Snapper, E.,
Troyer, R.,
Metric Affine Geometry,
Academic Press1971.
BibRef
7100
Gotsman, C.,
On the Most Robust Affine Basis,
PRL(14), 1993, pp. 647-650.
BibRef
9300
Flusser, J.[Jan],
Suk, T.[Tomá],
Pattern Recognition by Affine Moment Invariants,
PR(26), No. 1, January 1993, pp. 167-174.
Elsevier DOI
See also Recognition of Blurred Images by the Method of Moments.
See also Projective Moment Invariants.
See also Point-based projective invariants.
BibRef
9301
Flusser, J.,
Suk, T.,
A moment-based approach to registration of images with
affine geometric distortion,
GeoRS(32), No. 2, March 1994, pp. 382-387.
IEEE DOI
BibRef
9403
Flusser, J.[Jan],
Suk, T.[Tomás],
Moment Invariants for Recognizing Symmetric Objects,
CAIP05(9).
Springer DOI
0509
BibRef
Suk, T.[Tomá],
Flusser, J.[Jan],
Affine Moment Invariants of Color Images,
CAIP09(334-341).
Springer DOI
0909
BibRef
Suk, T.[Tomá],
Flusser, J.[Jan],
Tensor Method for Constructing 3D Moment Invariants,
CAIP11(II: 212-219).
Springer DOI
1109
BibRef
Suk, T.[Tomás],
Flusser, J.[Jan],
Combined blur and affine moment invariants and their use in pattern
recognition,
PR(36), No. 12, December 2003, pp. 2895-2907.
Elsevier DOI
0310
BibRef
Earlier:
Blur and affine moment invariants,
ICPR02(IV: 339-342).
IEEE DOI
0211
BibRef
Suk, T.[Tomás],
Flusser, J.[Jan],
Features Invariant Simultaneously to Convolution and Affine
Transformation,
CAIP01(183 ff.).
Springer DOI
0210
BibRef
Suk, T.[Tomá],
The Proof of Completeness of the Graph Method for Generation of Affine
Moment Invariants,
ICIAR10(I: 157-166).
Springer DOI
1006
BibRef
Flusser, J.,
Affine invariants of convex polygons,
IP(11), No. 9, September 2002, pp. 1117-1118.
IEEE DOI
0210
BibRef
Sapiro, G., and
Tannenbaum, A.,
Affine Invariant Scale-Space,
IJCV(11), No. 1, August 1993, pp. 25-44.
Springer DOI
See also Area and Length Preserving Geometric Invariant Scale-Spaces.
BibRef
9308
Rivlin, E., and
Weiss, I.,
Local Invariants for Recognition,
PAMI(17), No. 3, March 1995, pp. 226-238.
IEEE DOI
BibRef
9503
Earlier:
Semi-Local Invariants,
CVPR93(697-698).
IEEE DOI
BibRef
And:
Recognition with Local and Semi-Local Invariants,
DARPA93(789-800).
Local affine invariants.
BibRef
Rivlin, E.,
Weiss, I.,
Deformation Invariants in Object Recognition,
CVIU(65), No. 1, January 1997, pp. 95-108.
DOI Link
9702
BibRef
Weiss, I.,
Local Projective and Affine Invariants,
AMAI(13), No. 3-4, 1995, pp. 203-225.
BibRef
9500
Werman, M.,
Weinshall, D.,
Similarity and Affine Invariant Distances between 2D Point Sets,
PAMI(17), No. 8, August 1995, pp. 810-814.
IEEE DOI
BibRef
9508
Earlier:
Similarity and Affine Distance Between 2D Point Sets,
ICPR94(A:723-725).
IEEE DOI Affine template match to assign points.
Matching 3D objects with 2D affine invariance.
BibRef
Cyganski, D.[David],
Vaz, R.F.[Richard F.],
A Linear Signal Decomposition Approach to
Affine Invariant Contour Identification,
PR(28), No. 12, December 1995, pp. 1845-1853.
BibRef
9512
Earlier:
Elsevier DOI
SPIE(1607), 1991, pp. 98-109.
BibRef
Vaz, R.F.[Richard F.],
Cyganski, D.[David],
Generation of Affine Invariant Local Contour Feature Data,
PRL(11), 1990, pp. 479-483.
BibRef
9000
Earlier:
3-D Object Orientation from Partial Contour Feature Data,
SPIE(1349), 1990, pp. 452-459.
BibRef
Cyganski, D.,
Orr, J.A.,
Cott, T.A.,
Dodson, R.J.,
Development, Implementation, Testing, and Application of an
Affine Transform Invariant Curvature Function,
ICCV87(496-500).
BibRef
8700
Cheng, Y.,
Analysis of Affine Invariants as Approximate Perspective Invariants,
CVIU(63), No. 2, March 1996, pp. 197-207.
DOI Link
BibRef
9603
Bose, S.K.,
Biswas, K.K.,
Gupta, S.K.,
Model-Based Object Recognition: The Role of Affine Invariants,
AIEng(10), No. 3, August 1996, pp. 227-234.
9606
BibRef
Hanmandlu, M.,
Rangaiah, C.,
Biswas, K.K.,
Quadrics-Based Matching Technique for 3D Object Recognition,
IVC(10), No. 9, November 1992, pp. 578-588.
Elsevier DOI
BibRef
9211
Huang, Z.H.,
Cohen, F.S.,
Affine-Invariant B-Spline Moments For Curve Matching,
IP(5), No. 10, October 1996, pp. 1473-1480.
IEEE DOI
9610
BibRef
Earlier:
Affine-Invariant B-Spline Weighted Moments for
Object Recognition from Image Curves,
CVPR94(490-495).
IEEE DOI
BibRef
And:
Affine-Invariant Moments and B-Splines for Object Recognition
from Image Curves,
SPIE(1964), 1993, pp. 2-12.
BibRef
Angelopoulou, E.[Elli],
Williams, J.P.[James P.],
Wolff, L.B.[Lawrence B.],
Curvature Based Signatures for Object Description and Recognition,
ORCV96(109).
9611
BibRef
Earlier:
ARPA96(973-980).
BibRef
Sato, J.[Jun],
Cipolla, R.[Roberto],
Affine Integral Invariants For Extracting Symmetry Axes,
IVC(15), No. 8, August 1997, pp. 627-635.
Elsevier DOI
9708
BibRef
Earlier:
BMVC96(Shape).
9608
University of Cambridge
BibRef
Sato, J.,
Cipolla, R.,
Quasi-Invariant Parameterisations and Matching of Curves in Images,
IJCV(28), No. 2, June/July 1998, pp. 117-136.
DOI Link
HTML Version.
PS File.
9808
BibRef
Earlier:
Affine Integral Invariants and Matching of Curves,
ICPR96(I: 915-919).
IEEE DOI
9608
(Univ. of Cambridge, UK)
BibRef
Ben-Arie, J.,
Wang, Z.Q.,
Pictorial Recognition of Objects Employing Affine Invariance
in the Frequency-Domain,
PAMI(20), No. 6, June 1998, pp. 604-618.
IEEE DOI
9807
BibRef
Earlier:
Pictorial Recognition Using Affine-Invariant Spectral Signatures,
CVPR97(34-39).
IEEE DOI
9704
Set of kernels. SVD set slant and tilt decomposition.
See also Volumetric/Iconic Frequency-Domain Representation for Objects with Application for Pose Invariant Face Recognition, A. and
See also Detection and segmentation of generic shapes based on affine modeling of energy in Eigenspace.
BibRef
Ben-Arie, J.,
Wang, Z.,
Rao, K.R.[K. Raghunath],
Iconic Recognition with Affine-Invariant Spectral Signatures,
ICPR96(I: 672-676).
IEEE DOI
9608
BibRef
And:
Iconic Representation and Recognition Using Affine-Invariant
Spectral Signatures,
ARPA96(1277-1286).
(Univ. of Illinois, USA)
The AISS 2-D signature match used for the others.
BibRef
Krtolica, R.V.[Radovan V.],
Similarity determination among patterns using
affine-invariant features,
US_Patent5,719,959, 02/17/1998.
HTML Version.
BibRef
9802
van den Boomgaard, R.[Rein],
Affine invariant deformation curves a tool for shape characterization,
IVC(17), No. 5/6, April 1999, pp. 375-380.
Elsevier DOI Combine morphological deformation curves and affine invariant
evolution processes.
BibRef
9904
Hagedoorn, M.[Michiel],
Veltkamp, R.C.[Remco C.],
Reliable and Efficient Pattern Matching Using an Affine Invariant
Metric,
IJCV(31), No. 2/3, April 1999, pp. 203-225.
DOI Link
BibRef
9904
Hagedoorn, M.,
Veltkamp, R.C.,
A Robust Affine Invariant Metric on Boundary Patterns,
PRAI(13), No. 8, December 1999, pp. 1151.
0005
BibRef
Zhang, Y.N.[Ya-Ni],
Wen, C.Y.[Chang-Yun],
Zhang, Y.[Ying],
Soh, Y.C.[Yeng Chai],
Determination of blur and affine combined invariants by normalization,
PR(35), No. 1, January 2002, pp. 211-221.
Elsevier DOI
0111
BibRef
Zhang, Y.N.[Ya-Ni],
Wen, C.Y.[Chang-Yun],
Zhang, Y.[Ying],
Soh, Y.C.[Yeng Chai],
On the choice of consistent canonical form during moment normalization,
PRL(24), No. 16, December 2003, pp. 3205-3215.
Elsevier DOI
0310
BibRef
Zhang, J.G.[Jian-Guo],
Tan, T.N.[Tie-Niu],
Affine invariant classification and retrieval of texture images,
PR(36), No. 3, March 2003, pp. 657-664.
Elsevier DOI
0301
BibRef
Rahtu, E.[Esa],
Salo, M.[Mikko],
Heikkila, J.[Janne],
Affine Invariant Pattern Recognition Using Multiscale Autoconvolution,
PAMI(27), No. 6, June 2005, pp. 908-918.
IEEE Abstract.
0505
BibRef
Earlier:
ICPR04(I: 692-695).
IEEE DOI
0409
See also New Convexity Measure Based on a Probabilistic Interpretation of Images, A.
See also Nonlinear Functionals in the Construction of Multiscale Affine Invariants.
BibRef
Rahtu, E.[Esa],
Salo, M.[Mikko],
Heikkila, J.[Janne],
Compressing Sparse Feature Vectors Using Random Ortho-Projections,
ICPR10(1397-1400).
IEEE DOI
1008
BibRef
And:
A New Affine Invariant Image Transform Based on Ridgelets,
BMVC06(III:1039).
PDF File.
0609
BibRef
And:
Multiscale Autoconvolution Histograms for Affine Invariant Pattern
Recognition,
BMVC06(III:1059).
PDF File.
0609
BibRef
Rahtu, E.[Esa],
Salo, M.[Mikko],
Heikkilä, J.[Janne],
Flusser, J.[Jan],
Generalized affine moment invariants for object recogn,
ICPR06(II: 634-637).
IEEE DOI
0609
BibRef
Rahtu, E.[Esa],
Kannala, J.H.[Ju-Ho],
Salo, M.[Mikko],
Heikkilä, J.[Janne],
Segmenting Salient Objects from Images and Videos,
ECCV10(V: 366-379).
Springer DOI
1009
BibRef
Kannala, J.H.[Ju-Ho],
Rahtu, E.[Esa],
Brandt, S.S.[Sami S.],
Heikkilä, J.[Janne],
Dense and Deformable Motion Segmentation for Wide Baseline Images,
SCIA09(379-389).
Springer DOI
0906
BibRef
Kannala, J.H.,
Rahtu, E.,
Heikkila, J.,
Affine Registration with Multi-Scale Autoconvolution,
ICIP05(III: 1064-1067).
IEEE DOI
0512
BibRef
Kannala, J.H.[Ju-Ho],
Rahtu, E.[Esa],
Heikkilä, J.[Janne],
Salo, M.[Mikko],
A New Method for Affine Registration of Images and Point Sets,
SCIA05(224-234).
Springer DOI
0506
BibRef
Rahtu, E.,
Heikkila, J.,
Object classification with multi-scale autoconvolution,
ICPR04(III: 37-40).
IEEE DOI
0409
BibRef
Heikkila, J.,
Multi-scale autoconvolution for affine invariant pattern recognition,
ICPR02(I: 119-122).
IEEE DOI
0211
BibRef
Rahtu, E.[Esa],
Salo, M.[Mikko],
Heikkilä, J.[Janne],
Nonlinear Functionals in the Construction of Multiscale Affine
Invariants,
SCIA07(482-491).
Springer DOI
0706
BibRef
Earlier:
A New Efficient Method for Producing Global Affine Invariants,
CIAP05(407-414).
Springer DOI
0509
See also Affine Invariant Pattern Recognition Using Multiscale Autoconvolution.
BibRef
Tripathy, S.[Soumya],
Kannala, J.H.[Ju-Ho],
Rahtu, E.[Esa],
Learning Image-to-Image Translation Using Paired and Unpaired Training
Samples,
ACCV18(II:51-66).
Springer DOI
1906
BibRef
Lin, W.S.[Wei-Song],
Fang, C.H.[Chun-Hsiung],
Synthesized affine invariant function for 2D shape recognition,
PR(40), No. 7, July 2007, pp. 1921-1928.
Elsevier DOI
0704
Affine invariant function; Shape recognition; Wavelet transform;
Synthesized feature signal; Weighted wavelet synthesis
BibRef
Lin, W.S.[Wei-Song],
Fang, C.H.[Chun-Hsiung],
Lossless parameterisation of image contour for shape recognition,
IET-CV(3), No. 1, March 2009, pp. 36-46.
DOI Link
0905
BibRef
Yang, R.[Richard],
Gao, Y.S.[Yong-Sheng],
Line-Based Affine Invariant Object Location Using Transformation Space
Decomposition,
ICPR06(II: 646-649).
IEEE DOI
0609
BibRef
Begelfor, E.[Evgeni],
Werman, M.[Michael],
Affine Invariance Revisited,
CVPR06(II: 2087-2094).
IEEE DOI
0606
BibRef
Ravela, S.,
Shaping receptive fields for affine invariance,
CVPR04(II: 725-730).
IEEE DOI
0408
BibRef
Quan, L.[Long],
Ohta, Y.[Yuichi],
Mohr, R.[Roger],
Geometry of Multiple Affine Views,
SMILE98(xx-yy).
BibRef
9800
Rigoutsos, I.[Isidore],
Well-behaved, Tunable 3D Affine Invariants,
CVPR98(455-460).
IEEE DOI
BibRef
9800
Leung, T.[Thomas],
Burl, M.[Michael],
Perona, P.[Pietro],
Probabilistic Affine Invariants for Recognition,
CVPR98(678-684).
IEEE DOI
BibRef
9800
Liu, Z.L.[Zi-Li], and
Kersten, D.[Daniel],
2D Affine Transformations Cannot Account for
Human 3D Object Recognition,
ICCV98(549-554).
IEEE DOI
BibRef
9800
Giblin, P.J., and
Sapiro, G.,
Affine Invariant Medial Axis and Skew Symmetry,
ICCV98(833-838).
IEEE DOI
BibRef
9800
Hong, J.,
Tan, X.,
Recognize the Similarity Between Shapes Under Affine Transformation,
ICCV88(489-493).
IEEE DOI
BibRef
8800
Walcott, P.A.,
Object Recognition Using Colour, Shape and Affine Invariant Ratios,
BMVC96(Poster Session 1).
9608
City University
BibRef
Schiller, R.,
Normalization by Optimization,
ECCV96(I:620-629).
Springer DOI
BibRef
9600
Cohignac, T.,
Lopez, C.,
Morel, J.M.,
Integral and Local Affine Invariant Parameter and Application to
Shape Recognition,
ICPR94(A:164-168).
IEEE DOI
BibRef
9400
Li, S.Z.,
Similarity Invariants for 3D Space Curve Matching,
ACCV93(454-457).
BibRef
9300
Glauser, T.,
Bunke, H.,
Edge Length Ratios: An Affine Invariant Shape
Representation for Recognition with Occlusions,
ICPR92(I:437-440).
IEEE DOI
BibRef
9200
Jin, Q.,
Yan, P.,
A New Method of Extracting Invariants under Affine Transform,
ICPR92(I:742-745).
IEEE DOI
BibRef
9200
Vinther, S.,
Cipolla, R.,
Active 3D Object Recognition Using 3D Affine Invariants,
ECCV94(B:15-24).
Springer DOI
BibRef
9400
Earlier:
Towards 3D Object Model Acquisition and Recognition Using
3D Affine Invariants,
BMVC93(369-378).
PDF File.
HTML Version.
PS File.
BibRef
Ĺström, K.[Kalle],
Multilinear Constraints in Two-dimensional Vision and Isogonal
Conjugacy,
SSAB96(xx).
BibRef
9600
Ĺström, K.[Kalle],
Affine and Projective Normalization of Planar Curves and Regions,
ECCV94(B:438-448).
Springer DOI
BibRef
9400
Oh, W.G.,
Asada, M.,
Tsuji, S.,
Model-Based Matching Using Skewed Symmetry Information,
ICPR88(II: 1043-1045).
IEEE DOI
BibRef
8800
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Invariance Papers -- Mundy .