Pickett, R.M.,
Visual Analysis of Texture in the Detection and Recognition of Objects,
PPP70(289-308).
BibRef
7000
Deutsch, E.S.,
Belknap, N.J.,
Texture Descriptions Using Neighborhood Information,
CGIP(1), No. 2, August 1972, pp. 145-168.
Elsevier DOI
BibRef
7208
Troy, E.B.,
Deutsch, E.S.,
Rosenfeld, A.,
Gray-Level Manipulation Experiments for Texture Analysis,
SMC(3), No. 1, January 1973, pp. 91-98.
BibRef
7301
Hayes, Jr., K.C.,
Shah, A.N.,
Rosenfeld, A.,
Texture Coarseness: Further Experiments,
SMC(4), 1974, pp. 467-472.
BibRef
7400
Besag, J.,
Spatial Interaction and the Statistical Analysis of Lattice Systems,
RoyalStat(B-36), No. 2, 1974, pp. 192-236.
The MRF formulation.
BibRef
7400
Besag, J.,
On the Statistical Analysis of Dirty Pictures,
RoyalStat(B-48), No. 3, 1986, pp. 259-302.
Energy minimization. Greedy algorithm to find minimum.
BibRef
8600
Besag, J.,
Statistical Analysis of Nonlattice Data,
Statistician(24), No. 3, 1975, pp. 179-195.
BibRef
7500
Larimore, W.E.,
Statistical Interaction and Statistical Analysis of Lattice Systems,
PIEEE(65), No. 6, June 1977, pp. 961-970.
BibRef
7706
Mills, H.D.[Harlan D.],
On information content in patterns,
CGIP(14), No. 3, November 1980, pp. 183-202.
Elsevier DOI
0501
Sampled planar k-colored pattern.
BibRef
Morganthaler, D.G.,
Wang, C.Y.,
Rosenfeld, A.,
Two Remarks on Multidimensional Texture Analysis,
PRL(1), 1982, pp. 103-105.
BibRef
8200
Pietikainen, M.[Matti],
Rosenfeld, A.[Azriel],
Edge Based Texture Measures,
SMC(12), 1982, pp. 585-594.
BibRef
8200
Earlier:
ICPR82(298-300).
BibRef
Shen, H.C.[Helen C.],
Wong, A.K.C.[Andrew K.C.],
Generalized Texture Representation and Metric,
CVGIP(23), No. 2, August 1983, pp. 187-206.
Elsevier DOI
BibRef
8308
Shipley, T.[Thorne],
van Houten, P.[Peter],
Perception of order within disorder: 1. Visual ranking of random
textures,
PR(17), No. 4, 1984, pp. 465-473.
Elsevier DOI
0309
BibRef
Shipley, T.[Thorne],
Shore, H.[Harold],
The human texture visual field: Fovea-to-periphery pattern recognition,
PR(23), No. 11, 1990, pp. 1215-1221.
Elsevier DOI
0401
BibRef
Flack, V.F.[Virginia Foard],
Using probabilities in analyzing two dimensional spatial patterns,
PR(18), No. 5, 1985, pp. 357-359.
Elsevier DOI
0309
Display of data for analysis.
BibRef
Therrien, C.W.,
Quatieri, T.F.,
Dudgeon, D.E.,
Statistical Model-Based Algorithms for Image Analysis,
PIEEE(74), 1986, pp. 532-551.
See also Estimation-Theoretic Approach to Terrain Image Segmentation, An.
BibRef
8600
Eichmann, G.,
Kasparis, T.,
Topologically Invariant Texture Descriptors,
CVGIP(41), No. 3, March 1988, pp. 267-281.
Elsevier DOI image property, statistics.
BibRef
8803
Pachowitz, P.W.,
Integrating Low-Level Features Computation with
Inductive Learning Techniques for Texture Recognition,
PRAI(4), 1990, pp. 147-165.
BibRef
9000
Pachowicz, P.W.,
Local Characteristics of Binary Images and Their Application to the
Automatic Control of Low-Level Robot Vision,
CVIP92(67-102).
BibRef
9200
Wu, C.M.[Chung-Ming],
Chen, Y.C.[Yung-Chang],
Statistical Feature Matrix for Texture Analysis,
GMIP(54), No. 5, September 1992, pp. 407-419.
BibRef
9209
Muzzolini, R.[Russell],
Yang, Y.H.[Yee-Hong],
Pierson, R.[Roger],
Texture Characterization Using Robust Statistics,
PR(27), No. 1, January 1994, pp. 119-134.
Elsevier DOI
BibRef
9401
Ganesan, L.,
Bhattacharyya, P.,
A statistical design of experiments approach for texture description,
PR(28), No. 1, January 1995, pp. 99-105.
Elsevier DOI
0401
BibRef
Ganesan, L.,
Bhattacharyya, P.,
A New Statistical Approach for Micro Texture Description,
PRL(16), No. 5, May 1995, pp. 471-478.
BibRef
9505
Scharcanski, J.[Jacob],
Dodson, C.T.J.,
Texture Analysis for Estimating Spatial Variability and
Anisotropy in Planar Stochastic Structures,
OptEng(35), No. 8, August 1996, pp. 2302-2309.
9609
BibRef
Scharcanski, J.[Jacob],
Stochastic texture analysis for monitoring stochastic processes in
industry,
PRL(26), No. 11, August 2005, pp. 1701-1709.
Elsevier DOI
0506
BibRef
Scharcanski, J.[Jacob],
A Wavelet-Based Approach for Analyzing Industrial Stochastic Textures
With Applications,
SMC-A(37), No. 1, January 2007, pp. 10-22.
IEEE DOI
0701
BibRef
Lowitz, G.E.[Gabriel E.],
Can a Local Histogram Really Map Texture Information?,
PR(16), No. 2, 1983, pp. 141-147.
Elsevier DOI
9611
BibRef
Lowitz, G.E.[Gabriel E.],
Mapping the local information content of a spatial image,
PR(17), No. 5, 1984, pp. 545-550.
Elsevier DOI
0309
BibRef
Dasarathy, B.V.,
Holder, E.B.,
Image Characterizations Based on
Joint Gray Level-Run Length Distributions,
PRL(12), No. 8, August 1991, pp. 497-502.
BibRef
9108
Saito, N.,
Coifman, R.R.,
Local Discriminant Bases and Their Applications,
JMIV(5), No. 4, December 1995, pp. 337-358.
BibRef
9512
Lee, J.H.,
Lee, N.I.,
Kim, S.D.,
A Fast and Adaptive Method to Estimate Texture Statistics by the
Spatial Gray Level Dependence Matrix for Texture Image Segmentation,
PRL(13), 1992, pp. 291-303.
BibRef
9200
Shen, H.C.,
Bie, C.Y.C.,
Feature Frequency Matrices as Texture Image Representation,
PRL(13), 1992, pp. 195-205.
BibRef
9200
de Floriani, L.,
Jeanne, P.,
Nagy, G.,
Visibility-Related Image Features,
PRL(13), 1992, pp. 463-470.
BibRef
9200
Chu, A.,
Sehgal, C.M.,
Greenleaf, J.F.,
Use of Gray Value Distribution of Run Lengths for Texture Analysis,
PRL(11), 1990, pp. 415-420.
BibRef
9000
He, D.C.,
Wang, L.,
Guibert, J.,
Texture Feature Extraction,
PRL(6), 1987, pp. 269-273.
BibRef
8700
Strickland, R.N.,
Estimation of Local Statistics for Digital Processing of
Nonstationary Images,
ASSP(33), 1985, pp. 465-469.
BibRef
8500
Politis, D.N.,
A Simple Information Theoretic Proof of the
Maximum Entropy Property of Some Gaussian Random Fields,
IP(3), No. 6, November 1994, pp. 865-868.
IEEE DOI
BibRef
9411
Popat, K.[Kris],
Picard, R.W.,
Cluster-Based Probability Model and Its Application to Image and
Texture Processing,
IP(6), No. 2, February 1997, pp. 268-284.
IEEE DOI
9703
BibRef
Earlier:
Cluster-Based Probability Model Applied to Image Restoration and
Compression,
Vismod-253, 1993.
HTML Version.
BibRef
Earlier:
Novel Cluster-Based Probability Model for Texture Synthesis,
Classification, and Compression,
Vismod-234, 1993.
HTML Version.
BibRef
Liu, S.C.,
Chang, S.,
Dimension Estimation of Discrete-Time Fractional Brownian-Motion
with Applications to Image Texture Classification,
IP(6), No. 8, August 1997, pp. 1176-1184.
IEEE DOI
9708
BibRef
Tan, T.N.,
Noise Robustness of Texture Features,
IVC(15), No. 11, November 1997, pp. 815-817.
Elsevier DOI
9712
BibRef
Szirányi, T.[Tamás],
Statistical Pattern Recognition of Low Resolution Pictures,
PRL(8), 1988, pp. 221-228.
BibRef
8800
Szirányi, T.[Tamáss],
Texture Recognition Using a Superfast Cellular Neural Network VLSI Chip
in a Real Experimental Environment,
PRL(18), No. 11-13, November 1997, pp. 1329-1334.
9806
BibRef
Szirányi, T.[Tamás],
Noise effects in statistical subpixel pattern recognition,
CAIP93(74-81).
Springer DOI
9309
BibRef
Earlier:
Statistical subpixel pattern recognition by histograms,
ICPR92(II:705-708).
IEEE DOI
9208
BibRef
Sanna, A.,
Montrucchio, B.,
Sparavigna, A.,
A Parallel Algorithm of Texture Analysis for
Liquid Crystal Investigation,
PRL(20), No. 2, February 1999, pp. 183-190.
BibRef
9902
Baheerathan, S.,
Albregtsen, F.,
Danielsen, H.E.,
New texture features based on the complexity curve,
PR(32), No. 4, April 1999, pp. 605-618.
Elsevier DOI
BibRef
9904
Garcia, P.[Pedro],
Petrou, M.[Maria],
Kamata, S.,
The Use of Boolean Model for Texture Analysis of Grey Images,
CVIU(74), No. 3, June 1999, pp. 227-235.
DOI Link
BibRef
9906
Earlier: A2 and A1 only:
ICPR98(Vol I: 811-813).
IEEE DOI
9808
BibRef
Agapov, I.A.,
Kashkin, V.B.,
Khlebopros, R.G.,
Identification of random fields of points,
SP:IC(13), No. 1, July 1998, pp. 21-43.
Elsevier DOI
BibRef
9807
Wu, Y.N.[Ying Nian],
Zhu, S.C.[Song Chun],
Liu, X.W.[Xiu-Wen],
Equivalence of Julesz Ensembles and FRAME Models,
IJCV(38), No. 3, July-August 2000, pp. 247-265.
DOI Link
0006
BibRef
Earlier:
Equivalence of Julesz and Gibbs Texture Ensembles,
ICCV99(1025-1032).
IEEE DOI
Award, Marr Prize, HM.
BibRef
Zhu, S.C.[Song Chun],
Wu, Y.N.,
Mumford, D.[David],
Filters, Random-Fields and Maximum-Entropy (Frame):
Towards a Unified Theory for Texture Modeling,
IJCV(27), No. 2, March 1998, pp. 107-126.
DOI Link
9805
BibRef
Earlier:
FRAME: Filters, Random fields and Maximum Entropy:
Towards the Unified Theory for Texture Modeling,
CVPR96(686-693).
IEEE DOI
BibRef
Guo, C.E.[Cheng-En],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Towards a mathematical theory of primal sketch and sketchability,
ICCV03(1228-1235).
IEEE DOI
0311
Model for texture.
By filters or bases.
BibRef
Wu, Y.N.[Ying Nian],
Zhu, S.C.[Song-Chun],
Guo, C.E.[Cheng-En],
Statistical Modeling of Texture Sketch,
ECCV02(III: 240 ff.).
Springer DOI
0205
BibRef
Zhu, S.C.[Song-Chun],
Guo, C.E.[Cheng-En],
Conceptualization and Modeling of Visual Patterns,
PercOrg01(xx-yy).
0106
BibRef
Zhu, S.C.[Song Chun],
Wu, Y.,
Mumford, D.[David],
Minimax Entropy Principles and Its Application to
Texture Modeling,
NeurComp(9), No. 8, 1997, pp. 1627-1660.
BibRef
9700
Zhu, S.C.[Song-Chun],
Statistical modeling and conceptualization of visual patterns,
PAMI(25), No. 6, June 2003, pp. 691-712.
IEEE Abstract.
0306
A Visual pattern is equalized to a statistical ensemble and models for
various patterns form a continuous spectrum.
BibRef
Guo, C.E.[Cheng-En],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Primal sketch: Integrating structure and texture,
CVIU(106), No. 1, April 2007, pp. 5-19.
Elsevier DOI
0704
Sparse coding; Markov random fields; Image primitives;
Sketch graphs; Lossy image coding
BibRef
Lindsey, C.S.[Clark S.],
Strömberg, M.[Michael],
Image classification using the frequencies of simple features,
PRL(21), No. 3, March 2000, pp. 265-268.
0003
BibRef
Foresti, G.L.,
Gentili, S.,
Noise-Robust and Invariant Object Classification by the High-Order
Statistical Pattern Spectrum,
PRAI(13), No. 8, December 1999, pp. 1219.
0005
BibRef
Ojala, T.[Timo],
Valkealahti, K.[Kimmo],
Oja, E.[Erkki],
Pietikäinen, M.[Matti],
Texture discrimination with multidimensional distributions of signed
gray-level differences,
PR(34), No. 3, March 2001, pp. 727-739.
Elsevier DOI
0101
See also Image Segmentation by Texture Using Pyramid Node Linking.
BibRef
Turtinen, M.[Markus],
Mäenpää, T.[Topi],
Pietikäinen, M.[Matti],
Texture Classification by Combining Local Binary Pattern Features and a
Self-Organizing Map,
SCIA03(1162-1169).
Springer DOI
0310
BibRef
Mäenpää, T.[Topi],
Pietikäinen, M.[Matti],
Multi-scale Binary Patterns for Texture Analysis,
SCIA03(885-892).
Springer DOI
0310
BibRef
Pietikainen, M.,
Nurmela, T.,
Maenpaa, T.,
Turtinen, M.,
View-based recognition of 3D-textured surfaces,
CIAP03(530-535).
IEEE DOI
0310
BibRef
Ojala, T.[Timo],
Pietikäinen, M.[Matti],
Mäenpää, T.[Topi],
Multiresolution Gray-Scale and Rotation Invariant Texture
Classification with Local Binary Patterns,
PAMI(24), No. 7, July 2002, pp. 971-987.
IEEE Abstract.
0207
BibRef
Earlier:
Gray Scale and Rotation Invariant Texture Classification with Local
Binary Patterns,
ECCV00(I: 404-420).
Springer DOI
0003
Find the uniform patterns for any quantization.
BibRef
Pietikäinen, M.,
Hadid, A.,
Zhao, G.,
Ahonen, T.,
Computer Vision Using Local Binary Patterns,
Springer2011.
ISBN: 978-0-85729-747-1.
WWW Link.
1109
BibRef
Ahonen, T.[Timo],
Pietikäinen, M.[Matti],
Pixelwise Local Binary Pattern Models of Faces Using Kernel Density
Estimation,
ICB09(52-61).
Springer DOI
0906
BibRef
Ylioinas, J.[Juha],
Hong, X.P.[Xiao-Peng],
Pietikäinen, M.[Matti],
Constructing Local Binary Pattern Statistics by Soft Voting,
SCIA13(119-130).
Springer DOI
1311
BibRef
Ylioinas, J.[Juha],
Hadid, A.[Abdenour],
Guo, Y.[Yimo],
Pietikäinen, M.[Matti],
Efficient Image Appearance Description Using Dense Sampling Based Local
Binary Patterns,
ACCV12(III:375-388).
Springer DOI
1304
BibRef
Takala, V.[Valtteri],
Ahonen, T.[Timo],
Pietikäinen, M.[Matti],
Block-Based Methods for Image Retrieval Using Local Binary Patterns,
SCIA05(882-891).
Springer DOI
0506
BibRef
Zhao, G.,
Ahonen, T.[Timo],
Matas, J.G.[Jirí G.],
Pietikäinen, M.[Matti],
Rotation-Invariant Image and Video Description With Local Binary
Pattern Features,
IP(21), No. 4, April 2012, pp. 1465-1477.
IEEE DOI
1204
BibRef
Ahonen, T.[Timo],
Matas, J.G.[Jirí G.],
He, C.[Chu],
Pietikäinen, M.[Matti],
Rotation Invariant Image Description with Local Binary Pattern
Histogram Fourier Features,
SCIA09(61-70).
Springer DOI
0906
BibRef
Maenpaa, T.[Topi],
Ojala, T.[Timo],
Pietikäinen, M.[Matti],
Soriano, M.[Maricor],
Robust Texture Classification by Subsets of Local Binary Patterns,
ICPR00(Vol III: 935-938).
IEEE DOI
0009
BibRef
Maenpaa, T.[Topi],
Pietikäinen, M.[Matti],
Ojala, T.[Timo],
Texture Classification by Multi-predicate Local Binary Pattern
Operators,
ICPR00(Vol III: 939-942).
IEEE DOI
0009
BibRef
Dong, P.,
Test of a new lacunarity estimation method for image texture analysis,
JRS(21), No. 17, November 2000, pp. 3369-3373.
0102
BibRef
Johansson, J.O.[Jan-Olof],
Parameter-estimation in the auto-binomial model using the coding- and
pseudo-likelihood method approached with simulated annealing and
numerical optimization,
PRL(22), No. 11, September 2001, pp. 1233-1246.
Elsevier DOI
0108
See also Spatial Interaction and the Statistical Analysis of Lattice Systems.
BibRef
Mukundan, R.,
Ong, S.H.,
Lee, P.A.,
Image analysis by Tchebichef moments,
IP(10), No. 9, September 2001, pp. 1357-1364.
IEEE DOI
0108
BibRef
Yap, P.T.[Pew-Thian],
Paramesran, R.[Raveendran],
Ong, S.H.[Seng-Huat],
Image analysis by Krawtchouk moments,
IP(12), No. 11, November 2003, pp. 1367-1377.
IEEE DOI
0311
BibRef
Yap, P.T.[Pew-Thian],
Paramesran, R.[Raveendran],
Ong, S.H.[Seng-Huat],
Image Analysis Using Hahn Moments,
PAMI(29), No. 11, November 2007, pp. 2057-2062.
IEEE DOI
0711
Show how Hahn moments, are a generalization of Chebyshev and Krawtchouk
moments.
BibRef
Rushing, J.A.[John A.],
Ranganath, H.S.[Heggere S.],
Hinke, T.H.[Thomas H.],
Graves, S.J.[Sara J.],
Using Association Rules as Texture Features,
PAMI(23), No. 8, August 2001, pp. 845-858.
IEEE DOI
0109
Association rules as applied in other domains.
Capture structural and statistical information. Capture frequently occurring
local structures.
Comparison with
GLCM
See also Use of Gray Value Distribution of Run Lengths for Texture Analysis. (And Duda/Hart
See also Pattern Classification and Scene Analysis. ),
GLRL
See also On Perceptual Analyzers Underlying Visual Texture Discrimination: Part II. Fractal
See also N-Folded Symmetries by Complex Moments in Gabor Space and Their Application to Unsupervised Texture Segmentation. Markov
See also Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow. Gabor
See also Classification of Textures Using Gaussian Markov Random Fields.
BibRef
Yang, X.Y.[Xiang-Yu],
Liu, J.[Jun],
Maximum entropy random fields for texture analysis,
PRL(23), No. 1-3, January 2002, pp. 93-101.
Elsevier DOI
0201
BibRef
Fwu, J.K.[Jong-Kae],
Djuric, P.M.,
Unsupervised vector image segmentation by a tree structure-ICM
algorithm,
MedImg(15), No. 6, December 1996, pp. 871-880.
IEEE Top Reference.
0203
Extend:
See also Spatial Interaction and the Statistical Analysis of Lattice Systems. with a tree-structured approach.
BibRef
Fwu, J.K.,
Djuric, P.M.,
EM Algorithm for Image Segmentation Initialized by a
Tree Structure Scheme,
IP(6), No. 2, February 1997, pp. 349-352.
IEEE DOI
9703
BibRef
Ferraro, M.[Mario],
Boccignone, G.[Giuseppe],
Caelli, T.M.[Terry M.],
Entropy-based representation of image information,
PRL(23), No. 12, October 2002, pp. 1391-1398.
Elsevier DOI
0206
BibRef
Earlier: A2, A1, A3:
Entropy Production in Colour Images,
ICPR00(Vol I: 202-205).
IEEE DOI
0009
BibRef
Earlier:
Local Structure in Images from Entropy Production,
ICIP99(I:343-347).
IEEE DOI
BibRef
Kupinski, M.A.[Matthew A.],
Clarkson, E.W.[Eric W.],
Hoppin, J.W.[John W.],
Chen, L.Y.[Li-Ying],
Barrett, H.H.[Harrison H.],
Experimental determination of object statistics from noisy images,
JOSA-A(20), No. 3, March 2003, pp. 421-429.
WWW Link.
0304
BibRef
Baik, S.W.[Sung Wook],
Pachowicz, P.W.,
Online model modification for adaptive texture recognition in image
sequences,
SMC-A(32), No. 6, November 2002, pp. 625-639.
IEEE Top Reference.
0301
BibRef
Lahajnar, F.[Franci],
Kovacic, S.[Stanislav],
Rotation-invariant texture classification,
PRL(24), No. 9-10, June 2003, pp. 1151-1161.
Elsevier DOI
0304
BibRef
Campisi, P.,
Neri, A.,
Panci, G.,
Scarano, G.,
Robust rotation-invariant texture classification using a model based
approach,
IP(13), No. 6, June 2004, pp. 782-791.
IEEE DOI
0406
BibRef
Earlier: A1, A2, A4 only:
Model based rotation-invariant texture classification,
ICIP02(III: 117-120).
IEEE DOI
0210
BibRef
Johnson, A.P.[Aaron P.],
Baker, Jr., C.L.[Curtis L.],
First- and second-order information in natural images:
A Filter-Based Approach to Image Statistics,
JOSA-A(21), No. 6, June 2004, pp. 913-925.
WWW Link.
0409
BibRef
Johnson, A.P.[Aaron P.],
Kingdom, F.A.[Frederick A.],
Baker, Jr., C.L.[Curtis L.],
Spatiochromatic statistics of natural scenes: first- and second-order
information and their correlational structure,
JOSA-A(22), No. 10, October 2005, pp. 2050-2059.
WWW Link.
0601
BibRef
Lee, K.L.[Kuen-Long],
Chen, L.H.[Ling-Hwei],
An efficient computation method for the texture browsing descriptor of
MPEG-7,
IVC(23), No. 5, 1 May 2005, pp. 479-489.
Elsevier DOI
0501
Characterize a texture's regularity, directionality and coarseness.
BibRef
Du, F.[Feng],
Shi, W.K.[Wen-Kang],
Chen, L.Z.[Liang-Zhou],
Deng, Y.[Yong],
Zhu, Z.F.[Zhen-Fu],
Infrared image segmentation with 2-D maximum entropy method based on
particle swarm optimization (PSO),
PRL(26), No. 5, April 2005, pp. 597-603.
Elsevier DOI
0501
BibRef
Puig, D.[Domènec],
Garcia, M.Á.[Miguel Ángel],
Automatic texture feature selection for image pixel classification,
PR(39), No. 11, November 2006, pp. 1996-2009.
Elsevier DOI
0608
BibRef
Earlier:
Automatic Selection of Multiple Texture Feature Extraction Methods for
Texture Pattern Classification,
IbPRIA05(II:215).
Springer DOI
0509
BibRef
Earlier:
Recognizing specific texture patterns by integration of multiple
texture methods,
ICIP02(I: 125-128).
IEEE DOI
0210
BibRef
And: A2, A1:
Improving texture pattern recognition by integration of multiple
texture feature extraction methods,
ICPR02(III: 7-10).
IEEE DOI
0211
Multiple texture methods; Multiple evaluation windows
BibRef
Garcia, M.A.[Miguel Angel],
Puig, D.[Domenec],
Supervised texture classification by integration of multiple texture
methods and evaluation windows,
IVC(25), No. 7, 1 July 2007, pp. 1091-1106.
Elsevier DOI
0705
Supervised texture classification; Multiple texture methods;
Multiple evaluation windows; Kullback J-divergence; MeasTex; LBP;
Edge flow;
JSEG
See also Unsupervised Segmentation of Color-Texture Regions in Images and Video. ;
Fabric defect detection
BibRef
Melendez, J.[Jaime],
Puig, D.[Domenec],
Garcia, M.A.[Miguel Angel],
On Adapting Pixel-based Classification to Unsupervised Texture
Segmentation,
ICPR10(854-857).
IEEE DOI
1008
BibRef
Earlier:
Comparative Evaluation of Classical Methods, Optimized Gabor Filters
and LBP for Texture Feature Selection and Classification,
CAIP07(912-920).
Springer DOI
0708
BibRef
Cantoni, V.,
Casanova, A.,
Fraschini, M.,
Vitulano, S.,
Equilibrium and dissipative structures role on images,
PRL(28), No. 14, 15 October 2007, pp. 1865-1872.
Elsevier DOI
0710
Entropy; Order and disorder; Structures
For 1-D signals.
BibRef
Chainais, P.[Pierre],
Infinitely Divisible Cascades to Model the Statistics of Natural Images,
PAMI(29), No. 12, December 2007, pp. 2105-2119.
IEEE DOI
0711
BibRef
Earlier:
Multi-Dimensional Infinitely Divisible Cascades to Model the Statistics
of Natural Images,
ICIP05(III: 129-132).
IEEE DOI
0512
Model images using Infinitely Divisible Cascades.
BibRef
Gabarda, S.[Salvador],
Cristóbal, G.[Gabriel],
Discrimination of isotrigon textures using the Rényi entropy of Allan
variances,
JOSA-A(25), No. 9, September 2008, pp. 2309-2319.
WWW Link.
0804
BibRef
Marcos, J.V.[J. Víctor],
Cristóbal, G.[Gabriel],
Texture classification using discrete Tchebichef moments,
JOSA-A(30), No. 8, August 2013, pp. 1580-1591.
WWW Link.
1309
BibRef
Khellah, F.M.,
Texture Classification Using Dominant Neighborhood Structure,
IP(20), No. 11, November 2011, pp. 3270-3279.
IEEE DOI
1110
BibRef
Chandler, D.M.[Damon M.],
Field, D.J.[David J.],
Estimates of the information content and dimensionality of
natural scenes from proximity distributions,
JOSA-A(24), No. 4, April 2007, pp. 922-941.
WWW Link. Esitmate dimensionality of the image.
BibRef
0704
Field, D.J.[David J.],
Chandler, D.M.[Damon M.],
Method for estimating the relative contribution of phase and power
spectra to the total information in natural-scene patches,
JOSA-A(29), No. 1, January 2012, pp. 55-67.
WWW Link.
1201
BibRef
Fathi, A.[Abdolhossein],
Naghsh-Nilchi, A.R.[Ahmad Reza],
Noise tolerant local binary pattern operator for efficient texture
analysis,
PRL(33), No. 9, 1 July 2012, pp. 1093-1100.
Elsevier DOI
1202
Local binary pattern; Texture pattern descriptor; Texture analysis
BibRef
Aptoula, E.[Erchan],
Comparative study of moment based parameterization for morphological
texture description,
JVCIR(23), No. 8, November 2012, pp. 1213-1224.
Elsevier DOI
1211
Texture analysis; Morphological Covariance; Granulometry;
Parameterization; Statistical moments; Moment invariants; Fourier
transform; Noise robustness
BibRef
Gonzalez-Castro, V.,
Alegre, E.,
Garcia-Olalla, O.,
Fernandez-Robles, L.,
Garcia-Ordas, M.T.,
Adaptive pattern spectrum image description using Euclidean and
Geodesic distance without training for texture classification,
IET-CV(6), No. 6, 2012, pp. 581-589.
DOI Link
1301
BibRef
de Mesquita Sá, Jr., J.J.[Jarbas Joaci],
Backes, A.R.[André Ricardo],
Cortez, P.C.[Paulo César],
A Simplified Gravitational Model for Texture Analysis,
JMIV(47), No. 1-2, September 2013, pp. 70-78.
Springer DOI
1307
BibRef
Earlier: A1, A2, Only:
CAIP11(I: 26-33).
Springer DOI
1109
lacunarity method
BibRef
de Mesquita Sá, Jr., J.J.[Jarbas Joaci],
Backes, A.R.[André R.],
A Gravitational Model for Grayscale Texture Classification Applied to
the pap-smear Database,
CIAP15(II:332-339).
Springer DOI
1511
BibRef
de Mesquita Sá, Jr., J.J.[Jarbas Joaci],
Backes, A.R.[André Ricardo],
ELM based signature for texture classification,
PR(51), No. 1, 2016, pp. 395-401.
Elsevier DOI
1601
Texture classification
BibRef
Wang, K.[Kai],
Bichot, C.E.,
Zhu, C.[Chao],
Li, B.L.[Bai-Lin],
Pixel to Patch Sampling Structure and Local Neighboring Intensity
Relationship Patterns for Texture Classification,
SPLetters(20), No. 9, 2013, pp. 853-856.
IEEE DOI
1308
eye
BibRef
Wang, K.[Kai],
Bichot, C.E.[Charles-Edmond],
Li, Y.[Yan],
Li, B.L.[Bai-Lin],
Local binary circumferential and radial derivative pattern for
texture classification,
PR(67), No. 1, 2017, pp. 213-229.
Elsevier DOI
1704
Texture classification
BibRef
Lee, K.[Kwanghyun],
Moorthy, A.K.,
Lee, S.H.[Sang-Hoon],
Bovik, A.C.,
3D Visual Activity Assessment Based on Natural Scene Statistics,
IP(23), No. 1, January 2014, pp. 450-465.
IEEE DOI
1402
Gaussian processes
BibRef
Dolloff, J.[John],
Doucette, P.[Peter],
The Sequential Generation of Gaussian Random Fields for Applications
in the Geospatial Sciences,
IJGI(3), No. 2, 2014, pp. 817-852.
DOI Link
1407
BibRef
Voloshynovskiy, S.[Svyatoslav],
Diephuis, M.[Maurits],
Holotyak, T.[Taras],
Standardo, N.[Nabil],
Physical object identification using micro-structure images,
SPIE(Newsroom), December 1, 2014
DOI Link
1501
Micro-structures provide unique identifiers for physical objects, and
since they can be optically detected with a mobile device, they can be
applied in fields from security and forensics to anti-counterfeiting.
BibRef
Pham, T.D.[Tuan D.],
The Kolmogorov-Sinai entropy in the setting of fuzzy sets for image
texture analysis and classification,
PR(53), No. 1, 2016, pp. 229-237.
Elsevier DOI
1602
Chaos
BibRef
Pham, T.D.,
The Semi-Variogram and Spectral Distortion Measures for Image Texture
Retrieval,
IP(25), No. 4, April 2016, pp. 1556-1565.
IEEE DOI
1604
image classification
BibRef
Pham, T.D.[Tuan D.],
Noise-Added Texture Analysis,
CIARP16(93-100).
Springer DOI
1703
BibRef
Guo, J.[Jie],
Song, B.[Bin],
Tian, F.[Fang],
Qin, H.[Hao],
Texture classification with cross-covariance matrices in compressive
measurement domain,
SIViP(10), No. 8, November 2016, pp. 1377-1384.
WWW Link.
1610
BibRef
Nielsen, F.[Frank],
Nock, R.[Richard],
MaxEnt Upper Bounds for the Differential Entropy of Univariate
Continuous Distributions,
SPLetters(24), No. 4, April 2017, pp. 402-406.
IEEE DOI
1704
BibRef
And:
Entropies and cross-entropies of exponential families,
ICIP10(3621-3624).
IEEE DOI
1009
Gaussian processes.
Extend statistical models for images.
BibRef
Hajati, F.[Farshid],
Tavakolian, M.[Mohammad],
Gheisari, S.[Soheila],
Gao, Y.,
Mian, A.S.[Ajmal Saeed],
Dynamic Texture Comparison Using Derivative Sparse Representation:
Application to Video-Based Face Recognition,
HMS(47), No. 6, December 2017, pp. 970-982.
IEEE DOI
1712
BibRef
Earlier: A1, A2, A3, A5, Only:
Spatiotemporal Derivative Pattern:
A Dynamic Texture Descriptor for Video Matching,
ACCV14(V: 626-641).
Springer DOI
1504
BibRef
Earlier: A2, A1, A5, A3, Only:
Sparse Variation Pattern for Texture Classification,
DICTA13(1-6)
IEEE DOI
1402
Face recognition,
Heuristic algorithms, Hidden Markov models, Manifolds,
spatiotemporal
BibRef
Tavakolian, M.[Mohammad],
Hadid, A.[Abdenour],
Deep Discriminative Model for Video Classification,
ECCV18(II: 401-418).
Springer DOI
1810
BibRef
Mirhashemi, A.[Arash],
Introducing spectral moment features in analyzing the SpecTex
hyperspectral texture database,
MVA(29), No. 3, April 2018, pp. 415-432.
WWW Link.
1804
BibRef
Budianto,
Lun, D.P.K.[Daniel P. K.],
Chan, Y.H.[Yuk-Hee],
Robust Single-Shot Fringe Projection Profilometry Based on
Morphological Component Analysis,
IP(27), No. 11, November 2018, pp. 5393-5405.
IEEE DOI
1809
image representation, image texture, iterative methods,
optical projectors, optimisation, statistical analysis,
wavelets
BibRef
Zitouni, A.[Abdelkader],
Benkouider, F.[Fatiha],
Chouireb, F.[Fatima],
Belkheiri, M.[Mohammed],
Classification of textured images based on new information fusion
methods,
IET-IPR(13), No. 9, 18 July 2019, pp. 1540-1549.
DOI Link
1907
BibRef
Dong, Y.,
Wu, H.,
Li, X.,
Zhou, C.,
Wu, Q.,
Multiscale Symmetric Dense Micro-Block Difference for Texture
Classification,
CirSysVideo(29), No. 12, December 2019, pp. 3583-3594.
IEEE DOI
1912
Feature extraction, Histograms, Gaussian mixture model, Encoding,
Support vector machines, Task analysis, Texture classification,
support vector machine
BibRef
Lacombe, T.[Thomas],
Favreliere, H.[Hugues],
Pillet, M.[Maurice],
Modal features for image texture classification,
PRL(135), 2020, pp. 249-255.
Elsevier DOI
2006
Feature extraction, Discrete modal decomposition, Texture classification
BibRef
Gao, X.[Xing],
Wu, X.[Xu],
Xu, P.P.[Pan-Pan],
Guo, S.H.[Shi-Hui],
Liao, M.H.[Ming-Hong],
Wang, W.C.[Wen-Cheng],
Semi-Supervised Texture Filtering With Shallow to Deep Understanding,
IP(29), 2020, pp. 7537-7548.
IEEE DOI
2007
Texture filtering, image translation,
Generative Adversarial Networks (GANs), semi-supervised
BibRef
Cerkezi, L.[Llukman],
Topal, C.[Cihan],
Towards more discriminative features for texture recognition,
PR(107), 2020, pp. 107473.
Elsevier DOI
2008
Local binary patterns, Texture recognition,
Feature representations, Feature optimization,
Mutual information
BibRef
Morel, C.[Cristina],
Humeau-Heurtier, A.[Anne],
Multiscale permutation entropy for two-dimensional patterns,
PRL(150), 2021, pp. 139-146.
Elsevier DOI
2109
Texture images, Normalized permutation entropy, Multi-scale analysis
BibRef
Gaudêncio, A.S.[Andreia S.],
Hilal, M.[Mirvana],
Cardoso, J.M.[João M.],
Humeau-Heurtier, A.[Anne],
Vaz, P.G.[Pedro G.],
Texture analysis using two-dimensional permutation entropy and
amplitude-aware permutation entropy,
PRL(159), 2022, pp. 150-156.
Elsevier DOI
2206
Bioinformatics, Entropy, Information theory, Texture,
BibRef
Song, K.Y.[Kai-You],
Yang, H.[Hua],
Yin, Z.P.[Zhou-Ping],
Multi-Scale Boosting Feature Encoding Network for Texture Recognition,
CirSysVideo(31), No. 11, November 2021, pp. 4269-4282.
IEEE DOI
2112
Feature extraction, Encoding, Interference, Image coding, Boosting,
Image recognition, Task analysis, Texture recognition,
convolutional neural network
BibRef
Chen, Z.[Zhile],
Quan, Y.H.[Yu-Hui],
Xu, R.[Ruotao],
Jin, L.W.[Lian-Wen],
Xu, Y.[Yong],
Enhancing texture representation with deep tracing pattern encoding,
PR(146), 2024, pp. 109959.
Elsevier DOI
2311
Texture recognition, Deep learning, Feature encoding
BibRef
Pereyra, M.[Marcelo],
Vargas-Mieles, L.A.[Luis A.],
Zygalakis, K.C.[Konstantinos C.],
The Split Gibbs Sampler Revisited: Improvements to Its Algorithmic
Structure and Augmented Target Distribution,
SIIMS(16), No. 4, 2023, pp. 2040-2071.
DOI Link Code:
WWW Link.
2312
BibRef
Zhai, W.[Wei],
Cao, Y.[Yang],
Zhang, J.[Jing],
Xie, H.Y.[Hai-Yong],
Tao, D.C.[Da-Cheng],
Zha, Z.J.[Zheng-Jun],
On Exploring Multiplicity of Primitives and Attributes for Texture
Recognition in the Wild,
PAMI(46), No. 1, January 2024, pp. 403-420.
IEEE DOI
2312
BibRef
Kang, S.[Sheng],
Wang, Y.[Yang],
Cao, Y.[Yang],
Zha, Z.J.[Zheng-Jun],
Long-Range Feature Dependencies Capturing for Low-Resolution Image
Classification,
MMMod22(II:3-14).
Springer DOI
2203
BibRef
Florindo, J.B.[Joao B.],
Backes, A.R.[Andre R.],
Neckel, A.[Acacio],
ELMP-Net: The successive application of a randomized local transform
for texture classification,
PR(153), 2024, pp. 110499.
Elsevier DOI
2405
Extreme learning descriptors, Texture classification,
Image descriptors, Local binary patterns
BibRef
Mamidibathula, B.[Bharat],
Amirneni, S.[Satakarni],
Sistla, S.S.[Sai Shravani],
Patnam, N.[Niharika],
Texture Classification Using Capsule Networks,
IbPRIA19(I:589-599).
Springer DOI
1910
BibRef
Zhang, L.,
Rusinkiewicz, S.,
Learning to Detect Features in Texture Images,
CVPR18(6325-6333)
IEEE DOI
1812
Detectors, Feature extraction, Task analysis, Pipelines, Training,
Databases, Asphalt
BibRef
Xue, J.[Jia],
Zhang, H.[Hang],
Dana, K.[Kristin],
Deep Texture Manifold for Ground Terrain Recognition,
CVPR18(558-567)
IEEE DOI
PDF File.
1812
BibRef
And:
Encoding, Manifolds, Databases, Videos, Image recognition,
Feature extraction, Training
BibRef
Xue, J.[Jia],
Wadekar, P.[Paras],
Zhang, H.[Hang],
Teran, L.[Leizer],
Dana, K.[Kristin],
Nishino, K.[Ko],
Ground Terrain Database, GTOS,
Online2017.
HTML Version.
Dataset, Texture.
BibRef
1700
Portilla, J.[Javier],
Martínez-Enríquez, E.[Eduardo],
Nested Normalizations for Decoupling Global Features,
ICIP18(2112-2116)
IEEE DOI
1809
Trajectory, Radio frequency, Couplings, Solids, Mutual information,
Manifolds, Standards, global features,
level sets
BibRef
Saito, Y.,
Miyata, T.,
Recovering Texture of Denoised Image via its Statistical Analysis,
ICIP18(1767-1771)
IEEE DOI
1809
Image denoising, Noise reduction, Silicon, Noise measurement,
Visualization, Minimization, AWGN, image denoising, image texture,
low-rank approximation
BibRef
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Li, Q.[Qing],
Zhang, F.[Fan],
Feng, D.D.[David Dagan],
Huang, H.[Heng],
Fusing subcategory probabilities for texture classification,
CVPR15(4409-4417)
IEEE DOI
1510
BibRef
Viriri, S.[Serestina],
Characterization of Medical Images Using Edge Density and Local
Directional Pattern (LDP),
ICIAR15(394-401).
Springer DOI
1507
BibRef
Cimpoi, M.[Mircea],
Maji, S.[Subhransu],
Kokkinos, I.[Iasonas],
Mohamed, S.[Sammy],
Vedaldi, A.[Andrea],
Describing Textures in the Wild,
CVPR14(3606-3613)
IEEE DOI
1409
Fisher Vector
See also Describable Textures Dataset (DTD).
BibRef
Quan, Y.H.[Yu-Hui],
Xu, Y.[Yong],
Sun, Y.P.[Yu-Ping],
Luo, Y.[Yu],
Lacunarity Analysis on Image Patterns for Texture Classification,
CVPR14(160-167)
IEEE DOI
1409
BibRef
Mao, J.H.[Jun-Hua],
Zhu, J.[Jun],
Yuille, A.L.[Alan L.],
An Active Patch Model for Real World Texture and Appearance
Classification,
ECCV14(III: 140-155).
Springer DOI
1408
BAg of words model on patches.
BibRef
Zhang, X.[Xiang],
Wang, S.Q.[Shi-Qi],
Ma, S.W.[Si-Wei],
Liu, S.H.[Shao-Hui],
Gao, W.[Wen],
Entropy of primitive: A top-down methodology for evaluating the
perceptual visual information,
VCIP13(1-6)
IEEE DOI
1402
entropy
BibRef
Pullaperuma, P.P.,
Dharmaratne, A.T.,
Taxonomy of File Fragments Using Gray-Level Co-Occurrence Matrices,
DICTA13(1-7)
IEEE DOI
1402
image colour analysis
Image windows.
BibRef
Naman, A.T.[Aous Thabit],
Taubman, D.S.[David S.],
A soft measure for identifying structure from randomness in images,
ICIP13(2939-2943)
IEEE DOI
1402
Feature Extraction
BibRef
Sifre, L.[Laurent],
Mallat, S.[Stephane],
Rotation, Scaling and Deformation Invariant Scattering for Texture
Discrimination,
CVPR13(1233-1240)
IEEE DOI
1309
affine
BibRef
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
A Training-free Classification Framework for Textures, Writers, and
Materials,
BMVC12(93).
DOI Link
1301
BibRef
Pourreza, H.R.[Hamid Reza],
Masoudifar, M.[Mina],
ManafZade, M.[MohammadMahdi],
LSP: Local similarity pattern, a new approach for rotation invariant
noisy texture analysis,
ICIP11(837-840).
IEEE DOI
1201
BibRef
Yimit, A.[Adiljan],
Hagihara, Y.[Yoshihiro],
Miyoshi, T.[Tasuku],
Hagihara, Y.[Yukari],
A New Two-Dimensional Direction Histogram Based Entropic Thresholding,
ICIG11(106-110).
IEEE DOI
1109
BibRef
Kuang, Z.H.[Zhang-Hui],
Pan, G.D.[Guo-Dong],
Wong, K.Y.K.[Kwan-Yee K.],
Local multiple orientations estimation using k-medoids,
ICIP10(109-112).
IEEE DOI
1009
BibRef
Qiao, X.[Xu],
Chen, Y.W.[Yen-Wei],
Statistical Texture Modeling for Medical Volume Using Generalized
N-Dimensional Principal Component Analysis Method and 3D Volume
Morphing,
ICPR10(2488-2491).
IEEE DOI
1008
BibRef
Corani, G.[Giorgio],
Giusti, A.[Alessandro],
Migliore, D.[Davide],
Schmidhuber, J.[Juergen],
Robust Texture Recognition Using Credal Classifiers,
BMVC10(xx-yy).
HTML Version.
1009
Use local binary patterns
See also Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns.
BibRef
Zhao, H.Y.[Hai-Ying],
Xu, Z.G.[Zheng-Guang],
Hong, P.[Peng],
Performance Evaluation for Three Classes of Textural Coarseness,
CISP09(1-4).
IEEE DOI
0910
BibRef
Hong, X.P.[Xiao-Peng],
Chang, H.[Hong],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Gao, W.[Wen],
Sigma Set: A small second order statistical region descriptor,
CVPR09(1802-1809).
IEEE DOI
0906
See also Boosted Sigma Set for Pedestrian Detection.
BibRef
Barros Filho, M.N.,
Sobreira, F.J.A.,
Accuracy of Lacunarity Algorithms in Texture Classification of High
Spatial Resolution Images from Urban Areas,
ISPRS08(B3b: 417 ff).
PDF File.
0807
BibRef
Okada, K.[Kazunori],
Periaswamy, S.[Senthil],
Bi, J.B.[Jin-Bo],
Stratified regularity measures with Jensen-Shannon divergence,
MMBIA08(1-8).
IEEE DOI
0806
BibRef
Papa, J.P.[João P.],
Falcão, A.X.[Alexandre X.],
Suzuki, C.T.N.[Celso T. N.],
Mascarenhas, N.D.A.[Nelson D. A.],
A Discrete Approach for Supervised Pattern Recognition,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Montoya-Zegarra, J.A.[Javier A.],
Papa, J.P.[João P.],
Leite, N.J.[Neucimar J.],
da Silva Torres, R.[Ricardo],
Falcão, A.X.[Alexandre X.],
Rotation-Invariant Texture Recognition,
ISVC07(II: 193-204).
Springer DOI
0711
BibRef
Horikawa, Y.[Yo],
Ohnishi, Y.J.[Yu-Jiro],
Comparison of Combining Methods of Correlation Kernels in kPCA and kCCA
for Texture Classification with Kansei Information,
SCIA07(699-708).
Springer DOI
0706
BibRef
de Melo, R.H.C.[Rafael H. C.],
de A. Vieira, E.[Evelyn],
Conci, A.[Aura],
Characterizing the Lacunarity of Objects and Image Sets and Its Use as
a Technique for the Analysis of Textural Patterns,
ACIVS06(208-219).
Springer DOI
0609
BibRef
Andra, S.[Srinivas],
Wu, Y.J.[Yong-Jun],
Multiresolution Histograms for SVM-Based Texture Classification,
ICIAR05(754-761).
Springer DOI
0509
BibRef
Unal, G.,
Sharma, G.,
Eschbach, R.,
Efficient classification of scanned media using spatial statistics,
ICIP04(IV: 2395-2398).
IEEE DOI
0505
BibRef
Santamaria, C.,
Bober, M.,
Szajnowski, W.,
Texture analysis using level-crossing statistics,
ICPR04(II: 712-715).
IEEE DOI
0409
BibRef
Krüger, N.[Norbert],
Wörgötter, F.[Florentin],
Statistics of Second Order Multi-modal Feature Events and Their
Exploitation in Biological and Artificial Visual Systems,
BMCV02(239 ff.).
Springer DOI
0303
BibRef
Thielscher, A.[Axel],
Schuboe, A.[Anna],
Neumann, H.[Heiko],
A Neural Model of Human Texture Processing: Texture Segmentation vs.
Visual Search,
BMCV02(99 ff.).
Springer DOI
0303
BibRef
Jain, A.K.,
Xu, X.W.[Xiao-Wei],
Ho, T.K.[Tin Kam],
Xiao, F.[Fan],
Uniformity testing using minimal spanning tree,
ICPR02(IV: 281-284).
IEEE DOI
0211
BibRef
Verma, B.,
Kulkarni, S.,
Texture Feature Extraction and Classification,
CAIP01(228 ff.).
Springer DOI
0210
BibRef
Rangarajan, A.[Anand],
Learning Matrix Space Image Representations,
EMMCVPR01(153-168).
Springer DOI
0205
BibRef
Zhang, J.,
Tan, T.,
New Texture Signatures and Their Use in Rotation Invariant Texture
Classification,
Texture02(157-162).
0207
BibRef
Zhang, J.,
Tan, T.,
Affine Invariant Texture Signatures,
ICIP01(II: 618-621).
IEEE DOI
0108
BibRef
Zhu, S.C.,
Texture Analysis and Synthesis: Theories and Practice,
Texture02(1-2).
0207
BibRef
Chennbhotla, C.,
Jepson, A.D.,
Sparse Coding in Practice,
SCTV01(xx-yy).
0106
BibRef
Griffin, L.D.,
Image analysis for using histograms of infinitestimal neighbourhoods,
ScaleSpace01(xx-yy).
0106
BibRef
Gimel'farb, G.L.[Georgy L.],
Estimation of an Interaction Structure in Gibbs Image Modelling,
ICPR00(Vol III: 506-509).
IEEE DOI
0009
BibRef
Tupin, F.,
Sigelle, M.,
Maitre, H.,
Definition of a Spatial Entropy and Its Use for Texture Discrimination,
ICIP00(Vol I: 725-728).
IEEE DOI
0008
Radar.
BibRef
Maitre, H.,
Bloch, I.,
Sigelle, M.,
Spatial entropy: a tool for controlling contextual classification
convergence,
ICIP94(II: 212-216).
IEEE DOI
9411
BibRef
Paget, R.,
Longstaff, I.D.,
Open-ended Texture Classification for Terrain Mapping,
ICIP00(Vol III: 584-587).
IEEE DOI
0008
BibRef
Chantler, M.J.,
McGunnigle, G.,
On the Use of Gradient Space Eigenvalues for Rotation Invariant Texture
Classification,
ICPR00(Vol III: 931-934).
IEEE DOI
IEEE DOI
0009
BibRef
Chantler, M.J.,
McGunnigle, G.,
The Response of Texture Features to Illuminant Rotation,
ICPR00(Vol III: 943-946).
IEEE DOI
0009
BibRef
McGunnigle, G.,
Chantler, M.J.,
A Model-Based Technique for the Classification of Textured Surfaces
with Illuminant Direction Invariance,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Chantler, M.J.,
Russell, G.T.,
Linnett, L.M.,
Illumination: a directional filter of texture?,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Chetverikov, D.[Dmitry],
Földvári, Z.[Zoltan],
Affine-invariant Texture Classification,
ICPR00(Vol III: 889-892).
IEEE DOI
IEEE DOI
0009
BibRef
Manduchi, R.,
Portilla, J.,
Independent Component Analysis of Textures,
ICCV99(1054-1060).
IEEE DOI
BibRef
9900
Nikolova, M.,
Locally Homogeneous Images as Minimizers of Objective Functions,
ICIP99(II:11-15).
IEEE DOI
BibRef
9900
Kuan, J.,
Joyce, D.,
Lewis, P.,
Flexible Features in Texture with Similarity,
MVA98(xx-yy).
BibRef
9800
de Jager, G.,
Nicolls, F.[Frederick],
Maximum Likelihood Estimation of Toeplitz-Block-Toeplitz Covariances
in the Presence of Subspace Interference,
ICPR98(Vol II: 1595-1597).
IEEE DOI
9808
BibRef
Dana, K.J.[Kristin J.],
Nayar, S.K.[Shree K.],
Correlation Model for 3D Texture,
ICCV99(1061-1066).
IEEE DOI
BibRef
9900
Earlier:
Histogram Model for 3D Textures,
CVPR98(618-624).
IEEE DOI
BibRef
Earlier:
DARPA98(1065-1070).
BibRef
Ye, S.J.[Shin-Ju],
Shen, J.[Jun],
Keskes, N.[Naamen], and
Rabiller, P.[Philippe],
Sinusoid Recognition and Texture Analysis of Electrical Borehole Images,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Walter, F.[Fredrik],
Brandtberg, T.[Tomas],
Texture Analysis Using Two-Dimensional Polar Variograms,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Hagner, O.,
Joyce, S.,
Estimation of Forest Characteristics Based on Textural Features in
Aerial Photos and Spectral Signatures in
Satellite Images Using Neural Networks,
SSAB97(Photogrammetry)
9703
BibRef
Chernov, V.M.[Vladimir M.],
Shabashev, A.V.[Andrew V.],
Non-Archimedean normalized fields in texture analysis tasks,
CAIP97(154-161).
Springer DOI
9709
BibRef
Ojala, T.[Timo],
Multichannel Approach to Texture Description with Feature Distributions,
UMDTR3731, December 1996.
WWW Link.
BibRef
9612
Ottonello, C.,
Pagnan, S.,
Murino, V.,
Robust features for textures in additive noise,
CIAP95(393-398).
Springer DOI
9509
BibRef
Lu, H.,
Flynn, P.J.,
Ground state texture patterns for the second-order Ising model,
CVPR93(636-637).
IEEE DOI
0403
BibRef
Herlin, I.L.,
Crettez, J.P.,
Texture Analysis by a Perceptual Model,
ICPR88(II: 764-766).
IEEE DOI
BibRef
8800
Chetverikov, D.,
GLDH Based Analysis of Texture Anisotropy and Symmetry:
An Experimental Study,
ICPR94(A:444-448).
IEEE DOI
9410
BibRef
Earlier:
Textural Anisotropy Features for Texture Analysis,
PRIP81(583-588).
BibRef
Madiraju, S.V.R.,
Liu, C.C.A.[Chih-Chi-Ang],
Rotation invariant texture classification using covariance,
ICIP94(II: 655-659).
IEEE DOI
9411
BibRef
You, J.,
Cohen, H.A.,
Pissaloux, E.E.,
A new approach to object recognition in textured images,
ICIP95(II: 639-642).
IEEE DOI
9510
BibRef
You, J.,
Cohen, H.A.,
An orientation and resolution independent texture classifier in
segmentation of images of unknown rotation and scale,
ICPR92(III:49-52).
IEEE DOI
9208
BibRef
Brzakovic, D.,
Tou, J.T.,
Image Understanding via Texture Analysis,
CAIA84(585-590).
BibRef
8400
Gonzalez, R.C.,
Barrero, A.,
Moret, B.,
Thompson, M.G.,
A Measure of Scene Content,
PRIP78(385-389).
BibRef
7800
Rosenfeld, A.,
Cooperative Computation in Texture Analysis,
DARPAN79(52-56).
BibRef
7900
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Texture Discrimination and Classification .