Shen, D.,
Herskovits, E.H.,
Davatzikos, C.,
An adaptive-focus statistical shape model for segmentation and shape
modeling of 3-D brain structures,
MedImg(20), No. 4, April 2001, pp. 257-270.
IEEE Top Reference.
0110
See also Adaptive-Focus Deformable Model Using Statistical and Geometric Information, An.
BibRef
Zhang, T.,
Davatzikos, C.,
ODVBA: Optimally-Discriminative Voxel-Based Analysis,
MedImg(30), No. 8, August 2011, pp. 1441-1454.
IEEE DOI
1108
BibRef
Fan, Y.,
Shen, D.,
Gur, R.C.,
Gur, R.E.,
Davatzikos, C.,
COMPARE: Classification of Morphological Patterns Using Adaptive
Regional Elements,
MedImg(26), No. 1, January 2007, pp. 93-105.
IEEE DOI
0701
BibRef
Hojjatoleslami, S.A.,
Kruggel, F.,
Segmentation of large brain lesions,
MedImg(20), No. 7, July 2001, pp. 666-669.
IEEE Top Reference.
0110
BibRef
Descombes, X.,
Kruggel, F.,
Wollny, G.,
Gertz, H.J.,
An Object-Based Approach for Detecting Small Brain Lesions: Application
to Virchow-Robin Spaces,
MedImg(23), No. 2, February 2004, pp. 246-255.
IEEE Abstract.
0403
BibRef
Nain, D.[Delphine],
Haker, S.[Steven],
Bobick, A.F.[Aaron F.],
Tannenbaum, A.[Allen],
Multiscale 3-D Shape Representation and Segmentation Using Spherical
Wavelets,
MedImg(26), No. 4, April 2007, pp. 598-618.
IEEE DOI
0704
See also On the Laplace-Beltrami operator and brain surface flattening. Brain structures. encode shape variations in population. Diagnosis.
BibRef
Liu, Y.X.[Yan-Xi],
Collins, R.T.,
Rothfus, W.E.,
Robust midsagittal plane extraction from normal and pathological 3-D
neuroradiology images,
MedImg(20), No. 3, March 2001, pp. 175-192.
IEEE Top Reference.
0110
BibRef
Prima, S.[Sylvain],
Ourselin, S.[Sibastien],
Ayache, N.J.[Nicholas J.],
Computation of the mid-sagittal plane in 3-D brain images,
MedImg(21), No. 2, February 2002, pp. 122-138.
IEEE Top Reference.
0204
BibRef
Earlier:
Computation of the Mid-Sagittal Plane in 3D Images of the Brain,
ECCV00(II: 685-701).
Springer DOI
0003
BibRef
Roche, A.,
Guimond, A.,
Ayache, N.J.,
Meunier, J.,
Multimodal Elastic Matching of Brain Images,
ECCV00(II: 511-527).
Springer DOI
0003
BibRef
Han, X.[Xiao],
Xu, C.Y.[Chen-Yang],
Braga-Neto, U.M.,
Prince, J.L.,
Topology Correction in Brain Cortex Segmentation Using a Multiscale,
Graph-Based Algorithm,
MedImg(21), No. 2, February 2002, pp. 109-121.
IEEE Top Reference.
0204
See also Topology Preserving Brain Tissue Segmentation Using Graph Cuts.
BibRef
Fan, Y.[Yong],
Jiang, T.Z.[Tian-Zi],
Evans, D.J.,
Volumetric segmentation of brain images using parallel genetic
algorithms,
MedImg(21), No. 8, August 2002, pp. 904-909.
IEEE Top Reference.
0301
BibRef
Goldenberg, R.,
Kimmel, R.,
Rivlin, E.,
Rudzsky, M.,
Cortex Segmentation: A Fast Variational Geometric Approach,
MedImg(21), No. 12, December 2002, pp. 1544-1551.
IEEE Top Reference.
0301
BibRef
Earlier:
LevelSet01(xx-yy).
0106
BibRef
Tu, Z.W.[Zhuo-Wen],
Narr, K.L.,
Dollar, P.,
Dinov, I.D.,
Thompson, P.M.,
Toga, A.W.[Arthur W.],
Brain Anatomical Structure Segmentation by Hybrid
Discriminative/Generative Models,
MedImg(27), No. 4, April 2008, pp. 495-508.
IEEE DOI
0804
BibRef
Hou, Z.,
Qian, W.,
Huang, S.,
Hu, Q.,
Nowinski, W.L.,
Regularized fuzzy c-means method for brain tissue clustering,
PRL(28), No. 13, 1 October 2007, pp. 1788-1794.
Elsevier DOI
0709
Fuzzy c-means; Clustering; Regularization; Image segmentation;
Spatial modeling; Noise level estimate
BibRef
Schmitt, O.[Oliver],
Bethke, S.[Sven],
Sobe, P.[Peter],
Prehn, S.[Steffen],
Maehle, E.[Erik],
Parallelized segmentation of a serially sectioned whole human brain,
IVC(26), No. 2, 1 February 2008, pp. 289-301.
Elsevier DOI
0711
Segmentation; Adaptive fuzzy c-means; Human brain; Paraffin sections;
Histologic sections; Block-face; Episcopic images
BibRef
Pakura, M.,
Schmitt, O.,
Aach, T.,
Segmentation and analysis of nerve fibers in histologic sections of the
cerebral human cortex,
Southwest02(62-66).
IEEE Top Reference.
0208
BibRef
Engel, K.[Karin],
Tönnies, K.D.[Klaus D.],
Brechmann, A.[André],
Part-based localisation and segmentation of landmark-related auditory
cortical regions,
PR(44), No. 9, September 2011, pp. 2017-2033.
Elsevier DOI
1106
BibRef
Earlier:
Parcellation of the Auditory Cortex into Landmark-Related Regions of
Interest,
CAIP09(631-638).
Springer DOI
0909
BibRef
Earlier:
A Two-level Dynamic Model for The Representation And Recognition of
Cortical Folding Patterns,
ICIP05(I: 297-300).
IEEE DOI
0512
Shape decomposition; Shape abstraction; Graphical model; Cortical
parcellation; Auditory cortex
BibRef
Chaovalitwongse, W.[Wanpracha],
Jeong, Y.[Youngseon],
Jeong, M.K.[Myong K.],
Danish, S.[Shabbar],
Wong, S.[Stephen],
Pattern Recognition Approaches for Identifying Subcortical Targets
during Deep Brain Stimulation Surgery,
IEEE_Int_Sys(26), No. 5, September-October 2011, pp. 54-63.
IEEE DOI
1110
BibRef
Engel, K.[Karin],
Toennies, K.D.[Klaus D.],
Segmentation of the Midbrain in Transcranial Sonographies using a
Two-Component Deformable Mode,
BMVA(2009), No. 4, 2009, pp. 1-12.
PDF File.
1209
BibRef
Spratling, M.W.,
Image Segmentation Using a Sparse Coding Model of Cortical Area V1,
IP(22), No. 4, April 2013, pp. 1631-1643.
IEEE DOI
1303
BibRef
Nanthagopal, A.P.,
Sukanesh, R.,
Wavelet statistical texture features-based segmentation and
classification of brain computed tomography images,
IET-IPR(7), No. 1, 2013, pp. 25-32.
DOI Link
1303
BibRef
Deligianni, F.,
Varoquaux, G.,
Thirion, B.,
Sharp, D.J.,
Ledig, C.,
Leech, R.,
Rueckert, D.,
A Framework for Inter-Subject Prediction of Functional Connectivity
From Structural Networks,
MedImg(32), No. 12, 2013, pp. 2200-2214.
IEEE DOI
1312
Brain models
BibRef
Ng, B.,
Varoquaux, G.,
Poline, J.B.,
Greicius, M.,
Thirion, B.,
Transport on Riemannian Manifold for Connectivity-Based Brain
Decoding,
MedImg(35), No. 1, January 2016, pp. 208-216.
IEEE DOI
1601
Classification algorithms
BibRef
Chen, Z.S.[Zeng-Si],
Wang, J.W.[Jin-Wei],
Kong, D.X.[De-Xing],
Dong, F.F.[Fang-Fang],
A nonlocal energy minimization approach to brain image segmentation
with simultaneous bias field estimation and denoising,
MVA(25), No. 2, February 2014, pp. 529-544.
WWW Link.
1402
BibRef
Pu, J.,
Wang, J.,
Yu, W.,
Shen, Z.,
Lv, Q.,
Zeljic, K.,
Zhang, C.,
Sun, B.,
Liu, G.,
Wang, Z.,
Discriminative Structured Feature Engineering for Macroscale Brain
Connectomes,
MedImg(34), No. 11, November 2015, pp. 2333-2342.
IEEE DOI
1511
Brain modeling
BibRef
Zhao, S.J.[Shi-Jie],
Han, J.W.[Jun-Wei],
Lv, J.L.[Jing-Lei],
Jiang, X.[Xi],
Hu, X.T.[Xin-Tao],
Zhao, Y.[Yu],
Ge, B.[Bao],
Guo, L.[Lei],
Liu, T.M.[Tian-Ming],
Supervised Dictionary Learning for Inferring Concurrent Brain
Networks,
MedImg(34), No. 10, October 2015, pp. 2036-2045.
IEEE DOI
1511
biomedical MRI
BibRef
Hong, S.G.[Shang-Guan],
Liu, Y.[Yi],
Cui, X.Y.[Xue-Ying],
Bai, Y.J.[Yun-Jiao],
Zhang, Q.[Quan],
Gui, Z.G.[Zhi-Guo],
Sparse-view statistical iterative head CT image reconstruction via
joint regularization,
IJIST(26), No. 1, 2016, pp. 3-14.
DOI Link
1604
CT
BibRef
Padma, A.,
Giridharan, N.,
Performance comparison of texture feature analysis methods using PNN
classifier for segmentation and classification of brain CT images,
IJIST(26), No. 2, 2016, pp. 97-105.
DOI Link
1606
feature selection
BibRef
Wade, B.S.C.[Benjamin S.C.],
Joshi, S.H.[Shantanu H.],
Gutman, B.A.[Boris A.],
Thompson, P.M.[Paul M.],
Machine Learning on High Dimensional Shape Data from Subcortical Brain
Surfaces: A Comparison of Feature Selection and Classification Methods,
PR(63), No. 1, 2017, pp. 731-739.
Elsevier DOI
1612
BibRef
Earlier:
MLMI15(36-43).
Springer DOI
1511
Feature selection
BibRef
Rabiei, H.[Hamed],
Richard, F.J.P.[Frédéric J.P.],
Coulon, O.[Olivier],
Lefčvre, J.[Julien],
Local Spectral Analysis of the Cerebral Cortex:
New Gyrification Indices,
MedImg(36), No. 3, March 2017, pp. 838-848.
IEEE DOI
1703
Complexity theory
BibRef
Rabiei, H.[Hamed],
Coulon, O.[Olivier],
Lefčvre, J.[Julien],
Richard, F.J.P.[Frédéric J. P.],
Surface Regularity via the Estimation of Fractional Brownian Motion
Index,
IP(30), 2021, pp. 1453-1460.
IEEE DOI
2101
Indexes, Estimation, Eigenvalues and eigenfunctions,
Surface treatment, Mathematical model, Linear regression,
fetal cortical surface
BibRef
Saleh, M.G.[Muhammad G.],
Near, J.[Jamie],
Alhamud, A.[Alqadafi],
van der Kouwe, A.J.W.[André J. W.],
Meintjes, E.M.[Ernesta M.],
Effects of tissue and gender on macromolecule suppressed
gamma-aminobutyric acid,
IJIST(27), No. 2, 2017, pp. 144-152.
DOI Link
1706
GABA, gender, grey matter, tissue, white, matter
BibRef
Mahbod, A.[Amirreza],
Chowdhury, M.[Manish],
Smedby, Ö.[Örjan],
Wang, C.L.[Chun-Liang],
Automatic brain segmentation using artificial neural networks with
shape context,
PRL(101), No. 1, 2018, pp. 74-79.
Elsevier DOI
1801
Brain segmentation
BibRef
Qin, C.[Chen],
Guerrero Moreno, R.[Ricardo],
Bowles, C.[Christopher],
Chen, L.[Liang],
Dickie, D.A.[David Alexander],
Valdes-Hernandez, M.D.C.[Maria Del C.],
Wardlaw, J.[Joanna],
Rueckert, D.[Daniel],
A large margin algorithm for automated segmentation of white matter
hyperintensity,
PR(77), 2018, pp. 150-159.
Elsevier DOI
1802
Supervised learning, Semi-supervised learning, Segmentation,
White matter hyperintensity, Brain MRI
BibRef
Qin, C.[Chen],
Guerrero Moreno, R.[Ricardo],
Bowles, C.[Christopher],
Ledig, C.[Christian],
Scheltens, P.[Philip],
Barkhof, F.[Frederik],
Rhodius-Meester, H.[Hanneke],
Tijms, B.[Betty],
Lemstra, A.W.[Afina W.],
van der Flier, W.M.[Wiesje M.],
Glocker, B.[Ben],
Rueckert, D.[Daniel],
A Semi-supervised Large Margin Algorithm for White Matter
Hyperintensity Segmentation,
MLMI16(104-112).
Springer DOI
1611
BibRef
Kalaiselvi, T.,
Sriramakrishnan, P.,
Rapid brain tissue segmentation process by modified FCM algorithm with
CUDA enabled GPU machine,
IJIST(28), No. 3, September 2018, pp. 163-174.
WWW Link.
1808
BibRef
Wang, L.[Li],
Nie, D.[Dong],
Li, G.N.[Guan-Nan],
Puybareau, É.[Élodie],
Dolz, J.[Jose],
Zhang, Q.[Qian],
Wang, F.[Fan],
Xia, J.[Jing],
Wu, Z.W.[Zheng-Wang],
Chen, J.W.[Jia-Wei],
Thung, K.H.[Kim-Han],
Bui, T.D.[Toan Duc],
Shin, J.T.[Ji-Tae],
Zeng, G.D.[Guo-Dong],
Zheng, G.Y.[Guo-Yan],
Fonov, V.S.[Vladimir S.],
Doyle, A.[Andrew],
Xu, Y.C.[Yong-Chao],
Moeskops, P.[Pim],
Pluim, J.P.W.[Josien P. W.],
Desrosiers, C.[Christian],
Ben Ayed, I.[Ismail],
Sanroma, G.[Gerard],
Benkarim, O.M.[Oualid M.],
Casamitjana, A.[Adriŕ],
Vilaplana, V.[Verónica],
Lin, W.L.[Wei-Li],
Li, G.[Gang],
Shen, D.G.[Ding-Gang],
Benchmark on Automatic Six-Month-Old Infant Brain Segmentation
Algorithms: The iSeg-2017 Challenge,
MedImg(38), No. 9, September 2019, pp. 2219-2230.
IEEE DOI
1909
Image segmentation, Magnetic resonance imaging, Manuals,
Pediatrics, Biomedical imaging, Testing, White matter, Infant, brain,
challenge
BibRef
Sun, Y.[Yue],
Gao, K.[Kun],
Wu, Z.W.[Zheng-Wang],
Li, G.[Guannan],
Zong, X.P.[Xiao-Peng],
Lei, Z.H.[Zhi-Hao],
Wei, Y.[Ying],
Ma, J.[Jun],
Yang, X.P.[Xiao-Ping],
Feng, X.[Xue],
Zhao, L.[Li],
Phan, T.L.[Trung Le],
Shin, J.[Jitae],
Zhong, T.[Tao],
Zhang, Y.[Yu],
Yu, L.[Lequan],
Li, C.[Caizi],
Basnet, R.[Ramesh],
Ahmad, M.O.[M. Omair],
Swamy, M.N.S.,
Ma, W.[Wenao],
Dou, Q.[Qi],
Bui, T.D.[Toan Duc],
Noguera, C.B.[Camilo Bermudez],
Landman, B.[Bennett],
Gotlib, I.H.[Ian H.],
Humphreys, K.L.[Kathryn L.],
Shultz, S.[Sarah],
Li, L.C.[Long-Chuan],
Niu, S.[Sijie],
Lin, W.[Weili],
Jewells, V.[Valerie],
Shen, D.G.[Ding-Gang],
Li, G.[Gang],
Wang, L.[Li],
Multi-Site Infant Brain Segmentation Algorithms:
The iSeg-2019 Challenge,
MedImg(40), No. 5, May 2021, pp. 1363-1376.
IEEE DOI
2105
Image segmentation, Testing, Training, Manuals,
Magnetic resonance imaging, Pediatrics, Brain,
deep learning
BibRef
Gao, S.,
Xiong, Z.,
Deep Enhancement for 3D HDR Brain Image Compression,
ICIP19(714-718)
IEEE DOI
1910
Artifact reduction, brain image compression, convolutional neural network
BibRef
Jang, S.,
Kim, S.,
Kim, M.,
Son, K.,
Lee, K.,
Ra, J.B.,
Head Motion Correction Based on Filtered Backprojection in Helical CT
Scanning,
MedImg(39), No. 5, May 2020, pp. 1636-1645.
IEEE DOI
2005
Filtered backprojection (FBP), head motion correction,
helical CT scanning, motion estimation, motion-compensated reconstruction
BibRef
Liu, L.,
Hu, X.,
Zhu, L.,
Fu, C.,
Qin, J.,
Heng, P.,
?-Net: Stacking Densely Convolutional LSTMs for Sub-Cortical Brain
Structure Segmentation,
MedImg(39), No. 9, September 2020, pp. 2806-2817.
IEEE DOI
2009
Brain, Image segmentation, Semantics, Computer architecture,
Convolutional neural networks, Aggregates, Logic gates,
densely convolutional LSTM
BibRef
Wu, J.[Jiong],
Tang, X.Y.[Xiao-Ying],
Brain segmentation based on multi-atlas and diffeomorphism guided 3D
fully convolutional network ensembles,
PR(115), 2021, pp. 107904.
Elsevier DOI
2104
Brain segmentation, Fully convolutional network, Multi-atlas,
Diffeomorphism, Adaptive-size patches, Ensemble model
BibRef
Wei, X.D.[Xiao-Dan],
Liu, Q.H.[Qing-Hao],
Liu, M.[Min],
Wang, Y.[Yaonan],
Meijering, E.[Erik],
3D Soma Detection in Large-Scale Whole Brain Images via a Two-Stage
Neural Network,
MedImg(42), No. 1, January 2023, pp. 148-157.
IEEE DOI
2301
Soma, Brain, Mice, Image segmentation, Deep learning,
Feature extraction, Soma detection, two-stage neural network,
neuron reconstruction
BibRef
Cui, Y.[Yue],
Li, C.Y.[Cheng-Yi],
Lu, Y.H.[Yu-Heng],
Ma, L.[Liang],
Cheng, L.[Luqi],
Cao, L.[Long],
Yu, S.[Shan],
Jiang, T.Z.[Tian-Zi],
Multimodal Connectivity-Based Individual Parcellation and Analysis
for Humans and Rhesus Monkeys,
MedImg(43), No. 9, September 2024, pp. 3343-3353.
IEEE DOI
2409
Pipelines, Surface topography, Animals, Brain modeling,
Task analysis, Surface reconstruction, Reliability, Brain atlas,
rhesus monkey
BibRef
Laudicella, R.[Riccardo],
Agnello, L.[Luca],
Comelli, A.[Albert],
Unsupervised Brain Segmentation System Using K-Means and Neural Network,
AIRCAD22(441-449).
Springer DOI
2208
BibRef
Zhang, Y.[Yan],
Kong, Y.Y.[You-Yong],
Wu, J.S.[Jia-Song],
Coatrieux, G.[Gouenou],
Shu, H.Z.[Hua-Zhong],
Brain Tissue Segmentation based on Graph Convolutional Networks,
ICIP19(1470-1474)
IEEE DOI
1910
Magnetic resonance imaging, Brain tissue segmentation,
Supervoxels, Graph Convolutional Networks
BibRef
Xie, K.,
Wen, Y.,
LSTM-MA: A LSTM Method with Multi-Modality and Adjacency Constraint
for Brain Image Segmentation,
ICIP19(240-244)
IEEE DOI
1910
LSTM, Multi-modality, Superpixel, Brain Segmentation, Noise Robustness
BibRef
Liedlgruber, M.[Michael],
Butz, K.[Kevin],
Höller, Y.[Yvonne],
Kuchukhidze, G.[Georgi],
Taylor, A.[Alexandra],
Thomschevski, A.[Aljoscha],
Tomasi, O.[Ottavio],
Trinka, E.[Eugen],
Uhl, A.[Andreas],
Can SPHARM-Based Features from Automated or Manually Segmented
Hippocampi Distinguish Between MCI and TLE?,
SCIA19(465-476).
Springer DOI
1906
BibRef
Dong, M.,
Liu, D.,
Xiong, Z.,
Yang, C.,
Chen, X.,
Zha, Z.,
Bi, G.,
Wu, F.,
3D CNN-Based Soma Segmentation from Brain Images at Single-Neuron
Resolution,
ICIP18(126-130)
IEEE DOI
1809
Image segmentation, Brain, Neurons,
Training, Image resolution, Signal to noise ratio, Brain images,
weakly supervised learning
BibRef
Kumar, P.,
Nagar, P.,
Arora, C.,
Gupta, A.,
U-Segnet: Fully Convolutional Neural Network Based Automated Brain
Tissue Segmentation Tool,
ICIP18(3503-3507)
IEEE DOI
1809
Image segmentation, Training, Brain, Magnetic resonance imaging,
Task analysis, Computer architecture
BibRef
Madiraju, N.[Naveen],
Singh, A.[Amarjot],
Omkar, S.N.,
Level Set Segmentation of Brain Matter Using a Trans-Roto-Scale
Invariant High Dimensional Feature,
MCBMIIA16(II: 595-609).
Springer DOI
1704
BibRef
vihlík, J.[Jan],
Kybic, J.[Jan],
Habart, D.[David],
Hlushak, H.[Hanna],
Dvorák, J.[Jirí],
Radochová, B.[Barbora],
Langerhans Islet Volume Estimation from 3D Optical Projection
Tomography,
MCBMIIA16(II: 583-594).
Springer DOI
1704
BibRef
Chan, A.,
Wood, I.A.,
Fripp, J.,
Maximum Pseudolikelihood Estimation for Mixture-Markov Random Field
Segmentation of the Brain,
DICTA16(1-7)
IEEE DOI
1701
Australia
BibRef
Tamajka, M.,
Benesova, W.,
Automatic brain segmentation method based on supervoxels,
WSSIP16(1-4)
IEEE DOI
1608
biomedical MRI
BibRef
Ng, B.[Bernard],
Milazzo, A.C.[Anna-Clare],
Altmann, A.[Andre],
Node-Based Gaussian Graphical Model for Identifying Discriminative
Brain Regions from Connectivity Graphs,
MLMI15(44-51).
Springer DOI
1511
BibRef
de Brebisson, A.[Alexandre],
Montana, G.[Giovanni],
Deep neural networks for anatomical brain segmentation,
BioImage15(20-28)
IEEE DOI
1510
Biological neural networks
BibRef
Wang, L.P.[Li-Ping],
Zeng, Z.M.[Zi-Ming],
Zwiggelaar, R.[Reyer],
An Improved BET Method for Brain Segmentation,
ICPR14(3221-3226)
IEEE DOI
1412
Brain modeling
BibRef
Lefevre, J.[Julien],
Auzias, G.[Guillaume],
Germanaud, D.[David],
Brain Lobes Revealed by Spectral Clustering,
ICPR14(562-567)
IEEE DOI
1412
Arrays
BibRef
Firat, O.[Orhan],
Oztekin, I.[Ilke],
Vural, F.T.Y.[Fatos T. Yarman],
Deep learning for brain decoding,
ICIP14(2784-2788)
IEEE DOI
1502
Computer architecture
BibRef
Onal, I.[Itir],
Aksan, E.[Emre],
Velioglu, B.[Burak],
Firat, O.[Orhan],
Ozay, M.[Mete],
Oztekin, I.[Ilke],
Vural, F.T.Y.[Fatos T. Yarman],
Modeling the Brain Connectivity for Pattern Analysis,
ICPR14(3339-3344)
IEEE DOI
1412
Bayes methods
BibRef
Sut, B.[Bolan],
Dinh, T.A.[Thien Anh],
Ambastha, A.K.[Abhinit Kumar],
Gong, T.X.[Tian-Xia],
Silander, T.[Tomi],
Lu, S.J.[Shi-Jian],
Lim, C.C.T.[C.C. Tchoyoson],
Pang, B.C.[Boon Chuan],
Lee, C.K.[Cheng Kiang],
Leong, T.Y.[Tze-Yun],
Tan, C.L.[Chew Lim],
Automated Prediction of Glasgow Outcome Scale for Traumatic Brain
Injury,
ICPR14(3245-3250)
IEEE DOI
1412
Brain modeling
BibRef
Sanroma, G.[Gerard],
Wu, G.R.[Guo-Rong],
Thung, K.[Kim],
Guo, Y.R.[Yan-Rong],
Shen, D.G.[Ding-Gang],
Novel Multi-Atlas Segmentation by Matrix Completion,
MLMI14(207-214).
Springer DOI
1410
BibRef
Cabeen, R.P.[Ryan P.],
Laidlaw, D.H.[David H.],
White Matter Supervoxel Segmentation by Axial DP-Means Clustering,
MCV13(95-104).
Springer DOI
1405
BibRef
Jensen, R.R.[Rasmus R.],
Thorup, S.S.[Signe S.],
Paulsen, R.R.[Rasmus R.],
Darvann, T.A.[Tron A.],
Hermann, N.V.[Nuno V.],
Larsen, P.[Per],
Kreiborg, S.[Sven],
Larsen, R.[Rasmus],
Genus zero graph segmentation: Estimation of intracranial volume,
PRL(49), No. 1, 2014, pp. 259-263.
Elsevier DOI
1410
Intracranial volume
BibRef
Jensen, R.R.[Rasmus R.],
Thorup, S.S.[Signe S.],
Paulsen, R.R.[Rasmus R.],
Darvann, T.A.[Tron A.],
Hermann, N.V.[Nuno V.],
Genus Zero Graph Segmentation: Estimation of Intracranial Volume [Conf],
SCIA13(290-298).
Springer DOI
1311
BibRef
Igual, L.[Laura],
Soliva, J.C.[Joan Carles],
Gimeno, R.[Roger],
Escalera, S.[Sergio],
Vilarroya, O.[Oscar],
Radeva, P.I.[Petia I.],
Automatic Internal Segmentation of Caudate Nucleus for Diagnosis of
Attention-Deficit/Hyperactivity Disorder,
ICIAR12(II: 222-229).
Springer DOI
1206
BibRef
Zhang, D.Q.[Dao-Qiang],
Guo, Q.[Qimiao],
Wu, G.R.[Guo-Rong],
Shen, D.G.[Ding-Gang],
Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation,
MBIA12(94-102).
Springer DOI
1210
BibRef
Cheng, B.[Bo],
Zhang, D.Q.[Dao-Qiang],
Chen, S.C.[Song-Can],
Shen, D.G.[Ding-Gang],
Predicting Clinical Scores Using Semi-supervised Multimodal Relevance
Vector Regression,
MLMI11(241-248).
Springer DOI
1109
clinical scores of neurological diseases
BibRef
Last, C.[Carsten],
Winkelbach, S.[Simon],
Wahl, F.M.[Friedrich M.],
Eichhorn, K.W.G.[Klaus W.G.],
Bootz, F.[Friedrich],
A Model-Based Approach to the Segmentation of Nasal Cavity and
Paranasal Sinus Boundaries,
DAGM10(333-342).
Springer DOI
1009
BibRef
Izhar, L.I.[Lila Iznita],
Asirvadam, V.S.[Vijanth Sagayan],
Lee, S.N.[San Nien],
Segmentation of Sinus Images for Grading of Severity of Sinusitis,
IVIC09(202-212).
Springer DOI
0911
BibRef
Tong, H.L.[Hau-Lee],
Fauzi, M.F.A.[Mohammad Faizal Ahmad],
Komiya, R.[Ryoichi],
Automated Segmentation and Retrieval System for CT Head Images,
IVIC09(97-109).
Springer DOI
0911
BibRef
Pérez, N.[Noel],
Valdés, J.A.[José A.],
Guevara, M.A.[Miguel A.],
Rodríguez, L.A.[Luis A.],
Molina, J.M.,
Set of Methods for Spontaneous ICH Segmentation and Tracking from CT
Head Images,
CIARP07(212-220).
Springer DOI
0711
BibRef
Ciofolo, C.[Cybčle],
Barillot, C.[Christian],
Shape Analysis and Fuzzy Control for 3D Competitive Segmentation of
Brain Structures with Level Sets,
ECCV06(I: 458-470).
Springer DOI
0608
BibRef
Mohr, J.,
Hess, A.,
Scholz, M.,
Obermayer, K.,
Segmentation of 2 1/2 D brain image stacks with automatic extraction
and visualization of functional information,
ICIP03(II: 1089-1092).
IEEE DOI
0312
BibRef
Ruan, S.,
Fadili, J.,
Xue, J.,
Bloyet, B.,
Unsupervised Segmentation of Three-dimensional Brain Images,
ICPR00(Vol III: 405-408).
IEEE DOI
0009
BibRef
Aurdal, L.,
Bloch, I.,
Maitre, H.,
Graffigne, C., and
Adamsbaum, C.,
Continuous Label Bayesian Segmentation, Applications to
Medical Brain Images,
ICIP97(II: 128-131).
IEEE DOI
BibRef
9700
Mangin, J.F.,
Regis, J.,
Bloch, I.,
Frouin, V.,
Samson, Y.,
Lopez-Krahe, J.,
A MRF Based Random Graph Modelling the Human Cortical Topography,
CVRMed95(XX-YY)
BibRef
9500
Loncaric, S.[Sven],
Kovacevic, D.[Domagoj],
A method for segmentation of CT head images,
CIAP97(II: 388-395).
Springer DOI
9709
BibRef
Suzuki, H.,
Yoshizaki, K.,
Matsuo, M.,
Kashio, J.,
A Supporting System for Getting Tomograms and Screening with a
Computerized 3D Brain Atlas and a Knowledge Database,
CVRMed95(XX-YY)
BibRef
9500
Cawley, M.G.,
Natarajan, K.,
Model based segmentation of radiological images of the cranium,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Cortex, MRI Analysis, Models, 3-D .