Oh, S.H.[Se-Hong],
Jeong, H.J.[Hye-Jin],
Kim, J.M.[Jong-Min],
Kwon, D.H.[Dae-Hyuk],
Park, S.Y.[Sung-Yeon],
Park, J.H.[Joshua H.],
Kim, Y.B.[Young-Bo],
Chi, J.G.[Je-Geun],
Park, C.W.[Chan-Woong],
Jeon, B.S.[Beom S.],
Cho, Z.H.[Zang-Hee],
Quantitative analysis of the SN in Parkinson's disease implementing 3D
modeling at 7.0-T MRI,
IJIST(21), No. 3, September 2011, pp. 253-259.
DOI Link
1109
BibRef
Chauvie, S.[Stephane],
Obertino, M.[Margherita],
Papaleo, A.[Alberto],
Ruspa, M.[Marta],
Solano, A.[Ada],
Gozzoli, L.[Luigi],
Gagliano, A.[Attilio],
Biggi, A.[Alberto],
A method for the visual analysis of early-stage Parkinson's disease
based on virtual MRI-derived SPECT images,
IJIST(22), No. 3, September 2012, pp. 172-176.
DOI Link
1208
BibRef
Song, I.U.[In-Uk],
Chung, Y.A.[Yong-An],
Chung, S.W.[Sung-Woo],
Huh, R.[Ryoong],
Clinical value of cardiac I-123 metaiodobenzylguanidine scintigraphy
between Parkinson's disease and Parkinson's disease associated dementia,
IJIST(22), No. 4, December 2012, pp. 241-244.
DOI Link
1211
BibRef
Song, I.U.[In-Uk],
Chung, Y.A.[Yong-An],
Huh, R.[Ryoong],
Brain perfusion SPECT can differentiate clinical subtypes of
Parkinson's diseases,
IJIST(23), No. 3, 2013, pp. 222-226.
DOI Link
1309
Parkinson's disease, tremor, perfusion SPECT
BibRef
Song, I.U.[In-Uk],
Chung, S.W.[Sung-Woo],
Chung, Y.A.[Yong-An],
Efficacy of an NMDA receptor antagonist for Parkinson's disease
dementia: A brain perfusion SPECT study,
IJIST(24), No. 4, 2014, pp. 326-331.
DOI Link
1411
Parkinson's disease, dementia, memantine, cerebral blood flow
BibRef
Kim, T.W.[Tae-Won],
Chung, Y.A.[Yong-An],
Song, I.U.[In-Uk],
Lee, K.S.[Kwang-Soo],
Analysis of cerebral blood flow in Parkinson's disease with dementia
versus subcortical ischemic vascular dementia using single photon
emission computed tomography,
IJIST(24), No. 4, 2014, pp. 306-312.
DOI Link
1411
Parkinson's disease with dementia
BibRef
Ghayoumi, M.[Mehdi],
Zhao, Y.[Ye],
Parkinson Data Analysis and Interpretation with Data Visualization
Methods,
ISVC14(II: 884-893).
Springer DOI
1501
BibRef
Subasi, A.[Abdulhamit],
A decision support system for diagnosis of neuromuscular disorders
using DWT and evolutionary support vector machines,
SIViP(9), No. 2, February 2015, pp. 399-408.
WWW Link.
1503
BibRef
Bailey, C.[Chris],
Austin, J.[Jim],
Hollier, G.[Garry],
Moulds, A.[Anthony],
Freeman, M.[Micheal],
Fargus, A.[Alex],
Lampert, T.[Tom],
Evaluating a Miniature Multisensor Biosignal Recorder for
Unsupervised Parkinson's Disease Monitoring,
Sensors(184), No. 1, January 2015, pp. 66-76.
HTML Version.
1504
BibRef
Rana, B.[Bharti],
Juneja, A.[Akanksha],
Saxena, M.[Mohit],
Gudwani, S.[Sunita],
Kumaran, S.S.[S. Senthil],
Behari, M.[Madhuri],
Agrawal, R.K.,
Graph-theory-based spectral feature selection for computer aided
diagnosis of Parkinson's disease using T1-weighted MRI,
IJIST(25), No. 3, 2015, pp. 245-255.
DOI Link
1509
Parkinson's disease
BibRef
Song, I.U.[In-Uk],
Kim, T.W.[Tae-Won],
Yoo, I.[Ikdong],
Chung, Y.A.[Yong-An],
Lee, K.S.[Kwan-Sung],
Can COMT-inhibitor delay the clinical progression of Parkinson's
disease? 2 years follow up pilot study,
IJIST(26), No. 1, 2016, pp. 38-42.
DOI Link
1604
Parkinson's disease
BibRef
Kim, Y.D.[Young-Do],
Jeong, H.S.[Hyeonseok S.],
Kim, Y.D.[Yong-Duk],
Comparison of regional cerebral blood flow in Parkinson's disease
with depression and major depression,
IJIST(27), No. 3, 2017, pp. 209-215.
DOI Link
1708
depression, Parkinson's disease, regional cerebral blood flow, ,
single, photon, emission, computed, tomography
BibRef
Impedovo, D.,
Velocity-Based Signal Features for the Assessment of Parkinsonian
Handwriting,
SPLetters(26), No. 4, April 2019, pp. 632-636.
IEEE DOI
1903
Writing, Task analysis, Diseases, Standards, Acceleration, Azimuth,
Neuromuscular, Parkinson's disease, computer aided diagnosis,
tremor
BibRef
Qin, Z.,
Jiang, Z.,
Chen, J.,
Hu, C.,
Ma, Y.,
sEMG-Based Tremor Severity Evaluation for Parkinson's Disease Using a
Light-Weight CNN,
SPLetters(26), No. 4, April 2019, pp. 637-641.
IEEE DOI
1903
Training, Testing, Parkinson's disease, Task analysis,
Feature extraction, Hospitals, Muscles, Parkinson's Disease,
similarity learning
BibRef
Ariz, M.,
Abad, R.C.,
Castellanos, G.,
Martínez, M.,
Muńoz-Barrutia, A.,
Fernández-Seara, M.A.,
Pastor, P.,
Pastor, M.A.,
Ortiz-de-Solórzano, C.,
Dynamic Atlas-Based Segmentation and Quantification of
Neuromelanin-Rich Brainstem Structures in Parkinson Disease,
MedImg(38), No. 3, March 2019, pp. 813-823.
IEEE DOI
1903
Image segmentation, Diseases, Brainstem,
Nuclear magnetic resonance, Magnetic resonance imaging,
neural network based classifier
BibRef
Loconsole, C.[Claudio],
Cascarano, G.D.[Giacomo Donato],
Brunetti, A.[Antonio],
Trotta, G.F.[Gianpaolo Francesco],
Losavio, G.[Giacomo],
Bevilacqua, V.[Vitoantonio],
di Sciascio, E.[Eugenio],
A model-free technique based on computer vision and sEMG for
classification in Parkinson's disease by using computer-assisted
handwriting analysis,
PRL(121), 2019, pp. 28-36.
Elsevier DOI
1904
Handwriting analysis, Neurodegenerative disease,
Parkinson's disease, Neural Network, SVM
BibRef
Moetesum, M.[Momina],
Siddiqi, I.[Imran],
Vincent, N.[Nicole],
Cloppet, F.[Florence],
Assessing visual attributes of handwriting for prediction of
neurological disorders: A case study on Parkinson's disease,
PRL(121), 2019, pp. 19-27.
Elsevier DOI
1904
Handwriting, Parkinson's disease,
Convolutional neural networks, Visual attributes
BibRef
Liu, C.,
Wang, J.,
Deng, B.,
Li, H.,
Fietkiewicz, C.,
Loparo, K.A.,
Noise-Induced Improvement of the Parkinsonian State:
A Computational Study,
Cyber(49), No. 10, October 2019, pp. 3655-3664.
IEEE DOI
1907
Neurons, Satellite broadcasting, Mathematical model,
Computational modeling, Pathology, Biological neural networks,
Parkinsonian state
BibRef
Almeida, J.S.[Jefferson S.],
Filho, P.P.R.[Pedro P. Rebouças],
Carneiro, T.[Tiago],
Wei, W.[Wei],
Damaevicius, R.[Robertas],
Maskeliunas, R.[Rytis],
de Albuquerque, V.H.C.[Victor Hugo C.],
Detecting Parkinson's disease with sustained phonation and speech
signals using machine learning techniques,
PRL(125), 2019, pp. 55-62.
Elsevier DOI
1909
Parkinson's disease, Speech processing, Phonological features,
Feature extraction, Machine learning, Diagnosis
BibRef
Bernardo, L.S.[Lucas S.],
Quezada, A.[Angeles],
Munoz, R.[Roberto],
Maia, F.M.[Fernanda Martins],
Pereira, C.R.[Clayton R.],
Wu, W.Q.[Wan-Qing],
de Albuquerque, V.H.C.[Victor Hugo C.],
Handwritten pattern recognition for early Parkinson's disease
diagnosis,
PRL(125), 2019, pp. 78-84.
Elsevier DOI
1909
Parkinson's disease, machine learning, image processing
BibRef
Parziale, A.[Antonio],
Cioppa, A.D.[Antonio Della],
Senatore, R.[Rosa],
Marcelli, A.[Angelo],
A Decision Tree for Automatic Diagnosis of Parkinson's Disease from
Offline Drawing Samples: Experiments and Findings,
CIAP19(I:196-206).
Springer DOI
1909
BibRef
Diaz, M.[Moises],
Ferrer, M.A.[Miguel Angel],
Impedovo, D.[Donato],
Pirlo, G.[Giuseppe],
Vessio, G.[Gennaro],
Dynamically enhanced static handwriting representation for
Parkinson's disease detection,
PRL(128), 2019, pp. 204-210.
Elsevier DOI
1912
Parkinson's disease, e-Health, Computer aided diagnosis,
Dynamically enhanced static handwriting, Convolutional neural networks
BibRef
Kim, M.,
Won, J.H.,
Youn, J.,
Park, H.,
Joint-Connectivity-Based Sparse Canonical Correlation Analysis of
Imaging Genetics for Detecting Biomarkers of Parkinson's Disease,
MedImg(39), No. 1, January 2020, pp. 23-34.
IEEE DOI
2001
Genetics, Neuroimaging, Correlation, Diseases,
Magnetic resonance imaging, Sparse matrices, Imaging genetics,
single nucleotide polymorphism (SNP)
BibRef
Naghsh, E.[Erfan],
Sabahi, M.F.[Mohamad Farzan],
Beheshti, S.[Soosan],
Spatial analysis of EEG signals for Parkinson's disease stage detection,
SIViP(14), No. 2, March 2020, pp. 397-405.
WWW Link.
2003
BibRef
Ashour, A.S.[Amira S.],
El-Attar, A.[Amira],
Dey, N.[Nilanjan],
Abd El-Kader, H.[Hatem],
Abd El-Naby, M.M.[Mostafa M.],
Long short term memory based patient-dependent model for FOG
detection in Parkinson's disease,
PRL(131), 2020, pp. 23-29.
Elsevier DOI
2004
Parkinson's disease, Wearable sensors, Accelerometer sensor,
Freezing of gait, Classification, Support vector machine,
Long short term memory deep learning model
BibRef
Kaur, S.[Sukhpal],
Aggarwal, H.[Himanshu],
Rani, R.[Rinkle],
Hyper-parameter optimization of deep learning model for prediction of
Parkinson's disease,
MVA(31), No. 5, July 2020, pp. Article32.
WWW Link.
2006
BibRef
Wingate, J.[James],
Kollia, I.[Ilianna],
Bidaut, L.[Luc],
Kollias, S.[Stefanos],
Unified deep learning approach for prediction of Parkinson's disease,
IET-IPR(14), No. 10, August 2020, pp. 1980-1989.
DOI Link
2008
BibRef
Afonso, L.C.S.[Luis C.S.],
Pereira, C.R.[Clayton R.],
Weber, S.A.T.[Silke A.T.],
Hook, C.[Christian],
Falcăo, A.X.[Alexandre X.],
Papa, J.P.[Joăo P.],
Hierarchical Learning Using Deep Optimum-Path Forest,
JVCIR(71), 2020, pp. 102823.
Elsevier DOI
2009
Parkinson's disease, Optimum-path forest, Handwriting dynamics,
Hierarchical representation
See also Active Learning Paradigms for CBIR Systems Based on Optimum-Path Forest Classification.
BibRef
Afonso, L.C.S.[Luis C.S.],
Pedronette, D.C.G.,
de Souza, A.N.,
Papa, J.P.[Joăo P.],
Improving Optimum-Path Forest Classification Using Unsupervised
Manifold Learning,
ICPR18(560-565)
IEEE DOI
1812
Measurement, Manifolds, Prototypes, Training, Forestry,
Task analysis, Vegetation
BibRef
Zhou, Y.,
Tinaz, S.,
Tagare, H.D.,
Robust Bayesian Analysis of Early-Stage Parkinson's Disease
Progression Using DaTscan Images,
MedImg(40), No. 2, February 2021, pp. 549-561.
IEEE DOI
2102
Mathematical model, Diseases, Brain modeling,
Biological system modeling, Trajectory, Time series analysis,
t-distribution
BibRef
Khachnaoui, H.[Hajer],
Mabrouk, R.[Rostom],
Khlifa, N.[Nawres],
Machine learning and deep learning for clinical data and PET/SPECT
imaging in Parkinson's disease: a review,
IET-IPR(14), No. 16, 19 December 2020, pp. 4013-4026.
DOI Link
2103
BibRef
Jiji, G.W.[G. Wiselin],
Rajesh, A.,
Raj, P.J.D.[P. Johnson Durai],
Diagnosis of Parkinson's Disease Using SVM Classifier,
IJIG(21), No. 2 2021, pp. 2150011.
DOI Link
2105
BibRef
Jiang, Z.H.[Zhe-Heng],
Zhou, F.X.[Fei-Xiang],
Zhao, A.[Aite],
Li, X.[Xin],
Li, L.[Ling],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
Zhou, H.Y.[Hui-Yu],
Multi-View Mouse Social Behaviour Recognition With Deep Graphic Model,
IP(30), 2021, pp. 5490-5504.
IEEE DOI
2106
Mice, Feature extraction, Hidden Markov models,
Computational modeling, Graphical models, Cameras, Video recording,
Parkinson's disease (PD)
BibRef
Gazda, M.[Matej],
Hire, M.[Máté],
Drotár, P.[Peter],
Multiple-Fine-Tuned Convolutional Neural Networks for Parkinson's
Disease Diagnosis From Offline Handwriting,
SMCS(52), No. 1, January 2022, pp. 78-89.
IEEE DOI
2112
Tuning, Task analysis, Writing, Spirals, Handwriting recognition,
Diseases, Medical diagnosis, Convolutional neural network (CNN),
transfer learning (TL)
BibRef
Vásquez-Correa, J.C.[Juan Camilo],
Rios-Urrego, C.D.[Cristian David],
Arias-Vergara, T.[Tomás],
Schuster, M.[Maria],
Rusz, J.[Jan],
Nöth, E.[Elmar],
Orozco-Arroyave, J.R.[Juan Rafael],
Transfer learning helps to improve the accuracy to classify patients
with different speech disorders in different languages,
PRL(150), 2021, pp. 272-279.
Elsevier DOI
2109
Pathological speech, Parkinson's disease, Huntington's disease,
Deep learning, Convolutional neural networks, Transfer learning
BibRef
Guo, R.[Rui],
Shao, X.X.[Xiang-Xin],
Zhang, C.C.[Chen-Cheng],
Qian, X.H.[Xiao-Hua],
Multi-Scale Sparse Graph Convolutional Network For the Assessment of
Parkinsonian Gait,
MultMed(24), 2022, pp. 1583-1594.
IEEE DOI
2204
Feature extraction, Deep learning, Pose estimation, Bones,
Legged locomotion, Joints, Correlation, Parkinson's disease,
model-driven deep learning
BibRef
Guo, R.[Rui],
Xie, Z.[Zheng],
Zhang, C.[Chencheng],
Qian, X.H.[Xiao-Hua],
Causality-Enhanced Multiple Instance Learning With Graph
Convolutional Networks for Parkinsonian Freezing-of-Gait Assessment,
IP(33), 2024, pp. 3991-4001.
IEEE DOI
2407
Feature extraction, Videos, Motion segmentation, Legged locomotion,
Skeleton, Transient analysis, Medical diagnostic imaging,
causal inference
BibRef
Zhao, A.[Aite],
Li, J.B.[Jian-Bo],
Dong, J.Y.[Jun-Yu],
Qi, L.[Lin],
Zhang, Q.[Qianni],
Li, N.[Ning],
Wang, X.[Xin],
Zhou, H.Y.[Hui-Yu],
Multimodal Gait Recognition for Neurodegenerative Diseases,
Cyber(52), No. 9, September 2022, pp. 9439-9453.
IEEE DOI
2208
Feature extraction, Diseases, Gait recognition, Correlation,
Hidden Markov models, Neural networks, Sensors,
Parkinson's disease (PD)
BibRef
Guo, R.[Rui],
Sun, J.[Jie],
Zhang, C.[Chencheng],
Qian, X.H.[Xiao-Hua],
A Self-Supervised Metric Learning Framework for the
Arising-From-Chair Assessment of Parkinsonians With Graph
Convolutional Networks,
CirSysVideo(32), No. 9, September 2022, pp. 6461-6471.
IEEE DOI
2209
Videos, Task analysis, Bones, Convolution, Training,
Representation learning, Sun, Parkinson's disease,
graph convolutional network
BibRef
Guo, R.[Rui],
Sun, J.[Jie],
Zhang, C.[Chencheng],
Qian, X.H.[Xiao-Hua],
A Contrastive Graph Convolutional Network for Toe-Tapping Assessment
in Parkinson's Disease,
CirSysVideo(32), No. 12, December 2022, pp. 8864-8874.
IEEE DOI
2212
Feature extraction, Videos, Task analysis, Deep learning,
Parkinson's disease, Convolutional neural networks,
graph convolutional network
BibRef
Jose, S.[Shobha],
Selvaraj, T.G.[Thomas George],
Samuel, K.[Kenneth],
Philip, J.T.[Jobin T.],
Jothiraj, S.N.[Sairamya Nanjappan],
Pandian, S.M.S.[Subathra Muthu Swamy],
Handiru, V.S.[Vikram Shenoy],
Suviseshamuthu, E.S.[Easter S.],
Intramuscular EMG classifier for detecting myopathy and neuropathy,
IJIST(33), No. 2, 2023, pp. 659-669.
DOI Link
2303
center symmetric local binary pattern, classification,
electromyography, majority voting, neuromuscular disorders
BibRef
Khaskhoussy, R.[Rania],
Ben Ayed, Y.[Yassine],
Improving Parkinson's disease recognition through voice analysis
using deep learning,
PRL(168), 2023, pp. 64-70.
Elsevier DOI
2304
Parkinson's disease, SVM, CNN, I-vector features, Speech
BibRef
Wang, N.[Nana],
Niu, X.S.[Xue-Sen],
Yuan, Y.Y.[Yi-Yang],
Sun, Y.Z.[Yun-Ze],
Li, R.[Ran],
You, G.L.[Guo-Liang],
Zhao, A.[Aite],
A coordinate attention enhanced swin transformer for handwriting
recognition of Parkinson's disease,
IET-IPR(17), No. 9, 2023, pp. 2686-2697.
DOI Link
2307
feature extraction, image classification
BibRef
Salmanpour, M.R.[Mohammad R.],
Hosseinzadeh, M.[Mahdi],
Bakhtiyari, M.[Mahya],
Maghsudi, M.[Mehdi],
Rahmim, A.[Arman],
Prediction of drug amount in Parkinson's disease using hybrid machine
learning systems and radiomics features,
IJIST(33), No. 4, 2023, pp. 1437-1449.
DOI Link
2307
dimension reduction algorithms,
hybrid machine learning systems, Parkinson's disease, radiomics features
BibRef
Zhong, C.K.[Can-Kun],
Ng, W.W.Y.[Wing W. Y],
A Robust Frequency-Domain-Based Graph Adaptive Network for
Parkinson's Disease Detection From Gait Data,
MultMed(25), 2023, pp. 7076-7088.
IEEE DOI
2311
BibRef
Huang, W.[Wei],
Zhou, Y.[Yintao],
Cheung, Y.M.[Yiu-Ming],
Zhang, P.[Peng],
Zha, Y.F.[Yu-Fei],
Pang, M.[Meng],
Facial Expression Guided Diagnosis of Parkinson's Disease via
High-Quality Data Augmentation,
MultMed(25), 2023, pp. 7037-7050.
IEEE DOI
2311
BibRef
Tang, X.[Xinlu],
Guo, R.[Rui],
Zhang, C.[Chencheng],
Zhuang, X.[Xiahai],
Qian, X.H.[Xiao-Hua],
A Causality-Driven Graph Convolutional Network for Postural
Abnormality Diagnosis in Parkinsonians,
MedImg(42), No. 12, December 2023, pp. 3752-3763.
IEEE DOI Code:
WWW Link.
2312
BibRef
Tang, X.[Xinlu],
Zhang, C.C.[Chen-Cheng],
Guo, R.[Rui],
Yang, X.L.[Xin-Ling],
Qian, X.H.[Xiao-Hua],
A Causality-Aware Graph Convolutional Network Framework for Rigidity
Assessment in Parkinsonians,
MedImg(43), No. 1, January 2024, pp. 229-240.
IEEE DOI Code:
WWW Link.
2401
BibRef
Ramzani, E.[Elias],
Yadollahzadeh-Tabari, M.[Meisam],
GolesorkhtabarAmiri, M.[Mehdi],
Pouyan, A.A.[Ali A.],
Diagnosing of Parkinson's disease based on hand drawing analysis
using Bi-Directional LSTM equipped with fuzzy inferential soft-max
classifier,
IJIST(34), No. 1, 2024, pp. e22948.
DOI Link
2401
Bi-LSTM, fuzzy inference, hand drawing, Parkinson's disease
BibRef
Olmos, J.[Juan],
Manzanera, A.[Antoine],
Martínez, F.[Fabio],
Riemannian SPD learning to represent and characterize fixational
oculomotor Parkinsonian abnormalities,
PRL(177), 2024, pp. 157-163.
Elsevier DOI
2401
Oculomotor patterns, Parkinson's disease classification,
Symmetric positive definite pooling,
Riemannian manifold
BibRef
Xie, Z.[Zheng],
Guo, R.[Rui],
Zhang, C.[Chencheng],
Qian, X.H.[Xiao-Hua],
A Clinically Guided Graph Convolutional Network for Assessment of
Parkinsonian Pronation-Supination Movements of Hands,
CirSysVideo(34), No. 5, May 2024, pp. 3687-3699.
IEEE DOI
2405
Feature extraction, Task analysis, Transient analysis, Skeleton,
Convolution, Pose estimation, Convolutional neural networks,
video-based assessment
BibRef
Toumi, S.N.E.[Sihem Nour Elhouda],
Belkhamsa, N.[Noureddine],
Cherfa, Y.[Yazid],
Bouzouad, A.C.[Assia Cherfa],
An interpretable deep learning Bayesian optimized random forest
framework for the diagnosis of Parkinson's disease in structural
magnetic resonance images,
IJIST(34), No. 4, 2024, pp. e23106.
DOI Link
2406
CNN, computer-aided diagnosis, feature extraction, grad-CAM, Parkinson's disease
BibRef
Radouane, A.[Asmaa],
Touil, M.[Mohamed],
Kadil, Y.[Youness],
Rahmoune, I.[Imane],
Filali, H.[Houda],
Pioneering Pain Relief: Exploring Neuromodulation with Electrical
Impulses and Mechanical Techniques for Effective Pain Management,
ISCV24(1-7)
IEEE DOI
2408
Somatosensory, Spinal cord, Pain, Reviews,
Transcranial magnetic stimulation, Parkinson's disease,
trigeminal nerve
BibRef
Zhang, Y.C.[Yu-Chen],
Lei, H.J.[Hai-Jun],
Huang, Z.[Zhongwei],
Li, Z.[Zhen],
Liu, C.M.[Chuan-Ming],
Lei, B.[Baiying],
Parkinson's Disease Classification with Self-supervised Learning and
Attention Mechanism,
ICPR22(4601-4607)
IEEE DOI
2212
Training, Solid modeling,
Parkinson's disease, Magnetic resonance imaging,
magnetic resonance imaging
BibRef
Parziale, A.[Antonio],
Cioppa, A.D.[Antonio Della],
Marcelli, A.[Angelo],
Mimicking the immune system to diagnose Parkinson's disease from
handwriting,
ICPR22(2496-2502)
IEEE DOI
2212
Training, Support vector machines, Parkinson's disease, Sociology,
Detectors, Feature extraction, Behavioral sciences
BibRef
Nguyen, D.M.D.[Duc Minh Dimitri],
Miah, M.[Mehdi],
Bilodeau, G.A.[Guillaume-Alexandre],
Bouachir, W.[Wassim],
Transformers for 1D signals in Parkinson's disease detection from
gait,
ICPR22(5089-5095)
IEEE DOI
2212
Source coding, Memory management, Transformers, Feature extraction,
Prediction algorithms, Stability analysis, Spatial databases
BibRef
Zhao, M.L.[Meng-Lu],
Lei, H.J.[Hai-Jun],
Huang, Z.W.[Zhong-Wei],
Zhang, Y.C.[Yu-Chen],
Li, Z.[Zhen],
Liu, C.M.[Chuan-Ming],
Lei, B.Y.[Bai-Ying],
Attention-based Graph Neural Network for the Classification of
Parkinson's Disease,
ICPR22(4608-4614)
IEEE DOI
2212
Biological system modeling, Filtering algorithms,
Predictive models, Prediction algorithms, Information filters,
phenotypic information
BibRef
Mostafa, T.A.[Tahjid Ashfaque],
Cheng, I.[Irene],
Image Prior Transfer and Ensemble Architectures for Parkinson's Disease
Detection,
ISVC21(I:51-62).
Springer DOI
2112
BibRef
Mehta, D.[Deval],
Asif, U.[Umar],
Hao, T.[Tian],
Bilal, E.[Erhan],
von Cavallar, S.[Stefan],
Harrer, S.[Stefan],
Rogers, J.[Jeffrey],
Towards Automated and Marker-less Parkinson Disease Assessment:
Predicting UPDRS Scores using Sit-stand videos,
CVPM21(3836-3844)
IEEE DOI
2109
Legged locomotion, Deep learning, Training, Telemedicine, Sociology,
Pattern recognition, Task analysis
BibRef
Gomez, L.F.[Luis F.],
Morales, A.[Aythami],
Orozco-Arroyave, J.R.[Juan R.],
Daza, R.[Roberto],
Fierrez, J.[Julian],
Improving Parkinson Detection using Dynamic Features from Evoked
Expressions in Video,
AUVi21(1562-1570)
IEEE DOI
2109
Neurological diseases, Deep learning, Databases, Face recognition,
Muscles, Feature extraction
BibRef
Huang, Z.W.[Zhong-Wei],
Lei, H.J.[Hai-Jun],
Li, S.Q.[Shi-Qi],
Xiao, X.H.[Xiao-Hua],
Tan, E.L.[Ee-Leng],
Lei, B.Y.[Bai-Ying],
Longitudinal Feature Selection and Feature Learning for Parkinson's
Disease Diagnosis and Prediction,
ICPR21(5736-5743)
IEEE DOI
2105
Neuroimaging, Deep learning, Parkinson's disease,
Diversity reception, Feature extraction, Data models, Data mining,
multiple modalities and relation Classification and Regression
BibRef
Ali, M.R.,
Hernandez, J.,
Dorsey, E.R.,
Hoque, E.,
McDuff, D.,
Spatio-Temporal Attention and Magnification for Classification of
Parkinson's Disease from Videos Collected via the Internet,
FG20(207-214)
IEEE DOI
2102
Task analysis, Videos, Motion segmentation, Thumb,
Handheld computers, Wearable sensors, Parkinson's,
Segmentation
BibRef
Guarin, D.L.,
Dempster, A.,
Bandini, A.,
Yunusova, Y.,
Taati, B.,
Estimation of Orofacial Kinematics in Parkinson's Disease: Comparison
of 2D and 3D Markerless Systems for Motion Tracking,
FG20(540-543)
IEEE DOI
2102
Feature extraction, Task analysis,
Mouth, Cameras, Diseases
BibRef
Dias, S.B.,
Grammatikopoulou, A.,
Grammalidis, N.,
Diniz, J.A.,
Savvidis, T.,
Konstantinidis, E.,
Bamidis, P.,
Stadtschnitzer, M.,
Trivedi, D.,
Klingelhoefer, L.,
Katsarou, Z.,
Bostantzopoulou, S.,
Dimitropoulos, K.,
Hadjileontiadis, L.J.,
Motion Analysis on Depth Camera Data to Quantify Parkinson's Disease
Patients' Motor Status Within the Framework of I-Prognosis
Personalized Game Suite,
ICIP20(3264-3268)
IEEE DOI
2011
Cameras, Parkinson's disease, Games, Physics, Indexes,
Predictive models, i-PROGNOSIS,
Deep learning
BibRef
Vlachostergiou, A.,
Tagaris, A.,
Stafylopatis, A.,
Kollias, S.,
Multi-Task Learning for Predicting Parkinson's Disease Based on
Medical Imaging Information,
ICIP18(2052-2056)
IEEE DOI
1809
Task analysis, Parkinson's disease, Predictive models,
Biomedical imaging, Handheld computers, Deep Neural Networks,
Computer-Aided Diagnosis
BibRef
Vlachostergiou, A.,
Tagaris, A.,
Stafylopatis, A.,
Kollias, S.,
Investigating the Best Performing Task Conditions of a Multi-Tasking
Learning Model in Healthcare Using Convolutional Neural Networks:
Evidence from a Parkinson'S Disease Database,
ICIP18(2047-2051)
IEEE DOI
1809
Task analysis, Parkinson's disease, Predictive models, Databases,
Computational modeling, Convolutional Neural Networks,
context
BibRef
Spetsieris, P.G.,
Dhawan, V.,
Eidelberg, D.,
Visualizing Network Connectivity in Parkinson'S Disease,
ICIP18(724-728)
IEEE DOI
1809
Correlation, Diseases, Principal component analysis,
Covariance matrices, Positron emission tomography,
FDG PET
BibRef
Oikonomou, V.P.,
Blekas, K.,
Astrakas, L.,
Functional Connectivity in Parkinson Disease Through Mixture
Modelling,
IVMSP18(1-5)
IEEE DOI
1809
Functional magnetic resonance imaging, Time series analysis,
Brain modeling, Task analysis, Analytical models, Mixture models, Data models
BibRef
Przybyszewski, A.W.[Andrzej W.],
Szlufik, S.[Stanislaw],
Habela, P.[Piotr],
Koziorowski, D.M.[Dariusz M.],
Rough Set Rules Determine Disease Progressions in Different Groups of
Parkinson's Patients,
PReMI17(270-275).
Springer DOI
1711
BibRef
Pereira, C.R.[Clayton R.],
Passos, L.A.[Leandro A.],
Lopes, R.R.[Ricardo R.],
Weber, S.A.T.[Silke A. T.],
Hook, C.[Christian],
Papa, J.P.[Joăo Paulo],
Parkinson's Disease Identification Using Restricted Boltzmann Machines,
CAIP17(II: 70-80).
Springer DOI
1708
BibRef
Gómez-Orozco, V.,
Cuellar, J.,
García, H.F.[Hernán F.],
Álvarez, A.M.,
Álvarez, M.A.,
Orozco, A.A.,
Henao, O.A.,
A Kernel-Based Approach for DBS Parameter Estimation,
CIARP16(158-166).
Springer DOI
1703
deep brain stimulation. VTA: Volume of tissue activated.
BibRef
Kao, J.Y.[Jiun-Yu],
Nguyen, M.[Minh],
Nocera, L.[Luciano],
Shahabi, C.[Cyrus],
Ortega, A.[Antonio],
Winstein, C.[Carolee],
Sorkhoh, I.[Ibrahim],
Chung, Y.C.[Yu-Chen],
Chen, Y.A.[Yi-An],
Bacon, H.[Helen],
Validation of Automated Mobility Assessment Using a Single 3D Sensor,
ACVR16(II: 162-177).
Springer DOI
1611
More gait type analysis.
BibRef
Adeli-Mosabbeb, E.[Ehsan],
Wee, C.Y.[Chong-Yaw],
An, L.[Le],
Shi, F.[Feng],
Shen, D.G.[Ding-Gang],
Joint Feature-Sample Selection and Robust Classification for
Parkinson's Disease Diagnosis,
MCV15(127-136).
Springer DOI
1608
BibRef
Padilla, J.B.[José Bestier],
Arango, R.[Ramiro],
García, H.F.[Hernán F.],
Cardona, H.D.V.[Hernán Darío Vargas],
Orozco, Á.A.[Álvaro A.],
Álvarez, M.A.[Mauricio A.],
Guijarro, E.[Enrique],
NEURONAV: A Tool for Image-Guided Surgery - Application to Parkinson's
Disease,
ISVC15(I: 349-358).
Springer DOI
1601
BibRef
Kubis, A.[Anna],
Szymanski, A.[Artur],
Przybyszewski, A.W.[Andrzej W.],
Fuzzy Rough Sets Theory Applied to Parameters of Eye Movements Can Help
to Predict Effects of Different Treatments in Parkinson's Patients,
PReMI15(325-334).
Springer DOI
1511
BibRef
Spasojevic, S.[Sofija],
Santos-Victor, J.[José],
Ilic, T.[Tihomir],
Milanovic, S.[Sladan],
Potkonjak, V.[Veljko],
Rodic, A.[Aleksandar],
A Vision-Based System for Movement Analysis in Medical Applications:
The Example of Parkinson Disease,
CVS15(424-434).
Springer DOI
1507
BibRef
Morisi, R.[Rita],
Gnecco, G.[Giorgio],
Lanconelli, N.[Nico],
Zanigni, S.[Stefano],
Manners, D.N.[David Neil],
Testa, C.[Claudia],
Evangelisti, S.[Stefania],
Gramegna, L.L.[Laura Ludovica],
Bianchini, C.[Claudio],
Cortelli, P.[Pietro],
Tonon, C.[Caterina],
Lodi, R.[Raffaele],
Binary and Multi-class Parkinsonian Disorders Classification Using
Support Vector Machines,
IbPRIA15(379-386).
Springer DOI
1506
BibRef
Prashanth, R.,
Roy, S.D.,
Mandal, P.K.,
Ghosh, S.,
Surface fitting in SPECT imaging useful for detecting Parkinson's
Disease and Scans Without Evidence of Dopaminergic Deficit,
NCVPRIPG13(1-4)
IEEE DOI
1408
diseases
BibRef
Zhang, Y.Y.[Yu-Yao],
Ogunbona, P.O.,
Li, W.Q.[Wan-Qing],
Munro, B.,
Wallace, G.G.,
Pathological Gait Detection of Parkinson's Disease Using Sparse
Representation,
DICTA13(1-8)
IEEE DOI
1402
diseases
BibRef
Morales, J.M.[Juan-Miguel],
Rodriguez, R.[Rafael],
Carballo, M.[Maylen],
Batista, K.[Karla],
Accuracy to Differentiate Mild Cognitive Impairment in Parkinson's
Disease Using Cortical Features,
CIARP13(II:150-157).
Springer DOI
1311
BibRef
Rodriguez-Rojas, R.[Rafael],
Sanabria, G.[Gretel],
Melie, L.[Lester],
Morales, J.M.[Juan-Miguel],
Using Graph Theory to Identify Aberrant Hierarchical Patterns in
Parkinsonian Brain Networks,
CIARP13(II:134-141).
Springer DOI
1311
BibRef
Stawarz, M.[Magdalena],
Polanski, A.[Andrzej],
Kwiek, S.[Stanislaw],
Boczarska-Jedynak, M.[Magdalena],
Janik, L.[Lukasz],
Przybyszewski, A.[Andrzej],
Wojciechowski, K.[Konrad],
A System for Analysis of Tremor in Patients with Parkinson's Disease
Based on Motion Capture Technique,
ICCVG12(618-625).
Springer DOI
1210
BibRef
Chen, L.[Lei],
Seidel, G.[Gunter],
Mertins, A.[Alfred],
Multiple feature extraction for early Parkinson risk assessment based
on transcranial sonography image,
ICIP10(2277-2280).
IEEE DOI
1009
BibRef
Szilágyi, S.M.[Sándor M.],
Szilágyi, L.[László],
Görög, L.K.[Levente K.],
Luca, C.T.[Constantin T.],
Cozma, D.[Dragos],
Ivanica, G.[Gabriel],
Benyó, Z.[Zoltán],
An Enhanced Accessory Pathway Localization Method for Efficient
Treatment of Wolff-Parkinson-White Syndrome,
CIARP08(269-276).
Springer DOI
0809
BibRef
Lee, J.D.[Jiann-Der],
Huang, C.H.[Chung-Hsien],
Chen, C.W.[Cheng-Wei],
Weng, Y.H.[Yi-Hsin],
Lin, K.J.[Kun-Ju],
Chen, C.T.[Chin-Tu],
A Brain MRI/SPECT Registration System Using an Adaptive Similarity
Metric: Application on the Evaluation of Parkinson's Disease,
MIRAGE07(235-246).
Springer DOI
0703
BibRef
Ericsson, A.[Anders],
Lonsdale, M.N.[Markus Nowak],
Astrom, K.[Kalle],
Edenbrandt, L.[Lars],
Friberg, L.[Lars],
Decision Support System for the Diagnosis of Parkinson's Disease,
SCIA05(740-749).
Springer DOI
0506
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Schizophrenia .