21.9.2.1 Brain, Cortex, Alzheimer's Disease

Chapter Contents (Back)
Brain. Cortex. Alzheimer's Disease. For other Dementia MCI: Mild cognitive impairment.
See also Brain, Cortex, Dementia.
See also Brain, Cortex, Registration, Alignment, MRI, Other.
See also Functional Magnetic Resonance, fMRI.

Freeborough, P.A., Fox, N.C.,
MR Image Texture Analysis Applied to the Diagnosis and Tracking of Alzheimers-Disease,
MedImg(17), No. 3, June 1998, pp. 475-479.
IEEE Top Reference. 9809
BibRef

Freeborough, P.A.[Peter A.],
A Comparison of Fractal Texture Descriptors,
BMVC97(xx-yy).
HTML Version. 0209
BibRef

Bhattacharya, M., Majumder, D.D.,
Registration of CT and MR images of Alzheimer's patient: A Shape Theoretic Approach,
PRL(21), No. 6-7, June 2000, pp. 531-548. 0006
BibRef

Wang, L.[Lei], Beg, F.[Faisal], Ratnanather, J.T.[J. Tilak], Ceritoglu, C.[Can], Younes, L.[Laurent], Morris, J.C.[John C.], Csernansky, J.G.[John G.], Miller, M.I.[Michael I.],
Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer type,
MedImg(26), No. 4, April 2007, pp. 462-470.
IEEE DOI 0704

See also Diffeomorphic Active Contours. BibRef

Tward, D.[Daniel], Miller, M., Trouvé, A.[Alain], Younes, L.[Laurent],
Parametric Surface Diffeomorphometry for Low Dimensional Embeddings of Dense Segmentations and Imagery,
PAMI(39), No. 6, June 2017, pp. 1195-1208.
IEEE DOI 1705
Biological system modeling, Diseases, Hippocampus, Image segmentation, Magnetic resonance imaging, Measurement, Shape, Computational anatomy, diffeomorphometry, medical imaging, neuroimaging, shape, analysis BibRef

Tward, D.[Daniel], Jovicich, J.[Jorge], Soricelli, A.[Andrea], Frisoni, G.[Giovanni], Trouvé, A.[Alain], Younes, L.[Laurent], Miller, M.[Michael],
Improved Reproducibility of Neuroanatomical Definitions through Diffeomorphometry and Complexity Reduction,
MLMI14(223-230).
Springer DOI 1410
BibRef

Tu, Z.W.[Zhuo-Wen], Zheng, S.F.[Song-Feng], Yuille, A.L.[Alan L.], Reiss, A.L.[Allan L.], Dutton, R.A.[Rebecca A.], Lee, A.D.[Agatha D.], Galaburda, A.M.[Albert M.], Dinov, I.D.[Ivo D.], Thompson, P.M.[Paul M.], Toga, A.W.[Arthur W.],
Automated Extraction of the Cortical Sulci Based on a Supervised Learning Approach,
MedImg(26), No. 4, April 2007, pp. 541-552.
IEEE DOI 0704
BibRef

Shi, Y.G., Tu, Z., Reiss, A.L., Dutton, R.A., Lee, A.D., Galaburda, A.M., Dinov, I.D., Thompson, P.M., Toga, A.W.,
Joint Sulcal Detection on Cortical Surfaces With Graphical Models and Boosted Priors,
MedImg(28), No. 3, March 2009, pp. 361-373.
IEEE DOI 0903
BibRef

Liu, X.Y.[Xin-Yang], Liu, X.W.[Xiu-Wen], Shi, Y.G.[Yong-Gang], Thompson, P.M.[Paul M.], Mio, W.[Washington],
A Model of Volumetric Shape for the Analysis of Longitudinal Alzheimer's Disease Data,
ECCV10(III: 594-606).
Springer DOI 1009
BibRef

Alvarez Illan, I., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Lopez, M., Segovia, F., Padilla, P., Puntonet, C.G.,
Projecting independent components of SPECT images for computer aided diagnosis of Alzheimer's disease,
PRL(31), No. 11, 1 August 2010, pp. 1342-1347.
Elsevier DOI 1008
Alzheimer's disease; Independent Component Analysis; Computer aided diagnosis; Support vector machine; Supervised learning BibRef

Padilla, P., Lopez, M., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Alvarez, I.,
NMF-SVM Based CAD Tool Applied to Functional Brain Images for the Diagnosis of Alzheimer's Disease,
MedImg(31), No. 2, February 2012, pp. 207-216.
IEEE DOI 1202
BibRef

Salas-Gonzalez, D., Gorriz, J.M., Ramirez, J., Alvarez, I., Lopez, M., Segovia, F., Gomez-Rio, M.,
Skewness as feature for the diagnosis of Alzheimer's disease using SPECT images,
ICIP09(837-840).
IEEE DOI 0911
BibRef

Ye, J.P.[Jie-Ping], Wu, T.[Teresa], Li, J.[Jing], Chen, K.W.[Ke-Wei],
Machine Learning Approaches for the Neuroimaging Study of Alzheimer's Disease,
Computer(44), No. 4, April 2011, pp. 99-101.
IEEE DOI 1104
BibRef

Filipovych, R.[Roman], Wang, Y.[Ying], Davatzikos, C.[Christos],
Pattern analysis in neuroimaging: Beyond two-class categorization,
IJIST(21), No. 2, June 2011, pp. 173-178.
DOI Link 1101
clustering; MRI; aging; MCI; Alzheimer's disease BibRef

Pachauri, D., Hinrichs, C., Chung, M.K., Johnson, S.C., Singh, V.,
Topology-Based Kernels With Application to Inference Problems in Alzheimer's Disease,
MedImg(30), No. 10, October 2011, pp. 1760-1770.
IEEE DOI 1110
BibRef

Chaves, R., Ramírez, J., Górriz, J.M., Illán, I.A., Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Functional brain image classification using association rules defined over discriminant regions,
PRL(33), No. 12, 1 September 2012, pp. 1666-1672.
Elsevier DOI 1208
Functional brain imaging; Alzheimer's Disease; Fisher Discriminant Ratio; Association rules BibRef

Mesrob, L., Magnin, B., Colliot, O., Sarazin, M., Hahn-Barma, V., Dubois, B., Gallinari, P., Lehericy, S., Kinkingnehun, S., Benali, H.,
Identification of atrophy patterns in Alzheimer's disease based on SVM feature selection and anatomical parcellation,
BMVA(2009), No. 7, 2009, pp. 1-9.
PDF File. 1209
BibRef

Janousova, E.[Eva], Vounou, M.[Maria], Wolz, R.[Robin], Gray, K.R.[Katherine R.], Rueckert, D.[Daniel], Montana, G.[Giovanni],
Biomarker discovery for sparse classification of brain images in Alzheimer's disease,
BMVA(2012), No. 2, 2012, pp. 1-11.
PDF File. 1209
BibRef

Cuingnet, R.[Rémi], Glaunès, J.A.[Joan Alexis], Chupin, M.[Marie], Benali, H.[Habib], Colliot, O.[Olivier],
Spatial and Anatomical Regularization of SVM: A General Framework for Neuroimaging Data,
PAMI(35), No. 3, March 2013, pp. 682-696.
IEEE DOI 1303
BibRef
Earlier:
Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer's Disease,
MLMI11(201-208).
Springer DOI 1109
BibRef

Zhao, M.B.[Ming-Bo], Chan, R.H.M., Chow, T.W.S., Tang, P.,
Compact Graph based Semi-Supervised Learning for Medical Diagnosis in Alzheimer's Disease,
SPLetters(21), No. 10, October 2014, pp. 1192-1196.
IEEE DOI 1407
Classification algorithms BibRef

Huang, S.[Shuai], Li, J.[Jing], Ye, J.P.[Jie-Ping], Fleisher, A.[Adam], Chen, K.W.[Ke-Wei], Wu, T.[Teresa], Reiman, E.[Eric],
A Sparse Structure Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional Data,
PAMI(35), No. 6, June 2013, pp. 1328-1342.
IEEE DOI 1305
the Alzheimer's Disease Neuroimaging Initiative. Apply to brain connectivity modeling. BibRef

Komlagan, M.[Mawulawoé], Ta, V.T.[Vinh-Thong], Pan, X.Y.[Xing-Yu], Domenger, J.P.[Jean-Philippe], Coupé, D.L.C.P.[D. Louis Collins Pierrick],
Anatomically Constrained Weak Classifier Fusion for Early Detection of Alzheimer's Disease,
MLMI14(141-148).
Springer DOI 1410
the Alzheimer's Disease Neuroimaging Initiative BibRef

Kodewitz, A.[Andreas], Lelandais, S.[Sylvie], Montagne, C.[Christophe], Vigneron, V.[Vincent],
Alzheimer's disease early detection from sparse data using brain importance maps,
ELCVIA(12), No. 1, 2013, pp. xx-yy.
DOI Link 1307
BibRef

Xie, J.[Jing], Fletcher, E.[Evan], Singh, B.[Baljeet], Carmichael, O.[Owen],
Robust measurement of individual localized changes to the aging hippocampus,
CVIU(117), No. 9, 2013, pp. 1128-1137.
Elsevier DOI 1307
Hippocampal shape change BibRef

Morabito, F.C.[Francesco Carlo],
The compressibility of an electroencephalography signal may indicate Alzheimer's disease,
SPIE(Newsroom), June 3, 2013
DOI Link 1307
By analyzing the content of electrical activity at the surface of the brain, researchers can distinguish between patients who are healthy and those with different types of cognitive impairment. BibRef

Ortiz, A.[Andrés], Górriz, J.M.[Juan M.], Ramírez, J.[Javier], Martínez-Murcia, F.J.,
LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease,
PRL(34), No. 14, 2013, pp. 1725-1733.
Elsevier DOI 1308
Alzheimer's disease BibRef

Zeng, W.[Wei], Shi, R.[Rui], Wang, Y.L.[Ya-Lin], Yau, S.T.[Shing-Tung], Gu, X.F.[Xian-Feng],
Teichmüller Shape Descriptor and Its Application to Alzheimer's Disease Study,
IJCV(105), No. 2, November 2013, pp. 155-170.
Springer DOI 1309
BibRef

Dai, D.[Dai], He, H.G.[Hui-Guang], Vogelstein, J.T.[Joshua T.], Hou, Z.G.[Zeng-Guang],
Accurate prediction of AD patients using cortical thickness networks,
MVA(24), No. 7, October 2013, pp. 1445-1457.
Springer DOI 1309
BibRef
Earlier:
Network-Based Classification Using Cortical Thickness of AD Patients,
MLMI11(193-200).
Springer DOI 1109
Alzheimers BibRef

Osadebey, M.[Michael], Bouguila, N.[Nizar], Arnold, D.[Douglas], And: Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
The clique potential of Markov random field in a random experiment for estimation of noise levels in 2D brain MRI,
IJIST(23), No. 4, 2013, pp. 304-313.
DOI Link 1312
magnetic resonance imaging BibRef

Osadebey, M.[Michael], Bouguila, N.[Nizar], Arnold, D.[Douglas], And: Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Four-neighborhood clique kernel: A general framework for Bayesian and variational techniques of noise reduction in magnetic resonance images of the brain,
IJIST(24), No. 3, 2014, pp. 224-238.
DOI Link 1408
magnetic resonance imaging BibRef

Zhao, X.J.[Xiao-Jie], Wen, X.T.[Xiao-Tong], Shen, J.H.[Jia-Hui], Hong, H.[Hao], Yao, L.[Li],
An improved fast marching method and its application in Alzheimer's disease,
IJIST(23), No. 4, 2013, pp. 346-352.
DOI Link 1312
fast marching method BibRef

Rueda, A., Gonzalez, F.A., Romero, E.,
Extracting Salient Brain Patterns for Imaging-Based Classification of Neurodegenerative Diseases,
MedImg(33), No. 6, June 2014, pp. 1262-1274.
IEEE DOI 1407
Brain modeling BibRef

Wan, J., Zhang, Z., Rao, B.D., Fang, S., Yan, J., Saykin, A.J., Shen, L.,
Identifying the Neuroanatomical Basis of Cognitive Impairment in Alzheimer's Disease by Correlation- and Nonlinearity-Aware Sparse Bayesian Learning,
MedImg(33), No. 7, July 2014, pp. 1475-1487.
IEEE DOI 1407
Alzheimer's disease BibRef

Yang, W.J.[Wen-Ji], Huang, W.[Wei], Chen, S.X.[Shan-Xue],
Partial Volume Correction on ASL-MRI and Its Application on Alzheimer's Disease Diagnosis,
IEICE(E97-D), No. 11, November 2014, pp. 2912-2918.
WWW Link. 1412
BibRef

Poynton, C.B., Jenkinson, M., Adalsteinsson, E., Sullivan, E.V., Pfefferbaum, A., Wells, W.M.,
Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation With Brain Iron in Normal Aging,
MedImg(34), No. 1, January 2015, pp. 339-353.
IEEE DOI 1502
Fourier analysis BibRef

Liu, X.W.[Xin-Wang], Zhou, L.P.[Lu-Ping], Wang, L.[Lei], Zhang, J.[Jian], Yin, J.P.[Jian-Ping], Shen, D.G.[Ding-Gang],
An efficient radius-incorporated MKL algorithm for Alzheimer's disease prediction,
PR(48), No. 7, 2015, pp. 2141-2150.
Elsevier DOI 1504
Multiple kernel learning BibRef

Aggarwal, N.[Namita], Rana, B.[Bharti], Agrawal, R.K.,
3d discrete wavelet transform for computer aided diagnosis of Alzheimer's disease using t1-weighted brain MRI,
IJIST(25), No. 2, 2015, pp. 179-190.
DOI Link 1506
BibRef
Earlier:
Computer Aided Diagnosis of Alzheimer's Disease from MRI Brain Images,
ICIAR12(II: 259-267).
Springer DOI 1206
Alzheimer's disease BibRef

Li, Y., Pan, J., Long, J., Yu, T., Wang, F., Yu, Z., Wu, W.,
Multimodal BCIs: Target Detection, Multidimensional Control, and Awareness Evaluation in Patients With Disorder of Consciousness,
PIEEE(104), No. 2, February 2016, pp. 332-352.
IEEE DOI 1601
Biomedical signal processing BibRef

Seo, D.H.[Do-Hyung], Ho, J.[Jeffrey], Vemuri, B.C.[Baba C.],
Covariant Image Representation with Applications to Classification Problems in Medical Imaging,
IJCV(116), No. 2, January 2016, pp. 190-209.
Springer DOI 1602
Apply to MR for Alzheimers and MR detection of seizures. BibRef

Liu, M.H.[Man-Hua], Zhang, D.Q.[Dao-Qiang], Shen, D.G.[Ding-Gang],
Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment,
MedImg(35), No. 6, June 2016, pp. 1463-1474.
IEEE DOI 1606
BibRef
Earlier:
Inherent Structure-Guided Multi-view Learning for Alzheimer's Disease and Mild Cognitive Impairment Classification,
MLMI15(296-303).
Springer DOI 1511
Alzheimer's disease BibRef

Zhu, W.Y.[Wen-Yong], Sun, L.[Liang], Huang, J.S.[Jia-Shuang], Han, L.X.[Liang-Xiu], Zhang, D.Q.[Dao-Qiang],
Dual Attention Multi-Instance Deep Learning for Alzheimer's Disease Diagnosis With Structural MRI,
MedImg(40), No. 9, September 2021, pp. 2354-2366.
IEEE DOI 2109
Feature extraction, Diseases, Pathology, Deep learning, Medical diagnosis, Magnetic resonance imaging, Grey matter, sMRI BibRef

Li, Z., Suk, H.I., Shen, D.G., Li, L.,
Sparse Multi-Response Tensor Regression for Alzheimer's Disease Study With Multivariate Clinical Assessments,
MedImg(35), No. 8, August 2016, pp. 1927-1936.
IEEE DOI 1608
Alzheimer's disease BibRef

Cheng, B.[Bo], Liu, M.X.[Ming-Xia], Zhang, D.Q.[Dao-Qiang],
Multimodal Multi-label Transfer Learning for Early Diagnosis of Alzheimer's Disease,
MLMI15(238-245).
Springer DOI 1511
BibRef

Liu, M.X.[Ming-Xia], Zhang, D.Q.[Dao-Qiang], Adeli-Mosabbeb, E.[Ehsan], Shen, D.G.[Ding-Gang],
Relationship Induced Multi-atlas Learning for Alzheimer's Disease Diagnosis,
MCV15(24-33).
Springer DOI 1608
BibRef

Liu, M.H.[Man-Hua], Zhang, D.Q.[Dao-Qiang], Yap, P.T.[Pew-Thian], Shen, D.G.[Ding-Gang],
Hierarchical Ensemble of Multi-level Classifiers for Diagnosis of Alzheimer's Disease,
MLMI12(27-35).
Springer DOI 1211
BibRef

Suk, H.I.[Heung-Il], Shen, D.G.[Ding-Gang],
Deep Ensemble Sparse Regression Network for Alzheimer's Disease Diagnosis,
MLMI16(113-121).
Springer DOI 1611
BibRef

Zhu, X.F.[Xiao-Feng], Suk, H.I.[Heung-Il], Zhu, Y.H.[Yong-Hua], Thung, K.H.[Kim-Han], Wu, G.R.[Guo-Rong], Shen, D.G.[Ding-Gang],
Multi-view Classification for Identification of Alzheimer's Disease,
MLMI15(255-262).
Springer DOI 1511
BibRef
Earlier: A1, A2, A6, Only:
Sparse Discriminative Feature Selection for Multi-class Alzheimer's Disease Classification,
MLMI14(157-164).
Springer DOI 1410
BibRef

Zhu, X.F.[Xiao-Feng], Suk, H.I.[Heung-Il], Thung, K.H.[Kim-Han], Zhu, Y.Y.[Ying-Ying], Wu, G.R.[Guo-Rong], Shen, D.G.[Ding-Gang],
Joint Discriminative and Representative Feature Selection for Alzheimer's Disease Diagnosis,
MLMI16(77-85).
Springer DOI 1611
BibRef

Zhu, X.F.[Xiao-Feng], Thung, K.H.[Kim-Han], Zhang, J.[Jun], Shen, D.G.[Ding-Gang],
Fast Neuroimaging-Based Retrieval for Alzheimer's Disease Analysis,
MLMI16(313-321).
Springer DOI 1611
BibRef

Zhang, D.Q.[Dao-Qiang], Shen, D.G.[Ding-Gang],
MultiCost: Multi-stage Cost-sensitive Classification of Alzheimer's Disease,
MLMI11(344-351).
Springer DOI 1109
BibRef

Zhou, L.P.[Lu-Ping], Wang, L.[Lei], Liu, L.Q.[Ling-Qiao], Ogunbona, P.O.[Philip O.], Shen, D.G.[Ding-Gang],
Learning Discriminative Bayesian Networks from High-Dimensional Continuous Neuroimaging Data,
PAMI(38), No. 11, November 2016, pp. 2269-2283.
IEEE DOI 1610
BibRef
Earlier:
Discriminative Brain Effective Connectivity Analysis for Alzheimer's Disease: A Kernel Learning Approach upon Sparse Gaussian Bayesian Network,
CVPR13(2243-2250)
IEEE DOI 1309
Bayes methods. Alzheimer's Disease BibRef

Zhou, L.P.[Lu-Ping], Wang, L.[Lei], Ogunbona, P.O.[Philip O.],
Discriminative Sparse Inverse Covariance Matrix: Application in Brain Functional Network Classification,
CVPR14(3097-3104)
IEEE DOI 1409
Graphical LASSO BibRef

Tong, T.[Tong], Gray, K.[Katherine], Gao, Q.[Qinquan], Chen, L.[Liang], Rueckert, D.[Daniel],
Multi-modal classification of Alzheimer's disease using nonlinear graph fusion,
PR(63), No. 1, 2017, pp. 171-181.
Elsevier DOI 1612
BibRef
Earlier:
Nonlinear Graph Fusion for Multi-modal Classification of Alzheimer's Disease,
MLMI15(77-84).
Springer DOI 1511
Multiple modalities BibRef

Shi, B.[Bibo], Chen, Y.[Yani], Zhang, P.[Pin], Smith, C.D.[Charles D.], Liu, J.D.[Jun-Dong],
Nonlinear Feature Transformation and Deep Fusion for Alzheimer's Disease Staging Analysis,
PR(63), No. 1, 2017, pp. 487-498.
Elsevier DOI 1612
BibRef
And: Erratum: PR(66), No. 1, 2017, pp. 447-.
Elsevier DOI 1704
BibRef
Earlier: A2, A1, A4, A5, Only: MLMI15(304-312).
Springer DOI 1511
Metric learning BibRef

Shi, B.[Bibo], Chen, Y.[Yani], Hobbs, K.[Kevin], Smith, C.D.[Charles D.], Liu, J.D.[Jun-Dong],
Nonlinear Metric Learning for Alzheimer’s Disease Diagnosis with Integration of Longitudinal Neuroimaging Features,
BMVC15(xx-yy).
DOI Link 1601
BibRef

Guerrero, R., Ledig, C., Schmidt-Richberg, A., Rueckert, D.,
Group-constrained manifold learning: Application to AD risk assessment,
PR(63), No. 1, 2017, pp. 570-582.
Elsevier DOI 1612
Alzheimer's disease BibRef

Zhang, J., Gao, Y., Gao, Y., Munsell, B.C., Shen, D.,
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis,
MedImg(35), No. 12, December 2016, pp. 2524-2533.
IEEE DOI 1612
Feature extraction BibRef

Nanni, L.[Loris], Salvatore, C.[Christian], Cerasa, A.[Antonio], Castiglioni, I.[Isabella],
Combining multiple approaches for the early diagnosis of Alzheimer's Disease,
PRL(84), No. 1, 2016, pp. 259-266.
Elsevier DOI 1612
Alzheimer's Disease BibRef

Lei, B., Yang, P., Wang, T., Chen, S., Ni, D.,
Relational-Regularized Discriminative Sparse Learning for Alzheimer's Disease Diagnosis,
Cyber(47), No. 4, April 2017, pp. 1102-1113.
IEEE DOI 1704
Cybernetics BibRef

Alam, S.[Saruar], Kwon, G.R.[Goo-Rak], Initiative, T.A.D.N.[The Alzheimer's Disease Neuroimaging],
Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM,
IJIST(27), No. 2, 2017, pp. 133-143.
DOI Link 1706
FreeSurfer, CIVET, KPCA, PCA, LDA, MK-SVM BibRef

Dadar, M., Pascoal, T.A., Manitsirikul, S., Misquitta, K., Fonov, V.S., Tartaglia, M.C., Breitner, J., Rosa-Neto, P., Carmichael, O.T., Decarli, C., Collins, D.L.,
Validation of a Regression Technique for Segmentation of White Matter Hyperintensities in Alzheimer's Disease,
MedImg(36), No. 8, August 2017, pp. 1758-1768.
IEEE DOI 1708
Alzheimer's disease, Image segmentation, Lesions, Magnetic resonance imaging, Robustness, Alzheimer's disease, White matter hyperintensities, aging, segmentation BibRef

Cao, P.[Peng], Shan, X.F.[Xuan-Feng], Zhao, D.[Dazhe], Huang, M.[Min], Zaiane, O.[Osmar],
Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of Alzheimer's disease,
PR(72), No. 1, 2017, pp. 219-235.
Elsevier DOI 1708
Alzheimer's, disease BibRef

Cao, P.[Peng], Liu, X.L.[Xiao-Li], Yang, J.Z.[Jin-Zhu], Zhao, D.Z.[Da-Zhe], Huang, M.[Min], Zaiane, O.[Osmar],
L2,1-l1 regularized nonlinear multi-task representation learning based cognitive performance prediction of Alzheimer's disease,
PR(79), 2018, pp. 195-215.
Elsevier DOI 1804
Alzheimer's disease, Regression, Sparse learning, Multi-task learning, Kernel method BibRef

Abdullah, S., Choudhury, T.,
Sensing Technologies for Monitoring Serious Mental Illnesses,
MultMedMag(25), No. 1, January 2018, pp. 61-75.
IEEE DOI 1804
Biomedical monitoring, Biosensors, Global Positioning System, Mental disorders, Multimedia communication, Sensors, sensing BibRef

Alvarez, F., Popa, M., Solachidis, V., Hernández-Peñaloza, G., Belmonte-Hernández, A., Asteriadis, S., Vretos, N., Quintana, M., Theodoridis, T., Dotti, D., Daras, P.,
Behavior Analysis through Multimodal Sensing for Care of Parkinson's and Alzheimer's Patients,
MultMedMag(25), No. 1, January 2018, pp. 14-25.
IEEE DOI 1804
Alzheimer's disease, Behavioral sciences, Biomedical imaging, Calibration, Feature extraction, Patient monitoring, Sensors, wireless sensor networks BibRef

Alvarez, F., Popa, M., Vretos, N., Belmonte-Hernández, A., Asteriadis, S., Solachidis, V., Mariscal, T., Dotti, D., Daras, P.,
Multimodal monitoring of Parkinson's and Alzheimer's patients using the ICT4LIFE platform,
AVSS17(1-6)
IEEE DOI 1806
Internet of Things, diseases, feature extraction, medical computing, patient monitoring, sensor fusion, Wireless sensor networks BibRef

Strickland, E.,
The digital fingerprints of brain disorders,
Spectrum(55), No. 5, May 2018, pp. 12-13.
IEEE DOI 1805
[News] BibRef

Asim, Y.[Yousra], Raza, B.[Basit], Malik, A.K.[Ahmad Kamran], Rathore, S.[Saima], Hussain, L.[Lal], Iftikhar, M.A.[Mohammad Aksam],
A multi-modal, multi-atlas-based approach for Alzheimer detection via machine learning,
IJIST(28), No. 2, 2018, pp. 113-123.
WWW Link. 1806
BibRef

Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A., Cristancho-Lacroix, V.,
Characterizing Early-Stage Alzheimer Through Spatiotemporal Dynamics of Handwriting,
SPLetters(25), No. 8, August 2018, pp. 1136-1140.
IEEE DOI 1808
Bayes methods, diseases, feature extraction, handwritten character recognition, neurophysiology, probabilistic modeling BibRef

El-Yacoubi, M.A.[Mounîm A.], Garcia-Salicetti, S.[Sonia], Kahindo, C.[Christian], Rigaud, A.S.[Anne-Sophie], Cristancho-Lacroix, V.[Victoria],
From aging to early-stage Alzheimer's: Uncovering handwriting multimodal behaviors by semi-supervised learning and sequential representation learning,
PR(86), 2019, pp. 112-133.
Elsevier DOI 1811
Online handwriting, Mild Cognitive Impairment, Aging, Unsupervised & semi-supervised learning, Temporal representation learning BibRef

Mishra, S.[Shiwangi], Beheshti, I.[Iman], Khanna, P.[Pritee],
A statistical region selection and randomized volumetric features selection framework for early detection of Alzheimer's disease,
IJIST(28), No. 4, December 2018, pp. 302-314.
WWW Link. 1811
Alzheimer's Disease Neuroimaging Initiative BibRef

Baumgartner, C.F., Koch, L.M., Tezcan, K.C., Ang, J.X.,
Visual Feature Attribution Using Wasserstein GANs,
CVPR18(8309-8319)
IEEE DOI 1812
Visualization, Biomedical imaging, Alzheimer's disease, Neural networks, Neuroimaging BibRef

Islam, J., Zhang, Y.,
Early Diagnosis of Alzheimer's Disease: A Neuroimaging Study with Deep Learning Architectures,
WiCV18(1962-19622)
IEEE DOI 1812
Alzheimer's disease, Magnetic resonance imaging, Brain modeling, Training, Medical diagnosis BibRef

Zhang, Y.[Yu], Zhang, H.[Han], Chen, X.B.[Xiao-Bo], Liu, M.X.[Ming-Xia], Zhu, X.F.[Xiao-Feng], Lee, S.W.[Seong-Whan], Shen, D.G.[Ding-Gang],
Strength and similarity guided group-level brain functional network construction for MCI diagnosis,
PR(88), 2019, pp. 421-430.
Elsevier DOI 1901
Alzheimers disease, Mild cognitive impairment, Resting-state functional magnetic resonance imaging (rs-fMRI), Diagnosis BibRef

Zhou, L.P.[Lu-Ping], Wang, Y.P.[Ya-Ping], Li, Y.[Yang], Yap, P.T.[Pew-Thian], Shen, D.G.[Ding-Gang], Adni,
Hierarchical anatomical brain networks for MCI prediction by partial least square analysis,
CVPR11(1073-1080).
IEEE DOI 1106
T1-weighted MRI for mild cognitive impairment. BibRef

Peng, J.L.[Jia-Lin], Zhu, X.F.[Xiao-Feng], Wang, Y.[Ye], An, L.[Le], Shen, D.G.[Ding-Gang],
Structured sparsity regularized multiple kernel learning for Alzheimer's disease diagnosis,
PR(88), 2019, pp. 370-382.
Elsevier DOI 1901
Structured sparsity, Multimodal features, Multiple kernel learning, Feature selection, Alzheimer's disease diagnosis BibRef

Zhu, Y., Zhu, X., Kim, M., Yan, J., Kaufer, D., Wu, G.,
Dynamic Hyper-Graph Inference Framework for Computer-Assisted Diagnosis of Neurodegenerative Diseases,
MedImg(38), No. 2, February 2019, pp. 608-616.
IEEE DOI 1902
Imaging, Training, Testing, Diseases, Data models, Training data, Neuroimaging, Hyper-graph learning, computer assisted diagnosis, neurodegenerative disease BibRef

Singh, S.[Sneha], Anand, R.S.,
Multimodal neurological image fusion based on adaptive biological inspired neural model in nonsubsampled Shearlet domain,
IJIST(29), No. 1, March 2019, pp. 50-64.
WWW Link. 1902
BibRef

Karami, V.[Vania], Nittari, G.[Giulio], Amenta, F.[Francesco],
Neuroimaging computer-aided diagnosis systems for Alzheimer's disease,
IJIST(29), No. 1, March 2019, pp. 83-94.
WWW Link. 1902
BibRef

Yu, R.P.[Ren-Ping], Qiao, L.S.[Li-Shan], Chen, M.M.[Ming-Ming], Lee, S.W.[Seong-Whan], Fei, X.[Xuan], Shen, D.G.[Ding-Gang],
Weighted graph regularized sparse brain network construction for MCI identification,
PR(90), 2019, pp. 220-231.
Elsevier DOI 1903
Graph Laplacian regularization, Sparse representation, Brain functional network, Mild cognitive impairment (MCI) BibRef

Jie, B.[Biao], Zhang, D.Q.[Dao-Qiang], Wee, C.Y.[Chong-Yaw], Shen, D.G.[Ding-Gang],
Structural Feature Selection for Connectivity Network-Based MCI Diagnosis,
MBIA12(175-184).
Springer DOI 1210
BibRef

Kam, T., Zhang, H., Jiao, Z., Shen, D.G.,
Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection,
MedImg(39), No. 2, February 2020, pp. 478-487.
IEEE DOI 2002
Ions, Noise measurement, Manganese, Diagnosis, convolutional neural networks, brain network, functional MRI BibRef

de Stefano, C.[Claudio], Fontanella, F.[Francesco], Impedovo, D.[Donato], Pirlo, G.[Giuseppe], di Freca, A.S.[Alessandra Scotto],
Handwriting analysis to support neurodegenerative diseases diagnosis: A review,
PRL(121), 2019, pp. 37-45.
Elsevier DOI 1904
BibRef

Cilia, N.D.[Nicole Dalia], de Stefano, C.[Claudio], Fontanella, F.[Francesco], Molinara, M.[Mario], di Freca, A.S.[Alessandra Scotto],
Handwriting Analysis to Support Alzheimer's Disease Diagnosis: A Preliminary Study,
CAIP19(II:143-151).
Springer DOI 1909
BibRef

Neffati, S.[Syrine], Ben Abdellafou, K.[Khaoula], Jaffel, I.[Ines], Taouali, O.[Okba], Bouzrara, K.[Kais],
An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification,
IJIST(29), No. 2, June 2019, pp. 121-131.
WWW Link. 1906
BibRef

Chen, J., Liu, J., Calhoun, V.D.,
Translational Potential of Neuroimaging Genomic Analyses to Diagnosis and Treatment in Mental Disorders,
PIEEE(107), No. 5, May 2019, pp. 912-927.
IEEE DOI 1906
Genomics, Bioinformatics, Biomedical imaging, Diseases, Neuroimaging, Mental disorders, Precision engineering, Predictive models, transdiagnostic BibRef

Wang, P., Liu, Y., Shen, D.,
Flexible Locally Weighted Penalized Regression With Applications on Prediction of Alzheimer's Disease Neuroimaging Initiative's Clinical Scores,
MedImg(38), No. 6, June 2019, pp. 1398-1408.
IEEE DOI 1906
Kernel, Diseases, Sociology, Statistics, Brain modeling, Forestry, Training, Heterogeneity, local models, ordinal classification, random forests BibRef

Khagi, B.[Bijen], Kwon, G.R.[Goo-Rak], Lama, R.[Ramesh],
Comparative analysis of Alzheimer's disease classification by CDR level using CNN, feature selection, and machine-learning techniques,
IJIST(29), No. 3, September 2019, pp. 297-310.
DOI Link 1908
BibRef

Im, J.J.[Jooyeon J.], Jeong, H.[Hyeonseok], Oh, J.K.[Jin Kyoung], Chung, Y.A.[Yong-An], Song, I.U.[In-Uk], Lee, K.S.[Kwang-Soo],
Effects of nicergoline treatment on regional cerebral blood flow in early Alzheimer's disease,
IJIST(29), No. 3, September 2019, pp. 323-328.
DOI Link 1908
BibRef

Ahmad, F.[Fayyaz], Zulifqar, H.[Hifza], Malik, T.[Tamoor],
Classification of Alzheimer disease among susceptible brain regions,
IJIST(29), No. 3, September 2019, pp. 222-233.
DOI Link 1908
BibRef

Latha, M.[Manohar], Kavitha, G.[Ganesan],
Assessment of severity in neuropsychiatric disorders based on radiomic features with prior shape level set and metaheuristic algorithms,
IJIST(29), No. 3, September 2019, pp. 210-221.
DOI Link 1908
BibRef

Wang, J.J.[Jian-Jia], Huo, J.Y.[Jia-Yu], Zhang, L.C.[Li-Chi],
Thermodynamic edge entropy in Alzheimer's disease,
PRL(125), 2019, pp. 570-575.
Elsevier DOI 1909
Alzheimer's disease, Maxwell-Boltzmann statistics, Network edge entropy BibRef

Zhou, T., Liu, M., Thung, K., Shen, D.,
Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data,
MedImg(38), No. 10, October 2019, pp. 2411-2422.
IEEE DOI 1910
Magnetic resonance imaging, Feature extraction, Genetics, Neuroimaging, Alzheimer's disease, Positron emission tomography, latent representation space BibRef

Li, J.[Jiaye], Wu, L.[Lin], Wen, G.Q.[Guo-Qiu], Li, Z.[Zhi],
Exclusive feature selection and multi-view learning for Alzheimer's Disease,
JVCIR(64), 2019, pp. 102605.
Elsevier DOI 1911
Alzheimer's Disease, Multi-view, Exclusive lasso learning, Feature selection, Sparse learning BibRef

Fang, X.S.[Xu-Sheng], Liu, Z.B.[Zhen-Bing], Xu, M.C.[Ming-Chang],
Ensemble of deep convolutional neural networks based multi-modality images for Alzheimer's disease diagnosis,
IET-IPR(14), No. 2, February 2020, pp. 318-326.
DOI Link 2001
BibRef

Choi, J.Y., Lee, B.,
Combining of Multiple Deep Networks via Ensemble Generalization Loss, Based on MRI Images, for Alzheimer's Disease Classification,
SPLetters(27), 2020, pp. 206-210.
IEEE DOI 2002
Alzheimer's disease classification, ensemble deep learning, generalization loss BibRef

Lei, B.Y.[Bai-Ying], Yang, M.Y.[Meng-Ya], Yang, P.[Peng], Zhou, F.[Feng], Hou, W.[Wen], Zou, W.B.[Wen-Bin], Li, X.[Xia], Wang, T.F.[Tian-Fu], Xiao, X.H.[Xiao-Hua], Wang, S.Q.[Shu-Qiang],
Deep and joint learning of longitudinal data for Alzheimer's disease prediction,
PR(102), 2020, pp. 107247.
Elsevier DOI 2003
Alzheimer's disease, Longitudinal scores prediction, Joint learning, Correntropy, Deep polynomial network BibRef

Lian, C.F.[Chun-Feng], Liu, M.X.[Ming-Xia], Zhang, J.[Jun], Shen, D.G.[Ding-Gang],
Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI,
PAMI(42), No. 4, April 2020, pp. 880-893.
IEEE DOI 2003
Feature extraction, Solid modeling, Atrophy, Brain modeling, Alzheimer's disease, Medical diagnosis, Support vector machines, structural MRI BibRef

Zhang, J.[Jun], Liu, M.X.[Ming-Xia], An, L.[Le], Gao, Y.Z.[Yao-Zong], Shen, D.G.[Ding-Gang],
Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images,
MCV16(35-45).
Springer DOI 1711
BibRef

Zhao, Y., Zhao, Y., Durongbhan, P., Chen, L., Liu, J., Billings, S.A., Zis, P., Unwin, Z.C., de Marco, M., Venneri, A., Blackburn, D.J., Sarrigiannis, P.G.,
Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer's Disease,
MedImg(39), No. 5, May 2020, pp. 1571-1581.
IEEE DOI 2005
Alzheimer's disease, dementia, visualisation, system identification, machine learning BibRef

Zhang, Y.[Yingteng], Liu, S.[Shenquan], Yu, X.L.[Xiao-Li],
Longitudinal structural MRI analysis and classification in Alzheimer's disease and mild cognitive impairment,
IJIST(30), No. 2, 2020, pp. 421-433.
DOI Link 2005
Alzheimer's disease, gray matter volume, longitudinal analysis, longitudinal classification, mild cognitive impairment BibRef

Allioui, H.[Hanane], Sadgal, M.[Mohamed], Elfazziki, A.[Aziz],
Utilization of a convolutional method for Alzheimer disease diagnosis,
MVA(31), No. 4, April 2020, pp. Article25.
Springer DOI 2005
BibRef

Brand, L., Nichols, K., Wang, H., Shen, L., Huang, H.,
Joint Multi-Modal Longitudinal Regression and Classification for Alzheimer's Disease Prediction,
MedImg(39), No. 6, June 2020, pp. 1845-1855.
IEEE DOI 2006
Alzheimer's disease, biomarker identification, joint regression-classification, longitudinal, multi-modal, multi-task BibRef

Koh, J.E.W.[Joel En Wei], Jahmunah, V.[Vicnesh], Pham, T.H.[The-Hanh], Oh, S.L.[Shu Lih], Ciaccio, E.J.[Edward J], Acharya, U.R.[U Rajendra], Yeong, C.H.[Chai Hong], Fabell, M.K.M.[Mohd Kamil Mohd], Rahmat, K.[Kartini], Vijayananthan, A.[Anushya], Ramli, N.[Norlisah],
Automated detection of Alzheimer's disease using bi-directional empirical model decomposition,
PRL(135), 2020, pp. 106-113.
Elsevier DOI 2006
BibRef

Pan, Y., Liu, M., Lian, C., Xia, Y., Shen, D.,
Spatially-Constrained Fisher Representation for Brain Disease Identification With Incomplete Multi-Modal Neuroimages,
MedImg(39), No. 9, September 2020, pp. 2965-2975.
IEEE DOI 2009
Magnetic resonance imaging, Feature extraction, Diseases, Positron emission tomography, Medical diagnosis, Brain modeling, PET BibRef

Bône, A.[Alexandre], Colliot, O.[Olivier], Durrleman, S.[Stanley], Initiative, T.A.D.N.[The Alzheimer's Disease Neuroimaging],
Learning the spatiotemporal variability in longitudinal shape data sets,
IJCV(128), No. 12, December 2020, pp. 2873-2896.
Springer DOI 2010
BibRef
Earlier: A1, A2, A2:
Learning Distributions of Shape Trajectories from Longitudinal Datasets: A Hierarchical Model on a Manifold of Diffeomorphisms,
CVPR18(9271-9280)
IEEE DOI 1812
Shape, Trajectory, Computational modeling, Manifolds, Spatiotemporal phenomena, Data models, Numerical models BibRef

Debavelaere, V.[Vianney], Durrleman, S.[Stanley], Allassonnière, S.[Stéphanie], Initiative, T.A.D.N.[The Alzheimer's Disease Neuroimaging],
Learning the Clustering of Longitudinal Shape Data Sets into a Mixture of Independent or Branching Trajectories,
IJCV(128), No. 12, December 2020, pp. 2794-2809.
Springer DOI 2010
BibRef

Chevallier, J.[Juliette], Debavelaere, V.[Vianney], Allassonnière, S.[Stéphanie],
A Coherent Framework for Learning Spatiotemporal Piecewise-Geodesic Trajectories from Longitudinal Manifold-Valued Data,
SIIMS(14), No. 1, 2021, pp. 349-388.
DOI Link 2104
BibRef

Saied, I., Arslan, T., Chandran, S., Smith, C., Spires-Jones, T., Pal, S.,
Non-Invasive RF Technique for Detecting Different Stages of Alzheimer's Disease and Imaging Beta-Amyloid Plaques and Tau Tangles in the Brain,
MedImg(39), No. 12, December 2020, pp. 4060-4070.
IEEE DOI 2012
Dielectric measurement, Dielectrics, Brain modeling, Radio frequency, Sensors, Computational modeling, Permittivity, radio frequency BibRef

Chen, J.Z.[Jia-Zhou], Han, G.Q.[Guo-Qiang], Cai, H.M.[Hong-Min], Yang, D.F.[De-Fu], Laurienti, P.J.[Paul J.], Styner, M.[Martin], Wu, G.R.[Guo-Rong],
Learning Common Harmonic Waves on Stiefel Manifold: A New Mathematical Approach for Brain Network Analyses,
MedImg(40), No. 1, January 2021, pp. 419-430.
IEEE DOI 2012
Manifolds, Harmonic analysis, Diseases, Laplace equations, Optimization, Neuroimaging, Algebra, Brain network, computer-assisted diagnosis BibRef

Ganotra, R.[Reema], Dora, S.[Shirin], Gupta, S.[Shailender],
Identifying brain regions contributing to Alzheimer's disease using self regulating particle swarm optimization,
IJIST(31), No. 1, 2021, pp. 106-117.
DOI Link 2102
Alzheimer's disease, gray matter, magnetic resonance imaging, particle swarm optimization, support vector machines, white matter BibRef

Lu, L.J.[Lyu-Jian], Elbeleidy, S.[Saad], Baker, L.Z.[Lauren Zoe], Wang, H.[Hua], Nie, F.P.[Fei-Ping],
Predicting Cognitive Declines Using Longitudinally Enriched Representations for Imaging Biomarkers,
MedImg(40), No. 3, March 2021, pp. 891-904.
IEEE DOI 2103
BibRef
Earlier: A1, A4, A2, A5, Only: CVPR20(4826-4835)
IEEE DOI 2008
Biomarkers, Imaging, Neuroimaging, Data models, Predictive models, Diseases, Biological system modeling, Alzheimer's disease, imaging biomarker. Neuroimaging, Dementia, Brain modeling, Biomedical imaging BibRef

Qian, M.Y.[Ming-Yue], Zhang, Z.T.[Zhao-Ting], Chen, J.C.[Jie-Chun],
Special Issue Retraction: Combined mixed Gaussian model with pattern recognition in the automatic diagnosis of Alzheimer's disease,
IET-IPR(17), No. 1, January 2023, pp. 301.
DOI Link 2301
BibRef
And: IET-IPR(14), No. 15, 15 December 2020, pp. 3698-3704.
DOI Link 2103
BibRef

Huang, M.Y.[Mei-Yan], Chen, X.M.[Xiu-Mei], Yu, Y.W.[Yu-Wei], Lai, H.R.[Hao-Ran], Feng, Q.J.[Qian-Jin],
Imaging Genetics Study Based on a Temporal Group Sparse Regression and Additive Model for Biomarker Detection of Alzheimer's Disease,
MedImg(40), No. 5, May 2021, pp. 1461-1473.
IEEE DOI 2105
Genetics, Diseases, Biological system modeling, Data models, Brain modeling, Biomedical imaging, Additives, Imaging genetics, single nucleotide polymorphism BibRef

Chen, Y.Y.[Yuan-Yuan], Xia, Y.[Yong],
Iterative sparse and deep learning for accurate diagnosis of Alzheimer's disease,
PR(116), 2021, pp. 107944.
Elsevier DOI 2106
Alzheimer's disease, Mild cognitive impairment, Deep learning, Sparse regression BibRef

Wang, M.L.[Mei-Ling], Shao, W.[Wei], Hao, X.K.[Xiao-Ke], Zhang, D.Q.[Dao-Qiang],
Identify Complex Imaging Genetic Patterns via Fusion Self-Expressive Network Analysis,
MedImg(40), No. 6, June 2021, pp. 1673-1686.
IEEE DOI 2106
Imaging, Correlation, Diseases, Bioinformatics, Image reconstruction, Genomics, Knowledge engineering, Brain imaging genetics, Alzheimer's disease BibRef

Ning, Z.Y.[Zhen-Yuan], Xiao, Q.[Qing], Feng, Q.J.[Qian-Jin], Chen, W.F.[Wu-Fan], Zhang, Y.[Yu],
Relation-Induced Multi-Modal Shared Representation Learning for Alzheimer's Disease Diagnosis,
MedImg(40), No. 6, June 2021, pp. 1632-1645.
IEEE DOI 2106
Magnetic resonance imaging, Diseases, Training, Testing, Data models, Bidirectional control, Alzheimer's disease, Alzheimer's disease, relational regularization
See also Relation-Aware Shared Representation Learning for Cancer Prognosis Analysis with Auxiliary Clinical Variables and Incomplete Multi-Modality Data. BibRef

Lao, H.[Huan], Zhang, X.J.[Xue-Jun], Tang, Y.Y.[Yan-Yan], Liang, C.[Chan],
Alzheimer's disease diagnosis based on the visual attention model and equal-distance ring shape context features,
IET-IPR(15), No. 10, 2021, pp. 2351-2362.
DOI Link 2108
BibRef

Zhang, J.[Jie], Wu, J.F.[Jian-Feng], Li, Q.Y.[Qing-Yang], Caselli, R.J.[Richard J.], Thompson, P.M.[Paul M.], Ye, J.P.[Jie-Ping], Wang, Y.L.[Ya-Lin],
Multi-Resemblance Multi-Target Low-Rank Coding for Prediction of Cognitive Decline With Longitudinal Brain Images,
MedImg(40), No. 8, August 2021, pp. 2030-2041.
IEEE DOI 2108
Task analysis, Correlation, Diseases, Dictionaries, Encoding, Neuroimaging, Alzheimer's disease, Multi-task, multi-resemblance BibRef

Basheera, S.[Shaik], Ram, M.S.S.[M Satya Sai],
Deep learning based Alzheimer's disease early diagnosis using T2w segmented gray matter MRI,
IJIST(31), No. 3, 2021, pp. 1692-1710.
DOI Link 2108
Alzheimer's disease, classification, CNN, deep learning, gray matter BibRef

Karim, R.[Razaul], Shahrior, A.[Ashef], Rahman, M.M.[Mohammad Motiur],
Machine learning-based tri-stage classification of Alzheimer's progressive neurodegenerative disease using PCA and mRMR administered textural, orientational, and spatial features,
IJIST(31), No. 4, 2021, pp. 2060-2074.
DOI Link 2112
Alzheimer's, feature extraction, machine learning, MRI, VLAD BibRef

Gopinath, K.[Karthik], Desrosiers, C.[Christian], Lombaert, H.[Herve],
Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis,
PAMI(44), No. 2, February 2022, pp. 864-876.
IEEE DOI 2201
Brain, Convolution, Geometry, Task analysis, Surface treatment, Alzheimer's disease, Learnable pooling, alzheimer classification BibRef

Shakeri, M.[Mahsa], Lombaert, H.[Herve], Tripathi, S.[Shashank], Kadoury, S.[Samuel],
Deep Spectral-Based Shape Features for Alzheimer's Disease Classification,
SeSAME16(15-24).
Springer DOI 1703
BibRef

Dinh, T.Q.[Tuan Q.], Xiong, Y.[Yunyang], Huang, Z.C.[Zhi-Chun], Vo, T.[Tien], Mishra, A.[Akshay], Kim, W.H.[Won Hwa], Ravi, S.N.[Sathya N.], Singh, V.[Vikas],
Performing Group Difference Testing on Graph Structured Data from GANs: Analysis and Applications in Neuroimaging,
PAMI(44), No. 2, February 2022, pp. 877-889.
IEEE DOI 2201
Is the result the same using GAN generated data and the original real data for testing. Statistical analysis, Diseases, Machine learning, Training data, Training, non-euclidean BibRef

Eroglu, Y.[Yesim], Yildirim, M.[Muhammed], Cinar, A.[Ahmet],
mRMR-based hybrid convolutional neural network model for classification of Alzheimer's disease on brain magnetic resonance images,
IJIST(32), No. 2, 2022, pp. 517-527.
DOI Link 2203
Alzheimer's disease, classification, KNN, machine learning, MRI, SVM BibRef

Babu, G.S.[G. Stalin], Rao, S.N.T.[S. N. Tirumala], Rao, R.R.[R. Rajeswara],
Automated assessment for Alzheimer's disease diagnosis from MRI images: Meta-heuristic assisted deep learning model,
IJIST(32), No. 2, 2022, pp. 544-563.
DOI Link 2203
Alzheimer disease, CG-DU algorithm, DCNN, geometric Haralick, gray wolf optimizer BibRef

Dora, L.[Lingraj], Agrawal, S.[Sanjay], Panda, R.[Rutuparna], Abraham, A.[Ajith],
An efficient multiclass classifier for classification of Alzheimer's disease/mild cognitive impairment/Normal subjects,
IJIST(32), No. 2, 2022, pp. 629-641.
DOI Link 2203
disease classification, hybrid particle swarm optimization-squirrel search algorithm, ternary classifier BibRef

Pohl, T.[Tomáš], Jakab, M.[Marek], Benesova, W.[Wanda],
Interpretability of deep neural networks used for the diagnosis of Alzheimer's disease,
IJIST(32), No. 2, 2022, pp. 673-686.
DOI Link 2203
Alzheimer's disease, deep neural networks, interpretability, layer-wise relevance propagation, magnetic resonance imaging BibRef

Shi, Y.[Yuang], Zu, C.[Chen], Hong, M.[Mei], Zhou, L.P.[Lu-Ping], Wang, L.[Lei], Wu, X.[Xi], Zhou, J.[Jiliu], Zhang, D.Q.[Dao-Qiang], Wang, Y.[Yan],
ASMFS: Adaptive-Similarity-Based Multi-Modality Feature Selection for Classification of Alzheimer's Disease,
PR(126), 2022, pp. 108566.
Elsevier DOI 2204
Multi-modality, Similarity learning, Feature selection, Alzheimer's disease
See also Feature Selection with Kernel Class Separability. BibRef

Borovkova, M.[Mariia], Sieryi, O.[Oleksii], Lopushenko, I.[Ivan], Kartashkina, N.[Natalia], Pahnke, J.[Jens], Bykov, A.[Alexander], Meglinski, I.[Igor],
Screening of Alzheimer's Disease With Multiwavelength Stokes Polarimetry in a Mouse Model,
MedImg(41), No. 4, April 2022, pp. 977-982.
IEEE DOI 2204
Brain, Polarimetry, Mice, Measurement by laser beam, Laser beams, Microscopy, Optical microscopy, Optical polarimetry, scattering, Stokes vector BibRef

Lian, C.F.[Chun-Feng], Liu, M.X.[Ming-Xia], Pan, Y.S.[Yong-Sheng], Shen, D.G.[Ding-Gang],
Attention-Guided Hybrid Network for Dementia Diagnosis With Structural MR Images,
Cyber(52), No. 4, April 2022, pp. 1992-2003.
IEEE DOI 2204
Feature extraction, Brain modeling, Task analysis, Dementia, Solid modeling, Medical diagnosis, Alzheimer's disease (AD), weakly supervised localization BibRef

Kaur, S.[Swapandeep], Gupta, S.[Sheifali], Singh, S.[Swati], Gupta, I.[Isha],
Detection of Alzheimer's Disease Using Deep Convolutional Neural Network,
IJIG(22), No. 3 2022, pp. 2140012.
DOI Link 2206
BibRef

Shankar, V.G.[Venkatesh Gauri], Sisodia, D.S.[Dilip Singh], Chandrakar, P.[Preeti],
A novel discriminant feature selection-based mutual information extraction from MR brain images for Alzheimer's stages detection and prediction,
IJIST(32), No. 4, 2022, pp. 1172-1191.
DOI Link 2207
Alzheimer's disease, classification, feature selection, machine learning, medical imaging system, neurodegenerative disorder BibRef

Yu, L.[Lu], Xiang, W.[Wei], Fang, J.[Juan], Chen, Y.P.P.[Yi-Ping Phoebe], Zhu, R.F.[Rui-Feng],
A novel explainable neural network for Alzheimer's disease diagnosis,
PR(131), 2022, pp. 108876.
Elsevier DOI 2208
Explainable neural networks, XAI, High-resolution heatmap, MRI BibRef

Pei, Z.[Zhao], Wan, Z.[Zhiyang], Zhang, Y.N.[Yan-Ning], Wang, M.[Miao], Leng, C.[Chengcai], Yang, Y.H.[Yee-Hong],
Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer's disease diagnosis using structural MRI,
PR(131), 2022, pp. 108825.
Elsevier DOI 2208
Diagnosis of Alzheimer's disease, Pseudo-3D, Attention mechanism, Multi-scale, Joint loss function BibRef

Dwivedi, S.[Shubham], Goel, T.[Tripti], Tanveer, M., Murugan, R., Sharma, R.[Rahul],
Multimodal Fusion-Based Deep Learning Network for Effective Diagnosis of Alzheimer's Disease,
MultMedMag(29), No. 2, April 2022, pp. 45-55.
IEEE DOI 2208
Magnetic resonance imaging, Alzheimer's disease, Feature extraction, Atrophy, Computational modeling, Positron emission tomography (PET) BibRef

Jung, E.[Euijin], Luna, M.[Miguel], Park, S.H.[Sang Hyun],
Conditional GAN with 3D discriminator for MRI generation of Alzheimer's disease progression,
PR(133), 2023, pp. 109061.
Elsevier DOI 2210
Conditional GAN, Alzheimer's disease, 3D Discriminator, Magnetic resonance image generation, Adaptive identity loss BibRef

Qasim Abbas, S., Chi, L.H.[Lian-Hua], Chen, Y.P.P.[Yi-Ping Phoebe],
Transformed domain convolutional neural network for Alzheimer's disease diagnosis using structural MRI,
PR(133), 2023, pp. 109031.
Elsevier DOI 2210
Alzheimer disease (AD) detection, Brain disease, Convolutional neural network (CNN), Supervised learning, AD diagnosis BibRef

Ouyang, J.H.[Jia-Hong], Zhao, Q.Y.[Qing-Yu], Adeli, E.[Ehsan], Zaharchuk, G.[Greg], Pohl, K.M.[Kilian M.],
Disentangling Normal Aging From Severity of Disease via Weak Supervision on Longitudinal MRI,
MedImg(41), No. 10, October 2022, pp. 2558-2569.
IEEE DOI 2210
Diseases, Magnetic resonance imaging, Aging, Trajectory, Training, Aerospace electronics, Supervised learning, cognitive impairment BibRef

Lao, H.[Huan], Zhang, X.J.[Xue-Jun],
Diagnose Alzheimer's disease by combining 3D discrete wavelet transform and 3D moment invariants,
IET-IPR(16), No. 14, 2022, pp. 3948-3964.
DOI Link 2212
BibRef

Aghaei, A.[Atefe], Moghaddam, M.E.[Mohsen Ebrahimi], Malek, H.[Hamed],
Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model-agnostic explanations,
IJIST(32), No. 6, 2022, pp. 1889-1902.
DOI Link 2212
Alzheimer's disease, ensemble deep learning, Inception-V3, ResNet-50, structural MRI, transfer learning BibRef

Sharma, S.[Shallu], Mandal, P.K.[Pravat Kumar],
A Comprehensive Report on Machine Learning-Based Early Detection of Alzheimer's Disease Using Multi-Modal Neuroimaging Data,
Surveys(55), No. 2, February 2023, pp. xx-yy.
DOI Link 2212
Survey, Alzheimer's. feature scaling, feature fusion, feature selection, Alzheimer disease, machine learning algorithms, multiple modal imaging BibRef

Zheng, B.[Bowen], Gao, A.[Ang], Huang, X.N.[Xiao-Na], Li, Y.H.[Yu-Han], Liang, D.[Dong], Long, X.J.[Xiao-Jing],
A modified 3D EfficientNet for the classification of Alzheimer's disease using structural magnetic resonance images,
IET-IPR(17), No. 1, 2023, pp. 77-87.
DOI Link 2301
BibRef

Houria, L.[Latifa], Belkhamsa, N.[Noureddine], Cherfa, A.[Assia], Cherfa, Y.[Yazid],
Multimodal magnetic resonance imaging for Alzheimer's disease diagnosis using hybrid features extraction and ensemble support vector machines,
IJIST(33), No. 2, 2023, pp. 610-621.
DOI Link 2303
Alzheimer's disease, bag-of-feature, convolutional neural network, majority voting, support vector machine BibRef

Goenka, N.[Nitika], Tiwari, S.[Shamik],
Alzheimer's detection using various feature extraction approaches using a multimodal multi-class deep learning model,
IJIST(33), No. 2, 2023, pp. 588-609.
DOI Link 2303
18F-AV45 PET, Alzheimer's disease, multi-modality, neuroimaging biomarker, patch-based, slice-based, volumetric convnet BibRef

Oh, K.[Kwanseok], Yoon, J.S.[Jee Seok], Suk, H.I.[Heung-Il],
Learn-Explain-Reinforce: Counterfactual Reasoning and its Guidance to Reinforce an Alzheimer's Disease Diagnosis Model,
PAMI(45), No. 4, April 2023, pp. 4843-4857.
IEEE DOI 2303
Visualization, Cognition, Brain modeling, Magnetic resonance imaging, Transforms, Perturbation methods, Alzheimer's disease BibRef

Bass, C.[Cher], da Silva, M.[Mariana], Sudre, C.[Carole], Williams, L.Z.J.[Logan Z. J.], Sousa, H.S.[Helena S.], Tudosiu, P.D.[Petru-Daniel], Alfaro-Almagro, F.[Fidel], Fitzgibbon, S.P.[Sean P.], Glasser, M.F.[Matthew F.], Smith, S.M.[Stephen M.], Robinson, E.C.[Emma C],
ICAM-Reg: Interpretable Classification and Regression With Feature Attribution for Mapping Neurological Phenotypes in Individual Scans,
MedImg(42), No. 4, April 2023, pp. 959-970.
IEEE DOI 2304
Diseases, Feature extraction, Biomedical imaging, Alzheimer's disease, Imaging, Training, Neuroimaging, Brain imaging, image-to-image translation BibRef

Zhu, Q.[Qi], Xu, B.L.[Bing-Liang], Huang, J.S.[Jia-Shuang], Wang, H.Y.[He-Yang], Xu, R.[Ruting], Shao, W.[Wei], Zhang, D.Q.[Dao-Qiang],
Deep Multi-Modal Discriminative and Interpretability Network for Alzheimer's Disease Diagnosis,
MedImg(42), No. 5, May 2023, pp. 1472-1483.
IEEE DOI 2305
Correlation, Deep learning, Brain modeling, Magnetic resonance imaging, Analytical models, Data models, Alzheimer's disease BibRef

Thushara, A., Amma, C.U.[C. Ushadevi], John, A.[Ansamma],
Graph Theory-Based Brain Network Connectivity Analysis and Classification of Alzheimer's Disease,
IJIG(23), No. 3 2023, pp. 2240006.
DOI Link 2306
BibRef

Zolfaghari, S.[Samaneh], Suravee, S.[Sumaiya], Riboni, D.[Daniele], Yordanova, K.[Kristina],
Sensor-Based Locomotion Data Mining for Supporting the Diagnosis of Neurodegenerative Disorders: A Survey,
Surveys(56), No. 1, August 2023, pp. 10.
DOI Link 2310
neurodegenerative disorders, Pervasive healthcare, cognitive decline, location data mining BibRef

Chen, H.[Hui], Guo, H.[Huiru], Xing, L.Q.[Long-Qiang], Chen, D.[Da], Yuan, T.[Ting], Zhang, Y.P.[Yun-Peng], Zhang, X.[Xuedian],
Multimodal predictive classification of Alzheimer's disease based on attention-combined fusion network: Integrated neuroimaging modalities and medical examination data,
IET-IPR(17), No. 11, 2023, pp. 3153-3164.
DOI Link 2310
Alzheimer's disease, attention mechanism, diagnosis, multi-modal, prediction BibRef

Duarte, K.T.N.[Kauê T.N.], Gobbi, D.G.[David G.], Sidhu, A.S.[Abhijot S.], McCreary, C.R.[Cheryl R.], Saad, F.[Feryal], Camicioli, R.[Richard], Smith, E.E.[Eric E.], Frayne, R.[Richard],
Segmenting white matter hyperintensities in brain magnetic resonance images using convolution neural networks,
PRL(175), 2023, pp. 90-94.
Elsevier DOI 2311
Image segmentation, White matter hyperintensity (WMH), Convolutional neural network (CNN), Alzheimer's disease (AD), Deep learning BibRef

Guo, Z.Q.[Zhi-Qiang], Ling, Z.H.[Zhen-Hua],
Exploring the Topics of Audio Words for Detecting Alzheimer's Disease From Spontaneous Speech,
SPLetters(30), 2023, pp. 1727-1731.
IEEE DOI 2312
BibRef

Chen, Y.Y.[Yuan-Yuan], Pan, Y.S.[Yong-Sheng], Xia, Y.[Yong], Yuan, Y.X.[Yi-Xuan],
Disentangle First, Then Distill: A Unified Framework for Missing Modality Imputation and Alzheimer's Disease Diagnosis,
MedImg(42), No. 12, December 2023, pp. 3566-3578.
IEEE DOI 2312
BibRef

Lei, B.Y.[Bai-Ying], Zhu, Y.[Yun], Liang, E.[Enmin], Yang, P.[Peng], Chen, S.B.[Shao-Bin], Hu, H.[Huoyou], Xie, H.R.[Hao-Ran], Wei, Z.[Ziyi], Hao, F.[Fei], Song, X.[Xuegang], Wang, T.F.[Tian-Fu], Xiao, X.H.[Xiao-Hua], Wang, S.Q.[Shu-Qiang], Han, H.B.[Hong-Bin],
Federated Domain Adaptation via Transformer for Multi-Site Alzheimer's Disease Diagnosis,
MedImg(42), No. 12, December 2023, pp. 3651-3664.
IEEE DOI 2312
BibRef

Marcus, A.[Adam], Bentley, P.[Paul], Rueckert, D.[Daniel],
Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network,
MedImg(42), No. 12, December 2023, pp. 3464-3473.
IEEE DOI 2312
BibRef

Tan, Y.F.[Yee-Fan], Ting, C.M.[Chee-Ming], Noman, F.[Fuad], Phan, R.C.W.[Raphaël C.W.], Ombao, H.[Hernando],
A Unified Framework for Static and Dynamic Functional Connectivity Augmentation for Multi-Domain Brain Disorder Classification,
ICIP23(635-639)
IEEE DOI 2312
BibRef

Rana, M.M.[Md Masud], Islam, M.M.[Md Manowarul], Talukder, M.A.[Md. Alamin], Uddin, M.A.[Md Ashraf], Aryal, S.I.[Sun-Il], Alotaibi, N.[Naif], Alyami, S.A.[Salem A.], Hasan, K.F.[Khondokar Fida], Moni, M.A.[Mohammad Ali],
A robust and clinically applicable deep learning model for early detection of Alzheimer's,
IET-IPR(17), No. 14, 2023, pp. 3959-3975.
DOI Link 2312
brain, cancer, diseases, tumours, deep learning BibRef

Yang, Y.W.[Yan-Wu], Ye, C.F.[Chen-Fei], Guo, X.[Xutao], Wu, T.[Tao], Xiang, Y.[Yang], Ma, T.[Ting],
Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning,
MedImg(43), No. 1, January 2024, pp. 108-121.
IEEE DOI 2401
BibRef

Shukla, A.[Amar], Tiwari, R.[Rajeev], Tiwari, S.[Shamik],
Structural biomarker-based Alzheimer's disease detection via ensemble learning techniques,
IJIST(34), No. 1, 2024, pp. e22967.
DOI Link 2401
Alzheimer disease, binary class, ensemble learning, machine learning, multiclass BibRef

Miao, S.[Shang], Xu, Q.[Qun], Li, W.M.[Wei-Min], Yang, C.[Chao], Sheng, B.[Bin], Liu, F.Y.[Fang-Yu], Bezabih, T.T.[Tsigabu T.], Yu, X.[Xiao],
MMTFN: Multi-modal multi-scale transformer fusion network for Alzheimer's disease diagnosis,
IJIST(34), No. 1, 2024, pp. e22970.
DOI Link 2401
Alzheimer's disease, attention mechanism, deep learning, multi-modal fusion, transformer BibRef

Lachinov, D.[Dmitrii], Chakravarty, A.[Arunava], Grechenig, C.[Christoph], Schmidt-Erfurth, U.[Ursula], Bogunovic, H.[Hrvoje],
Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data,
MedImg(43), No. 3, March 2024, pp. 1165-1179.
IEEE DOI 2403
Predictive models, Atrophy, Imaging, Brain modeling, Biomarkers, Solid modeling, Retina, Disease progression, deep learning, Alzheimer's disease BibRef

Wang, T.X.[Tian-Xiang], Dai, Q.[Qun],
A patch distribution-based active learning method for multiple instance Alzheimer's disease diagnosis,
PR(150), 2024, pp. 110341.
Elsevier DOI 2403
Multi-instance learning, Active learning, Alzheimer's disease, Attention mechanism BibRef

Jiang, S.Q.[Shun-Qin], Feng, Q.Y.[Qi-Yuan], Li, H.X.[Heng-Xin], Deng, Z.[Zhenyun], Jiang, Q.[Qinghong],
Attention based multi-task interpretable graph convolutional network for Alzheimer's disease analysis,
PRL(180), 2024, pp. 1-8.
Elsevier DOI 2404
Alzheimer's disease diagnosis analysis, Multi-task learning, Attention unit, Interpretability, Graph convolutional network BibRef

Illakiya, T., Karthik, R.,
A deep feature fusion network with global context and cross-dimensional dependencies for classification of mild cognitive impairment from brain MRI,
IVC(144), 2024, pp. 104967.
Elsevier DOI 2404
Mild cognitive impairment, Magnetic resonance imaging, Deep learning, Convolutional neural network, Classification: Alzheimer's disease BibRef

Chen, Z.[Zhi], Liu, Y.[Yongguo], Zhang, Y.[Yun], Zhu, J.J.[Jia-Jing], Li, Q.Q.[Qiao-Qin], Wu, X.D.[Xin-Dong],
Shared Manifold Regularized Joint Feature Selection for Joint Classification and Regression in Alzheimer's Disease Diagnosis,
IP(33), 2024, pp. 2730-2745.
IEEE DOI 2404
Feature extraction, Task analysis, Diseases, Correlation, Neuroimaging, Data models, Manifolds, manifold learning BibRef

Xu, J.H.[Jing-Hao], Yuan, C.X.[Chen-Xi], Ma, X.C.[Xiao-Chuan], Shang, H.F.[Hui-Fang], Shi, X.S.[Xiao-Shuang], Zhu, X.F.[Xiao-Feng],
Interpretable medical deep framework by logits-constraint attention guiding graph-based multi-scale fusion for Alzheimer's disease analysis,
PR(152), 2024, pp. 110450.
Elsevier DOI Code:
WWW Link. 2405
Alzheimer's disease, Attention, Graph neural networks, Multi-scale feature fusion, Structural MRI BibRef

Han, K.[Kangfu], Li, G.[Gang], Fang, Z.W.[Zhi-Wen], Yang, F.[Feng],
Multi-Template Meta-Information Regularized Network for Alzheimer's Disease Diagnosis Using Structural MRI,
MedImg(43), No. 5, May 2024, pp. 1664-1676.
IEEE DOI 2405
Feature extraction, Metadata, Self-supervised learning, Mutual information, Alzheimer's disease, Aging, Minimization BibRef

Khojaste-Sarakhsi, M., Haghighi, S.S.[Seyedhamidreza Shahabi], Fatemi Ghomi, S.M.T., Marchiori, E.[Elena],
A 3D multi-scale CycleGAN framework for generating synthetic PETs from MRIs for Alzheimer's disease diagnosis,
IVC(146), 2024, pp. 105017.
Elsevier DOI 2405
Cycle GAN, Multi-scale GAN, 3D image-to-image translation, Image synthesis, Alzheimer's Disease diagnosis BibRef

Lei, B.[Baiying], Liang, Y.[Yu], Xie, J.Y.[Jia-Yi], Wu, Y.[You], Liang, E.[Enmin], Liu, Y.[Yong], Yang, P.[Peng], Wang, T.F.[Tian-Fu], Liu, C.[ChuanMing], Du, J.[Jichen], Xiao, X.H.[Xiao-Hua], Wang, S.Q.[Shu-Qiang],
Hybrid federated learning with brain-region attention network for multi-center Alzheimer's disease detection,
PR(153), 2024, pp. 110423.
Elsevier DOI Code:
WWW Link. 2405
Alzheimer's disease, Attention, Federated learning, Hybrid learning BibRef

Zuo, Q.[Qiankun], Wu, H.[Huisi], Chen, C.L.P.[C. L. Philip], Lei, B.[Baiying], Wang, S.Q.[Shu-Qiang],
Prior-Guided Adversarial Learning With Hypergraph for Predicting Abnormal Connections in Alzheimer's Disease,
Cyber(54), No. 6, June 2024, pp. 3652-3665.
IEEE DOI 2406
Diseases, Functional magnetic resonance imaging, Brain modeling, Feature extraction, Diffusion tensor imaging, Predictive models, prior-guided learning BibRef

Zhang, L.W.[Li-Wen], Xia, R.W.[Rong-Wei], Yang, B.Y.[Bai-Yang], Zhang, J.C.[Jin-Can], Wang, J.C.[Jin-Chan],
MSFNet-2SE: A multi-scale fusion convolutional network for Alzheimer's disease classification on magnetic resonance images,
IJIST(34), No. 4, 2024, pp. e23112.
DOI Link 2406
Alzheimer's disease, attention module, gradient centralization, multi-scale BibRef

Begum, A.P.[Afiya Parveen], Selvaraj, P.[Prabha],
Multiclass Diagnosis of Alzheimer's Disease Analysis Using Machine Learning and Deep Learning Techniques,
IJIG(24), No. 3, May 2024, pp. 2450031.
DOI Link 2406
BibRef

Akhtar, M.[Mushir], Tanveer, M., Arshad, M.[Mohd.],
Advancing Supervised Learning with the Wave Loss Function: A Robust and Smooth Approach,
PR(155), 2024, pp. 110637.
Elsevier DOI Code:
WWW Link. 2408
Supervised learning, Pattern classification, Loss function, Support vector machine, Twin support vector machine, Alzheimer's disease BibRef

Liu, H.R.[Hong-Rui], Gui, Y.Y.[Yuan-Yuan], Lu, H.[Hui], Liu, M.H.[Man-Hua],
A sparse transformer generation network for brain imaging genetic association,
PR(156), 2024, pp. 110845.
Elsevier DOI 2408
Imaging genetics, Sparse transformer, Alzheimer's disease, Brain aging BibRef


Chen, Q.[Qiuhui], Fu, Q.[Qiang], Bai, H.[Hao], Hong, Y.[Yi],
LongFormer: Longitudinal Transformer for Alzheimer's Disease Classification with Structural MRIs,
WACV24(3563-3572)
IEEE DOI Code:
WWW Link. 2404
Solid modeling, Image recognition, Fuses, Magnetic resonance imaging, Source coding, Transformers, Image recognition and understanding BibRef

Hesse, L.S.[Linde S.], Dinsdale, N.K.[Nicola K.], Namburete, A.I.L.[Ana I.L.],
Prototype Learning for Explainable Brain Age Prediction,
WACV24(7888-7898)
IEEE DOI 2404
Training, Measurement, Visualization, Ultrasonic imaging, Magnetic resonance imaging, Prototypes, Predictive models, ethical computer vision BibRef

Shah, J.[Jay], Siddiquee, M.M.R.[Md Mahfuzur Rahman], Su, Y.[Yi], Wu, T.[Teresa], Li, B.X.[Bao-Xin],
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction,
WACV24(7867-7876)
IEEE DOI Code:
WWW Link. 2404
Systematics, Magnetic resonance imaging, Biological system modeling, Aging, Predictive models, body pose BibRef

Kumar, S.[Suraj], Singh, N.P.[Narendra Pratap], Brahma, B.[Banalaxmi],
AI-Based Model for Detection and Classification of Alzheimer Disease,
ICCVMI23(1-6)
IEEE DOI 2403
Training, Support vector machines, Neurological diseases, Magnetic resonance imaging, Computational modeling, MRI BibRef

Huang, W.C.[Wei-Chen],
Multimodal Contrastive Learning and Tabular Attention for Automated Alzheimer's Disease Prediction,
CVAMD23(2465-2474)
IEEE DOI 2401
BibRef

Li, F.[Fanshi], Wang, Z.H.[Zhi-Hui], Guo, Y.F.[Yi-Fan], Liu, C.C.[Cong-Cong], Zhu, Y.J.[Yan-Jie], Zhou, Y.H.[Yi-Hang], Li, J.[Jun], Liang, D.[Dong], Wang, H.F.[Hai-Feng],
Dynamic Dual-Graph Fusion Convolutional Network for Alzheimer's Disease Diagnosis,
ICIP23(675-679)
IEEE DOI 2312
BibRef

Alzahrani, F.[Fatimah], Mirheidari, B.[Bahman], Blackburn, D.[Daniel], Maddock, S.[Steve], Christensen, H.[Heidi],
Investigating Visual Features for Cognitive Impairment Detection Using In-the-wild Data,
FG23(1-8)
IEEE DOI 2303
Visualization, Costs, Face recognition, Speech recognition, Gesture recognition, Feature extraction, Magnetic heads BibRef

Cilia, N.D.[Nicole Dalia], d'Alessandro, T.[Tiziana], de Stefano, C.[Claudio], Fontanella, F.[Francesco],
Offline handwriting image analysis to predict Alzheimer's disease via deep learning,
ICPR22(2807-2813)
IEEE DOI 2212
Deep learning, Motor drives, Image analysis, Shape, Image color analysis, Neural networks, Transfer learning BibRef

Wang, J.[Jianjia], Wu, C.[Chong],
Data-driven Latent Graph Structure Learning for Diagnosis of Alzheimer's Syndrome,
ICPR22(3138-3144)
IEEE DOI 2212
Image edge detection, Functional magnetic resonance imaging, Pattern recognition, Task analysis, Alzheimer's disease, Complex systems BibRef

Salih, A.[Ahmed], Galazzo, I.B.[Ilaria Boscolo], Cruciani, F.[Federica], Brusini, L.[Lorenza], Radeva, P.[Petia],
Investigating Explainable Artificial Intelligence for MRI-based Classification of Dementia: A New Stability Criterion for Explainable Methods,
ICIP22(4003-4007)
IEEE DOI 2211
Stability criteria, Machine learning, Robustness, Alzheimer's disease, Monitoring, Explainability, XAI, Proxy BibRef

Bernava, G.M.[Giuseppe Massimo], Leo, M.[Marco], Carcagnì, P.[Pierluigi], Distante, C.[Cosimo],
An Advanced Tool for Semi-automatic Annotation for Early Screening of Neurodevelopmental Disorders,
AI-Care22(154-164).
Springer DOI 2208
BibRef

Ostertag, C.[Cecilia], Beurton-Aimar, M.[Marie], Visani, M.[Muriel], Urruty, T.[Thierry], Bertet, K.[Karell],
Predicting Brain Degeneration with a Multimodal Siamese Neural Network,
IPTA20(1-6)
IEEE DOI 2206
Training, Recurrent neural networks, Magnetic resonance imaging, Image processing, Tools, Biological neural networks, Diseases, Alzheimer's disease BibRef

Maronnat, F.[Florian], Seguin, M.[Margaux], Djemal, K.[Khalifa],
Cognitive tasks modelization and description in VR environment for Alzheimer's disease state identification,
IPTA20(1-7)
IEEE DOI 2206
Solid modeling, Biological system modeling, Virtual environments, Tools, Task analysis, Statistics, Diseases, Alzheimer disease, dementia BibRef

Bastos, J.[José], Silva, F.[Filipe], Georgieva, P.[Petia],
Deep Learning for Diagnosis of Alzheimer's Disease with FDG-PET Neuroimaging,
IbPRIA22(95-107).
Springer DOI 2205
BibRef

Parziale, A.[Antonio], Cioppa, A.D.[Antonio Della], Marcelli, A.[Angelo],
Investigating One-Class Classifiers to Diagnose Alzheimer's Disease from Handwriting,
CIAP22(I:111-123).
Springer DOI 2205
BibRef

Fontanella, F.[Francesco], Pinelli, S.[Sonia], Babiloni, C.[Claudio], Lizio, R.[Roberta], del Percio, C.[Claudio], Lopez, S.[Susanna], Noce, G.[Giuseppe], Giubilei, F.[Franco], Stocchi, F.[Fabrizio], Frisoni, G.B.[Giovanni B.], Nobili, F.[Flavio], Ferri, R.[Raffaele], d'Alessandro, T.[Tiziana], Cilia, N.D.[Nicole Dalia], de Stefano, C.[Claudio],
Machine Learning to Predict Cognitive Decline of Patients with Alzheimer's Disease Using EEG Markers: A Preliminary Study,
CIAP22(I:137-147).
Springer DOI 2205
BibRef

Ayyar, M.P.[Meghna P.], Benois-Pineau, J.[Jenny], Zemmari, A.[Akka], Catheline, G.[Gwenaelle],
Explaining 3D CNNs for Alzheimer's Disease Classification on sMRI Images with Multiple ROIs,
ICIP21(284-288)
IEEE DOI 2201
Heating systems, Deep learning, Correlation, Magnetic resonance imaging, Image processing, Deep Learning understanding BibRef

Liu, C.[Chao], Yang, X.D.[Xiao-Dong], Chong, D.[Dading], Wang, W.W.[Wen-Wu], Li, L.[Liang],
Enhancing Alzheimer's Disease Diagnosis via Hierarchical 3D-FCN with Multi-Modal Features,
ICIP21(304-308)
IEEE DOI 2201
Training, Neurological diseases, Sociology, Senior citizens, Feature extraction, Medical diagnosis, Multi-layer perceptron BibRef

Zhang, L.[Lin], Xin, B.[Bowen], Yan, S.Z.[Shao-Zhen], Zheng, C.[Chaoiie], Zhou, Y.[Yun], Lu, J.[Jie], Wang, X.Y.[Xiu-Ying],
Multi-stratification feature selection for diagnostic analysis of Alzheimer's disease,
DICTA21(01-07)
IEEE DOI 2201
Neuroimaging, Brain, Magnetic resonance imaging, Digital images, Feature extraction, Alzheimer's disease, Task analysis BibRef

Cilia, N.D.[Nicole Dalia], de Stefano, C.[Claudio], Marrocco, C.[Claudio], Fontanella, F.[Francesco], Molinara, M.[Mario], di Freca, A.S.[Alessandra Scotto],
Deep Transfer Learning for Alzheimer's disease detection,
ICPR21(9904-9911)
IEEE DOI 2105
Decision support systems, Shape, Image color analysis, Transfer learning, Neural networks, Feature extraction, Pattern recognition BibRef

Yu, F.[Fei], Zhao, B.Q.[Bao-Qi], Ge, Q.Q.[Qing-Qing], Zhang, Z.J.[Zhi-Jie], Sun, J.M.[Jun-Mei], Li, X.M.[Xiu-Mei],
A Lightweight Spatial Attention Module with Adaptive Receptive Fields in 3d Convolutional Neural Network for Alzheimer's Disease Classification,
AIHA20(575-586).
Springer DOI 2103
BibRef

Dentamaro, V.[Vincenzo], Impedovo, D.[Donato], Pirlo, G.[Giuseppe],
An Analysis of Tasks and Features for Neuro-degenerative Disease Assessment by Handwriting,
AIHA20(536-545).
Springer DOI 2103
BibRef

Cilia, N.D.[Nicole Dalia], de Stefano, C.[Claudio], Fontanella, F.[Francesco], di Freca, A.S.[Alessandra Scotto],
Handwriting-based Classifier Combination for Cognitive Impairment Prediction,
AIHA20(587-599).
Springer DOI 2103
BibRef

de Gregorio, G.[Giuseppe], Desiato, D.[Domenico], Marcelli, A.[Angelo], Polese, G.[Giuseppe],
A Multi Classifier Approach for Supporting Alzheimer's Diagnosis Based on Handwriting Analysis,
AIHA20(559-574).
Springer DOI 2103
BibRef

Ebrahimi, A., Luo, S., Chiong, R.,
Introducing Transfer Leaming to 3D ResNet-18 for Alzheimer's Disease Detection on MRI Images,
IVCNZ20(1-6)
IEEE DOI 2012
Training, Solid modeling, Magnetic resonance imaging, Computational modeling, Taguchi BibRef

Zhou, L., Zhang, L., Bai, X., Zhou, J.,
Matrix Classifier on Dynamic Functional Connectivity for MCI Identification,
ICIP20(325-329)
IEEE DOI 2011
Feature extraction, Correlation, Dementia, Spatiotemporal phenomena, Training, Alzheimer's disease (AD), support matrix machines (SMM) BibRef

Miller, M.I.[Michael I.], Tward, D.J.[Daniel J.], Trouvé, A.[Alain],
Coarse-to-Fine Hamiltonian Dynamics of Hierarchical Flows in Computational Anatomy,
Diff-CVML20(3760-3765)
IEEE DOI 2008
Results on Alzheimer's. Shape, Kernel, Mathematical model, Shape measurement, Atmospheric measurements BibRef

Slapnicar, G., Dovgan, E., Cuk, P., Lustrek, M.,
Contact-Free Monitoring of Physiological Parameters in People With Profound Intellectual and Multiple Disabilities,
CVPM19(1664-1672)
IEEE DOI 2004
Videos, Skin, Biomedical monitoring, Heart rate, Databases, Blood, Physiology, physiological signals, PIMD, deep learning, LSTM, rPPG, video cameras BibRef

Zhang, Y.[Yanfu], Zhan, L.[Liang], Thompson, P.M.[Paul M.], Huang, H.[Heng],
Biological Knowledge Guided Deep Neural Network for Brain Genotype-phenotype Association Study,
MBIA19(84-92).
Springer DOI 1912
BibRef

Peng, B.[Bo], Ren, Z.Y.[Zhi-Yun], Yao, X.H.[Xiao-Hui], Liu, K.[Kefei], Saykin, A.J.[Andrew J.], Shen, L.[Li], Ning, X.[Xia],
Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank,
MBIA19(139-148).
Springer DOI 1912
BibRef

Wegmayr, V.[Viktor], Hörold, M.[Maurice], Buhmann, J.M.[Joachim M.],
Generative Aging of Brain MR-Images and Prediction of Alzheimer Progression,
GCPR19(247-260).
Springer DOI 1911
BibRef

Ge, C., Qu, Q., Gu, I.Y., Store Jakola, A.,
Multiscale Deep Convolutional Networks for Characterization and Detection of Alzheimer's Disease Using MR images,
ICIP19(789-793)
IEEE DOI 1910
Alzheimer's disease detection, MR images, multiscale features, multiscale CNN, feature fusion and enhancement BibRef

Dentamaro, V.[Vincenzo], Impedovo, D.[Donato], Pirlo, G.[Giuseppe],
Real-Time Neurodegenerative Disease Video Classification with Severity Prediction,
CIAP19(II:618-628).
Springer DOI 1909
BibRef

Cilia, N.D.[Nicole Dalia], de Stefano, C.[Claudio], Fontanella, F.[Francesco], Molinara, M.[Mario], di Freca, A.S.[Alessandra Scotto],
Using Handwriting Features to Characterize Cognitive Impairment,
CIAP19(II:683-693).
Springer DOI 1909
BibRef

Plocharski, M.[Maciej], Østergaard, L.R.[Lasse Riis], Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Sulcal and Cortical Features for Classification of Alzheimer's Disease and Mild Cognitive Impairment,
SCIA19(427-438).
Springer DOI 1906
BibRef

Pan, X., Adel, M., Fossati, C., Gaidon, T., Guedj, E.,
Alzheimer's Disease Diagnosis with FDG-PET Brain Images By Using Multi-Level Features,
ICIP18(366-370)
IEEE DOI 1809
Feature extraction, Dementia, Magnetic resonance imaging, Positron emission tomography, Symmetric matrices, Alzheimer's Disease BibRef

Zuanon, R.[Rachel], de Faria, B.A.C.[Barbara Alves Cardoso],
Landscape Design and Neuroscience Cooperation: Contributions to the Non-pharmacological Treatment of Alzheimer's Disease,
DHM18(353-374).
Springer DOI 1807
BibRef

Ben-Ahmed, O., Lecellier, F., Paccalin, M., Fernandez-Maloigne, C.,
Multi-View Visual Saliency-Based MRI Classification for Alzheimer's Disease Diagnosis,
IPTA17(1-6)
IEEE DOI 1804
biomedical MRI, brain, diseases, image classification, learning (artificial intelligence), medical image processing, visual saliency BibRef

Lazli, L., Boukadoum, M., Aït-Mohamed, O.,
Brain Tissue Classification of Alzheimer Disease Using Partial Volume Possibilistic Modeling: Application to ADNI Phantom Images,
IPTA17(1-5)
IEEE DOI 1804
biological tissues, biomedical MRI, brain, diseases, fuzzy set theory, image classification, image denoising, Possibilistic c-means algorithm BibRef

Li, Q.[Qing], Wu, X.[Xia], Xu, L.[Lele], Yao, L.[Li], Chen, K.W.[Ke-Wei],
Multi-Feature Kernel Discriminant Dictionary Learning for Classification in Alzheimer's Disease,
DICTA17(1-6)
IEEE DOI 1804
biomedical MRI, diseases, face recognition, feature extraction, image classification, medical image processing, Training
See also Multi-Feature Kernel Discriminant Dictionary Learning for Face Recognition. BibRef

Mehta, R., Chakraborty, R., Singh, V., Xiong, Y.,
Scaling Recurrent Models via Orthogonal Approximations in Tensor Trains,
ICCV19(10570-10578)
IEEE DOI 2004
Tensile stress, Manifolds, Computational modeling, Brain modeling, Data models, Solid modeling BibRef

El-Gamal, F.E.Z.A., Elmogy, M.M., Atwan, A., Ghazal, M., Barnes, G.N., Hajjdiab, H., Keynton, R., El-Baz, A.S.,
Significant Region-Based Framework for Early Diagnosis of Alzheimer's Disease Using11C PiB-PET Scans,
ICPR18(2989-2994)
IEEE DOI 1812
Diseases, Feature extraction, Labeling, Statistical analysis, Support vector machines, Positron emission tomography, Standardization BibRef

El-Gamal, F.E.Z.A., Elmogy, M.M., Ghazal, M., Atwan, A., Barnes, G.N., Casanova, M.F., Keynton, R., El-Baz, A.S.,
A novel CAD system for local and global early diagnosis of Alzheimer's disease based on PIB-PET scans,
ICIP17(3270-3274)
IEEE DOI 1803
Brain, Databases, Diseases, Feature extraction, Noise reduction, Probabilistic logic, Support vector machines, PIB-PET BibRef

Shams-Baboli, A., Ezoji, M.,
A Zernike moment based method for classification of Alzheimer's disease from structural MRI,
IPRIA17(38-43)
IEEE DOI 1712
backpropagation, biomedical MRI, diseases, feature extraction, image classification, medical image processing, neural nets, mild cognitive impairment BibRef

Konukoglu, E.[Ender], Glocker, B.[Ben],
Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases,
MCV16(3-13).
Springer DOI 1711
BibRef

Wang, J.J.[Jian-Jia], Wilson, R.C.[Richard C.], Hancock, E.R.[Edwin R.],
Quantum Edge Entropy for Alzheimer's Disease Analysis,
SSSPR18(449-459).
Springer DOI 1810
BibRef
Earlier:
Detecting Alzheimer's Disease Using Directed Graphs,
GbRPR17(94-104).
Springer DOI 1706

See also Network Edge Entropy from Maxwell-Boltzmann Statistics. BibRef

Bernardes, R.[Rui], Silva, G.[Gilberto], Chiquita, S.[Samuel], Serranho, P.[Pedro], Ambrósio, A.F.[António Francisco],
Retinal Biomarkers of Alzheimer's Disease: Insights from Transgenic Mouse Models,
ICIAR17(541-550).
Springer DOI 1706
BibRef

Kumar, K., Desrosiers, C., Chaddad, A., Toews, M.,
Spatially constrained sparse regression for the data-driven discovery of Neuroimaging biomarkers,
ICPR16(2162-2167)
IEEE DOI 1705
Alzheimer's disease, Biomarkers, Brain modeling, Data models, Databases, Neuroimaging BibRef

Montenegro, J.M.F.[Juan Manuel Fernandez], Villarini, B.[Barbara], Gkelias, A.[Athanasios], Argyriou, V.[Vasileios],
Cognitive Behaviour Analysis Based on Facial Information Using Depth Sensors,
UHA3DS16(15-28).
Springer DOI 1806
BibRef

Montenegro, J.M.F.[Juan Manuel Fernandez], Gkelias, A.[Athanasios], Argyriou, V.[Vasileios],
Emotion Understanding Using Multimodal Information Based on Autobiographical Memories for Alzheimer's Patients,
Assist16(I: 252-268).
Springer DOI 1704
BibRef

Cury, C.[Claire], Lorenzi, M.[Marco], Cash, D.[David], Nicholas, J.M.[Jennifer M.], Routier, A.[Alexandre], Rohrer, J.[Jonathan], Ourselin, S.[Sebastien], Durrleman, S.[Stanley], Modat, M.[Marc],
Spatio-Temporal Shape Analysis of Cross-Sectional Data for Detection of Early Changes in Neurodegenerative Disease,
SeSAME16(63-75).
Springer DOI 1703
BibRef

Rudas, J.[Jorge], Martínez, D.[Darwin], Demertzi, A.[Athena], di Perri, C.[Carol], Heine, L.[Lizette], Tshibanda, L.[Luaba], Soddu, A.[Andrea],
Multivariate Functional Network Connectivity for Disorders of Consciousness,
CIARP16(434-442).
Springer DOI 1703
BibRef

Bhatkoti, P., Paul, M.,
Early diagnosis of Alzheimer's disease: A multi-class deep learning framework with modified k-sparse autoencoder classification,
ICVNZ16(1-5)
IEEE DOI 1701
Alzheimer's disease BibRef

Joshi, S.H.[Shantanu H.], Xie, Q.[Qian], Kurtek, S.[Sebastian], Srivastava, A.[Anuj], Laga, H.[Hamid],
Surface Shape Morphometry for Hippocampal Modeling in Alzheimer's Disease,
DICTA16(1-8)
IEEE DOI 1701
Diseases BibRef

Aderghal, K.[Karim], Boissenin, M.[Manuel], Benois-Pineau, J.[Jenny], Catheline, G.[Gwenaëlle], Afdel, K.[Karim],
Classification of sMRI for AD Diagnosis with Convolutional Neuronal Networks: A Pilot 2-D+ epsilon Study on ADNI,
MMMod17(I: 690-701).
Springer DOI 1701
BibRef

Tang, X., Albert, M., Miller, M.I.[Michael I.], Younes, L.[Laurent],
Change Point Estimation of the Hippocampal Volumes in Alzheimer's Disease,
CRV16(358-361)
IEEE DOI 1612
Alzheimer's disease BibRef

Kim, W.H.[Won Hwa], Kim, H.W.J.[Hyun-Woo J.], Adluru, N.[Nagesh], Singh, V.[Vikas],
Latent Variable Graphical Model Selection Using Harmonic Analysis: Applications to the Human Connectome Project (HCP),
CVPR16(2443-2451)
IEEE DOI 1612
BibRef

Zheng, X.[Xiao], Shi, J.[Jun], Ying, S.H.[Shi-Hui], Zhang, Q.[Qi], Li, Y.[Yan],
Improving Single-Modal Neuroimaging Based Diagnosis of Brain Disorders via Boosted Privileged Information Learning Framework,
MLMI16(95-103).
Springer DOI 1611
BibRef

Zu, C.[Chen], Gao, Y.[Yue], Munsell, B.[Brent], Kim, M.J.[Min-Jeong], Peng, Z.[Ziwen], Zhu, Y.Y.[Ying-Ying], Gao, W.[Wei], Zhang, D.Q.[Dao-Qiang], Shen, D.G.[Ding-Gang], Wu, G.R.[Guo-Rong],
Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph,
MLMI16(1-9).
Springer DOI 1611
BibRef

Hosseini-Asl, E., Keynton, R., El-Baz, A.,
Alzheimer's disease diagnostics by adaptation of 3D convolutional network,
ICIP16(126-130)
IEEE DOI 1610
Convolution BibRef

Rabeh, A.B., Benzarti, F., Amiri, H.,
Diagnosis of Alzheimer Diseases in Early Step Using SVM (Support Vector Machine),
CGiV16(364-367)
IEEE DOI 1608
diseases BibRef

Daianu, M.[Madelaine], Steeg, G.V.[Greg Ver], Mezher, A.[Adam], Jahanshad, N.[Neda], Nir, T.M.[Talia M.], Yan, X.R.[Xiao-Ran], Prasad, G.[Gautam], Lerman, K.[Kristina], Galstyan, A.[Aram], Thompson, P.M.[Paul M.],
Information-Theoretic Clustering of Neuroimaging Metrics Related to Cognitive Decline in the Elderly,
MCV15(13-23).
Springer DOI 1608
BibRef

Ben Ahmed, O.[Olfa], Benois-Pineau, J.[Jenny], Ben Amar, C.[Chokri], Aliara, M.[Michele], Catheline, G.[Gwenaelle],
Features-based approach for Alzheimer's disease diagnosis using visual pattern of water diffusion in tensor diffusion imaging,
ICIP15(2840-2844)
IEEE DOI 1512
AD-related signature BibRef

Garg, S.[Saurabh], Tang, L.[Lisa], Traboulsee, A.[Anthony], Tam, R.[Roger],
A sensitive and efficient method for measuring change in cortical thickness using fuzzy correspondence in Alzheimer's disease,
ICIP15(3014-3018)
IEEE DOI 1512
Cortical Thickness; atrophy; gray matter; longitudinal measurement BibRef

Garali, I.[Imene], Adel, M.[Mouloud], Bourennane, S.[Salah], Guedj, E.[Eric],
Region-based brain selection and classification on pet images for Alzheimer's disease computer aided diagnosis,
ICIP15(1473-1477)
IEEE DOI 1512
Alzheimer's Disease (AD) BibRef

Moetesum, M.[Momina], Siddiqi, I.[Imran], Masroor, U.[Uzma], Djeddi, C.[Chawki],
Automated scoring of Bender Gestalt Test using image analysis techniques,
ICDAR15(666-670)
IEEE DOI 1511
Drawing tests for early detection of psychological and neurological impairments BibRef

Lei, B.Y.[Bai-Ying], Chen, S.P.[Si-Ping], Ni, D.[Dong], Wang, T.F.[Tian-Fu],
Joint Learning of Multiple Longitudinal Prediction Models by Exploring Internal Relations,
MLMI15(330-337).
Springer DOI 1511
BibRef

Guerrero, R., Ledig, C., Schmidt-Richberg, A., Rueckert, D.,
Group-Constrained Laplacian Eigenmaps: Longitudinal AD Biomarker Learning,
MLMI15(178-185).
Springer DOI 1511
BibRef

Amoroso, N.[Nicola], Tangaro, S.[Sabina], Errico, R.[Rosangela], Garuccio, E.[Elena], Monda, A.[Anna], Sensi, F.[Francesco], Tateo, A.[Andrea], Bellotti, R.[Roberto], Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
An Hippocampal Segmentation Tool Within an Open Cloud Infrastructure,
ISCA15(193-200).
Springer DOI 1511
BibRef

Vanderweyen, D.[Davy], Munsell, B.C.[Brent C.], Mintzer, J.E.[Jacobo E.], Mintzer, O.[Olga], Gajadharr, A.[Andy], Zhu, X.[Xun], Wu, G.R.[Guo-Rong], Joseph, J.[Jane], Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Identifying Abnormal Network Alterations Common to Traumatic Brain Injury and Alzheimer's Disease Patients Using Functional Connectome Data,
MLMI15(229-237).
Springer DOI 1511
BibRef

Huang, L.[Lei], Gao, Y.Z.[Yao-Zong], Jin, Y.[Yan], Thung, K.H.[Kim-Han], Shen, D.G.[Ding-Gang],
Soft-Split Sparse Regression Based Random Forest for Predicting Future Clinical Scores of Alzheimer's Disease,
MLMI15(246-254).
Springer DOI 1511
BibRef

Andersen, S.K.[Simon Kragh], Jakobsen, C.E.[Christian Elmholt], Pedersen, C.H.[Claus Hougaard], Rasmussen, A.M.[Anders Munk], Plocharski, M.[Maciej], Østergaard, L.R.[Lasse Riis],
Classification of Alzheimer's Disease from MRI Using Sulcal Morphology,
SCIA15(103-113).
Springer DOI 1506
BibRef

Zhao, Y.[Yilu], He, L.H.[Liang-Hua],
Deep Learning in the EEG Diagnosis of Alzheimer's Disease,
DeepLearnV14(340-353).
Springer DOI 1504
BibRef

Aidos, H.[Helena], Duarte, J.[Joao], Fred, A.[Ana],
Identifying regions of interest for discriminating Alzheimer's disease from mild cognitive impairment,
ICIP14(21-25)
IEEE DOI 1502
Accuracy BibRef

Guerrero, R.[Ricardo], Ledig, C.[Christian], Rueckert, D.[Daniel],
Manifold Alignment and Transfer Learning for Classification of Alzheimer's Disease,
MLMI14(77-84).
Springer DOI 1410
BibRef

Shi, Y.H.[Ying-Huan], Suk, H.I.[Heung-Il], Gao, Y.[Yang], Shen, D.G.[Ding-Gang],
Joint Coupled-Feature Representation and Coupled Boosting for AD Diagnosis,
CVPR14(2721-2728)
IEEE DOI 1409
Alzheimer and Mild Cognitive Impairment. BibRef

Zhu, X.F.[Xiao-Feng], Suk, H.I.[Heung-Il], Shen, D.G.[Ding-Gang],
Matrix-Similarity Based Loss Function and Feature Selection for Alzheimer's Disease Diagnosis,
CVPR14(3089-3096)
IEEE DOI 1409
BibRef

Yan, Z.N.[Zhen-Nan], Zhang, S.T.[Shao-Ting], Liu, X.F.[Xiao-Feng], Metaxas, D.N.[Dimitris N.], Montillo, A.[Albert],
Accurate Whole-Brain Segmentation for Alzheimer's Disease Combining an Adaptive Statistical Atlas and Multi-atlas,
MCV13(65-73).
Springer DOI 1405
BibRef

Liu, S.[Sidong], Zhang, L.[Lelin], Cai, W.D.[Wei-Dong], Song, Y.[Yang], Wang, Z.Y.[Zhi-Yong], Wen, L.F.[Ling-Feng], Feng, D.D.[David Dagan],
A supervised multiview spectral embedding method for neuroimaging classification,
ICIP13(601-605)
IEEE DOI 1402
Alzheimer's disease BibRef

Liu, S.[Sidong], Cai, W.D.[Wei-Dong], Wen, L.F.[Ling-Feng], Feng, D.D.[David Dagan],
Multiscale and multiorientation feature extraction with degenerative patterns for 3D neuroimaging retrieval,
ICIP12(1249-1252).
IEEE DOI 1302
BibRef

Sun, Z.[Zhuo], Jasinschi, R.S.[Radu S.], Veerman, J.A.C.[Jan A.C.],
A new method for data-driven multi-brain atlas generation,
ICIP14(3503-3507)
IEEE DOI 1502
Alzheimer's disease BibRef
Earlier: A1, A3, A2:
A method for detecting interstructural atrophy correlation in MRI brain images,
ICIP12(1253-1256).
IEEE DOI 1302
BibRef

Gomez, F., Soddu, A., Noirhomme, Q., Vanhaudenhuyse, A., Tshibanda, L., Lepore, N., Laureys, S.,
DTI based structural damage characterization for Disorders of Consciousness,
ICIP12(1257-1260).
IEEE DOI 1302
BibRef

Bicacro, E.[Eduardo], Silveira, M.[Margarida], Marques, J.S.[Jorge S.],
Alternative feature extraction methods in 3D brain image-based diagnosis of Alzheimer's Disease,
ICIP12(1237-1240).
IEEE DOI 1302
BibRef

Mizotin, M.[Maxim], Benois-Pineau, J.[Jenny], Allard, M.[Michele], Catheline, G.[Gwenaelle],
Feature-based brain MRI retrieval for Alzheimer disease diagnosis,
ICIP12(1241-1244).
IEEE DOI 1302
BibRef

Dyrba, M.[Martin], Ewers, M.[Michael], Wegrzyn, M.[Martin], Kilimann, I.[Ingo], Plant, C.[Claudia], Oswald, A.[Annahita], Meindl, T.[Thomas], Pievani, M.[Michela], Bokde, A.L.W.[Arun L. W.], Fellgiebel, A.[Andreas], Filippi, M.[Massimo], Hampel, H.[Harald], Kloppel, S.[Stefan], Hauenstein, K.[Karlheinz], Kirste, T.[Thomas], Teipel, S.J.[Stefan J.],
Combining DTI and MRI for the Automated Detection of Alzheimer's Disease Using a Large European Multicenter Dataset,
MBIA12(18-28).
Springer DOI 1210
BibRef

Rueda, A.[Andrea], Arevalo, J.[John], Cruz, A.[Angel], Romero, E.[Eduardo], González, F.A.[Fabio A.],
Bag of Features for Automatic Classification of Alzheimer's Disease in Magnetic Resonance Images,
CIARP12(559-566).
Springer DOI 1209
BibRef

Hajiesmaeili, M.[Maryam], Bagherinakhjavanlo, B.[Bashir], Dehmeshki, J.[Jamshid], Ellis, T.[Tim],
Segmentation of the Hippocampus for Detection of Alzheimer's Disease,
ISVC12(I: 42-50).
Springer DOI 1209
BibRef

Wan, J.[Jing], Zhang, Z.L.[Zhi-Lin], Yan, J.W.[Jing-Wen], Li, T.[Taiyong], Rao, B.D.[Bhaskar D.], Fang, S.F.[Shiao-Fen], Kim, S.[Sungeun], Risacher, S.L.[Shannon L.], Saykin, A.J.[Andrew J.], Shen, L.[Li],
Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease,
CVPR12(940-947).
IEEE DOI 1208
BibRef

Wang, H.[Hua], Nie, F.P.[Fei-Ping], Huang, H.[Heng], Risacher, S.[Shannon], Ding, C.[Chris], Saykin, A.J.[Andrew J.], Shen, L.[Li],
Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance,
ICCV11(557-562).
IEEE DOI 1201
BibRef

Veerman, J.A.C., Soldea, O., Sahindrakar, P., Wan, Y., Jasinschi, R.S.,
Application of computational anatomy methods to MRI data for the diagnosis of Alzheimer'S disease,
ICIP11(1593-1596).
IEEE DOI 1201
BibRef

Filipovych, R.[Roman], Resnick, S.M.[Susan M.], Davatzikos, C.[Christos],
JointMMCC: Joint Maximum-Margin Classification and Clustering of Imaging Data,
MedImg(31), No. 5, May 2012, pp. 1124-1140.
IEEE DOI 1202
BibRef
Earlier:
Multi-Kernel Classification for Integration of Clinical and Imaging Data: Application to Prediction of Cognitive Decline in Older Adults,
MLMI11(26-34).
Springer DOI 1109
BibRef

Long, X.J.[Xiao-Jing], Wyatt, C.[Chris],
An automatic unsupervised classification of MR images in Alzheimer's disease,
CVPR10(2910-2917).
IEEE DOI 1006
BibRef

Silveira, M.[Margarida], Marques, J.S.[Jorge S.],
Boosting Alzheimer Disease Diagnosis Using PET Images,
ICPR10(2556-2559).
IEEE DOI 1008
BibRef

Soldea, O.[Octavian], Ekin, A.[Ahmet], Soldea, D.F.[Diana F.], Unay, D.[Devrim], Cetin, M.[Mujdat], Ercil, A.[Aytul], Uzunbas, M.G.[Mustafa Gokhan], Firat, Z.[Zeynep], Cihangiroglu, M.[Mutlu], Initiative, T.A.D.N.[The Alzheimers Disease Neuroimaging],
Segmentation of Anatomical Structures in Brain MR Images Using Atlases in FSL: A Quantitative Approach,
ICPR10(2592-2595).
IEEE DOI 1008
BibRef

Wang, J.N.[Jing-Nan], Ekin, A.[Ahmet], de Haan, G.[Gerard],
Shape analysis of brain ventricles for improved classification of Alzheimer's patients,
ICIP08(2252-2255).
IEEE DOI 0810
BibRef

dos Santos, W.P.[Wellington P.], de Souza, R.E.[Ricardo E.], Silva, A.F.D.[Ascendino F. D.], Santos Filho, P.B.[Plínio B.],
Evaluation of Alzheimer's Disease by Analysis of MR Images Using Multilayer Perceptrons, Polynomial Nets and Kohonen LVQ Classifiers,
MIRAGE07(12-22).
Springer DOI 0703
BibRef

Hu, Z.H.[Zheng-Hui], Shi, P.C.[Peng-Cheng],
Regularity and Complexity of Human Electroencephalogram Dynamics: Applications to Diagnosis of Alzheimers Disease,
ICPR06(III: 245-248).
IEEE DOI 0609
BibRef

Teverovskiy, L., Liu, Y.,
Truly 3D Midsagittal Plane Extraction for Robust Neuroimage Registration,
CMU-RI-TR-04-21, March, 2004.
HTML Version. 0501
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Parkinson's Disease .


Last update:Aug 28, 2024 at 16:02:19