Watanabe, S.[Sadakazu], and the CYBEST Group,
An automated apparatus for cancer prescreening: CYBEST,
CGIP(3), No. 4, December 1974, pp. 350-358.
Elsevier DOI
0501
BibRef
Moore, G.W.[G. William],
Hutchins, G.M.[Grover M.],
de la Monte, S.M.[Suzanne M.],
Lattice theory approach to metastatic disease patterns in autopsied
human patients: Application to metastatic neuroblastoma,
PR(18), No. 2, 1985, pp. 91-102.
Elsevier DOI
0309
BibRef
Poulsen, R.S.,
Pedron, I.,
Region of Interest Finding in Reduced Resolution Color Imagery:
Application to Cancer Cell Detection,
PR(28), No. 11, November 1995, pp. 1645-1655.
Elsevier DOI
BibRef
9511
Zhu, Y.[Yan],
Yan, Z.[Zhu],
Computerized tumor boundary detection using a Hopfield neural network,
MedImg(16), No. 1, February 1997, pp. 55-67.
IEEE Top Reference.
0205
BibRef
Clark, M.C.,
Hall, L.O.,
Goldgof, D.B.,
Velthuizen, R.P.,
Murtagh, F.R.,
Silbiger, M.S.,
Automatic Tumor Segmentation Using Knowledge-Based Techniques,
MedImg(17), No. 2, April 1998, pp. 187-201.
IEEE Top Reference.
9808
BibRef
Smallwood, R.H.,
Keshtkar, A.,
Wilkinson, B.A.,
Lee, J.A.,
Hamdy, F.C.,
Electrical impedance spectroscopy (EIS) in the urinary bladder: the
effect of inflammation and edema on identification of malignancy,
MedImg(21), No. 6, June 2002, pp. 708-710.
IEEE Top Reference.
0208
BibRef
Liu, L.,
Bland, P.H.,
Williams, D.M.,
Schunck, B.G.,
Meyer, C.R.,
Application of robust sequential edge detection and linking to
boundaries of low contrast lesions in medical images,
CVPR89(582-587).
IEEE DOI
0403
BibRef
Diaz, M.[Mireya],
Rao, J. .S.I.[J. Sun-Il],
Non-parametric bootstrap ensembles for detection of tumor lesions,
PRL(28), No. 16, December 2007, pp. 2273-2283.
Elsevier DOI
0711
Statistical pattern recognition; Image analysis; Ensembles;
Spatial correlation; Markov Random Fields; Unsupervised training
BibRef
Gimi, B.,
Pathak, A.P.,
Ackerstaff, E.,
Glunde, K.,
Artemov, D.,
Bhujwalla, Z.M.,
Molecular Imaging of Cancer: Applications of Magnetic Resonance Methods,
PIEEE(93), No. 4, April 2005, pp. 784-799.
IEEE DOI
0504
BibRef
Thorne, S.H.,
Contag, C.H.,
Using in Vivo Bioluminescence Imaging to Shed Light on Cancer Biology,
PIEEE(93), No. 4, April 2005, pp. 750-762.
IEEE DOI
0504
BibRef
Zhou, B.[Bin],
Xuan, J.H.[Jian-Hua],
Wu, Q.R.[Qing-Rong],
Wang, Y.[Yue],
3-D Deformation Guided On-Line Modification of Multi-leaf Collimators
for Adaptive Radiation Therapy,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Tommasi, T.[Tatiana],
Orabona, F.[Francesco],
Caputo, B.[Barbara],
Discriminative cue integration for medical image annotation,
PRL(29), No. 15, 1 November 2008, pp. 1996-2002.
Elsevier DOI
0811
Medical image annotation; Cue integration; Support vector machine
See also Learning methods for melanoma recognition.
BibRef
Tang, J.S.[Jin-Shan],
Rangayyan, R.[Raj],
Yao, J.H.[Jian-Hua],
Yang, Y.Y.[Yong-Yi],
Digital image processing and pattern recognition techniques for the
detection of cancer,
PR(42), No. 6, June 2009, pp. 1015-1016.
Elsevier DOI
0902
BibRef
Li, F.,
Zhou, X.,
Ma, J.,
Wong, S.T.C.,
Multiple Nuclei Tracking Using Integer Programming for Quantitative
Cancer Cell Cycle Analysis,
MedImg(29), No. 1, January 2010, pp. 96-105.
IEEE DOI
1001
BibRef
Taheri, S.[Sima],
Ong, S.H.[Sim Heng],
Chong, V.F.H.[Vincent F.H.],
Level-set segmentation of brain tumors using a threshold-based speed
function,
IVC(28), No. 1, Januray 2010, pp. 26-37.
Elsevier DOI
1001
BibRef
Earlier:
Threshold-based 3D Tumor Segmentation using Level Set (TSL),
WACV07(45-45).
IEEE DOI
0702
3D segmentation; Threshold; Level-set
BibRef
Konukoglu, E.,
Clatz, O.,
Menze, B.H.,
Stieltjes, B.,
Weber, M.A.,
Mandonnet, E.,
Delingette, H.,
Ayache, N.J.,
Image Guided Personalization of Reaction-Diffusion Type Tumor Growth
Models Using Modified Anisotropic Eikonal Equations,
MedImg(29), No. 1, January 2010, pp. 77-95.
IEEE DOI
1001
BibRef
Huang, P.W.[Po-Whei],
Lai, Y.H.[Yan-Hao],
Effective segmentation and classification for HCC biopsy images,
PR(43), No. 4, April 2010, pp. 1550-1563.
Elsevier DOI
1002
HCC biopsy image; Morphological grayscale reconstruction; k-nearest
neighbor; Support vector machine; Feature selection; Decision-graph
BibRef
Worz, S.,
Sander, P.,
Pfannmoller, M.,
Rieker, R.J.,
Joos, S.,
Mechtersheimer, G.,
Boukamp, P.,
Lichter, P.,
Rohr, K.,
3D Geometry-Based Quantification of Colocalizations in Multichannel 3D
Microscopy Images of Human Soft Tissue Tumors,
MedImg(29), No. 8, August 2010, pp. 1474-1484.
IEEE DOI
1008
BibRef
Johnson, J.P.,
Krupinski, E.A.,
Yan, M.,
Roehrig, H.,
Graham, A.R.,
Weinstein, R.S.,
Using a Visual Discrimination Model for the Detection of Compression
Artifacts in Virtual Pathology Images,
MedImg(30), No. 2, February 2011, pp. 306-314.
IEEE DOI
1102
BibRef
Weibel, T.[Thomas],
Daul, C.[Christian],
Wolf, D.[Didier],
Rösch, R.[Ronald],
Guillemin, F.[François],
Graph based construction of textured large field of view mosaics for
bladder cancer diagnosis,
PR(45), No. 12, December 2012, pp. 4138-4150.
Elsevier DOI
1208
Image mosaicing; Seamless panoramic stitching; Image registration;
Bladder cancer; Endoscopy; Graph cuts; Higher order terms; Non-linear
refinement
BibRef
Sun, Z.L.[Zhan-Li],
Zheng, C.H.[Chun-Hou],
Gao, Q.W.[Qing-Wei],
Zhang, J.[Jun],
Zhang, D.X.[De-Xiang],
Tumor Classification Using Eigengene-Based Classifier Committee
Learning Algorithm,
SPLetters(19), No. 8, August 2012, pp. 455-458.
IEEE DOI
1208
BibRef
Li, X.L.[Xiu-Li],
Chen, X.J.[Xin-Jian],
Yao, J.H.[Jian-Hua],
Zhang, X.[Xing],
Yang, F.[Fei],
Tian, J.[Jian],
Automatic Renal Cortex Segmentation Using Implicit Shape Registration
and Novel Multiple Surfaces Graph Search,
MedImg(31), No. 10, October 2012, pp. 1849-1860.
IEEE DOI
1210
BibRef
And:
MedImg(31), No. 12, December 2012, pp. 2366.
IEEE DOI
1212
BibRef
Martel, S.,
Journey to the center of a tumor,
Spectrum(49), No. 10, October 2012, pp. 48-53.
IEEE DOI
1210
BibRef
Ozdemir, E.,
Gunduz-Demir, C.,
A Hybrid Classification Model for Digital Pathology Using Structural
and Statistical Pattern Recognition,
MedImg(32), No. 2, February 2013, pp. 474-483.
IEEE DOI
1301
BibRef
Song, Q.,
Bai, J.,
Han, D.F.,
Bhatia, S.,
Sun, W.,
Rockey, W.,
Bayouth, J.E.,
Buatti, J.M.,
Wu, X.D.,
Optimal Co-Segmentation of Tumor in PET-CT Images With Context
Information,
MedImg(32), No. 9, 2013, pp. 1685-1697.
IEEE DOI
1309
Context information
BibRef
Ventola, G.M.[Giovanna Maria],
Colaprico, A.[Antonio],
d'Angelo, F.[Fulvio],
Colantuoni, V.[Vittorio],
An Approach to Identify miRNA Associated with Cancer Altered Pathways,
PR-PS-BB13(399-408).
Springer DOI
1309
BibRef
Heckel, F.,
Meine, H.,
Moltz, J.H.,
Kuhnigk, J.M.,
Heverhagen, J.T.,
Kiessling, A.,
Buerke, B.,
Hahn, H.K.,
Segmentation-Based Partial Volume Correction for Volume Estimation of
Solid Lesions in CT,
MedImg(33), No. 2, February 2014, pp. 462-480.
IEEE DOI
1403
cancer
BibRef
Rajaguru, H.[Harikumar],
Bojan, V.K.[Vinoth Kumar],
Performance analysis of EM, SVD, and SVM classifiers in
classification of carcinogenic regions of medical images,
IJIST(24), No. 1, 2014, pp. 16-22.
DOI Link
1403
EM, SVD, SVM, performance measures, quality metrics
BibRef
Rajaguru, H.[Harikumar],
Ganesan, K.[Karthick],
Bojan, V.K.[Vinoth Kumar],
Earlier detection of cancer regions from MR image features and SVM
classifiers,
IJIST(26), No. 3, 2016, pp. 196-208.
DOI Link
1609
MR images, segmentation, texture features, SVM
BibRef
Huang, H.[Hu],
Tosun, A.B.[Akif Burak],
Guo, J.[Jia],
Chen, C.[Cheng],
Wang, W.[Wei],
Ozolek, J.A.[John A.],
Rohde, G.K.[Gustavo K.],
Cancer diagnosis by nuclear morphometry using spatial information,
PRL(42), No. 1, 2014, pp. 115-121.
Elsevier DOI
1404
Set classification
BibRef
Adcock, A.[Aaron],
Rubin, D.[Daniel],
Carlsson, G.[Gunnar],
Classification of hepatic lesions using the matching metric,
CVIU(121), No. 1, 2014, pp. 36-42.
Elsevier DOI
1404
Medical image processing
BibRef
Litjens, G.,
Debats, O.,
Barentsz, J.,
Karssemeijer, N.,
Huisman, H.,
Computer-Aided Detection of Prostate Cancer in MRI,
MedImg(33), No. 5, May 2014, pp. 1083-1092.
IEEE DOI
1405
Biopsy
BibRef
Mitra, S.,
Shankar, B.U.,
Integrating Radio Imaging With Gene Expressions Toward a Personalized
Management of Cancer,
HMS(44), No. 5, October 2014, pp. 664-677.
IEEE DOI
1411
biomedical MRI
BibRef
Gangeh, M.J.,
Sadeghi-Naini, A.,
Diu, M.,
Tadayyon, H.,
Kamel, M.S.,
Czarnota, G.J.,
Categorizing Extent of Tumor Cell Death Response to Cancer Therapy
Using Quantitative Ultrasound Spectroscopy and Maximum Mean
Discrepancy,
MedImg(33), No. 6, June 2014, pp. 1390-1400.
IEEE DOI
1407
Biomedical imaging
BibRef
McCann, M.T.,
Ozolek, J.A.,
Castro, C.A.,
Parvin, B.,
Kovacevic, J.,
Automated Histology Analysis: Opportunities for signal processing,
SPMag(32), No. 1, January 2015, pp. 78-87.
IEEE DOI
1502
cancer
BibRef
Chang, H.[Hang],
Parvin, B.[Bahram],
Classification of 3D Multicellular Organization in Phase Microscopy
for High Throughput Screening of Therapeutic Targets,
WACV15(436-441)
IEEE DOI
1503
Breast cancer
BibRef
Chang, H.[Hang],
Zhou, Y.[Yin],
Borowsky, A.[Alexander],
Barner, K.E.[Kenneth E.],
Spellman, P.T.[Paul T.],
Parvin, B.[Bahram],
Stacked Predictive Sparse Decomposition for Classification of Histology
Sections,
IJCV(113), No. 1, May 2015, pp. 3-18.
Springer DOI
1506
BibRef
Zhou, Y.[Yin],
Chang, H.[Hang],
Barner, K.E.[Kenneth E.],
Spellman, P.T.[Paul T.],
Parvin, B.[Bahram],
Classification of Histology Sections via Multispectral Convolutional
Sparse Coding,
CVPR14(3081-3088)
IEEE DOI
1409
BibRef
Chang, H.[Hang],
Zhou, Y.[Yin],
Spellman, P.T.[Paul T.],
Parvin, B.[Bahram],
Stacked Predictive Sparse Coding for Classification of Distinct
Regions in Tumor Histopathology,
ICCV13(169-176)
IEEE DOI
1403
BibRef
Chang, H.[Hang],
Borowsky, A.[Alexander],
Spellman, P.T.[Paul T.],
Parvin, B.[Bahram],
Classification of Tumor Histology via Morphometric Context,
CVPR13(2203-2210)
IEEE DOI
1309
BibRef
Ginsburg, S.B.,
Lee, G.,
Ali, S.,
Madabhushi, A.,
Feature Importance in Nonlinear Embeddings (FINE):
Applications in Digital Pathology,
MedImg(35), No. 1, January 2016, pp. 76-88.
IEEE DOI
1601
Diseases
BibRef
Siegert, Y.,
Jiang, X.,
Krieg, V.,
Bartholomäus, S.,
Classification-Based Record Linkage With Pseudonymized Data for
Epidemiological Cancer Registries,
MultMed(18), No. 10, October 2016, pp. 1929-1941.
IEEE DOI
1610
cancer
BibRef
Li, J.D.[Jun-Dong],
Adilmagambetov, A.[Aibek],
Jabbar, M.S.M.[Mohomed Shazan Mohomed],
Zaïane, O.R.[Osmar R.],
Osornio-Vargas, A.[Alvaro],
Wine, O.[Osnat],
On discovering co-location patterns in datasets:
A case study of pollutants and child cancers,
GeoInfo(20), No. 4, October 2016, pp. 651-692.
Springer DOI
1610
BibRef
Wang, H.[He],
Feng, Y.M.[Yuan-Ming],
Sa, Y.[Yu],
Lu, J.Q.[Jun Q.],
Ding, J.H.[Jun-Hua],
Zhang, J.[Jun],
Hu, X.H.[Xin-Hua],
Pattern recognition and classification of two cancer cell lines by
diffraction imaging at multiple pixel distances,
PR(61), No. 1, 2017, pp. 234-244.
Elsevier DOI
1705
Single-cell assay
BibRef
Li, L.[Laquan],
Wang, J.[Jian],
Lu, W.[Wei],
Tan, S.[Shan],
Simultaneous tumor segmentation, image restoration, and blur kernel
estimation in PET using multiple regularizations,
CVIU(155), No. 1, 2017, pp. 173-194.
Elsevier DOI
1702
Image restoration
BibRef
Lapuyade-Lahorgue, J.,
Xue, J.H.,
Ruan, S.,
Segmenting Multi-Source Images Using Hidden Markov Fields With
Copula-Based Multivariate Statistical Distributions,
IP(26), No. 7, July 2017, pp. 3187-3195.
IEEE DOI
1706
Bayes methods, Fuses, Hidden Markov models, Image segmentation,
Magnetic resonance imaging, Probabilistic logic, Tumors,
Bayesian inference, Data fusion, copulas, hidden Markov fields,
multi-source images, tumor, segmentation
BibRef
Guo, H.,
He, X.,
Liu, M.,
Zhang, Z.,
Hu, Z.,
Tian, J.,
Weight Multispectral Reconstruction Strategy for Enhanced
Reconstruction Accuracy and Stability With Cerenkov Luminescence
Tomography,
MedImg(36), No. 6, June 2017, pp. 1337-1346.
IEEE DOI
1706
Image reconstruction, Optical imaging, Optical scattering,
Photonics, Tomography, Tumors, Cerenkov luminescence tomography,
Weight multispectral reconstruction, inverse, problem
BibRef
Carneiro, G.,
Peng, T.,
Bayer, C.,
Navab, N.,
Automatic Quantification of Tumour Hypoxia From Multi-Modal
Microscopy Images Using Weakly-Supervised Learning Methods,
MedImg(36), No. 7, July 2017, pp. 1405-1417.
IEEE DOI
1707
Biomedical imaging, Cancer, Computational modeling, Manuals,
Medical treatment, Training, Tumors, Microscopy, deep learning,
high-order loss functions, structured output learning,
weakly-supervised, training
BibRef
Jia, Z.,
Huang, X.,
Chang, E.I.C.,
Xu, Y.,
Constrained Deep Weak Supervision for Histopathology Image
Segmentation,
MedImg(36), No. 11, November 2017, pp. 2376-2388.
IEEE DOI
1711
Cancer, Neural networks,
Prediction algorithms,
Convolutional neural networks,
BibRef
Wei, J.[Jie],
Zhang, L.[Lin],
Fu, B.M.[Bingmei M.],
Automatic Quantification of Endothelial Nitric Oxide Levels in a
Microvessel with and without Tumor Cell Adhesion,
IJIG(18), No. 01, 2018, pp. 1850001.
DOI Link
1801
BibRef
Zhang, L.,
Lu, L.,
Summers, R.M.,
Kebebew, E.,
Yao, J.,
Convolutional Invasion and Expansion Networks for Tumor Growth
Prediction,
MedImg(37), No. 2, February 2018, pp. 638-648.
IEEE DOI
1802
Computer architecture, Mathematical model, Microprocessors,
Predictive models, Sociology, Statistics, Tumors,
Tumor growth prediction
BibRef
Roque, T.,
Risser, L.,
Kersemans, V.,
Smart, S.,
Allen, D.,
Kinchesh, P.,
Gilchrist, S.,
Gomes, A.L.,
Schnabel, J.A.,
Chappell, M.A.,
A DCE-MRI Driven 3-D Reaction-Diffusion Model of Solid Tumor Growth,
MedImg(37), No. 3, March 2018, pp. 724-732.
IEEE DOI
1804
biomedical MRI, cancer, cellular biophysics, image enhancement,
medical image processing, parameter estimation,
tissue modelling
BibRef
Hu, Z.L.[Zi-Long],
Tang, J.S.[Jin-Shan],
Wang, Z.M.[Zi-Ming],
Zhang, K.[Kai],
Zhang, L.[Ling],
Sun, Q.L.[Qing-Ling],
Deep learning for image-based cancer detection and diagnosis:
A survey,
PR(83), 2018, pp. 134-149.
Elsevier DOI
1808
Survey, Cancer Detection.
BibRef
Zheng, Y.,
Jiang, Z.,
Zhang, H.,
Xie, F.,
Ma, Y.,
Shi, H.,
Zhao, Y.,
Histopathological Whole Slide Image Analysis Using Context-Based CBIR,
MedImg(37), No. 7, July 2018, pp. 1641-1652.
IEEE DOI
1808
cancer, content-based retrieval, image classification,
image representation, image retrieval, medical image processing,
contextual information
BibRef
Hernández-Cabronero, M.,
Sanchez, V.,
Blanes, I.,
Aulí-Llinàs, F.,
Marcellin, M.W.,
Serra-Sagristà, J.,
Mosaic-Based Color-Transform Optimization for Lossy and
Lossy-to-Lossless Compression of Pathology Whole-Slide Images,
MedImg(38), No. 1, January 2019, pp. 21-32.
IEEE DOI
1901
Transforms, Image color analysis, Image coding, Optimization,
Transform coding, Pathology, Compression algorithms,
image compression
BibRef
Arunachalam, M.[Murugan],
Savarimuthu, S.R.[Sabeenian Royappan],
A novel prognosis and segmentation of necrosis (dead cells) in contrast
enhanced T1-weighted glioblastoma tumor with automatic contextual
clustering,
IJIST(29), No. 1, March 2019, pp. 65-76.
WWW Link.
1902
BibRef
Castilla, C.,
Maška, M.,
Sorokin, D.V.,
Meijering, E.,
Ortiz-de-Solórzano, C.,
3-D Quantification of Filopodia in Motile Cancer Cells,
MedImg(38), No. 3, March 2019, pp. 862-872.
IEEE DOI
1903
Image segmentation,
Biomedical imaging, Fluorescence, Manuals, Cancer, Microscopy,
deep learning
BibRef
Passos, L.A.[Leandro A.],
de Souza, Jr., L.A.[Luis A.],
Mendel, R.[Robert],
Ebigbo, A.[Alanna],
Probst, A.[Andreas],
Messmann, H.[Helmut],
Palm, C.[Christoph],
Papa, J.P.[João Paulo],
Barrett's esophagus analysis using infinity Restricted Boltzmann
Machines,
JVCIR(59), 2019, pp. 475-485.
Elsevier DOI
1903
Pre-cancer diagnosis.
Barrett's esophagus, Infinity Restricted Boltzmann Machines,
Meta-heuristics, Deep learning
BibRef
Yang, X.H.[Xiao-Hui],
Wu, W.M.[Wen-Ming],
Chen, Y.M.[Yun-Mei],
Li, X.Q.[Xian-Qi],
Zhang, J.[Juan],
Long, D.[Dan],
Yang, L.J.[Li-Jun],
An integrated inverse space sparse representation framework for tumor
classification,
PR(93), 2019, pp. 293-311.
Elsevier DOI
1906
Tumor classification, Microarray gene expression data,
Decision information genes,
Inverse space sparse representation
BibRef
Afshar, P.,
Mohammadi, A.,
Plataniotis, K.N.,
Oikonomou, A.,
Benali, H.,
From Handcrafted to Deep-Learning-Based Cancer Radiomics:
Challenges and opportunities,
SPMag(36), No. 4, July 2019, pp. 132-160.
IEEE DOI
1907
Cancer, Feature extraction, Tumors, Predictive models,
Medical diagnostic imaging, Deep learning, Machine learning
BibRef
Sukhia, K.N.[Komal Nain],
Ghafoor, A.[Abdul],
Riaz, M.M.[Muhammad Mohsin],
Iltaf, N.[Naima],
Automated acute lymphoblastic leukaemia detection system using
microscopic images,
IET-IPR(13), No. 13, November 2019, pp. 2548-2553.
DOI Link
1911
BibRef
Al-Tahhan, F.E.,
Sakr, A.A.[Ali A.],
Aladle, D.A.[Doaa A.],
Fares, M.E.,
Improved image segmentation algorithms for detecting types of acute
lymphatic leukaemia,
IET-IPR(13), No. 13, November 2019, pp. 2595-2603.
DOI Link
1911
BibRef
Shao, W.,
Han, Z.,
Cheng, J.,
Cheng, L.,
Wang, T.,
Sun, L.,
Lu, Z.,
Zhang, J.,
Zhang, D.,
Huang, K.,
Integrative Analysis of Pathological Images and Multi-Dimensional
Genomic Data for Early-Stage Cancer Prognosis,
MedImg(39), No. 1, January 2020, pp. 99-110.
IEEE DOI
2001
Feature extraction, Cancer, Genomics, Bioinformatics,
Prognostics and health management, DNA, Histopathological images,
ordinal multi-model feature selection
BibRef
Barstugan, M.[Mucahid],
Ceylan, R.[Rahime],
Asoglu, S.[Semih],
Cebeci, H.[Hakan],
Koplay, M.[Mustafa],
Adrenal tumor characterization on magnetic resonance images,
IJIST(30), No. 1, 2020, pp. 252-265.
DOI Link
2002
adrenal glands, adrenal tumor classification,
feature extraction, MR images, segmentation
BibRef
Sharif, M.I.[Muhammad Irfan],
Li, J.P.[Jian Ping],
Naz, J.[Javeria],
Rashid, I.[Iqra],
A comprehensive review on multi-organs tumor detection based on
machine learning,
PRL(131), 2020, pp. 30-37.
Elsevier DOI
2004
Classification, CT, Feature extraction, MRI, Pre-processing
BibRef
Zhang, L.,
Lu, L.,
Wang, X.,
Zhu, R.M.,
Bagheri, M.,
Summers, R.M.,
Yao, J.,
Spatio-Temporal Convolutional LSTMs for Tumor Growth Prediction by
Learning 4D Longitudinal Patient Data,
MedImg(39), No. 4, April 2020, pp. 1114-1126.
IEEE DOI
2004
Tumors, Image segmentation,
Predictive models, Mathematical model, Computed tomography,
4D medical imaging
BibRef
Kurmi, Y.[Yashwant],
Chaurasia, V.[Vijayshri],
Ganesh, N.[Narayanan],
Kesharwani, A.[Abhimanyu],
Microscopic images classification for cancer diagnosis,
SIViP(14), No. 4, June 2020, pp. 665-673.
Springer DOI
2005
BibRef
Agarwal, M.[Monika],
Rani, G.[Geeta],
Dhaka, V.S.[Vijaypal Singh],
Optimized contrast enhancement for tumor detection,
IJIST(30), No. 3, 2020, pp. 687-703.
DOI Link
2008
adaptive entropy, contrast, histogram weighted, optimum,
Otsu's double threshold, particle swarm optimization, tumor
BibRef
Gupta, T.[Tanvi],
Gandhi, T.K.[Tapan K.],
Gupta, R.K.,
Panigrahi, B.K.,
Classification of patients with tumor using MR FLAIR images,
PRL(139), 2020, pp. 112-117.
Elsevier DOI
2011
MRI, SVM, FLAIR, Tumor
BibRef
Kollem, S.[Sreedhar],
Reddy, K.R.L.[Katta Rama Linga],
Rao, D.S.[Duggirala Srinivasa],
Modified transform-based gamma correction for MRI tumor image
denoising and segmentation by optimized histon-based elephant herding
algorithm,
IJIST(30), No. 4, 2020, pp. 1271-1293.
DOI Link
2011
Atanassov intuitionistic fuzzy set,
elephant herding algorithm, generalized cross-validation,
transform-based gamma correction
BibRef
Scheufele, K.,
Subramanian, S.,
Biros, G.,
Fully Automatic Calibration of Tumor-Growth Models Using a Single
mpMRI Scan,
MedImg(40), No. 1, January 2021, pp. 193-204.
IEEE DOI
2012
Tumors, Calibration, Mathematical model,
Biological system modeling, Robustness, Biomarkers,
tumor initiation
BibRef
Liu, Y.,
Yin, M.,
Sun, S.,
DetexNet: Accurately Diagnosing Frequent and Challenging Pediatric
Malignant Tumors,
MedImg(40), No. 1, January 2021, pp. 395-404.
IEEE DOI
2012
Feature extraction, Tumors, Pathology, Cancer, Neural networks,
Task analysis, Pediatrics, Assistant pathology diagnosis,
pediatric cancer
BibRef
Abdulla, A.A.[Alan Anwer],
Efficient computer-aided diagnosis technique for leukaemia cancer
detection,
IET-IPR(14), No. 17, 24 December 2020, pp. 4435-4440.
DOI Link
2104
BibRef
Kandan, R.S.[Rathinam Somas],
Murugeswari, M.[Muthuvel],
Performance enhancement of image segmentation analysis for multi-grade
tumour classification in MRI image,
IET-IPR(14), No. 17, 24 December 2020, pp. 4477-4485.
DOI Link
2104
BibRef
Yang, X.H.[Xiao-Hui],
Wu, W.[Wenming],
Jiao, L.C.[Li-Cheng],
Jiao, C.Z.[Chang-Zhe],
Jiao, Z.C.[Zhi-Cheng],
A deep fusion framework for unlabeled data-driven tumor recognition,
PR(119), 2021, pp. 108066.
Elsevier DOI
2108
Unlabeled data, Deep representation learning,
Non-negative matrix factorization, Tumor recognition
BibRef
Meenachi, L.,
Ramakrishnan, S.,
Metaheuristic Search Based Feature Selection Methods for
Classification of Cancer,
PR(119), 2021, pp. 108079.
Elsevier DOI
2108
Ant Colony Optimization, Genetic Algorithm, Tabu Search,
Fuzzy Rough set, Optimal feature selection
BibRef
Liu, S.T.[Shu-Ting],
Zhang, B.C.[Bao-Chang],
Liu, Y.Q.[Yi-Qing],
Han, A.[Anjia],
Shi, H.J.[Hui-Juan],
Guan, T.[Tian],
He, Y.H.[Yong-Hong],
Unpaired Stain Transfer Using Pathology-Consistent Constrained
Generative Adversarial Networks,
MedImg(40), No. 8, August 2021, pp. 1977-1989.
IEEE DOI
2108
Cancer, Generative adversarial networks, Task analysis, Tumors,
Image analysis, Histopathology, Annotations, Histopathology,
hematoxylin-eosin (H&E)
BibRef
Sinthia, P.,
Malathi, M.,
Cancer detection using convolutional neural network optimized by
multistrategy artificial electric field algorithm,
IJIST(31), No. 3, 2021, pp. 1386-1403.
DOI Link
2108
cancer detection, convolutional neural network,
ensemble learning, hyper-parameter optimization,
multistrategy artificial electric field algorithm
BibRef
Seo, H.S.[Hyun-Seok],
Yu, L.[Lequan],
Ren, H.Y.[Hong-Yi],
Li, X.M.[Xiao-Meng],
Shen, L.Y.[Li-Yue],
Xing, L.[Lei],
Deep Neural Network With Consistency Regularization of Multi-Output
Channels for Improved Tumor Detection and Delineation,
MedImg(40), No. 12, December 2021, pp. 3369-3378.
IEEE DOI
2112
Image segmentation, Task analysis, Tumors, Training,
Biomedical imaging, Neural networks, Feature extraction, segmentation
BibRef
Devendran, M.[Menaga],
Sathya, R.[Revathi],
An approach for cancer classification using optimization driven deep
learning,
IJIST(31), No. 4, 2021, pp. 1936-1953.
DOI Link
2112
cancer classification, deep learning, fractional calculus,
gene expression data, optimization
BibRef
Li, X.J.[Xiao-Jie],
Tang, M.X.[Ming-Xuan],
Guo, F.[Feng],
Li, Y.X.[Yuan-Xi],
Cao, K.L.[Kun-Ling],
Song, Q.[Qi],
Wu, X.[Xi],
Sun, S.[Shanhui],
Zhou, J.[Jiliu],
DDNet: 3D densely connected convolutional networks with feature
pyramids for nasopharyngeal carcinoma segmentation,
IET-IPR(16), No. 1, 2022, pp. 39-48.
DOI Link
2112
BibRef
Ning, Z.Y.[Zhen-Yuan],
Du, D.H.[Deng-Hui],
Tu, C.[Chao],
Feng, Q.J.[Qian-Jin],
Zhang, Y.[Yu],
Relation-Aware Shared Representation Learning for Cancer Prognosis
Analysis with Auxiliary Clinical Variables and Incomplete
Multi-Modality Data,
MedImg(41), No. 1, January 2022, pp. 186-198.
IEEE DOI
2201
Cancer, Prognostics and health management, Data models, Training,
Genomics, Clinical diagnosis, Bioinformatics, Prognosis analysis,
incomplete multi-modality data
See also Relation-Induced Multi-Modal Shared Representation Learning for Alzheimer's Disease Diagnosis.
BibRef
Chen, R.J.[Richard J.],
Lu, M.Y.[Ming Y.],
Wang, J.W.[Jing-Wen],
Williamson, D.F.K.[Drew F. K.],
Rodig, S.J.[Scott J.],
Lindeman, N.I.[Neal I.],
Mahmood, F.[Faisal],
Pathomic Fusion: An Integrated Framework for Fusing Histopathology
and Genomic Features for Cancer Diagnosis and Prognosis,
MedImg(41), No. 4, April 2022, pp. 757-770.
IEEE DOI
2204
Bioinformatics, Genomics, Feature extraction, Cancer, Tumors,
Machine learning, Microprocessors, Multimodal learning, survival analysis
BibRef
Valanarasu, J.M.J.[Jeya Maria Jose],
Sindagi, V.A.[Vishwanath A.],
Hacihaliloglu, I.[Ilker],
Patel, V.M.[Vishal M.],
KiU-Net: Overcomplete Convolutional Architectures for Biomedical
Image and Volumetric Segmentation,
MedImg(41), No. 4, April 2022, pp. 965-976.
IEEE DOI
2204
Image segmentation, Feature extraction,
Tumors, Convolution, Medical diagnostic imaging,
overcomplete representations
BibRef
Shi, S.L.[Shao-Long],
Chen, Y.F.[Yi-Fan],
Yao, X.[Xin],
NGA-Inspired Nanorobots-Assisted Detection of Multifocal Cancer,
Cyber(52), No. 5, May 2022, pp. 2787-2797.
IEEE DOI
2206
Tumors, Nanobioscience, Cancer detection, Cancer, Genetic algorithms,
Blood, Magnetic resonance imaging, Cancer detection,
niche genetic algorithm (NGA)
BibRef
Wang, H.[Han],
Yi, F.S.[Fa-Sheng],
Wang, J.L.[Jing-Ling],
Yi, Z.[Zhang],
Zhang, H.X.[Hai-Xian],
RECISTSup: Weakly-Supervised Lesion Volume Segmentation Using RECIST
Measurement,
MedImg(41), No. 7, July 2022, pp. 1849-1861.
IEEE DOI
2207
Lesions, Image segmentation, Annotations, Volume measurement,
Training, Loss measurement, Lesion segmentation,
deep convolutional neural networks
BibRef
Lai, H.R.[Hao-Ran],
Fu, S.[Sirui],
Zhang, J.[Jie],
Cao, J.Y.[Jian-Yun],
Feng, Q.J.[Qian-Jin],
Lu, L.[Ligong],
Huang, M.[Meiyan],
Prior Knowledge-Aware Fusion Network for Prediction of Macrovascular
Invasion in Hepatocellular Carcinoma,
MedImg(41), No. 10, October 2022, pp. 2644-2657.
IEEE DOI
2210
Tumors, Feature extraction, Computed tomography, Hospitals,
Data mining, Lesions, Radiomics, Hepatocellular carcinoma, rotation invariance
BibRef
Yan, K.[Ke],
Cai, J.Z.[Jin-Zheng],
Jin, D.[Dakai],
Miao, S.[Shun],
Guo, D.[Dazhou],
Harrison, A.P.[Adam P.],
Tang, Y.[Youbao],
Xiao, J.[Jing],
Lu, J.J.[Jing-Jing],
Lu, L.[Le],
SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in
Radiological Images,
MedImg(41), No. 10, October 2022, pp. 2658-2669.
IEEE DOI
2210
Task analysis, Computed tomography, X-rays, Training, Lesions,
Prediction algorithms, Contrastive learning, self-supervised learning
BibRef
Hossain, M.M.[Md Murad],
Konofagou, E.E.[Elisa E.],
Imaging of Single Transducer-Harmonic Motion Imaging-Derived
Displacements at Several Oscillation Frequencies Simultaneously,
MedImg(41), No. 11, November 2022, pp. 3099-3115.
IEEE DOI
2211
Imaging, Tumors, Harmonic analysis, Ultrasonic imaging,
Frequency modulation, Oscillators, Elastography, high-frequency ARF
BibRef
Qiao, P.C.[Peng-Chong],
Li, H.[Han],
Song, G.[Guoli],
Han, H.[Hu],
Gao, Z.Q.[Zhi-Qiang],
Tian, Y.H.[Yong-Hong],
Liang, Y.S.[Yong-Sheng],
Li, X.[Xi],
Zhou, S.K.[S. Kevin],
Chen, J.[Jie],
Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data
Pairing and SwapMix,
MedImg(42), No. 5, May 2023, pp. 1546-1562.
IEEE DOI
2305
Lesions, Image segmentation, Computed tomography, Uncertainty,
Training, Predictive models, Data models, Semi-supervised learning,
unreliable pseudo labels
BibRef
Chang, S.J.[Shao-Jie],
Gao, Y.F.[Yong-Feng],
Pomeroy, M.J.[Marc J.],
Bai, T.[Ti],
Zhang, H.[Hao],
Lu, S.[Siming],
Pickhardt, P.J.[Perry J.],
Gupta, A.[Amit],
Reiter, M.J.[Michael J.],
Gould, E.S.[Elaine S.],
Liang, Z.R.[Zheng-Rong],
Exploring Dual-Energy CT Spectral Information for Machine
Learning-Driven Lesion Diagnosis in Pre-Log Domain,
MedImg(42), No. 6, June 2023, pp. 1835-1845.
IEEE DOI
2306
Lesions, Cancer, Computed tomography, Image reconstruction,
Feature extraction, Convolutional neural networks, Attenuation,
malignant and benign differentiation
BibRef
Li, Y.L.[Yun-Ling],
Li, S.X.[Shang-Xuan],
Ju, H.Q.[Han-Qiu],
Harada, T.[Tatsuya],
Zhang, H.L.[Hong-Lai],
Duan, T.[Ting],
Wang, G.Y.[Guang-Yi],
Zhang, L.J.[Li-Juan],
Gu, L.[Lin],
Zhou, W.[Wu],
Correlated and individual feature learning with contrast-enhanced MR
for malignancy characterization of hepatocellular carcinoma,
PR(142), 2023, pp. 109638.
Elsevier DOI
2307
Multimodal fusion, Hepatocellular carcinoma, Deep feature,
Malignancy characterization, Contrast-enhanced MR
BibRef
Zhan, G.[Gan],
Wang, F.[Fang],
Wang, W.B.[Wei-Bin],
Li, Y.[Yinhao],
Chen, Q.Q.[Qing-Qing],
Hu, H.J.[Hong-Jie],
Chen, Y.W.[Yen-Wei],
A Transformer-based Model for Preoperative Early Recurrence Prediction
of Hepatocellular Carcinoma with Muti-modality Mri,
MLCSA22(185-194).
Springer DOI
2307
BibRef
Jimenez-Sanchez, D.[Daniel],
Ariz, M.[Mikel],
de Andrea, C.E.[Carlos E.],
Ortiz-De-Solórzano, C.[Carlos],
Synplex: In Silico Modeling of the Tumor Microenvironment From
Multiplex Images,
MedImg(42), No. 10, October 2023, pp. 3048-3058.
IEEE DOI
2310
BibRef
Zhang, Y.[Yue],
Peng, C.T.[Cheng-Tao],
Tong, R.F.[Ruo-Feng],
Lin, L.[Lanfen],
Chen, Y.W.[Yen-Wei],
Chen, Q.Q.[Qing-Qing],
Hu, H.J.[Hong-Jie],
Zhou, S.K.[S. Kevin],
Multi-Modal Tumor Segmentation With Deformable Aggregation and
Uncertain Region Inpainting,
MedImg(42), No. 10, October 2023, pp. 3091-3103.
IEEE DOI
2310
BibRef
Xie, Y.T.[Yu-Tong],
Zhang, J.P.[Jian-Peng],
Xia, Y.[Yong],
Shen, C.H.[Chun-Hua],
Learning From Partially Labeled Data for Multi-Organ and Tumor
Segmentation,
PAMI(45), No. 12, December 2023, pp. 14905-14919.
IEEE DOI
2311
BibRef
Earlier: A2, A1, A3, A4:
DoDNet: Learning to Segment Multi-Organ and Tumors from Multiple
Partially Labeled Datasets,
CVPR21(1195-1204)
IEEE DOI
2111
Image segmentation, Head, Annotations, Encoding, Labeling, Task analysis
BibRef
Zhang, J.H.[Jin-Hong],
Li, B.[Bin],
Qiu, Q.H.[Qian-Hui],
Mo, H.Q.[Hong-Qiang],
Tian, L.F.[Lian-Fang],
SICNet: Learning selective inter-slice context via Mask-Guided
Self-knowledge distillation for NPC segmentation,
JVCIR(98), 2024, pp. 104053.
Elsevier DOI
2402
Nasopharyngeal carcinoma, Segmentation, Convolutional neural networks,
Self-knowledge distillation, Selective inter-slice context
BibRef
Hayashi, T.[Tatsuya],
Ito, N.[Naoki],
Tabata, K.[Koji],
Nakamura, A.[Atsuyoshi],
Fujita, K.[Katsumasa],
Harada, Y.[Yoshinori],
Komatsuzaki, T.[Tamiki],
Gaussian process classification bandits,
PR(149), 2024, pp. 110224.
Elsevier DOI
2403
Motivative application is fast cancer diagnosis by Raman spectra.
Bandit problem, Gaussian process, Classification bandits, Level set estimation
BibRef
Ding, N.[Ning],
Bao, X.[Xu],
Sun, S.[Shantong],
Wang, Y.[Yun],
High-precision real-time urine crystallization recognition based on
dilated bilinear space pyramid ConvNext,
IJIST(34), No. 2, 2024, pp. e22999.
DOI Link
2402
bilinear, crystalluria detection, deep learning, fine-grained,
loss function, object detection
BibRef
Wang, P.Y.[Peng-Yu],
Zhang, H.Q.[Hua-Qi],
Zhu, M.[Meilu],
Jiang, X.[Xi],
Qin, J.[Jing],
Yuan, Y.X.[Yi-Xuan],
MGIML: Cancer Grading With Incomplete Radiology-Pathology Data via
Memory Learning and Gradient Homogenization,
MedImg(43), No. 6, June 2024, pp. 2113-2124.
IEEE DOI
2406
Pathology, Radiology, Cancer, Optimization, Training, Task analysis,
Feature extraction, Incomplete multi-modal learning,
gradient homogenization
BibRef
Leng, J.[Jiake],
Zhang, Y.[Yiyan],
Liu, X.[Xiang],
Cui, Y.M.[Yi-Ming],
Zhao, J.[Junhan],
Ge, Y.X.[Yong-Xin],
Error-Robust and Label-Efficient Deep Learning for Understanding
Tumor Microenvironment From Spatial Transcriptomics,
CirSysVideo(34), No. 8, August 2024, pp. 6785-6796.
IEEE DOI
2408
Gene expression, Deep learning, Noise measurement, Uncertainty,
Sequential analysis, Cancer, Data models, Tumor microenvironment,
label efficiency
BibRef
Zhou, T.X.[Tong-Xue],
M2GCNet: Multi-Modal Graph Convolution Network for Precise Brain
Tumor Segmentation Across Multiple MRI Sequences,
IP(33), 2024, pp. 4896-4910.
IEEE DOI
2409
Tumors, Convolution, Image segmentation, Brain modeling,
Magnetic resonance imaging, Decoding, Correlation, deep learning
BibRef
Dong, Q.H.[Qi-Hua],
Du, H.[Hao],
Song, Y.[Ying],
Xu, Y.[Yan],
Liao, J.[Jing],
Preserving Tumor Volumes for Unsupervised Medical Image Registration,
ICCV23(21151-21161)
IEEE DOI Code:
WWW Link.
2401
BibRef
Liu, J.[Jie],
Zhang, Y.X.[Yi-Xiao],
Chen, J.N.[Jie-Neng],
Xiao, J.F.[Jun-Fei],
Lu, Y.Y.[Yong-Yi],
Landman, B.A.[Bennett A.],
Yuan, Y.X.[Yi-Xuan],
Yuille, A.L.[Alan L.],
Tang, Y.C.[Yu-Cheng],
Zhou, Z.[Zongwei],
CLIP-Driven Universal Model for Organ Segmentation and Tumor
Detection,
ICCV23(21095-21107)
IEEE DOI
2401
BibRef
Rohail, K.[Kinza],
Bashir, S.[Saba],
Ali, H.[Hazrat],
Alam, T.[Tanvir],
Khan, S.[Sheheryar],
Wu, J.[Jia],
Chen, P.J.[Ping-Jun],
Qureshi, R.[Rizwan],
Understanding Tumor Micro Environment Using Graph Theory,
ACCVWS22(90-101).
Springer DOI
2307
BibRef
Ling, Z.Q.[Zi-Qin],
Tao, G.H.[Gui-Hua],
Li, Y.[Yang],
Cai, H.M.[Hong-Min],
NPCFORMER: Automatic Nasopharyngeal Carcinoma Segmentation Based on
Boundary Attention and Global Position Context Attention,
ICIP22(1981-1985)
IEEE DOI
2211
Deep learning, Image segmentation, Computational modeling,
Malignant tumors, Transformers, Lesions, Context modeling, Transformer
BibRef
Basu, S.[Soumen],
Gupta, M.[Mayank],
Rana, P.[Pratyaksha],
Gupta, P.[Pankaj],
Arora, C.[Chetan],
Surpassing the Human Accuracy: Detecting Gallbladder Cancer from USG
Images with Curriculum Learning,
CVPR22(20854-20864)
IEEE DOI
2210
Visualization, Technological innovation, Ultrasonic imaging,
Supervised learning, Computer architecture, Object detection,
Vision applications and systems
BibRef
Horvath, I.[Izabela],
Paetzold, J.[Johannes],
Schoppe, O.[Oliver],
Al-Maskari, R.[Rami],
Ezhov, I.[Ivan],
Shit, S.[Suprosanna],
Li, H.W.[Hong-Wei],
Ertürk, A.[Ali],
Menze, B.[Bjoern],
METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy,
WACV22(3230-3240)
IEEE DOI
2202
Training, Image segmentation, Image resolution, Microscopy,
Semantics, Focusing, Generators, Grouping and Shape
BibRef
Cornelissen, S.,
van der Putten, J.A.,
Boers, T.G.W.,
Jukema, J.B.,
Fockens, K.N.,
Bergman, J.J.G.H.M.,
van der Sommen, F.,
de With, P.H.N.,
Evaluating Self-Supervised Learning Methods for Downstream
Classification of Neoplasia in Barrett's Esophagus,
ICIP21(66-70)
IEEE DOI
2201
Learning systems, Training, Hospitals, Shape, Superresolution,
Machine learning, Data models, representation learning, endoscopy
BibRef
Barmpoutis, P.[Panagiotis],
Kayhanian, H.[Hamzeh],
Waddingham, W.[William],
Alexander, D.C.[Daniel C.],
Jansen, M.[Marnix],
Three-dimensional tumour microenvironment reconstruction and
tumour-immune interactions' analysis,
DICTA21(01-06)
IEEE DOI
2201
Multiplexing, Solid modeling, Adaptation models, Pathology,
Computational modeling, Spatial resolution, immune subpopulations
BibRef
Putzu, L.[Lorenzo],
Untesco, M.[Maxim],
Fumera, G.[Giorgio],
Automatic Myelofibrosis Grading from Silver-Stained Images,
CAIP21(I:195-205).
Springer DOI
2112
BibRef
Welikala, R.A.[Roshan Alex],
Remagnino, P.[Paolo],
Lim, J.H.[Jian Han],
Chan, C.S.[Chee Seng],
Rajendran, S.[Senthilmani],
Kallarakkal, T.G.[Thomas George],
Zain, R.B.[Rosnah Binti],
Jayasinghe, R.D.[Ruwan Duminda],
Rimal, J.[Jyotsna],
Kerr, A.R.[Alexander Ross],
Amtha, R.[Rahmi],
Patil, K.[Karthikeya],
Tilakaratne, W.M.[Wanninayake Mudiyanselage],
Cheong, S.C.[Sok Ching],
Barman, S.A.[Sarah Ann],
Clinically Guided Trainable Soft Attention for Early Detection of Oral
Cancer,
CAIP21(I:226-236).
Springer DOI
2112
BibRef
Losquadro, C.[Chiara],
Conforto, S.[Silvia],
Schmid, M.[Maurizio],
Giunta, G.[Gaetano],
Rengo, M.[Marco],
Cardinale, V.[Vincenzo],
Carpino, G.[Guido],
Laghi, A.[Andrea],
Lleo, A.[Ana],
Muglia, R.[Riccardo],
Lanza, E.[Ezio],
Torzilli, G.[Guido],
Small and Large Bile Ducts Intrahepatic Cholangiocarcinoma
Classification: A Preliminary Feature-Based Study,
CAIP21(I:237-244).
Springer DOI
2112
BibRef
Chao, S.[Sherry],
Belanger, D.[David],
Generalizing Few-Shot Classification of Whole-Genome Doubling Across
Cancer Types,
CVAMD21(3375-3385)
IEEE DOI
2112
Deep learning, Histopathology,
Neural networks, Real-time systems, Task analysis
BibRef
Jonnalagedda, P.[Padmaja],
Weinberg, B.[Brent],
Allen, J.[Jason],
Min, T.L.[Taejin L.],
Bhanu, S.[Shiv],
Bhanu, B.[Bir],
SAGE: Sequential Attribute Generator for Analyzing Glioblastomas
Using Limited Dataset,
ICPR21(4941-4948)
IEEE DOI
2105
Visualization, Pipelines, Biomarkers, Streaming media,
Generative adversarial networks, Generators, Task analysis
BibRef
Daoud, B.[Bilel],
Morooka, K.[Ken'ichi],
Miyauchi, S.[Shoko],
Kurazume, R.[Ryo],
Mnejja, W.[Wafa],
Farhat, L.[Leila],
Daoud, J.[Jamel],
A Deep Learning-Based Method for Predicting Volumes of Nasopharyngeal
Carcinoma for Adaptive Radiation Therapy Treatment,
ICPR21(3256-3263)
IEEE DOI
2105
Learning systems, Adaptive systems,
Graphical models, Computed tomography, CT images
BibRef
Rundo, F.[Francesco],
Banna, G.L.[Giuseppe Luigi],
Trenta, F.[Francesca],
Spampinato, C.[Concetto],
Bidaut, L.[Luc],
Ye, X.[Xujiong],
Kollias, S.[Stefanos],
Battiato, S.[Sebastiano],
Advanced Non-linear Generative Model with a Deep Classifier for
Immunotherapy Outcome Prediction: A Bladder Cancer Case Study,
AIHA20(227-242).
Springer DOI
2103
BibRef
Tokunaga, H.[Hiroki],
Iwana, B.K.[Brian Kenji],
Teramoto, Y.[Yuki],
Yoshizawa, A.[Akihiko],
Bise, R.[Ryoma],
Negative Pseudo Labeling Using Class Proportion for Semantic
Segmentation in Pathology,
ECCV20(XV:430-446).
Springer DOI
2011
BibRef
Uehara, K.[Kazuki],
Murakawa, M.[Masahiro],
Nosato, H.[Hirokazu],
Sakanashi, H.[Hidenori],
Explainable Feature Embedding using Convolutional Neural Networks for
Pathological Image Analysis,
ICPR21(4560-4565)
IEEE DOI
2105
BibRef
Earlier:
Multi-Scale Explainable Feature Learning for Pathological Image
Analysis Using Convolutional Neural Networks,
ICIP20(1931-1935)
IEEE DOI
2011
Pathology, Visualization, Solid modeling, Dictionaries,
Image analysis, Vector quantization, Receivers, Explainable AI,
Pathological images.
Feature extraction, Training, Dictionaries, Decoding,
Neural networks, Hospitals, Explainable AI, Pathological images,
Convolutional neural networks
BibRef
Guo, D.,
Jin, D.,
Zhu, Z.,
Ho, T.,
Harrison, A.P.,
Chao, C.,
Xiao, J.,
Lu, L.,
Organ at Risk Segmentation for Head and Neck Cancer Using Stratified
Learning and Neural Architecture Search,
CVPR20(4222-4231)
IEEE DOI
2008
Cancer, Image segmentation,
Computer architecture, Shape, Neck
BibRef
Hashimoto, N.,
Fukushima, D.,
Koga, R.,
Takagi, Y.,
Ko, K.,
Kohno, K.,
Nakaguro, M.,
Nakamura, S.,
Hontani, H.,
Takeuchi, I.,
Multi-scale Domain-adversarial Multiple-instance CNN for Cancer
Subtype Classification with Unannotated Histopathological Images,
CVPR20(3851-3860)
IEEE DOI
2008
Cancer, Tumors, Image color analysis, Pathology, Training,
Feature extraction, Hospitals
BibRef
Hering, J.[Jan],
Kybic, J.[Jan],
Generalized Multiple Instance Learning for Cancer Detection in Digital
Histopathology,
ICIAR20(II:274-282).
Springer DOI
2007
BibRef
Lu, J.H.[Jia-Hao],
Sladoje, N.[Nataša],
Stark, C.R.[Christina Runow],
Ramqvist, E.D.[Eva Darai],
Hirsch, J.M.[Jan-Michaél],
Lindblad, J.[Joakim],
A Deep Learning Based Pipeline for Efficient Oral Cancer Screening on
Whole Slide Images,
ICIAR20(II:249-261).
Springer DOI
2007
BibRef
Takahama, S.,
Kurose, Y.,
Mukuta, Y.,
Abe, H.,
Fukayama, M.,
Yoshizawa, A.,
Kitagawa, M.,
Harada, T.,
Multi-Stage Pathological Image Classification Using Semantic
Segmentation,
ICCV19(10701-10710)
IEEE DOI
2004
cancer, convolutional neural nets, feature extraction,
gradient methods, image classification, image resolution
BibRef
Roldán, N.[Nicolás],
Rodriguez, L.[Lizeth],
Hernandez, A.[Andrea],
Cepeda, K.[Karen],
Ondo-Méndez, A.[Alejandro],
Suárez, S.L.C.[Sandra Liliana Cancino],
Forero, M.G.[Manuel G.],
Lopéz, J.M.[Juan M.],
A New Automatic Cancer Colony Forming Units Counting Method,
IbPRIA19(II:465-472).
Springer DOI
1910
BibRef
Wang, L.Y.[Li-Yang],
Zhou, Y.[Yu],
Matuszewski, B.J.[Bogdan J.],
A New Hybrid Method for Gland Segmentation in Histology Images,
CAIPWS19(17-27).
Springer DOI
1909
BibRef
Bergamini, L.[Luca],
Trachtman, A.R.[Abigail Rose],
Palazzi, A.[Andrea],
del Negro, E.[Ercole],
Dondona, A.C.[Andrea Capobianco],
Marruchella, G.[Giuseppe],
Calderara, S.[Simone],
Segmentation Guided Scoring of Pathological Lesions in Swine Through
CNNs,
NTIAP19(352-360).
Springer DOI
1909
BibRef
Amiri, S.[Samya],
Mahjoub, M.A.[Mohamed Ali],
HMDHBN: Hidden Markov Inducing a Dynamic Hierarchical Bayesian Network
for Tumor Growth Prediction,
CAIP19(I:3-14).
Springer DOI
1909
BibRef
Lee, J.H.[Jae-Hyeok],
Kim, S.T.[Seong Tae],
Lee, H.[Hakmin],
Ro, Y.M.[Yong Man],
Feature2Mass: Visual Feature Processing in Latent Space for Realistic
Labeled Mass Generation,
BioIm18(VI:326-334).
Springer DOI
1905
BibRef
Dou, T.,
Zhou, W.,
2D and 3D Convolutional Neural Network Fusion for Predicting the
Histological Grade of Hepatocellular Carcinoma,
ICPR18(3832-3837)
IEEE DOI
1812
Feature extraction, Matrix decomposition, Lesions, Correlation,
Convolutional Neural Network
BibRef
Licandro, R.,
Schlegl, T.,
Reiter, M.,
Diem, M.,
Dworzak, M.,
Schumich, A.,
Langs, G.,
Kampel, M.,
WGAN Latent Space Embeddings for Blast Identification in Childhood
Acute Myeloid Leukaemia,
ICPR18(3868-3873)
IEEE DOI
1812
Blood, Cancer, Principal component analysis, Medical treatment,
Cells (biology), Pediatrics
BibRef
van Riel, S.,
van der Sommen, F.,
Zinger, S.,
Schoon, E.J.,
de With, P.H.N.,
Automatic Detection of Early Esophageal Cancer with CNNS Using
Transfer Learning,
ICIP18(1383-1387)
IEEE DOI
1809
Cancer, Real-time systems,
Support vector machines, Esophagus, Lesions, Training, transfer learning
BibRef
Zhang, C.,
Song, Y.,
Zhang, D.,
Liu, S.,
Chen, M.,
Cai, W.,
Whole Slide Image Classification via Iterative Patch Labelling,
ICIP18(1408-1412)
IEEE DOI
1809
Training, Labeling, Feature extraction, Tumors, Cancer, Pathology,
Pipelines, Iterative patch labelling, brain cancer, WSI,
classification
BibRef
Peng, B.B.[Bin-Bin],
Chen, L.[Lin],
Shang, M.S.[Ming-Sheng],
Xu, J.J.[Jian-Jun],
Fully Convolutional Neural Networks for Tissue Histopathology Image
Classification and Segmentation,
ICIP18(1403-1407)
IEEE DOI
1809
Image segmentation, Cancer, Feature extraction,
Convolutional neural networks, Image classification,
fully convolutional neural netw
BibRef
Kalinovsky, A.,
Liauchuk, V.,
Tarasau, A.,
Lesion Detection in Ct Images Using Deep Learning Semantic Segmentation
Technique,
PTVSBB17(13-17).
DOI Link
1805
BibRef
Jin, T.,
Cui, H.,
Zeng, S.,
Wang, X.,
Learning Deep Spatial Lung Features by 3D Convolutional Neural
Network for Early Cancer Detection,
DICTA17(1-6)
IEEE DOI
1804
cancer, computerised tomography, feature extraction,
feedforward neural nets, image classification,
BibRef
Lian, C.,
Ruan, S.,
Denœux, T.,
Guo, Y.,
Vera, P.,
Accurate tumor segmentation in FDG-PET images with guidance of
complementary CT images,
ICIP17(4447-4451)
IEEE DOI
1803
cancer, feature selection, image fusion, image segmentation,
medical image processing, positron emission tomography, tumours,
Unsupervised Learning
BibRef
Zhang, Z.,
Xie, Y.,
Xing, F.,
McGough, M.,
Yang, L.,
MDNet: A Semantically and Visually Interpretable Medical Image
Diagnosis Network,
CVPR17(3549-3557)
IEEE DOI
1711
Bladder, Cancer, Computational modeling,
Medical diagnostic imaging, Visualization
BibRef
Wang, C.,
Bu, H.,
Bao, J.,
Li, C.,
A Level Set Method for Gland Segmentation,
Microscopy17(865-873)
IEEE DOI
1709
Glands, Image segmentation, Level set, Machine learning, Pathology,
Shape, Standards
BibRef
Li, C.,
Gupta, S.,
Rana, S.,
Nguyen, V.[Vu],
Venkatesh, S.,
Ashley, D.,
Livingston, T.,
Multiple adverse effects prediction in longitudinal cancer treatment,
ICPR16(3156-3161)
IEEE DOI
1705
Cancer, Chemotherapy, Correlation, Fatigue, Optimization,
Predictive models, Symmetric matrices, adverse effects,
cancer treatment, longitudinal prediction, multiple-output, regression
BibRef
Stanitsas, P.,
Cherian, A.,
Truskinovsky, A.,
Morellas, V.,
Papanikolopoulos, N.,
Active convolutional neural networks for cancerous tissue recognition,
ICIP17(1367-1371)
IEEE DOI
1803
Cancer, Data models, Entropy, Measurement uncertainty, Task analysis,
Training, Uncertainty, active learning, cancer detection,
uncertainty sampling
BibRef
Stanitsas, P.,
Cherian, A.,
Li, X.[Xinyan],
Truskinovsky, A.,
Morellas, V.,
Papanikolopoulos, N.,
Evaluation of feature descriptors for cancerous tissue recognition,
ICPR16(1490-1495)
IEEE DOI
1705
Cancer, Covariance matrices, Feature extraction, Geometry,
Histograms, Image color analysis, Symmetric, matrices
BibRef
Saha, B.,
Gupta, S.,
Phung, D.,
Venkatesh, S.,
Transfer learning for rare cancer problems via Discriminative Sparse
Gaussian Graphical model,
ICPR16(537-542)
IEEE DOI
1705
Cancer, Cost function, Covariance matrices, Data models,
Graphical models, Mathematical model, Training
BibRef
Singh, V.R.,
Keynote speaker: Nano-cancer technology: New diagnostic and
therapeutic devices,
IVPR17(1-1)
IEEE DOI
1704
Biographies;Ultrasonic variables measurement
BibRef
Zhang, L.[Lei],
Zhu, Y.[Ying],
CutPointVis: An Interactive Exploration Tool for Cancer Biomarker
Cutpoint Optimization,
ISVC16(I: 55-64).
Springer DOI
1701
BibRef
Paul, A.,
Mukherjee, D.P.,
Gland segmentation from histology images using informative
morphological scale space,
ICIP16(4121-4125)
IEEE DOI
1610
Cancer
BibRef
Williams, E.,
The role of imaging in the detection, identification, and treatment
of cancer,
AIPR15(1-6)
IEEE DOI
1605
biomedical imaging
BibRef
Kourd Kaouther, E.,
Eddine Khelil, S.,
Hammoum, S.,
Study with RK4 ANOVA the location of the tumor at the smallest time
for multi-images,
ICCVIA15(1-6)
IEEE DOI
1603
Gaussian distribution
BibRef
Harai, Y.,
Tanaka, T.,
Automatic Diagnosis Support System Using Nuclear and Luminal Features,
DICTA15(1-8)
IEEE DOI
1603
cancer
BibRef
Carneiro, G.[Gustavo],
Peng, T.Y.[Ting-Ying],
Bayer, C.[Christine],
Navab, N.[Nassir],
Automatic detection of necrosis, normoxia and hypoxia in tumors from
multimodal cytological images,
ICIP15(2429-2433)
IEEE DOI
1512
Classifier Combination
BibRef
Sinha, D.,
Garain, U.,
Bandyopadhyay, S.,
Event extraction from cancer genetics literature,
ICAPR15(1-6)
IEEE DOI
1511
biology
BibRef
Carneiro, G.[Gustavo],
Peng, T.Y.[Ting-Ying],
Bayer, C.[Christine],
Navab, N.[Nassir],
Weakly-Supervised Structured Output Learning with Flexible and Latent
Graphs Using High-Order Loss Functions,
ICCV15(648-656)
IEEE DOI
1602
BibRef
Earlier:
Flexible and Latent Structured Output Learning,
Application to Histology,
MLMI15(220-228).
Springer DOI
1511
Tumors lack oxygen supply.
BibRef
Liu, X.[Xiao],
Shi, J.[Jun],
Zhang, Q.[Qi],
Tumor Classification by Deep Polynomial Network and Multiple Kernel
Learning on Small Ultrasound Image Dataset,
MLMI15(313-320).
Springer DOI
1511
BibRef
Lyksborg, M.[Mark],
Puonti, O.[Oula],
Agn, M.[Mikael],
Larsen, R.[Rasmus],
An Ensemble of 2D Convolutional Neural Networks for Tumor Segmentation,
SCIA15(201-211).
Springer DOI
1506
BibRef
Albalooshi, F.,
Smith, S.,
Diskin, Y.,
Sidike, P.,
Asari, V.,
Automatic segmentation of carcinoma in radiographs,
AIPR14(1-6)
IEEE DOI
1504
biological tissues
BibRef
Pak, F.[Fatemeh],
Kanan, H.R.[Hamidreza Rashidy],
Alikhassi, A.[Afsaneh],
Improvement of Benign and Malignant Probability Detection Based on
Non-subsample Contourlet Transform and Super-resolution,
ICPR14(895-899)
IEEE DOI
1412
Accuracy
BibRef
Nalepa, J.[Jakub],
Szymanek, J.[Janusz],
Hayball, M.P.[Michael P.],
Brown, S.J.[Stephen J.],
Ganeshan, B.[Balaji],
Miles, K.[Kenneth],
Texture Analysis for Identifying Heterogeneity in Medical Images,
ICCVG14(446-453).
Springer DOI
1410
general for CT, MRI or PET. Tumors.
BibRef
Esteves, T.[Tiago],
Oliveira, M.J.[Maria José],
Quelhas, P.[Pedro],
Cancer Cell Detection and Tracking Based on Local Interest Point
Detectors,
ICIAR13(434-441).
Springer DOI
1307
BibRef
And:
Cancer Cell Detection and Morphology Analysis Based on Local Interest
Point Detectors,
IbPRIA13(624-631).
Springer DOI
1307
BibRef
Pham, T.D.[Tuan D.],
Ichikawa, K.[Kazuhisa],
Characterization of Cancer and Normal Intracellular Images by the Power
Law of a Fuzzy Partition Functional,
ICIAR13(597-604).
Springer DOI
1307
BibRef
Wu, W.K.H.[William K.H.],
Chung, A.C.S.[Albert C.S.],
Lam, H.H.N.[Henry H.N.],
Multi-resolution LC-MS images alignment using dynamic time warping and
Kullback-Leibler distance,
ICIP12(1681-1684).
IEEE DOI
1302
LC-MS: Liquid chromatography mass spectrometry
BibRef
Xu, Y.[Yan],
Zhu, J.Y.[Jun-Yan],
Chang, E.[Eric],
Tu, Z.W.[Zhuo-Wen],
Multiple Clustered Instance Learning for Histopathology Cancer Image
Classification, Segmentation and Clustering,
CVPR12(964-971).
IEEE DOI
1208
BibRef
Li, Q.N.[Quan-Nan],
Yao, C.[Cong],
Wang, L.W.[Li-Wei],
Tu, Z.W.[Zhuo-Wen],
Randomness and Sparsity Induced Codebook Learning with Application to
Cancer Image Classification,
MCVM12(181-193).
Springer DOI
1305
BibRef
Earlier:
MCV12(16-23).
IEEE DOI
1207
BibRef
Yaguchi, A.[Atsushi],
Kobayashi, T.[Takumi],
Watanabe, K.[Kenji],
Iwata, K.[Kenji],
Hosaka, T.[Tadaaki],
Otsu, N.[Nobuyuki],
Cancer detection from biopsy images using probabilistic and
discriminative features,
ICIP11(1609-1612).
IEEE DOI
1201
BibRef
Liu, F.H.[Fang-Hua],
Duan, C.[Chaijie],
Yuan, K.H.[Ke-Hong],
Liang, Z.R.[Zheng-Rong],
Bao, S.L.[Shang-Lian],
Detecting Bladder Abnormalities Based on Inter-layer Intensity Curve
for Virtual Cystoscopy,
VirtualColon10(76-83).
Springer DOI
1112
BibRef
Wu, Z.[Zhide],
Shi, Z.X.[Zheng-Xing],
Zhang, G.P.[Guo-Peng],
Lu, H.B.[Hong-Bing],
Detection of the Invasion of Bladder Tumor into Adjacent Wall Based on
Textural Features Extracted from MRI Images,
VirtualColon10(68-75).
Springer DOI
1112
BibRef
Hans, C.[Charu],
Merchant, F.A.[Fatima A.],
Shah, S.K.[Shishir K.],
Decision fusion for urine particle classification in multispectral
images,
ICCVGIP10(419-426).
DOI Link
1111
BibRef
Kovalev, V.[Vassili],
Dmitruk, A.[Alexander],
Safonau, I.[Ihar],
Frydman, M.[Mikhail],
Shelkovich, S.[Sviatlana],
A Method for Identification and Visualization of Histological Image
Structures Relevant to the Cancer Patient Conditions,
CAIP11(I: 460-468).
Springer DOI
1109
BibRef
Ståhl, D.[Daniel],
Åström, K.[Kalle],
Overgaard, N.C.[Niels Christian],
Landgren, M.[Matilda],
Sjöstrand, K.[Karl],
Edenbrandt, L.[Lars],
Automatic Compartment Modelling and Segmentation for Dynamical Renal
Scintigraphies,
SCIA11(557-568).
Springer DOI
1105
BibRef
Peskin, A.P.[Adele P.],
Dima, A.A.[Alden A.],
Modeling Clinical Tumors to Create Reference Data for Tumor Volume
Measurement,
ISVC10(II: 736-746).
Springer DOI
1011
BibRef
Othmani, A.[Ahlem],
Meziat, C.[Carole],
Loménie, N.[Nicolas],
Ontology-Driven Image Analysis for Histopathological Images,
ISVC10(I: 1-12).
Springer DOI
1011
BibRef
Switonski, A.[Adam],
Michalak, M.[Marcin],
Josinski, H.[Henryk],
Wojciechowski, K.[Konrad],
Detection of Tumor Tissue Based on the Multispectral Imaging,
ICCVG10(II: 325-333).
Springer DOI
1009
BibRef
Michalak, M.[Marcin],
Switonski, A.[Adam],
Spectrum Evaluation on Multispectral Images by Machine Learning
Techniques,
ICCVG10(II: 126-133).
Springer DOI
1009
BibRef
Schüffler, P.J.[Peter J.],
Fuchs, T.J.[Thomas J.],
Ong, C.S.[Cheng Soon],
Roth, V.[Volker],
Buhmann, J.M.[Joachim M.],
Computational TMA Analysis and Cell Nucleus Classification of Renal
Cell Carcinoma,
DAGM10(202-211).
Springer DOI
1009
BibRef
Kiros, R.[Ryan],
Popuri, K.[Karteek],
Cobzas, D.[Dana],
Jagersand, M.[Martin],
Stacked Multiscale Feature Learning for Domain Independent Medical
Image Segmentation,
MLMI14(25-32).
Springer DOI
1410
BibRef
Mosayebi, P.[Parisa],
Cobzas, D.[Dana],
Jagersand, M.[Martin],
Murtha, A.[Albert],
Stability effects of finite difference methods on a mathematical tumor
growth model,
MMBIA10(125-132).
IEEE DOI
1006
BibRef
de Vylder, J.[Jonas],
Rooms, F.[Filip],
Philips, W.[Wilfried],
Segmentation of Cell Nuclei in Arabidopsis Thaliana Roots,
ICIAR10(II: 207-216).
Springer DOI
1006
BibRef
Sharif, M.S.[Mhd Saeed],
Amira, A.[Abbes],
An intelligent system for pet tumour detection and quantification,
ICIP09(2625-2628).
IEEE DOI
0911
BibRef
Sami, M.M.[Mustafa M.],
Saito, M.[Masahisa],
Kikuchi, H.[Hisakazu],
Saku, T.[Takashi],
A computer-aided distinction of borderline grades of oral cancer,
ICIP09(4205-4208).
IEEE DOI
0911
BibRef
Begelman, G.[Grigory],
Rivlin, E.[Ehud],
Automatic screening of bladder cells for cancer diagnosis,
ICIP09(673-676).
IEEE DOI
0911
BibRef
Fuchs, T.J.[Thomas J.],
Buhmann, J.M.[Joachim M.],
Inter-active learning of randomized tree ensembles for object detection,
Learning09(1370-1377).
IEEE DOI
0910
BibRef
Fuchs, T.J.[Thomas J.],
Haybaeck, J.[Johannes],
Wild, P.J.[Peter J.],
Heikenwalder, M.[Mathias],
Moch, H.[Holger],
Aguzzi, A.[Adriano],
Buhmann, J.M.[Joachim M.],
Randomized Tree Ensembles for Object Detection in Computational
Pathology,
ISVC09(I: 367-378).
Springer DOI
0911
Biomarkers for cancers.
BibRef
Cruz-Roa, A.[Angel],
Caicedo, J.C.[Juan C.],
González, F.A.[Fabio A.],
Visual Pattern Analysis in Histopathology Images Using Bag of Features,
CIARP09(521-528).
Springer DOI
0911
BibRef
de Vieilleville, F.,
Lachaud, J.O.,
Herlin, P.,
Lezoray, O.,
Plancoulaine, B.,
Top-Down Segmentation of Histological Images Using a Digital Deformable
Model,
ISVC09(I: 327-336).
Springer DOI
0911
BibRef
Mitrea, D.,
Nedevschi, S.,
Lupsor, M.,
Socaciu, M.,
Badea, R.,
Improving the Textural Model of the Hepatocellular Carcinoma Using
Dimensionality Reduction Methods,
CISP09(1-5).
IEEE DOI
0910
BibRef
Hattery, D.,
Hassan, M.,
Demos, S.,
Gandjbakhche, A.,
Hyperspectral imaging of Kaposi's Sarcoma for disease assessment and
treatment monitoring,
AIPR02(124-130).
IEEE DOI
0210
BibRef
Uzgiris, E.E.,
Lee, D.,
Sood, A.,
Bove, K.,
Lomnes, S.,
Multimodal polymeric contrast agents for MRI and fluorescence imaging
in the management of cancer,
AIPR05(133-139).
IEEE DOI
0510
BibRef
Aussem, A.[Alex],
de Morais, S.R.[Sergio Rodrigues],
Corbex, M.[Marilys],
Favrel, J.[Joël],
Graph-Based Analysis of Nasopharyngeal Carcinoma with Bayesian Network
Learning Methods,
GbRPR09(52-61).
Springer DOI
0905
BibRef
Singh, R.K.[Rahul Kumar],
Naik, S.K.[Sarif Kumar],
Gupta, L.[Lalit],
Balakrishnan, S.[Srinivasan],
Santhosh, C.,
Pai, K.M.[Keerthilatha M.],
Hybrid SVM: Random Forest classication system for oral cancer
screening using LIF spectra,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Yao, J.H.[Jian-Hua],
Avila, N.[Nilo],
Dwyer, A.[Andrew],
Taveira-da Silva, A.M.[Angelo M.],
Hathaway, O.M.[Olanda M.],
Moss, J.[Joel],
Computer-aided grading of lymphangioleiomyomatosis (LAM) using HRCT,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Hontani, H.[Hidekata],
Sawada, Y.[Yoshihide],
Stability evaluation of a classifier for detecting abdominal tumors in
FDG-PET/CT images,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Fuchs, T.J.[Thomas J.],
Lange, T.[Tilman],
Wild, P.J.[Peter J.],
Moch, H.[Holger],
Buhmann, J.M.[Joachim M.],
Weakly Supervised Cell Nuclei Detection and Segmentation on Tissue
Microarrays of Renal Clear Cell Carcinoma,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Cobzas, D.[Dana],
Birkbeck, N.[Neil],
Schmidt, M.[Mark],
Jagersand, M.[Martin],
Murtha, A.[Albert],
3D Variational Brain Tumor Segmentation using a High Dimensional
Feature Set,
MMBIA07(1-8).
IEEE DOI
0710
BibRef
Pham, T.D.[Tuan D.],
Mass Spectrometry Based Cancer Classification Using Fuzzy Fractal
Dimensions,
CIARP07(614-623).
Springer DOI
0711
See also Fuzzy Fractal Analysis of Molecular Imaging Data.
BibRef
Bell, A.A.[Andre A.],
Herberich, G.[Gerlind],
Meyer-Ebrecht, D.[Dietrich],
Bocking, A.[Alfred],
Aach, T.[Til],
Segmentation and Detection of Nuclei in Silver Stained Cell Specimens
for Early Cancer Diagnosis,
ICIP07(VI: 49-52).
IEEE DOI
0709
BibRef
Kaster, F.O.[Frederik O.],
Menze, B.H.[Bjoern H.],
Weber, M.A.[Marc-André],
Hamprecht, F.A.[Fred A.],
Comparative Validation of Graphical Models for Learning Tumor
Segmentations from Noisy Manual Annotations,
MCV10(74-85).
Springer DOI
1009
BibRef
Quelhas, P.[Pedro],
Marcuzzo, M.[Monica],
Mendonça, A.M.[Ana Maria],
Oliveira, M.J.[Maria José],
Campilho, A.[Aurelio],
Cancer cell detection and invasion depth estimation in brightfield
images,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Görlitz, L.,
Menze, B.H.[Bjoern H.],
Weber, M.A.[Marc-André],
Kelm, B.M.,
Hamprecht, F.A.[Fred A.],
Semi-supervised Tumor Detection in Magnetic Resonance Spectroscopic
Images Using Discriminative Random Fields,
DAGM07(224-233).
Springer DOI
0709
BibRef
Yang, S.W.[Si-Wei],
Götze, S.[Sandra],
Mateos-Langerak, J.[Julio],
van Driel, R.[Roel],
Eils, R.[Roland],
Rohr, K.[Karl],
Analyzing the Variability of the 3D Structure of Chromatin Fiber Using
Statistical Shape Theory,
DAGM07(497-506).
Springer DOI
0709
BibRef
Yu, F.Y.[Fei-Yang],
Ip, H.H.S.[Horace H. S.],
Spatial-HMM:
A new approach for Semantic Annotation of Histological Images,
ICPR06(IV: 663-666).
IEEE DOI
0609
BibRef
Yfantis, E.A.,
Lazarakis, T.,
Popovich, A.,
Angelopoulos, A.,
Bebis, G.N.,
On Cancer Recognition of Ultrasound Images,
CVBVS00(44).
IEEE DOI
0006
BibRef
Seo, K.S.[Kyung-Sik],
Automatic Hepatic Tumor Segmentation Using Composite Hypotheses,
ICIAR05(922-929).
Springer DOI
0509
BibRef
Flores, A.B.[Aldrin Barreto],
Robles, L.A.[Leopoldo Altamirano],
Tepalt, R.M.M.[Rosa Maria Morales],
Aragon, J.D.C.[Juan D. Cisneros],
Identifying Precursory Cancer Lesions Using Temporal Texture Analysis,
CRV05(34-39).
IEEE DOI
0505
BibRef
Miyamoto, T.,
Iizuka, N.,
Oka, M.,
Uchimura, S.,
Hamamoto, Y.,
Comparison of microarray-based predictive systems for early recurrence
of cancer,
ICPR04(II: 347-350).
IEEE DOI
0409
BibRef
Tozaki, T.,
Senda, M.,
Sakamoto, S.,
Matsumoto, K.,
Computer assisted diagnosis method of whole body cancer using FDG-PET
images,
ICIP03(II: 1085-1088).
IEEE DOI
0312
BibRef
Chen, S.R.[Si-Rong],
Wong, L.K.[Long-Kin],
Feng, D.D.[David Dagan],
A new automatic detection approach for hepatocellular, carcinoma using
11C-acetate positron emission tomography,
ICIP03(I: 1065-1068).
IEEE DOI
0312
BibRef
Spyridonos, P.,
Ravazoula, P.,
Cavouras, D.,
Nikiforidis, G.,
An Automatic Classification System of Urine Bladder Tumors Employing
Morphological and Textural Nuclear Features,
ICIP01(II: 853-856).
IEEE DOI
0108
BibRef
Lam, R.W.K.,
Ip, H.H.S.,
Cheung, K.K.T.,
Tang, L.H.Y.,
Hanka, R.,
A Multi-window Approach to Classify Histological Features,
ICPR00(Vol II: 259-262).
IEEE DOI
0009
BibRef
Hattery, D.,
Loew, M.,
Chernomordik, V.,
Gandjbakhche, A.,
Optical Signatures of Small, Deeply Embedded, Tumor-like Inclusions in
Tissue-like Turbid Media Based on a Random-walk Theory of Photon
Migration,
ICPR00(Vol IV: 348-351).
IEEE DOI
0009
BibRef
Brahme, A.,
Towards Inverse Radiation Therapy Planning and
Multidimensional Cancer Treatment Optimization,
SSAB97(Medical)
9703
BibRef
Choi, H.K.[Heung-Kook],
Bengtsson, E.[Ewert],
Jarkrans, T.[Torsten],
Vasko, J.[Janos],
Wester, K.[Kenneth],
Malmström, P.U.[Per-Uno],
Busch, C.[Christer],
Minimum spanning trees (MST) as a tool for describing tissue
architecture when grading bladder carcinoma,
CIAP95(615-620).
Springer DOI
9509
BibRef
Thiran, J.P.,
Macq, B.,
Mairesse, J.,
Morphological classification of cancerous cells,
ICIP94(III: 706-710).
IEEE DOI
9411
BibRef
Fan, N.P.[Ning-Ping],
Li, C.C.,
Fuchs, F.,
Myofibril image processing for studying sarcomere dynamics,
ICPR88(I: 468-472).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Thyroid .