminance Variations,
RealTimeImg(8), No. 4, August 2002, pp. 303-315.
DOI Link
0210
BibRef
Fish, R.K.,
Ostendorf, M.,
Bernard, G.D.,
Castanon, D.A.,
Multilevel classification of milling tool wear with confidence
estimation,
PAMI(25), No. 1, January 2003, pp. 75-85.
IEEE DOI
0301
BibRef
Tsai, D.M.[Du-Ming],
Huang, T.Y.[Tse-Yun],
Automated surface inspection for statistical textures,
IVC(21), No. 4, April 2003, pp. 307-323.
Elsevier DOI
0301
BibRef
Mäenpää, T.[Topi],
Turtinen, M.[Markus],
Pietikäinen, M.[Matti],
Real-time surface inspection by texture,
RealTimeImg(9), No. 5, October 2003, pp. 289-296.
Elsevier DOI
0311
BibRef
Zhang, Y.J.[Yong-Jun],
Zhang, Z.X.[Zu-Xun],
Zhang, J.Q.[Jian-Qing],
Deformation visual inspection of industrial parts with image sequence,
MVA(15), No. 3, July 2004, pp. 115-120.
Springer DOI
0407
BibRef
Zhang, Y.J.[Yong-Jun],
Zhang, Z.X.[Zu-Xun],
Zhang, J.Q.[Jian-Qing],
Automatic measurement of industrial sheetmetal parts with CAD data and
non-metric image sequence,
CVIU(102), No. 1, April 2006, pp. 52-59.
Elsevier DOI Photogrammetry; Industry; Part; CAD; Image sequence; Matching; Reconstruction; Measurement
0604
BibRef
Zheng, S.Y.[Shun-Yi],
Zhai, R.F.[Rui-Fang],
Zhang, Z.X.[Zu-Xun],
Generation of 3D Surface Model of Complex Objects Based on Non-Metric
Camera,
ICIP07(III: 89-92).
IEEE DOI
0709
BibRef
Bellini, P.,
Bruno, I.,
Nesi, P.,
A distributed system for computer vision quality control of clinched
boards,
RealTimeImg(10), No. 3, June 2004, pp. 161-176.
Elsevier DOI
0410
Clinching technology allows to join metal sheets by using a cold press.
BibRef
Pernkopf, F.[Franz],
3D surface analysis using coupled HMMs,
MVA(16), No. 5, December 2005, pp. 298-305.
Springer DOI
0601
BibRef
Earlier:
3D surface inspection using coupled HMMs,
ICPR04(III: 223-226).
IEEE DOI
0409
BibRef
Li, D.G.[Dong-Guang],
Ballistics Projectile Image Analysis for Firearm Identification,
IP(15), No. 10, October 2006, pp. 2857-2865.
IEEE DOI
0609
BibRef
Li, D.G.[Dong-Guang],
Visual Information for Firearm Identification by Digital Holography,
Visual07(445-452).
Springer DOI
0706
BibRef
Khalili, K.[Khalil],
Webb, P.[Philip],
The development and application of a multiple wavelength illumination
technique for the vision-based process monitoring of aero-structure
riveting,
MVA(18), No. 2, April 2007, pp. 73-83.
Springer DOI
0704
BibRef
Cao, J.H.[Jian-Hai],
Lu, C.H.[Chang-Hou],
Shi, C.Y.[Chun-Yi],
Product quality on-line inspecting for the pressed protuberant
character on a metal tag,
IVC(25), No. 8, 1 August 2007, pp. 1255-1262.
Elsevier DOI
0706
Pressed protuberant character; Ring projection; Vector sum; Quality inspecting
BibRef
Lin, H.D.[Hong-Dar],
Automated visual inspection of ripple defects using wavelet
characteristic based multivariate statistical approach,
IVC(25), No. 11, 1 November 2007, pp. 1785-1801.
Elsevier DOI
0709
Ceramic Capacitors.
Detection of ripple defects; Machine vision;
Hotelling T2 multivariate statistics; Wavelet characteristics
BibRef
Liu, Z.,
Genest, M.,
Marincak, A.,
Forsyth, D.S.,
Characterization of surface deformation with the Edge of LightTM
technique,
MVA(19), No. 1, January 2008, pp. 35-42.
Springer DOI
0801
Aircraft joint inspection where deformation is due to hidden corrosion.
BibRef
Forsyth, D.S.,
Marincak, A.,
Komorowski, J.P.,
Edge of Light: A new enhanced optical NDI technique,
SPIE(2495), 1995, pp. 178-188.
BibRef
9500
Caulier, Y.[Yannick],
Spinnler, K.[Klaus],
Bourennane, S.[Salah],
Wittenberg, T.[Thomas],
New Structured Illumination Technique for the Inspection of
High-Reflective Surfaces: Application for the Detection of Structural
Defects without any Calibration Procedures,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0804
See also Visually Inspecting Specular Surfaces: A Generalized Image Capture and Image Description Approach.
BibRef
Caulier, Y.[Yannick],
Bourennane, S.[Salah],
Fourier-Based Inspection of Free-Form Reflective Surfaces,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Huang, Q.,
Wu, Y.,
Baruch, J.,
Jiang, P.,
Peng, Y.,
A Template Model for Defect Simulation for Evaluating Nondestructive
Testing in X-Radiography,
SMC-A(39), No. 2, March 2009, pp. 466-475.
IEEE DOI
0903
BibRef
Fabijanska, A.[Anna],
Sankowski, D.[Dominik],
Computer vision system for high temperature measurements of surface
properties,
MVA(20), No. 6, October 2009, pp. xx-yy.
Springer DOI
0910
Deal with issues of high temperature.
BibRef
Besnard, G.[Gilles],
Lagrange, J.M.[Jean-Michel],
Hild, F.[François],
Roux, S.[Stéphane],
Voltz, C.[Christophe],
Characterization of Necking Phenomena in High-Speed Experiments by
Using a Single Camera,
JIVP(2010), No. 2010, pp. xx-yy.
DOI Link
1003
Metal strain analysis.
BibRef
Duan, G.F.[Gui-Fang],
Chen, Y.W.[Yen-Wei],
Sukegawa, T.[Takeshi],
Automatic optical flank wear measurement of microdrills using level set
for cutting plane segmentation,
MVA(21), No. 5, August 2010, pp. 667-676.
WWW Link.
1011
BibRef
Lughofer, E.[Edwin],
Smith, J.E.[James E.],
Tahir, M.A.[Muhammad Atif],
Caleb-Solly, P.[Praminda],
Eitzinger, C.[Christian],
Sannen, D.[Davy],
Nuttin, M.[Marnix],
Human-Machine Interaction Issues in Quality Control Based on Online
Image Classification,
SMC-A(39), No. 5, September 2009, pp. 960-971.
IEEE DOI
0909
BibRef
Earlier: A6, A7, A2, A3, A4, A1, A5:
An On-Line Interactive Self-adaptive Image Classification Framework,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Lughofer, E.[Edwin],
On-line evolving image classifiers and their application to surface
inspection,
IVC(28), No. 7, July 2010, pp. 1065-1079.
Elsevier DOI
1006
Evolving image classifiers; Incremental learning; Evolving vector
quantization; Evolving fuzzy classifiers; On-line surface inspection
systems
BibRef
Eitzinger, C.[Christian],
Gmainer, M.[Manfred],
Heidl, W.[Wolfgang],
Lughofer, E.[Edwin],
Increasing Classification Robustness with Adaptive Features,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Eitzinger, C.[Christian],
Heidl, W.,
Lughofer, E.,
Raiser, S.,
Smith, J.E.,
Tahir, M.A.,
Sannen, D.,
van Brussel, H.,
Assessment of the influence of adaptive components in trainable surface
inspection systems,
MVA(21), No. 5, August 2010, pp. 613-626.
WWW Link.
1011
BibRef
Raiser, S.[Stefan],
Lughofer, E.[Edwin],
Eitzinger, C.[Christian],
Smith, J.E.[James Edward],
Impact of object extraction methods on classification performance in
surface inspection systems,
MVA(21), No. 5, August 2010, pp. 627-641.
WWW Link.
1011
BibRef
Tabata, T.[Tomohira],
Komuro, T.[Takashi],
Ishikawa, M.[Masatoshi],
Surface image synthesis of moving spinning cans using a 1,000-fps area
scan camera,
MVA(21), No. 5, August 2010, pp. 643-652.
WWW Link.
1011
Inspection based on mosaic creation for spinning cylinder.
BibRef
Martin, D.,
Guinea, D.M.,
García-Alegre, M.C.,
Villanueva, E.,
Guinea, D.,
Multi-modal defect detection of residual oxide scale on a cold
stainless steel strip,
MVA(21), No. 5, August 2010, pp. 653-666.
WWW Link.
1011
BibRef
Nakazawa, M.[Mitsuru],
Kobayashi, M.[Masakazu],
Toda, H.[Hiroyuki],
Aoki, Y.[Yoshimitsu],
Proposal of a method to analyze 3D deformation/fracture characteristics
inside materials based on a stratified matching approach,
MVA(21), No. 5, August 2010, pp. 687-694.
WWW Link.
1011
BibRef
Perng, D.B.[Der-Baau],
Chen, Y.C.[Yen-Chung],
An advanced auto-inspection system for micro-router collapse,
MVA(21), No. 6, October 2010, pp. 811-824.
WWW Link.
1011
tool to cut PCB.
BibRef
Carrasco, M.[Miguel],
Mery, D.[Domingo],
Automatic multiple view inspection using geometrical tracking and
feature analysis in aluminum wheels,
MVA(22), No. 1, January 2011, pp. 157-170.
WWW Link.
1101
BibRef
Mery, D.[Domingo],
Riffo, V.[Vladimir],
Zuccar, I.[Irene],
Pieringer, C.[Christian],
Automated X-Ray Object Recognition Using an Efficient Search
Algorithm in Multiple Views,
PBVS13(368-374)
IEEE DOI
1309
3D object recognition
BibRef
Mery, D.[Domingo],
Automated detection in complex objects using a tracking algorithm in
multiple X-ray views,
OTCBVS11(41-48).
IEEE DOI
1106
BibRef
Osman, A.[Ahmad],
Kaftandjian, V.[Valerie],
Hassler, U.[Ulf],
Improvement of X-ray castings inspection reliability by using
Dempster-Shafer data fusion theory,
PRL(32), No. 2, 15 January 2011, pp. 168-180.
Elsevier DOI
1101
X-ray imaging; Castings inspection; Features extraction; Data fusion;
Confidence levels; Dempster-Shafer theory
BibRef
Davis, T.A.[Tyler A.],
Shin, Y.C.[Yung C.],
Vision-based clad height measurement,
MVA(22), No. 1, January 2011, pp. 129-136.
WWW Link.
1101
Laser deposition process. How much is deposited.
BibRef
Tellaeche, A.,
Arana, R.,
Three-dimensional machine vision and machine-learning algorithms applied
to quality control of percussion caps,
IET-CV(5), No. 2, 2011, pp. 117-124.
DOI Link
1103
BibRef
Sridhar, V.G.,
Adithan, M.,
Evaluation of the surface finish of ground components and study on
lighting conditions in machine vision system,
IJCVR(2), No. 2, 2011, pp. 141-155.
DOI Link
1109
BibRef
Brancaccio, A.[Adriana],
Leone, G.[Giovanni],
Solimene, R.[Raffaele],
Fault detection in metallic grid scattering,
JOSA-A(28), No. 12, December 2011, pp. 2588-2599.
WWW Link.
1112
BibRef
Bokhabrine, Y.[Youssef],
Seulin, R.[Ralph],
Voon, L.F.C.L.Y.[Lew F. C. Lew Yan],
Gorria, P.[Patrick],
Girardin, G.[Gouenou],
Gomez, M.[Miguel],
Jobard, D.[Daniel],
3D characterization of hot metallic shells during industrial forging,
MVA(23), No. 3, May 2012, pp. 417-425.
WWW Link.
1204
Using 2 ToF laser systems.
BibRef
Leloglu, U.M.,
Characterisation of tool marks on cartridge cases by combining multiple
images,
IET-IPR(6), No. 7, 2012, pp. 854-862.
DOI Link
1211
BibRef
Palani, S.,
Natarajan, U.,
Chellamalai, M.,
On-line prediction of micro-turning multi-response variables by machine
vision system using adaptive neuro-fuzzy inference system (ANFIS),
MVA(24), No. 1, January 2013, pp. 19-32.
WWW Link.
1301
machining tools.
BibRef
Sills, K.[Ken],
Bone, G.M.[Gary M.],
Capson, D.[David],
Defect identification on specular machined surfaces,
MVA(25), No. 2, February 2014, pp. 377-388.
WWW Link.
1412
BibRef
Zhao, X.Y.[Xin-Yue],
He, Z.X.[Zai-Xing],
Zhang, S.Y.[Shu-You],
Defect detection of castings in radiography images using a robust
statistical feature,
JOSA-A(31), No. 1, January 2014, pp. 196-205.
DOI Link
1412
Image analysis; Defect understanding
BibRef
Ali, M.H.[M. Hazrat],
Kurokawa, S.[Syuhei],
Uesugi, K.[Kensuke],
Application of machine vision in improving safety and reliability for
gear profile measurement,
MVA(25), No. 6, 2014, pp. 1549-1559.
WWW Link.
1408
BibRef
Shreve, M.[Matthew],
Pamplona, M.[Mauricio],
Luguev, T.[Timur],
Goldgof, D.[Dmitry],
Sarkar, S.[Sudeep],
High-resolution 3D surface strain magnitude using 2D camera and
low-resolution depth sensor,
PRL(50), No. 1, 2014, pp. 34-42.
Elsevier DOI
1410
3-D
BibRef
Neogi, N.[Nirbhar],
Mohanta, D.[Dusmanta],
Dutta, P.[Pranab],
Review of vision-based steel surface inspection systems,
JIVP(2014), No. 1, 2014, pp. 50.
DOI Link
1411
BibRef
Xu, K.[Ke],
Liu, S.H.[Shun-Hua],
Ai, Y.H.[Yong-Hao],
Application of Shearlet transform to classification of surface
defects for metals,
IVC(35), No. 1, 2015, pp. 23-30.
Elsevier DOI
1503
Surface inspection
BibRef
Li, X.W.[Xiao-Wen],
Li, P.[Ping],
Lin, Z.[Zhuang],
Yang, D.M.[Dong-Mei],
Analysis and Optimization of Composite to Steel Joints for Ships,
Sensors(182), No. 11, November 2014, pp. 10-16.
HTML Version.
1504
BibRef
Wang, L.[Lei],
Zhang, W.[Wei],
Zhang, J.C.[Jian-Cheng],
Weng, J.J.[Jian-Jian],
He, S.[Shan],
Visual Inspection for Breakage of Micro-milling Cutter,
Sensors(182), No. 11, November 2014, pp. 217-222.
HTML Version.
1504
BibRef
Fernández-Robles, L.[Laura],
Azzopardi, G.[George],
Alegre, E.[Enrique],
Petkov, N.[Nicolai],
Cutting Edge Localisation in an Edge Profile Milling Head,
CAIP15(II:336-347).
Springer DOI
1511
BibRef
Liu, M.[Maofu],
Liu, Y.[Ya],
Hu, H.J.[Hui-Jun],
Nie, L.Q.[Li-Qiang],
Genetic algorithm and mathematical morphology based binarization
method for strip steel defect image with non-uniform illumination,
JVCIR(37), No. 1, 2016, pp. 70-77.
Elsevier DOI
1603
Strip steel defect image
BibRef
Funes, J.F.[José Félix],
Perales, J.M.[José Manuel],
Rapún, M.L.[María-Luisa],
Vega, J.M.[José Manuel],
Defect Detection from Multi-frequency Limited Data via Topological
Sensitivity,
JMIV(55), No. 1, May 2016, pp. 19-35.
Springer DOI
1604
BibRef
Keglevic, M.[Manuel],
Sablatnig, R.[Robert],
Retrieval of Striated Toolmarks Using Convolutional Neural Networks,
IET-CV(11), No. 7, October 2017, pp. 613-619.
DOI Link
1709
BibRef
Earlier:
FORMS-Locks: A Dataset for the Evaluation of Similarity Measures for
Forensic Toolmark Images,
MedForen17(1890-1897)
IEEE DOI
1709
See also Writer Identification and Retrieval Using a Convolutional Neural Network. Cloning, Forensics, Image edge detection, Lighting, Manuals,
Microscopy, Tools.
Lock cylinders, damage from crimes.
BibRef
Ren, R.,
Hung, T.,
Tan, K.C.,
A Generic Deep-Learning-Based Approach for Automated Surface
Inspection,
Cyber(48), No. 3, March 2018, pp. 929-940.
IEEE DOI
1802
Feature extraction, Heating, Inspection,
Object recognition, Surface morphology, Training,
segmentation
BibRef
Yang, J.H.[Jing-Hao],
Liu, W.[Wei],
Zhang, R.[Renwei],
Jia, Z.Y.[Zhen-Yuan],
Wang, F.[Fuji],
Li, S.J.[Shi-Jie],
A method for measuring the thermal geometric parameters of large hot
rectangular forgings based on projection feature lines,
MVA(29), No. 3, April 2018, pp. 467-476.
Springer DOI
1804
BibRef
Maglietta, R.[Rosalia],
Milella, A.[Annalisa],
Caccia, M.[Massimo],
Bruzzone, G.[Gabriele],
A vision-based system for robotic inspection of marine vessels,
SIViP(12), No. 3, March 2018, pp. 471-478.
Springer DOI
1804
Magnetic climbing robot.
Hull inspection.
BibRef
Paul, A.[Angshuman],
Gangopadhyay, A.[Abhinandan],
Chintha, A.R.[Appa Rao],
Mukherjee, D.P.[Dipti Prasad],
Das, P.[Prasun],
Kundu, S.[Saurabh],
Calculation of phase fraction in steel microstructure images using
random forest classifier,
IET-IPR(12), No. 8, August 2018, pp. 1370-1377.
DOI Link
1808
BibRef
Yang, K.[Kai],
Sun, Z.Y.[Zhi-Yi],
Wang, A.H.[An-Hong],
Liu, R.Z.[Rui-Zhen],
Sun, Q.L.[Qian-Lai],
Wang, Y.[Yin],
Deep hashing network for material defect image classification,
IET-CV(12), No. 8, December 2018, pp. 1112-1120.
DOI Link
1812
BibRef
Jachym, M.[Marc],
Lavernhe, S.[Sylvain],
Euzenat, C.[Charly],
Tournier, C.[Christophe],
Effective NC machining simulation with OptiX ray tracing engine,
VC(35), No. 2, February 2019, pp. 281-288.
WWW Link.
1906
BibRef
Han, L.[Lili],
Li, S.J.[Shu-Juan],
Liu, X.P.[Xiu-Ping],
Guo, J.[Jiaan],
Online burr video denoising by learning sparsifying transform,
IET-IPR(13), No. 7, 30 May 2019, pp. 1138-1145.
DOI Link
1906
Burrs on high-voltage copper contact leads to device damage.
BibRef
Panda, A.[Aditi],
Naskar, R.[Ruchira],
Pal, S.[Snehanshu],
Deep learning approach for segmentation of plain carbon steel
microstructure images,
IET-IPR(13), No. 9, 18 July 2019, pp. 1516-1524.
DOI Link
1907
BibRef
Wang, W.,
Qu, Z.,
Zheng, Z.,
Kelvin, S.Y.P.[S. Y. Phua],
Ivan, C.,
See, K.Y.,
Zheng, Y.,
Analysis and Design of Coil-Based Electromagnetic-Induced
Thermoacoustic for Rail Internal-Flaw Inspection,
ITS(20), No. 7, July 2019, pp. 2691-2702.
IEEE DOI
1907
Rails, Magnetic resonance imaging, Acoustics, Ferrites,
Electromagnetics, Inspection, Heating systems,
multiphysics
BibRef
He, D.[Di],
Xu, K.[Ke],
Wang, D.D.[Da-Dong],
Design of multi-scale receptive field convolutional neural network
for surface inspection of hot rolled steels,
IVC(89), 2019, pp. 12-20.
Elsevier DOI
1909
AutoEncoder, Convolutional neural networks,
Defect identification, Hot rolled steels, Surface inspection
BibRef
Pratama, M.,
Dimla, E.,
Tjahjowidodo, T.,
Pedrycz, W.,
Lughofer, E.,
Online Tool Condition Monitoring Based on Parsimonious Ensemble+,
Cyber(50), No. 2, February 2020, pp. 664-677.
IEEE DOI
1912
Tools, Complexity theory, Merging, Machining, Sensors,
Condition monitoring, Monitoring, Concept drifts,
prognostic health management
BibRef
Huang, Y.B.[Yi-Bin],
Qiu, C.Y.[Cong-Ying],
Yuan, K.[Kui],
Surface defect saliency of magnetic tile,
VC(36), No. 1, January 2020, pp. 85-96.
WWW Link.
2001
BibRef
Zhang, G.Z.[Gui-Zhong],
Wang, B.X.[Bao-Xian],
Yan, Z.B.[Zhao-Bo],
Li, Y.Q.A.[Yi-Qi-Ang],
Yang, H.Z.[Huai-Zhi],
Rust Detection of Steel Structure via One-Class Classification and L2
Sparse Representation with Decision Fusion,
IEICE(E103-D), No. 2, February 2020, pp. 450-453.
WWW Link.
2002
BibRef
Joshi, K.[Ketaki],
Patil, B.[Bhushan],
Performance evaluation of various texture analysis techniques for
machine vision-based characterisation of machined surfaces,
IJCVR(10), No. 3, 2020, pp. 242-259.
DOI Link
2005
BibRef
Carlos-Eduardo, G.A.[García-Alcalá],
José-Alfredo, P.M.[Padilla-Medina],
Alejandro-Israel, B.G.[Barranco-Gutiérrez],
Digital Assisted Image Correlation for Metal Sheet Strain Measurement,
MCPR20(159-171).
Springer DOI
2007
BibRef
Lin, J.H.[Jin-Hua],
Ma, L.[Lin],
Fast restoration of geometric details of automobile castings scanned by
RGB-D sensor,
RealTimeIP(17), No. 4, August 2020, pp. 871-886.
WWW Link.
2007
BibRef
Cardoso-Fernandes, J.[Joana],
Teodoro, A.C.[Ana C.],
Lima, A.[Alexandre],
Roda-Robles, E.[Encarnación],
Semi-Automatization of Support Vector Machines to Map Lithium (Li)
Bearing Pegmatites,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Zhang, Y.[Ye],
Hao, Q.A.[Qi-Ang],
Cai, G.Q.[Guo-Qiang],
Lv, J.J.[Jiao-Jiao],
Yang, C.[Chen],
Crack damage identification and localisation on metro train bogie frame
in IoT using guided waves,
IET-ITS(14), No. 11, November 2020, pp. 1403-1409.
DOI Link
2010
BibRef
di Cataldo, S.,
Vinco, S.,
Urgese, G.,
Calignano, F.,
Ficarra, E.,
Macii, A.,
Macii, E.,
Optimizing Quality Inspection and Control in Powder Bed Metal
Additive Manufacturing: Challenges and Research Directions,
PIEEE(109), No. 4, April 2021, pp. 326-346.
IEEE DOI
2104
Optimization, Powders, Laser fusion, Laser sintering,
Three-dimensional printing, Laser beams,
smart manufacturing
BibRef
Takimoto, Y.,
Harakawa, R.,
Iwahashi, M.,
Hue-Based Gray Coding Method for Three-Dimensional Surface
Measurement of Cutlery With Specular Reflection,
CirSysVideo(31), No. 4, April 2021, pp. 1323-1331.
IEEE DOI
2104
Encoding, Brightness, Image color analysis,
Reflective binary codes, Calibration, Surface treatment,
cutlery
BibRef
Xiang, Z.[Zhong],
Wu, H.X.[Hua-Xiong],
Zhou, D.[Ding],
Metallic debossed characters industrial online non-segmentation
identification based on improved multi-scale image fusion enhancement
and deep neural network,
IET-IPR(16), No. 3, 2022, pp. 852-868.
DOI Link
2202
BibRef
Hu, B.[Bin],
Wang, X.G.[Xing-Gang],
Yu, W.Y.[Wen-Yong],
Joint weakly and fully supervised learning for surface defect
segmentation from images,
SP:IC(107), 2022, pp. 116807.
Elsevier DOI
2208
Weakly supervised learning, Defect detection, Semantic segmentation
BibRef
Li, W.R.[Wan-Run],
Zhao, W.H.[Wen-Hai],
Gu, J.[Jiaze],
Fan, B.Y.[Bo-Yuan],
Du, Y.F.[Yong-Feng],
Dynamic Characteristics Monitoring of Large Wind Turbine Blades Based
on Target-Free DSST Vision Algorithm and UAV,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, L.S.[Lian-Shan],
Wei, J.X.[Jing-Xue],
Du, H.C.[Han-Chao],
Zhang, Y.B.[Yong-Bin],
He, L.F.[Li-Feng],
MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection
of Aluminum Profiles,
IEICE(E105-D), No. 9, September 2022, pp. 1652-1655.
WWW Link.
2209
BibRef
Huang, J.C.[Jian-Cai],
Jiang, Z.H.[Zhao-Hui],
Gui, W.H.[Wei-Hua],
Yi, Z.H.[Zun-Hui],
Pan, D.[Dong],
Zhou, K.[Ke],
Xu, C.[Chuan],
Depth Estimation from a Single Image of Blast Furnace Burden Surface
Based on Edge Defocus Tracking,
CirSysVideo(32), No. 9, September 2022, pp. 6044-6057.
IEEE DOI
2209
Surface topography, Surface treatment, Estimation,
Surface charging, Surface morphology, Endoscopes,
eight-direction depth gradient template
BibRef
Hu, X.X.[Xiao-Xi],
Cao, Y.[Yuan],
Sun, Y.[Yongkui],
Tang, T.[Tao],
Railway Automatic Switch Stationary Contacts Wear Detection Under
Few-Shot Occasions,
ITS(23), No. 9, September 2022, pp. 14893-14907.
IEEE DOI
2209
Feature extraction, Size measurement, Rail transportation,
Current measurement, Task analysis, Switches, Contacts,
key point detection
BibRef
Algredo-Badillo, I.[Ignacio],
Portillo-García, G.[Germàn],
Ramírez-Gutiérrez, K.A.[Kelsey A.],
Morales-Rosales, L.A.[Luis A.],
Irregularities recognition system for automotive pieces,
IJCVR(12), No. 5, 2022, pp. 614-631.
DOI Link
2211
BibRef
Joshi, K.[Ketaki],
Patil, B.[Bhushan],
Automated inspection of spur gears using machine vision approach,
IJCVR(13), No. 1, 2023, pp. 38-51.
DOI Link
2212
BibRef
Tang, B.[Bo],
Chen, L.[Li],
Sun, W.[Wei],
Lin, Z.K.[Zhong-Kang],
Review of surface defect detection of steel products based on machine
vision,
IET-IPR(17), No. 2, 2023, pp. 303-322.
DOI Link
2302
BibRef
Shashikala, T.D.,
Sunitha, B.L.,
Basavarajappa, S.,
Davim, J.P.,
Some Studies on Measurement of Worn Surface by Digital Image Processing,
IJIG(23), No. 2 2023, pp. 2350016.
DOI Link
2303
BibRef
Tang, B.[Bo],
Song, Z.K.[Zi-Kai],
Sun, W.[Wei],
Wang, X.D.[Xing-Dong],
An end-to-end steel surface defect detection approach via Swin
transformer,
IET-IPR(17), No. 5, 2023, pp. 1334-1345.
DOI Link
2304
feature extraction, image classification, image recognition
BibRef
Hou, X.Q.[Xiu-Quan],
Liu, M.Q.[Mei-Qin],
Zhang, S.[Senlin],
Wei, P.[Ping],
Chen, B.D.[Ba-Dong],
CANet: Contextual Information and Spatial Attention Based Network for
Detecting Small Defects in Manufacturing Industry,
PR(140), 2023, pp. 109558.
Elsevier DOI
2305
Small defect detection, Contextual information,
Spatial attention, Multi-scale feature fusion, Automatic visual inspection
BibRef
Liu, Z.[Zepeng],
Lang, Z.Q.[Zi-Qiang],
Zhu, Y.P.[Yun-Peng],
Gui, Y.F.[Yu-Fei],
Laalej, H.[Hatim],
Stammers, J.[Jon],
Sensor Data Modeling and Model Frequency Analysis for Detecting
Cutting Tool Anomalies in Machining,
SMCS(53), No. 5, May 2023, pp. 2641-2653.
IEEE DOI
2305
Feature extraction, Analytical models, Data models, Cutting tools,
Milling, Hidden Markov models, Vibrations, Advance manufacturing,
systems engineering
BibRef
Cao, X.C.[Xin-Cheng],
Yao, B.[Bin],
Chen, B.Q.[Bin-Qiang],
He, W.P.[Wang-Peng],
Guo, S.Q.[Su-Qin],
Chen, K.[Kun],
Intelligent Tool Condition Monitoring Based on Multi-Scale
Convolutional Recurrent Neural Network,
IEICE(E106-D), No. 5, May 2023, pp. 644-652.
WWW Link.
2305
BibRef
Yang, B.[Benyi],
Liu, Z.Y.[Zhen-Yu],
Duan, G.F.[Gui-Fang],
Tan, J.R.[Jiang-Rong],
Residual shape adaptive dense-nested Unet: Redesign the long lateral
skip connections for metal surface tiny defect inspection,
PR(147), 2024, pp. 110073.
Elsevier DOI
2312
Machine vision, Metal surface defect inspection,
Dense-nested Unet, Residual Shape Adaptive module
BibRef
Bringier, B.[Benjamin],
Khoudeir, M.[Majdi],
High-speed optical 3D measurement device for quality control of
aircraft rivet,
IJCVR(14), No. 1, 2024, pp. 1-17.
DOI Link
2312
BibRef
Xu, H.[Haohao],
Xu, S.C.[Shu-Chang],
Yang, W.Z.[Wen-Zhen],
Unsupervised industrial anomaly detection with diffusion models,
JVCIR(97), 2023, pp. 103983.
Elsevier DOI
2312
Anomaly detection, Diffusion model, Image reconstruction, Unsupervised learning
BibRef
Wang, P.Y.[Peng-Yu],
Jing, P.[Peng],
Deep learning-based methods for detecting defects in cast iron parts
and surfaces,
IET-IPR(18), No. 1, 2024, pp. 47-58.
DOI Link
2401
convolutional neural nets, deburring, image fusion,
learning (artificial intelligence)
BibRef
Liu, Z.F.[Zhou-Feng],
Guo, Z.J.[Zi-Jing],
Li, C.L.[Chun-Lei],
Huang, N.[Ning],
Gao, C.L.[Chang-Le],
FSSDD: Few-shot steel defect detection based on multi-scale semantic
enhancement representation and mask category information mapping,
IET-IPR(18), No. 1, 2024, pp. 88-104.
DOI Link
2401
computer vision, convolutional neural nets, object detection, steel
BibRef
Yang, H.L.[Hai-Long],
Liu, Y.H.[Ying-Hao],
Xia, T.[Tian],
Defect Detection Scheme of Pins for Aviation Connectors Based on Image
Segmentation and Improved RESNET-50,
IJIG(24), No. 1, Januaur 2024, pp. 2450011.
DOI Link
2402
BibRef
Fan, J.C.[Jia-Cheng],
Wang, M.[Min],
Li, B.[Baolei],
Liu, M.X.[Ming-Xue],
shen, D.[Dingcai],
ACD-YOLO: Improved YOLOv5-based method for steel surface defects
detection,
IET-IPR(18), No. 3, 2024, pp. 761-771.
DOI Link
2402
defect detection, feature fusion, genetic algorithm,
steel surface defects, yolov5
BibRef
Guo, J.[Jun],
Yang, Y.[Yang],
Xiong, X.[Xin],
Yang, Y.[Yue],
Shao, M.Z.[Meng-Zhen],
Brake disc positioning and defect detection method based on improved
Canny operator,
IET-IPR(18), No. 5, 2024, pp. 1283-1295.
DOI Link
2404
image denoising, image processing, image recognition, image segmentation
BibRef
Zhang, Y.[Yongde],
Wang, W.[Wei],
Guo, Z.H.[Zhong-Hua],
Ji, Y.C.[Yang-Chun],
Research on oriented surface defect detection in the aircraft
skin-coating process based on an attention detector,
IET-IPR(18), No. 5, 2024, pp. 1213-1228.
DOI Link
2404
convolutional neural nets, image processing, image recognition,
pattern recognition, quality control, vision defects
BibRef
Liu, L.[Li],
Liu, Z.J.[Zi-Jin],
Hou, A.[Aishan],
Qian, X.F.[Xue-Fei],
Wang, H.[Hui],
Adaptive edge detection of rebar thread head image based on improved
Canny operator,
IET-IPR(18), No. 5, 2024, pp. 1145-1160.
DOI Link
2404
adaptive edge detection, filtering algorithm, image processing,
improved Canny operator
BibRef
Shao, L.[Lei],
He, J.W.[Jia-Wei],
Lu, X.[Xia],
Hei, B.[Bo],
Qu, J.H.[Jia-Hao],
Liu, W.H.[Wei-Hua],
Aircraft Skin Damage Detection and Assessment From UAV Images Using
GLCM and Cloud Model,
ITS(25), No. 3, March 2024, pp. 3191-3200.
IEEE DOI
2405
Aircraft, Skin, Atmospheric modeling, Maintenance engineering,
Autonomous aerial vehicles, Feature extraction, GLCM
BibRef
Xu, C.[Chuan],
Jiang, Z.H.[Zhao-Hui],
Pan, D.[Dong],
Yu, H.Y.[Hao-Yang],
Huang, J.C.[Jian-Cai],
Zhou, K.[Ke],
Gui, W.H.[Wei-Hua],
Multiscale Neighborhood Adaptive Clustering Image Segmentation for
Molten Iron Flow Slag-Iron Recognition,
SMCS(54), No. 8, August 2024, pp. 4642-4654.
IEEE DOI
2408
Iron, Slag, Image segmentation, Image recognition, Monitoring,
Temperature measurement, Clustering algorithms,
slag-iron recognition
BibRef
Bae, J.[Jaehyeok],
Lee, J.H.[Jae-Han],
Kim, S.[Seyun],
PNI: Industrial Anomaly Detection using Position and Neighborhood
Information,
ICCV23(6350-6360)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zhang, X.Y.[Xin-Yi],
Li, N.Q.[Nai-Qi],
Li, J.W.[Jia-Wei],
Dai, T.[Tao],
Jiang, Y.[Yong],
Xia, S.T.[Shu-Tao],
Unsupervised Surface Anomaly Detection with Diffusion Probabilistic
Model,
ICCV23(6759-6768)
IEEE DOI
2401
BibRef
Lu, F.[Fanbin],
Yao, X.F.[Xu-Feng],
Fu, C.W.[Chi-Wing],
Jia, J.Y.[Jia-Ya],
Removing Anomalies as Noises for Industrial Defect Localization,
ICCV23(16120-16129)
IEEE DOI
2401
BibRef
Intxausti, E.[Eneko],
Zugasti, E.[Ekhi],
Cernuda, C.[Carlos],
Leibar, A.M.[Ane Miren],
Elizondo, E.[Estibaliz],
Towards Robust Defect Detection in Casting Using Contrastive Learning,
CIARP23(I:605-616).
Springer DOI
2312
BibRef
Mallem, S.[Soufiane],
Nakib, A.[Amir],
Towards Robustness: Enhancing Deep Learning Models Through
Meta-Learning and Bilevel Optimization for Accurate Car Damage
Classification,
ICIP23(107-115)
IEEE DOI
2312
BibRef
Pérez-Gonzalo, R.[Raül],
Espersen, A.[Andreas],
Agudo, A.[Antonio],
Robust Wind Turbine Blade Segmentation from RGB Images in the Wild,
ICIP23(1025-1029)
IEEE DOI
2312
BibRef
Fulir, J.[Juraj],
Bosnar, L.[Lovro],
Hagen, H.[Hans],
Gospodnetic, P.[Petra],
Synthetic Data for Defect Segmentation on Complex Metal Surfaces,
VISION23(4424-4434)
IEEE DOI
2309
BibRef
Lv, C.[Chengkan],
Zhang, Z.T.[Zheng-Tao],
Shen, F.[Fei],
Zhang, F.[Feng],
Unsupervised Automatic Defect Inspection based on Image Matching and
Local One-class Classification,
VISION23(4435-4444)
IEEE DOI
2309
BibRef
Wei, J.[Jing],
Shen, F.[Fei],
Lv, C.[Chengkan],
Zhang, Z.T.[Zheng-Tao],
Zhang, F.[Feng],
Yang, H.[Huabin],
Diversified and Multi-Class Controllable Industrial Defect Synthesis
for Data Augmentation and Transfer,
VISION23(4445-4453)
IEEE DOI
2309
BibRef
Liao, J.S.[Jun-Song],
Yang, L.[Lemiao],
Tan, H.S.[Hai-Shu],
Zhou, F.Q.[Fu-Qiang],
A Stable Lightweight Model for Metal Crack Detection Based on YOLOv5,
ICIVC22(123-128)
IEEE DOI
2301
Visualization, Cross layer design, Computational modeling, Metals,
Object detection, Manuals, Inspection, deep learning, YOLOv5,
metal crack detection
BibRef
Zhang, Y.[Yu],
Gao, Y.[Yan],
Shen, L.Y.[Li-Yong],
Steel Defect Detection Based on Modified RetinaNet,
ICPR22(3572-3579)
IEEE DOI
2212
Semantics, Detectors, Network architecture, Feature extraction,
Steel, Data mining, Task analysis
BibRef
Lin, D.Y.[Dong-Yun],
Cheng, Y.[Yi],
Li, Y.Q.[Yi-Qun],
Prasad, S.[Shitala],
Guo, A.[Aiyuan],
MLSA-UNet: End-to-End Multi-Level Spatial Attention Guided UNet for
Industrial Defect Segmentation,
ICIP22(441-445)
IEEE DOI
2211
Training, Image segmentation, Product design, Decoding,
Quality assessment, Task analysis, Defect Segmentation, UNet,
Multi-Level Spatial Attention
BibRef
Es-Sarraj, H.[Hamza],
El Bakri, A.[Ayoub],
Alaoui, R.M.[Rim Mrani],
Boumhidi, I.[Ismail],
FSMC for PWM rotor side converter in DFIG-based wind turbine system,
ISCV22(1-7)
IEEE DOI
2208
Fluctuations, Uncertainty, Wind speed, System performance,
Pulse width modulation, Wind power generation,
fuzzy sliding mode control
BibRef
Hödel, M.,
Hoegner, L.,
Stilla, U.,
Review on Photogrammetric Surface Inspection In Automotive Production,
ISPRS21(B2-2021: 511-518).
DOI Link
2201
BibRef
Kopf, L.[Larissa],
Tighe, R.[Rachael],
Thermographic identification of hidden corrosion,
IVCNZ21(1-6)
IEEE DOI
2201
Temperature sensors, Temperature measurement, Image segmentation,
Histograms, Thresholding (Imaging), Corrosion, Steel
BibRef
Nath, V.[Vikanksh],
Chattopadhyay, C.[Chiranjoy],
S2D2Net: An Improved Approach for Robust Steel Surface Defects
Diagnosis With Small Sample Learning,
ICIP21(1199-1203)
IEEE DOI
2201
Manufacturing processes, Image recognition, Training data,
Production, Inspection, Feature extraction,
Industry 4.0
BibRef
Nishiura, H.[Hiromi],
Miyamoto, A.[Atsushi],
Ito, A.[Akira],
Suzuki, S.[Shogo],
Fujii, K.[Kouhei],
Morifuji, H.[Hiroshi],
Takatsuka, H.[Hiroyuki],
Machine-learning-based Quality-level-estimation System for Inspecting
Steel Microstructures,
MVA21(1-4)
DOI Link
2109
Training, Microscopy, Quality control, Manuals, Machine learning, Inspection
BibRef
Fang, J.T.[Jun-Ting ],
Tan, X.Y.[Xiao-Yang],
Wang, Y.H.[Yu-Hui],
ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface
Defect Detection,
ICPR21(423-430)
IEEE DOI
2105
Filtering, Quality control, Production, Detectors,
Feature extraction, Robustness, Pattern recognition
BibRef
Peghini, N.[Nicola],
Zignoli, A.[Andrea],
Gandolfi, D.[Davide],
Rota, P.[Paolo],
Bosetti, P.[Paolo],
Real-time Cross-dataset Quality Production Assessment in Industrial
Laser Cutting Machines,
IML20(490-505).
Springer DOI
2103
BibRef
Huang, Y.J.[Yu-Jen],
Huang, K.W.[Ko-Wei],
Lee, S.H.[Shih-Hsiung],
Defect Detection of Stainless Steel Plates Using Deep Learning
Technology,
HCAU20(289-301).
Springer DOI
2103
BibRef
Dementev, V.E.[Vitalii E.],
Gaponova, M.A.[Maria A.],
Suetin, M.R.[Marat R.],
Streltzova, A.S.[Anastasia S.],
The Use of Machine Learning Methods to Detect Defects in Images of
Metal Structures,
IMTA20(120-128).
Springer DOI
2103
BibRef
Katsamenis, I.[Iason],
Protopapadakis, E.[Eftychios],
Doulamis, A.[Anastasios],
Doulamis, N.[Nikolaos],
Voulodimos, A.[Athanasios],
Pixel-level Corrosion Detection on Metal Constructions by Fusion of
Deep Learning Semantic and Contour Segmentation,
ISVC20(I:160-169).
Springer DOI
2103
BibRef
Dong, J.J.[Jiao-Jiao],
Wang, J.W.[Jian-Wen],
Simulation Study on the Effect of Torque Load on the Temperature
Distribution of TRP,
CVIDL20(453-456)
IEEE DOI
2102
computer simulation, finite element analysis, rolling bearings,
temperature distribution, thermal analysis.
BibRef
Dawda, A.,
Nguyen, M.,
Defects Detection in Highly Specular Surface using a Combination of
Stereo and Laser Reconstruction,
IVCNZ20(1-6)
IEEE DOI
2012
Surface reconstruction, Lighting,
Surface emitting lasers, Inspection, Image reconstruction, Inspection
BibRef
Tabernik, D.[Domen],
Šela, S.[Samo],
Skvarc, J.[Jure],
Skocaj, D.[Danijel],
Deep-learning-based Computer Vision System for Surface-defect Detection,
CVS19(490-500).
Springer DOI
1912
BibRef
Costantino, D.,
Pepe, M.,
Alfio, V.,
Carrieri, M.,
Geomatic Techniques for Monitoring and Verifying of The Wear Condition
Of The Runways of The Bridge Cranes,
Optical3D19(23-30).
DOI Link
1912
BibRef
Jafari-Tabrizi, A.[Atae],
Lichtenegger, H.L.[Hannah Luise],
Gruber, D.P.[Dieter P.],
A Method for the Evaluation and Classification of the Orange Peel
Effect on Painted Injection Moulded Part Surfaces,
IbPRIA19(II:453-464).
Springer DOI
1910
BibRef
Fitti, M.[Matteo],
Castellini, P.[Paolo],
Paone, N.[Nicola],
Zannini, M.[Marco],
Zitti, S.[Saverio],
Gambini, M.[Marco],
Chiariotti, P.[Paolo],
In-Line Burr Inspection Through Backlight Vision,
NTIAP19(343-351).
Springer DOI
1909
BibRef
Han, X.[Xu],
Yu, H.R.[Hao-Ran],
Gu, H.S.[Hai-Song],
Visual Inspection with Federated Learning,
ICIAR19(II:52-64).
Springer DOI
1909
BibRef
Tandiya, A.,
Akthar, S.,
Moussa, M.,
Tarray, C.,
Automotive Semi-specular Surface Defect Detection System,
CRV18(285-291)
IEEE DOI
1812
Cameras, Inspection, Surface topography, Surface reconstruction,
Robots, Surface treatment, Image edge detection, Defect detection,
painted surface inspection
BibRef
Lech, P.[Piotr],
Fastowicz, J.[Jaroslaw],
Okarma, K.[Krzysztof],
Quality Evaluation of 3D Printed Surfaces Based on HOG Features,
ICCVG18(199-208).
Springer DOI
1810
BibRef
de Mesquita Sá, Jr., J.J.[Jarbas Joaci],
Backes, A.R.[André R.],
Bruno, O.M.[Odemir Martinez],
Randomized Neural Network Based Signature for Classification of
Titanium Alloy Microstructures,
CIARP17(669-676).
Springer DOI
1802
See also Pap-Smear Image Classification Using Randomized Neural Network Based Signature.
BibRef
Chai, W.H.,
Ho, S.S.,
Goh, C.K.,
Chia, L.T.,
Quek, H.C.,
A fast sparse reconstruction approach for high resolution image-based
object surface anomaly detection,
MVA17(13-16)
DOI Link
1708
Image reconstruction, Image resolution, Inspection, Lighting,
Optimization, Upper bound, Visualization
BibRef
Mery, D.[Domingo],
Arteta, C.,
Automatic Defect Recognition in X-Ray Testing Using Computer Vision,
WACV17(1026-1035)
IEEE DOI
1609
Casting, Databases, Feature extraction,
Solid modeling, Testing, X-ray, imaging
BibRef
Pitard, G.[Gilles],
Le Goïc, G.[Gaëtan],
Mansouri, A.[Alamin],
Favrelière, H.[Hugues],
Pillet, M.[Maurice],
George, S.[Sony],
Hardeberg, J.Y.[Jon Yngve],
Robust Anomaly Detection Using Reflectance Transformation Imaging for
Surface Quality Inspection,
SCIA17(I: 550-561).
Springer DOI
1706
BibRef
Starostenko, O.[Oleg],
Trygub, I.G.[Irina G.],
Cruz-Perez, C.[Claudia],
Alarcon-Aquino, V.[Vicente],
Potap, O.E.[Oleg E.],
Visual Remote Monitoring and Control System for Rod Braking on Hot
Rolling Mills,
MCPR17(297-307).
Springer DOI
1706
BibRef
Eseholi, T.,
Notta-Cuvier, D.,
Coudoux, F.X.,
Corlay, P.,
Robache, F.,
Bigerelle, M.,
Performance evaluation of strain field measurement by digital image
correlation using HEVC compressed ultra-high speed video sequences,
ISIVC16(142-147)
IEEE DOI
1704
Encoding
BibRef
Hung, T.Y.[Tzu-Yi],
Vaikundam, S.[Sriram],
Natarajan, V.[Vidhya],
Chia, L.T.[Liang-Tien],
Phase Fourier Reconstruction for Anomaly Detection on Metal Surface
Using Salient Irregularity,
MMMod17(I: 290-302).
Springer DOI
1701
BibRef
Vaikundam, S.,
Hung, T.Y.,
Chia, L.T.,
Anomaly region detection and localization in metal surface inspection,
ICIP16(759-763)
IEEE DOI
1610
Decision support systems
BibRef
Watcharopas, C.[Chakrit],
Sapra, Y.[Yash],
Geist, R.[Robert],
Levine, J.A.[Joshua A.],
Extracting Surface Geometry from Particle-Based Fracture Simulations,
ISVC15(I: 82-91).
Springer DOI
1601
BibRef
Balle, F.[Frank],
Eifler, D.[Dietmar],
Fitschen, J.H.[Jan Henrik],
Schuff, S.[Sebastian],
Steidl, G.[Gabriele],
Computation and Visualization of Local Deformation for Multiphase
Metallic Materials by Infimal Convolution of TV-Type Functionals,
SSVM15(385-396).
Springer DOI
1506
BibRef
Florian, D.,
Sonnleithner, L.,
Zagar, B.G.,
Determining copper surface change ratio of conduction path by using
image processing,
IPTA14(1-6)
IEEE DOI
1503
copper
BibRef
Yamashita, N.[Norio],
Yoshizawa, S.[Shin],
Yokota, H.[Hideo],
Volume-based shape analysis for internal microstructure of steels,
ICIP14(4887-4891)
IEEE DOI
1502
Fatigue
BibRef
Soukup, D.,
Huber-Mörk, R.,
Convolutional Neural Networks for Steel Surface Defect Detection from
Photometric Stereo Images,
ISVC14(I: 668-677).
Springer DOI
1501
BibRef
MacDonald, L.,
Hindmarch, J.,
Robson, S.,
Terras, M.,
Modelling the appearance of heritage metallic surfaces,
CloseRange14(371-377).
DOI Link
1411
BibRef
Freye, C.[Christian],
Bendicks, C.[Christian],
Lilienblum, E.[Erik],
Al-Hamadi, A.[Ayoub],
Multiple Camera Approach for SLAM Based Ultrasonic Tank Roof Inspection,
ICIAR14(II: 453-460).
Springer DOI
1410
BibRef
Zhao, F.[Fei],
Mendonca, P.R.S.[Paulo R.S.],
Yu, J.[Jie],
Kaucic, R.[Robert],
Learning-based automatic defect recognition with computed tomographic
imaging,
ICIP13(2762-2766)
IEEE DOI
1412
ADR;Aluminum Casting Defects;CT
BibRef
Ducato, A.[Antonino],
Fratini, L.[Livan],
Cascia, M.L.[Marco La],
An Automated Visual Inspection System for the Classification of the
Phases of Ti-6Al-4V Titanium Alloy,
CAIP13(II:362-369).
Springer DOI
1311
BibRef
Juan, C.,
William, C.,
David, M.,
George, A.,
Delgado, G.,
Vladimir, D.,
Automatic ship hull inspection using fuzzy logic,
AIPR12(1-5)
IEEE DOI
1307
fuzzy logic
BibRef
Radu-Eugen, B.[Breaz],
Sorin, T.[Tarnovean],
Cristina, B.[Biris],
Octavian-Constantin, B.[Bologa],
Improving the dynamic behavior and working accuracy of the CNC laser
cutting machines,
ICARCV12(1642-1647).
IEEE DOI
1304
BibRef
Sato, R.[Ryoichi],
Kato, K.[Kunihito],
Harada, K.[Kouta],
Development of the hole position inspection system of pressed car parts
by using laser 3-d measurement,
FCV13(317-322).
IEEE DOI
1304
BibRef
Vigneswaran, C.,
Madhu, M.,
Rajamani, R.,
Inspection and error analysis of Geneva gear on machine vision system
using Sherlock™ and VB 6.0 Algorithm,
IMVIP12(193-196).
IEEE DOI
1302
BibRef
Gopan, V.[Vipin],
Ragavanantham, S.,
Sampathkumar, S.,
Condition monitoring of grinding process through machine vision system,
IMVIP12(177-180).
IEEE DOI
1302
BibRef
Viitanen, T.[Timo],
Kolehmainen, J.[Jari],
Piché, R.[Robert],
Okamoto, Y.[Yasuhiro],
Spatter Tracking in Laser Machining,
ISVC12(II: 626-635).
Springer DOI
1209
BibRef
Avsar, E.O.,
Altan, M.O.,
Dogan, U.A.,
Akca, D.,
Determining Pull-Out Deformations of Bonded Metal Anchors Embedded In
Concrete by Means of Photogrammetry,
ISPRS12(XXXIX-B5:5-8).
DOI Link
1209
BibRef
Li, J.T.[Jing-Ting],
Wang, Y.[Ying],
Zhang, Q.A.[Qi-Ang],
Chen, W.[Wei],
Method of counting thin steel plates based on digital image processing,
IASP11(155-158).
IEEE DOI
1112
BibRef
Tang, X.N.[Xiang-Na],
Wang, Y.N.[Yao-Nan],
Visual inspection of workpiece quality,
IASP11(434-438).
IEEE DOI
1112
BibRef
Dragon, R.[Ralf],
Mörke, T.[Tobias],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
Fingerprints for Machines: Characterization and Optical Identification
of Grinding Imprints,
DAGM11(276-285).
Springer DOI
1109
BibRef
Belton, D.[David],
Gibson, A.[Aaron],
Stansby, B.[Bruce],
Tingay, S.[Steven],
Bae, K.H.[Kwang-Ho],
Modelling of an Inexpensive 9M Satellite Dish from 3D Point Clouds
Captured By Terrestrial Laser Scanners,
Laser11(xx-yy).
DOI Link
1109
Detailed shape analysis -- is it a parabola, or how has it changed.
BibRef
Borsu, V.[Valentin],
Payeur, P.[Pierre],
Robotic Tracking and Marking of Surface Shape Defects on Moving
Automotive Panels,
CRV11(56-63).
IEEE DOI
1105
BibRef
Kaviti, A.K.[Ajay Kumar],
Pathak, K.K.,
Hora, M.S.,
Application of Neural Networks in Preform Design of Aluminium Upsetting
Process Considering Different Interfacial Frictional Conditions,
PReMI09(98-105).
Springer DOI
0912
BibRef
Liu, W.L.[Wei-Ling],
Liu, L.B.[Li-Bing],
Zhang, H.M.[Hong-Mei],
Yang, Z.Q.[Ze-Qing],
Research of Tool Wear Predictive Technique Based on Support Vector
Machine,
CISP09(1-3).
IEEE DOI
0910
BibRef
Li, H.[Hui],
Fu, L.H.[Li-Hui],
Li, Z.[Zhentao],
Gear Fault Detection Using Angle Domain Average and Hilbert-Huang
Transform Phase Map,
CISP09(1-5).
IEEE DOI
0910
BibRef
Fu, L.H.[Li-Hui],
Li, H.[Hui],
Gear Fault Diagnosis Based on Order Tracking and Degree of
Cyclostationarity,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, L.[Li],
Li, B.[Bing],
Shen, Y.L.[Yi-Lin],
Electric Heating Cable Fault Testing System Based on Wavelet Packet and
RBF Neural Network,
CISP09(1-4).
IEEE DOI
0910
BibRef
Marot, J.[Julien],
Bourennane, S.[Salah],
Spinnler, K.[Klaus],
Metal surface control system based on successive contour estimation,
ICIP10(2293-2296).
IEEE DOI
1009
BibRef
Mumtaz, M.[Mustafa],
Mansoor, A.B.[Atif Bin],
Masood, H.[Hassan],
A New Approach to Aircraft Surface Inspection Based on Directional
Energies of Texture,
ICPR10(4404-4407).
IEEE DOI
1008
BibRef
Cefalu, A.,
Böhm, J.,
Development Of A Robot Guided Optical Multisensory System For Inline
Inspection Of Cylinder Heads,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Rauch, L.[Lukasz],
Madej, L.[Lukasz],
Pawlowski, B.[Bogdan],
Numerical Simulations of Hypoeutectoid Steels under Loading Conditions,
Based on Image Processing and Digital Material Representation,
CompIMAGE10(221-230).
Springer DOI
1006
BibRef
Alegre, E.[Enrique],
Alaiz-Rodríguez, R.[Rocío],
Barreiro, J.[Joaquín],
Fidalgo, E.[Eduardo],
Fernández, L.[Laura],
Surface Finish Control in Machining Processes Using Haralick
Descriptors and Neuronal Networks,
CompIMAGE10(231-241).
Springer DOI
1006
BibRef
Savran, Y.[Yigitcan],
Gunsel, B.[Bilge],
Novelty Detection on Metallic Surfaces by GMM Learning in Gabor Space,
ICIAR10(II: 325-334).
Springer DOI
1006
BibRef
Germani, M.[Michele],
Mengoni, M.[Maura],
Raffaeli, R.[Roberto],
Automation of 3D view acquisition for geometric tolerances verification,
3DIM09(1710-1717).
IEEE DOI
0910
Inspection of mechanical components.
BibRef
Jaramillo, A.E.[Andres E.],
Boulanger, P.[Pierre],
Prieto, F.[Flavio],
On-line 3-D inspection of deformable parts using FEM trained radial
basis functions,
3DIM09(1733-1739).
IEEE DOI
0910
BibRef
Gallego-Sanchez, J.[Javier],
Calera-Rubio, J.[Jorge],
Improving edge detection in highly noised sheet-metal images,
WACV09(1-6).
IEEE DOI
0912
BibRef
Usamentiaga, R.[Rubén],
Molleda, J.[Julio],
García, D.F.[Daniel F.],
Bulnes, F.G.[Francisco G.],
Machine Vision System for Flatness Control Feedback,
ICMV09(105-110).
IEEE DOI
0912
metal quality control.
BibRef
Polišcuk, R.[Radek],
Image Processing Methods Applied in Mapping of Lubrication Parameters,
ISVC09(II: 1011-1020).
Springer DOI
0911
BibRef
Silva, J.[Jayant],
Dana, K.J.[Kristin J.],
Color Matching for Metallic Coatings,
ISVC09(II: 335-344).
Springer DOI
0911
BibRef
Sun, Z.Y.[Zhao-Yun],
Wang, C.F.[Chao-Fan],
Sha, A.M.[Ai-Min],
Chen, K.[Kai],
Image-Based Molding Effect Analysis of HWTD Sample,
CISP09(1-4).
IEEE DOI
0910
BibRef
Min, Y.[Yang],
Li, M.[Mou],
Striation Patterns Classification of Tool Marks Based on Morphological
Structure Features,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, S.K.[Shu-Kui],
Nie, S.M.[Shao-Min],
Image Segmentation Method of Heavy Forgings Based on Genetic Algorithm,
CISP09(1-4).
IEEE DOI
0910
BibRef
Li, X.C.[Xin-Cheng],
Cai, W.[Wang],
Zhu, W.X.[Wei-Xing],
Zhang, Z.Y.[Zhao-Yang],
Xun, B.[Bin],
The Research on Measuring Analysis and Prediction of the Nanoscale
Precipitated Phase in Steel,
CISP09(1-4).
IEEE DOI
0910
BibRef
Ma, H.[Hui],
Sun, W.[Wei],
Ren, Z.H.[Zhao-Hui],
Wen, B.C.[Bang-Chun],
Feature Extraction of Rotor Systems with Coupling Fault with Crack and
Rub-Impact,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, X.C.[Xin-Cheng],
Ding, F.[Fei],
Zhang, Z.Y.[Zhao-Yang],
Zhu, W.X.[Wei-Xing],
Liu, D.[Dan],
Ultra-Fine Grain Steel's Metallurgical Image Restoration Method Based
on Improved Water-Growing,
CISP09(1-4).
IEEE DOI
0910
BibRef
Hong, Z.[Zhao],
Research on Automatic Inspection and Classification for Middle
Thickness Pb Alloy Castings Based on Machine Vision Recognition
Technology,
CISP09(1-4).
IEEE DOI
0910
BibRef
Li, X.C.[Xin-Cheng],
Wang, X.L.[Xin-Liang],
Zhu, W.X.[Wei-Xing],
Zhang, Z.Y.[Zhao-Yang],
Research on Measurement and Classification System Design and
Application about Ultra Steel Dimple,
CISP09(1-4).
IEEE DOI
0910
BibRef
Feng, Z.P.[Zhi-Peng],
Hao, R.J.[Ru-Jiang],
Chu, F.L.[Fu-Lei],
Application of Cyclic Correlation Analysis to Gearbox Damage Assessment,
CISP09(1-5).
IEEE DOI
0910
BibRef
Wang, Z.Q.[Zhi-Qiang],
Xu, Y.X.[Yu-Xiu],
Mei, Y.Y.[Yuan-Ying],
Damage Diagnosis for Wind Turbine Blades Based on the Shifting Distance
of Characteristic Frequency,
CISP09(1-3).
IEEE DOI
0910
BibRef
Zhang, H.G.[Hai-Guang],
Hu, Q.X.[Qing-Xi],
Liu, Y.Y.[Yuan-Yuan],
Wang, J.W.[Jia-Wei],
Chi, Z.F.[Zhao-Fu],
Huang, J.[Jie],
On-Line Bubble Inspection Method for Automated Vacuum Casting
Controlling System,
CISP09(1-5).
IEEE DOI
0910
BibRef
de la Fuente López, E.[Eusebio],
Trespaderne, F.M.[Félix Miguel],
Inspection of Stamped Sheet Metal Car Parts Using a Multiresolution
Image Fusion Technique,
CVS09(345-353).
Springer DOI
0910
BibRef
Dragon, R.[Ralf],
Becker, C.[Christian],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
Reading from Scratch:
A Vision-System for Reading Data on Micro-structured Surfaces,
DAGM09(402-411).
Springer DOI
0909
for storage on metallic surfaces.
BibRef
Platzer, E.S.[Esther-Sabrina],
Nägele, J.[Josef],
Wehking, K.H.[Karl-Heinz],
Denzler, J.[Joachim],
HMM-Based Defect Localization in Wire Ropes:
A New Approach to Unusual Subsequence Recognition,
DAGM09(442-451).
Springer DOI
0909
BibRef
Thumwarin, P.,
Prasit, C.,
boonbumroong, P.,
Matsuura, T.,
Firearm identification based on FIR system characterizing rotation
invariant feature of cartridge case image,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Chuang, H.C.A.[Hsiao-Chi-Ang],
Huffman, L.M.[Landis M.],
Comer, M.L.[Mary L.],
Simmons, J.P.[Jeff P.],
Pollak, I.[Ilya],
An automated segmentation for nickel-based superalloy,
ICIP08(2280-2283).
IEEE DOI
0810
BibRef
Huber-Mörk, R.,
Zaharieva, M.,
Czedik-Eysenberg, H.,
Numismatic Object Identification Using Fusion of Shape and Local
Descriptors,
ISVC08(II: 368-379).
Springer DOI
0812
BibRef
Amini, A.S.,
Varshosaz, M.,
Saadatseresht, M.,
Deformation Determination of Aircraft Parts by Photogrammetry,
ISPRS08(B5: 135 ff).
PDF File.
0807
BibRef
Jung, S.H.,
Yu, J.H.,
Ge, L.,
Lee, J.K.,
Automatic Modelling Method for Steel Structures Using Photogrammetry,
ISPRS08(B5: 169 ff).
PDF File.
0807
BibRef
Alegre, E.[Enrique],
Barreiro, J.[Joaquín],
Castejón, M.[Manuel],
Suarez, S.[Sir],
Computer Vision and Classification Techniques on the Surface Finish
Control in Machining Processes,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Wu, P.H.[Ping-Han],
Li, Y.W.[Yu-Wei],
Chu, C.H.[Chih-Hsing],
Tool Path Planning for 5-Axis Flank Milling Based on Dynamic
Programming Techniques,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Zhang, X.[Xi],
Tian, X.D.[Xiao-Dong],
Yamazaki, K.[Kazuo],
Fujishima, M.[Makoto],
3D Reconstruction and Pose Determination of the Cutting Tool from a
Single View,
ISVC07(II: 377-386).
Springer DOI
0711
BibRef
da Silva, R.R.[Romeu Ricardo],
Mery, D.[Domingo],
Accuracy Estimation of Detection of Casting Defects in X-Ray Images
Using Some Statistical Techniques,
PSIVT07(639-650).
Springer DOI
0712
BibRef
Benesova, W.,
Rinnhofer, A.,
Jakob, G.,
Determining the Average Grain Size of Super-Alloy Micrographs,
ICIP06(2749-2752).
IEEE DOI
0610
BibRef
Rinnhofer, A.[Alfred],
Benesova, W.[Wanda],
Jakob, G.[Gerhard],
Stockinger, M.[Manfred],
Feature Extraction from Micrographs of Forged Nickel Based Alloy,
ICPR06(II: 391-394).
IEEE DOI
0609
BibRef
Gayubo, F.[Fernando],
Gonzalez, J.L.[Jose L.],
de la Fuente, E.[Eusebio],
Miguel, F.[Félix],
Peran, J.R.[Jose R.],
On-line machine vision system for detect split defects in sheet-metal
forming processes,
ICPR06(I: 723-726).
IEEE DOI
0609
BibRef
Claes, K.,
Koninckx, T.P.,
Bruyninckx, H.,
Automatic burr detection on surfaces of revolution based on adaptive 3D
scanning,
3DIM05(212-219).
IEEE DOI
0508
BibRef
Reindl, I.[Ingo],
O'Leary, P.[Paul],
Geometric Surface Inspection of Raw Milled Steel Blocks,
ICIAR04(II: 849-856).
Springer DOI
0409
BibRef
Hernández, S.[Sergio],
Sáez, D.[Doris],
Mery, D.[Domingo],
Neuro-Fuzzy Method for Automated Defect Detection in Aluminium Castings,
ICIAR04(II: 826-833).
Springer DOI
0409
BibRef
Mery, D.[Domingo],
Crossing Line Profile: A New Approach to Detecting Defects in Aluminium
Die Casting,
SCIA03(725-732).
Springer DOI
0310
BibRef
Varma, S.,
Baras, I.S.,
Tool wear estimation from acoustic emissions:
A model incorporating wear-rate,
ICPR02(I: 492-495).
IEEE DOI
0211
BibRef
González, R.C.[Rafael C.],
Valdés, R.[Raul],
Cancelas, J.A.[Jose A.],
Vision Based Measurement System to Quantify Straightness Defect in
Steel Sheets,
CAIP01(427 ff.).
Springer DOI
0210
BibRef
Wade, P.[Paul],
Moran, D.[David],
Graham, J.[Jim],
Jackson, C.B.[C. Brook],
Robust and Accurate 3D Measurement of Formed Tube Using Trinocular
Stereo Vision,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Mian, Z.,
Kassim, A.A.,
Mannan, M.A.,
Texture Anaysis of Machined Surfaces using a new Hough Transform,
Texture02(91-95).
0207
BibRef
Zhou, J.,
Xin, L.P.,
Gao, D.S.,
Zhang, C.S.,
Zhang, D.,
Automated Cartridge Identification for Firearm Authentication,
CVPR01(I:749-754).
IEEE DOI
0110
BibRef
Robertson, C.,
Fisher, R.B.,
Shape Recovery and Analysis of Large Screw Threads,
3DIM01(300-305).
IEEE DOI
BibRef
0100
Edinburgh
0106
BibRef
Derganc, J.,
Pernus, F.,
A Machine Vision System for Inspecting Bearings,
ICPR00(Vol IV: 752-755).
IEEE DOI
0009
BibRef
Lilienblum, T.,
Albrecht, P.,
Calow, R.,
Michaelis, B.,
Dent Detection in Car Bodies,
ICPR00(Vol IV: 775-778).
IEEE DOI
0009
Structured light.
BibRef
Kyrki, V.,
Kälviäinen, H.,
High Precision 2-d Geometrical Inspection,
ICPR00(Vol IV: 779-782).
IEEE DOI
0009
BibRef
Chivers, K.,
Clocksin, W.,
Inspection of Surface Strain in Materials using Optical Flow,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Komenda, J.,
Applications of Image Analysis in Quantitative Metallography,
SSAB97(Image Processing)
9703
BibRef
Ancis, M.,
Campus, A.,
Giusto, D.D.,
Tintrup, F.,
XR-US Data Fusion for Non-destructive Evaluation of Steel Components,
MVA98(xx-yy).
BibRef
9800
Livens, S.[Stefan],
Scheunders, P.[Paul],
van de Wouwer, G.[Gert],
van Dyck, D.[Dirk],
Smets, H.[Hilde],
Winkelmans, J.[Johan],
Bogaerts, W.[Walter],
Classification of corrosion images by wavelet signatures and LVQ
networks,
CAIP95(538-543).
Springer DOI
9509
BibRef
Dinten, J.M.,
Dziopa, P.,
Koenig, A.,
X-rays image analysis for defects detection and characterization in
metallic samples,
ICIP94(II: 321-325).
IEEE DOI
9411
BibRef
Dias, A.F.,
de Albuquerque Araújo, A.[Arnaldo],
Crispim, V.R.,
Aluminum corrosion detection by using a neutron radiographic image
analyzer,
ICIP94(II: 316-320).
IEEE DOI
9411
BibRef
Tuzikov, A.,
Soille, P.,
Jeulin, D.,
Bruneel, H.,
Vermeulen, M.,
Extraction of Grid Patterns on Stamped Metal Sheets Using
Mathematical Morphology,
ICPR92(I:425-428).
IEEE DOI
BibRef
9200
Maliniemi, H.,
Ailisto, H.,
Hakalahti, H.,
Vision system for turbine inspection,
ICPR88(II: 1202-1206).
IEEE DOI
8811
BibRef
Zavidovique, B.,
Merlo, X., and
Foulloy, L.,
Hey Robot... Looking for Cones?,
CVPR85(379-381). (ADERP/ECTA)
To find conical metal shapes, real time implementation.
BibRef
8500
Mundy, J.L.,
Porter, III, G.B.,
Visual Inspection of Metal Surfaces,
ICPR80(232-237).
BibRef
8000
Horaud, R.,
Charras, J.P.,
Automatic Inspection and Orientation of External Screws,
ICPR80(264-268).
BibRef
8000
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Metal, Coins .