Zernike, F.,
Diffraction theory of the cut procedure and its improved form,
the phase contrast method,
Physica(1), 1934, pp. 689-704.
German title:
Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode
For a detailed description:
HTML Version.
BibRef
3400
Bhatia, A.B., and
Wolf, E.,
On the circle polynomials of Zernike and related orthogonal sets,
CambridgePhil(50), 1954, pp. 40-48.
BibRef
5400
Medalia, A.I.,
Dynamic Shape Factors of Particles,
Powder TechnologyNo. 4, 1970/71, pp. 117-138.
BibRef
7000
Hsia, T.C.,
A Note on Invariant moments in Image Processing,
SMC(11), 1981, pp. 831-834.
BibRef
8100
Zakaria, M.F.,
Vroomen, L.J.,
Zsombor-Murray, P.J.A., and
van Kessel, J.M.H.M.,
Fast Algorithm for the Computation of Moment Invariants,
PR(20), No. 6, 1987, pp. 639-643.
Elsevier DOI Fast computation using Delta Method. Moments of contiguous images using
a line rather than pixel.
BibRef
8700
Teh, C.H.[Cho-Huak],
Chin, R.T.[Roland T.],
On Image Analysis by the Methods of Moments,
PAMI(10), No. 4, July 1988, pp. 496-513.
IEEE DOI
BibRef
8807
And:
CVPR88(556-561).
IEEE DOI A discussion of various moment techniques for descriptions.
BibRef
Teh, C.H.[Cho-Huak],
Chin, R.T.[Roland T.],
On Digital Approximation of Moment Invariants,
CVGIP(33), No. 3, March 1986, pp. 318-326.
Elsevier DOI
BibRef
8603
Sluzek, A.[Andrzej],
Using Moment Invariants to Recognize and Locate
Partially Occluded 2D Objects,
PRL(7), 1988, pp. 253-257.
BibRef
8800
Sluzek, A.[Andrzej],
Identification of Planar Objects in 3-D Space from
Perspective Projections,
PRL(7), 1988, pp. 59-63.
BibRef
8800
Sluzek, A.[Andrzej],
Identification And Inspection Of 2-D Objects Using
New Moment-Based Shape Descriptors,
PRL(16), No. 7, July 1995, pp. 687-697.
BibRef
9507
Sluzek, A.[Andrzej],
On moment-based local operators for detecting image patterns,
IVC(23), No. 3, 1 March 2005, pp. 287-298.
Elsevier DOI
0501
BibRef
Sluzek, A.[Andrzej],
Detecting local features in complex images:
A combination of Hough transform and moment-based approximations,
ICARCV08(1323-1328).
IEEE DOI
1109
BibRef
Sluzek, A.[Andrzej],
Paradowski, M.[Mariusz],
Detection of Near-Duplicate Patches in Random Images Using
Keypoint-Based Features,
ACIVS12(301-312).
Springer DOI
1209
BibRef
Earlier: A2, A1:
Keypoint-Based Detection of Near-Duplicate Image Fragments Using Image
Geometry and Topology,
ICCVG10(II: 175-182).
Springer DOI
1009
Retrieve the image with the exact copy of the fragment.
BibRef
Islam, M.S.[M. Saiful],
Sluzek, A.[Andrzej],
Relative scale method to locate an object in cluttered environment,
IVC(26), No. 2, 1 February 2008, pp. 259-274.
Elsevier DOI
0711
BibRef
Earlier:
3D Object Localization Using Local Shape Features,
ICARCV06(1-6).
IEEE DOI
0612
Relative scale; Object localization; Multidimensional hashing
BibRef
Sluzek, A.[Andrzej],
Building Local Features from Pattern-Based Approximations of Patches:
Discussion on Moments and Hough Transform,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
0903
BibRef
Earlier:
A New Local-Feature Framework for Scale-Invariant Detection of
Partially Occluded Objects,
PSIVT06(248-257).
Springer DOI
0612
BibRef
Sluzek, A.[Andrzej],
Large Vocabularies for Keypoint-Based Representation and Matching of
Image Patches,
WebScale12(I: 229-238).
Springer DOI
1210
See also Approximation-Based Keypoints in Colour Images: A Tool for Building and Searching Visual Databases.
BibRef
Budrikis, Z.L.[Zigmantas L.],
Hatamian, M.[Mehdi],
Moment generator,
US_Patent4,745,567, May 17, 1988
WWW Link.
BibRef
8805
Chen, K.P.[Ke-Ping],
Efficient Parallel Algorithms for the Computation of Two-Dimensional
Image Moments,
PR(23), No. 1-2, 1990, pp. 109-119.
Elsevier DOI
BibRef
9000
Sanniti di Baja, G.[Gabriella],
O(N) Computation of Projections and Moments from the Labeled Skeleton,
CVGIP(49), No. 3, March 1990, pp. 369-378.
Elsevier DOI
BibRef
9003
Salzman, D.B.[David B.],
A Method of General Moments for Orienting 2D
Projections of Unknown 3D Objects,
CVGIP(50), No. 2, May 1990, pp. 129-156.
Elsevier DOI
BibRef
9005
Pan, Y.[Yi],
A Note on Efficient Parallel Algorithms for the Computation
of Two-Dimensional Image Moments,
PR(24), No. 9, 1991, pp. 917.
Elsevier DOI
BibRef
9100
Pawlak, M.,
On The Reconstruction Aspects of Moment Descriptors,
IT(38), 1992, pp. 1698-1708.
BibRef
9200
Earlier:
On The Reconstruction Aspects of Moment Descriptions,
IEEE_Symposium. Info. TheorySan Diego, January 1990.
BibRef
Khotanzad, A.,
Lu, J.H.,
Classification of Invariant Image Representations Using a
Neural Network,
ASSP(38), No. 6, June 1990, pp. 1028-1038.
BibRef
9006
Object Recognition Using a Neural Network and
Invariant Zernike Features,
CVPR89(200-205).
IEEE DOI
BibRef
Khotanzad, A.,
Hong, Y.H.,
Invariant Image Recognition by Zernike Moments,
PAMI(12), No. 5, May 1990, pp. 489-497.
IEEE DOI
BibRef
9005
Earlier:
Rotation Invariant Pattern Recognition Using Zernike Moments,
ICPR88(I: 326-328).
IEEE DOI
BibRef
Khotanzad, A.[Alireza],
Hong, Y.H.[Yaw Hua],
Rotation Invariant Image Recognition Using Features Selected via a
Systematic Method,
PR(23), No. 10, 1990, pp. 1089-1101.
Elsevier DOI
BibRef
9000
Pawlak, M.[Miroslaw],
Liao, S.X.[Simon X.],
On Digital Approximation of Moment Descriptors,
MGV(3), No. 1/2, 1994, pp. 61-68.
See also On the Accuracy of Zernike Moments for Image Analysis.
BibRef
9400
Xin, Y.,
Pawlak, M.[Miroslaw],
Liao, S.X.[Simon X.],
Accurate Computation of Zernike Moments in Polar Coordinates,
IP(16), No. 2, February 2007, pp. 581-587.
IEEE DOI
0702
BibRef
Dai, M.[Mo],
Baylou, P.[Pierre],
Najim, M.[Mohamed],
An Efficient Algorithm for Computation of Shape Moments from
Run-Length Codes or Chain Codes,
PR(25), No. 10, October 1992, pp. 1119-1128.
Elsevier DOI Moments from the boundary.
BibRef
9210
Jiang, X.Y., and
Bunke, H.,
Simple and Fast Computation of Moments,
PR(24), No. 8, 1991, pp. 801-806.
Elsevier DOI Compute higher order moments from those of lower order.
BibRef
9100
Leu, J.G.[Jia-Guu],
Computing A Shape's Moments from Its Boundary,
PR(24), No. 10, 1991, pp. 949-957.
Elsevier DOI Efficiently computing shape moments from the boundary elements.
BibRef
9100
Li, B.C.[Bing-Cheng],
Shen, J.[Jun],
Pascal Triangle Transform Approach to the Calculation of 3D Moments,
GMIP(54), No. 4, July 1992, pp. 301-307.
BibRef
9207
Mukundan, R.,
Estimation of Quaternion Parameters from Two Dimensional Image Moments,
GMIP(54), No. 4, July 1992, pp. 345-350.
BibRef
9207
Singer, M.H.[Mark H.],
A General Approach to Moment Calculation for Polygons and Line Segments,
PR(26), No. 7, July 1993, pp. 1019-1028.
Elsevier DOI Relation between mement of polygonal area and stick figure of lines
in 2D plane.
BibRef
9307
Philips, W.[Wilfried],
A New Fast Algorithm for Moment Computation,
PR(26), No. 11, November 1993, pp. 1619-1621.
Elsevier DOI Based on discrete analog of Green's theorem.
Compare to:
See also Fast Algorithm for the Computation of Moment Invariants.
BibRef
9311
Fu, C.W.[Chang-Wu],
Yen, J.C.[Jui-Cheng],
Chang, S.[Shyang],
Calculation Of Moment Invariants Via Hadamard Transform,
PR(26), No. 2, February 1993, pp. 287-294.
Elsevier DOI Project 2D shape to X and Y 1D.
BibRef
9302
Li, B.C.[Bing-Cheng],
The Moment Calculation of Polyhedra,
PR(26), No. 8, August 1993, pp. 1229-1233.
Elsevier DOI 3D polyhedra moments.
BibRef
9308
Li, B.C.[Bing-Cheng],
A New Computation of Geometric Moments,
PR(26), No. 1, January 1993, pp. 109-113.
Elsevier DOI
BibRef
9301
Li, B.C.[Bing-Cheng],
Shen, J.[Jun],
Fast Computation of Moment Invariants,
PR(24), No. 8, 1991, pp. 807-813.
Elsevier DOI Iterative method with no multiplication.
BibRef
9100
Li, B.C.[Bing-Cheng],
Shen, J.[Jun],
2-Dimensional Local Moment, Surface Fitting and Their Fast Computation,
PR(27), No. 6, June 1994, pp. 785-790.
Elsevier DOI Surface fitting into a moment computation.
BibRef
9406
Sardana, H.K.,
Daemi, M.F.,
Ibrahim, M.K.,
Global Description of Edge Patterns Using Moments,
PR(27), No. 1, January 1994, pp. 109-118.
Elsevier DOI Patterns are not closed contours.
BibRef
9401
Lin, W.G.,
Wang, S.S.,
A Note on the Calculation of Moments,
PRL(15), No. 11, November 1994, pp. 1065-1070.
BibRef
9411
Mukundan, R.,
Ramakrishnan, K.R.,
Computation of Legendre and Zernike Moments,
PR(28), No. 9, September 1995, pp. 1433-1442.
Elsevier DOI
BibRef
9509
Heywood, M.I.,
Noakes, P.D.,
Fractional Central Moment Method for Movement-Invariant
Object Classification,
VISP(142), No. 4, August 1995, pp. 213-219.
BibRef
9508
Li, B.C.[Bing-Cheng],
High-order moment computation of gray-level images,
IP(4), No. 4, April 1995, pp. 502-505.
IEEE DOI
0402
BibRef
Taubin, G., and
Cooper, D.B.,
Object Recognition Based on Moment (or Algebraic) Invariants,
GICV92(Chapter 19).
BibRef
9200
Taubin, G., and
Cooper, D.B.,
Recognition and Positioning of Piecewise Algebraic Objects,
DARPA90(508-514).
BibRef
9000
Taubin, G.[Gabriel],
Cooper, D.B.[David B.],
Recognition and Positioning of Rigid Objects Using Algebraic
Moment Invariants,
SPIE(1570), 1991, pp. 175-186.
BibRef
9100
Taubin, G.,
Recognition and Positioning of Rigid Objects Using Algebraic and
Moment Invariants,
Ph.D.May 1991,
BibRef
9105
Brown
BibRef
Taubin, G.,
Bolle, R.M., and
Cooper, D.B.,
Representing and Comparing Shapes Using Shape Polynomials,
CVPR89(510-516).
IEEE DOI Shape is a probability measure (how likely a point here is going to
be in the object) and compactness measure. Matches thus can be
made to contours, sets of points, etc.
BibRef
8900
Subrahmonia, J.[Jayashree],
Cooper, D.B.,
Keren, D.[Daniel],
Practical Reliable Bayesian Recognition of 2D and 3D Objects
Using Implicit Polynomials and Algebraic Invariants,
PAMI(18), No. 5, May 1996, pp. 505-519.
IEEE DOI
9606
BibRef
Earlier:
BrownLEMS-107, 1992.
Bayes Nets.
Mahalanobis Distance. High degree polynomial surfaces for descriptions.
BibRef
Subrahmonia, J.,
Keren, D.,
Cooper, D.B.,
Recognizing mice, vegetables and hand printed characters based on
implicit polynomials, invariants and Bayesian methods,
ICCV93(320-324).
IEEE DOI
0403
BibRef
Keren, D.,
Subrahmonia, J.,
Cooper, D.B.,
Robust object recognition based on implicit algebraic curves and
surfaces,
CVPR92(791-794).
IEEE DOI
0403
BibRef
Keren, D.,
Subrahmonia, J.,
Taubin, G.,
Cooper, D.B.,
Bounded and Unbounded Implicit Polynomial Curves and Surfaces,
Mahalanobis Distances, and Geometric Invariants, for
Robust Object Recognition,
DARPA92(769-777).
BibRef
9200
Yang, L.R.[Lu-Ren],
Albregtsen, F.[Fritz],
Fast and Exact Computation of Cartesian Geometric Moments
Using Discrete Greens Theorem,
PR(29), No. 7, July 1996, pp. 1061-1073.
Elsevier DOI
9607
BibRef
Yang, L.R.[Lu-Ren],
Albregtsen, F.[Fritz],
Taxt, T.[Torfinn],
Fast computation of 3-D geometric moments using a discrete Gauss'
theorem,
CAIP95(649-654).
Springer DOI
9509
BibRef
Chung, K.L.[Kuo-Liang],
Computing Horizontal/Vertical Convex Shapes Moments on
Reconfigurable Meshes,
PR(29), No. 10, October 1996, pp. 1713-1717.
Elsevier DOI
Hough Transform.
BibRef
9610
Wong, W.H.,
Siu, W.C., and
Lam, K.M.,
Generation of Moment Invariants and Their Uses
for Character Recognition,
PRL(16), 1995, pp. 115-123.
BibRef
9500
Shen, T.W.[Tak-Wai],
Lun, D.P.K.[Daniel P.K.],
Siu, W.C.,
On the Efficient Computation of 2-D Image Moments Using
the Discrete Radon-Transform,
PR(31), No. 2, February 1998, pp. 115-120.
Elsevier DOI
9802
2-D moments decomposed into 1D moments.
BibRef
Hupkens, T.M., and
de Clippeleir, J.,
Noise and Intensity Invariant Moments,
PRL(16), 1995, pp. 371-376.
BibRef
9500
Mertzios, B.G.,
Tsirikolias, K.,
Statistical Shape Discrimination and Clustering Using an
Efficient Set of Moments,
PRL(14), 1993, pp. 517-522.
BibRef
9300
Strachan, N.J.C.,
Nesvadba, P.,
Allen, A.R.,
A Method for Working out the Moments of a Polygon,
PRL(11), 1990, pp. 351-354.
BibRef
9000
Liu, W.,
Chen, S.S.,
Cavin, R.,
A Bit-Serial VLSI Architecture for Generating Moments in Real Time,
SMC(23), 1993, pp. 539-546.
BibRef
9300
Yang, L.,
Albregtsen, F.,
Taxt, T.,
Fast Computation of 3-Dimensional Geometric Moments Using a
Discrete Divergence Theorem and a Generalization to Higher Dimensions,
GMIP(59), No. 2, March 1997, pp. 97-108.
9704
BibRef
Shen, D.G.[Ding-Gang],
Ip, H.H.S.,
Generalized Affine Invariant Image Normalization,
PAMI(19), No. 5, May 1997, pp. 431-440.
IEEE DOI
9705
Generalized Complex moments.
Makes strong claims regarding normalization.
See also Affine invariant detection of perceptually parallel 3D planar curves.
BibRef
Ip, H.H.S.[Horace H.S.],
Shen, D.G.[Ding-Gang],
Cheung, K.K.T.[Kent K.T.],
Affine Invariant Retrieval of Binary Patterns
Using Generalized Complex Moments,
Visual97(xx).
BibRef
9700
Sand, F.[Francis],
Dougherty, E.R.[Edward R.],
Robustness of granulometric moments,
PR(32), No. 9, September 1999, pp. 1657-1665.
Elsevier DOI
BibRef
9909
Kim, W.Y.,
Kim, Y.S.,
Robust Rotation Angle Estimator,
PAMI(21), No. 8, August 1999, pp. 768-773.
IEEE DOI Rotation angle for rotation symmetric patterns.
BibRef
9908
Klette, R.[Reinhard],
Zunic, J.[Jovisa],
Digital Approximation of Moments of Convex Regions,
GMIP(61), No. 5, September 1999, pp. 274-298.
BibRef
9909
Shu, H.Z.[Hua-Zhong],
Luo, L.M.[Li-Min],
Bao, X.D.[Xu-Dong],
Yu, W.X.[Wen-Xue],
Han, G.[Guoniu],
An Efficient Method for Computation of Legendre Moments,
GM(62), No. 4, July 2000, pp. 237-262.
0006
BibRef
Shu, H.Z.,
Luo, L.M.,
Yu, W.X.,
Zhou, J.D.,
Fast computation of Legendre moments of polyhedra,
PR(34), No. 5, May 2001, pp. 1119-1126.
Elsevier DOI
0102
BibRef
And: A4, A1, A2, A3:
Faster method:
Two new algorithms for efficient computation of Legendre moments,
PR(35), No. 5, May 2002, pp. 1143-1152.
Elsevier DOI
0202
BibRef
Shu, H.Z.,
Luo, L.M.,
Yu, W.X.,
Fu, Y.,
A new fast method for computing Legendre moments,
PR(33), No. 2, February 2000, pp. 341-348.
Elsevier DOI
0001
BibRef
Balslev, I.[Ivar],
Døring, K.[Kasper],
Eriksen, R.D.[René Dencker],
Weighted central moments in pattern recognition,
PRL(21), No. 5, May 2000, pp. 381-384.
0005
BibRef
Demi, M.,
Paterni, M.,
Benassi, A.,
The First Absolute Central Moment in Low-Level Image Processing,
CVIU(80), No. 1, October 2000, pp. 57-87.
DOI Link
0010
BibRef
Demi, M.,
On the gray-level central and absolute central moments and the mass
center of the gray-level variability in low-level image processing,
CVIU(97), No. 2, February 2005, pp. 180-208.
Elsevier DOI
0412
BibRef
Mukundan, R.,
Ramakrishnan, K.R.,
Moment Functions in Image Analysis:
Threoy and Applications,
World Scientific1998, ISBN 978-981-02-3524-6.
HTML Version. Geometric Moments, Complex Moments, Legendre Moments,
Zernike Moments, Moment Tensors
BibRef
9800
Sossa-Azuela, J.H.,
Yáñez-Márquez, C.,
Díaz de León S., J.L.,
Computing geometric moments using morphological erosions,
PR(34), No. 2, February 2001, pp. 271-276.
Elsevier DOI
0011
BibRef
di Gesù, V.,
Palenichka, R.M.,
A fast recursive algorithm to compute local axial moments,
SP(81), No. 1, February 2001, pp. 265-273.
0102
BibRef
Palenichka, R.M.,
Zaremba, M.B.,
Valenti, C.,
A fast recursive algorithm for the computation of axial moments,
CIAP01(95-100).
IEEE DOI
0210
BibRef
Palenichka, R.M.[Roman M.],
Zaremba, M.B.[Marek B.],
A fast algorithm for the computation of axial moments and its
application to the orthogonal fitting of curves,
PR(36), No. 7, July 2003, pp. 1519-1528.
Elsevier DOI
0304
See also Automatic Extraction of Control Points for the Registration of Optical Satellite and LiDAR Images.
BibRef
Wu, C.H.[Chin-Hsiung],
Horng, S.J.[Shi-Jinn],
Lee, P.Z.[Pei-Zong],
A new computation of shape moments via quadtree decomposition,
PR(34), No. 7, July 2001, pp. 1319-1330.
Elsevier DOI
0105
BibRef
Wu, C.H.[Chin-Hsiung],
Horng, S.J.[Shi-Jinn],
Run-Length Chain Coding and Scalable Computation of a Shape's Moments
Using Reconfigurable Optical Buses,
SMC-B(34), No. 2, April 2004, pp. 845-855.
IEEE Abstract.
0404
BibRef
Wu, C.H.[Chin-Hsiung],
Horng, S.J.[Shi-Jinn],
Wen, C.F.[Ching-Feng],
Wang, Y.R.[Yuh-Rau],
Fast and scalable computations of 2D image moments,
IVC(26), No. 6, 1 June 2008, pp. 799-811.
Elsevier DOI
0804
Image moments; Moment invariants; Suffix sums; Scalable algorithm;
Pattern recognition; Reconfigurable optical buses
BibRef
Jacobs, M.[Mathews],
Blu, T.[Thierry],
Unser, M.[Michael],
An Exact Method for Computing the Area Moments of Wavelet
and Spline Curves,
PAMI(23), No. 6, June 2001, pp. 633-642.
IEEE DOI
0106
BibRef
Earlier:
Exact Computation of Area Moments for Spline and Wavelet Curves,
ICPR00(Vol III: 127-130).
IEEE DOI
0009
Computation of moments of the region bounded by a curve represented
by a scaling function or wavelet basis. It is a scaler product --
filter on the coefficients.
BibRef
Sheynin, S.A.[Stanislav A.],
Tuzikov, A.V.[Alexander V.],
Explicit formulae for polyhedra moments,
PRL(22), No. 10, August 2001, pp. 1103-1109.
Elsevier DOI
0108
BibRef
Tuzikov, A.V.,
Sheynin, S.A.,
Vasiliev, P.V.,
Computation of volume and surface body moments,
PR(36), No. 11, November 2003, pp. 2521-2529.
Elsevier DOI
0309
BibRef
Sheynin, S.A.,
Tuzikov, A.V.,
Formulae for Polytope Volume and Surface Moments,
ICIP01(III: 720-723).
IEEE DOI
0108
BibRef
Sheynin, S.A.[Stanislav A.],
Tuzikov, A.V.[Alexander V.],
Moment computation for objects with spline curve boundary,
PAMI(25), No. 10, October 2003, pp. 1317-1322.
IEEE Abstract.
0310
BibRef
Earlier:
Area and Moment Computation for Objects with a Closed Spline Boundary,
CAIP03(33-40).
Springer DOI
0311
Computation from the spline curve.
BibRef
Belkasim, S.O.,
Kamel, M.S.[Mohamed S.],
Fast computation of 2-D image moments using biaxial transform,
PR(34), No. 9, September 2001, pp. 1867-1877.
Elsevier DOI
0108
BibRef
Belkasim, S.O.,
Hassan, E.,
Obeidi, T.,
Explicit invariance of Cartesian Zernike moments,
PRL(28), No. 15, 1 November 2007, pp. 1969-1980.
Elsevier DOI
0711
Image analysis; Invariance; Moment invariants; Pattern recognition;
Feature extraction; Cartesian Zernike moments
BibRef
Sivakumar, K.[Krishnamoorthy],
Balagurunathan, Y.[Yoganand],
Dougherty, E.R.[Edward R.],
Asymptotic joint normality of the granulometric moments,
PRL(22), No. 14, December 2001, pp. 1537-1543.
Elsevier DOI
0110
BibRef
Chung, K.L.[Kuo-Liang],
Yan, W.M.[Wen-Ming],
Liao, Z.H.[Zhi-Hor],
Fast Computation of Moments on Compressed Grey Images using Block
Representation,
RealTimeImg(8), No. 2, April 2002, pp. 137-144.
DOI Link
0208
BibRef
Gu, J.,
Shu, H.Z.,
Toumoulin, C.,
Luo, L.M.,
A novel algorithm for fast computation of Zernike moments,
PR(35), No. 12, December 2002, pp. 2905-2911.
Elsevier DOI
0209
BibRef
Yang, G.Y.,
Shu, H.Z.,
Toumoulin, C.,
Han, G.N.,
Luo, L.M.,
Efficient Legendre moment computation for grey level images,
PR(39), No. 1, January 2006, pp. 74-80.
Elsevier DOI
0512
BibRef
Martinez, J.,
Thomas, F.,
Efficient computation of local geometric moments,
IP(11), No. 9, September 2002, pp. 1102-1111.
IEEE DOI
0210
BibRef
Chong, C.W.[Chee-Way],
Raveendran, P.,
Mukundan, R.,
A comparative analysis of algorithms for fast computation of Zernike
moments,
PR(36), No. 3, March 2003, pp. 731-742.
Elsevier DOI
0301
BibRef
Mukundan, R.[Ramakrishnan],
A Comparative Analysis of Radial-tchebichef Moments and Zernike Moments,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Chong, C.W.[Chee-Way],
Raveendran, P.,
Mukundan, R.,
Translation invariants of Zernike moments,
PR(36), No. 8, August 2003, pp. 1765-1773.
Elsevier DOI
0304
Radial moments in polar form.
BibRef
Suhling, M.,
Arigovindan, M.,
Hunziker, P.,
Unser, M.,
Multiresolution Moment Filters: Theory and Applications,
IP(13), No. 4, April 2004, pp. 484-495.
IEEE DOI
0404
BibRef
Earlier:
Multiresolution moment filters,
ICIP02(I: 393-396).
IEEE DOI
0210
BibRef
Liu, J.[Jin],
Zhang, T.X.[Tian-Xu],
Fast algorithm for generation of moment invariants,
PR(37), No. 8, August 2004, pp. 1745-1756.
Elsevier DOI
0407
decomposing trig function to obtain various moments.
See also Matching and normalization of affine deformed image from regular moments.
BibRef
Heikkilä, J.[Janne],
Pattern matching with affine moment descriptors,
PR(37), No. 9, September 2004, pp. 1825-1834.
Elsevier DOI
0407
moment descriptors in terms of central moments.
BibRef
Suk, T.[Tomás],
Flusser, J.[Jan],
Projective Moment Invariants,
PAMI(26), No. 10, October 2004, pp. 1364-1367.
IEEE Abstract.
0409
We show that projective moment invariants exist in a form of infinite series
containing moments with positive as well as negative indices.
See also Pattern Recognition by Affine Moment Invariants.
BibRef
Suk, T.[Tomás],
Flusser, J.[Jan],
Vertex-Based Features for Recognition of
Projectively Deformed Polygons,
PR(29), No. 3, March 1996, pp. 361-367.
Elsevier DOI
BibRef
9603
Earlier:
The projective invariants for polygons,
CAIP95(729-734).
Springer DOI
9509
Not really segments.
See also Point-based projective invariants.
BibRef
Flusser, J.[Jan],
Suk, T.[Tomás],
Rotation Moment Invariants for Recognition of Symmetric Objects,
IP(15), No. 12, December 2006, pp. 3784-3790.
IEEE DOI
0611
BibRef
Earlier:
Construction of Complete and Independent Systems of Rotation Moment
Invariants,
CAIP03(41-48).
Springer DOI
0311
BibRef
Suk, T.[Tomas],
Flusser, J.[Jan],
Affine moment invariants generated by graph method,
PR(44), No. 9, September 2011, pp. 2047-2056.
Elsevier DOI
1106
BibRef
Earlier:
Graph method for generating affine moment invariants,
ICPR04(II: 192-195).
IEEE DOI
0409
Image moments; Object recognition; Affine transformation; Affine
moment invariants; Pseudoinvariants; Graph representation;
Irreducibility; Independence
BibRef
Mukundan, R.,
Some Computational Aspects of Discrete Orthonormal Moments,
IP(13), No. 8, August 2004, pp. 1055-1059.
IEEE DOI
0409
BibRef
Pan, H.[Hong],
Xia, L.Z.[Liang-Zheng],
Exact and fast algorithm for two-dimensional image wavelet moments via
the projection transform,
PR(38), No. 3, March 2005, pp. 395-402.
Elsevier DOI
0412
projection based for 2D wavelet moments. Compute in multiple 1D spaces.
BibRef
Wang, G.B.[Guo-Bao],
Wang, S.G.[Shi-Gang],
Parallel recursive computation of the inverse Legendre moment
transforms for signal and image reconstruction,
SPLetters(11), No. 12, December 2004, pp. 929-932.
IEEE Abstract.
0412
BibRef
Wang, G.B.[Guo-Bao],
Wang, S.G.[Shi-Gang],
Recursive computation of Tchebichef moment and its inverse transform,
PR(39), No. 1, January 2006, pp. 47-56.
Elsevier DOI
0512
Suitable for VLSI implementation.
BibRef
Kotoulas, L.,
Andreadis, I.,
Efficient hardware architectures for computation of image moments,
RealTimeImg(10), No. 6, December 2004, pp. 371-378.
Elsevier DOI
0501
FPGA implementations.
BibRef
Kotoulas, L.,
Andreadis, I.,
Real-Time Computation of Zernike Moments,
CirSysVideo(15), No. 6, June 2005, pp. 801-809.
IEEE Abstract.
0506
BibRef
Kotoulas, L.,
Andreadis, I.,
Fast Computation of Chebyshev Moments,
CirSysVideo(16), No. 7, July 2006, pp. 884-888.
IEEE DOI
0608
BibRef
Kotoulas, L.,
Andreadis, I.,
Accurate Calculation of Image Moments,
IP(16), No. 8, August 2007, pp. 2028-2037.
IEEE DOI
0709
BibRef
Kotoulas, L.,
Andreadis, I.,
Fast Moment Generating Architectures,
CirSysVideo(18), No. 4, April 2008, pp. 533-537.
IEEE DOI
0804
BibRef
Kotoulas, L.,
Andreadis, I.,
An Efficient Technique for the Computation of ART,
CirSysVideo(18), No. 5, May 2008, pp. 682-686.
IEEE DOI
0711
BibRef
Chung, K.L.[Kuo-Liang],
Chen, P.C.[Ping-Chin],
An efficient algorithm for computing moments on a block representation
of a grey-scale image,
PR(38), No. 12, December 2005, pp. 2578-2586.
Elsevier DOI
0510
Computation in Order of number of blocks.
BibRef
Yap, P.T.[Pew-Thian],
Paramesran, R.,
An Efficient Method for the Computation of Legendre Moments,
PAMI(27), No. 12, December 2005, pp. 1996-2002.
IEEE DOI
0512
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
Efficient computation of radial moment functions using symmetrical
property,
PR(39), No. 11, November 2006, pp. 2036-2046.
Elsevier DOI
0608
Radial moments; Zernike; Pseudo-Zernike; Computational complexity;
Radial polynomials; Symmetrical property; Memory storage reduction;
Inverse transform
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
Mukundan, R.,
Fast computation of geometric moments using a symmetric kernel,
PR(41), No. 7, July 2008, pp. 2369-2380.
Elsevier DOI
0804
Geometric moments with symmetric kernel (SGM); Fast computation;
Symmetrical property; Numerical instability; Invariant properties;
Zernike moments; Efficient representation; Computation
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
On the computational aspects of Zernike moments,
IVC(25), No. 6, 1 June 2007, pp. 967-980.
Elsevier DOI
0704
Zernike moments; Approximation error; Geometrical error; Numerical error;
Square-to-circular mapping; Exact Zernike moments
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
Takeda, F.[Fumiaki],
Sorting of rice grains using Zernike moments,
RealTimeIP(4), No. 4, November 2009, pp. xx-yy.
Springer DOI
0911
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
Derivation of blur-invariant features using orthogonal Legendre moments,
IET-CV(1), No. 2, June 2007, pp. 66-77.
DOI Link
0905
BibRef
Yap, P.T.[Pew-Thian],
Paramesran, R.[Raveendran],
Eigenmoments,
PR(40), No. 4, April 2007, pp. 1234-1244.
Elsevier DOI
0701
Moments; Orthogonalization; Image representation; Invariants;
Noise robust features; Rayleigh quotient; Generalized eigenvalue problem
BibRef
Aubreton, O.,
Voon, L.Y.[Lew Yan],
Lamalle, B.,
Cathebras, G.,
A new method for implementing moment functions in a CMOS retina,
MVA(16), No. 6, 2006, pp. 384-392.
Springer DOI
0603
BibRef
And: A1, A2, A4, A3:
Hardware Computation of Moment Functions in a Silicon Retina using
Binary Patterns,
ICIP06(3293-3296).
IEEE DOI
0610
BibRef
Singh, C.[Chandan],
Improved quality of reconstructed images using floating point
arithmetic for moment calculation,
PR(39), No. 11, November 2006, pp. 2047-2064.
Elsevier DOI
0608
Geometric moments; Zernike moments; Pattern recognition;
Feature extraction; Image reconstruction
BibRef
Hwang, S.K.[Sun-Kyoo],
Kim, W.Y.[Whoi-Yul],
A novel approach to the fast computation of Zernike moments,
PR(39), No. 11, November 2006, pp. 2065-2076.
Elsevier DOI
0608
Zernike moments; Fast method; Symmetry/anti-symmetry; Discrete Zernike moments
BibRef
Papakostas, G.A.,
Boutalis, Y.S.,
Papaodysseus, C.N.,
Fragoulis, D.K.,
Numerical error analysis in Zernike moments computation,
IVC(24), No. 9, September 2006, pp. 960-969.
Elsevier DOI
0608
Zernike moments; Recursive computation; Finite precision error;
Numerical stability; Image vision; Feature extraction
BibRef
Papakostas, G.A.,
Boutalis, Y.S.,
Karras, D.A.,
Mertzios, B.G.,
Fast numerically stable computation of orthogonal Fourier-Mellin
moments,
IET-CV(1), No. 1, March 2007, pp. 11-16.
DOI Link
0905
BibRef
Papakostas, G.A.,
Karakasis, E.G.,
Koulouriotis, D.E.,
Efficient and accurate computation of geometric moments on gray-scale
images,
PR(41), No. 6, June 2008, pp. 1895-1904.
Elsevier DOI
0802
Geometric moments; Image block representation; Feature extraction
BibRef
Papakostas, G.A.,
Karakasis, E.G.,
Koulouriotis, D.E.,
Novel moment invariants for improved classification performance in
computer vision applications,
PR(43), No. 1, January 2010, pp. 58-68.
Elsevier DOI
0909
Moment invariants; Image block representation; Slice moments; Feature
extraction; Pattern recognition
BibRef
Papakostas, G.A.,
Karakasis, E.G.,
Koulouriotis, D.E.,
Accurate and speedy computation of image Legendre moments for computer
vision applications,
IVC(28), No. 3, March 2010, pp. 414-423.
Elsevier DOI
1001
Legendre moments; Image Block Representation; Feature extraction;
Pattern recognition
BibRef
Karakasis, E.G.,
Papakostas, G.A.,
Koulouriotis, D.E.,
Tourassis, V.D.,
Generalized dual Hahn moment invariants,
PR(46), No. 7, July 2013, pp. 1998-2014.
Elsevier DOI
1303
Discrete orthogonal polynomials; Orthogonal moments; Dual Hahn moment
invariants; Geometric moments; Pattern recognition; Classification;
Weighted
BibRef
Chung, K.L.[Kuo-Liang],
Liu, Y.W.[Yau-Wen],
Yan, W.M.[Wen-Ming],
A hybrid gray image representation using spatial- and DCT-based
approach with application to moment computation,
JVCIR(17), No. 6, December 2006, pp. 1209-1226.
Elsevier DOI
0711
DCT; Gray image representation; Linear interpolation;
Moment computation; PSNR; Spatial data structures
BibRef
Fu, B.[Bo],
Zhou, J.Z.[Jian-Zhong],
Li, Y.H.[Yu-Hong],
Zhang, G.J.[Guo-Jun],
Wang, C.[Cheng],
Image analysis by modified Legendre moments,
PR(40), No. 2, February 2007, pp. 691-704.
Elsevier DOI
0611
Modified Legendre moments; Legendre moments;
Feature representation capability; Translation invariance
BibRef
Martinez, J.[Judit],
Porta, J.M.[Josep M.],
Thomas, F.[Federico],
A Matrix-Based Approach to the Image Moment Problem,
JMIV(26), No. 1-2, November 2006, pp. 105-113.
Springer DOI
0701
BibRef
Zhu, H.Q.[Hong-Qing],
Shu, H.Z.[Hua-Zhong],
Xia, T.[Ting],
Luo, L.M.[Li-Min],
Coatrieux, J.L.[Jean Louis],
Translation and scale invariants of Tchebichef moments,
PR(40), No. 9, September 2007, pp. 2530-2542.
Elsevier DOI
0705
Discrete orthogonal moments; Tchebichef polynomials;
Translation and scale invariants; Pattern classification; Image normalization
Comments:
See also comment on 'Translation and scale invariants of Tchebichef moments' by Hong-Qing Zhu [Pattern Recognition 40 (2007) 2530-2542], A.
BibRef
Chen, B.J.[Bei-Jing],
Shu, H.Z.[Hua-Zhong],
Zhang, H.[Hui],
Coatrieux, G.,
Luo, L.M.[Li-Min],
Coatrieux, J.L.,
Combined Invariants to Similarity Transformation and to Blur Using
Orthogonal Zernike Moments,
IP(20), No. 2, February 2011, pp. 345-360.
IEEE DOI
1102
BibRef
Rodtook, A.[Annupan],
Makhanov, S.S.[Stanislav S.],
A filter bank method to construct rotationally invariant moments for
pattern recognition,
PRL(28), No. 12, 1 September 2007, pp. 1492-1500.
Elsevier DOI
0707
BibRef
And: Corrigendum:
PRL(29), No. 1, 1 January 2008, pp. 96.
Elsevier DOI
0711
Rotationally invariant moments; Wavelet filter bank; Feature selection;
The Kullback-Leibler distance; Apriori mining algorithm;
Fuzzy C-mean clustering
BibRef
Hosny, K.M.[Khalid M.],
Efficient Computation Of Legendre Moments For Gray Level Images,
IJIG(7), No. 4, October 2007, pp. 735-747.
0710
BibRef
Hosny, K.M.[Khalid M.],
Exact Legendre moment computation for gray level images,
PR(40), No. 12, December 2007, pp. 3597-3605.
Elsevier DOI
0709
Legendre moments; Fast algorithm; Gray level images
BibRef
Hosny, K.M.[Khalid M.],
Fast and low-complexity method for exact computation of 3D Legendre
moments,
PRL(32), No. 9, 1 July 2011, pp. 1305-1314.
Elsevier DOI
1101
3D Legendre moments; Symmetry property; Exact computation; Fast
algorithm; Translation invariance; Scale invariance
BibRef
Hosny, K.M.[Khalid M.],
Fast computation of accurate Zernike moments,
RealTimeIP(3), No. 1-2, March 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Hosny, K.M.[Khalid M.],
Fast and accurate method for radial moment's computation,
PRL(31), No. 2, 15 January 2010, pp. 143-150.
Elsevier DOI
1001
Radial moments; Geometric moments; Exact computation; Circularly
moments; Symmetry property
See also comment on Fast and accurate method for radial moment's computation, A.
BibRef
Hosny, K.M.[Khalid M.],
Refined translation and scale Legendre moment invariants,
PRL(31), No. 7, 1 May 2010, pp. 533-538.
Elsevier DOI
1004
Translation invariants; Scale invariants; Legendre moments; Fast computation
BibRef
Hosny, K.M.[Khalid M.],
Image representation using accurate orthogonal Gegenbauer moments,
PRL(32), No. 6, 15 April 2011, pp. 795-804.
Elsevier DOI
1103
Gegenbauer moments; Legendre moments; Chebyshev moments; Symmetry
property; Fast algorithm; Gray-level images
BibRef
Cohen, M.F.,
Szeliski, R.S.,
The Moment Camera,
Computer(39), No. 8, August 2006, pp. 40-45.
IEEE DOI
0608
BibRef
Xu, D.[Dong],
Li, H.[Hua],
Geometric moment invariants,
PR(41), No. 1, January 2008, pp. 240-249.
Elsevier DOI
0710
BibRef
Earlier:
3-D Affine Moment Invariants Generated by Geometric Primitives,
ICPR06(II: 544-547).
IEEE DOI
0609
BibRef
And:
3-D Surface Moment Invariants,
ICPR06(IV: 173-176).
IEEE DOI
0609
Geometric primitive; Moment invariant; Similarity transformation;
Symbolic computation
BibRef
Liu, J.[Jin],
Li, D.R.[De-Ren],
Tao, W.B.[Wen-Bing],
Yan, L.[Li],
An automatic method for generating affine moment invariants,
PRL(28), No. 16, December 2007, pp. 2295-2304.
Elsevier DOI
0711
Affine invariant; Pattern recognition; Affine transformation;
Generating invariants
BibRef
Xia, T.[Ting],
Zhu, H.Q.[Hong-Qing],
Shu, H.Z.[Hua-Zhong],
Haigron, P.[Pascal],
Luo, L.M.[Li-Min],
Image description with generalized pseudo-Zernike moments,
JOSA-A(24), No. 1, January 2007, pp. 50-59.
WWW Link.
0801
BibRef
Zhang, H.,
Shu, H.Z.,
Haigron, P.,
Li, B.S.,
Luo, L.M.,
Construction of a complete set of orthogonal Fourier-Mellin moment
invariants for pattern recognition applications,
IVC(28), No. 1, Januray 2010, pp. 38-44.
Elsevier DOI
1001
Orthogonal Fourier-Mellin moments; Completeness; Similarity
invariants; Moment invariants; Pattern recognition
BibRef
Lin, H.,
Si, J.,
Abousleman, G.P.,
Orthogonal Rotation-Invariant Moments for Digital Image Processing,
IP(17), No. 3, March 2008, pp. 272-282.
IEEE DOI
0802
BibRef
Al-Rawi, M.S.[Mohammed Sadiq],
Fast Zernike moments,
RealTimeIP(3), No. 1-2, March 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Al-Rawi, M.S.[Mohammed Sadiq],
Fast computation of pseudo Zernike moments,
RealTimeIP(5), No. 1, March 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Al-Rawi, M.S.[Mohammed S.],
3D (pseudo) Zernike moments: Fast computation via symmetry properties
of spherical harmonics and recursive radial polynomials,
ICIP12(2353-2356).
IEEE DOI
1302
BibRef
Al-Rawi, M.S.[Mohammed Sadeq],
Numerical Stability Quality-Factor for Orthogonal Polynomials:
Zernike Radial Polynomials Case Study,
ICIAR13(676-686).
Springer DOI
1307
BibRef
Hu, H.T.[Hai-Tao],
Ping, Z.L.[Zi-Liang],
Computation of orthogonal Fourier-Mellin moments in two coordinate
systems,
JOSA-A(26), No. 5, May 2009, pp. 1080-1084.
WWW Link.
0905
BibRef
Singh, C.[Chandan],
Walia, E.[Ekta],
Computation of Zernike moments in improved polar configuration,
IET-IPR(3), No. 4, August 2009, pp. 217-227.
DOI Link
0909
BibRef
Singh, C.[Chandan],
Walia, E.[Ekta],
Fast and numerically stable methods for the computation of Zernike
moments,
PR(43), No. 7, July 2010, pp. 2497-2506.
Elsevier DOI
1003
Zernike moments; Fast computation; Numerical stability; Accuracy
See also comment on: Fast and numerically stable methods for the computation of Zernike moments, A.
BibRef
Singh, C.[Chandan],
Walia, E.[Ekta],
Algorithms for fast computation of Zernike moments and their numerical
stability,
IVC(29), No. 4, March 2011, pp. 251-259.
Elsevier DOI
1102
Zernike moments; Geometric moments; Quasi-symmetry; Fast computation;
Numerical stability
BibRef
Chen, Z.,
Sun, S.K.,
A Zernike Moment Phase-Based Descriptor for Local Image Representation
and Matching,
IP(19), No. 1, January 2010, pp. 205-219.
IEEE DOI
1001
BibRef
Walia, E.[Ekta],
Singh, C.[Chandan],
Goyal, A.[Anjali],
On the fast computation of orthogonal Fourier-Mellin moments with
improved numerical stability,
RealTimeIP(7), No. 4, December 2012, pp. 247-256.
WWW Link.
1212
BibRef
Sakaue, K.I.[Ken-Ichi],
Iiguni, Y.[Youji],
Moment Invariants of the Weighted Image,
IEICE(E93-D), No. 3, March 2010, pp. 666-670.
WWW Link.
1003
BibRef
Ennahnahi, N.,
Oumsis, M.,
Bouhouch, A.,
Meknassi, M.,
Fast shape description based on a set of moments defined on the unit
disc and inspired by three-dimensional spherical harmonics,
IET-IPR(4), No. 2, April 2010, pp. 120-131.
DOI Link
1003
BibRef
Earlier: A1, A3, A2, A4:
A novel moments generation inspired by 3D spherical harmonics for
robust 2D shape description,
ICIP09(421-424).
IEEE DOI
0911
BibRef
Flusser, J.[Jan],
Zitova, B.[Barbara],
Suk, T.[Tomas],
Moments and Moment Invariants in Pattern Recognition,
WileyDecember 2009.
ISBN: 978-0-470-69987-4
HTML Version.
0104
Survey, Moments. Buy this book: Moments and Moment Invariants in Pattern Recognition
Numerical computation methods.
BibRef
Suk, T.[Tomas],
Flusser, J.[Jan],
Refined Morphological Methods of Moment Computation,
ICPR10(966-970).
IEEE DOI
1008
BibRef
Zhang, G.J.[Guo-Jun],
Luo, Z.[Zhu],
Fu, B.[Bo],
Li, B.[Bo],
Liao, J.P.[Jia-Ping],
Fan, X.X.[Xiu-Xiang],
Xi, Z.[Zheng],
A symmetry and bi-recursive algorithm of accurately computing
Krawtchouk moments,
PRL(31), No. 7, 1 May 2010, pp. 548-554.
Elsevier DOI
1004
Krawtchouk moments; Propagation error; n-Ascending recurrence
relation; n-Descending recurrence relation; Diagonal symmetry
BibRef
Wang, Y.B.[Yuan-Bin],
Bin, Z.[Zhang],
Yao, T.S.[Tian-Shun],
Projective invariants of co-moments of 2D images,
PR(43), No. 10, October 2010, pp. 3233-3242.
Elsevier DOI
1007
Moment; Invariant; Co-moment; Projective transformation; Reference points
BibRef
Soldea, O.[Octavian],
Unel, M.[Mustafa],
Ercil, A.[Aytul],
Recursive computation of moments of 2D objects represented by elliptic
Fourier descriptors,
PRL(31), No. 11, 1 August 2010, pp. 1428-1436.
Elsevier DOI
1008
Elliptic Fourier descriptors; Moments; Superquadrics; B-spline
functions; Bernstein-Bezier representations
BibRef
Zhu, H.Q.,
Liu, M.,
Shu, H.Z.,
Zhang, H.,
Luo, L.,
General form for obtaining discrete orthogonal moments,
IET-IPR(4), No. 5, October 2010, pp. 335-352.
DOI Link
1011
BibRef
Zhu, H.Q.[Hong-Qing],
Yang, Y.[Yan],
Zhu, X.L.[Xiao-Li],
Gui, Z.G.[Zhi-Guo],
Shu, H.Z.[Hua-Zhong],
General Form for Obtaining Unit Disc-Based Generalized Orthogonal
Moments,
IP(23), No. 12, December 2014, pp. 5455-5469.
IEEE DOI
1412
image recognition
BibRef
Shu, H.Z.,
Zhang, H.,
Chen, B.J.,
Haigron, P.,
Luo, L.M.,
Fast Computation of Tchebichef Moments for Binary and Grayscale Images,
IP(19), No. 12, December 2010, pp. 3171-3180.
IEEE DOI
1011
BibRef
Qin, H.F.[Hua-Feng],
Qin, L.[Lan],
Li, Y.T.[Yan-Tao],
A comment on: 'Fast and numerically stable methods for the computation
of Zernike moments',
PR(44), No. 4, April 2011, pp. 996-997.
Elsevier DOI
1101
Zernike moments; Fast computation; q-Recursive method
See also Fast and numerically stable methods for the computation of Zernike moments.
BibRef
Pozo2, J.M.[José María],
Villa-Uriol, M.C.[Maria-Cruz],
Frangi, A.F.[Alejandro F.],
Efficient 3D Geometric and Zernike Moments Computation from
Unstructured Surface Meshes,
PAMI(33), No. 3, March 2011, pp. 471-484.
IEEE DOI
1102
See also Morphodynamic Analysis of Cerebral Aneurysm Pulsation From Time-Resolved Rotational Angiography. Computing 3D moments from mesh data. Computed from the surface, not
the full volume.
BibRef
Hosny, K.M.[Khalid Mohamed],
Shouman, M.A.[Mohamed A.],
Salam, H.M.A.[Hayam M. Abdel],
Fast computation of orthogonal Fourier-Mellin moments in polar
coordinates,
RealTimeIP(6), No. 2, June 2011, pp. 73-80.
WWW Link.
1101
BibRef
Spiliotis, I.M.[Iraklis M.],
Boutalis, Y.F.S.[Yi-Fannis S.],
Parameterized real-time moment computation on gray images using block
techniques,
RealTimeIP(6), No. 2, June 2011, pp. 81-91.
WWW Link.
1101
BibRef
Chang, K.H.,
Paramesran, R.,
Asli, B.H.S.,
Lim, C.L.,
Efficient Hardware Accelerators for the Computation of Tchebichef
Moments,
CirSysVideo(22), No. 3, March 2012, pp. 414-425.
IEEE DOI
1203
BibRef
Singh, C.[Chandan],
Upneja, R.[Rahul],
Error analysis and accurate calculation of rotational moments,
PRL(33), No. 12, 1 September 2012, pp. 1614-1622.
Elsevier DOI
1208
Rotational moments; Zernike moments; Pseudo Zernike moments; Orthogonal
Fourier-Mellin moments; Rotation invariance; Scale invariance
BibRef
Singh, C.[Chandan],
Upneja, R.[Rahul],
Accurate Computation of Orthogonal Fourier-Mellin Moments,
JMIV(44), No. 3, November 2012, pp. 411-431.
WWW Link.
1209
BibRef
Singh, C.[Chandan],
Upneja, R.[Rahul],
Accuracy and numerical stability of high-order polar harmonic
transforms,
IET-IPR(6), No. 6, 2012, pp. 617-626.
DOI Link
1210
BibRef
Singh, C.[Chandan],
Upneja, R.[Rahul],
Error Analysis in the Computation of Orthogonal Rotation Invariant
Moments,
JMIV(49), No. 1, May 2014, pp. 251-271.
WWW Link.
1404
BibRef
Hickman, M.S.[Mark S.],
Geometric Moments and Their Invariants,
JMIV(44), No. 3, November 2012, pp. 223-235.
WWW Link.
1209
BibRef
Koehl, P.[Patrice],
Fast Recursive Computation of 3D Geometric Moments from Surface Meshes,
PAMI(34), No. 11, November 2012, pp. 2158-2163.
IEEE DOI
1209
Compute 3D moments from unstructured triangulation of the surface.
Analytical integration of the moments on tetrahedra of triangles and central
point.
BibRef
Walia, E.[Ekta],
Singh, C.[Chandan],
Upneja, R.[Rahul],
A comment on
'Fast and accurate method for radial moment's computation',
PRL(33), No. 16, 1 December 2012, pp. 2224-2225.
Elsevier DOI
1210
Radial moments; Geometric moments; Radial geometric moments
See also Fast and accurate method for radial moment's computation.
BibRef
Liu, C.,
Huang, X.H.,
Wang, M.,
Fast computation of Zernike moments in polar coordinates,
IET-IPR(6), No. 7, 2012, pp. 996-1004.
DOI Link
1211
BibRef
Karakasis, E.G.,
Papakostas, G.A.,
Koulouriotis, D.E.,
Tourassis, V.D.,
A Unified Methodology for Computing Accurate Quaternion Color Moments
and Moment Invariants,
IP(23), No. 2, February 2014, pp. 596-611.
IEEE DOI
1402
BibRef
Earlier: A2, A3, A1, Only:
Computing Orthogonal Moments in Biomedical Imaging,
WSSIP09(1-4).
IEEE DOI
0906
image classification
BibRef
Papakostas, G.A.,
Mertzios, B.G.,
Karras, D.A.,
Performance of the Orthogonal Moments in Reconstructing Biomedical
Images,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Chen, B.J.[Bei-Jing],
Shu, H.Z.[Hua-Zhong],
Coatrieux, G.[Gouenou],
Chen, G.[Gang],
Sun, X.M.[Xing-Ming],
Coatrieux, J.L.[Jean Louis],
Color Image Analysis by Quaternion-Type Moments,
JMIV(51), No. 1, January 2015, pp. 124-144.
Springer DOI
1503
BibRef
Chen, B.J.[Bei-Jing],
Shu, H.Z.[Hua-Zhong],
Zhang, H.[Hui],
Chen, G.[Gang],
Luo, L.M.[Li-Min],
Color Image Analysis by Quaternion Zernike Moments,
ICPR10(625-628).
IEEE DOI
1008
applied directly to color images.
BibRef
Chen, W.[Wei],
Cai, Z.C.[Zhan-Chuan],
Orthogonal Polar V Transforms and application to shape retrieval,
JVCIR(34), No. 1, 2016, pp. 146-152.
Elsevier DOI
1601
V-system. Rotation invariant features.
BibRef
Deng, A.W.[An-Wen],
Wei, C.H.[Chia-Hung],
Gwo, C.Y.[Chih-Ying],
Stable, fast computation of high-order Zernike moments using a
recursive method,
PR(56), No. 1, 2016, pp. 16-25.
Elsevier DOI
1604
Zernike moments
BibRef
Guimarães, J.P.F.[João P. F.],
Fontes, A.I.R.[Aluisio I. R.],
Rego, J.B.A.[Joilson B. A.],
de M. Martins, A.[Allan],
Príncipe, J.C.[José C.],
Complex Correntropy: Probabilistic Interpretation and Application to
Complex-Valued Data,
SPLetters(24), No. 1, January 2017, pp. 42-45.
IEEE DOI
1702
entropy
BibRef
Pee, C.Y.[Chih-Yang],
Ong, S.H.,
Raveendran, P.,
Numerically efficient algorithms for anisotropic scale and
translation Tchebichef moment invariants,
PRL(92), No. 1, 2017, pp. 68-74.
Elsevier DOI
1705
Moment invariant
BibRef
Pee, C.Y.[Chih-Yang],
Ong, S.H.,
Raveendran, P.,
Wong, L.K.,
Efficient anisotropic scaling and translation invariants of
Tchebichef moments using image normalization,
PRL(169), 2023, pp. 8-16.
Elsevier DOI
2305
Anisotropic scaling and translation invariant,
Tchebichef moment, Moment invariant, Image normalization,
Pattern classification
BibRef
Elkhalil, K.,
Kammoun, A.,
Al-Naffouri, T.Y.,
Alouini, M.S.,
Numerically Stable Evaluation of Moments of Random Gram Matrices With
Applications,
SPLetters(24), No. 9, September 2017, pp. 1353-1357.
IEEE DOI
1708
Correlation, Covariance matrices, Eigenvalues and eigenfunctions,
Numerical stability, Probability density function,
Signal processing, Wireless communication, Gram matrices,
Laguerre polynomials, one-sided correlation, positive, moments
BibRef
Wang, X.[Xuan],
Shi, G.H.[Guang-Hui],
Guo, F.X.[Fang-Xia],
A comment on 'Translation and scale invariants of Tchebichef moments'
by Hong-Qing Zhu [Pattern Recognition 40 (2007) 2530-2542],
PR(77), 2018, pp. 458-463.
Elsevier DOI
1802
Tchebichef moments, Scaling invariants,
Discrete orthogonal moments, Charlier moments
See also Translation and scale invariants of Tchebichef moments.
BibRef
Yang, B.[Bo],
Flusser, J.[Jan],
Kautsky, J.[Jaroslav],
Rotation of 2D orthogonal polynomials,
PRL(102), 2018, pp. 44-49.
Elsevier DOI
1802
Rotation invariants, Orthogonal polynomials,
Recurrent relation, Hermite-like polynomials, Hermite moments
BibRef
Benrais, L.[Lamine],
Baha, N.[Nadia],
Towards an accurate and fast computation of discrete Tchebychev moments
for binary and grey-level images,
IET-IPR(12), No. 4, April 2018, pp. 605-611.
DOI Link
1804
BibRef
Abdulhussain, S.H.[Sadiq H.],
Ramli, A.R.[Abd Rahman],
Al-Haddad, S.A.R.[Syed Abdul Rahman],
Mahmmod, B.M.[Basheera M.],
Jassim, W.A.[Wissam A.],
Fast Recursive Computation of Krawtchouk Polynomials,
JMIV(60), No. 3, March 2018, pp. 285-303.
Springer DOI
1804
BibRef
Camacho-Bello, C.[César],
Rivera-Lopez, J.S.[José S.],
Some computational aspects of Tchebichef moments for higher orders,
PRL(112), 2018, pp. 332-339.
Elsevier DOI
1809
Discrete orthogonal polynomials, Tchebichef polynomials,
Tchebichef moments, Recurrence algorithm, Numerical propagations errors
BibRef
Bibi, A.,
Alfadly, M.,
Ghanem, B.,
Analytic Expressions for Probabilistic Moments of PL-DNN with
Gaussian Input,
CVPR18(9099-9107)
IEEE DOI
1812
Perturbation methods, Visualization, Training,
Probability density function, Probabilistic logic, Task analysis, Robustness
BibRef
Bera, A.[Aneta],
Klesk, P.[Przemyslaw],
Sychel, D.[Dariusz],
Constant-Time Calculation of Zernike Moments for Detection with
Rotational Invariance,
PAMI(41), No. 3, March 2019, pp. 537-551.
IEEE DOI
1902
Feature extraction, Detectors, Task analysis,
Indexes, Harmonic analysis, Image segmentation,
constant-time feature extraction
BibRef
Nwali, M.[Marcel],
Liao, S.[Simon],
A new fast algorithm to compute continuous moments defined in a
rectangular region,
PR(89), 2019, pp. 151-160.
Elsevier DOI
1902
Real-time moment computing, Legendre moments,
Gegenbauer moments, Jacobi moments
BibRef
Jahid, T.[Tarik],
Karmouni, H.[Hicham],
Sayyouri, M.[Mhamed],
Hmimid, A.[Abdeslam],
Qjidaa, H.[Hassan],
Fast Algorithm of 3D Discrete Image Orthogonal Moments Computation
Based on 3D Cuboid,
JMIV(61), No. 4, May 2019, pp. 534-554.
Springer DOI
1904
BibRef
Benouini, R.[Rachid],
Batioua, I.[Imad],
Zenkouar, K.[Khalid],
Zahi, A.[Azeddine],
El Fadili, H.[Hakim],
Qjidaa, H.[Hassan],
Fast and accurate computation of Racah moment invariants for image
classification,
PR(91), 2019, pp. 100-110.
Elsevier DOI
1904
Racah moment invariants, Racah polynomials, Fast algorithm,
Accurate computation, Direct method, Recursive method,
Pattern recognition
BibRef
Li, E.[Erbo],
Mo, H.L.[Han-Lin],
Xu, D.[Dong],
Li, H.[Hua],
Image Projective Invariants,
PAMI(41), No. 5, May 2019, pp. 1144-1157.
IEEE DOI
1904
Feature extraction, Strain,
Jacobian matrices, Image retrieval, 3G mobile communication,
planar object recognition
BibRef
Abdulhussain, S.H.[Sadiq H.],
Ramli, A.R.[Abd Rahman],
Mahmmod, B.M.[Basheera M.],
Saripan, M.I.[M. Iqbal],
Al-Haddad, S.A.R.,
Jassim, W.A.[Wissam A.],
A New Hybrid form of Krawtchouk and Tchebichef Polynomials:
Design and Application,
JMIV(61), No. 4, May 2019, pp. 555-570.
Springer DOI
1904
BibRef
Benouini, R.[Rachid],
Batioua, I.[Imad],
Zenkouar, K.[Khalid],
Mrabti, F.[Fatiha],
El Fadili, H.[Hakim],
New Set of Generalized Legendre Moment Invariants for Pattern
Recognition,
PRL(123), 2019, pp. 39-46.
Elsevier DOI
1906
Moment invariants, Fractional-order legendre polynomials,
Image classification, Rotation scale translation invariants,
Adaptive feature extraction
BibRef
Hosny, K.M.[Khalid M.],
Salah, A.[Ahmad],
Saleh, H.I.[Hassan I.],
Sayed, M.[Mahmoud],
Fast computation of 2D and 3D Legendre moments using multi-core CPUs
and GPU parallel architectures,
RealTimeIP(16), No. 6, December 2019, pp. 2027-2041.
Springer DOI
1912
BibRef
Lin, Z.J.[Zhi-Jie],
Zhao, Z.[Zhou],
Zhang, Z.[Zhu],
Zhang, Z.J.[Zi-Jian],
Cai, D.[Deng],
Moment Retrieval via Cross-Modal Interaction Networks With Query
Reconstruction,
IP(29), 2020, pp. 3750-3762.
IEEE DOI
2002
Moment retrieval, syntactic GCN, multi-head self-attention,
multi-stage cross-modal interaction, query reconstruction
BibRef
Tang, H.Y.[Hao-Yu],
Zhu, J.[Jihua],
Liu, M.[Meng],
Gao, Z.[Zan],
Cheng, Z.Y.[Zhi-Yong],
Frame-Wise Cross-Modal Matching for Video Moment Retrieval,
MultMed(24), 2022, pp. 1338-1349.
IEEE DOI
2204
Predictive models, Location awareness, Feature extraction,
Task analysis, Proposals, Semantics, Streaming media,
video moment retrieval
BibRef
Zeng, Y.W.[Ya-Wen],
Cao, D.[Da],
Wei, X.C.[Xiao-Chi],
Liu, M.[Meng],
Zhao, Z.[Zhou],
Qin, Z.[Zheng],
Multi-Modal Relational Graph for Cross-Modal Video Moment Retrieval,
CVPR21(2215-2224)
IEEE DOI
2111
Visualization, Semantics, Pattern recognition,
Object recognition, Task analysis
BibRef
Hjouji, A.[Amal],
El-Mekkaouib, J.[Jaouad],
Jourhmane, M.[Mostafa],
Bouikhalene, B.[Belaid],
New Set of Non-separable Orthogonal Invariant Moments for Image
Recognition,
JMIV(62), No. 4, May 2020, pp. 606-624.
Springer DOI
2005
BibRef
Kostková, J.[Jitka],
Suk, T.[Tomáš],
Flusser, J.[Jan],
Affine Invariants of Vector Fields,
PAMI(43), No. 4, April 2021, pp. 1140-1155.
IEEE DOI
2103
BibRef
Earlier:
Affine Moment Invariants of Vector Fields,
ICIP18(1338-1342)
IEEE DOI
1809
Pattern matching, Mathematical model, Strain, Task analysis, Color,
Wind speed, Vector field, total affine transformation,
vector field moments.
Jacobian matrices, Indexes, Strain, Color, Vector field
BibRef
Flusser, J.[Jan],
Suk, T.[Tomáš],
Yang, B.[Bo],
Orthogonal Affine Invariants from Gaussian-Hermite Moments,
CAIP19(II:413-424).
Springer DOI
1909
BibRef
Vargas-Vargas, H.[Horlando],
Camacho-Bello, C.[César],
Rivera-López, J.S.[José S.],
Noriega-Escamilla, A.[Alicia],
Some aspects of fractional-order circular moments for image analysis,
PRL(149), 2021, pp. 99-108.
Elsevier DOI
2108
Radial Moments, Fractional-order moments,
fractional-order Zernike moments, Golden-section search
BibRef
Bujack, R.[Roxana],
Zhang, X.H.[Xin-Hua],
Suk, T.[Tomás],
Rogers, D.[David],
Systematic generation of moment invariant bases for 2D and 3D tensor
fields,
PR(123), 2022, pp. 108313.
Elsevier DOI
2112
Pattern detection, Rotation invariant, Moment invariants,
Generator approach, Basis, Flexible, Vector, Tensor
BibRef
Wang, C.P.[Chun-Peng],
Ma, B.[Bin],
Xia, Z.Q.[Zhi-Qiu],
Li, J.[Jian],
Li, Q.[Qi],
Shi, Y.Q.[Yun-Qing],
Stereoscopic Image Description With Trinion Fractional-Order
Continuous Orthogonal Moments,
CirSysVideo(32), No. 4, April 2022, pp. 1998-2012.
IEEE DOI
2204
Stereo image processing, Image reconstruction, Harmonic analysis,
Transforms, Watermarking, Quaternions, Numerical stability, Trinion,
stereoscopic image zero watermarking
BibRef
Daoui, A.[Achraf],
Karmouni, H.[Hicham],
Yamni, M.[Mohamed],
Sayyouri, M.[Mhamed],
Qjidaa, H.[Hassan],
On computational aspects of high-order dual Hahn moments,
PR(127), 2022, pp. 108596.
Elsevier DOI
2205
High-order dual Hahn polynomials, Orthogonal moments,
Numerical stability, Signal and image reconstruction, High-order moments
BibRef
Bedratyuk, L.[Leonid],
Flusser, J.[Jan],
Suk, T.[Tomáš],
Kostková, J.[Jitka],
Kautsky, J.[Jaroslav],
Non-separable rotation moment invariants,
PR(127), 2022, pp. 108607.
Elsevier DOI
2205
Image recognition, Rotation invariants, Non-separable moments,
Appell polynomials, Bi-orthogonality, Recurrent relation
BibRef
Qi, S.[Shuren],
Zhang, Y.S.[Yu-Shu],
Wang, C.[Chao],
Zhou, J.T.[Jian-Tao],
Cao, X.C.[Xiao-Chun],
A Survey of Orthogonal Moments for Image Representation:
Theory, Implementation, and Evaluation,
Surveys(55), No. 1, January 2023, pp. xx-yy.
DOI Link
2212
Survey, Moments. image representation, fast computation, orthogonal moments,
Pattern recognition, geometric invariance
BibRef
He, B.[Bing],
Liu, J.[Jun],
Lin, G.[Guancheng],
Peng, C.[Cheng],
Xi, W.Q.[Wen-Qiang],
Quaternion fractional-order weighted generalized Laguerre-Fourier
moments and moment invariants for color image analysis,
SP:IC(114), 2023, pp. 116941.
Elsevier DOI
2305
Orthogonal moments, Fractional-order weighted generalized Laguerre polynomials,
Geometric invariance
BibRef
Yang, J.W.[Jian-Wei],
Zeng, Z.Z.[Ze-Zhi],
Kwong, T.[Timothy],
Tang, Y.Y.[Yuan Yan],
Wang, Y.[Yuepeng],
Local Orthogonal Moments for Local Features,
IP(32), 2023, pp. 3266-3280.
IEEE DOI
2306
Feature extraction, Kernel, Image reconstruction, Task analysis,
Sensitivity, Deep learning, Training, orthogonal moment
BibRef
Tahiri, M.A.[Mohamed Amine],
Karmouni, H.[Hicham],
Sayyouri, M.[Mhamed],
Qjidaa, H.[Hassan],
Stable Computation of Hahn Polynomials for Higher Polynomial Order,
ISCV20(1-7)
IEEE DOI
2011
polynomials, stable computation, higher polynomial order,
standard repetition algorithms, high order Hahn moments,
image reconstruction
BibRef
Angulo, R.A.R.[Rafael Augusto Rocha],
Carpio, J.M.[Juan Martín],
Rojas-Domínguez, A.[Alfonso],
Ornelas-Rodríguez, M.[Manuel],
Puga, H.[Héctor],
A Novel Set of Moment Invariants for Pattern Recognition Applications
Based on Jacobi Polynomials,
MCPR20(139-148).
Springer DOI
2007
BibRef
Joseph-Rivlin, M.,
Zvirin, A.,
Kimmel, R.,
Momenet: Flavor the Moments in Learning to Classify Shapes,
GMDL19(4085-4094)
IEEE DOI
2004
computational complexity, feature extraction,
image classification, learning (artificial intelligence),
Deep Learning
BibRef
Amakdouf, H.,
Zouhri, A.,
El Mallahi, M.,
Tahiri, A.,
Qjidaa, H.,
Translation Scaling and rotation invariants of 3D Krawtchouk moments,
ISCV18(1-6)
IEEE DOI
1807
feature extraction, image matching, object recognition,
polynomials, solid modelling, 3D Krawtchouk moments,
Translation scaling and rotation invariants
BibRef
Lomov, N.,
Sidyakin, S.,
Morphological Moments of Binary Images,
PTVSBB17(19-25).
DOI Link
1805
BibRef
Bastos, I.L.O.[Igor L. O.],
Soares, L.R.[Larissa Rocha],
Schwartz, W.R.[William Robson],
Pyramidal Zernike Over Time: A Spatiotemporal Feature Descriptor Based
on Zernike Moments,
CIARP17(77-85).
Springer DOI
1802
BibRef
Karmouni, H.[Hicham],
Jahid, T.[Tarik],
Lakhili, Z.[Zouhir],
Hmimid, A.[Abdeslam],
Sayyouri, M.[Mhamed], f
Qjidaa, H.[Hassan],
Rezzouk, A.[Abdellah],
Image reconstruction by Krawtchouk moments via digital filter,
ISCV17(1-7)
IEEE DOI
1710
binomial distribution, digital filters,
image representation, matrix algebra, polynomials,
Krawtchouk moments, Krawtchouk polynomials, binomial functions,
BibRef
Zhao, Y.J.[Yan-Jun],
Belkasim, S.[Saeid],
Improving stability and invariance of Cartesian Zernike moments,
Southwest12(61-64).
IEEE DOI
1205
BibRef
Doretto, G.[Gianfranco],
Yao, Y.[Yi],
Region moments:
Fast invariant descriptors for detecting small image structures,
CVPR10(3019-3026).
IEEE DOI
1006
BibRef
Langbein, M.[Max],
Hagen, H.[Hans],
A Generalization of Moment Invariants on 2D Vector Fields to Tensor
Fields of Arbitrary Order and Dimension,
ISVC09(II: 1151-1160).
Springer DOI
0911
BibRef
Yang, Q.Y.[Qing-Yue],
Gao, F.[Fei],
Nie, Q.[Qing],
A Modified L-Iterative Algorithm for Fast Computation of Pseudo-Zernike
Moments,
CISP09(1-5).
IEEE DOI
0910
BibRef
Suthaharan, S.[Shan],
Enhanced Accuracy Moment Invariants for Biometric Recognition and
Cryptosystems,
ICIAR09(439-450).
Springer DOI
0907
BibRef
Watanabe, Y.[Yoshihiro],
Komuro, T.[Takashi],
Ishikawa, M.[Masatoshi],
A High-Speed Vision System for Moment-Based Analysis of Numerous
Objects,
ICIP07(V: 177-180).
IEEE DOI
0709
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
Takeda, F.[Fumiaki],
Fast Computation of Zernike Moments For Rice Sorting System,
ICIP07(VI: 165-168).
IEEE DOI
0709
BibRef
Venkataramana, A.,
Raj, P.A.[P. Ananth],
Recursive Computation of Forward Krawtchouk Moment Transform Using
Clenshaw's Recurrence Formula,
NCVPRIPG11(200-203).
IEEE DOI
1205
BibRef
Earlier: A2, A1:
Fast Computation of Inverse Krawtchouk Moment Transform using
Clenshaw's Recurrence Formula,
ICIP07(IV: 37-40).
IEEE DOI
0709
BibRef
Aubreton, O.[Olivier],
Chong, L.F.[Lew Fock],
Voon, L.Y.[Lew Yan],
Nongaillard, M.[Matthieu],
Cathebras, G.[Guy],
Lemaitre, C.[Cédric],
Lamalle, B.[Bernard],
Hardware Implementation of Moment Functions in a CMOS Retina:
Application to Pattern Recognition,
IbPRIA07(I: 306-313).
Springer DOI
0706
BibRef
Ong, L.Y.[Lee-Yeng],
Chong, C.W.[Chee-Way],
Besar, R.[Rosli],
Scale Invariants of Three-Dimensional Legendre Moments,
ICPR06(III: 141-144).
IEEE DOI
0609
BibRef
Amayeh, G.[Gholamreza],
Bebis, G.N.[George N.],
Erol, A.[Ali],
Nicolescu, M.[Mircea],
Peg-Free Hand Shape Verification Using High Order Zernike Moments,
Biometrics06(40).
IEEE DOI
0609
BibRef
Amayeh, G.[Gholamreza],
Erol, A.[Ali],
Bebis, G.N.[George N.],
Nicolescu, M.[Mircea],
Accurate and Efficient Computation of High Order Zernike Moments,
ISVC05(462-469).
Springer DOI
0512
BibRef
Bresson, X.,
Vandergheynst, P.,
Thiran, J.P.,
Geometric moments in scale-spaces,
ICPR02(II: 418-421).
IEEE DOI
0211
BibRef
Tuzikov, A.V.[Alexander V.],
Sheynin, S.A.[Stanislav A.],
Vasiliev, P.V.[Pavel V.],
Efficient Computation of Body Moments,
CAIP01(201 ff.).
Springer DOI
0210
BibRef
Prismall, S.P.,
Nixon, M.S.,
Carter, J.N.,
On Moving Object Reconstruction by Moments,
BMVC02(Reconstruction).
0208
BibRef
Canterakis, N.,
3D Zernike Moments and Zernike Affine Invariants for 3D Image Analysis
and Recognition,
SCIA99(Pattern Recognition I).
BibRef
9900
Martinez, J.,
Thomas, F.,
Staffetti, E.,
A Recursive Updating Rule for Efficient Computation of
Linear Moments in Sliding-Window Applications,
ICPR96(II: 295-299).
IEEE DOI
9608
(Universidad Politecnica de Cataluna, E)
BibRef
Shen, J.,
Shen, D.,
Orthogonal Legendre Moments and Their Calculation,
ICPR96(II: 241-245).
IEEE DOI
9608
(Institute of Geodynamics, F)
BibRef
Zhou, F.,
Kornerup, P.,
Computing moments by prefix sums,
ICIP96(III: 619-622).
IEEE DOI
9610
BibRef
Yang, L.,
Albregtsen, F.,
Fast Computation of Invariant Geometric Moments:
A New Method Giving Correct Results,
ICPR94(A:201-204).
IEEE DOI
BibRef
9400
Li, B.C.[Bing-Cheng],
Ma, S.D.[Song De],
Efficient computation of 3D moments,
ICPR94(A:22-26).
IEEE DOI
9410
BibRef
Li, B.C.[Bing-Cheng],
Shen, J.[Jun],
Fast calculation of local moments and application to range image
segmentation,
ICPR92(III:298-301).
IEEE DOI
9208
BibRef
Zhu, Q.,
Poh, L.,
A Transformation-Invariant Recursive Subdivision Method for
Shape Analysis,
ICPR88(II: 833-835).
IEEE DOI
BibRef
8800
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Features for Contour Matching .