Torch: Machine-Learning Library,
2004.
WWW Link.
Code, Learning. Open source learning library.
Underwood, S.A., and
Coates, C.L.,
Visual Learning from Multiple Views,
TC(24), No. 6, June 1975, pp. 651-661.
An old basically straightforward method for matching and learning.
BibRef
7506
Sherman, R.,
Ernst, G.W.,
Learning patterns in terms of other patterns,
PR(1), No. 4, July 1969, pp. 301-313.
Elsevier DOI
0309
BibRef
Shimura, M.[Masamichi],
Recognizing machines with parametric and nonparametric learning methods
using contextual information,
PR(5), No. 2, June 1973, pp. 149-168.
Elsevier DOI
0309
BibRef
Imai, T.[Toshio],
Shimura, M.[Masamichi],
Learning with probabilistic labeling,
PR(8), No. 1, January 1976, pp. 5-10.
Elsevier DOI
0309
BibRef
Stonham, T.J.,
Shaw, M.A.,
Automatic Classification of Mass Spectra by Means of Digital Learning Nets:
Existence of Characteristic Features of Chemical Class in Mass Spectra,
PR(7), No. 4, December 1975, pp. 235-241.
Elsevier DOI
0309
BibRef
Williams, H.[Harold],
A net-structure learning system for pattern description,
PR(8), No. 4, October 1976, pp. 261-271.
Elsevier DOI
0309
BibRef
Coulon, D.[Daniel],
Kayser, D.[Daniel],
Learning criterion and inductive behaviour,
PR(10), No. 1, 1978, pp. 19-25.
Elsevier DOI
0309
BibRef
Gowda, K.C.[K. Chidananda],
Krishna, G.,
Learning with a mutualistic teacher,
PR(11), No. 5-6, 1979, pp. 383-390.
Elsevier DOI
0309
BibRef
Takiyama, R.[Ryuzo],
A learning procedure for multisurface method of pattern separation,
PR(12), No. 2, 1980, pp. 75-82.
Elsevier DOI
0309
BibRef
Greblicki, W.[Wlodzimierz],
Learning to recognize patterns with a probabilistic teacher,
PR(12), No. 3, 1980, pp. 159-164.
Elsevier DOI
0309
BibRef
Chittineni, C.B.,
Learning with imperfectly labeled patterns,
PR(12), No. 5, 1980, pp. 281-291.
Elsevier DOI
0309
BibRef
Krishnan, T.,
Efficiency of learning with imperfect supervision,
PR(21), No. 2, 1988, pp. 183-188.
Elsevier DOI
0309
BibRef
Bergadano, F.,
Giordana, A.,
Saitta, L.,
Automated concept acquisition in noisy environments,
PAMI(10), No. 4, July 1988, pp. 555-578.
IEEE DOI
0401
BibRef
Baim, P.W.,
A method for attribute selection in inductive learning systems,
PAMI(10), No. 6, November 1988, pp. 888-896.
IEEE DOI
0401
BibRef
Kodratoff, Y.,
Tecuci, G.,
Learning based on conceptual distance,
PAMI(10), No. 6, November 1988, pp. 897-909.
IEEE DOI
0401
BibRef
Constant, P.,
Matwin, S.,
Oppacher, F.,
LEW: learning by watching,
PAMI(12), No. 3, March 1990, pp. 294-308.
IEEE DOI
0401
BibRef
Chitoor, S.S.[Suresh S.],
Murty, M.N.[M. Narasimha],
Bhandaru, M.K.[Malini K.],
A new data structure HC-expression for learning from examples,
PR(24), No. 1, 1991, pp. 19-29.
Elsevier DOI
0401
BibRef
Bhandaru, M.K.[Malini K.],
Murty, M.N.[M. Narasimha],
Incremental learning from examples using HC-expressions,
PR(24), No. 4, 1991, pp. 273-282.
Elsevier DOI
0401
BibRef
Lugosi, G.[Gábor],
Learning with an unreliable teacher,
PR(25), No. 1, January 1992, pp. 79-87.
Elsevier DOI
0401
BibRef
Saitta, L.,
Bergadano, F.,
Pattern recognition and Valiant's learning framework,
PAMI(15), No. 2, February 1993, pp. 145-155.
IEEE DOI
0401
BibRef
Cho, K.,
Dunn, S.M.,
Learning Shape Classes,
PAMI(16), No. 9, September 1994, pp. 882-888.
IEEE DOI
BibRef
9409
Earlier:
MDSG94(483-492).
BibRef
Earlier:
Shape-based object recognition by inductive learning,
ICPR92(II:681-684).
IEEE DOI
9208
BibRef
Chen, L.H.[Liang-Hwa],
Chang, S.[Shyang],
An adaptive conscientious competitive learning algorithm and its
applications,
PR(27), No. 12, December 1994, pp. 1787-1813.
Elsevier DOI
0401
BibRef
Ching, J.Y.,
Wong, A.K.C.,
Chan, K.C.C.,
Class-Dependent Discretization for Inductive Learning from
Continuous and Mixed-Mode Data,
PAMI(17), No. 7, July 1995, pp. 641-651.
IEEE DOI
BibRef
9507
Park, J.M.,
Hu, Y.H.,
Online Learning for Active Pattern-Recognition,
SPLetters(3), No. 11, November 1996, pp. 301-303.
IEEE Top Reference.
9611
BibRef
Kim, J.,
Yu, J.R.,
Kim, S.H.,
Learning of Prototypes and Decision Boundaries for a
Verification Problem Having Only Positive Samples,
PRL(17), No. 7, June 10 1996, pp. 691-697.
9607
BibRef
Cervera, E.,
Delpobil, A.P.,
Marta, E.,
Serna, M.A.,
Perception-Based Learning for Motion in Contact in Task Planning,
JIRS(17), No. 3, November 1996, pp. 283-308.
9701
BibRef
Dasarathy, B.V., and
Lakshminarasimhan, A.L.,
Learning Under a VEDIC Teacher,
CIS(8), March 1979, No. 1, pp. 75-88.
BibRef
7903
Dasarathy, B.V.,
Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition
in Partially Exposed Environments,
PAMI(2), No. 1, January 1980, pp. 67-71.
BibRef
8001
Dasarathy, B.V.,
Adaptive Decision Systems with Extended Learning
for Deployment in Partially Exposed Environments,
OptEng(34), No. 5, May 1995, pp. 1269-1280.
BibRef
9505
And:
Adaptive Learning Concepts and Methodology for
Enhanced Recognition System Performance,
SPIE(2234), Automatic Object Recognition IV, July 1994, pp. 372-383.
BibRef
And:
Feature Assessment in Imperfectly Supervised Environment,
SPIE(2234), July 1994, pp. 360-371.
BibRef
Dasarathy, B.V.,
Fuzzy Learning in Vicissitudinous Environments,
ICPR92(II:500-503).
IEEE DOI
BibRef
9200
And:
FLUTE: Fuzzy Learning In Unfamiliar Teacher Environments,
IEEE_Fuzzy Systems 92(1070-1077), March 1992.
BibRef
Kors, J.A.,
Hoffmann, A.L.,
Induction of Decision Rules That Fulfill User Specified
Performance Requirements,
PRL(18), No. 11-13, November 1997, pp. 1187-1195.
9806
BibRef
Shah, J.[Jayant],
Reaction-Diffusion Equations and Learning,
JVCIR(13), No. 1/2, March/June 2002, pp. 82-93.
DOI Link
0204
BibRef
Shah, J.[Jayant],
Minimax Entropy and Learning by Diffusion,
CVPR98(92-97).
IEEE DOI
BibRef
9800
Wyeth, G.,
Training A Vision-Guided Mobile Robot,
MachLearn(31), No. 1-3, Apr-Jun 1998, pp. 201-222.
9809
BibRef
Yokomor, T.,
Kobayashi, S.,
Learning Local Languages and Their Application
to DNA Sequence Analysis,
PAMI(20), No. 10, October 1998, pp. 1067-1079.
IEEE DOI
BibRef
9810
Wang, H.[Hui],
Bell, D.[David],
Murtagh, F.[Fionn],
Axiomatic Approach to Feature Subset Selection Based on Relevance,
PAMI(21), No. 3, March 1999, pp. 271-277.
IEEE DOI Machine Learning.
BibRef
9903
Ratsaby, J.,
Incremental Learning with Sample Queries,
PAMI(20), No. 8, August 1998, pp. 883-888.
IEEE DOI
BibRef
9808
Beymer, D.J.[David J.], and
Poggio, T.[Tomaso],
Image Representations for Visual Learning,
Science(272), No. 5250, June 28, 1996, pp. 1905.
PS File.
BibRef
9606
Inoue, K.[Kohei],
Urahama, K.[Kiichi],
Learning of view-invariant pattern recognizer with temporal context,
PR(33), No. 10, October 2000, pp. 1665-1674.
Elsevier DOI
0006
BibRef
Inoue, K.[Kohei],
Urahama, K.[Kiichi],
Equivalence of Non-Iterative Algorithms for Simultaneous Low Rank
Approximations of Matrices,
CVPR06(I: 154-159).
IEEE DOI
0606
BibRef
Kim, W.S.,
Cho, H.S.,
Learning-based constitutive parameters estimation in an image sensing
system with multiple mirrors,
PR(33), No. 7, July 2000, pp. 1199-1217.
Elsevier DOI
0005
BibRef
Freeman, W.T.[William T.],
Pasztor, E.C.[Egon C.],
Carmichael, O.T.[Owen T.],
Learning Low-Level Vision,
IJCV(40), No. 1, October 2000, pp. 25-47.
DOI Link
0101
BibRef
Earlier: A1 and A2 only:
ICCV99(1182-1189).
IEEE DOI And:
WWW Link.
BibRef
Imiya, A.[Atsushi],
Kawamoto, K.[Kazuhiko],
Learning dimensionality and orientations of 3D objects,
PRL(22), No. 1, January 2001, pp. 75-83.
Elsevier DOI
0105
BibRef
Oommen, B.J.,
Agache, M.,
Continuous and Discretized Pursuit Learning Schemes:
Various Algorithms and Their Comparison,
SMC-B(31), No. 3, June 2001, pp. 277-287.
IEEE Top Reference.
0108
BibRef
Bonarini, A.,
Bonacina, C.,
Matteucci, M.,
An approach to the design of reinforcement functions in real world,
agent-based applications,
SMC-B(31), No. 3, June 2001, pp. 288-301.
IEEE Top Reference.
0108
BibRef
Lam, W.[Wai],
Keung, C.K.[Chi-Kin],
Ling, C.X.[Charles X.],
Learning good prototypes for classification using filtering and
abstraction of instances,
PR(35), No. 7, July 2002, pp. 1491-1506.
Elsevier DOI
0204
BibRef
Freedman, D.[Daniel],
Efficient Simplicial Reconstructions of Manifolds from Their Samples,
PAMI(24), No. 10, October 2002, pp. 1349-1357.
IEEE Abstract.
0210
BibRef
Kisilev, P.[Pavel],
Freedman, D.[Daniel],
Parameter Tuning by Pairwise Preferences,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Chawla, N.V.[Nitesh V.],
Moore, T.E.[Thomas E.],
Hall, L.O.[Lawrence O.],
Bowyer, K.W.[Kevin W.],
Kegelmeyer, W.P.[W. Philip],
Springer, C.[Clayton],
Distributed learning with bagging-like performance,
PRL(24), No. 1-3, January 2003, pp. 455-471.
Elsevier DOI
0211
BibRef
Granger, E.[Eric],
Savaria, Y.[Yvon],
Lavoie, P.[Pierre],
A pattern reordering approach based on ambiguity detection for online
category learning,
PAMI(25), No. 4, April 2003, pp. 525-529.
IEEE Abstract.
0304
BibRef
Al-Shaher, A.A.[Abdullah A.],
Hancock, E.R.[Edwin R.],
Learning mixtures of point distribution models with the EM algorithm,
PR(36), No. 12, December 2003, pp. 2805-2818.
Elsevier DOI
0310
BibRef
Earlier:
Fast on-line learning of point distribution models,
ICPR02(II: 208-211).
IEEE DOI
0211
BibRef
Seow, M.J.[Ming-Jung],
Asari, V.K.[Vijayan K.],
Learning using distance based training algorithm for pattern
recognition,
PRL(25), No. 2, January 2004, pp. 189-196.
Elsevier DOI
0401
BibRef
Cherkassky, V.S.[Vladimir S.],
Shao, X.,
Mulier, F.,
Vapnik, V.,
Model Selection for Regression Using VC-Generalization Bounds,
TNN(10), 1999, pp. 1075-1089.
BibRef
9900
Park, J.M.[Jong-Min],
Convergence and Application of Online Active Sampling Using Orthogonal
Pillar Vectors,
PAMI(26), No. 9, September 2004, pp. 1197-1207.
IEEE Abstract.
0409
Sample at the boundary approach.
BibRef
Lopes, M.C.,
Santos-Victor, J.,
Visual Learning by Imitation With Motor Representations,
SMC-B(35), No. 3, June 2005, pp. 438-449.
IEEE DOI
0508
BibRef
Anastasiadis, A.D.,
Magoulas, G.D.,
Vrahatis, M.N.[Michael N.],
Sign-based learning schemes for pattern classification,
PRL(26), No. 12, September 2005, pp. 1926-1936.
Elsevier DOI
0508
BibRef
Ikonomakis, E.K.[Emmanouil K.],
Spyrou, G.M.[George M.],
Vrahatis, M.N.[Michael N.],
Content driven clustering algorithm combining density and distance
functions,
PR(87), 2019, pp. 190-202.
Elsevier DOI
1812
Clustering algorithms, Density based clustering,
Distance based clustering, Evolutionary clustering, Window density function
BibRef
Alissandrakis, A.[Aris],
Nehaniv, C.L.[Chrystopher L.],
Dautenhahn, K.[Kerstin],
Correspondence Mapping Induced State and Action Metrics for Robotic
Imitation,
SMC-B(37), No. 2, April 2007, pp. 299-307.
IEEE DOI
0704
BibRef
Lopes, M.[Manuel],
Santos-Victor, J.[Jose],
A Developmental Roadmap for Learning by Imitation in Robots,
SMC-B(37), No. 2, April 2007, pp. 308-321.
IEEE DOI
0704
BibRef
Pardowitz, M.[Michael],
Knoop, S.[Steffen],
Dillmann, R.[Ruediger],
Zollner, R.D.[Raoul D.],
Incremental Learning of Tasks From User Demonstrations, Past
Experiences, and Vocal Comments,
SMC-B(37), No. 2, April 2007, pp. 322-332.
IEEE DOI
0704
BibRef
Girgin, S.,
Polat, F.,
Alhajj, R.,
Positive Impact of State Similarity on Reinforcement Learning
Performance,
SMC-B(37), No. 5, October 2007, pp. 1256-1270.
IEEE DOI
0711
BibRef
Sage, K.[Kingsley],
Howell, A.J.[A. Jonathan],
Buxton, H.[Hilary],
Argyros, A.A.[Antonis A.],
Learning temporal structure for task based control,
IVC(26), No. 1, 1 January 2008, pp. 39-52.
Elsevier DOI
0711
Variable length Markov models; Temporal learning; 3-D Tracking;
Data association; Task-based control
BibRef
Sage, K.,
Buxton, H.,
Joint spatial and temporal structure learning for task based control,
ICPR04(II: 48-51).
IEEE DOI
0409
BibRef
Haro, G.[Gloria],
Randall, G.[Gregory],
Sapiro, G.[Guillermo],
Translated Poisson Mixture Model for Stratification Learning,
IJCV(80), No. 3, December 2008, pp. xx-yy.
Springer DOI
0810
BibRef
Earlier:
Regularized Mixed Dimensionality and Density Learning in Computer
Vision,
ComponentAnalysis07(1-8).
IEEE DOI
0706
A framework for the regularized and robust estimation of non-uniform
dimensionality and density in high dimensional noisy data.
BibRef
Xia, F.[Fen],
Yang, Y.W.[Yan-Wu],
Zhou, L.[Liang],
Li, F.X.[Fu-Xin],
Cai, M.[Min],
Zeng, D.D.[Daniel D.],
A closed-form reduction of multi-class cost-sensitive learning to
weighted multi-class learning,
PR(42), No. 7, July 2009, pp. 1572-1581.
Elsevier DOI
0903
Cost-sensitive learning; Supervised learning; Statistical learning theory; Classification
BibRef
Felsberg, M.[Michael],
Wiklund, J.[Johan],
Granlund, G.H.[Gosta H.],
Exploratory learning structures in artificial cognitive systems,
IVC(27), No. 11, 2 October 2009, pp. 1671-1687.
Elsevier DOI
0909
Cognitive systems; COSPAL; Perception-action learning
BibRef
Ong, E.J.[Eng-Jon],
Ellis, L.[Liam],
Bowden, R.[Richard],
Problem solving through imitation,
IVC(27), No. 11, 2 October 2009, pp. 1715-1728.
Elsevier DOI
0909
Cognitive system; Complexity Chain; Learning from imitation; Problem solving
BibRef
Larsson, F.[Fredrik],
Jonsson, E.[Erik],
Felsberg, M.[Michael],
Simultaneously learning to recognize and control a low-cost robotic arm,
IVC(27), No. 11, 2 October 2009, pp. 1729-1739.
Elsevier DOI
0909
Visual servoing; LWPR; Gripper recognition; Jacobian estimation
BibRef
Jin, X.B.[Xiao-Bo],
Liu, C.L.[Cheng-Lin],
Hou, X.W.[Xin-Wen],
Regularized margin-based conditional log-likelihood loss for prototype
learning,
PR(43), No. 7, July 2010, pp. 2428-2438.
Elsevier DOI
1003
BibRef
Earlier:
Prototype learning with margin-based conditional log-likelihood loss,
ICPR08(1-4).
IEEE DOI
0812
Prototype learning; Conditional log-likelihood loss; Log-likelihood of
margin (LOGM); Regularization; Distance metric learning
BibRef
Zheng, N.N.[Nan-Ning],
Xue, J.R.[Jian-Ru],
Statistical Learning and Pattern Analysis for
Image and Video Processing,
Springer-Verlag2009.
ISBN: 978-1-84882-311-2
WWW Link.
0104
Buy this book: Statistical Learning and Pattern Analysis for Image and Video Processing (Advances in Pattern Recognition)
Learning and applications in video coding and processing.
BibRef
Wang, F.[Fei],
A general learning framework using local and global regularization,
PR(43), No. 9, September 2010, pp. 3120-3129.
Elsevier DOI
1006
Machine learning; Local; Global; Regularization
BibRef
Pavlidis, N.G.,
Tasoulis, D.K.,
Adams, N.M.,
Hand, D.J.,
lambda-Perceptron: An adaptive classifier for data streams,
PR(44), No. 1, January 2011, pp. 78-96.
Elsevier DOI
1003
Streaming data; Classification; Population drift; Online learning; Forgetting
BibRef
Ross, G.J.[Gordon J.],
Adams, N.M.[Niall M.],
Tasoulis, D.K.[Dimitris K.],
Hand, D.J.[David J.],
Exponentially weighted moving average charts for detecting concept
drift,
PRL(33), No. 2, 15 January 2012, pp. 191-198.
Elsevier DOI
1112
BibRef
And:
Erratum:
PRL(33), No. 16, 1 December 2012, pp. 2261.
Elsevier DOI
1210
Streaming classification; Concept drift; Change detection
BibRef
Rossi, F.[Fabrice],
Villa-Vialaneix, N.[Nathalie],
Consistency of functional learning methods based on derivatives,
PRL(32), No. 8, 1 June 2011, pp. 1197-1209.
Elsevier DOI
1101
Functional Data Analysis; Consistency; Statistical learning;
Derivatives; SVM; Smoothing splines; RKHS
BibRef
Xu, H.[Huan],
Caramanis, C.[Constantine],
Mannor, S.[Shie],
Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem,
PAMI(34), No. 1, January 2012, pp. 187-193.
IEEE DOI
1112
Learning requires sparsity and stability, but these are often incompatible.
L1-regularized regression is not stable, L2-regularized regression is stable
and not sparse.
BibRef
Schaum, A.P.,
CFAR fusion: A replacement for the generalized likelihood ratio test
for Neyman-Pearson problems,
AIPR11(1-6).
IEEE DOI
1204
solving composite hypothesis testing problems
BibRef
Wei, L.S.[Long-Sheng],
Sang, N.[Nong],
Wang, Y.H.[Yue-Huan],
A biologically inspired object-based visual attention model,
AIR(34), No. 2, August 2010, pp. 109-119.
WWW Link.
1208
BibRef
Earlier: A2, A1, A3:
A Biologically-Inspired Top-Down Learning Model Based on Visual
Attention,
ICPR10(3736-3739).
IEEE DOI
1008
BibRef
Chakraborty, S.[Shayok],
Balasubramanian, V.[Vineeth],
Panchanathan, S.[Sethuraman],
Generalized batch mode active learning for face-based biometric
recognition,
PR(46), No. 2, February 2013, pp. 497-508.
Elsevier DOI
1210
BibRef
Earlier:
Dynamic batch mode active learning,
CVPR11(2649-2656).
IEEE DOI
1106
BibRef
Earlier:
Learning from summaries of videos:
Applying batch mode active learning to face-based biometrics,
Biometrics10(130-137).
IEEE DOI
1006
BibRef
Earlier: A2, A1, A3:
Generalized Query by Transduction for online active learning,
Learning09(1378-1385).
IEEE DOI
0910
Active learning; Face-based biometrics; Optimization
Predict class label of a point.
BibRef
Chakraborty, S.[Shayok],
Balasubramanian, V.[Vineeth],
Sun, Q.,
Panchanathan, S.[Sethuraman],
Ye, J.,
Active Batch Selection via Convex Relaxations with Guaranteed
Solution Bounds,
PAMI(37), No. 10, October 2015, pp. 1945-1958.
IEEE DOI
1509
BibRef
Chakraborty, S.[Shayok],
Distributed Active Learning for Image Recognition,
WACV18(1833-1841)
IEEE DOI
1806
distributed processing, image recognition,
learning (artificial intelligence), active learning algorithms,
Uncertainty
BibRef
Young, S.R.,
Davis, A.,
Mishtal, A.,
Arel, I.,
Hierarchical spatiotemporal feature extraction using recurrent online
clustering,
PRL(37), No. 1, 2014, pp. 115-123.
Elsevier DOI
1402
Deep machine learning.
BibRef
Ataer-Cansizoglu, E.[Esra],
Akcakaya, M.[Murat],
Orhan, U.[Umut],
Erdogmus, D.[Deniz],
Manifold learning by preserving distance orders,
PRL(38), No. 1, 2014, pp. 120-131.
Elsevier DOI
1402
Machine learning
BibRef
Ataer-Cansizoglu, E.[Esra],
Akcakaya, M.[Murat],
Erdogmus, D.,
Minor Surfaces are Boundaries of Mode-Based Clusters,
SPLetters(22), No. 7, July 2015, pp. 891-895.
IEEE DOI
1412
Clustering algorithms
BibRef
Ji, N.N.[Nan-Nan],
Zhang, J.S.[Jiang-She],
Zhang, C.X.[Chun-Xia],
A sparse-response deep belief network based on rate distortion theory,
PR(47), No. 9, 2014, pp. 3179-3191.
Elsevier DOI
1406
Deep belief network
BibRef
Zhang, H.[He],
Yang, Z.R.[Zhi-Rong],
Oja, E.[Erkki],
Improving cluster analysis by co-initializations,
PRL(45), No. 1, 2014, pp. 71-77.
Elsevier DOI
1407
Clustering
BibRef
Zhu, Z.X.[Zhan-Xing],
Yang, Z.R.[Zhi-Rong],
Oja, E.[Erkki],
Multiplicative Updates for Learning with Stochastic Matrices,
SCIA13(143-152).
Springer DOI
1311
BibRef
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
Xu, C.[Chao],
Large-Margin Multi-View Information Bottleneck,
PAMI(36), No. 8, August 2014, pp. 1559-1572.
IEEE DOI
1407
Accuracy
learning from examples represented by multi-view features.
BibRef
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
Xu, C.[Chao],
Multi-View Intact Space Learning,
PAMI(37), No. 12, December 2015, pp. 2531-2544.
IEEE DOI
1512
image reconstruction
BibRef
Persello, C.,
Boularias, A.,
Dalponte, M.,
Gobakken, T.,
Naesset, E.,
Scholkopf, B.,
Cost-Sensitive Active Learning With Lookahead: Optimizing Field
Surveys for Remote Sensing Data Classification,
GeoRS(52), No. 10, October 2014, pp. 6652-6664.
IEEE DOI
1407
Accuracy
BibRef
Nowozin, S.[Sebastian],
Lampert, C.H.[Christoph H.],
Structured Learning and Prediction in Computer Vision,
FTCGV(6), Issue 3-4, 2010, pp. 185-365.
DOI Link
1410
Published May 2011.
BibRef
Gu, Y.J.[Ying-Jie],
Jin, Z.[Zhong],
Chiu, S.C.,
Active learning combining uncertainty and diversity for multi-class
image classification,
IET-CV(9), No. 3, 2015, pp. 400-407.
DOI Link
1507
computer vision
BibRef
Zhu, Y.J.[Yu-Jin],
Wang, Z.[Zhe],
Gao, D.Q.[Da-Qi],
Matrixized learning machine with modified pairwise constraints,
PR(48), No. 11, 2015, pp. 3797-3809.
Elsevier DOI
1506
Matrixized classifier
BibRef
Tang, Y.,
Yuan, Y.,
Image Pair Analysis With Matrix-Value Operator,
Cyber(45), No. 10, October 2015, pp. 2042-2050.
IEEE DOI
1509
Algorithm design and analysis
BibRef
Zahalka, J.,
Rudinac, S.,
Worring, M.,
Interactive Multimodal Learning for Venue Recommendation,
MultMed(17), No. 12, December 2015, pp. 2235-2244.
IEEE DOI
1512
Cities and towns
BibRef
Zhou, Z.Z.[Zhao-Ze],
Zheng, W.S.[Wei-Shi],
Hu, J.F.[Jian-Fang],
Xu, Y.[Yong],
You, J.[Jane],
One-pass online learning: A local approach,
PR(51), No. 1, 2016, pp. 346-357.
Elsevier DOI
1601
One-pass online learning
BibRef
Marée, R.[Raphaël],
Geurts, P.[Pierre],
Wehenkel, L.[Louis],
Towards generic image classification using tree-based learning:
An extensive empirical study,
PRL(74), No. 1, 2016, pp. 17-23.
Elsevier DOI
1604
Image classification
BibRef
Takigawa, I.[Ichigaku],
Mamitsuka, H.[Hiroshi],
Generalized Sparse Learning of Linear Models Over the Complete
Subgraph Feature Set,
PAMI(39), No. 3, March 2017, pp. 617-624.
IEEE DOI
1702
Convergence
BibRef
Nguyen, C.H.[Canh Hao],
Mamitsuka, H.[Hiroshi],
Learning on Hypergraphs With Sparsity,
PAMI(43), No. 8, August 2021, pp. 2710-2722.
IEEE DOI
2107
Noise measurement, Data models, Laplace equations, Additives,
Machine learning, Computational modeling, Topology,
sparsistency
BibRef
Lv, F.M.[Feng-Mao],
Yang, G.W.[Guo-Wu],
Zhu, W.[William],
Liu, C.[Chuan],
Generative classification model for categorical data based on latent
Gaussian process,
PRL(92), No. 1, 2017, pp. 56-61.
Elsevier DOI
1705
Machine learning
BibRef
Li, Q.[Qin],
Shi, X.S.[Xiao-Shuang],
Zhou, L.F.[Lin-Fei],
Bao, Z.F.[Zhi-Feng],
Guo, Z.H.[Zhen-Hua],
Active learning via local structure reconstruction,
PRL(92), No. 1, 2017, pp. 81-88.
Elsevier DOI
1705
Active learning
BibRef
Wen, Z.,
Hou, B.,
Jiao, L.,
Discriminative Nonlinear Analysis Operator Learning:
When Cosparse Model Meets Image Classification,
IP(26), No. 7, July 2017, pp. 3449-3462.
IEEE DOI
1706
Adaptation models, Analytical models, Computational modeling,
Dictionaries, Feature extraction, Testing, Training,
Nonlinear analysis cosparse model, analysis operator learning,
dictionary learning, discriminative model, generative model,
image classification, linear synthesis model, regularization, learning
BibRef
Chang, C.C.[Chin-Chun],
Liao, B.H.[Bo-Han],
Active learning based on minimization of the expected path-length of
random walks on the learned manifold structure,
PR(71), No. 1, 2017, pp. 337-348.
Elsevier DOI
1707
Active, learning
BibRef
Zhan, Y.S.[Yu-Sen],
Ammar, H.B.[Haitham Bou],
Taylor, M.E.[Matthew E.],
Scalable lifelong reinforcement learning,
PR(72), No. 1, 2017, pp. 407-418.
Elsevier DOI
1708
Reinforcement, learning
BibRef
Nebot, À.[Àngela],
Binefa, X.[Xavier],
de Mántaras, R.L.[Ramón López],
Special issue MLAAI:
Machine learning and applications in artificial intelligence,
PRL(105), 2018, pp. 1-3.
Elsevier DOI
1804
BibRef
Yu, J.[Jun],
Mei, X.[Xue],
Porikli, F.M.[Fatih M.],
Corso, J.J.[Jason J.],
Machine learning for big visual analysis,
RealTimeIP(14), No. 1, January 2018, pp. 929-931.
WWW Link.
1809
BibRef
Hou, C.P.[Chen-Ping],
Zhou, Z.H.[Zhi-Hua],
One-Pass Learning with Incremental and Decremental Features,
PAMI(40), No. 11, November 2018, pp. 2776-2792.
IEEE DOI
1810
Features are changeing over time.
Sensors, Training, Games, Learning systems, Monitoring, Optimization,
One-pass learning, incremental and decremental features,
robust learning
BibRef
Ramezan, C.A.[Christopher A.],
Warner, T.A.[Timothy A.],
Maxwell, A.E.[Aaron E.],
Evaluation of Sampling and Cross-Validation Tuning Strategies for
Regional-Scale Machine Learning Classification,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Bhattacharya, A.,
Chakraborty, S.,
Active Learning with n-ary Queries for Image Recognition,
WACV19(800-808)
IEEE DOI
1904
computational complexity, image annotation, image classification,
image recognition, image sampling, integer programming,
Machine learning
BibRef
Zhao, Y.[Yu],
Shi, Z.H.[Zhen-Hui],
Zhang, J.Y.[Jing-Yang],
Chen, D.[Dong],
Gu, L.[Lixu],
A novel active learning framework for classification:
Using weighted rank aggregation to achieve multiple query criteria,
PR(93), 2019, pp. 581-602.
Elsevier DOI
1906
Multiple query criteria active learning,
Integration criteria strategy, Sample query criterion,
Weighted rank aggregation
BibRef
Vieting, P.M.,
de Lamare, R.C.,
Martin, L.,
Dartmann, G.,
Schmeink, A.,
Likelihood-Based Adaptive Learning in Stochastic State-Based Models,
SPLetters(26), No. 7, July 2019, pp. 1031-1035.
IEEE DOI
1906
Adaptation models, Stochastic processes, Convergence,
Adaptive learning, Biological system modeling, Reliability,
adaptive signal processing
BibRef
Danaee, A.,
de Lamare, R.C.,
Nascimento, V.H.,
Energy-Efficient Distributed Learning With Coarsely Quantized Signals,
SPLetters(28), 2021, pp. 329-333.
IEEE DOI
2102
Signal processing algorithms, Quantization (signal),
Power demand, Peer-to-peer computing, Internet of Things,
coarse quantization
BibRef
Cao, H.[Hung],
Wachowicz, M.[Monica],
A Holistic Overview of Anticipatory Learning for the Internet of
Moving Things: Research Challenges and Opportunities,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Vlaski, S.[Stefan],
Rizk, E.[Elsa],
Sayed, A.H.[Ali H.],
Tracking Performance of Online Stochastic Learners,
SPLetters(27), 2020, pp. 1385-1389.
IEEE DOI
2008
Stochastic processes, Signal processing algorithms, Optimization,
Adaptation models, Random variables, Steady-state,
non-stationary environment
BibRef
Yousef, W.A.[Waleed A.],
Prudence when assuming normality:
An advice for machine learning practitioners,
PRL(138), 2020, pp. 44-50.
Elsevier DOI
2010
Bayes classifier, Multinormal distribution,
Central limit theorem, Classification, Binormal model
BibRef
Aguerri, I.E.[Iñaki Estella],
Zaidi, A.[Abdellatif],
Distributed Variational Representation Learning,
PAMI(43), No. 1, January 2021, pp. 120-138.
IEEE DOI
2012
Mutual information, Loss measurement, Complexity theory,
Data mining, Approximation algorithms, Data models, information bottleneck
BibRef
Guo, Y.[Yuan],
Zhang, B.[Bing],
Sun, Y.,
Jiang, K.,
Wu, K.,
Machine learning based feature selection and knowledge reasoning for
CBR system under big data,
PR(112), 2021, pp. 107805.
Elsevier DOI
2102
WRPCSP algorithm, GO algorithm, Case based reasoning, Machine learning
BibRef
Terziyan, V.[Vagan],
Nikulin, A.[Anton],
Semantics of Voids within Data: Ignorance-Aware Machine Learning,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Luo, Y.[Yan],
Wong, Y.K.[Yong-Kang],
Kankanhalli, M.S.[Mohan S.],
Zhao, Q.[Qi],
Direction Concentration Learning:
Enhancing Congruency in Machine Learning,
PAMI(43), No. 6, June 2021, pp. 1928-1946.
IEEE DOI
2106
Task analysis, Visualization, Computational modeling, Training,
Convergence, Predictive models, Machine learning, Optimization,
congruency
BibRef
Luo, Y.[Yan],
Wong, Y.K.[Yong-Kang],
Kankanhalli, M.S.[Mohan S.],
Zhao, Q.[Qi],
Learning to Minimize the Remainder in Supervised Learning,
MultMed(25), 2023, pp. 1738-1748.
IEEE DOI
2306
Training, Task analysis, Standards, Optimization methods,
Computational modeling, Stochastic processes, Object detection,
supervised learning
BibRef
Xie, Y.[Yu],
Yu, B.[Bin],
Lv, S.Z.[Sheng-Ze],
Zhang, C.[Chen],
Wang, G.D.[Guo-Dong],
Gong, M.G.[Mao-Guo],
A survey on heterogeneous network representation learning,
PR(116), 2021, pp. 107936.
Elsevier DOI
2106
Heterogeneous network, Network representation learning, Machine learning
BibRef
Wang, H.[Hui],
Zhao, H.B.[Han-Bin],
Li, X.[Xi],
Progressive Class-Based Expansion Learning for Image Classification,
SPLetters(28), 2021, pp. 1430-1434.
IEEE DOI
2108
Training, Pipelines, Optimization, Loss measurement,
Learning systems, Feature extraction, image classification
BibRef
Plotz, T.[Thomas],
Applying Machine Learning for Sensor Data Analysis in Interactive
Systems: Common Pitfalls of Pragmatic Use and Ways to Avoid Them,
Surveys(54), No. 6, July 2021, pp. xx-yy.
DOI Link
2108
Sensor data analysis, machine learning applications
BibRef
Nikparvar, B.[Behnam],
Thill, J.C.[Jean-Claude],
Machine Learning of Spatial Data,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, Y.Y.[Yuan-Yuan],
Shang, F.H.[Fan-Hua],
Liu, H.Y.[Hong-Ying],
Kong, L.[Lin],
Jiao, L.C.[Li-Cheng],
Lin, Z.C.[Zhou-Chen],
Accelerated Variance Reduction Stochastic ADMM for Large-Scale
Machine Learning,
PAMI(43), No. 12, December 2021, pp. 4242-4255.
IEEE DOI
2112
Convex functions, Large-scale systems, Convergence,
Stochastic processes, Optimization, Machine learning, smooth and non-smooth
BibRef
Zhu, C.Z.[Cheng-Zhang],
Cao, L.B.[Long-Bing],
Yin, J.P.[Jian-Ping],
Unsupervised Heterogeneous Coupling Learning for Categorical
Representation,
PAMI(44), No. 1, January 2022, pp. 533-549.
IEEE DOI
2112
Couplings, Kernel, Frequency measurement, Complexity theory,
Task analysis, Shape, Image color analysis, Coupling learning,
unsupervised learning
BibRef
Shin, Y.H.[Yu-Hyun],
Baek, S.J.[Seung Jun],
Hopfield-type neural ordinary differential equation for robust
machine learning,
PRL(152), 2021, pp. 180-187.
Elsevier DOI
2112
Neural ODE, Adversarial defense, Hopfield-type network, Image classification
BibRef
Toccaceli, P.[Paolo],
Introduction to conformal predictors,
PR(124), 2022, pp. 108507.
Elsevier DOI
2203
General learning issues.
Conformal prediction, Nonparametric methods, Confidence
BibRef
Zhang, J.[Jing],
Tao, H.[Hong],
Luo, T.J.[Ting-Jin],
Hou, C.P.[Chen-Ping],
Safe incomplete label distribution learning,
PR(125), 2022, pp. 108518.
Elsevier DOI
2203
Learn importantance of each label to an instance.
Label distribution learning, Safeness, Incomplete supervised learning
BibRef
Liu, X.J.[Xiao-Jian],
Kounadi, O.[Ourania],
Zurita-Milla, R.[Raul],
Incorporating Spatial Autocorrelation in Machine Learning Models
Using Spatial Lag and Eigenvector Spatial Filtering Features,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Talamantes, A.[Ariana],
Chavez, E.[Edgar],
Instance-based learning using the half-space proximal graph,
PRL(156), 2022, pp. 88-95.
Elsevier DOI
2205
Instance based learning, Half space proximal graphs, classififier
BibRef
Coskun, K.[Kutalmis],
Tümer, B.[Borahan],
An adaptive estimation method with exploration and exploitation modes
for non-stationary environments,
PR(129), 2022, pp. 108702.
Elsevier DOI
2206
Stochastic learning, Concept drift, Change detection,
Parameter estimation, Dynamic learning rate
BibRef
Ahmed, W.[Waqas],
Muhammad, K.[Khan],
Glass, H.J.[Hylke Jan],
Chatterjee, S.[Snehamoy],
Khan, A.[Asif],
Hussain, A.[Abid],
Novel MLR-RF-Based Geospatial Techniques: A Comparison with OK,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, X.[Xuan],
Jiao, L.[Lei],
Granmo, O.C.[Ole-Christoffer],
Goodwin, M.[Morten],
On the Convergence of Tsetlin Machines for the IDENTITY- and NOT
Operators,
PAMI(44), No. 10, October 2022, pp. 6345-6359.
IEEE DOI
2209
Machine learning.
Convergence, Training, Learning automata,
Training data, Task analysis, convergence analysis
BibRef
Lin, W.Y.[Wen-Yan],
Liu, S.Y.[Si-Ying],
Ren, C.H.[Chang-Hao],
Cheung, N.M.[Ngai-Man],
Li, H.D.[Hong-Dong],
Matsushita, Y.[Yasuyuki],
Shell Theory: A Statistical Model of Reality,
PAMI(44), No. 10, October 2022, pp. 6438-6453.
IEEE DOI
2209
Semantics, Mathematical model, Machine learning, Random variables,
Manifolds, Machine learning algorithms, Prediction algorithms,
generative models
BibRef
Xie, J.H.[Jia-Hao],
Zhan, X.H.[Xiao-Hang],
Liu, Z.W.[Zi-Wei],
Ong, Y.S.[Yew-Soon],
Loy, C.C.[Chen Change],
Delving into Inter-Image Invariance for Unsupervised Visual
Representations,
IJCV(130), No. 12, December 2022, pp. 2994-3013.
Springer DOI
2211
Code, Learning.
WWW Link.
BibRef
Hsu, H.[Hsiang],
Salamatian, S.[Salman],
Calmon, F.P.[Flavio P.],
Generalizing Correspondence Analysis for Applications in Machine
Learning,
PAMI(44), No. 12, December 2022, pp. 9347-9362.
IEEE DOI
2212
Correlation, Random variables, Data visualization,
Principal component analysis, Kernel, Optimization, Hilbert space,
multi-modal learning
BibRef
Valdes, G.[Gilmer],
Friedman, J.H.[Jerome H.],
Jiang, F.[Fei],
Gennatas, E.D.[Efstathios D.],
Representational Gradient Boosting:
Backpropagation in the Space of Functions,
PAMI(44), No. 12, December 2022, pp. 10186-10195.
IEEE DOI
2212
Boosting, Prediction algorithms, Backpropagation, Convolution,
Stacking, Predictive models, Machine learning algorithms, neural networks
BibRef
Valdes, G.[Gilmer],
Interian, Y.[Yannet],
Gennatas, E.D.[Efstathios D.],
van der Laan, M.[Mark],
The Conditional Super Learner,
PAMI(44), No. 12, December 2022, pp. 10236-10243.
IEEE DOI
2212
Libraries, Mathematical models, Training data,
Machine learning algorithms, Stacking, Partitioning algorithms,
nonparametric hierarchical models
BibRef
Ling, Z.L.[Zhao-Long],
Yu, K.[Kui],
Zhang, Y.W.[Yi-Wen],
Liu, L.[Lin],
Li, J.[Jiuyong],
Causal learner: A toolbox for causal structure and Markov blanket
learning,
PRL(163), 2022, pp. 92-95.
Elsevier DOI
2212
WWW Link. Causal structure learning, Markov blanket, Bayesian network
BibRef
Hao, F.[Fei],
Gong, Y.Q.[Yan-Qi],
Yu, W.[Wangyang],
Loia, V.[Vincenzo],
Knowledge points navigation based on three-way concept lattice for
autonomous learning,
PRL(163), 2022, pp. 96-103.
Elsevier DOI
2212
Autonomous learning, Three-way concept lattice, Formal context,
Knowledge points navigation
BibRef
Lefebvre, T.[Tom],
Information-theoretic policy learning from partial observations with
fully informed decision makers,
PRL(164), 2022, pp. 81-88.
Elsevier DOI
2212
Information-theory, Hidden Markov models, Bayesian methods,
Imitation learning, Markov decision processes
BibRef
Ermolov, A.[Aleksandr],
Sangineto, E.[Enver],
Sebe, N.[Nicu],
Temporal Alignment for History Representation in Reinforcement
Learning,
ICPR22(2172-2178)
IEEE DOI
2212
Representation learning, Visualization, Source coding, Games,
Reinforcement learning, Benchmark testing, Streaming media
BibRef
Lin, W.Y.[Wen-Yan],
Liu, S.Y.[Si-Ying],
Dai, B.T.[Bing Tian],
Li, H.D.[Hong-Dong],
Distance Based Image Classification:
A solution to generative classification's conundrum?,
IJCV(131), No. 1, January 2023, pp. 177-198.
Springer DOI
2301
See also Shell Theory: A Statistical Model of Reality.
BibRef
Pan, Y.[Yigong],
Tang, K.[Ke],
Sun, G.Z.[Guang-Zhong],
Theoretical guarantee for crowdsourcing learning with unsure option,
PR(137), 2023, pp. 109316.
Elsevier DOI
2302
Machine learning, Crowdsourcing learning, Labeling
BibRef
Zhou, X.C.[Xing-Cai],
Chang, L.[Le],
Xu, P.F.[Peng-Fei],
Lv, S.[Shaogao],
Communication-efficient and Byzantine-robust distributed learning
with statistical guarantee,
PR(137), 2023, pp. 109312.
Elsevier DOI
2302
Distributed learning, Byzantine failure,
Communication efficiency, Surrogate likelihood, Proximal algorithm
BibRef
Lam, F.[Fan],
Peng, X.[Xi],
Liang, Z.P.[Zhi-Pei],
High-Dimensional MR Spatiospectral Imaging by Integrating
Physics-Based Modeling and Data-Driven Machine Learning:
Current progress and future directions,
SPMag(40), No. 2, March 2023, pp. 101-115.
IEEE DOI
2303
Systematics, Biological system modeling, Pathological processes,
Imaging, Magnetic resonance, Machine learning, Mathematical models,
Spectral analysis
BibRef
Shi, J.J.[Jin-Jing],
Wang, W.X.[Wen-Xuan],
Lou, X.P.[Xiao-Ping],
Zhang, S.C.[Shi-Chao],
Li, X.L.[Xue-Long],
Parameterized Hamiltonian Learning With Quantum Circuit,
PAMI(45), No. 5, May 2023, pp. 6086-6095.
IEEE DOI
2304
Quantum computing, Quantum circuit, Quantum system, Computers,
Logic gates, Image segmentation, Quantum state,
image segmentation
BibRef
Wang, X.K.[Xiao-Kang],
Lu, S.[Shan],
Zhou, R.[Rui],
Wang, H.[Huiwen],
Skeleton estimation of directed acyclic graphs using partial least
squares from correlated data,
PR(139), 2023, pp. 109460.
Elsevier DOI
2304
Directed acyclic graph, partial least squares,
hierarchical clustering, sparse learning
BibRef
Ding, S.F.[Shi-Fei],
Du, W.[Wei],
Ding, L.[Ling],
Guo, L.[Lili],
Zhang, J.[Jian],
An, B.[Bo],
Multi-agent dueling Q-learning with mean field and value
decomposition,
PR(139), 2023, pp. 109436.
Elsevier DOI
2304
Multi-agent, value decomposition,
mixed cooperative-competitive task, mean filed
BibRef
Kong, H.[He],
Wang, L.M.[Li-Min],
Flexible model weighting for one-dependence estimators based on
point-wise independence analysis,
PR(139), 2023, pp. 109473.
Elsevier DOI
2304
Point-wise independence analysis, Independence assumption,
Point-wise log likelihood, Weighted one-dependence estimators
BibRef
Zhang, H.W.[Hong-Wei],
Ye, X.Y.[Xiao-Yu],
Hu, Q.[Qi],
Spatiotemporal Learning via Mixture Importance Gaussian Filtering
With Sparse Regularization,
SPLetters(30), 2023, pp. 279-283.
IEEE DOI
2304
Extraterrestrial measurements, Spatiotemporal phenomena,
Estimation, Noise measurement, Uncertainty, constraint uncertainty
BibRef
Jegorova, M.[Marija],
Kaul, C.[Chaitanya],
Mayor, C.[Charlie],
O'Neil, A.Q.[Alison Q.],
Weir, A.[Alexander],
Murray-Smith, R.[Roderick],
Tsaftaris, S.A.[Sotirios A.],
Survey: Leakage and Privacy at Inference Time,
PAMI(45), No. 7, July 2023, pp. 9090-9108.
IEEE DOI
2306
Data models, Data privacy, Task analysis, Training,
Computational modeling, Training data, Glass box, Data leakage,
adversarial defences
BibRef
Fu, C.[Cui],
Zhou, S.S.[Shui-Sheng],
Chen, Y.[Yuxue],
Chen, L.[Li],
Han, B.[Banghe],
A risk-averse learning machine via variance-dependent penalization,
PRL(171), 2023, pp. 116-123.
Elsevier DOI
2306
Hoeffding's inequality, Empirical Bernstein bound,
Sample variance penalization, Standard deviation, Newton algorithms
BibRef
Freitas, S.[Sergio],
Laber, E.[Eduardo],
Lazera, P.[Pedro],
Molinaro, M.[Marco],
Time-constrained learning,
PR(142), 2023, pp. 109672.
Elsevier DOI
2307
Machine teaching, Time-constrained learning, Classification methods
BibRef
Mohr, F.[Felix],
van Rijn, J.N.[Jan N.],
Fast and Informative Model Selection Using Learning Curve
Cross-Validation,
PAMI(45), No. 8, August 2023, pp. 9669-9680.
IEEE DOI
2307
Validation of the learned results, more efficient.
Data models, Training, Predictive models, Computational modeling,
Machine learning, Runtime, Prediction algorithms, Decision making,
supervised machine learning
BibRef
Cao, X.F.[Xiao-Feng],
Liu, W.Y.[Wei-Yang],
Tsang, I.W.[Ivor W.],
Data-Efficient Learning via Minimizing Hyperspherical Energy,
PAMI(45), No. 11, November 2023, pp. 13422-13437.
IEEE DOI
2310
BibRef
Li, Z.B.[Zhi-Bin],
Koniusz, P.[Piotr],
Zhang, L.[Lu],
Pagendam, D.E.[Daniel Edward],
Moghadam, P.[Peyman],
Exploiting Field Dependencies for Learning on Categorical Data,
PAMI(45), No. 11, November 2023, pp. 13509-13522.
IEEE DOI
2310
dependencise between fields, not just embedding of data points.
BibRef
Achituve, I.[Idan],
Wang, W.B.[Wen-Bo],
Fetaya, E.[Ethan],
Leshem, A.[Amir],
Communication Efficient Distributed Learning Over Wireless Channels,
SPLetters(30), 2023, pp. 1402-1406.
IEEE DOI
2310
BibRef
Fu, S.[Saiji],
Dong, T.Y.[Tian-Yi],
Wang, Z.X.[Zhao-Xin],
Tian, Y.J.[Ying-Jie],
Weakly privileged learning with knowledge extraction,
PR(153), 2024, pp. 110517.
Elsevier DOI
2405
Learning using privileged information (LUPI),
Weakly privileged learning, Knowledge extraction, Classification
BibRef
Li, T.[Tao],
Meng, C.[Cheng],
Xu, H.T.[Hong-Teng],
Yu, J.[Jun],
Hilbert Curve Projection Distance for Distribution Comparison,
PAMI(46), No. 7, July 2024, pp. 4993-5007.
IEEE DOI
2406
Task analysis, Data models, Probability distribution, Couplings,
Costs, Computational modeling, Big Data, Distribution comparison,
projection robust Wasserstein distance
BibRef
Gao, Y.[Yi],
Xu, M.[Miao],
Zhang, M.L.[Min-Ling],
Complementary to Multiple Labels:
A Correlation-Aware Correction Approach,
PAMI(46), No. 12, December 2024, pp. 9179-9191.
IEEE DOI
2411
Correlation, Matrix decomposition, Training, Vectors,
Noise measurement, Semantics, Reviews, transition matrix
BibRef
Wang, X.[Xin],
Chen, H.[Hong],
Tang, S.[Si'ao],
Wu, Z.[Zihao],
Zhu, W.W.[Wen-Wu],
Disentangled Representation Learning,
PAMI(46), No. 12, December 2024, pp. 9677-9696.
IEEE DOI
2411
Image color analysis, Task analysis, Semantics, Shape, Data models,
Computational modeling, disentangled representation learning,
representation learning
BibRef
Qu, B.[Bohao],
Cao, X.F.[Xiao-Feng],
Chang, Y.[Yi],
Tsang, I.W.[Ivor W.],
Ong, Y.S.[Yew-Soon],
Diversifying Policies With Non-Markov Dispersion to Expand the
Solution Space,
PAMI(46), No. 12, December 2024, pp. 11392-11408.
IEEE DOI
2411
Dispersion, Trajectory, Transformers, Reinforcement learning, Logic,
Standards, Markov decision processes, solution space
BibRef
Miani, M.[Marco],
Parton, M.[Maurizio],
Romito, M.[Marco],
Curious Explorer: A Provable Exploration Strategy in Policy Learning,
PAMI(46), No. 12, December 2024, pp. 11422-11431.
IEEE DOI
2411
Picture archiving and communication systems, Optimization,
Mathematical models, Iterative methods, Bayes methods,
reinforcement learning
BibRef
Zahrae, F.F.[Fatouchi Fatima],
Es-Sâadia, A.[Aoula],
Mohamed, Y.[Youssfi],
Artificial Intelligence Implementation in Virtual Learning
Environment: An Overview,
ISCV24(1-6)
IEEE DOI
2408
Deep learning, Electronic learning, Pandemics, Reviews, Globalization,
Virtual environments, Artificial intelligent, Adaptative learning
BibRef
Lu, Y.Z.[Yu-Zhe],
Liu, X.R.[Xin-Ran],
Soltoggio, A.[Andrea],
Kolouri, S.[Soheil],
SLoSH: Set Locality Sensitive Hashing via Sliced-Wasserstein
Embeddings,
WACV24(2554-2564)
IEEE DOI
2404
Point cloud compression, Codes, Sensitivity analysis,
Parallel processing, Nearest neighbor methods, Vectors, Algorithms
BibRef
Zhang, J.H.[Jia-Hao],
Wang, B.[Bowen],
Li, L.Z.[Liang-Zhi],
Nakashima, Y.[Yuta],
Nagahara, H.[Hajime],
Instruct Me More! Random Prompting for Visual In-Context Learning,
WACV24(2585-2594)
IEEE DOI Code:
WWW Link.
2404
Technique from natural language processing.
Training, Visualization, Computational modeling,
Perturbation methods, Object detection, Interference, Algorithms,
Image recognition and understanding
BibRef
Wen, C.S.[Chang-Song],
Zhang, X.[Xin],
Yao, X.X.[Xing-Xu],
Yang, J.F.[Ju-Feng],
Ordinal Label Distribution Learning,
ICCV23(23424-23434)
IEEE DOI Code:
WWW Link.
2401
BibRef
Cui, J.L.[Jia-Li],
Wu, Y.N.[Ying Nian],
Han, T.[Tian],
Learning Joint Latent Space EBM Prior Model for Multi-layer Generator,
CVPR23(3603-3612)
IEEE DOI
2309
BibRef
Ai, H.[Hao],
Liao, Q.M.[Qing-Min],
Chen, Y.Y.[Yi-Yun],
Qian, J.[Jiang],
Gaussian Mixture Distribution Makes Data Uncertainty Learning Better,
FG21(01-08)
IEEE DOI
2303
Learning systems, Interference suppression, Uncertainty,
Face recognition, Estimation, Benchmark testing
BibRef
Sahu, P.[Pritish],
Basioti, K.[Kalliopi],
Pavlovic, V.[Vladimir],
DAReN: A Collaborative Approach Towards Visual Reasoning And
Disentangling,
ICPR22(4448-4455)
IEEE DOI
2212
Measurement, Visualization, Correlation, Graphical models,
Collaboration, Benchmark testing, Cognition
BibRef
Roychowdhury, S.,
Sontakke, S.A.,
Itti, L.,
Sarkar, M.,
Aggarwal, M.,
Badjatiya, P.,
Puri, N.,
Krishnamurthy, B.,
SHERLock: Self-Supervised Hierarchical Event Representation Learning,
ICPR22(2672-2678)
IEEE DOI
2212
Training, Representation learning, Visualization, Grounding,
Video sequences, Tutorials, Reinforcement learning
BibRef
Ramasinghe, S.[Sameera],
Lucey, S.[Simon],
Beyond Periodicity: Towards a Unifying Framework for Activations in
Coordinate-MLPs,
ECCV22(XXXIII:142-158).
Springer DOI
2211
BibRef
He, Y.N.[Yi-Nan],
Huang, G.S.[Geng-Shi],
Chen, S.[Siyu],
Teng, J.N.[Jia-Ning],
Wang, K.[Kun],
Yin, Z.F.[Zhen-Fei],
Sheng, L.[Lu],
Liu, Z.W.[Zi-Wei],
Qiao, Y.[Yu],
Shao, J.[Jing],
X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation,
ECCV22(XXVI:509-528).
Springer DOI
2211
BibRef
Kondapaneni, N.[Neehar],
Perona, P.[Pietro],
Aodha, O.M.[Oisin Mac],
Visual Knowledge Tracing,
ECCV22(XXV:415-431).
Springer DOI
2211
Evaluation and datasets for how people learn new categorization tasks.
BibRef
Zhang, D.J.H.[David Jun-Hao],
Li, K.[Kunchang],
Wang, Y.[Yali],
Chen, Y.P.[Yun-Peng],
Chandra, S.[Shashwat],
Qiao, Y.[Yu],
Liu, L.Q.[Luo-Qi],
Shou, M.Z.[Mike Zheng],
MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal
Representation Learning,
ECCV22(XXXV:230-248).
Springer DOI
2211
BibRef
Xiong, Y.H.[Yuan-Hao],
Hsieh, C.J.[Cho-Jui],
Learning to Learn with Smooth Regularization,
ECCV22(XXIII:550-565).
Springer DOI
2211
BibRef
Kim, K.I.[Kwang In],
Robust Combination of Distributed Gradients Under Adversarial
Perturbations,
CVPR22(254-263)
IEEE DOI
2210
Manifolds, Computer aided instruction, Privacy,
Machine learning algorithms, Distance learning,
Privacy and federated learning
BibRef
Chen, X.L.[Xin-Lei],
He, K.M.[Kai-Ming],
Exploring Simple Siamese Representation Learning,
CVPR21(15745-15753)
IEEE DOI
2111
Maximize the similarity between two augmentations of one image.
Visualization, Codes, Shape, Computational modeling, Tools
BibRef
Yan, S.[Sijie],
Xiong, Y.J.[Yuan-Jun],
Kundu, K.[Kaustav],
Yang, S.[Shuo],
Deng, S.Q.[Si-Qi],
Wang, M.[Meng],
Xia, W.[Wei],
Soatto, S.[Stefano],
Positive-Congruent Training: Towards Regression-Free Model Updates,
CVPR21(14294-14303)
IEEE DOI
2111
Training, Deep learning, Error analysis,
Computational modeling, Predictive models
BibRef
Epstein, D.[Dave],
Vondrick, C.[Carl],
Learning Goals from Failure,
CVPR21(11189-11199)
IEEE DOI
2111
Visualization, Psychology, Predictive models,
Encoding, Trajectory
BibRef
Sarfraz, F.[Fahad],
Arani, E.[Elahe],
Zonooz, B.[Bahram],
Noisy Concurrent Training for Efficient Learning under Label Noise,
WACV21(3158-3167)
IEEE DOI
2106
Training, Filtering, Buildings, Supervised learning,
Fitting, Brain modeling
BibRef
Pranavan, T.[Theivendiram],
Sim, T.[Terence],
Learning with Delayed Feedback,
ICPR21(4895-4902)
IEEE DOI
2105
Image segmentation, Impedance matching, Semantics,
Machine learning, Task analysis
BibRef
Guo, X.F.[Xi-Feng],
Liu, J.Y.[Ji-Yuan],
Zhou, S.H.[Si-Hang],
Zhu, E.[En],
Dong, S.H.[Shi-Hao],
Image Representation Learning by Transformation Regression,
ICPR21(526-533)
IEEE DOI
2105
Training, Image edge detection, Machine learning,
Image representation, Predictive models, Jitter
BibRef
Eldeeb, H.[Hassan],
Amashukeli, S.[Shota],
El Shawi, R.[Radwa],
An Empirical Analysis of Integrating Feature Extraction to Automated
Machine Learning Pipeline,
HCAU20(336-344).
Springer DOI
2103
BibRef
Yang, Y.,
Zhu, D.,
Ren, F.,
Cheng, C.,
A Novel Self-taught Learning Framework Using Spatial Pyramid Matching
For Scene Classification,
ISPRS20(B2:725-729).
DOI Link
2012
BibRef
Henke, K.,
Kenyon, G.T.,
Migliori, B.,
Machine Learning in a Post Moore's Law World:
Quantum vs. Neuromorphic Substrates,
SSIAI20(74-77)
IEEE DOI
2009
competitive algorithms, graph theory,
learning (artificial intelligence), neuromorphic engineering,
sparse coding
BibRef
Liu, J.X.[Jin-Xian],
Ni, B.B.[Bing-Bing],
Li, C.Y.[Cai-Yuan],
Yang, J.C.[Jian-Cheng],
Tian, Q.[Qi],
Dynamic Points Agglomeration for Hierarchical Point Sets Learning,
ICCV19(7545-7554)
IEEE DOI
2004
convolutional neural nets, learning (artificial intelligence),
mathematics computing, pattern classification,
Machine learning
BibRef
Zhou, L.J.[Lin-Jun],
Cui, P.[Peng],
Yang, S.Q.[Shi-Qiang],
Zhu, W.W.[Wen-Wu],
Tian, Q.[Qi],
Learning to Learn Image Classifiers With Visual Analogy,
CVPR19(11489-11498).
IEEE DOI
2002
Especially by analogy.
BibRef
Tian, K.[Kai],
Xu, Y.[Yi],
Zhou, S.G.[Shui-Geng],
Guan, J.H.[Ji-Hong],
Versatile Multiple Choice Learning and Its Application to Vision
Computing,
CVPR19(6342-6350).
IEEE DOI
2002
BibRef
Wu, Y.[Yue],
Chen, Y.P.[Yin-Peng],
Wang, L.J.[Li-Juan],
Ye, Y.C.[Yuan-Cheng],
Liu, Z.C.[Zi-Cheng],
Guo, Y.D.[Yan-Dong],
Fu, Y.[Yun],
Large Scale Incremental Learning,
CVPR19(374-382).
IEEE DOI
2002
BibRef
Elhoseiny, M.[Mohamed],
Babiloni, F.[Francesca],
Aljundi, R.[Rahaf],
Rohrbach, M.[Marcus],
Paluri, M.[Manohar],
Tuytelaars, T.[Tinne],
Exploring the Challenges Towards Lifelong Fact Learning,
ACCV18(VI:66-84).
Springer DOI
1906
BibRef
Faria, F.A.[Fabio Augusto],
Sarkar, S.[Sudeep],
A Graph-based Approach for Static Ensemble Selection in Remote
Sensing Image Analysis,
ICPR18(344-349)
IEEE DOI
1812
Support vector machines, Remote sensing, Gases, Task analysis,
Agriculture, Bagging, Computer architecture
BibRef
Guo, M.[Michelle],
Haque, A.[Albert],
Huang, D.A.[De-An],
Yeung, S.[Serena],
Fei-Fei, L.[Li],
Dynamic Task Prioritization for Multitask Learning,
ECCV18(XVI: 282-299).
Springer DOI
1810
BibRef
Rupprecht, C.,
Laina, I.,
di Pietro, R.,
Baust, M.,
Learning in an Uncertain World:
Representing Ambiguity Through Multiple Hypotheses,
ICCV17(3611-3620)
IEEE DOI
1802
image classification, learning (artificial intelligence),
object detection, pose estimation, regression analysis, MHP models,
Uncertainty
BibRef
Doersch, C.[Carl],
Zisserman, A.,
Multi-task Self-Supervised Visual Learning,
ICCV17(2070-2079)
IEEE DOI
1802
image classification, image representation,
learning (artificial intelligence), object detection,
Training
BibRef
Goyal, P.[Priya],
Mahajan, D.[Dhruv],
Gupta, A.[Abhinav],
Misra, I.[Ishan],
Scaling and Benchmarking Self-Supervised Visual Representation
Learning,
ICCV19(6390-6399)
IEEE DOI
2004
Code, Learning.
WWW Link. image representation, object detection,
supervised learning, self-supervised learning,
Navigation
BibRef
Wang, X.L.[Xiao-Long],
He, K.M.[Kai-Ming],
Gupta, A.[Abhinav],
Transitive Invariance for Self-Supervised Visual Representation
Learning,
ICCV17(1338-1347)
IEEE DOI
1802
image classification, image representation,
learning (artificial intelligence), object detection,
Visualization
BibRef
Adam, N.L.[Noor Latiffah],
Alzahri, F.B.[Fatin Balkis],
Soh, S.C.[Shaharuddin Cik],
Bakar, N.A.[Nordin Abu],
Kamal, N.A.M.[Nor Ashikin Mohamad],
Self-Regulated Learning and Online Learning: A Systematic Review,
IVIC17(143-154).
Springer DOI
1711
BibRef
Ramicic, M.[Mirza],
Bonarini, A.[Andrea],
Entropy-based prioritized sampling in Deep Q-learning,
ICIVC17(1068-1072)
IEEE DOI
1708
Entropy, Markov decision processes, entropy, neural networks,
reinforcement learning
BibRef
Cuevas, J.S.[Jonathan Serrano],
Manzanares, E.M.[Eduardo Morales],
An Exploration Strategy for RL with Considerations of Budget and Risk,
MCPR17(105-116).
Springer DOI
1706
Reinforcement Learning
BibRef
Zhang, C.[Cheng],
Kjellström, H.[Hedvig],
Ek, C.H.[Carl Henrik],
Inter-battery Topic Representation Learning,
ECCV16(VIII: 210-226).
Springer DOI
1611
BibRef
Earlier: A1, A2, Only:
How to Supervise Topic Models,
GMCV14(500-515).
Springer DOI
1504
supervised topic models using Supervised Latent Dirichlet Allocation
BibRef
Li, C.S.[Chang-Sheng],
Yang, L.[Lin],
Liu, Q.S.[Qing-Shan],
Meng, F.J.[Fan-Jing],
Dong, W.S.[Wei-Shan],
Wang, Y.[Yu],
Xu, J.M.[Jing-Min],
Multiple-Output Regression with High-Order Structure Information,
ICPR14(3868-3873)
IEEE DOI
1412
Correlation
BibRef
Wang, Z.H.[Zi-Heng],
Wang, X.Y.[Xiao-Yang],
Ji, Q.A.[Qi-Ang],
Learning with Hidden Information,
ICPR14(238-243)
IEEE DOI
1412
Equations
BibRef
Aodha, O.M.[Oisin Mac],
Stathopoulos, V.[Vassilios],
Brostow, G.J.[Gabriel J.],
Terry, M.[Michael],
Girolami, M.[Mark],
Jones, K.E.[Kate E.],
Putting the Scientist in the Loop:
Accelerating Scientific Progress with Interactive Machine Learning,
ICPR14(9-17)
IEEE DOI
1412
Biological system modeling
BibRef
Grenier, P.A.[Pierre-Anthony],
Brun, L.[Luc],
Villemin, D.[Didier],
A Graph Kernel Incorporating Molecule's Stereisomerism Information,
ICPR14(631-636)
IEEE DOI
1412
BibRef
Earlier:
Incorporating Molecule's Stereisomerism within the Machine Learning
Framework,
SSSPR14(12-21).
Springer DOI
1408
Adaptive optics
BibRef
Pahikkala, T.[Tapio],
Fast Gradient Computation for Learning with Tensor Product Kernels and
Sparse Training Labels,
SSSPR14(123-132).
Springer DOI
1408
BibRef
Orozco-Alzate, M.[Mauricio],
Duin, R.P.W.[Robert P. W.],
Bicego, M.[Manuele],
Unsupervised Parameter Estimation of Non Linear Scaling for Improved
Classification in the Dissimilarity Space,
SSSPR16(74-83).
Springer DOI
1611
BibRef
Plasencia-Calaña, Y.[Yenisel],
Orozco-Alzate, M.[Mauricio],
García-Reyes, E.B.[Edel B.],
Duin, R.P.W.[Robert P.W.],
Towards Cluster-Based Prototype Sets for Classification in the
Dissimilarity Space,
CIARP13(I:294-301).
Springer DOI
1311
BibRef
Earlier: A1, A3, A4, A2:
On Using Asymmetry Information for Classification in Extended
Dissimilarity Spaces,
CIARP12(503-510).
Springer DOI
1209
BibRef
Duin, R.P.W.[Robert P. W.],
Bicego, M.[Manuele],
Orozco-Alzate, M.[Mauricio],
Kim, S.W.[Sang-Woon],
Loog, M.[Marco],
Metric Learning in Dissimilarity Space for Improved Nearest Neighbor
Performance,
SSSPR14(183-192).
Springer DOI
1408
BibRef
Zhao, Y.[Yue],
Yang, G.S.[Guo-Sheng],
Xu, X.N.[Xiao-Na],
Ji, Q.A.[Qi-Ang],
A near-optimal non-myopic active learning method,
ICPR12(1715-1718).
WWW Link.
1302
BibRef
Blaschko, M.B.[Matthew B.],
Mittal, A.[Arpit],
Rahtu, E.[Esa],
An O(nlogn) Cutting Plane Algorithm for Structured Output Ranking,
GCPR14(132-143).
Springer DOI
1411
BibRef
Mittal, A.[Arpit],
Blaschko, M.B.[Matthew B.],
Zisserman, A.[Andrew],
Torr, P.H.S.[Philip H. S.],
Taxonomic Multi-class Prediction and Person Layout Using Efficient
Structured Ranking,
ECCV12(II: 245-258).
Springer DOI
1210
BibRef
Park, K.[Kyoungup],
Gould, S.[Stephen],
On Learning Higher-Order Consistency Potentials for Multi-class Pixel
Labeling,
ECCV12(II: 202-215).
Springer DOI
1210
BibRef
Armando, C.S.E.[Catalán-Salgado Edgar],
Cornelio, Y.M.[Yáñez-Márquez],
Jesus, F.N.[Figueroa-Nazuno],
Significative Learning Using Alpha-beta Associative Memories,
CIARP12(535-542).
Springer DOI
1209
BibRef
Chen, L.[Lin],
Duan, L.X.[Li-Xin],
Tsang, I.W.H.[Ivor W.H.],
Xu, D.[Dong],
Efficient Discriminative Learning of Class Hierarchy for Many Class
Prediction,
ACCV12(I:274-288).
Springer DOI
1304
BibRef
Bonneau, R.J.[Robert J.],
Bonneau, S.G.[Sonya G.],
Sparse linearized iterative coherence estimation (SLICE) and risk
assessment in image analysis,
AIPR11(1-7).
IEEE DOI
1204
Learning.
BibRef
Pankov, S.[Sergey],
Learning Image Transformations without Training Examples,
ISVC11(II: 168-179).
Springer DOI
1109
Learning affine and elastic transformations when no examples are given.
BibRef
Millán-Giraldo, M.[Mónica],
Traver, V.J.[Vicente Javier],
Sánchez, J.S.[J. Salvador],
On-Line Classification of Data Streams with Missing Values Based on
Reinforcement Learning,
IbPRIA11(355-362).
Springer DOI
1106
BibRef
Du, R.[Ruo],
Wu, Q.A.[Qi-Ang],
He, X.J.[Xiang-Jian],
Yang, J.[Jie],
Object Categorization Based on a Supervised Mean Shift Algorithm,
ECCVDemos12(III: 611-614).
Springer DOI
1210
BibRef
Engel, P.M.[Paulo Martins],
Heinen, M.R.[Milton Roberto],
Concept Formation Using Incremental Gaussian Mixture Models,
CIARP10(128-135).
Springer DOI
1011
Apply to sonar data streams to learn concepts such as wall, and curve.
BibRef
Amores, J.[Jaume],
Vocabulary-Based Approaches for Multiple-Instance Data:
A Comparative Study,
ICPR10(4246-4250).
IEEE DOI
1008
BibRef
Jia, K.[Ke],
Cheng, L.[Li],
Liu, N.J.[Nian-Jun],
Wang, L.[Lei],
Efficient Learning to Label Images,
ICPR10(942-945).
IEEE DOI
1008
BibRef
Li, C.G.[Chun-Guang],
Guo, J.[Jun],
Zhang, H.G.[Hong-Gang],
Local Sparse Representation Based Classification,
ICPR10(649-652).
IEEE DOI
1008
Sparse decomposition in local areas.
BibRef
Wójcik, K.[Krzysztof],
Inductive Learning Methods in the Simple Image Understanding System,
ICCVG10(I: 97-104).
Springer DOI
1009
BibRef
Rottmann, A.[Axel],
Burgard, W.[Wolfram],
Learning Non-stationary System Dynamics Online Using Gaussian Processes,
DAGM10(192-201).
Springer DOI
1009
BibRef
Wolf, L.B.[Lior B.],
Manor, N.[Nathan],
Visual recognition using mappings that replicate margins,
CVPR10(810-816).
IEEE DOI
1006
Learning the map between vector spaces given a pair of matches. Asymmetric
case, one more informative than the other.
BibRef
Siddiquie, B.[Behjat],
Gupta, A.[Abhinav],
Beyond active noun tagging:
Modeling contextual interactions for multi-class active learning,
CVPR10(2979-2986).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Lin, Y.Y.[Yen-Yu],
Tsai, J.F.[Jyun-Fan],
Liu, T.L.[Tyng-Luh],
Efficient discriminative local learning for object recognition,
ICCV09(598-605).
IEEE DOI
0909
BibRef
Gupta, A.[Abhinav],
Shi, J.B.,
Davis, L.S.[Larry S.],
A 'shape aware' model for semi-supervised learning
of objects and its context,
NIPS08(xx-yy).
BibRef
0800
Armstrong, A.,
Bock, P.,
Using Tactic-Based Learning (formerly Mentoring) to Accelerate Recovery
of an Adaptive Learning System in a Changing Environment,
AIPR07(31-36).
IEEE DOI
0710
BibRef
Gabrys, B.[Bogdan],
Learning with Missing or Incomplete Data,
CIAP09(1-4).
Springer DOI
0909
BibRef
Matwin, S.[Stan],
Image Analysis and Machine Learning:
How to Foster a Stronger Connection?,
CIAP09(5).
Springer DOI
0909
BibRef
Ni, K.S.[Karl S.],
Nguyen, T.Q.[Truong Q.],
A model for image patch-based algorithms,
ICIP08(2588-2591).
IEEE DOI
0810
learning features based on fixed size image patches.
BibRef
Leopold, T.,
Kern-Isberner, G.,
Peters, G.[Georg],
Combining Reinforcement Learning and Belief Revision:
A Learning System for Active Vision,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Domke, J.[Justin],
Karapurkar, A.[Alap],
Aloimonos, Y.F.[Yi-Fannis],
Who killed the directed model?,
CVPR08(1-8).
IEEE DOI
0806
MRF (an undirected model) has become popular. Learning can be expensive.
Directed models require ordering variables. Learning is relatively simple.
Applied to inpainting.
BibRef
Nomiya, H.[Hiroki],
Uehara, K.[Kuniaki],
Multistrategical Approach in Visual Learning,
ACCV07(I: 502-511).
Springer DOI
0711
BibRef
Zheng, Y.[Yu],
Luo, S.W.[Si-Wei],
Lv, Z.[Ziang],
Control Double Inverted Pendulum by Reinforcement Learning with Double
CMAC Network,
ICPR06(IV: 639-642).
IEEE DOI
0609
BibRef
Autio, I.[Ilkka],
Lindgren, J.T.,
Online Learning of Discriminative Patterns from Unlimited Sequences of
Candidates,
ICPR06(II: 437-440).
IEEE DOI
0609
BibRef
Maree, R.[Raphael],
Stevens, B.[Benjamin],
Geurts, P.[Pierre],
Guern, Y.[Yves],
Mack, P.[Philippe],
A machine learning approach for material detection in hyperspectral
images,
OTCBVS09(106-111).
IEEE DOI
0906
BibRef
Ernst, D.[Damien],
Marée, R.[Raphaël],
Wehenkel, L.[Louis],
Reinforcement Learning with Raw Image Pixels as Input State,
IWICPAS06(446-454).
Springer DOI
0608
BibRef
Laven, K.,
Leishman, S.,
Roweis, S.,
A statistical learning approach to document image analysis,
ICDAR05(I: 357-361).
IEEE DOI
0508
BibRef
Mulligan, J.,
Grudic, G.,
Topological Mapping from Image Sequences,
LCV05(III: 43-43).
IEEE DOI
0507
BibRef
Xiong, H.L.[Hui-Lin],
Swamy, M.N.S.,
Ahmad, M.O.,
Learning with the Optimized Data-Dependent Kernel,
LCV04(95).
IEEE DOI
0406
BibRef
Li, Y.[Yi],
Shapiro, L.G.[Linda G.],
Bilmes, J.A.[Jeff A.],
A Generative/Discriminative Learning Algorithm for Image Classification,
ICCV05(II: 1605-1612).
IEEE DOI
0510
BibRef
Leitner, R.[Raimund],
Learning 3D Object Recognition from an Unlabelled and Unordered
Training Set,
ISVC07(I: 644-651).
Springer DOI
0711
BibRef
Leitner, R.[Raimund],
Bischof, H.[Horst],
Recognition of 3D Objects by Learning from Correspondences in a
Sequence of Unlabeled Training Images,
DAGM05(369).
Springer DOI
0509
BibRef
Muñoz, X.[Xavier],
Bosch, A.[Anna],
Martí, J.[Joan],
Espunya, J.[Joan],
A Learning Framework for Object Recognition on Image Understanding,
IbPRIA05(II:311).
Springer DOI
0509
BibRef
Bekel, H.[Holger],
Bax, I.[Ingo],
Heidemann, G.[Gunther],
Ritter, H.[Helge],
Adaptive Computer Vision: Online Learning for Object Recognition,
DAGM04(447-454).
Springer DOI
0505
BibRef
Qin, A.K.,
Suganthan, P.N.,
A novel kernel prototype-based learning algorithm,
ICPR04(IV: 621-624).
IEEE DOI
0409
BibRef
Ko, J.[Jaepil],
Kim, E.[Eunju],
Byun, H.R.[Hye-Ran],
Improved N-division output coding for multiclass learning problems,
ICPR04(III: 470-473).
IEEE DOI
0409
BibRef
Leang, P.,
Bhanu, B.,
Learning integrated perception-based speed control,
ICPR04(I: 813-816).
IEEE DOI
0409
BibRef
Taylor, G.W.,
A reinforcement learning framework for parameter control in computer
vision applications,
CRV04(496-503).
IEEE DOI
0408
BibRef
Miasnikov, A.D.,
Rome, J.E.,
Haralick, R.M.,
A hierarchical projection pursuit clustering algorithm,
ICPR04(I: 268-271).
IEEE DOI
0409
BibRef
Shi, D.,
Ng, G.S.,
Gao, J.,
Yeung, D.S.,
Critical vector learning to construct RBF classifiers,
ICPR04(III: 359-362).
IEEE DOI
0409
BibRef
Eriksson, M.[Martin],
Carlsson, S.[Stefan],
Qualitative Characterization and Use of Prior Information,
SCIA03(792-799).
Springer DOI
0310
Model the set of possible events by algebraic inequalities. Learning
proceeds by selecting those inequalities that show a consistent sign
when applied to the training data set. The manifold of possible events
estimated in this way will in general represent the qualitative
properties of the events.
BibRef
Takamatsu, J.[Jun],
Improving State Based Analysis for Learning from Observation,
CREST03(227-241).
0309
BibRef
Kubota, S.,
Mizutani, H.,
Kurosawa, Y.,
A discriminative learning criterion for the overall optimization of
error and reject,
ICPR02(IV: 98-102).
IEEE DOI
0211
BibRef
Mizutani, H.[Hiroyuki],
Discriminative Learning for Minimum Error and Minimum Reject
Classification,
ICPR98(Vol I: 136-140).
IEEE DOI
9808
BibRef
Seok, J.[Jinwuk],
Lee, J.W.[Jeun-Woo],
The analysis of a stochastic differential approach for langevine
comepetitive learning algorithm,
ICPR02(II: 80-83).
IEEE DOI
0211
BibRef
Naphade, M.R.,
Frey, B.J.,
Chen, L.,
Huang, T.S.,
Learning Sparse Multiple Cause Models,
ICPR00(Vol II: 642-647).
IEEE DOI
0009
BibRef
Hong, P.,
Huang, T.S.,
Learning to Extract Temporal Signal Patterns from Temporal Signal
Sequence,
ICPR00(Vol II: 648-651).
IEEE DOI
0009
BibRef
Sato, A.[Atsushi],
A New Learning Formulation for Kernel Classifier Design,
ICPR10(2897-2900).
IEEE DOI
1008
BibRef
Sato, A.,
A Learning Method for Definite Canonicalization Based on Minimum
Classification Error,
ICPR00(Vol II: 199-202).
IEEE DOI
0009
BibRef
Hansen, J.V.,
Heskes, T.,
General Bias/Variance Decomposition with Target Independent Variance of
Error Functions Derived from the Exponential Family of Distributions,
ICPR00(Vol II: 207-210).
IEEE DOI
0009
BibRef
Jia, J.,
Abe, K.,
Clustering of Learning Images and Generation of
Multiple Prototypes for Object Recognition,
MVA98(xx-yy).
BibRef
9800
Kalkreuter, B.[Bjorn],
Büker, U.[Ulrich],
Learning in an Active Hybrid Vision System,
ICPR98(Vol I: 178-181).
IEEE DOI
9808
BibRef
Shekhar, C.[Chandra],
Burlina, P.[Philippe],
Moisan, S.[Sabine],
Design of Self-Tuning IU Systems,
DARPA97(529-536).
BibRef
9700
Takeuchi, Y.[Yutaka],
Gros, P.[Patric],
Hebert, M.[Martial],
Ikeuchi, K.[Katsushi],
Visual Learning for Landmark Recognition,
DARPA97(1467-1474).
BibRef
9700
Brooks, R.A.,
Grimson, W.E.L.,
Poggio, T.,
Koch, C.,
Sodini, C.,
Stein, L.,
Yang, W.,
A Trainable Modular Vision System,
DARPA97(1307-1314).
BibRef
9700
Teller, A.[Astro],
Veloso, M.[Manuela],
Evolutionary Learning for Orchestration of a Signal-to-Symbol Mapper,
DARPA97(1475-1482).
BibRef
9700
Borga, M.[Magnus],
Knutsson, H.[Hans], and
Landelinus, T.[Tomas],
Learning Canonical Correlations,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Chen, S.Y.[Shao-Yun], and
Weng, J.[John],
On-Line Incremental Learning for Vision-Guided Real-Time Navigation
Using Improved Updating,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Earlier: A2, A1:
Incremental Learning for Vision-Based Navigation,
ICPR96(IV: 45-49).
IEEE DOI
9608
(Michigan State Univ., USA)
BibRef
Chao, J.,
Nakayama, J.,
Cubical Singular Simplex Model for 3D Objects and
Fast Computation of Homology Groups,
ICPR96(IV: 190-194).
IEEE DOI
9608
(Chuo Univ., J)
BibRef
Zanardi, C.,
Herve, J.Y.,
Cohen, P.,
Mutual Learning of Unsupervised Interactions Between Mobile Robots,
ICPR96(IV: 40-44).
IEEE DOI
9608
(Ecole Polytechnique de Montreal, CDN)
BibRef
Burge, M.,
Mayr, W.,
Burger, W.,
Recognition and Learning With Polymorphic Structural Components,
ICPR96(I: 19-23).
IEEE DOI
9608
(Johannes Kepler Univ., A)
BibRef
Sajda, P.,
Spence, C.D.,
Pearson, J.D.,
Learning Image Context for Improved Computer-Aided Diagnosis,
ARPA96(1375-1380).
BibRef
9600
Zheng, Y.J.,
Bhanu, B.,
Adaptive Object Detection Based on Modified Hebbian Learning,
ICPR96(IV: 164-168).
IEEE DOI
9608
BibRef
And:
Performance Improvement by Input Adaption Using
Modified Hebbian Learning,
ARPA96(1381-1388).
(Univ. of California, Riverside, USA)
BibRef
Rong, S.,
Bhanu, B.,
Reinforcement Learning for Integrating Context with Clutter Models
for Target Detection,
ARPA96(1389-1394).
ATR.
BibRef
9600
Narenthiran, N.,
Boult, T.E.,
Color Channel Mixing in Learning from Appearance,
ARPA96(1455-1456).
BibRef
9600
Bhanu, B.[Bir], and
Dutta, R.[Rabi],
A Learning System for Consolidated Recognition and Motion Analysis,
ARPA94(I:773-776).
BibRef
9400
Khuller, S.[Samir],
Rivlin, E.[Ehud], and
Rosenfeld, A.[Azriel],
Learning to Navigate on a Graph,
ARPA94(I:789-795).
BibRef
9400
Jovanovic, L.,
Learning Algorithm Based on Modified Structure of Pattern Classes,
ICPR92(I:487-490).
IEEE DOI
BibRef
9200
Valev, V.,
Radeva, P.I.,
A method of solving pattern or image recognition problems by learning
Boolean formulas,
ICPR92(II:359-362).
IEEE DOI
9208
BibRef
Soloway, E.M.,
Riseman, E.M.,
Levels of Pattern Description in Learning,
IJCAI77(801-811).Cp
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Learning, General Non-Vision Learning Issues .