qsnake_demo,
2007.
Code, Snakes.
HTML Version. Basic tool to play with snakes (active contour models).
Kass, M.,
Witkin, A.P., and
Terzopoulos, D.,
Snakes: Active Contour Models,
IJCV(1), No. 4, January 1988, pp. 321-331.
Springer DOI
BibRef
8801
IJCV(1), No. 4, January 1988, pp. 321-331.
Springer DOI
BibRef
Earlier:
ICCV87(259-268).
Award, Marr Prize, HM.
Award, ICCV Test of Time. Local properties.
Much like a 2D version of the 3D symmetry seeking method.
From one study the third most cited paper.
BibRef
Blake, A.[Andrew],
Introduction to Active Contours and Visual Dynamics,
Online BookJune 1999,
HTML Version. Dept. Engineering Science, University of Oxford.
BibRef
9906
Cohen, L.D.[Laurent D.],
On Active Contour Models and Balloons,
CVGIP(53), No. 2, March 1991, pp. 211-218.
Elsevier DOI
PS File.
Balloon Models.
Contour expands to meet the edge, rather than straightens into a line.
For 3D:
See also Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images.
BibRef
9103
Cohen, L.D.[Laurent D.],
Etude de quelques problemes semi-lineaires paraboliques et elliptiques,
Ph.D.Thesis, Universite Paris 6, 1986.
BibRef
8600
Cohen, L.D.[Laurent D.],
Etude des modeles de contours actifs et d'autres techniques de
traitement d'Images,
2nd
Ph.D.Thesis, Universite Paris-Sud Orsay, 1990.
BibRef
9000
Xu, G.[Gang],
Segawa, E.[Eigo],
Tsuji, S.[Saburo],
Robust Active Contours with Insensitive Parameters,
PR(27), No. 7, July 1994, pp. 879-884.
Elsevier DOI
BibRef
9407
Earlier:
A robust active contour model with insensitive parameters,
ICCV93(562-566).
IEEE DOI
BibRef
Earlier: A2, A1, A3:
Minimal region extraction using expanding active contours,
ICPR92(III:688-691).
IEEE DOI
9208
BibRef
Kimia, B.B.,
Tannenbaum, A.,
Zucker, S.W.,
On the Evolution of Curves Via a Function of Curvature. I.
The Classical Case,
JMAA(163), 1992, pp. 438-458.
BibRef
9200
Kimia, B.B.[Benjamin B.], Brown University
Tannenbaum, A.[Allen], University of Minnesota
Zucker, S.W.[Steven W.], McGill University
On Optimal Control Methods in Computer Vision and Image Processing,
GDDCV94(Chapter 10).
BibRef
9400
Urago, S.[Sabine],
Zerubia, J.B.[Josiane B.],
Berthod, M.[Marc],
A Markovian Model for Contour Grouping,
PR(28), No. 5, May 1995, pp. 683-693.
BibRef
9505
Earlier:
Elsevier DOI
ICPR94(A:556-558).
IEEE DOI
BibRef
Lai, K.F.,
Chin, R.T.,
Deformable Contours: Modeling and Extraction,
PAMI(17), No. 11, November 1995, pp. 1084-1090.
IEEE DOI
PS File.
BibRef
9511
Earlier:
CVPR94(601-608).
IEEE DOI
PS File.
BibRef
Lai, K.F.,
Chin, R.T.,
On Regularization, Formulation, and Initialization of the
Active contour models (Snakes),
ACCV93(542-545).
PS File.
BibRef
9300
Lai, K.F.,
Deformable Contours: Modeling, Extraction, Detection and Classification,
Ph.D.August 1994.
BibRef
9408
Univ. of Wisconsin
PS File.
BibRef
Pauwels, E.J.[Eric J.],
Fiddelaers, P.[Peter],
Van Gool, L.J.[Luc J.],
Enhancement of Planar Shape Through Optimization of
Functionals for Curves,
PAMI(17), No. 11, November 1995, pp. 1101-1105.
IEEE DOI
BibRef
9511
Earlier:
Shape Extraction for Curves Using Geometry-Driven Diffusion
and Functional Optimization,
ICCV95(396-401).
IEEE DOI Deformable contours.
BibRef
Pauwels, E.J.,
Fiddelaers, P.,
Van Gool, L.J.,
Autonomous Grouping of Contour-Segments Using an
Adaptive Region-Growing Algorithm,
ICPR96(II: 586-590).
IEEE DOI
9608
(ESAT, B)
BibRef
Fiddelaers, P.,
Pauwels, E.J.,
Van Gool, L.J.,
Geometry-Driven Curve Evolution,
ECCV94(A:427-432).
Springer DOI
BibRef
9400
Pauwels, E.J.[Eric J.],
Fiddelaers, P.[Peter],
Mindru, F.[Florica],
Fully unsupervised clustering using centre-surround receptive fields
with applications to colour-segmentation,
CAIP97(17-24).
Springer DOI
9709
BibRef
Pauwels, E.J.[Eric J.],
Proesmans, M.,
Van Gool, L.J.[Luc J.],
Moons, T.,
Oosterlinck, A.,
Segmentation and Image Enhancement Using Coupled Anisotropic Diffusion,
SPIE(2094), 1993, pp. 836-847.
BibRef
9300
Wang, M.,
Evans, J.,
Hassebrook, L.,
Knapp, C.,
A Multistage, Optimal Active Contour Model,
IP(5), No. 11, November 1996, pp. 1586-1591.
IEEE DOI
9611
BibRef
Ngoi, K.P.,
Jia, J.C.,
A New Color Image Energy for Active Contours in Natural Scenes,
PRL(17), No. 12, October 25 1996, pp. 1271-1277.
9612
BibRef
Durikovic, R.,
Kaneda, K., and
Yamashita, H.,
Dynamic Contour: A Texture Approach and Contour Operations,
VC(11), 1995, pp. 277-289.
BibRef
9500
Rieger, J.H.,
Generic Evolutions of Edges on Families of Diffused Greyvalue Surfaces,
JMIV(5), No. 3, September 1995, pp. 207-217.
BibRef
9509
Doyen, L.,
Mutational Equations for Shapes and Vision-Based Control,
JMIV(5), No. 2, June 1995, pp. 99-109.
BibRef
9506
Wang, G.Z.,
Zheng, J.M.,
Bounds on the Moving Control Points of Hybrid Curves,
GMIP(59), No. 1, January 1997, pp. 19-25.
9703
BibRef
Siddiqi, K.[Kaleem],
Lauziere, Y.B.[Yves Berube],
Tannenbaum, A.[Allen],
Zucker, S.W.[Steven W.],
Area and Length Minimizing Flows for Shape Segmentation,
IP(7), No. 3, March 1998, pp. 433-443.
IEEE DOI
9803
BibRef
Earlier:
CVPR97(621-627).
IEEE DOI
9704
Overcome some of the problems with standard snake control.
BibRef
Zucker, S.W.,
Siddiqi, K., and
Tannenbaum, A.,
Area Minimizing Flows,
ICIP97(III: 392-395).
IEEE DOI
BibRef
9700
Moisan, L.[Lionel],
Affine Plane Curve Evolution: A Fully Consistent Scheme,
IP(7), No. 3, March 1998, pp. 411-420.
IEEE DOI
9803
BibRef
Moisan, L.[Lionel],
Periodic Plus Smooth Image Decomposition,
JMIV(39), No. 2, February 2011, pp. 161-179.
WWW Link.
1103
BibRef
Lai, K.F.[Kok F.],
Chin, R.T.[Roland T.],
On Modeling, Extraction, Detection and Classification of
Deformable Contours from Noisy Images,
IVC(16), No. 1, January 30 1998, pp. 55-62.
Elsevier DOI
9803
BibRef
Marques, J.S.,
A Link Between Image Based and Feature Based Active Contours,
SP(67), No. 3, June 1998, pp. 271-278.
9808
BibRef
Thompson, S.F.[Scott F.],
Rosenfeld, A.[Azriel],
Discrete, Nonlinear Curvature-Dependent Contour Evolution,
PR(31), No. 12, December 1998, pp. 1949-1959.
BibRef
9812
Earlier:
Elsevier DOI
UMD--TR3825, August 1997.
WWW Link.
BibRef
Davatzikos, C.[Christos],
Prince, J.L.[Jerry L.],
Convexity Analysis of Active Contour Problems,
IVC(17), No. 1, January 1999, pp. 27-36.
Elsevier DOI
BibRef
9901
Earlier:
CVPR96(674-679).
IEEE DOI
BibRef
Earlier:
Adaptive Active Contour Algorithms for Extracting and
Mapping Thick Curves,
CVPR93(524-529).
IEEE DOI
BibRef
Shen, D.G.[Ding-Gang],
Davatzikos, C.[Christos],
An Adaptive-Focus Deformable Model Using Statistical and Geometric
Information,
PAMI(22), No. 8, August 2000, pp. 906-913.
IEEE DOI
0010
Use an attribute vector of the region, deform contour to seek regions
with similar attribute vectors. Shape at each pahse influenced by most
reliable matches.
See also adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures, An.
BibRef
Davatzikos, C.[Christos],
Tao, X.D.[Xiao-Dong],
Shen, D.G.[Ding-Gang],
Hierarchical active shape modls, using the wavelet transform,
MedImg(22), No. 3, March 2003, pp. 414-423.
IEEE Abstract.
0306
BibRef
Schnabel, J.A.[Julia A.],
Arridge, S.R.[Simon R.],
Active Shape Focusing,
IVC(17), No. 5/6, April 1999, pp. 419-428.
Elsevier DOI
BibRef
9904
Earlier:
Multi-Scale Active Shape Description,
ScaleSpace97(xx).
9702
BibRef
Earlier:
Active Contour Models for Shape Description Using
Multiscale Differential Invariants,
BMVC95(xx)
PDF File. Multi-scale descriptors to allow for extracting models with high
curvature points.
HTML Version. or
PS File.
BibRef
Ehrhardt, M.J.,
Arridge, S.R.,
Vector-Valued Image Processing by Parallel Level Sets,
IP(23), No. 1, January 2014, pp. 9-18.
IEEE DOI
1402
gradient methods
BibRef
Peckar, W.[Wladimir],
Schnörr, C.[Christoph],
Rohr, K.[Karl],
Stiehl, H.S.[H. Siegfried],
Parameter-Free Elastic Deformation Approach for 2D and 3D Registration
Using Prescribed Displacements,
JMIV(10), No. 2, March 1999, pp. 143-162.
DOI Link
BibRef
9903
Earlier:
Two-step parameter-free elastic image registration with prescribed
point displacements,
CIAP97(I: 527-534).
Springer DOI
9709
BibRef
Latecki, L.J.[Longin Jan],
Megalooikonomou, V.[Vasileios],
Wang, Q.A.[Qi-Ang],
Yu, D.G.[De-Guang],
An elastic partial shape matching technique,
PR(40), No. 11, November 2007, pp. 3069-3080.
Elsevier DOI
0707
Shape similarity; Sequences matching; DAG; Shortest path
See also Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution.
BibRef
Lu, C.E.[Cheng-En],
Latecki, L.J.[Longin Jan],
Zhu, G.X.[Guang-Xi],
Contour Extraction Using Particle Filters,
ISVC08(II: 192-201).
Springer DOI
0812
BibRef
El Moataz, A.[Abderrahim],
Schüpp, S.[Sophie],
Clouard, R.[Régis],
Herlin, P.[Paulette],
Bloyet, D.[Daniel],
Using active contours and mathematical morphology tools for
quantification of immunohistochemical images,
SP(71), No. 2, 15 December 1998, pp. 215-226.
BibRef
9812
Schüpp, S.,
El Moataz, A.,
Bloyet, D.,
Discrete Approach for Active Contours for Biomedical Applications,
SCIA01(P-W3A).
0206
BibRef
Xu, C.Y.[Chen-Yang],
Prince, J.L.[Jerry L.],
Generalized gradient vector flow external forces for active contours,
SP(71), No. 2, 15 December 1998, pp. 131-139.
BibRef
9812
Earlier:
Gradient Vector Flow: A New External Force for Snakes,
CVPR97(66-71).
IEEE DOI
9704
Code, Snakes. Code:
HTML Version.
BibRef
Xu, C.Y.,
Prince, J.L.,
Snakes, Shapes, and Gradient Vector Flow,
IP(7), No. 3, March 1998, pp. 359-369.
IEEE DOI
9803
BibRef
Salden, A.H.[Alfons H.],
ter Haar Romeny, B.M.[Bart M.],
Viergever, M.A.[Max A.],
Linearised Euclidean Shortening Flow of Curve Geometry,
IJCV(34), No. 1, September-October 1999, pp. 29-67.
DOI Link
BibRef
9909
Davison, N.E.,
Eviatar, H.,
Somorjai, R.L.,
Snakes simplified,
PR(33), No. 10, October 2000, pp. 1651-1664.
Elsevier DOI
0006
BibRef
Höwing, F.,
Dooley, L.S.,
Wermser, D.,
Fuzzy active contour model,
VISP(147), No. 4, 2000, pp. 323-330.
0010
BibRef
Choi, W.P.[Wai-Pak],
Lam, K.M.[Kin-Man],
Siu, W.C.[Wan-Chi],
An adaptive active contour model for highly irregular boundaries,
PR(34), No. 2, February 2001, pp. 323-331.
Elsevier DOI
0011
BibRef
Sakalli, M.,
Lam, K.M.[Kin-Man],
Yan, H.[Hong],
A Faster Converging Snake Algorithm to Locate Object Boundaries,
IP(15), No. 5, May 2006, pp. 1182-1191.
IEEE DOI
0605
BibRef
Earlier:
Shivering greedy snakes, gradient-guided in wavelet domain,
ICIP98(II: 886-890).
IEEE DOI
9810
BibRef
Fornefett, M.[Mike],
Rohr, K.[Karl],
Stiehl, H.S.[H. Siegfried],
Radial basis functions with compact support for elastic registration of
medical images,
IVC(19), No. 1-2, January 2001, pp. 87-96.
Elsevier DOI
0101
BibRef
Earlier:
Elastic Registration of Medical Images Using Radial Basis Functions
with Compact Support,
CVPR99(I: 402-407).
IEEE DOI
BibRef
Darrell, T.J.[Trevor J.],
Covell, M.M.[Michele M.],
Correspondence with Cumulative Similarity Transforms,
PAMI(23), No. 2, February 2001, pp. 222-227.
IEEE DOI
0102
Local image transform for tracking near occluding boundaries.
Tracking mouths and hands.
BibRef
Covell, M.M.[Michele M.],
Darrell, T.J.[Trevor J.],
Dynamic Occluding Contours: A New External-energy Term for Snakes,
CVPR99(II: 232-238).
IEEE DOI
BibRef
9900
Darrell, T.J.[Trevor J.],
A Radial Cumulative Similarity Transform for
Robust Image Correspondence,
CVPR98(656-662).
IEEE DOI
BibRef
9800
Darrell, T.J.,
Pentland, A.P.,
On the representation of occluded shapes,
CVPR91(728-729).
IEEE DOI
0403
BibRef
Velasco, F.A.[Fernando A.],
Marroquín, J.L.[José L.],
Robust parametric active contours: the Sandwich Snakes,
MVA(12), No. 5, 2001, pp. 238-242.
Springer DOI
0103
BibRef
Velasco, F.A.[Fernando A.],
Marroquin, J.L.[Jose L.],
Growing snakes: active contours for complex topologies,
PR(36), No. 2, February 2003, pp. 475-482.
Elsevier DOI
0211
BibRef
Park, H.W.[Hyun-Wook],
Schoepflin, T.,
Kim, Y.M.[Yong-Min],
Active contour model with gradient directional information:
Directional snake,
CirSysVideo(11), No. 2, February 2001, pp. 252-256.
IEEE Top Reference.
0104
BibRef
Fenster, S.D.[Samuel D.],
Kender, J.R.[John R.],
Sectored Snakes: Evaluating Learned-Energy Segmentations,
PAMI(23), No. 9, September 2001, pp. 1028-1034.
IEEE DOI
0110
BibRef
Earlier:
ICCV98(420-426).
IEEE DOI
BibRef
And:
DARPA98(1193-1199).
Learning appled to segmentation with user specified criteria.
Learning allows it to not go to the strongest boundary.
Secrots of the snake -- intensity and gradient ove equal length
sectors of the snake, not globally.
BibRef
Dumitras, A.,
Venetsanopoulos, A.N.,
Angular map-driven snakes with application to object shape description
in color images,
IP(10), No. 12, December 2001, pp. 1851-1859.
IEEE DOI
0201
BibRef
Earlier:
Color Image-based Angular Map-driven Snakes,
ICIP01(I: 129-132).
IEEE DOI
0108
BibRef
Wang, Z.Q.[Zhi-Qian],
Ben-Arie, J.[Jezekiel],
Detection and segmentation of generic shapes based on affine modeling
of energy in Eigenspace,
IP(10), No. 11, November 2001, pp. 1621-1629.
IEEE DOI
0201
BibRef
Earlier:
Detection and Segmentation of Generic Shapes Based on Vectorial Affine
Modeling of Energy in Eigenspace,
ICPR00(Vol III: 971-975).
IEEE DOI
0009
Grouping in edge maps.
Shapes are affine transformed version of basic shapes (rectangles, circles).
Use vectorial boundary. Detect then verify.
See also Pictorial Recognition of Objects Employing Affine Invariance in the Frequency-Domain.
BibRef
Wang, Z.Q.[Zhi-Qian],
Ben-Arie, J.[Jezekiel],
Generic Object Detection using Model Based Segmentation,
CVPR99(II: 428-433).
IEEE DOI
BibRef
9900
Earlier:
Model based segmentation and detection of affine transformed shapes in
cluttered images,
ICIP98(III: 75-79).
IEEE DOI
9810
Finding generic objects (rectangles, dicrles, etc.)
BibRef
Small, C.G.[Christopher G.],
Le, H.L.[Hui-Ling],
The statistical analysis of dynamic curves and sections,
PR(35), No. 7, July 2002, pp. 1597-1609.
Elsevier DOI
0204
See also Multidimensional scaling of simplex shapes.
BibRef
Heo, G.[Giseon],
Small, C.G.[Christopher G.],
Form representions and means for landmarks:
A survey and comparative study,
CVIU(102), No. 2, May 2006, pp. 188-203.
Elsevier DOI
Survey, Segmentation. Tomography; Invariance
0605
BibRef
Metaxas, D.N.[Dimitris N.],
Kakadiaris, I.A.[Ioannis A.],
Elastically Adaptive Deformable Models,
PAMI(24), No. 10, October 2002, pp. 1310-1321.
IEEE Abstract.
0210
BibRef
Earlier:
ECCV96(II:550-559).
Springer DOI Adapt the parameters.
BibRef
Tan, S.[Shan],
Kakadiaris, I.A.[Ioannis A.],
Kernel active contour,
ICCV09(521-528).
IEEE DOI
0909
BibRef
Li, Z.L.[Zheng-Long],
Liu, Q.S.[Qing-Shan],
Lu, H.Q.[Han-Qing],
Metaxas, D.N.[Dimitris N.],
Lennard-Jones force field for Geometric Active Contour,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Huang, R.[Rui],
Sang, N.[Nong],
Pavlovic, V.[Vladimir],
Metaxas, D.N.[Dimitris N.],
A Belief Propagation algorithm for bias field estimation and image
segmentation,
ICIP11(37-40).
IEEE DOI
1201
BibRef
Huang, R.[Rui],
Pavlovic, V.[Vladimir],
Metaxas, D.N.[Dimitris N.],
A new spatio-temporal MRF framework for video-based object segmentation,
MLMotion08(xx-yy).
0810
BibRef
Earlier:
A Hybrid Framework for Image Segmentation Using Probabilistic
Integration of Heterogeneous Constraints,
CVBIA05(82-92).
Springer DOI
0601
BibRef
Earlier:
A graphical model framework for coupling MRFs and deformable models,
CVPR04(II: 739-746).
IEEE DOI
0408
BibRef
Bianchi, A.G.C.[Andrea G. Campos],
dos Santos, M.F.[Marinilce F.],
Britto, D.E.H.[Dânia E. Hamassaki],
da Fontoura Costa, L.[Luciano],
Inferring shape evolution,
PRL(24), No. 7, April 2003, pp. 1005-1014.
Elsevier DOI
0301
BibRef
Wang, J.K.[Jian-Kang],
Li, X.B.[Xiao-Bo],
Guiding Ziplock Snakes with a Priori Information,
IP(12), No. 2, February 2003, pp. 176-185.
IEEE DOI
0304
BibRef
Earlier:
ICPR00(Vol I: 614-617).
IEEE DOI
0009
BibRef
Wang, S.[Song],
Siskind, J.M.[Jeffrey Mark],
Image segmentation with ratio cut,
PAMI(25), No. 6, June 2003, pp. 675-690-4.
IEEE Abstract.
0306
Ratio of corresponding sums of two different weights of edges along th ecut
moundary.
BibRef
Wang, S.[Song],
Siskind, J.M.[Jeffrey Mark],
Image Segmentation with Minimum Mean Cut,
ICCV01(I: 517-524).
IEEE DOI
0106
Minimum mean edge weight in the connected graph.
BibRef
González Linares, J.M.,
Guil, N.,
Zapata, E.L.,
An efficient 2D deformable objects detection and location algorithm,
PR(36), No. 11, November 2003, pp. 2543-2556.
Elsevier DOI
0309
BibRef
Earlier:
Deformable Shapes Detection by Stochastic Optimization,
ICIP00(Vol I: 780-783).
IEEE DOI
0008
BibRef
Brunet, N.[Nuria],
Perez, F.[Francisco],
de la Torre, F.[Fernando],
Learning good features for Active Shape Models,
Subspace09(206-211).
IEEE DOI
0910
BibRef
Gonzalez-Mora, J.[Jose],
de la Torre, F.[Fernando],
Guil, N.[Nicolas],
Zapata, E.L.[Emilio L.],
Learning a generic 3D face model from 2D image databases using
incremental Structure-from-Motion,
IVC(28), No. 7, July 2010, pp. 1117-1129.
Elsevier DOI
1006
Structure-from-Motion; Incremental learning; Morphable Models; Active
Appearance Models
BibRef
Gonzalez-Mora, J.[Jose],
de la Torre, F.[Fernando],
Murthi, R.[Rajesh],
Guil, N.[Nicolas],
Zapata, E.L.[Emilio L.],
Bilinear Active Appearance Models,
NRTL07(1-8).
IEEE DOI
0710
BibRef
Gonzalez-Mora, J.[Jose],
Guil, N.[Nicolas],
Zapata, E.L.[Emilio L.],
de la Torre, F.[Fernando],
Efficient image alignment using linear appearance models,
CVPR09(2230-2237).
IEEE DOI
0906
BibRef
Wang, X.[Xun],
He, L.[Lei],
Tang, Y.J.[Ying-Jie],
Wee, W.G.,
A divide and conquer deformable contour method with a model based
searching algorithm,
SMC-B(33), No. 5, October 2003, pp. 738-751.
IEEE Abstract.
0310
BibRef
Wang, X.[Xun],
Wee, W.G.,
A new deformable contour method,
CIAP99(430-435).
IEEE DOI
9909
BibRef
He, L.[Lei],
Wee, W.G.[William G.],
Zheng, S.F.[Song-Feng],
Wang, L.[Li],
A level set model without initial contour,
WACV09(1-6).
IEEE DOI
0912
BibRef
Wang, X.[Xun],
He, L.[Lei],
Wee, W.G.[William G.],
Deformable Contour Method: A Constrained Optimization Approach,
IJCV(59), No. 1, August 2004, pp. 87-108.
DOI Link
0404
BibRef
Earlier:
Add A3:
Han, C.Y.,
BMVC02(Poster Session).
0208
BibRef
Wang, X.[Xun],
Gao, F.[Feng],
Wee, W.G.,
Mean Field Annealing Deformable Contour Method:
A Constrained Global Optimization Approach,
ICARCV06(1-8).
IEEE DOI
0612
BibRef
He, L.[Lei],
Zheng, S.F.[Song-Feng],
Wang, L.[Li],
Integrating local distribution information with level set for boundary
extraction,
JVCIR(21), No. 4, May 2010, pp. 343-354.
Elsevier DOI
1006
Image segmentation; Implicit active contour; Gaussian mixture model;
Hueckel edge operator; Zernike moments; Local distribution fitting;
Level set without initial contour; Piecewise smooth image
BibRef
Bischoff, S.[Stephan],
Kobbelt, L.P.[Leif P.],
Parameterization-free active contour models with topology control,
VC(20), No. 4, June 2004, pp. 217-228.
Springer DOI
0406
BibRef
Xu, Q.[Qing],
Yang, J.[Jie],
Ding, S.Y.[Si-Yi],
Texture Segmentation using LBP embedded Region Competition,
ELCVIA(5), No. 1, 2005, pp. 41-47.
DOI Link
0505
BibRef
Burghardt, D.[Dirk],
Controlled Line Smoothing by Snakes,
GeoInfo(9), No. 3, September 2005, pp. 237-252.
Springer DOI
0509
BibRef
Cheng, J.,
Foo, S.W.,
Dynamic Directional Gradient Vector Flow for Snakes,
IP(15), No. 6, June 2006, pp. 1563-1571.
IEEE DOI
0606
BibRef
Ning, J.F.[Ji-Feng],
Wu, C.K.[Cheng-Ke],
Liu, S.G.[Shi-Gang],
Yang, S.Q.[Shu-Qin],
NGVF: An improved external force field for active contour model,
PRL(28), No. 1, 1 January 2007, pp. 58-63.
Elsevier DOI
0611
Active contour model; Gradient vector flow; GVF in the normal direction; Image interpolation
BibRef
Ning, J.F.[Ji-Feng],
Wu, C.K.[Cheng-Ke],
Liu, S.G.[Shi-Gang],
Wen, P.Z.[Pei-Zhi],
A New Active Contour Model: Curvature Gradient Vector Flow,
ACCV06(I:633-642).
Springer DOI
0601
BibRef
Li, H.[Hua],
Yezzi, A.J.[Anthony J.],
Local or Global Minima: Flexible Dual-Front Active Contours,
PAMI(29), No. 1, January 2007, pp. 1-14.
IEEE DOI
0701
BibRef
Earlier:
CVBIA05(356-366).
Springer DOI
0601
Adjust global-local by adjusting the size of the active region on the contour.
BibRef
Shih, F.Y.[Frank Y.],
Zhang, K.[Kai],
Locating object contours in complex background using improved snakes,
CVIU(105), No. 2, February 2007, pp. 93-98.
Elsevier DOI
0702
Snake; Active contour model; Image segmentation; Edge detection
BibRef
Ozertem, U.,
Erdogmus, D.,
Nonparametric Snakes,
IP(16), No. 9, September 2007, pp. 2361-2368.
IEEE DOI
0709
BibRef
Adam, A.[Amit],
Kimmel, R.[Ron],
Rivlin, E.[Ehud],
On Scene Segmentation and Histograms-Based Curve Evolution,
PAMI(31), No. 9, September 2009, pp. 1708-1714.
IEEE DOI
0907
Base on comparing distributions of features. Cross-bin metrics.
BibRef
Tatu, A.[Aditya],
Lauze, F.[François],
Sommer, S.[Stefan],
Nielsen, M.[Mads],
On Restricting Planar Curve Evolution to Finite Dimensional Implicit
Subspaces with Non-Euclidean Metric,
JMIV(38), No. 3, November 2010, pp. 226-240.
WWW Link.
1011
BibRef
Arnaudon, A.[Alexis],
van der Meulen, F.[Frank],
Schauer, M.[Moritz],
Sommer, S.[Stefan],
Diffusion Bridges for Stochastic Hamiltonian Systems and Shape
Evolutions,
SIIMS(15), No. 1, 2022, pp. 293-323.
DOI Link
2204
BibRef
Tatu, A.[Aditya],
Lauze, F.[François],
Nielsen, M.[Mads],
Olsen, O.F.[Ole Fogh],
Curve Evolution in Subspaces,
SSVM07(754-764).
Springer DOI
0705
BibRef
Hansen, J.D.K.[Jacob Daniel Kirstejn],
Lauze, F.[François],
Segmentation of 2D and 3D Objects with Intrinsically Similarity
Invariant Shape Regularisers,
SSVM19(369-380).
Springer DOI
1909
BibRef
Hansen, J.D.K.[Jacob Daniel Kirstejn],
Lauze, F.[François],
Local Mean Multiphase Segmentation with HMMF Models,
SSVM17(396-407).
Springer DOI
1706
BibRef
Bansal, S.[Sumukh],
Tatu, A.[Aditya],
Active Contour Models for Manifold Valued Image Segmentation,
JMIV(52), No. 2, June 2015, pp. 303-314.
WWW Link.
1505
BibRef
Earlier: A2, A1:
A Novel Active Contour Model for Texture Segmentation,
EMMCVPR15(223-236).
Springer DOI
1504
BibRef
Kovacs, A.[Andrea],
Sziranyi, T.[Tamas],
Harris function based active contour external force for image
segmentation,
PRL(33), No. 9, 1 July 2012, pp. 1180-1187.
Elsevier DOI
1202
BibRef
Earlier:
High Definition Feature Map for GVF Snake by Using Harris Function,
ACIVS10(I: 163-172).
Springer DOI
1012
Boundary extraction; Gradient vector flow; Vector field convolution;
Harris corner detection
BibRef
Song, Y.Q.[Yu-Qing],
Liu, Z.[Zhe],
Chen, J.M.[Jian-Mei],
Zhu, F.[Feng],
Xie, C.H.[Cong-Hua],
Medical image segmentation based on non-parametric mixture models with
spatial information,
SIViP(6), No. 4, November 2012, pp. 569-578.
WWW Link.
1210
BibRef
Tian, Y.[Yun],
Duan, F.Q.[Fu-Qing],
Zhou, M.Q.[Ming-Quan],
Wu, Z.K.[Zhong-Ke],
Active contour model combining region and edge information,
MVA(24), No. 1, January 2013, pp. 47-61.
WWW Link.
1301
BibRef
Gadermayr, M.[Michael],
Maier, A.[Andreas],
Uhl, A.[Andreas],
Active contours methods with respect to Vickers indentations,
MVA(24), No. 6, August 2013, pp. 1183-1196.
WWW Link.
1307
BibRef
Liu, G.Q.[Guo-Qi],
Zhou, Z.H.[Zhi-Heng],
Xie, S.L.[Sheng-Li],
Wu, D.C.[Dong-Cheng],
Dynamically Constrained Vector Field Convolution for Active Contour
Model,
IEICE(E96-D), No. 11, November 2013, pp. 2500-2503.
WWW Link.
1311
BibRef
Pereyra, M.,
Batatia, H.,
McLaughlin, S.,
Exploiting Information Geometry to Improve the Convergence of
Nonparametric Active Contours,
IP(24), No. 3, March 2015, pp. 836-845.
IEEE DOI
1502
image segmentation
BibRef
Pereyra, M.,
McLaughlin, S.,
Fast Unsupervised Bayesian Image Segmentation With Adaptive Spatial
Regularisation,
IP(26), No. 6, June 2017, pp. 2577-2587.
IEEE DOI
1705
Bayes methods, hidden Markov models, image denoising,
image segmentation, least squares approximations,
Bayesian estimation technique, Bayesian model, K-means problem,
SVA Bayesian estimator, SVA analysis,
adaptive spatial regularisation,
convex total-variation denoising problem,
fast unsupervised Bayesian image segmentation,
fast unsupervised K-class image segmentation,
hidden Potts-Markov random fields, inference procedure,
integer-constrained terms, least-square clustering problem,
marginalisation, parallel computing technique, real image,
self-adjusting regularisation parameter,
small-variance-asymptotic analysis, synthetic image,
unknown regularisation parameter, Approximation algorithms,
Bayes methods, Computational modeling, Hidden Markov models,
Image segmentation, Inference algorithms, Optimization,
Bayesian methods, Image segmentation, Potts Markov random field,
convex optimisation, spatial, mixture, models
BibRef
Pi, M.H.,
Ma, J.,
Zhang, W.,
Zhou, Z.,
Signal-walking-driven active contour model,
IET-IPR(9), No. 12, 2015, pp. 1101-1106.
DOI Link
1512
edge detection
BibRef
Ge, Q.[Qi],
Shen, F.M.[Fu-Min],
Jing, X.Y.[Xiao-Yuan],
Wu, F.[Fei],
Xie, S.P.[Shi-Peng],
Yue, D.[Dong],
Li, H.B.[Hai-Bo],
Active contour evolved by joint probability classification on
Riemannian manifold,
SIViP(10), No. 7, October 2016, pp. 1257-1264.
Springer DOI
1609
BibRef
Yang, Y.[Yong],
Guo, L.[Ling],
Ye, Y.D.[Yang-Dong],
Robust natural image segmentation by using spatially constrained
multivariate mixed Student's t-distribution and TV flow edge,
JVCIR(40, Part A), No. 1, 2016, pp. 178-196.
Elsevier DOI
1609
Spatially constrained image segmentation
BibRef
Boutiche, Y.[Yamina],
Abdesselam, A.[Abdelhamid],
Fast algorithm for hybrid region-based active contours optimisation,
IET-IPR(11), No. 3, March 2017, pp. 200-209.
DOI Link
1703
BibRef
Han, B.[Bin],
Wu, Y.Q.[Yi-Quan],
A novel active contour model based on modified symmetric cross
entropy for remote sensing river image segmentation,
PR(67), No. 1, 2017, pp. 396-409.
Elsevier DOI
1704
Image segmentation
BibRef
Hu, Z.P.[Zheng-Ping],
Zhang, Z.B.[Zhen-Bin],
Sun, Z.[Zhe],
Zhao, S.H.[Shu-Huan],
Salient object detection via sparse representation and multi-layer
contour zooming,
IET-CV(11), No. 4, June 2017, pp. 309-318.
DOI Link
1705
BibRef
Sakaridis, C.[Christos],
Drakopoulos, K.[Kimon],
Maragos, P.[Petros],
Theoretical Analysis of Active Contours on Graphs,
SIIMS(10), No. 3, 2017, pp. 1475-1510.
DOI Link
1710
BibRef
Park, H.M.[Han-Mu],
Cho, D.Y.[Dae-Yong],
Yoon, K.J.[Kuk-Jin],
Greedy refinement of object proposals via boundary-aligned minimum
bounding box search,
IET-CV(12), No. 3, April 2018, pp. 357-363.
DOI Link
1804
BibRef
Zhang, Z.Z.[Zi-Zhao],
Xing, F.Y.[Fu-Yong],
Wang, H.Z.[Han-Zi],
Yan, Y.[Yan],
Huang, Y.[Ying],
Shi, X.S.[Xiao-Shuang],
Yang, L.[Lin],
Revisiting graph construction for fast image segmentation,
PR(78), 2018, pp. 344-357.
Elsevier DOI
1804
Image segmentation, Graph partition, Manifold
BibRef
Zhang, Z.Z.[Zi-Zhao],
Xing, F.Y.[Fu-Yong],
Shi, X.S.[Xiao-Shuang],
Yang, L.[Lin],
SemiContour: A Semi-Supervised Learning Approach for Contour
Detection,
CVPR16(251-259)
IEEE DOI
1612
Semi-supervised learning for contours
BibRef
Lin, C.[Chuan],
Xu, G.[Guili],
Cao, Y.J.[Yi-Jun],
Contour detection model using linear and non-linear modulation based on
non-CRF suppression,
IET-IPR(12), No. 6, June 2018, pp. 993-1003.
DOI Link
1805
BibRef
Lin, C.[Chuan],
Xu, G.[Guili],
Cao, Y.J.[Yi-Jun],
Contour detection model based on neuron behaviour in primary visual
cortex,
IET-CV(12), No. 6, September 2018, pp. 863-872.
DOI Link
1808
BibRef
Manno-Kovacs, A.[Andrea],
Direction Selective Contour Detection for Salient Objects,
CirSysVideo(29), No. 2, February 2019, pp. 375-389.
IEEE DOI
1902
BibRef
Earlier:
Direction selective vector field convolution for contour detection,
ICIP14(4722-4726)
IEEE DOI
1502
Active contours, Force, Feature extraction, Image edge detection,
Data mining, Shape, Image segmentation, Direction selectivity,
boundary detection.
BibRef
Luo, S.,
Sarabandi, K.,
Tong, L.,
Guo, S.,
An Improved Fuzzy Region Competition-Based Framework for the
Multiphase Segmentation of SAR Images,
GeoRS(58), No. 4, April 2020, pp. 2457-2470.
IEEE DOI
2004
Active contour model, fuzzy function, hierarchical strategy,
region competition, synthetic aperture radar (SAR) image segmentation
BibRef
Hu, X.L.[Xiao-Lin],
Tang, C.F.[Chu-Feng],
Chen, H.[Hang],
Li, X.[Xiao],
Li, J.M.[Jian-Min],
Zhang, Z.X.[Zhao-Xiang],
Improving Image Segmentation with Boundary Patch Refinement,
IJCV(130), No. 11, November 2022, pp. 2571-2589.
Springer DOI
2210
BibRef
Liu, C.[Chaoyu],
Qiao, Z.H.[Zhong-Hua],
Zhang, Q.[Qian],
An Active Contour Model with Local Variance Force Term and Its
Efficient Minimization Solver for Multiphase Image Segmentation,
SIIMS(16), No. 1, 2023, pp. 144-168.
DOI Link
2302
BibRef
Naik, G.[Gunjan],
Kelkar, S.[Shubhangi],
Garware, B.[Bhushan],
Abhyankar, A.[Aditya],
Adaptive kernel-based active contour,
IJCVR(13), No. 2, 2023, pp. 202-218.
DOI Link
2303
BibRef
Yang, Y.J.[Yi-Jin],
Gu, X.D.[Xiao-Dong],
Accurate and robust visual tracking using bounding box refinement and
online sample filtering,
SP:IC(116), 2023, pp. 116981.
Elsevier DOI
2307
Visual object tracking, Mask initialization network,
Bounding box refinement, Online sample filtering
BibRef
Ge, P.Q.[Peng-Qiang],
Chen, Y.Y.[Yi-Yang],
Wang, G.[Guina],
Weng, G.R.[Gui-Rong],
An active contour model based on Jeffreys divergence and clustering
technology for image segmentation,
JVCIR(99), 2024, pp. 104069.
Elsevier DOI
2403
K-medoids, Active contour model, Jeffreys divergence,
Level set method, Data-driven
BibRef
Rahman, C.M.A.[Chowdhury M. Abid],
Nyeem, H.[Hussain],
Tensor-enhanced shock energy-driven active contours:
A novel approach for knowledge-based image segmentation,
JVCIR(103), 2024, pp. 104218.
Elsevier DOI
2409
Active contour, Image segmentation, Level-set,
Optimized shock filter, Variational methods
BibRef
Ma, D.,
But, W.,
Wu, X.,
Dual-SVM tracker via Multiple Support Instance and LEVER Strategy,
ICPR18(2124-2129)
IEEE DOI
1812
Target tracking, Support vector machines, Training data,
Deformable models, Strain, Computational modeling, Training
BibRef
Barbu, A.,
A directed graph approach to active contours,
ICIP17(71-75)
IEEE DOI
1803
Active contours, Image edge detection, Image segmentation,
Level set, Liver, Optimization,
directed graph optimization
BibRef
Pham, M.H.,
Detecting the optimal active contour in the computed tomography image
by using entropy to choose coefficients in energy equation,
WSSIP15(41-44)
IEEE DOI
1603
computerised tomography
BibRef
Lu, C.,
Liu, S.,
Jia, J.,
Tang, C.K.,
Contour Box: Rejecting Object Proposals without Explicit Closed
Contours,
ICCV15(2021-2029)
IEEE DOI
1602
Dynamic programming
BibRef
Aich, S.[Shubhra],
Lee, Y.C.[Yong-Cheol],
Lee, C.W.[Chil-Woo],
Probabilistic contour mapping using oriented gradient features and
SVM-bagging,
FCV15(1-5)
IEEE DOI
1506
feature extraction
BibRef
Jehan-Besson, S.,
Tilmant, C.,
de Cesare, A.,
Lalande, A.,
Cochet, A.,
Cousty, J.,
Lebenberg, J.,
Lefort, M.,
Clarysse, P.,
Clouard, R.,
Najman, L.,
Sarry, L.,
Frouin, F.,
Garreau, M.,
A mutual reference shape based on information theory,
ICIP14(887-891)
IEEE DOI
1502
Active contours
BibRef
Nilufar, S.[Sharmin],
Perkins, T.J.[Theodore J.],
Learning to Detect Contours with Dynamic Programming Snakes,
ICPR14(984-989)
IEEE DOI
1412
Dynamic programming
BibRef
Tang, Q.L.[Qi-Ling],
Sang, N.[Nong],
Liu, H.H.[Hai-Hua],
Learning to detect contours in natural images via biologically
motivated schemes,
ICIP13(123-126)
IEEE DOI
1402
Brain modeling
BibRef
Anh, N.T.L.[Nguyen Tran Lan],
Nhat, V.Q.[Vo Quang],
Elyor, K.[Kodirov],
Kim, S.H.[Soo-Hyung],
Lee, G.S.[Guee-Sang],
Fast automatic saliency map driven geometric active contour model for
color object segmentation,
ICPR12(2557-2560).
WWW Link.
1302
BibRef
Sun, J.[Jiuyu],
Ray, N.[Nilanjan],
Zhang, H.[Hong],
VFCCV snake: A novel active contour model combining edge and regional
information,
ICIP14(927-931)
IEEE DOI
1502
Active contours
BibRef
Ray, N.[Nilanjan],
Acton, S.T.[Scott T.],
Zhang, H.[Hong],
Seeing through clutter: Snake computation with dynamic programming for
particle segmentation,
ICPR12(801-804).
WWW Link.
1302
BibRef
Morita, K.[Keiko],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Hontan, H.[Hidetaka],
Masutani, Y.[Yoshitaka],
Alignment and Morphing for the Boundary Curves of Anatomical Organs,
SSSPR12(458-466).
Springer DOI
1211
BibRef
Lee, T.[Tom],
Fidler, S.[Sanja],
Dickinson, S.J.[Sven J.],
Multi-cue Mid-level Grouping,
ACCV14(III: 376-390).
Springer DOI
1504
BibRef
Zhang, Z.Q.[Zhi-Qi],
Fidler, S.[Sanja],
Waggoner, J.W.[Jarrell W.],
Cao, Y.[Yu],
Dickinson, S.J.[Sven J.],
Siskind, J.M.[Jeffrey Mark],
Wang, S.[Song],
Superedge grouping for object localization by combining appearance and
shape information,
CVPR12(3266-3273).
IEEE DOI
1208
BibRef
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Huang, H.[Heng],
Wang, Y.[Yue],
Feng, D.D.[David Dagan],
Context Enhanced Graphical Model for Object Localization in Medical
Images,
MCVM12(194-205).
Springer DOI
1305
BibRef
And:
Object localization in medical images based on graphical model with
contrast and interest-region terms,
MCV12(1-7).
IEEE DOI
1207
BibRef
Yu, H.M.[Hui-Min],
Wang, D.D.[Da-Dong],
Comparison Study of Two Energy Minimization Based Image Segmentation
Methods,
DICTA11(633-638).
IEEE DOI
1205
BibRef
Jojczyk, K.[Konrad],
Pryczek, M.[Michal],
Tomczyk, A.[Arkadiusz],
Szczepaniak, P.S.[Piotr S.],
Grzelak, P.[Piotr],
Cognitive Hierarchical Active Partitions Using Patch Approach,
ICCVG10(I: 35-42).
Springer DOI
1009
BibRef
Walczak, S.[Stanislaw],
Tomczyk, A.[Arkadiusz],
Szczepaniak, P.S.[Piotr S.],
Interpretation of Images and Their Sequences Using Potential Active
Contour Method,
ICCVG10(I: 89-96).
Springer DOI
1009
BibRef
Catanzaro, B.[Bryan],
Su, B.Y.[Bor-Yiing],
Sundaram, N.[Narayanan],
Lee, Y.[Yunsup],
Murphy, M.[Mark],
Keutzer, K.[Kurt],
Efficient, High-quality Image Contour Detection,
ICCV09(2381-2388).
IEEE DOI
PDF File.
0909
For the system
WWW Link.
BibRef
Radulescu, T.[Tiberiu],
Buzuloiu, V.[Vasile],
A hidden property of the gradient vector flow diffusion process,
ICIP09(2417-2420).
IEEE DOI
0911
Gradient vector flow as the external force on snakes.
BibRef
Wang, Q.[Qing],
Ronneberger, O.[Olaf],
Schulze, E.[Ekkehard],
Baumeister, R.[Ralf],
Burkhardt, H.[Hans],
Using Lateral Coupled Snakes for Modeling the Contours of Worms,
DAGM09(542-551).
Springer DOI
0909
BibRef
Pei, Z.K.[Zhen-Kui],
Zhao, Y.L.[Yan-Li],
Liu, Z.[Zhen],
Image segmentation based on Differential Evolution algorithm,
IASP09(48-51).
IEEE DOI
0904
BibRef
Zhao, X.M.[Xiao-Ming],
The application of balloon snake model in the extraction of parasite
image contour,
IASP09(65-69).
IEEE DOI
0904
BibRef
Vatavu, R.D.[Radu-Daniel],
Grisoni, L.[Laurent],
Pentiuc, S.G.[Stefan-Gheorghe],
Gesture Recognition Based on Elastic Deformation Energies,
GW07(1-12).
Springer DOI
0705
BibRef
Hansen, M.S.[Michael Sass],
Larsen, R.[Rasmus],
Glocker, B.[Ben],
Navab, N.[Nassir],
Adaptive parametrization of multivariate B-splines for image
registration,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Zikic, D.[Darko],
Hansen, M.S.[Michael Sass],
Glocker, B.[Ben],
Khamene, A.[Ali],
Larsen, R.[Rasmus],
Navab, N.[Nassir],
Computing minimal deformations: application to construction of
statistical shape models,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Cheng, H.[Hong],
Liu, Z.C.[Zi-Cheng],
Zheng, N.N.[Nan-Ning],
Yang, J.[Jie],
A deformable local image descriptor,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Ge, Y.[Yong],
Li, S.P.[San-Ping],
Li, D.Y.[De-Yu],
New Algorithm for Sub-Pixel Boundary Mapping,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Rexhepi, A.[Astrit],
Mokhtarian, F.[Farzin],
Robust Moving Region Boundary Extraction Using Second Order Statistics,
SCIA07(828-837).
Springer DOI
0706
BibRef
Rexhepi, A.[Astrit],
Mokhtarian, F.[Farzin],
Robust Boundary Delineation Using Random-Phase-Shift Active Contours,
SCIA07(411-420).
Springer DOI
0706
BibRef
Rexhepi, A.[Astrit],
Mokhtarian, F.[Farzin],
Rosenfeld, A.,
Sparse, variable-representation active contour models,
ICPR04(III: 683-686).
IEEE DOI
0409
BibRef
Ge, X.F.[Xing-Fei],
Jie, T.[Tian],
An automatic active contour model for multiple objects,
ICPR02(II: 881-884).
IEEE DOI
0211
BibRef
Radeva, P.I.,
Vitria, J.,
Region-based Approach for Discriminant Snakes,
ICIP01(II: 801-804).
IEEE DOI
0108
BibRef
Pardo, X.M.,
Radeva, P.I.,
Villanueva, J.J.,
Self-training statistic snake for image segmentation and tracking,
CIAP99(406-411).
IEEE DOI
9909
BibRef
Larsen, O.V.[Ole Vilhelm],
Radeva, P.I.[Petia I.],
Martí, E.[Enric],
Guidelines for choosing optimal parameters of elasticity for snakes,
CAIP95(106-113).
Springer DOI
9509
BibRef
Larsen, O.V.[Ole V.],
Radeva, P.I.[Petia I.],
Martí, E.[Enric],
Bounds on the optimal elasticity parameters for a snake,
CIAP95(37-42).
Springer DOI
9509
BibRef
Radeva, P.I.[Petia I.],
Martí, E.[Enric],
An improved model of snakes for model-based segmentation,
CAIP95(515-520).
Springer DOI
9509
BibRef
Radeva, P.I.[Petia I.],
Serrat, J.[Joan],
Marti, E.[Enric],
A Snake for Model-Based Segmentation,
ICCV95(816-821).
IEEE DOI Address convergence and attraction problems wiht a new potential field and
external force specification. Use the model to specify the internal force.
BibRef
9500
Torre, M.[Margarita],
Radeva, P.I.[Petia I.],
Agricultural-Field Extraction on Aerial Images by Region Competition
Algorithm,
ICPR00(Vol I: 313-316).
IEEE DOI
0009
See also Road Extraction from Aerial Images Using a Region Competition Algorithm.
BibRef
Eom, K.,
Contour Analysis Using Time-varying Autoregressive Model,
ICIP00(Vol II: 891-894).
IEEE DOI
0008
BibRef
McCane, B.[Brendan],
Snakes and Spiders,
ICPR00(Vol I: 652-655).
IEEE DOI
0009
BibRef
Galvin, B.[Ben],
McCane, B.[Brendan],
Novins, K.[Kevin],
Virtual Snakes for Occlusion Analysis,
CVPR99(II: 294-299).
IEEE DOI
BibRef
9900
And:
OSCAR: object segmentation using correspondence and relaxation,
3DIM99(270-278).
IEEE DOI
9910
See also Algorithmic Fusion for More Robust Feature Tracking.
BibRef
Perera, A.[Amitha],
Tsai, C.L.[Chia-Ling],
Flatland, R.Y.[Robin Y.],
Stewart, C.V.[Charles V.],
Maintaining Valid Topology with Active Contours: Theory and Application,
CVPR00(I: 496-502).
IEEE DOI
0005
Break into multiple contours
BibRef
Luo, H.[Hui],
Lu, Q.A.[Qi-Ang],
Acharya, R.S.,
Gaborski, R.,
Robust Snake Model,
CVPR00(I: 452-457).
IEEE DOI
0005
BibRef
Li, S.,
Lu, J.,
Modeling Bayesian Estimation for Deformable Contours,
ICCV99(991-996).
IEEE DOI
BibRef
9900
Liang, J.,
McInerney, T.,
Terzopoulos, D.,
United Snakes,
ICCV99(933-940).
IEEE DOI
BibRef
9900
Mogensen, I.D.O.,
Nielsen, M.,
Tube Snake Models for 3D Reconstruction of Thin Elongated Structures
from their Contour Projections,
SCIA99(Biological Applications).
BibRef
9900
de la Fuente, E.,
Trespaderne, F.M.,
Peran, J.R.,
A New Approach to Minimize the Energy of Deformable Contours,
MVA98(xx-yy).
BibRef
9800
Asano, A.[Akira],
Yamashita, T.[Tohru],
Yokozeki, S.[Shunsuke],
Active Contour Model Based on Mathematical Morphology,
ICPR98(Vol II: 1455-1457).
IEEE DOI
9808
BibRef
MacCormick, J.P., and
Blake, A.,
A Probabilistic Contour Discriminant for Object Localisation,
ICCV98(390-395).
IEEE DOI
BibRef
9800
Dumitras, A.,
Jerbi, A.[Ali],
Kossentini, F.[Faouzi],
Liew, D.,
A Z-shaped nonlinear transform for image segmentation and
classification in intelligent debris analysis,
ICIP98(III: 313-317).
IEEE DOI
9810
BibRef
Yan, P.T.,
Ye, Q.Z.,
Ong, S.H., and
Tan, S.C.,
Initializing Snakes: A Stepwise Expanding Flexible Balloon,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Raji, A.[Ahmed],
Petit, E.[Eric],
Lemoine, J.[Jacques],
Djeziri, S.[Salim],
A geometrically deformable contour model,
CIAP97(I: 510-518).
Springer DOI
9709
BibRef
Kimmel, R.,
Affine Differential Signatures for Gray Level Images
of Planar Shapes,
ICPR96(I: 45-49).
IEEE DOI
9608
Denoising
(Univ. of California, USA)
BibRef
Grace, A.E., and
Pycock, D.,
Multiresolution Active Contour Models in Textured Stereo Images,
BMVC96(Poster Session 2).
9608
University of Birmingham
BibRef
Sarigianidis, G.H.,
Pycock, D.,
Motion Correspondence Using a Neural Network,
BMVC93(xx-yy).
PDF File.
9309
BibRef
Cheung, K.W.[Kwok-Wai],
Yeung, D.Y.[Dit-Yan],
Chin, R.T.[Roland T.],
Competitive Mixture of Deformable Models for Pattern Classification,
CVPR96(613-618).
IEEE DOI Snakes for Character Recognition.
BibRef
9600
Rowe, S.M.,
Blake, A.,
Statistical Feature Modelling for Active Contours,
ECCV96(II:560-569).
Springer DOI
BibRef
9600
Earlier:
Statistical Background Modelling for Tracking with a Virtual Camera,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Dana, K.J., and
Wildes, R.P.,
A Dynamic Energy Image with Applications,
ARPA94(II:1611-1618).
BibRef
9400
Berger, M.O.[Marie-Odile],
Snake growing,
ECCV90(570-572).
Springer DOI
9004
BibRef
Berger, M.O.,
Mohr, R.,
Towards autonomy in active contour models,
ICPR90(I: 847-851).
IEEE DOI
9006
BibRef
Yang, J.Y.,
Hu, Q.,
Recognition Method of Shape Distorted Objects Using
Hierarchical Feature Descriptions,
ICPR88(II: 894-896).
IEEE DOI
BibRef
8800
Milios, E.E.,
Recovering Shape Deformation by an Extended
Circular Image Representation,
ICCV88(20-29).
IEEE DOI
BibRef
8800
Weiss, I.,
Curve Fitting with Optimized Mesh Point Placement,
UMD-CS-TR-1710, 1986.
BibRef
8600
Rutovitz, D.,
Expanding Picture Components to Natural Density Boundaries by
Propagation Methods. The Notions of Fall-Set and Fall-Distance,
ICPR78(657-664).
BibRef
7800
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Active Contours and Snakes, Region Segmentation Issues .