Freeborough, P.A.,
Fox, N.C.,
MR Image Texture Analysis Applied to the Diagnosis and
Tracking of Alzheimers-Disease,
MedImg(17), No. 3, June 1998, pp. 475-479.
IEEE Top Reference.
9809
BibRef
Freeborough, P.A.[Peter A.],
A Comparison of Fractal Texture Descriptors,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Bhattacharya, M.,
Majumder, D.D.,
Registration of CT and MR images of Alzheimer's patient:
A Shape Theoretic Approach,
PRL(21), No. 6-7, June 2000, pp. 531-548.
0006
BibRef
Wang, L.[Lei],
Beg, F.[Faisal],
Ratnanather, J.T.[J. Tilak],
Ceritoglu, C.[Can],
Younes, L.[Laurent],
Morris, J.C.[John C.],
Csernansky, J.G.[John G.],
Miller, M.I.[Michael I.],
Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape
Discrimination in Dementia of the Alzheimer type,
MedImg(26), No. 4, April 2007, pp. 462-470.
IEEE DOI
0704
See also Diffeomorphic Active Contours.
BibRef
Tward, D.[Daniel],
Miller, M.,
Trouvé, A.[Alain],
Younes, L.[Laurent],
Parametric Surface Diffeomorphometry for Low Dimensional Embeddings
of Dense Segmentations and Imagery,
PAMI(39), No. 6, June 2017, pp. 1195-1208.
IEEE DOI
1705
Biological system modeling, Diseases, Hippocampus,
Image segmentation, Magnetic resonance imaging, Measurement, Shape,
Computational anatomy, diffeomorphometry, medical imaging,
neuroimaging, shape, analysis
BibRef
Tward, D.[Daniel],
Jovicich, J.[Jorge],
Soricelli, A.[Andrea],
Frisoni, G.[Giovanni],
Trouvé, A.[Alain],
Younes, L.[Laurent],
Miller, M.[Michael],
Improved Reproducibility of Neuroanatomical Definitions through
Diffeomorphometry and Complexity Reduction,
MLMI14(223-230).
Springer DOI
1410
BibRef
Tu, Z.W.[Zhuo-Wen],
Zheng, S.F.[Song-Feng],
Yuille, A.L.[Alan L.],
Reiss, A.L.[Allan L.],
Dutton, R.A.[Rebecca A.],
Lee, A.D.[Agatha D.],
Galaburda, A.M.[Albert M.],
Dinov, I.D.[Ivo D.],
Thompson, P.M.[Paul M.],
Toga, A.W.[Arthur W.],
Automated Extraction of the Cortical Sulci Based on a Supervised
Learning Approach,
MedImg(26), No. 4, April 2007, pp. 541-552.
IEEE DOI
0704
BibRef
Shi, Y.G.,
Tu, Z.,
Reiss, A.L.,
Dutton, R.A.,
Lee, A.D.,
Galaburda, A.M.,
Dinov, I.D.,
Thompson, P.M.,
Toga, A.W.,
Joint Sulcal Detection on Cortical Surfaces With Graphical Models and
Boosted Priors,
MedImg(28), No. 3, March 2009, pp. 361-373.
IEEE DOI
0903
BibRef
Liu, X.Y.[Xin-Yang],
Liu, X.W.[Xiu-Wen],
Shi, Y.G.[Yong-Gang],
Thompson, P.M.[Paul M.],
Mio, W.[Washington],
A Model of Volumetric Shape for the Analysis of Longitudinal
Alzheimer's Disease Data,
ECCV10(III: 594-606).
Springer DOI
1009
BibRef
Alvarez Illan, I.,
Gorriz, J.M.,
Ramirez, J.,
Salas-Gonzalez, D.,
Lopez, M.,
Segovia, F.,
Padilla, P.,
Puntonet, C.G.,
Projecting independent components of SPECT images for computer aided
diagnosis of Alzheimer's disease,
PRL(31), No. 11, 1 August 2010, pp. 1342-1347.
Elsevier DOI
1008
Alzheimer's disease; Independent Component Analysis; Computer aided
diagnosis; Support vector machine; Supervised learning
BibRef
Padilla, P.,
Lopez, M.,
Gorriz, J.M.,
Ramirez, J.,
Salas-Gonzalez, D.,
Alvarez, I.,
NMF-SVM Based CAD Tool Applied to Functional Brain Images for the
Diagnosis of Alzheimer's Disease,
MedImg(31), No. 2, February 2012, pp. 207-216.
IEEE DOI
1202
BibRef
Salas-Gonzalez, D.,
Gorriz, J.M.,
Ramirez, J.,
Alvarez, I.,
Lopez, M.,
Segovia, F.,
Gomez-Rio, M.,
Skewness as feature for the diagnosis of Alzheimer's disease using
SPECT images,
ICIP09(837-840).
IEEE DOI
0911
BibRef
Ye, J.P.[Jie-Ping],
Wu, T.[Teresa],
Li, J.[Jing],
Chen, K.W.[Ke-Wei],
Machine Learning Approaches for the Neuroimaging Study of Alzheimer's
Disease,
Computer(44), No. 4, April 2011, pp. 99-101.
IEEE DOI
1104
BibRef
Filipovych, R.[Roman],
Wang, Y.[Ying],
Davatzikos, C.[Christos],
Pattern analysis in neuroimaging: Beyond two-class categorization,
IJIST(21), No. 2, June 2011, pp. 173-178.
DOI Link
1101
clustering; MRI; aging; MCI; Alzheimer's disease
BibRef
Pachauri, D.,
Hinrichs, C.,
Chung, M.K.,
Johnson, S.C.,
Singh, V.,
Topology-Based Kernels With Application to Inference Problems in
Alzheimer's Disease,
MedImg(30), No. 10, October 2011, pp. 1760-1770.
IEEE DOI
1110
BibRef
Chaves, R.,
Ramírez, J.,
Górriz, J.M.,
Illán, I.A.,
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Functional brain image classification using association rules defined
over discriminant regions,
PRL(33), No. 12, 1 September 2012, pp. 1666-1672.
Elsevier DOI
1208
Functional brain imaging; Alzheimer's Disease; Fisher
Discriminant
Ratio; Association rules
BibRef
Mesrob, L.,
Magnin, B.,
Colliot, O.,
Sarazin, M.,
Hahn-Barma, V.,
Dubois, B.,
Gallinari, P.,
Lehericy, S.,
Kinkingnehun, S.,
Benali, H.,
Identification of atrophy patterns in Alzheimer's disease based on SVM
feature selection and anatomical parcellation,
BMVA(2009), No. 7, 2009, pp. 1-9.
PDF File.
1209
BibRef
Janousova, E.[Eva],
Vounou, M.[Maria],
Wolz, R.[Robin],
Gray, K.R.[Katherine R.],
Rueckert, D.[Daniel],
Montana, G.[Giovanni],
Biomarker discovery for sparse classification of brain images in
Alzheimer's disease,
BMVA(2012), No. 2, 2012, pp. 1-11.
PDF File.
1209
BibRef
Cuingnet, R.[Rémi],
Glaunès, J.A.[Joan Alexis],
Chupin, M.[Marie],
Benali, H.[Habib],
Colliot, O.[Olivier],
Spatial and Anatomical Regularization of SVM: A General Framework for
Neuroimaging Data,
PAMI(35), No. 3, March 2013, pp. 682-696.
IEEE DOI
1303
BibRef
Earlier:
Anatomical Regularization on Statistical Manifolds for the
Classification of Patients with Alzheimer's Disease,
MLMI11(201-208).
Springer DOI
1109
BibRef
Zhao, M.B.[Ming-Bo],
Chan, R.H.M.,
Chow, T.W.S.,
Tang, P.,
Compact Graph based Semi-Supervised Learning for Medical Diagnosis in
Alzheimer's Disease,
SPLetters(21), No. 10, October 2014, pp. 1192-1196.
IEEE DOI
1407
Classification algorithms
BibRef
Huang, S.[Shuai],
Li, J.[Jing],
Ye, J.P.[Jie-Ping],
Fleisher, A.[Adam],
Chen, K.W.[Ke-Wei],
Wu, T.[Teresa],
Reiman, E.[Eric],
A Sparse Structure Learning Algorithm for Gaussian Bayesian Network
Identification from High-Dimensional Data,
PAMI(35), No. 6, June 2013, pp. 1328-1342.
IEEE DOI
1305
the Alzheimer's Disease Neuroimaging Initiative.
Apply to brain connectivity modeling.
BibRef
Komlagan, M.[Mawulawoé],
Ta, V.T.[Vinh-Thong],
Pan, X.Y.[Xing-Yu],
Domenger, J.P.[Jean-Philippe],
Coupé, D.L.C.P.[D. Louis Collins Pierrick],
Anatomically Constrained Weak Classifier Fusion for Early Detection of
Alzheimer's Disease,
MLMI14(141-148).
Springer DOI
1410
the Alzheimer's Disease Neuroimaging Initiative
BibRef
Kodewitz, A.[Andreas],
Lelandais, S.[Sylvie],
Montagne, C.[Christophe],
Vigneron, V.[Vincent],
Alzheimer's disease early detection from sparse data using brain
importance maps,
ELCVIA(12), No. 1, 2013, pp. xx-yy.
DOI Link
1307
BibRef
Xie, J.[Jing],
Fletcher, E.[Evan],
Singh, B.[Baljeet],
Carmichael, O.[Owen],
Robust measurement of individual localized changes to the aging
hippocampus,
CVIU(117), No. 9, 2013, pp. 1128-1137.
Elsevier DOI
1307
Hippocampal shape change
BibRef
Morabito, F.C.[Francesco Carlo],
The compressibility of an electroencephalography signal
may indicate Alzheimer's disease,
SPIE(Newsroom), June 3, 2013
DOI Link
1307
By analyzing the content of electrical activity at the surface of the
brain, researchers can distinguish between patients who are healthy
and those with different types of cognitive impairment.
BibRef
Ortiz, A.[Andrés],
Górriz, J.M.[Juan M.],
Ramírez, J.[Javier],
Martínez-Murcia, F.J.,
LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of
the Alzheimer's disease,
PRL(34), No. 14, 2013, pp. 1725-1733.
Elsevier DOI
1308
Alzheimer's disease
BibRef
Zeng, W.[Wei],
Shi, R.[Rui],
Wang, Y.L.[Ya-Lin],
Yau, S.T.[Shing-Tung],
Gu, X.F.[Xian-Feng],
Teichmüller Shape Descriptor and Its Application
to Alzheimer's Disease
Study,
IJCV(105), No. 2, November 2013, pp. 155-170.
Springer DOI
1309
BibRef
Dai, D.[Dai],
He, H.G.[Hui-Guang],
Vogelstein, J.T.[Joshua T.],
Hou, Z.G.[Zeng-Guang],
Accurate prediction of AD patients using cortical thickness networks,
MVA(24), No. 7, October 2013, pp. 1445-1457.
Springer DOI
1309
BibRef
Earlier:
Network-Based Classification Using Cortical Thickness of AD Patients,
MLMI11(193-200).
Springer DOI
1109
Alzheimers
BibRef
Osadebey, M.[Michael],
Bouguila, N.[Nizar],
Arnold, D.[Douglas], And:
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
The clique potential of Markov random field in a random experiment
for estimation of noise levels in 2D brain MRI,
IJIST(23), No. 4, 2013, pp. 304-313.
DOI Link
1312
magnetic resonance imaging
BibRef
Osadebey, M.[Michael],
Bouguila, N.[Nizar],
Arnold, D.[Douglas], And:
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Four-neighborhood clique kernel: A general framework for Bayesian and
variational techniques of noise reduction in magnetic resonance
images of the brain,
IJIST(24), No. 3, 2014, pp. 224-238.
DOI Link
1408
magnetic resonance imaging
BibRef
Zhao, X.J.[Xiao-Jie],
Wen, X.T.[Xiao-Tong],
Shen, J.H.[Jia-Hui],
Hong, H.[Hao],
Yao, L.[Li],
An improved fast marching method and its application in Alzheimer's
disease,
IJIST(23), No. 4, 2013, pp. 346-352.
DOI Link
1312
fast marching method
BibRef
Rueda, A.,
Gonzalez, F.A.,
Romero, E.,
Extracting Salient Brain Patterns for Imaging-Based Classification of
Neurodegenerative Diseases,
MedImg(33), No. 6, June 2014, pp. 1262-1274.
IEEE DOI
1407
Brain modeling
BibRef
Wan, J.,
Zhang, Z.,
Rao, B.D.,
Fang, S.,
Yan, J.,
Saykin, A.J.,
Shen, L.,
Identifying the Neuroanatomical Basis of Cognitive Impairment in
Alzheimer's Disease by Correlation- and Nonlinearity-Aware Sparse
Bayesian Learning,
MedImg(33), No. 7, July 2014, pp. 1475-1487.
IEEE DOI
1407
Alzheimer's disease
BibRef
Yang, W.J.[Wen-Ji],
Huang, W.[Wei],
Chen, S.X.[Shan-Xue],
Partial Volume Correction on ASL-MRI and Its Application on Alzheimer's
Disease Diagnosis,
IEICE(E97-D), No. 11, November 2014, pp. 2912-2918.
WWW Link.
1412
BibRef
Poynton, C.B.,
Jenkinson, M.,
Adalsteinsson, E.,
Sullivan, E.V.,
Pfefferbaum, A.,
Wells, W.M.,
Quantitative Susceptibility Mapping by Inversion of a Perturbation
Field Model: Correlation With Brain Iron in Normal Aging,
MedImg(34), No. 1, January 2015, pp. 339-353.
IEEE DOI
1502
Fourier analysis
BibRef
Liu, X.W.[Xin-Wang],
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Zhang, J.[Jian],
Yin, J.P.[Jian-Ping],
Shen, D.G.[Ding-Gang],
An efficient radius-incorporated MKL algorithm for Alzheimer's
disease prediction,
PR(48), No. 7, 2015, pp. 2141-2150.
Elsevier DOI
1504
Multiple kernel learning
BibRef
Aggarwal, N.[Namita],
Rana, B.[Bharti],
Agrawal, R.K.,
3d discrete wavelet transform for computer aided diagnosis of
Alzheimer's disease using t1-weighted brain MRI,
IJIST(25), No. 2, 2015, pp. 179-190.
DOI Link
1506
BibRef
Earlier:
Computer Aided Diagnosis of Alzheimer's Disease from MRI Brain Images,
ICIAR12(II: 259-267).
Springer DOI
1206
Alzheimer's disease
BibRef
Li, Y.,
Pan, J.,
Long, J.,
Yu, T.,
Wang, F.,
Yu, Z.,
Wu, W.,
Multimodal BCIs: Target Detection, Multidimensional Control, and
Awareness Evaluation in Patients With Disorder of Consciousness,
PIEEE(104), No. 2, February 2016, pp. 332-352.
IEEE DOI
1601
Biomedical signal processing
BibRef
Seo, D.H.[Do-Hyung],
Ho, J.[Jeffrey],
Vemuri, B.C.[Baba C.],
Covariant Image Representation with Applications to Classification
Problems in Medical Imaging,
IJCV(116), No. 2, January 2016, pp. 190-209.
Springer DOI
1602
Apply to MR for Alzheimers and MR detection of seizures.
BibRef
Liu, M.H.[Man-Hua],
Zhang, D.Q.[Dao-Qiang],
Shen, D.G.[Ding-Gang],
Relationship Induced Multi-Template Learning for Diagnosis of
Alzheimer's Disease and Mild Cognitive Impairment,
MedImg(35), No. 6, June 2016, pp. 1463-1474.
IEEE DOI
1606
BibRef
Earlier:
Inherent Structure-Guided Multi-view Learning for Alzheimer's Disease
and Mild Cognitive Impairment Classification,
MLMI15(296-303).
Springer DOI
1511
Alzheimer's disease
BibRef
Zhu, W.Y.[Wen-Yong],
Sun, L.[Liang],
Huang, J.S.[Jia-Shuang],
Han, L.X.[Liang-Xiu],
Zhang, D.Q.[Dao-Qiang],
Dual Attention Multi-Instance Deep Learning for Alzheimer's Disease
Diagnosis With Structural MRI,
MedImg(40), No. 9, September 2021, pp. 2354-2366.
IEEE DOI
2109
Feature extraction, Diseases, Pathology, Deep learning,
Medical diagnosis, Magnetic resonance imaging, Grey matter, sMRI
BibRef
Li, Z.,
Suk, H.I.,
Shen, D.G.,
Li, L.,
Sparse Multi-Response Tensor Regression for Alzheimer's Disease Study
With Multivariate Clinical Assessments,
MedImg(35), No. 8, August 2016, pp. 1927-1936.
IEEE DOI
1608
Alzheimer's disease
BibRef
Cheng, B.[Bo],
Liu, M.X.[Ming-Xia],
Zhang, D.Q.[Dao-Qiang],
Multimodal Multi-label Transfer Learning for Early Diagnosis of
Alzheimer's Disease,
MLMI15(238-245).
Springer DOI
1511
BibRef
Liu, M.X.[Ming-Xia],
Zhang, D.Q.[Dao-Qiang],
Adeli-Mosabbeb, E.[Ehsan],
Shen, D.G.[Ding-Gang],
Relationship Induced Multi-atlas Learning for Alzheimer's Disease
Diagnosis,
MCV15(24-33).
Springer DOI
1608
BibRef
Liu, M.H.[Man-Hua],
Zhang, D.Q.[Dao-Qiang],
Yap, P.T.[Pew-Thian],
Shen, D.G.[Ding-Gang],
Hierarchical Ensemble of Multi-level Classifiers for Diagnosis of
Alzheimer's Disease,
MLMI12(27-35).
Springer DOI
1211
BibRef
Suk, H.I.[Heung-Il],
Shen, D.G.[Ding-Gang],
Deep Ensemble Sparse Regression Network for Alzheimer's Disease
Diagnosis,
MLMI16(113-121).
Springer DOI
1611
BibRef
Zhu, X.F.[Xiao-Feng],
Suk, H.I.[Heung-Il],
Zhu, Y.H.[Yong-Hua],
Thung, K.H.[Kim-Han],
Wu, G.R.[Guo-Rong],
Shen, D.G.[Ding-Gang],
Multi-view Classification for Identification of Alzheimer's Disease,
MLMI15(255-262).
Springer DOI
1511
BibRef
Earlier: A1, A2, A6, Only:
Sparse Discriminative Feature Selection for Multi-class Alzheimer's
Disease Classification,
MLMI14(157-164).
Springer DOI
1410
BibRef
Zhu, X.F.[Xiao-Feng],
Suk, H.I.[Heung-Il],
Thung, K.H.[Kim-Han],
Zhu, Y.Y.[Ying-Ying],
Wu, G.R.[Guo-Rong],
Shen, D.G.[Ding-Gang],
Joint Discriminative and Representative Feature Selection for
Alzheimer's Disease Diagnosis,
MLMI16(77-85).
Springer DOI
1611
BibRef
Zhu, X.F.[Xiao-Feng],
Thung, K.H.[Kim-Han],
Zhang, J.[Jun],
Shen, D.G.[Ding-Gang],
Fast Neuroimaging-Based Retrieval for Alzheimer's Disease Analysis,
MLMI16(313-321).
Springer DOI
1611
BibRef
Zhang, D.Q.[Dao-Qiang],
Shen, D.G.[Ding-Gang],
MultiCost: Multi-stage Cost-sensitive Classification of Alzheimer's
Disease,
MLMI11(344-351).
Springer DOI
1109
BibRef
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Liu, L.Q.[Ling-Qiao],
Ogunbona, P.O.[Philip O.],
Shen, D.G.[Ding-Gang],
Learning Discriminative Bayesian Networks from High-Dimensional
Continuous Neuroimaging Data,
PAMI(38), No. 11, November 2016, pp. 2269-2283.
IEEE DOI
1610
BibRef
Earlier:
Discriminative Brain Effective Connectivity Analysis for Alzheimer's
Disease: A Kernel Learning Approach upon Sparse Gaussian Bayesian
Network,
CVPR13(2243-2250)
IEEE DOI
1309
Bayes methods.
Alzheimer's Disease
BibRef
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Ogunbona, P.O.[Philip O.],
Discriminative Sparse Inverse Covariance Matrix: Application in Brain
Functional Network Classification,
CVPR14(3097-3104)
IEEE DOI
1409
Graphical LASSO
BibRef
Tong, T.[Tong],
Gray, K.[Katherine],
Gao, Q.[Qinquan],
Chen, L.[Liang],
Rueckert, D.[Daniel],
Multi-modal classification of Alzheimer's disease using nonlinear
graph fusion,
PR(63), No. 1, 2017, pp. 171-181.
Elsevier DOI
1612
BibRef
Earlier:
Nonlinear Graph Fusion for Multi-modal Classification of Alzheimer's
Disease,
MLMI15(77-84).
Springer DOI
1511
Multiple modalities
BibRef
Shi, B.[Bibo],
Chen, Y.[Yani],
Zhang, P.[Pin],
Smith, C.D.[Charles D.],
Liu, J.D.[Jun-Dong],
Nonlinear Feature Transformation and Deep Fusion for Alzheimer's
Disease Staging Analysis,
PR(63), No. 1, 2017, pp. 487-498.
Elsevier DOI
1612
BibRef
And:
Erratum:
PR(66), No. 1, 2017, pp. 447-.
Elsevier DOI
1704
BibRef
Earlier: A2, A1, A4, A5, Only:
MLMI15(304-312).
Springer DOI
1511
Metric learning
BibRef
Shi, B.[Bibo],
Chen, Y.[Yani],
Hobbs, K.[Kevin],
Smith, C.D.[Charles D.],
Liu, J.D.[Jun-Dong],
Nonlinear Metric Learning for Alzheimer’s Disease Diagnosis with
Integration of Longitudinal Neuroimaging Features,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Guerrero, R.,
Ledig, C.,
Schmidt-Richberg, A.,
Rueckert, D.,
Group-constrained manifold learning: Application to AD risk
assessment,
PR(63), No. 1, 2017, pp. 570-582.
Elsevier DOI
1612
Alzheimer's disease
BibRef
Zhang, J.,
Gao, Y.,
Gao, Y.,
Munsell, B.C.,
Shen, D.,
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis,
MedImg(35), No. 12, December 2016, pp. 2524-2533.
IEEE DOI
1612
Feature extraction
BibRef
Nanni, L.[Loris],
Salvatore, C.[Christian],
Cerasa, A.[Antonio],
Castiglioni, I.[Isabella],
Combining multiple approaches for the early diagnosis of Alzheimer's
Disease,
PRL(84), No. 1, 2016, pp. 259-266.
Elsevier DOI
1612
Alzheimer's Disease
BibRef
Lei, B.,
Yang, P.,
Wang, T.,
Chen, S.,
Ni, D.,
Relational-Regularized Discriminative Sparse Learning for Alzheimer's
Disease Diagnosis,
Cyber(47), No. 4, April 2017, pp. 1102-1113.
IEEE DOI
1704
Cybernetics
BibRef
Alam, S.[Saruar],
Kwon, G.R.[Goo-Rak],
Initiative, T.A.D.N.[The Alzheimer's Disease Neuroimaging],
Alzheimer disease classification using KPCA, LDA, and multi-kernel
learning SVM,
IJIST(27), No. 2, 2017, pp. 133-143.
DOI Link
1706
FreeSurfer, CIVET, KPCA, PCA, LDA, MK-SVM
BibRef
Dadar, M.,
Pascoal, T.A.,
Manitsirikul, S.,
Misquitta, K.,
Fonov, V.S.,
Tartaglia, M.C.,
Breitner, J.,
Rosa-Neto, P.,
Carmichael, O.T.,
Decarli, C.,
Collins, D.L.,
Validation of a Regression Technique for Segmentation of White Matter
Hyperintensities in Alzheimer's Disease,
MedImg(36), No. 8, August 2017, pp. 1758-1768.
IEEE DOI
1708
Alzheimer's disease, Image segmentation, Lesions,
Magnetic resonance imaging, Robustness, Alzheimer's disease,
White matter hyperintensities, aging, segmentation
BibRef
Cao, P.[Peng],
Shan, X.F.[Xuan-Feng],
Zhao, D.[Dazhe],
Huang, M.[Min],
Zaiane, O.[Osmar],
Sparse shared structure based multi-task learning for MRI based
cognitive performance prediction of Alzheimer's disease,
PR(72), No. 1, 2017, pp. 219-235.
Elsevier DOI
1708
Alzheimer's, disease
BibRef
Cao, P.[Peng],
Liu, X.L.[Xiao-Li],
Yang, J.Z.[Jin-Zhu],
Zhao, D.Z.[Da-Zhe],
Huang, M.[Min],
Zaiane, O.[Osmar],
L2,1-l1 regularized nonlinear multi-task representation learning
based cognitive performance prediction of Alzheimer's disease,
PR(79), 2018, pp. 195-215.
Elsevier DOI
1804
Alzheimer's disease, Regression, Sparse learning,
Multi-task learning, Kernel method
BibRef
Abdullah, S.,
Choudhury, T.,
Sensing Technologies for Monitoring Serious Mental Illnesses,
MultMedMag(25), No. 1, January 2018, pp. 61-75.
IEEE DOI
1804
Biomedical monitoring, Biosensors, Global Positioning System,
Mental disorders, Multimedia communication, Sensors,
sensing
BibRef
Alvarez, F.,
Popa, M.,
Solachidis, V.,
Hernández-Peñaloza, G.,
Belmonte-Hernández, A.,
Asteriadis, S.,
Vretos, N.,
Quintana, M.,
Theodoridis, T.,
Dotti, D.,
Daras, P.,
Behavior Analysis through Multimodal Sensing for Care of Parkinson's
and Alzheimer's Patients,
MultMedMag(25), No. 1, January 2018, pp. 14-25.
IEEE DOI
1804
Alzheimer's disease, Behavioral sciences, Biomedical imaging,
Calibration, Feature extraction, Patient monitoring, Sensors,
wireless sensor networks
BibRef
Alvarez, F.,
Popa, M.,
Vretos, N.,
Belmonte-Hernández, A.,
Asteriadis, S.,
Solachidis, V.,
Mariscal, T.,
Dotti, D.,
Daras, P.,
Multimodal monitoring of Parkinson's and Alzheimer's patients using
the ICT4LIFE platform,
AVSS17(1-6)
IEEE DOI
1806
Internet of Things, diseases, feature extraction,
medical computing, patient monitoring, sensor fusion,
Wireless sensor networks
BibRef
Strickland, E.,
The digital fingerprints of brain disorders,
Spectrum(55), No. 5, May 2018, pp. 12-13.
IEEE DOI
1805
[News]
BibRef
Asim, Y.[Yousra],
Raza, B.[Basit],
Malik, A.K.[Ahmad Kamran],
Rathore, S.[Saima],
Hussain, L.[Lal],
Iftikhar, M.A.[Mohammad Aksam],
A multi-modal, multi-atlas-based approach for Alzheimer detection via
machine learning,
IJIST(28), No. 2, 2018, pp. 113-123.
WWW Link.
1806
BibRef
Kahindo, C.,
El-Yacoubi, M.A.,
Garcia-Salicetti, S.,
Rigaud, A.,
Cristancho-Lacroix, V.,
Characterizing Early-Stage Alzheimer Through Spatiotemporal Dynamics
of Handwriting,
SPLetters(25), No. 8, August 2018, pp. 1136-1140.
IEEE DOI
1808
Bayes methods, diseases, feature extraction,
handwritten character recognition, neurophysiology,
probabilistic modeling
BibRef
El-Yacoubi, M.A.[Mounîm A.],
Garcia-Salicetti, S.[Sonia],
Kahindo, C.[Christian],
Rigaud, A.S.[Anne-Sophie],
Cristancho-Lacroix, V.[Victoria],
From aging to early-stage Alzheimer's: Uncovering handwriting
multimodal behaviors by semi-supervised learning and sequential
representation learning,
PR(86), 2019, pp. 112-133.
Elsevier DOI
1811
Online handwriting, Mild Cognitive Impairment, Aging,
Unsupervised & semi-supervised learning, Temporal representation learning
BibRef
Mishra, S.[Shiwangi],
Beheshti, I.[Iman],
Khanna, P.[Pritee],
A statistical region selection and randomized volumetric features
selection framework for early detection of Alzheimer's disease,
IJIST(28), No. 4, December 2018, pp. 302-314.
WWW Link.
1811
Alzheimer's Disease Neuroimaging Initiative
BibRef
Baumgartner, C.F.,
Koch, L.M.,
Tezcan, K.C.,
Ang, J.X.,
Visual Feature Attribution Using Wasserstein GANs,
CVPR18(8309-8319)
IEEE DOI
1812
Visualization, Biomedical imaging,
Alzheimer's disease, Neural networks, Neuroimaging
BibRef
Islam, J.,
Zhang, Y.,
Early Diagnosis of Alzheimer's Disease:
A Neuroimaging Study with Deep Learning Architectures,
WiCV18(1962-19622)
IEEE DOI
1812
Alzheimer's disease, Magnetic resonance imaging, Brain modeling,
Training, Medical diagnosis
BibRef
Zhang, Y.[Yu],
Zhang, H.[Han],
Chen, X.B.[Xiao-Bo],
Liu, M.X.[Ming-Xia],
Zhu, X.F.[Xiao-Feng],
Lee, S.W.[Seong-Whan],
Shen, D.G.[Ding-Gang],
Strength and similarity guided group-level brain functional network
construction for MCI diagnosis,
PR(88), 2019, pp. 421-430.
Elsevier DOI
1901
Alzheimers disease, Mild cognitive impairment,
Resting-state functional magnetic resonance imaging (rs-fMRI),
Diagnosis
BibRef
Zhou, L.P.[Lu-Ping],
Wang, Y.P.[Ya-Ping],
Li, Y.[Yang],
Yap, P.T.[Pew-Thian],
Shen, D.G.[Ding-Gang],
Adni,
Hierarchical anatomical brain networks for MCI prediction by partial
least square analysis,
CVPR11(1073-1080).
IEEE DOI
1106
T1-weighted MRI for mild cognitive impairment.
BibRef
Peng, J.L.[Jia-Lin],
Zhu, X.F.[Xiao-Feng],
Wang, Y.[Ye],
An, L.[Le],
Shen, D.G.[Ding-Gang],
Structured sparsity regularized multiple kernel learning for
Alzheimer's disease diagnosis,
PR(88), 2019, pp. 370-382.
Elsevier DOI
1901
Structured sparsity, Multimodal features,
Multiple kernel learning, Feature selection, Alzheimer's disease diagnosis
BibRef
Zhu, Y.,
Zhu, X.,
Kim, M.,
Yan, J.,
Kaufer, D.,
Wu, G.,
Dynamic Hyper-Graph Inference Framework for Computer-Assisted
Diagnosis of Neurodegenerative Diseases,
MedImg(38), No. 2, February 2019, pp. 608-616.
IEEE DOI
1902
Imaging, Training, Testing, Diseases, Data models, Training data,
Neuroimaging, Hyper-graph learning, computer assisted diagnosis,
neurodegenerative disease
BibRef
Singh, S.[Sneha],
Anand, R.S.,
Multimodal neurological image fusion based on adaptive biological
inspired neural model in nonsubsampled Shearlet domain,
IJIST(29), No. 1, March 2019, pp. 50-64.
WWW Link.
1902
BibRef
Karami, V.[Vania],
Nittari, G.[Giulio],
Amenta, F.[Francesco],
Neuroimaging computer-aided diagnosis systems for Alzheimer's disease,
IJIST(29), No. 1, March 2019, pp. 83-94.
WWW Link.
1902
BibRef
Yu, R.P.[Ren-Ping],
Qiao, L.S.[Li-Shan],
Chen, M.M.[Ming-Ming],
Lee, S.W.[Seong-Whan],
Fei, X.[Xuan],
Shen, D.G.[Ding-Gang],
Weighted graph regularized sparse brain network construction for MCI
identification,
PR(90), 2019, pp. 220-231.
Elsevier DOI
1903
Graph Laplacian regularization, Sparse representation,
Brain functional network, Mild cognitive impairment (MCI)
BibRef
Jie, B.[Biao],
Zhang, D.Q.[Dao-Qiang],
Wee, C.Y.[Chong-Yaw],
Shen, D.G.[Ding-Gang],
Structural Feature Selection for Connectivity Network-Based MCI
Diagnosis,
MBIA12(175-184).
Springer DOI
1210
BibRef
Kam, T.,
Zhang, H.,
Jiao, Z.,
Shen, D.G.,
Deep Learning of Static and Dynamic Brain Functional Networks for
Early MCI Detection,
MedImg(39), No. 2, February 2020, pp. 478-487.
IEEE DOI
2002
Ions, Noise measurement, Manganese, Diagnosis,
convolutional neural networks, brain network,
functional MRI
BibRef
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
Impedovo, D.[Donato],
Pirlo, G.[Giuseppe],
di Freca, A.S.[Alessandra Scotto],
Handwriting analysis to support neurodegenerative diseases diagnosis:
A review,
PRL(121), 2019, pp. 37-45.
Elsevier DOI
1904
BibRef
Cilia, N.D.[Nicole Dalia],
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
Molinara, M.[Mario],
di Freca, A.S.[Alessandra Scotto],
Handwriting Analysis to Support Alzheimer's Disease Diagnosis: A
Preliminary Study,
CAIP19(II:143-151).
Springer DOI
1909
BibRef
Neffati, S.[Syrine],
Ben Abdellafou, K.[Khaoula],
Jaffel, I.[Ines],
Taouali, O.[Okba],
Bouzrara, K.[Kais],
An improved machine learning technique based on downsized KPCA for
Alzheimer's disease classification,
IJIST(29), No. 2, June 2019, pp. 121-131.
WWW Link.
1906
BibRef
Chen, J.,
Liu, J.,
Calhoun, V.D.,
Translational Potential of Neuroimaging Genomic Analyses to Diagnosis
and Treatment in Mental Disorders,
PIEEE(107), No. 5, May 2019, pp. 912-927.
IEEE DOI
1906
Genomics, Bioinformatics, Biomedical imaging, Diseases, Neuroimaging,
Mental disorders, Precision engineering, Predictive models,
transdiagnostic
BibRef
Wang, P.,
Liu, Y.,
Shen, D.,
Flexible Locally Weighted Penalized Regression With Applications on
Prediction of Alzheimer's Disease Neuroimaging Initiative's Clinical
Scores,
MedImg(38), No. 6, June 2019, pp. 1398-1408.
IEEE DOI
1906
Kernel, Diseases, Sociology, Statistics, Brain modeling, Forestry,
Training, Heterogeneity, local models, ordinal classification, random forests
BibRef
Khagi, B.[Bijen],
Kwon, G.R.[Goo-Rak],
Lama, R.[Ramesh],
Comparative analysis of Alzheimer's disease classification by CDR level
using CNN, feature selection, and machine-learning techniques,
IJIST(29), No. 3, September 2019, pp. 297-310.
DOI Link
1908
BibRef
Im, J.J.[Jooyeon J.],
Jeong, H.[Hyeonseok],
Oh, J.K.[Jin Kyoung],
Chung, Y.A.[Yong-An],
Song, I.U.[In-Uk],
Lee, K.S.[Kwang-Soo],
Effects of nicergoline treatment on regional cerebral blood flow in
early Alzheimer's disease,
IJIST(29), No. 3, September 2019, pp. 323-328.
DOI Link
1908
BibRef
Ahmad, F.[Fayyaz],
Zulifqar, H.[Hifza],
Malik, T.[Tamoor],
Classification of Alzheimer disease among susceptible brain regions,
IJIST(29), No. 3, September 2019, pp. 222-233.
DOI Link
1908
BibRef
Latha, M.[Manohar],
Kavitha, G.[Ganesan],
Assessment of severity in neuropsychiatric disorders based on radiomic
features with prior shape level set and metaheuristic algorithms,
IJIST(29), No. 3, September 2019, pp. 210-221.
DOI Link
1908
BibRef
Wang, J.J.[Jian-Jia],
Huo, J.Y.[Jia-Yu],
Zhang, L.C.[Li-Chi],
Thermodynamic edge entropy in Alzheimer's disease,
PRL(125), 2019, pp. 570-575.
Elsevier DOI
1909
Alzheimer's disease, Maxwell-Boltzmann statistics, Network edge entropy
BibRef
Zhou, T.,
Liu, M.,
Thung, K.,
Shen, D.,
Latent Representation Learning for Alzheimer's Disease Diagnosis With
Incomplete Multi-Modality Neuroimaging and Genetic Data,
MedImg(38), No. 10, October 2019, pp. 2411-2422.
IEEE DOI
1910
Magnetic resonance imaging, Feature extraction, Genetics,
Neuroimaging, Alzheimer's disease, Positron emission tomography,
latent representation space
BibRef
Li, J.[Jiaye],
Wu, L.[Lin],
Wen, G.Q.[Guo-Qiu],
Li, Z.[Zhi],
Exclusive feature selection and multi-view learning for Alzheimer's
Disease,
JVCIR(64), 2019, pp. 102605.
Elsevier DOI
1911
Alzheimer's Disease, Multi-view, Exclusive lasso learning,
Feature selection, Sparse learning
BibRef
Fang, X.S.[Xu-Sheng],
Liu, Z.B.[Zhen-Bing],
Xu, M.C.[Ming-Chang],
Ensemble of deep convolutional neural networks based multi-modality
images for Alzheimer's disease diagnosis,
IET-IPR(14), No. 2, February 2020, pp. 318-326.
DOI Link
2001
BibRef
Choi, J.Y.,
Lee, B.,
Combining of Multiple Deep Networks via Ensemble Generalization Loss,
Based on MRI Images, for Alzheimer's Disease Classification,
SPLetters(27), 2020, pp. 206-210.
IEEE DOI
2002
Alzheimer's disease classification, ensemble deep learning, generalization loss
BibRef
Lei, B.Y.[Bai-Ying],
Yang, M.Y.[Meng-Ya],
Yang, P.[Peng],
Zhou, F.[Feng],
Hou, W.[Wen],
Zou, W.B.[Wen-Bin],
Li, X.[Xia],
Wang, T.F.[Tian-Fu],
Xiao, X.H.[Xiao-Hua],
Wang, S.Q.[Shu-Qiang],
Deep and joint learning of longitudinal data for Alzheimer's disease
prediction,
PR(102), 2020, pp. 107247.
Elsevier DOI
2003
Alzheimer's disease, Longitudinal scores prediction,
Joint learning, Correntropy, Deep polynomial network
BibRef
Lian, C.F.[Chun-Feng],
Liu, M.X.[Ming-Xia],
Zhang, J.[Jun],
Shen, D.G.[Ding-Gang],
Hierarchical Fully Convolutional Network for Joint Atrophy
Localization and Alzheimer's Disease Diagnosis Using Structural MRI,
PAMI(42), No. 4, April 2020, pp. 880-893.
IEEE DOI
2003
Feature extraction, Solid modeling, Atrophy, Brain modeling,
Alzheimer's disease, Medical diagnosis, Support vector machines,
structural MRI
BibRef
Zhang, J.[Jun],
Liu, M.X.[Ming-Xia],
An, L.[Le],
Gao, Y.Z.[Yao-Zong],
Shen, D.G.[Ding-Gang],
Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal
Structural MR Images,
MCV16(35-45).
Springer DOI
1711
BibRef
Zhao, Y.,
Zhao, Y.,
Durongbhan, P.,
Chen, L.,
Liu, J.,
Billings, S.A.,
Zis, P.,
Unwin, Z.C.,
de Marco, M.,
Venneri, A.,
Blackburn, D.J.,
Sarrigiannis, P.G.,
Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based
on EEG Recordings With the Application on the Diagnosis of
Alzheimer's Disease,
MedImg(39), No. 5, May 2020, pp. 1571-1581.
IEEE DOI
2005
Alzheimer's disease, dementia, visualisation,
system identification, machine learning
BibRef
Zhang, Y.[Yingteng],
Liu, S.[Shenquan],
Yu, X.L.[Xiao-Li],
Longitudinal structural MRI analysis and classification in
Alzheimer's disease and mild cognitive impairment,
IJIST(30), No. 2, 2020, pp. 421-433.
DOI Link
2005
Alzheimer's disease, gray matter volume, longitudinal analysis,
longitudinal classification, mild cognitive impairment
BibRef
Allioui, H.[Hanane],
Sadgal, M.[Mohamed],
Elfazziki, A.[Aziz],
Utilization of a convolutional method for Alzheimer disease diagnosis,
MVA(31), No. 4, April 2020, pp. Article25.
Springer DOI
2005
BibRef
Brand, L.,
Nichols, K.,
Wang, H.,
Shen, L.,
Huang, H.,
Joint Multi-Modal Longitudinal Regression and Classification for
Alzheimer's Disease Prediction,
MedImg(39), No. 6, June 2020, pp. 1845-1855.
IEEE DOI
2006
Alzheimer's disease, biomarker identification,
joint regression-classification, longitudinal, multi-modal, multi-task
BibRef
Koh, J.E.W.[Joel En Wei],
Jahmunah, V.[Vicnesh],
Pham, T.H.[The-Hanh],
Oh, S.L.[Shu Lih],
Ciaccio, E.J.[Edward J],
Acharya, U.R.[U Rajendra],
Yeong, C.H.[Chai Hong],
Fabell, M.K.M.[Mohd Kamil Mohd],
Rahmat, K.[Kartini],
Vijayananthan, A.[Anushya],
Ramli, N.[Norlisah],
Automated detection of Alzheimer's disease using bi-directional
empirical model decomposition,
PRL(135), 2020, pp. 106-113.
Elsevier DOI
2006
BibRef
Pan, Y.,
Liu, M.,
Lian, C.,
Xia, Y.,
Shen, D.,
Spatially-Constrained Fisher Representation for Brain Disease
Identification With Incomplete Multi-Modal Neuroimages,
MedImg(39), No. 9, September 2020, pp. 2965-2975.
IEEE DOI
2009
Magnetic resonance imaging, Feature extraction, Diseases,
Positron emission tomography, Medical diagnosis, Brain modeling,
PET
BibRef
Bône, A.[Alexandre],
Colliot, O.[Olivier],
Durrleman, S.[Stanley],
Initiative, T.A.D.N.[The Alzheimer's Disease Neuroimaging],
Learning the spatiotemporal variability in longitudinal shape data sets,
IJCV(128), No. 12, December 2020, pp. 2873-2896.
Springer DOI
2010
BibRef
Earlier: A1, A2, A2:
Learning Distributions of Shape Trajectories from Longitudinal
Datasets: A Hierarchical Model on a Manifold of Diffeomorphisms,
CVPR18(9271-9280)
IEEE DOI
1812
Shape, Trajectory, Computational modeling, Manifolds,
Spatiotemporal phenomena, Data models, Numerical models
BibRef
Debavelaere, V.[Vianney],
Durrleman, S.[Stanley],
Allassonnière, S.[Stéphanie],
Initiative, T.A.D.N.[The Alzheimer's Disease Neuroimaging],
Learning the Clustering of Longitudinal Shape Data Sets into a Mixture
of Independent or Branching Trajectories,
IJCV(128), No. 12, December 2020, pp. 2794-2809.
Springer DOI
2010
BibRef
Chevallier, J.[Juliette],
Debavelaere, V.[Vianney],
Allassonnière, S.[Stéphanie],
A Coherent Framework for Learning Spatiotemporal Piecewise-Geodesic
Trajectories from Longitudinal Manifold-Valued Data,
SIIMS(14), No. 1, 2021, pp. 349-388.
DOI Link
2104
BibRef
Saied, I.,
Arslan, T.,
Chandran, S.,
Smith, C.,
Spires-Jones, T.,
Pal, S.,
Non-Invasive RF Technique for Detecting Different Stages of
Alzheimer's Disease and Imaging Beta-Amyloid Plaques and Tau Tangles
in the Brain,
MedImg(39), No. 12, December 2020, pp. 4060-4070.
IEEE DOI
2012
Dielectric measurement, Dielectrics, Brain modeling,
Radio frequency, Sensors, Computational modeling, Permittivity,
radio frequency
BibRef
Chen, J.Z.[Jia-Zhou],
Han, G.Q.[Guo-Qiang],
Cai, H.M.[Hong-Min],
Yang, D.F.[De-Fu],
Laurienti, P.J.[Paul J.],
Styner, M.[Martin],
Wu, G.R.[Guo-Rong],
Learning Common Harmonic Waves on Stiefel Manifold:
A New Mathematical Approach for Brain Network Analyses,
MedImg(40), No. 1, January 2021, pp. 419-430.
IEEE DOI
2012
Manifolds, Harmonic analysis, Diseases, Laplace equations,
Optimization, Neuroimaging, Algebra, Brain network,
computer-assisted diagnosis
BibRef
Ganotra, R.[Reema],
Dora, S.[Shirin],
Gupta, S.[Shailender],
Identifying brain regions contributing to Alzheimer's disease using
self regulating particle swarm optimization,
IJIST(31), No. 1, 2021, pp. 106-117.
DOI Link
2102
Alzheimer's disease, gray matter, magnetic resonance imaging,
particle swarm optimization, support vector machines, white matter
BibRef
Lu, L.J.[Lyu-Jian],
Elbeleidy, S.[Saad],
Baker, L.Z.[Lauren Zoe],
Wang, H.[Hua],
Nie, F.P.[Fei-Ping],
Predicting Cognitive Declines Using Longitudinally Enriched
Representations for Imaging Biomarkers,
MedImg(40), No. 3, March 2021, pp. 891-904.
IEEE DOI
2103
BibRef
Earlier: A1, A4, A2, A5, Only:
CVPR20(4826-4835)
IEEE DOI
2008
Biomarkers, Imaging, Neuroimaging, Data models, Predictive models,
Diseases, Biological system modeling, Alzheimer's disease,
imaging biomarker.
Neuroimaging, Dementia, Brain modeling, Biomedical imaging
BibRef
Qian, M.Y.[Ming-Yue],
Zhang, Z.T.[Zhao-Ting],
Chen, J.C.[Jie-Chun],
Special Issue Retraction:
Combined mixed Gaussian model with pattern recognition in the automatic
diagnosis of Alzheimer's disease,
IET-IPR(17), No. 1, January 2023, pp. 301.
DOI Link
2301
BibRef
And:
IET-IPR(14), No. 15, 15 December 2020, pp. 3698-3704.
DOI Link
2103
BibRef
Huang, M.Y.[Mei-Yan],
Chen, X.M.[Xiu-Mei],
Yu, Y.W.[Yu-Wei],
Lai, H.R.[Hao-Ran],
Feng, Q.J.[Qian-Jin],
Imaging Genetics Study Based on a Temporal Group Sparse Regression
and Additive Model for Biomarker Detection of Alzheimer's Disease,
MedImg(40), No. 5, May 2021, pp. 1461-1473.
IEEE DOI
2105
Genetics, Diseases, Biological system modeling, Data models,
Brain modeling, Biomedical imaging, Additives, Imaging genetics,
single nucleotide polymorphism
BibRef
Chen, Y.Y.[Yuan-Yuan],
Xia, Y.[Yong],
Iterative sparse and deep learning for accurate diagnosis of
Alzheimer's disease,
PR(116), 2021, pp. 107944.
Elsevier DOI
2106
Alzheimer's disease, Mild cognitive impairment, Deep learning, Sparse regression
BibRef
Wang, M.L.[Mei-Ling],
Shao, W.[Wei],
Hao, X.K.[Xiao-Ke],
Zhang, D.Q.[Dao-Qiang],
Identify Complex Imaging Genetic Patterns via Fusion Self-Expressive
Network Analysis,
MedImg(40), No. 6, June 2021, pp. 1673-1686.
IEEE DOI
2106
Imaging, Correlation, Diseases, Bioinformatics, Image reconstruction,
Genomics, Knowledge engineering, Brain imaging genetics,
Alzheimer's disease
BibRef
Ning, Z.Y.[Zhen-Yuan],
Xiao, Q.[Qing],
Feng, Q.J.[Qian-Jin],
Chen, W.F.[Wu-Fan],
Zhang, Y.[Yu],
Relation-Induced Multi-Modal Shared Representation Learning for
Alzheimer's Disease Diagnosis,
MedImg(40), No. 6, June 2021, pp. 1632-1645.
IEEE DOI
2106
Magnetic resonance imaging, Diseases, Training, Testing, Data models,
Bidirectional control, Alzheimer's disease, Alzheimer's disease,
relational regularization
See also Relation-Aware Shared Representation Learning for Cancer Prognosis Analysis with Auxiliary Clinical Variables and Incomplete Multi-Modality Data.
BibRef
Lao, H.[Huan],
Zhang, X.J.[Xue-Jun],
Tang, Y.Y.[Yan-Yan],
Liang, C.[Chan],
Alzheimer's disease diagnosis based on the visual attention model and
equal-distance ring shape context features,
IET-IPR(15), No. 10, 2021, pp. 2351-2362.
DOI Link
2108
BibRef
Zhang, J.[Jie],
Wu, J.F.[Jian-Feng],
Li, Q.Y.[Qing-Yang],
Caselli, R.J.[Richard J.],
Thompson, P.M.[Paul M.],
Ye, J.P.[Jie-Ping],
Wang, Y.L.[Ya-Lin],
Multi-Resemblance Multi-Target Low-Rank Coding for Prediction of
Cognitive Decline With Longitudinal Brain Images,
MedImg(40), No. 8, August 2021, pp. 2030-2041.
IEEE DOI
2108
Task analysis, Correlation, Diseases, Dictionaries, Encoding,
Neuroimaging, Alzheimer's disease, Multi-task,
multi-resemblance
BibRef
Basheera, S.[Shaik],
Ram, M.S.S.[M Satya Sai],
Deep learning based Alzheimer's disease early diagnosis using T2w
segmented gray matter MRI,
IJIST(31), No. 3, 2021, pp. 1692-1710.
DOI Link
2108
Alzheimer's disease, classification, CNN, deep learning, gray matter
BibRef
Karim, R.[Razaul],
Shahrior, A.[Ashef],
Rahman, M.M.[Mohammad Motiur],
Machine learning-based tri-stage classification of Alzheimer's
progressive neurodegenerative disease using PCA and mRMR administered
textural, orientational, and spatial features,
IJIST(31), No. 4, 2021, pp. 2060-2074.
DOI Link
2112
Alzheimer's, feature extraction, machine learning, MRI, VLAD
BibRef
Gopinath, K.[Karthik],
Desrosiers, C.[Christian],
Lombaert, H.[Herve],
Learnable Pooling in Graph Convolutional Networks for Brain Surface
Analysis,
PAMI(44), No. 2, February 2022, pp. 864-876.
IEEE DOI
2201
Brain, Convolution, Geometry, Task analysis, Surface treatment,
Alzheimer's disease, Learnable pooling,
alzheimer classification
BibRef
Shakeri, M.[Mahsa],
Lombaert, H.[Herve],
Tripathi, S.[Shashank],
Kadoury, S.[Samuel],
Deep Spectral-Based Shape Features for Alzheimer's Disease
Classification,
SeSAME16(15-24).
Springer DOI
1703
BibRef
Dinh, T.Q.[Tuan Q.],
Xiong, Y.[Yunyang],
Huang, Z.C.[Zhi-Chun],
Vo, T.[Tien],
Mishra, A.[Akshay],
Kim, W.H.[Won Hwa],
Ravi, S.N.[Sathya N.],
Singh, V.[Vikas],
Performing Group Difference Testing on Graph Structured Data from GANs:
Analysis and Applications in Neuroimaging,
PAMI(44), No. 2, February 2022, pp. 877-889.
IEEE DOI
2201
Is the result the same using GAN generated data and the original real data for
testing.
Statistical analysis, Diseases, Machine learning,
Training data, Training, non-euclidean
BibRef
Eroglu, Y.[Yesim],
Yildirim, M.[Muhammed],
Cinar, A.[Ahmet],
mRMR-based hybrid convolutional neural network model for
classification of Alzheimer's disease on brain magnetic resonance
images,
IJIST(32), No. 2, 2022, pp. 517-527.
DOI Link
2203
Alzheimer's disease, classification, KNN, machine learning, MRI, SVM
BibRef
Babu, G.S.[G. Stalin],
Rao, S.N.T.[S. N. Tirumala],
Rao, R.R.[R. Rajeswara],
Automated assessment for Alzheimer's disease diagnosis from MRI
images: Meta-heuristic assisted deep learning model,
IJIST(32), No. 2, 2022, pp. 544-563.
DOI Link
2203
Alzheimer disease, CG-DU algorithm, DCNN, geometric Haralick,
gray wolf optimizer
BibRef
Dora, L.[Lingraj],
Agrawal, S.[Sanjay],
Panda, R.[Rutuparna],
Abraham, A.[Ajith],
An efficient multiclass classifier for classification of Alzheimer's
disease/mild cognitive impairment/Normal subjects,
IJIST(32), No. 2, 2022, pp. 629-641.
DOI Link
2203
disease classification,
hybrid particle swarm optimization-squirrel search algorithm,
ternary classifier
BibRef
Pohl, T.[Tomáš],
Jakab, M.[Marek],
Benesova, W.[Wanda],
Interpretability of deep neural networks used for the diagnosis of
Alzheimer's disease,
IJIST(32), No. 2, 2022, pp. 673-686.
DOI Link
2203
Alzheimer's disease, deep neural networks, interpretability,
layer-wise relevance propagation, magnetic resonance imaging
BibRef
Shi, Y.[Yuang],
Zu, C.[Chen],
Hong, M.[Mei],
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Wu, X.[Xi],
Zhou, J.[Jiliu],
Zhang, D.Q.[Dao-Qiang],
Wang, Y.[Yan],
ASMFS: Adaptive-Similarity-Based Multi-Modality Feature Selection for
Classification of Alzheimer's Disease,
PR(126), 2022, pp. 108566.
Elsevier DOI
2204
Multi-modality, Similarity learning, Feature selection, Alzheimer's disease
See also Feature Selection with Kernel Class Separability.
BibRef
Borovkova, M.[Mariia],
Sieryi, O.[Oleksii],
Lopushenko, I.[Ivan],
Kartashkina, N.[Natalia],
Pahnke, J.[Jens],
Bykov, A.[Alexander],
Meglinski, I.[Igor],
Screening of Alzheimer's Disease With Multiwavelength Stokes
Polarimetry in a Mouse Model,
MedImg(41), No. 4, April 2022, pp. 977-982.
IEEE DOI
2204
Brain, Polarimetry, Mice, Measurement by laser beam, Laser beams,
Microscopy, Optical microscopy, Optical polarimetry, scattering,
Stokes vector
BibRef
Lian, C.F.[Chun-Feng],
Liu, M.X.[Ming-Xia],
Pan, Y.S.[Yong-Sheng],
Shen, D.G.[Ding-Gang],
Attention-Guided Hybrid Network for Dementia Diagnosis With
Structural MR Images,
Cyber(52), No. 4, April 2022, pp. 1992-2003.
IEEE DOI
2204
Feature extraction, Brain modeling, Task analysis, Dementia,
Solid modeling, Medical diagnosis, Alzheimer's disease (AD),
weakly supervised localization
BibRef
Kaur, S.[Swapandeep],
Gupta, S.[Sheifali],
Singh, S.[Swati],
Gupta, I.[Isha],
Detection of Alzheimer's Disease Using Deep Convolutional Neural
Network,
IJIG(22), No. 3 2022, pp. 2140012.
DOI Link
2206
BibRef
Shankar, V.G.[Venkatesh Gauri],
Sisodia, D.S.[Dilip Singh],
Chandrakar, P.[Preeti],
A novel discriminant feature selection-based mutual information
extraction from MR brain images for Alzheimer's stages detection and
prediction,
IJIST(32), No. 4, 2022, pp. 1172-1191.
DOI Link
2207
Alzheimer's disease, classification, feature selection,
machine learning, medical imaging system, neurodegenerative disorder
BibRef
Yu, L.[Lu],
Xiang, W.[Wei],
Fang, J.[Juan],
Chen, Y.P.P.[Yi-Ping Phoebe],
Zhu, R.F.[Rui-Feng],
A novel explainable neural network for Alzheimer's disease diagnosis,
PR(131), 2022, pp. 108876.
Elsevier DOI
2208
Explainable neural networks, XAI, High-resolution heatmap, MRI
BibRef
Pei, Z.[Zhao],
Wan, Z.[Zhiyang],
Zhang, Y.N.[Yan-Ning],
Wang, M.[Miao],
Leng, C.[Chengcai],
Yang, Y.H.[Yee-Hong],
Multi-scale attention-based pseudo-3D convolution neural network for
Alzheimer's disease diagnosis using structural MRI,
PR(131), 2022, pp. 108825.
Elsevier DOI
2208
Diagnosis of Alzheimer's disease, Pseudo-3D,
Attention mechanism, Multi-scale, Joint loss function
BibRef
Dwivedi, S.[Shubham],
Goel, T.[Tripti],
Tanveer, M.,
Murugan, R.,
Sharma, R.[Rahul],
Multimodal Fusion-Based Deep Learning Network for Effective Diagnosis
of Alzheimer's Disease,
MultMedMag(29), No. 2, April 2022, pp. 45-55.
IEEE DOI
2208
Magnetic resonance imaging, Alzheimer's disease,
Feature extraction, Atrophy, Computational modeling,
Positron emission tomography (PET)
BibRef
Jung, E.[Euijin],
Luna, M.[Miguel],
Park, S.H.[Sang Hyun],
Conditional GAN with 3D discriminator for MRI generation of
Alzheimer's disease progression,
PR(133), 2023, pp. 109061.
Elsevier DOI
2210
Conditional GAN, Alzheimer's disease, 3D Discriminator,
Magnetic resonance image generation, Adaptive identity loss
BibRef
Qasim Abbas, S.,
Chi, L.H.[Lian-Hua],
Chen, Y.P.P.[Yi-Ping Phoebe],
Transformed domain convolutional neural network for Alzheimer's
disease diagnosis using structural MRI,
PR(133), 2023, pp. 109031.
Elsevier DOI
2210
Alzheimer disease (AD) detection, Brain disease,
Convolutional neural network (CNN), Supervised learning,
AD diagnosis
BibRef
Ouyang, J.H.[Jia-Hong],
Zhao, Q.Y.[Qing-Yu],
Adeli, E.[Ehsan],
Zaharchuk, G.[Greg],
Pohl, K.M.[Kilian M.],
Disentangling Normal Aging From Severity of Disease via Weak
Supervision on Longitudinal MRI,
MedImg(41), No. 10, October 2022, pp. 2558-2569.
IEEE DOI
2210
Diseases, Magnetic resonance imaging, Aging, Trajectory, Training,
Aerospace electronics, Supervised learning,
cognitive impairment
BibRef
Lao, H.[Huan],
Zhang, X.J.[Xue-Jun],
Diagnose Alzheimer's disease by combining 3D discrete wavelet
transform and 3D moment invariants,
IET-IPR(16), No. 14, 2022, pp. 3948-3964.
DOI Link
2212
BibRef
Aghaei, A.[Atefe],
Moghaddam, M.E.[Mohsen Ebrahimi],
Malek, H.[Hamed],
Interpretable ensemble deep learning model for early detection of
Alzheimer's disease using local interpretable model-agnostic
explanations,
IJIST(32), No. 6, 2022, pp. 1889-1902.
DOI Link
2212
Alzheimer's disease, ensemble deep learning, Inception-V3,
ResNet-50, structural MRI, transfer learning
BibRef
Sharma, S.[Shallu],
Mandal, P.K.[Pravat Kumar],
A Comprehensive Report on Machine Learning-Based Early Detection of
Alzheimer's Disease Using Multi-Modal Neuroimaging Data,
Surveys(55), No. 2, February 2023, pp. xx-yy.
DOI Link
2212
Survey, Alzheimer's. feature scaling, feature fusion, feature selection,
Alzheimer disease, machine learning algorithms, multiple modal imaging
BibRef
Zheng, B.[Bowen],
Gao, A.[Ang],
Huang, X.N.[Xiao-Na],
Li, Y.H.[Yu-Han],
Liang, D.[Dong],
Long, X.J.[Xiao-Jing],
A modified 3D EfficientNet for the classification of Alzheimer's
disease using structural magnetic resonance images,
IET-IPR(17), No. 1, 2023, pp. 77-87.
DOI Link
2301
BibRef
Houria, L.[Latifa],
Belkhamsa, N.[Noureddine],
Cherfa, A.[Assia],
Cherfa, Y.[Yazid],
Multimodal magnetic resonance imaging for Alzheimer's disease
diagnosis using hybrid features extraction and ensemble support
vector machines,
IJIST(33), No. 2, 2023, pp. 610-621.
DOI Link
2303
Alzheimer's disease, bag-of-feature,
convolutional neural network, majority voting, support vector machine
BibRef
Goenka, N.[Nitika],
Tiwari, S.[Shamik],
Alzheimer's detection using various feature extraction approaches
using a multimodal multi-class deep learning model,
IJIST(33), No. 2, 2023, pp. 588-609.
DOI Link
2303
18F-AV45 PET, Alzheimer's disease, multi-modality,
neuroimaging biomarker, patch-based, slice-based, volumetric convnet
BibRef
Oh, K.[Kwanseok],
Yoon, J.S.[Jee Seok],
Suk, H.I.[Heung-Il],
Learn-Explain-Reinforce: Counterfactual Reasoning and its Guidance to
Reinforce an Alzheimer's Disease Diagnosis Model,
PAMI(45), No. 4, April 2023, pp. 4843-4857.
IEEE DOI
2303
Visualization, Cognition, Brain modeling,
Magnetic resonance imaging, Transforms, Perturbation methods,
Alzheimer's disease
BibRef
Bass, C.[Cher],
da Silva, M.[Mariana],
Sudre, C.[Carole],
Williams, L.Z.J.[Logan Z. J.],
Sousa, H.S.[Helena S.],
Tudosiu, P.D.[Petru-Daniel],
Alfaro-Almagro, F.[Fidel],
Fitzgibbon, S.P.[Sean P.],
Glasser, M.F.[Matthew F.],
Smith, S.M.[Stephen M.],
Robinson, E.C.[Emma C],
ICAM-Reg: Interpretable Classification and Regression With Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans,
MedImg(42), No. 4, April 2023, pp. 959-970.
IEEE DOI
2304
Diseases, Feature extraction, Biomedical imaging,
Alzheimer's disease, Imaging, Training, Neuroimaging, Brain imaging,
image-to-image translation
BibRef
Zhu, Q.[Qi],
Xu, B.L.[Bing-Liang],
Huang, J.S.[Jia-Shuang],
Wang, H.Y.[He-Yang],
Xu, R.[Ruting],
Shao, W.[Wei],
Zhang, D.Q.[Dao-Qiang],
Deep Multi-Modal Discriminative and Interpretability Network for
Alzheimer's Disease Diagnosis,
MedImg(42), No. 5, May 2023, pp. 1472-1483.
IEEE DOI
2305
Correlation, Deep learning, Brain modeling,
Magnetic resonance imaging, Analytical models, Data models,
Alzheimer's disease
BibRef
Thushara, A.,
Amma, C.U.[C. Ushadevi],
John, A.[Ansamma],
Graph Theory-Based Brain Network Connectivity Analysis and
Classification of Alzheimer's Disease,
IJIG(23), No. 3 2023, pp. 2240006.
DOI Link
2306
BibRef
Zolfaghari, S.[Samaneh],
Suravee, S.[Sumaiya],
Riboni, D.[Daniele],
Yordanova, K.[Kristina],
Sensor-Based Locomotion Data Mining for Supporting the Diagnosis of
Neurodegenerative Disorders: A Survey,
Surveys(56), No. 1, August 2023, pp. 10.
DOI Link
2310
neurodegenerative disorders, Pervasive healthcare,
cognitive decline, location data mining
BibRef
Chen, H.[Hui],
Guo, H.[Huiru],
Xing, L.Q.[Long-Qiang],
Chen, D.[Da],
Yuan, T.[Ting],
Zhang, Y.P.[Yun-Peng],
Zhang, X.[Xuedian],
Multimodal predictive classification of Alzheimer's disease based on
attention-combined fusion network: Integrated neuroimaging modalities
and medical examination data,
IET-IPR(17), No. 11, 2023, pp. 3153-3164.
DOI Link
2310
Alzheimer's disease, attention mechanism, diagnosis,
multi-modal, prediction
BibRef
Duarte, K.T.N.[Kauê T.N.],
Gobbi, D.G.[David G.],
Sidhu, A.S.[Abhijot S.],
McCreary, C.R.[Cheryl R.],
Saad, F.[Feryal],
Camicioli, R.[Richard],
Smith, E.E.[Eric E.],
Frayne, R.[Richard],
Segmenting white matter hyperintensities in brain magnetic resonance
images using convolution neural networks,
PRL(175), 2023, pp. 90-94.
Elsevier DOI
2311
Image segmentation, White matter hyperintensity (WMH),
Convolutional neural network (CNN), Alzheimer's disease (AD), Deep learning
BibRef
Guo, Z.Q.[Zhi-Qiang],
Ling, Z.H.[Zhen-Hua],
Exploring the Topics of Audio Words for Detecting Alzheimer's Disease
From Spontaneous Speech,
SPLetters(30), 2023, pp. 1727-1731.
IEEE DOI
2312
BibRef
Chen, Y.Y.[Yuan-Yuan],
Pan, Y.S.[Yong-Sheng],
Xia, Y.[Yong],
Yuan, Y.X.[Yi-Xuan],
Disentangle First, Then Distill: A Unified Framework for Missing
Modality Imputation and Alzheimer's Disease Diagnosis,
MedImg(42), No. 12, December 2023, pp. 3566-3578.
IEEE DOI
2312
BibRef
Lei, B.Y.[Bai-Ying],
Zhu, Y.[Yun],
Liang, E.[Enmin],
Yang, P.[Peng],
Chen, S.B.[Shao-Bin],
Hu, H.[Huoyou],
Xie, H.R.[Hao-Ran],
Wei, Z.[Ziyi],
Hao, F.[Fei],
Song, X.[Xuegang],
Wang, T.F.[Tian-Fu],
Xiao, X.H.[Xiao-Hua],
Wang, S.Q.[Shu-Qiang],
Han, H.B.[Hong-Bin],
Federated Domain Adaptation via Transformer for Multi-Site
Alzheimer's Disease Diagnosis,
MedImg(42), No. 12, December 2023, pp. 3651-3664.
IEEE DOI
2312
BibRef
Marcus, A.[Adam],
Bentley, P.[Paul],
Rueckert, D.[Daniel],
Concurrent Ischemic Lesion Age Estimation and Segmentation of CT
Brain Using a Transformer-Based Network,
MedImg(42), No. 12, December 2023, pp. 3464-3473.
IEEE DOI
2312
BibRef
Tan, Y.F.[Yee-Fan],
Ting, C.M.[Chee-Ming],
Noman, F.[Fuad],
Phan, R.C.W.[Raphaël C.W.],
Ombao, H.[Hernando],
A Unified Framework for Static and Dynamic Functional Connectivity
Augmentation for Multi-Domain Brain Disorder Classification,
ICIP23(635-639)
IEEE DOI
2312
BibRef
Rana, M.M.[Md Masud],
Islam, M.M.[Md Manowarul],
Talukder, M.A.[Md. Alamin],
Uddin, M.A.[Md Ashraf],
Aryal, S.I.[Sun-Il],
Alotaibi, N.[Naif],
Alyami, S.A.[Salem A.],
Hasan, K.F.[Khondokar Fida],
Moni, M.A.[Mohammad Ali],
A robust and clinically applicable deep learning model for early
detection of Alzheimer's,
IET-IPR(17), No. 14, 2023, pp. 3959-3975.
DOI Link
2312
brain, cancer, diseases, tumours, deep learning
BibRef
Yang, Y.W.[Yan-Wu],
Ye, C.F.[Chen-Fei],
Guo, X.[Xutao],
Wu, T.[Tao],
Xiang, Y.[Yang],
Ma, T.[Ting],
Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via
Cross-Modal Mutual Learning,
MedImg(43), No. 1, January 2024, pp. 108-121.
IEEE DOI
2401
BibRef
Shukla, A.[Amar],
Tiwari, R.[Rajeev],
Tiwari, S.[Shamik],
Structural biomarker-based Alzheimer's disease detection via ensemble
learning techniques,
IJIST(34), No. 1, 2024, pp. e22967.
DOI Link
2401
Alzheimer disease, binary class, ensemble learning,
machine learning, multiclass
BibRef
Miao, S.[Shang],
Xu, Q.[Qun],
Li, W.M.[Wei-Min],
Yang, C.[Chao],
Sheng, B.[Bin],
Liu, F.Y.[Fang-Yu],
Bezabih, T.T.[Tsigabu T.],
Yu, X.[Xiao],
MMTFN: Multi-modal multi-scale transformer fusion network for
Alzheimer's disease diagnosis,
IJIST(34), No. 1, 2024, pp. e22970.
DOI Link
2401
Alzheimer's disease, attention mechanism, deep learning,
multi-modal fusion, transformer
BibRef
Lachinov, D.[Dmitrii],
Chakravarty, A.[Arunava],
Grechenig, C.[Christoph],
Schmidt-Erfurth, U.[Ursula],
Bogunovic, H.[Hrvoje],
Learning Spatio-Temporal Model of Disease Progression With NeuralODEs
From Longitudinal Volumetric Data,
MedImg(43), No. 3, March 2024, pp. 1165-1179.
IEEE DOI
2403
Predictive models, Atrophy, Imaging, Brain modeling, Biomarkers,
Solid modeling, Retina, Disease progression, deep learning, Alzheimer's disease
BibRef
Wang, T.X.[Tian-Xiang],
Dai, Q.[Qun],
A patch distribution-based active learning method for multiple
instance Alzheimer's disease diagnosis,
PR(150), 2024, pp. 110341.
Elsevier DOI
2403
Multi-instance learning, Active learning, Alzheimer's disease,
Attention mechanism
BibRef
Jiang, S.Q.[Shun-Qin],
Feng, Q.Y.[Qi-Yuan],
Li, H.X.[Heng-Xin],
Deng, Z.[Zhenyun],
Jiang, Q.[Qinghong],
Attention based multi-task interpretable graph convolutional network
for Alzheimer's disease analysis,
PRL(180), 2024, pp. 1-8.
Elsevier DOI
2404
Alzheimer's disease diagnosis analysis, Multi-task learning,
Attention unit, Interpretability, Graph convolutional network
BibRef
Illakiya, T.,
Karthik, R.,
A deep feature fusion network with global context and
cross-dimensional dependencies for classification of mild cognitive
impairment from brain MRI,
IVC(144), 2024, pp. 104967.
Elsevier DOI
2404
Mild cognitive impairment, Magnetic resonance imaging, Deep learning,
Convolutional neural network, Classification: Alzheimer's disease
BibRef
Chen, Z.[Zhi],
Liu, Y.[Yongguo],
Zhang, Y.[Yun],
Zhu, J.J.[Jia-Jing],
Li, Q.Q.[Qiao-Qin],
Wu, X.D.[Xin-Dong],
Shared Manifold Regularized Joint Feature Selection for Joint
Classification and Regression in Alzheimer's Disease Diagnosis,
IP(33), 2024, pp. 2730-2745.
IEEE DOI
2404
Feature extraction, Task analysis, Diseases, Correlation,
Neuroimaging, Data models, Manifolds, manifold learning
BibRef
Xu, J.H.[Jing-Hao],
Yuan, C.X.[Chen-Xi],
Ma, X.C.[Xiao-Chuan],
Shang, H.F.[Hui-Fang],
Shi, X.S.[Xiao-Shuang],
Zhu, X.F.[Xiao-Feng],
Interpretable medical deep framework by logits-constraint attention
guiding graph-based multi-scale fusion for Alzheimer's disease
analysis,
PR(152), 2024, pp. 110450.
Elsevier DOI Code:
WWW Link.
2405
Alzheimer's disease, Attention, Graph neural networks,
Multi-scale feature fusion, Structural MRI
BibRef
Han, K.[Kangfu],
Li, G.[Gang],
Fang, Z.W.[Zhi-Wen],
Yang, F.[Feng],
Multi-Template Meta-Information Regularized Network for Alzheimer's
Disease Diagnosis Using Structural MRI,
MedImg(43), No. 5, May 2024, pp. 1664-1676.
IEEE DOI
2405
Feature extraction, Metadata, Self-supervised learning,
Mutual information, Alzheimer's disease, Aging, Minimization
BibRef
Khojaste-Sarakhsi, M.,
Haghighi, S.S.[Seyedhamidreza Shahabi],
Fatemi Ghomi, S.M.T.,
Marchiori, E.[Elena],
A 3D multi-scale CycleGAN framework for generating synthetic PETs
from MRIs for Alzheimer's disease diagnosis,
IVC(146), 2024, pp. 105017.
Elsevier DOI
2405
Cycle GAN, Multi-scale GAN, 3D image-to-image translation,
Image synthesis, Alzheimer's Disease diagnosis
BibRef
Lei, B.[Baiying],
Liang, Y.[Yu],
Xie, J.Y.[Jia-Yi],
Wu, Y.[You],
Liang, E.[Enmin],
Liu, Y.[Yong],
Yang, P.[Peng],
Wang, T.F.[Tian-Fu],
Liu, C.[ChuanMing],
Du, J.[Jichen],
Xiao, X.H.[Xiao-Hua],
Wang, S.Q.[Shu-Qiang],
Hybrid federated learning with brain-region attention network for
multi-center Alzheimer's disease detection,
PR(153), 2024, pp. 110423.
Elsevier DOI Code:
WWW Link.
2405
Alzheimer's disease, Attention, Federated learning, Hybrid learning
BibRef
Zuo, Q.[Qiankun],
Wu, H.[Huisi],
Chen, C.L.P.[C. L. Philip],
Lei, B.[Baiying],
Wang, S.Q.[Shu-Qiang],
Prior-Guided Adversarial Learning With Hypergraph for Predicting
Abnormal Connections in Alzheimer's Disease,
Cyber(54), No. 6, June 2024, pp. 3652-3665.
IEEE DOI
2406
Diseases, Functional magnetic resonance imaging, Brain modeling,
Feature extraction, Diffusion tensor imaging, Predictive models,
prior-guided learning
BibRef
Zhang, L.W.[Li-Wen],
Xia, R.W.[Rong-Wei],
Yang, B.Y.[Bai-Yang],
Zhang, J.C.[Jin-Can],
Wang, J.C.[Jin-Chan],
MSFNet-2SE: A multi-scale fusion convolutional network for
Alzheimer's disease classification on magnetic resonance images,
IJIST(34), No. 4, 2024, pp. e23112.
DOI Link
2406
Alzheimer's disease, attention module, gradient centralization, multi-scale
BibRef
Begum, A.P.[Afiya Parveen],
Selvaraj, P.[Prabha],
Multiclass Diagnosis of Alzheimer's Disease Analysis Using Machine
Learning and Deep Learning Techniques,
IJIG(24), No. 3, May 2024, pp. 2450031.
DOI Link
2406
BibRef
Akhtar, M.[Mushir],
Tanveer, M.,
Arshad, M.[Mohd.],
Advancing Supervised Learning with the Wave Loss Function:
A Robust and Smooth Approach,
PR(155), 2024, pp. 110637.
Elsevier DOI Code:
WWW Link.
2408
Supervised learning, Pattern classification, Loss function,
Support vector machine, Twin support vector machine, Alzheimer's disease
BibRef
Liu, H.R.[Hong-Rui],
Gui, Y.Y.[Yuan-Yuan],
Lu, H.[Hui],
Liu, M.H.[Man-Hua],
A sparse transformer generation network for brain imaging genetic
association,
PR(156), 2024, pp. 110845.
Elsevier DOI
2408
Imaging genetics, Sparse transformer, Alzheimer's disease, Brain aging
BibRef
Hesse, L.S.[Linde S.],
Dinsdale, N.K.[Nicola K.],
Namburete, A.I.L.[Ana I.L.],
Prototype Learning for Explainable Brain Age Prediction,
WACV24(7888-7898)
IEEE DOI
2404
Training, Measurement, Visualization, Ultrasonic imaging,
Magnetic resonance imaging, Prototypes, Predictive models,
ethical computer vision
BibRef
Shah, J.[Jay],
Siddiquee, M.M.R.[Md Mahfuzur Rahman],
Su, Y.[Yi],
Wu, T.[Teresa],
Li, B.X.[Bao-Xin],
Ordinal Classification with Distance Regularization for Robust Brain
Age Prediction,
WACV24(7867-7876)
IEEE DOI Code:
WWW Link.
2404
Systematics, Magnetic resonance imaging,
Biological system modeling, Aging, Predictive models,
body pose
BibRef
Kumar, S.[Suraj],
Singh, N.P.[Narendra Pratap],
Brahma, B.[Banalaxmi],
AI-Based Model for Detection and Classification of Alzheimer Disease,
ICCVMI23(1-6)
IEEE DOI
2403
Training, Support vector machines, Neurological diseases,
Magnetic resonance imaging, Computational modeling, MRI
BibRef
Huang, W.C.[Wei-Chen],
Multimodal Contrastive Learning and Tabular Attention for Automated
Alzheimer's Disease Prediction,
CVAMD23(2465-2474)
IEEE DOI
2401
BibRef
Li, F.[Fanshi],
Wang, Z.H.[Zhi-Hui],
Guo, Y.F.[Yi-Fan],
Liu, C.C.[Cong-Cong],
Zhu, Y.J.[Yan-Jie],
Zhou, Y.H.[Yi-Hang],
Li, J.[Jun],
Liang, D.[Dong],
Wang, H.F.[Hai-Feng],
Dynamic Dual-Graph Fusion Convolutional Network for Alzheimer's
Disease Diagnosis,
ICIP23(675-679)
IEEE DOI
2312
BibRef
Alzahrani, F.[Fatimah],
Mirheidari, B.[Bahman],
Blackburn, D.[Daniel],
Maddock, S.[Steve],
Christensen, H.[Heidi],
Investigating Visual Features for Cognitive Impairment Detection
Using In-the-wild Data,
FG23(1-8)
IEEE DOI
2303
Visualization, Costs, Face recognition, Speech recognition,
Gesture recognition, Feature extraction, Magnetic heads
BibRef
Cilia, N.D.[Nicole Dalia],
d'Alessandro, T.[Tiziana],
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
Offline handwriting image analysis to predict Alzheimer's disease via
deep learning,
ICPR22(2807-2813)
IEEE DOI
2212
Deep learning, Motor drives, Image analysis, Shape,
Image color analysis, Neural networks, Transfer learning
BibRef
Wang, J.[Jianjia],
Wu, C.[Chong],
Data-driven Latent Graph Structure Learning for Diagnosis of
Alzheimer's Syndrome,
ICPR22(3138-3144)
IEEE DOI
2212
Image edge detection, Functional magnetic resonance imaging,
Pattern recognition, Task analysis, Alzheimer's disease, Complex systems
BibRef
Salih, A.[Ahmed],
Galazzo, I.B.[Ilaria Boscolo],
Cruciani, F.[Federica],
Brusini, L.[Lorenza],
Radeva, P.[Petia],
Investigating Explainable Artificial Intelligence for MRI-based
Classification of Dementia:
A New Stability Criterion for Explainable Methods,
ICIP22(4003-4007)
IEEE DOI
2211
Stability criteria, Machine learning, Robustness,
Alzheimer's disease, Monitoring, Explainability, XAI, Proxy
BibRef
Bernava, G.M.[Giuseppe Massimo],
Leo, M.[Marco],
Carcagnì, P.[Pierluigi],
Distante, C.[Cosimo],
An Advanced Tool for Semi-automatic Annotation for Early Screening of
Neurodevelopmental Disorders,
AI-Care22(154-164).
Springer DOI
2208
BibRef
Ostertag, C.[Cecilia],
Beurton-Aimar, M.[Marie],
Visani, M.[Muriel],
Urruty, T.[Thierry],
Bertet, K.[Karell],
Predicting Brain Degeneration with a Multimodal Siamese Neural
Network,
IPTA20(1-6)
IEEE DOI
2206
Training, Recurrent neural networks, Magnetic resonance imaging,
Image processing, Tools, Biological neural networks, Diseases,
Alzheimer's disease
BibRef
Maronnat, F.[Florian],
Seguin, M.[Margaux],
Djemal, K.[Khalifa],
Cognitive tasks modelization and description in VR environment for
Alzheimer's disease state identification,
IPTA20(1-7)
IEEE DOI
2206
Solid modeling, Biological system modeling, Virtual environments,
Tools, Task analysis, Statistics, Diseases, Alzheimer disease,
dementia
BibRef
Bastos, J.[José],
Silva, F.[Filipe],
Georgieva, P.[Petia],
Deep Learning for Diagnosis of Alzheimer's Disease with FDG-PET
Neuroimaging,
IbPRIA22(95-107).
Springer DOI
2205
BibRef
Parziale, A.[Antonio],
Cioppa, A.D.[Antonio Della],
Marcelli, A.[Angelo],
Investigating One-Class Classifiers to Diagnose Alzheimer's Disease
from Handwriting,
CIAP22(I:111-123).
Springer DOI
2205
BibRef
Fontanella, F.[Francesco],
Pinelli, S.[Sonia],
Babiloni, C.[Claudio],
Lizio, R.[Roberta],
del Percio, C.[Claudio],
Lopez, S.[Susanna],
Noce, G.[Giuseppe],
Giubilei, F.[Franco],
Stocchi, F.[Fabrizio],
Frisoni, G.B.[Giovanni B.],
Nobili, F.[Flavio],
Ferri, R.[Raffaele],
d'Alessandro, T.[Tiziana],
Cilia, N.D.[Nicole Dalia],
de Stefano, C.[Claudio],
Machine Learning to Predict Cognitive Decline of Patients with
Alzheimer's Disease Using EEG Markers: A Preliminary Study,
CIAP22(I:137-147).
Springer DOI
2205
BibRef
Ayyar, M.P.[Meghna P.],
Benois-Pineau, J.[Jenny],
Zemmari, A.[Akka],
Catheline, G.[Gwenaelle],
Explaining 3D CNNs for Alzheimer's Disease Classification on sMRI
Images with Multiple ROIs,
ICIP21(284-288)
IEEE DOI
2201
Heating systems, Deep learning, Correlation,
Magnetic resonance imaging, Image processing,
Deep Learning understanding
BibRef
Liu, C.[Chao],
Yang, X.D.[Xiao-Dong],
Chong, D.[Dading],
Wang, W.W.[Wen-Wu],
Li, L.[Liang],
Enhancing Alzheimer's Disease Diagnosis via Hierarchical 3D-FCN with
Multi-Modal Features,
ICIP21(304-308)
IEEE DOI
2201
Training, Neurological diseases, Sociology, Senior citizens,
Feature extraction, Medical diagnosis,
Multi-layer perceptron
BibRef
Zhang, L.[Lin],
Xin, B.[Bowen],
Yan, S.Z.[Shao-Zhen],
Zheng, C.[Chaoiie],
Zhou, Y.[Yun],
Lu, J.[Jie],
Wang, X.Y.[Xiu-Ying],
Multi-stratification feature selection for diagnostic analysis of
Alzheimer's disease,
DICTA21(01-07)
IEEE DOI
2201
Neuroimaging, Brain, Magnetic resonance imaging, Digital images,
Feature extraction, Alzheimer's disease, Task analysis
BibRef
Cilia, N.D.[Nicole Dalia],
de Stefano, C.[Claudio],
Marrocco, C.[Claudio],
Fontanella, F.[Francesco],
Molinara, M.[Mario],
di Freca, A.S.[Alessandra Scotto],
Deep Transfer Learning for Alzheimer's disease detection,
ICPR21(9904-9911)
IEEE DOI
2105
Decision support systems, Shape, Image color analysis,
Transfer learning, Neural networks, Feature extraction, Pattern recognition
BibRef
Yu, F.[Fei],
Zhao, B.Q.[Bao-Qi],
Ge, Q.Q.[Qing-Qing],
Zhang, Z.J.[Zhi-Jie],
Sun, J.M.[Jun-Mei],
Li, X.M.[Xiu-Mei],
A Lightweight Spatial Attention Module with Adaptive Receptive Fields
in 3d Convolutional Neural Network for Alzheimer's Disease
Classification,
AIHA20(575-586).
Springer DOI
2103
BibRef
Dentamaro, V.[Vincenzo],
Impedovo, D.[Donato],
Pirlo, G.[Giuseppe],
An Analysis of Tasks and Features for Neuro-degenerative Disease
Assessment by Handwriting,
AIHA20(536-545).
Springer DOI
2103
BibRef
Cilia, N.D.[Nicole Dalia],
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
di Freca, A.S.[Alessandra Scotto],
Handwriting-based Classifier Combination for Cognitive Impairment
Prediction,
AIHA20(587-599).
Springer DOI
2103
BibRef
de Gregorio, G.[Giuseppe],
Desiato, D.[Domenico],
Marcelli, A.[Angelo],
Polese, G.[Giuseppe],
A Multi Classifier Approach for Supporting Alzheimer's Diagnosis Based
on Handwriting Analysis,
AIHA20(559-574).
Springer DOI
2103
BibRef
Ebrahimi, A.,
Luo, S.,
Chiong, R.,
Introducing Transfer Leaming to 3D ResNet-18 for Alzheimer's Disease
Detection on MRI Images,
IVCNZ20(1-6)
IEEE DOI
2012
Training, Solid modeling,
Magnetic resonance imaging, Computational modeling, Taguchi
BibRef
Zhou, L.,
Zhang, L.,
Bai, X.,
Zhou, J.,
Matrix Classifier on Dynamic Functional Connectivity for MCI
Identification,
ICIP20(325-329)
IEEE DOI
2011
Feature extraction, Correlation, Dementia,
Spatiotemporal phenomena, Training, Alzheimer's disease (AD),
support matrix machines (SMM)
BibRef
Miller, M.I.[Michael I.],
Tward, D.J.[Daniel J.],
Trouvé, A.[Alain],
Coarse-to-Fine Hamiltonian Dynamics of Hierarchical Flows in
Computational Anatomy,
Diff-CVML20(3760-3765)
IEEE DOI
2008
Results on Alzheimer's.
Shape, Kernel,
Mathematical model, Shape measurement, Atmospheric measurements
BibRef
Slapnicar, G.,
Dovgan, E.,
Cuk, P.,
Lustrek, M.,
Contact-Free Monitoring of Physiological Parameters in People With
Profound Intellectual and Multiple Disabilities,
CVPM19(1664-1672)
IEEE DOI
2004
Videos, Skin, Biomedical monitoring, Heart rate, Databases, Blood,
Physiology, physiological signals, PIMD, deep learning, LSTM, rPPG,
video cameras
BibRef
Zhang, Y.[Yanfu],
Zhan, L.[Liang],
Thompson, P.M.[Paul M.],
Huang, H.[Heng],
Biological Knowledge Guided Deep Neural Network for Brain
Genotype-phenotype Association Study,
MBIA19(84-92).
Springer DOI
1912
BibRef
Peng, B.[Bo],
Ren, Z.Y.[Zhi-Yun],
Yao, X.H.[Xiao-Hui],
Liu, K.[Kefei],
Saykin, A.J.[Andrew J.],
Shen, L.[Li],
Ning, X.[Xia],
Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via
Learning to Rank,
MBIA19(139-148).
Springer DOI
1912
BibRef
Wegmayr, V.[Viktor],
Hörold, M.[Maurice],
Buhmann, J.M.[Joachim M.],
Generative Aging of Brain MR-Images and Prediction of Alzheimer
Progression,
GCPR19(247-260).
Springer DOI
1911
BibRef
Ge, C.,
Qu, Q.,
Gu, I.Y.,
Store Jakola, A.,
Multiscale Deep Convolutional Networks for Characterization and
Detection of Alzheimer's Disease Using MR images,
ICIP19(789-793)
IEEE DOI
1910
Alzheimer's disease detection, MR images, multiscale features,
multiscale CNN, feature fusion and enhancement
BibRef
Dentamaro, V.[Vincenzo],
Impedovo, D.[Donato],
Pirlo, G.[Giuseppe],
Real-Time Neurodegenerative Disease Video Classification with Severity
Prediction,
CIAP19(II:618-628).
Springer DOI
1909
BibRef
Cilia, N.D.[Nicole Dalia],
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
Molinara, M.[Mario],
di Freca, A.S.[Alessandra Scotto],
Using Handwriting Features to Characterize Cognitive Impairment,
CIAP19(II:683-693).
Springer DOI
1909
BibRef
Plocharski, M.[Maciej],
Østergaard, L.R.[Lasse Riis],
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Sulcal and Cortical Features for Classification of Alzheimer's Disease
and Mild Cognitive Impairment,
SCIA19(427-438).
Springer DOI
1906
BibRef
Pan, X.,
Adel, M.,
Fossati, C.,
Gaidon, T.,
Guedj, E.,
Alzheimer's Disease Diagnosis with FDG-PET Brain Images By Using
Multi-Level Features,
ICIP18(366-370)
IEEE DOI
1809
Feature extraction, Dementia, Magnetic resonance imaging,
Positron emission tomography, Symmetric matrices,
Alzheimer's Disease
BibRef
Zuanon, R.[Rachel],
de Faria, B.A.C.[Barbara Alves Cardoso],
Landscape Design and Neuroscience Cooperation: Contributions to the
Non-pharmacological Treatment of Alzheimer's Disease,
DHM18(353-374).
Springer DOI
1807
BibRef
Ben-Ahmed, O.,
Lecellier, F.,
Paccalin, M.,
Fernandez-Maloigne, C.,
Multi-View Visual Saliency-Based MRI Classification for Alzheimer's
Disease Diagnosis,
IPTA17(1-6)
IEEE DOI
1804
biomedical MRI, brain, diseases, image classification,
learning (artificial intelligence), medical image processing,
visual saliency
BibRef
Lazli, L.,
Boukadoum, M.,
Aït-Mohamed, O.,
Brain Tissue Classification of Alzheimer Disease Using Partial Volume
Possibilistic Modeling: Application to ADNI Phantom Images,
IPTA17(1-5)
IEEE DOI
1804
biological tissues, biomedical MRI, brain, diseases,
fuzzy set theory, image classification, image denoising,
Possibilistic c-means algorithm
BibRef
Li, Q.[Qing],
Wu, X.[Xia],
Xu, L.[Lele],
Yao, L.[Li],
Chen, K.W.[Ke-Wei],
Multi-Feature Kernel Discriminant Dictionary Learning for
Classification in Alzheimer's Disease,
DICTA17(1-6)
IEEE DOI
1804
biomedical MRI, diseases, face recognition, feature extraction,
image classification, medical image processing,
Training
See also Multi-Feature Kernel Discriminant Dictionary Learning for Face Recognition.
BibRef
Mehta, R.,
Chakraborty, R.,
Singh, V.,
Xiong, Y.,
Scaling Recurrent Models via Orthogonal Approximations in Tensor
Trains,
ICCV19(10570-10578)
IEEE DOI
2004
Tensile stress, Manifolds, Computational modeling, Brain modeling,
Data models, Solid modeling
BibRef
El-Gamal, F.E.Z.A.,
Elmogy, M.M.,
Atwan, A.,
Ghazal, M.,
Barnes, G.N.,
Hajjdiab, H.,
Keynton, R.,
El-Baz, A.S.,
Significant Region-Based Framework for Early Diagnosis of Alzheimer's
Disease Using11C PiB-PET Scans,
ICPR18(2989-2994)
IEEE DOI
1812
Diseases, Feature extraction, Labeling, Statistical analysis,
Support vector machines, Positron emission tomography, Standardization
BibRef
El-Gamal, F.E.Z.A.,
Elmogy, M.M.,
Ghazal, M.,
Atwan, A.,
Barnes, G.N.,
Casanova, M.F.,
Keynton, R.,
El-Baz, A.S.,
A novel CAD system for local and global early diagnosis of
Alzheimer's disease based on PIB-PET scans,
ICIP17(3270-3274)
IEEE DOI
1803
Brain, Databases, Diseases, Feature extraction, Noise reduction,
Probabilistic logic, Support vector machines,
PIB-PET
BibRef
Shams-Baboli, A.,
Ezoji, M.,
A Zernike moment based method for classification of Alzheimer's
disease from structural MRI,
IPRIA17(38-43)
IEEE DOI
1712
backpropagation, biomedical MRI, diseases, feature extraction,
image classification, medical image processing, neural nets,
mild cognitive impairment
BibRef
Konukoglu, E.[Ender],
Glocker, B.[Ben],
Constructing Subject- and Disease-Specific Effect Maps:
Application to Neurodegenerative Diseases,
MCV16(3-13).
Springer DOI
1711
BibRef
Wang, J.J.[Jian-Jia],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Quantum Edge Entropy for Alzheimer's Disease Analysis,
SSSPR18(449-459).
Springer DOI
1810
BibRef
Earlier:
Detecting Alzheimer's Disease Using Directed Graphs,
GbRPR17(94-104).
Springer DOI
1706
See also Network Edge Entropy from Maxwell-Boltzmann Statistics.
BibRef
Bernardes, R.[Rui],
Silva, G.[Gilberto],
Chiquita, S.[Samuel],
Serranho, P.[Pedro],
Ambrósio, A.F.[António Francisco],
Retinal Biomarkers of Alzheimer's Disease: Insights from Transgenic
Mouse Models,
ICIAR17(541-550).
Springer DOI
1706
BibRef
Kumar, K.,
Desrosiers, C.,
Chaddad, A.,
Toews, M.,
Spatially constrained sparse regression for the data-driven discovery
of Neuroimaging biomarkers,
ICPR16(2162-2167)
IEEE DOI
1705
Alzheimer's disease, Biomarkers, Brain modeling, Data models,
Databases, Neuroimaging
BibRef
Montenegro, J.M.F.[Juan Manuel Fernandez],
Villarini, B.[Barbara],
Gkelias, A.[Athanasios],
Argyriou, V.[Vasileios],
Cognitive Behaviour Analysis Based on Facial Information Using Depth
Sensors,
UHA3DS16(15-28).
Springer DOI
1806
BibRef
Montenegro, J.M.F.[Juan Manuel Fernandez],
Gkelias, A.[Athanasios],
Argyriou, V.[Vasileios],
Emotion Understanding Using Multimodal Information Based on
Autobiographical Memories for Alzheimer's Patients,
Assist16(I: 252-268).
Springer DOI
1704
BibRef
Cury, C.[Claire],
Lorenzi, M.[Marco],
Cash, D.[David],
Nicholas, J.M.[Jennifer M.],
Routier, A.[Alexandre],
Rohrer, J.[Jonathan],
Ourselin, S.[Sebastien],
Durrleman, S.[Stanley],
Modat, M.[Marc],
Spatio-Temporal Shape Analysis of Cross-Sectional Data for Detection of
Early Changes in Neurodegenerative Disease,
SeSAME16(63-75).
Springer DOI
1703
BibRef
Rudas, J.[Jorge],
Martínez, D.[Darwin],
Demertzi, A.[Athena],
di Perri, C.[Carol],
Heine, L.[Lizette],
Tshibanda, L.[Luaba],
Soddu, A.[Andrea],
Multivariate Functional Network Connectivity for Disorders of
Consciousness,
CIARP16(434-442).
Springer DOI
1703
BibRef
Bhatkoti, P.,
Paul, M.,
Early diagnosis of Alzheimer's disease: A multi-class deep learning
framework with modified k-sparse autoencoder classification,
ICVNZ16(1-5)
IEEE DOI
1701
Alzheimer's disease
BibRef
Joshi, S.H.[Shantanu H.],
Xie, Q.[Qian],
Kurtek, S.[Sebastian],
Srivastava, A.[Anuj],
Laga, H.[Hamid],
Surface Shape Morphometry for Hippocampal Modeling in Alzheimer's
Disease,
DICTA16(1-8)
IEEE DOI
1701
Diseases
BibRef
Aderghal, K.[Karim],
Boissenin, M.[Manuel],
Benois-Pineau, J.[Jenny],
Catheline, G.[Gwenaëlle],
Afdel, K.[Karim],
Classification of sMRI for AD Diagnosis with Convolutional Neuronal
Networks: A Pilot 2-D+ epsilon Study on ADNI,
MMMod17(I: 690-701).
Springer DOI
1701
BibRef
Tang, X.,
Albert, M.,
Miller, M.I.[Michael I.],
Younes, L.[Laurent],
Change Point Estimation of the Hippocampal Volumes in Alzheimer's
Disease,
CRV16(358-361)
IEEE DOI
1612
Alzheimer's disease
BibRef
Kim, W.H.[Won Hwa],
Kim, H.W.J.[Hyun-Woo J.],
Adluru, N.[Nagesh],
Singh, V.[Vikas],
Latent Variable Graphical Model Selection Using Harmonic Analysis:
Applications to the Human Connectome Project (HCP),
CVPR16(2443-2451)
IEEE DOI
1612
BibRef
Zheng, X.[Xiao],
Shi, J.[Jun],
Ying, S.H.[Shi-Hui],
Zhang, Q.[Qi],
Li, Y.[Yan],
Improving Single-Modal Neuroimaging Based Diagnosis of Brain Disorders
via Boosted Privileged Information Learning Framework,
MLMI16(95-103).
Springer DOI
1611
BibRef
Zu, C.[Chen],
Gao, Y.[Yue],
Munsell, B.[Brent],
Kim, M.J.[Min-Jeong],
Peng, Z.[Ziwen],
Zhu, Y.Y.[Ying-Ying],
Gao, W.[Wei],
Zhang, D.Q.[Dao-Qiang],
Shen, D.G.[Ding-Gang],
Wu, G.R.[Guo-Rong],
Identifying High Order Brain Connectome Biomarkers via Learning on
Hypergraph,
MLMI16(1-9).
Springer DOI
1611
BibRef
Hosseini-Asl, E.,
Keynton, R.,
El-Baz, A.,
Alzheimer's disease diagnostics by adaptation of 3D convolutional
network,
ICIP16(126-130)
IEEE DOI
1610
Convolution
BibRef
Rabeh, A.B.,
Benzarti, F.,
Amiri, H.,
Diagnosis of Alzheimer Diseases in Early Step Using SVM (Support
Vector Machine),
CGiV16(364-367)
IEEE DOI
1608
diseases
BibRef
Daianu, M.[Madelaine],
Steeg, G.V.[Greg Ver],
Mezher, A.[Adam],
Jahanshad, N.[Neda],
Nir, T.M.[Talia M.],
Yan, X.R.[Xiao-Ran],
Prasad, G.[Gautam],
Lerman, K.[Kristina],
Galstyan, A.[Aram],
Thompson, P.M.[Paul M.],
Information-Theoretic Clustering of Neuroimaging Metrics Related to
Cognitive Decline in the Elderly,
MCV15(13-23).
Springer DOI
1608
BibRef
Ben Ahmed, O.[Olfa],
Benois-Pineau, J.[Jenny],
Ben Amar, C.[Chokri],
Aliara, M.[Michele],
Catheline, G.[Gwenaelle],
Features-based approach for Alzheimer's disease diagnosis using
visual pattern of water diffusion in tensor diffusion imaging,
ICIP15(2840-2844)
IEEE DOI
1512
AD-related signature
BibRef
Garg, S.[Saurabh],
Tang, L.[Lisa],
Traboulsee, A.[Anthony],
Tam, R.[Roger],
A sensitive and efficient method for measuring change in cortical
thickness using fuzzy correspondence in Alzheimer's disease,
ICIP15(3014-3018)
IEEE DOI
1512
Cortical Thickness; atrophy; gray matter; longitudinal measurement
BibRef
Garali, I.[Imene],
Adel, M.[Mouloud],
Bourennane, S.[Salah],
Guedj, E.[Eric],
Region-based brain selection and classification on pet images for
Alzheimer's disease computer aided diagnosis,
ICIP15(1473-1477)
IEEE DOI
1512
Alzheimer's Disease (AD)
BibRef
Moetesum, M.[Momina],
Siddiqi, I.[Imran],
Masroor, U.[Uzma],
Djeddi, C.[Chawki],
Automated scoring of Bender Gestalt Test using image analysis
techniques,
ICDAR15(666-670)
IEEE DOI
1511
Drawing tests for early detection of psychological and
neurological impairments
BibRef
Lei, B.Y.[Bai-Ying],
Chen, S.P.[Si-Ping],
Ni, D.[Dong],
Wang, T.F.[Tian-Fu],
Joint Learning of Multiple Longitudinal Prediction Models by Exploring
Internal Relations,
MLMI15(330-337).
Springer DOI
1511
BibRef
Guerrero, R.,
Ledig, C.,
Schmidt-Richberg, A.,
Rueckert, D.,
Group-Constrained Laplacian Eigenmaps:
Longitudinal AD Biomarker Learning,
MLMI15(178-185).
Springer DOI
1511
BibRef
Amoroso, N.[Nicola],
Tangaro, S.[Sabina],
Errico, R.[Rosangela],
Garuccio, E.[Elena],
Monda, A.[Anna],
Sensi, F.[Francesco],
Tateo, A.[Andrea],
Bellotti, R.[Roberto],
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
An Hippocampal Segmentation Tool Within an Open Cloud Infrastructure,
ISCA15(193-200).
Springer DOI
1511
BibRef
Vanderweyen, D.[Davy],
Munsell, B.C.[Brent C.],
Mintzer, J.E.[Jacobo E.],
Mintzer, O.[Olga],
Gajadharr, A.[Andy],
Zhu, X.[Xun],
Wu, G.R.[Guo-Rong],
Joseph, J.[Jane],
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Identifying Abnormal Network Alterations Common to Traumatic Brain
Injury and Alzheimer's Disease Patients Using Functional Connectome
Data,
MLMI15(229-237).
Springer DOI
1511
BibRef
Huang, L.[Lei],
Gao, Y.Z.[Yao-Zong],
Jin, Y.[Yan],
Thung, K.H.[Kim-Han],
Shen, D.G.[Ding-Gang],
Soft-Split Sparse Regression Based Random Forest for Predicting Future
Clinical Scores of Alzheimer's Disease,
MLMI15(246-254).
Springer DOI
1511
BibRef
Andersen, S.K.[Simon Kragh],
Jakobsen, C.E.[Christian Elmholt],
Pedersen, C.H.[Claus Hougaard],
Rasmussen, A.M.[Anders Munk],
Plocharski, M.[Maciej],
Østergaard, L.R.[Lasse Riis],
Classification of Alzheimer's Disease from MRI Using Sulcal Morphology,
SCIA15(103-113).
Springer DOI
1506
BibRef
Zhao, Y.[Yilu],
He, L.H.[Liang-Hua],
Deep Learning in the EEG Diagnosis of Alzheimer's Disease,
DeepLearnV14(340-353).
Springer DOI
1504
BibRef
Aidos, H.[Helena],
Duarte, J.[Joao],
Fred, A.[Ana],
Identifying regions of interest for discriminating Alzheimer's
disease from mild cognitive impairment,
ICIP14(21-25)
IEEE DOI
1502
Accuracy
BibRef
Guerrero, R.[Ricardo],
Ledig, C.[Christian],
Rueckert, D.[Daniel],
Manifold Alignment and Transfer Learning for Classification of
Alzheimer's Disease,
MLMI14(77-84).
Springer DOI
1410
BibRef
Shi, Y.H.[Ying-Huan],
Suk, H.I.[Heung-Il],
Gao, Y.[Yang],
Shen, D.G.[Ding-Gang],
Joint Coupled-Feature Representation and Coupled Boosting for AD
Diagnosis,
CVPR14(2721-2728)
IEEE DOI
1409
Alzheimer and Mild Cognitive Impairment.
BibRef
Zhu, X.F.[Xiao-Feng],
Suk, H.I.[Heung-Il],
Shen, D.G.[Ding-Gang],
Matrix-Similarity Based Loss Function and Feature Selection for
Alzheimer's Disease Diagnosis,
CVPR14(3089-3096)
IEEE DOI
1409
BibRef
Yan, Z.N.[Zhen-Nan],
Zhang, S.T.[Shao-Ting],
Liu, X.F.[Xiao-Feng],
Metaxas, D.N.[Dimitris N.],
Montillo, A.[Albert],
Accurate Whole-Brain Segmentation for Alzheimer's Disease Combining an
Adaptive Statistical Atlas and Multi-atlas,
MCV13(65-73).
Springer DOI
1405
BibRef
Liu, S.[Sidong],
Zhang, L.[Lelin],
Cai, W.D.[Wei-Dong],
Song, Y.[Yang],
Wang, Z.Y.[Zhi-Yong],
Wen, L.F.[Ling-Feng],
Feng, D.D.[David Dagan],
A supervised multiview spectral embedding method for neuroimaging
classification,
ICIP13(601-605)
IEEE DOI
1402
Alzheimer's disease
BibRef
Liu, S.[Sidong],
Cai, W.D.[Wei-Dong],
Wen, L.F.[Ling-Feng],
Feng, D.D.[David Dagan],
Multiscale and multiorientation feature extraction with degenerative
patterns for 3D neuroimaging retrieval,
ICIP12(1249-1252).
IEEE DOI
1302
BibRef
Sun, Z.[Zhuo],
Jasinschi, R.S.[Radu S.],
Veerman, J.A.C.[Jan A.C.],
A new method for data-driven multi-brain atlas generation,
ICIP14(3503-3507)
IEEE DOI
1502
Alzheimer's disease
BibRef
Earlier: A1, A3, A2:
A method for detecting interstructural atrophy correlation in MRI brain
images,
ICIP12(1253-1256).
IEEE DOI
1302
BibRef
Gomez, F.,
Soddu, A.,
Noirhomme, Q.,
Vanhaudenhuyse, A.,
Tshibanda, L.,
Lepore, N.,
Laureys, S.,
DTI based structural damage characterization for Disorders of
Consciousness,
ICIP12(1257-1260).
IEEE DOI
1302
BibRef
Bicacro, E.[Eduardo],
Silveira, M.[Margarida],
Marques, J.S.[Jorge S.],
Alternative feature extraction methods in 3D brain image-based
diagnosis of Alzheimer's Disease,
ICIP12(1237-1240).
IEEE DOI
1302
BibRef
Mizotin, M.[Maxim],
Benois-Pineau, J.[Jenny],
Allard, M.[Michele],
Catheline, G.[Gwenaelle],
Feature-based brain MRI retrieval for Alzheimer disease diagnosis,
ICIP12(1241-1244).
IEEE DOI
1302
BibRef
Dyrba, M.[Martin],
Ewers, M.[Michael],
Wegrzyn, M.[Martin],
Kilimann, I.[Ingo],
Plant, C.[Claudia],
Oswald, A.[Annahita],
Meindl, T.[Thomas],
Pievani, M.[Michela],
Bokde, A.L.W.[Arun L. W.],
Fellgiebel, A.[Andreas],
Filippi, M.[Massimo],
Hampel, H.[Harald],
Kloppel, S.[Stefan],
Hauenstein, K.[Karlheinz],
Kirste, T.[Thomas],
Teipel, S.J.[Stefan J.],
Combining DTI and MRI for the Automated Detection of Alzheimer's
Disease Using a Large European Multicenter Dataset,
MBIA12(18-28).
Springer DOI
1210
BibRef
Rueda, A.[Andrea],
Arevalo, J.[John],
Cruz, A.[Angel],
Romero, E.[Eduardo],
González, F.A.[Fabio A.],
Bag of Features for Automatic Classification of Alzheimer's Disease in
Magnetic Resonance Images,
CIARP12(559-566).
Springer DOI
1209
BibRef
Hajiesmaeili, M.[Maryam],
Bagherinakhjavanlo, B.[Bashir],
Dehmeshki, J.[Jamshid],
Ellis, T.[Tim],
Segmentation of the Hippocampus for Detection of Alzheimer's Disease,
ISVC12(I: 42-50).
Springer DOI
1209
BibRef
Wan, J.[Jing],
Zhang, Z.L.[Zhi-Lin],
Yan, J.W.[Jing-Wen],
Li, T.[Taiyong],
Rao, B.D.[Bhaskar D.],
Fang, S.F.[Shiao-Fen],
Kim, S.[Sungeun],
Risacher, S.L.[Shannon L.],
Saykin, A.J.[Andrew J.],
Shen, L.[Li],
Sparse Bayesian multi-task learning for predicting cognitive outcomes
from neuroimaging measures in Alzheimer's disease,
CVPR12(940-947).
IEEE DOI
1208
BibRef
Wang, H.[Hua],
Nie, F.P.[Fei-Ping],
Huang, H.[Heng],
Risacher, S.[Shannon],
Ding, C.[Chris],
Saykin, A.J.[Andrew J.],
Shen, L.[Li],
Sparse multi-task regression and feature selection to identify brain
imaging predictors for memory performance,
ICCV11(557-562).
IEEE DOI
1201
BibRef
Veerman, J.A.C.,
Soldea, O.,
Sahindrakar, P.,
Wan, Y.,
Jasinschi, R.S.,
Application of computational anatomy methods to MRI data for the
diagnosis of Alzheimer'S disease,
ICIP11(1593-1596).
IEEE DOI
1201
BibRef
Filipovych, R.[Roman],
Resnick, S.M.[Susan M.],
Davatzikos, C.[Christos],
JointMMCC: Joint Maximum-Margin Classification and Clustering of
Imaging Data,
MedImg(31), No. 5, May 2012, pp. 1124-1140.
IEEE DOI
1202
BibRef
Earlier:
Multi-Kernel Classification for Integration of Clinical and Imaging
Data: Application to Prediction of Cognitive Decline in Older Adults,
MLMI11(26-34).
Springer DOI
1109
BibRef
Long, X.J.[Xiao-Jing],
Wyatt, C.[Chris],
An automatic unsupervised classification of MR images in Alzheimer's
disease,
CVPR10(2910-2917).
IEEE DOI
1006
BibRef
Silveira, M.[Margarida],
Marques, J.S.[Jorge S.],
Boosting Alzheimer Disease Diagnosis Using PET Images,
ICPR10(2556-2559).
IEEE DOI
1008
BibRef
Soldea, O.[Octavian],
Ekin, A.[Ahmet],
Soldea, D.F.[Diana F.],
Unay, D.[Devrim],
Cetin, M.[Mujdat],
Ercil, A.[Aytul],
Uzunbas, M.G.[Mustafa Gokhan],
Firat, Z.[Zeynep],
Cihangiroglu, M.[Mutlu],
Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Segmentation of Anatomical Structures in Brain MR Images Using Atlases
in FSL: A Quantitative Approach,
ICPR10(2592-2595).
IEEE DOI
1008
BibRef
Wang, J.N.[Jing-Nan],
Ekin, A.[Ahmet],
de Haan, G.[Gerard],
Shape analysis of brain ventricles for improved classification of
Alzheimer's patients,
ICIP08(2252-2255).
IEEE DOI
0810
BibRef
dos Santos, W.P.[Wellington P.],
de Souza, R.E.[Ricardo E.],
Silva, A.F.D.[Ascendino F. D.],
Santos Filho, P.B.[Plínio B.],
Evaluation of Alzheimer's Disease by Analysis of MR Images Using
Multilayer Perceptrons, Polynomial Nets and Kohonen LVQ Classifiers,
MIRAGE07(12-22).
Springer DOI
0703
BibRef
Hu, Z.H.[Zheng-Hui],
Shi, P.C.[Peng-Cheng],
Regularity and Complexity of Human Electroencephalogram Dynamics:
Applications to Diagnosis of Alzheimers Disease,
ICPR06(III: 245-248).
IEEE DOI
0609
BibRef
Teverovskiy, L.,
Liu, Y.,
Truly 3D Midsagittal Plane Extraction for Robust Neuroimage
Registration,
CMU-RI-TR-04-21, March, 2004.
HTML Version.
0501
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Parkinson's Disease .