, V.N.V.[Vladimir N. Vapnik],
Statistical Learning Theory,
WileySeptember 1998.
ISBN: 978-0-471-03003-4
The source of the Support Vector Machine ideas.
BibRef
9809
Chen, S.,
Gunn, S.R.,
Harris, C.J.,
Decision feedback equaliser design using support vector machines,
VISP(147), No. 3, 2000, pp. 213-219.
0008
BibRef
Dhanjal, C.[Charanpal],
Gunn, S.R.[Steve R.],
Shawe-Taylor, J.[John],
Efficient Sparse Kernel Feature Extraction Based on Partial Least
Squares,
PAMI(31), No. 8, August 2009, pp. 1347-1361.
IEEE DOI
0906
Dealing with irrelevant features in classificaton.
BibRef
Drezet, P.M.L.[Pierre M.L.],
Harrison, R.F.[Robert F.],
A new method for sparsity control in support vector classification and
regression,
PR(34), No. 1, January 2001, pp. 111-125.
Elsevier DOI
0010
BibRef
Mangasarian, O.L.[Olvi L.],
Musicant, D.R.[David R.],
Robust Linear and Support Vector Regression,
PAMI(22), No. 9, September 2000, pp. 950-955.
IEEE DOI
0010
BibRef
Mangasarian, O.L.[Olvi L.],
Wild, E.W.[Edward W.],
Multisurface Proximal Support Vector Machine Classification via
Generalized Eigenvalues,
PAMI(28), No. 1, January 2006, pp. 69-74.
IEEE DOI
0512
BibRef
Pedroso, J.P.[João Pedro],
Murata, N.[Noboru],
Support Vector Machines with Different Norms:
Motivation, Formulations and Results,
PRL(22), No. 12, October 2001, pp. 1263-1272.
Elsevier DOI
0108
BibRef
Guillamet, D.[David],
Vitrià, J.[Jordi],
Discriminant Local Regions Using Support Vector Machines,
ELCVIA(1), 2002, pp. None.
Reference to this is wrong. See conference paper.
0206
Earlier:
Local Discriminant Regions Using Support Vector Machines
for Object Recognition,
SSSPR00(559-559).
Springer DOI
BibRef
Zhou, W.D.[Wei-Da],
Zhang, L.[Li],
Jiao, L.C.[Li-Cheng],
Linear programming support vector machines,
PR(35), No. 12, December 2002, pp. 2927-2936.
Elsevier DOI
0209
BibRef
Zhang, L.[Li],
Zhou, W.D.[Wei-Da],
Jiao, L.C.[Li-Cheng],
Wavelet Support Vector Machine,
SMC-B(34), No. 1, February 2004, pp. 34-39.
IEEE Abstract.
0403
BibRef
Zhang, L.[Li],
Zhou, W.D.[Wei-Da],
Density-induced margin support vector machines,
PR(44), No. 7, July 2011, pp. 1448-1460.
Elsevier DOI
1103
Support vector machine; Maximum margin classifier; Machine learning;
Relative density degree
BibRef
Chua, K.S.[Kok Seng],
Efficient computations for large least square support vector machine
classifiers,
PRL(24), No. 1-3, January 2003, pp. 75-80.
Elsevier DOI
0211
BibRef
Davy, M.,
Gretton, A.,
Doucet, A.,
Rayner, P.J.W.,
Optimized support vector machines for nonstationary signal
classification,
SPLetters(9), No. 12, December 2002, pp. 442-445.
IEEE Top Reference.
0301
BibRef
Parrado-Hernández, E.[Emilio],
Mora-Jiménez, I.,
Arenas-García, J.,
Figueiras-Vidal, A.R.,
Navia-Vázquez, A.,
Growing support vector classifiers with controlled complexity,
PR(36), No. 7, July 2003, pp. 1479-1488.
Elsevier DOI
0304
BibRef
García-García, D.[Darío],
Parrado Hernández, E.[Emilio],
Díaz-de María, F.[Fernando],
A New Distance Measure for Model-Based Sequence Clustering,
PAMI(31), No. 7, July 2009, pp. 1325-1331.
IEEE DOI
0905
based on the Kullback-Leibler divergence.
BibRef
Garcia-Garcia, D.[Dario],
Parrado-Hernandez, E.[Emilio],
Diaz-de-Maria, F.[Fernando],
State-space dynamics distance for clustering sequential data,
PR(44), No. 5, May 2011, pp. 1014-1022.
Elsevier DOI
1101
Sequential data; Clustering; Hidden Markov models
BibRef
Muñoz-Romero, S.[Sergio],
Gómez-Verdejo, V.[Vanessa],
Parrado-Hernández, E.[Emilio],
A novel framework for parsimonious multivariate analysis,
PR(71), No. 1, 2017, pp. 173-186.
Elsevier DOI
1707
Feature, selection
BibRef
Fei, Y.N.,
Lu, Z.,
Tang, W.H.,
Wu, Q.H.,
Harmonic Estimation Using a Global Search Optimiser,
EvoIASP07(261-270).
Springer DOI
0704
BibRef
Lau, K.W.,
Wu, Q.H.,
Local prediction of non-linear time series using support vector
regression,
PR(41), No. 5, May 2008, pp. 1556-1564.
Elsevier DOI
0711
Time series analysis; Local prediction; Support vector regression;
Radial basis function; Least square; Delay coordinates;
State space reconstruction
BibRef
Chen, Y.S.[Yi-Song],
Wang, G.P.[Guo-Ping],
Dong, S.H.[Shi-Hai],
Learning with progressive transductive support vector machine,
PRL(24), No. 12, August 2003, pp. 1845-1855.
Elsevier DOI
0304
BibRef
Steinwart, I.[Ingo],
On the optimal parameter choice for v-support vector machines,
PAMI(25), No. 10, October 2003, pp. 1274-1284.
IEEE Abstract.
0310
See also New Support Vector Algorithms. The parameter v should be twice the optimal Bayes risk.
BibRef
Rojo Alvarez, J.L.,
Martinez Ramon, M.,
Figueiras Vidal, A.R.,
Garcia Armada, A.,
Artes Rodriguez, A.,
A robust support vector algorithm for nonparametric spectral analysis,
SPLetters(10), No. 11, November 2003, pp. 320-323.
IEEE Abstract.
0310
BibRef
Maruyama, K.I.[Ken-Ichi],
Maruyama, M.[Minoru],
Miyao, H.[Hidetoshi],
Nakano, Y.[Yasuaki],
A method to make multiple hypotheses with high cumulative recognition
rate using SVMs,
PR(37), No. 2, February 2004, pp. 241-251.
Elsevier DOI
0311
BibRef
Karaçali, B.[Bilge],
Ramanath, R.[Rajeev],
Snyder, W.E.[Wesley E.],
A comparative analysis of structural risk minimization by support
vector machines and nearest neighbor rule,
PRL(25), No. 1, January 2004, pp. 63-71.
Elsevier DOI
0311
BibRef
Mitra, P.[Pabitra],
Murthy, C.A.,
Pal, S.K.[Sankar K.],
A Probabilistic Active Support Vector Learning Algorithm,
PAMI(26), No. 3, March 2004, pp. 413-418.
IEEE Abstract.
0402
Rather than points based on proximity to the separating hyperplane,
use points according to a distribution determined by the hyperplane
and confidence factor.
BibRef
Chen, J.H.[Jiun-Hung],
Chen, C.S.[Chu-Song],
Reducing SVM Classification Time Using Multiple Mirror Classifiers,
SMC-B(34), No. 2, April 2004, pp. 1173-1183.
IEEE Abstract.
0404
BibRef
Earlier:
Speeding up SVM decision based on mirror points,
ICPR02(II: 869-872).
IEEE DOI
0211
BibRef
Lee, J.W.[Jae-Wook],
Lee, D.W.[Dae-Won],
An Improved Cluster Labeling Method for Support Vector Clustering,
PAMI(27), No. 3, March 2005, pp. 461-464.
IEEE Abstract.
0501
BibRef
Lee, J.W.[Jae-Wook],
Lee, D.W.[Dae-Won],
Dynamic Characterization of Cluster Structures for Robust and Inductive
Support Vector Clustering,
PAMI(28), No. 11, November 2006, pp. 1869-1874.
IEEE DOI
0609
BibRef
Lee, D.W.[Dae-Won],
Lee, J.W.[Jae-Wook],
Domain described support vector classifier for multi-classification
problems,
PR(40), No. 1, January 2007, pp. 41-51.
Elsevier DOI
0611
Multi-class classification; Kernel methods; Bayes decision theory;
Density estimation; Support vector domain description
BibRef
Jung, K.H.[Kyu-Hwan],
Lee, D.W.[Dae-Won],
Lee, J.W.[Jae-Wook],
Fast support-based clustering method for large-scale problems,
PR(43), No. 5, May 2010, pp. 1975-1983.
Elsevier DOI
1003
Large-scale problem; Kernel methods; Support vector clustering;
Cluster labeling; Dynamical system
BibRef
Lee, K.Y.[Ki-Young],
Kim, D.W.[Dae-Won],
Lee, K.H.[Kwang H.],
Lee, D.[Doheon],
Possibilistic support vector machines,
PR(38), No. 8, August 2005, pp. 1325-1327.
Elsevier DOI
0505
BibRef
Ayat, N.E.,
Cheriet, M.,
Suen, C.Y.,
Automatic model selection for the optimization of SVM kernels,
PR(38), No. 10, October 2005, pp. 1733-1745.
Elsevier DOI
0508
BibRef
Adankon, M.M.[Mathias M.],
Cheriet, M.[Mohamed],
Optimizing resources in model selection for support vector machine,
PR(40), No. 3, March 2007, pp. 953-963.
Elsevier DOI
0611
Model selection; SVM; Kernel; Hyperparameters; Optimizing time
See also Help-Training for semi-supervised support vector machines.
BibRef
Zhang, J.Y.[Jia-Yong],
Liu, Y.X.[Yan-Xi],
SVM decision boundary based discriminative subspace induction,
PR(38), No. 10, October 2005, pp. 1746-1758.
Elsevier DOI
0508
BibRef
González, L.,
Angulo, C.,
Velasco, F.,
Català, A.,
Unified dual for bi-class SVM approaches,
PR(38), No. 10, October 2005, pp. 1772-1774.
Elsevier DOI
0508
BibRef
Earlier:
More developed version:
Dual unification of bi-class support vector machine formulations,
PR(39), No. 7, July 2006, pp. 1325-1332.
Elsevier DOI
0606
Large margin principle; Optimization; Convex hull
BibRef
Lee, K.Y.[Ki-Young],
Kim, D.W.[Dae-Won],
Lee, D.[Doheon],
Lee, K.H.[Kwang H.],
Improving support vector data description using local density degree,
PR(38), No. 10, October 2005, pp. 1768-1771.
Elsevier DOI
0508
BibRef
Asharaf, S.,
Shevade, S.K.,
Murty, M.N.[M. Narasimha],
Rough support vector clustering,
PR(38), No. 10, October 2005, pp. 1779-1783.
Elsevier DOI
0508
See also Rough set based incremental clustering of interval data.
BibRef
Reddy, I.S.[I. Sathish],
Shevade, S.K.[Shirish K.],
Murty, M.N.,
A fast quasi-Newton method for semi-supervised SVM,
PR(44), No. 10-11, October-November 2011, pp. 2305-2313.
Elsevier DOI
1101
Semi-supervised learning; Support vector machines; Quasi-Newton
methods; Nonconvex optimization
BibRef
Asharaf, S.,
Murty, M.N.[M. Narasimha],
Scalable non-linear Support Vector Machine using hierarchical
clustering,
ICPR06(I: 908-911).
IEEE DOI
0609
BibRef
Nath, J.S.[J. Saketha],
Shevade, S.K.,
An efficient clustering scheme using support vector methods,
PR(39), No. 8, August 2006, pp. 1473-1480.
Elsevier DOI Clustering; Support vector machines; R*-tree
0606
BibRef
El-Yaniv, R.[Ran],
Gerzon, L.[Leonid],
Effective transductive learning via objective model selection,
PRL(26), No. 13, 1 October 2005, pp. 2104-2115.
Elsevier DOI
0509
BibRef
Lauer, F.[Fabien],
Bloch, G.[Gérard],
Ho-Kashyap classifier with early stopping for regularization,
PRL(27), No. 9, July 2006, pp. 1037-1044.
Elsevier DOI
0605
Early stopping; Robustness; SVM
See also Algorithm for Linear Inequalities and its Applications, An.
BibRef
Li, M.K.[Ming-Kun],
Sethi, I.K.[Ishwar K.],
Confidence-Based Active Learning,
PAMI(28), No. 8, August 2006, pp. 1251-1261.
IEEE DOI
0606
Identify the uncertain samples.
BibRef
Li, M.K.[Ming-Kun],
Sethi, I.K.[Ishwar K.],
Confidence-based classifier design,
PR(39), No. 7, July 2006, pp. 1230-1240.
Elsevier DOI
0606
BibRef
Earlier:
SVM-based classifier design with controlled confidence,
ICPR04(I: 164-167).
IEEE DOI
0409
Confidence-based classification; Error estimation; Reject option;
Dynamic bin width allocation
BibRef
Liu, Y.G.[Yi-Guang],
You, Z.S.[Zhi-Sheng],
Cao, L.P.[Li-Ping],
A novel and quick SVM-based multi-class classifier,
PR(39), No. 11, November 2006, pp. 2258-2264.
Elsevier DOI
0608
Multi-class classifier; SVMlight approach; Objective function
BibRef
Li, Q.[Qing],
Jiao, L.C.[Li-Cheng],
Hao, Y.J.[Ying-Juan],
Adaptive simplification of solution for support vector machine,
PR(40), No. 3, March 2007, pp. 972-980.
Elsevier DOI
0611
Support vector machine; Simplification; Vector correlation;
Feature vector; Regression estimation; Pattern recognition
BibRef
Han, Y.,
Lam, W.[Wai],
Ling, C.X.[Charles X.],
Customized Generalization of Support Patterns for Classification,
SMC-B(36), No. 6, December 2006, pp. 1306-1318.
IEEE DOI
0701
BibRef
Jayadeva,
Khemchandani, R.,
Chandra, S.[Suresh],
Twin Support Vector Machines for Pattern Classification,
PAMI(29), No. 5, May 2007, pp. 905-910.
IEEE DOI
0704
A binary SVM classifier that determines two
nonparallel planes by solving two related SVM-type problems.
BibRef
Khemchandani, R.,
Goyal, K.,
Chandra, S.[Suresh],
Twin Support Vector Machine based Regression,
ICAPR15(1-6)
IEEE DOI
1511
quadratic programming
BibRef
Jayadeva,
Shah, S.[Sameena],
Chandra, S.[Suresh],
Kernel Optimization Using a Generalized Eigenvalue Approach,
PReMI09(32-37).
Springer DOI
0912
BibRef
Jayadeva,
Shah, S.[Sameena],
Chandra, S.[Suresh],
Zero Norm Least Squares Proximal SVR,
PReMI09(38-43).
Springer DOI
0912
BibRef
Qiao, H.[Hong],
Wang, Y.G.[Yan-Guo],
Zhang, B.[Bo],
A simple decomposition algorithm for support vector machines with
polynomial-time convergence,
PR(40), No. 9, September 2007, pp. 2543-2549.
Elsevier DOI
0705
Support vector machines; Decomposition methods; Convergence;
Statistical learning theory; Pattern recognition
BibRef
Wang, D.[Di],
Zhang, B.[Bo],
Zhang, P.[Peng],
Qiao, H.[Hong],
An online core vector machine with adaptive MEB adjustment,
PR(43), No. 10, October 2010, pp. 3468-3482.
Elsevier DOI
1007
Minimum enclosing ball; Online classifier; Core vector machine;
Support vector machine; Machine learning
BibRef
Doumpos, M.,
Zopounidis, C.,
Golfinopoulou, V.,
Additive Support Vector Machines for Pattern Classification,
SMC-B(37), No. 3, June 2007, pp. 540-550.
IEEE DOI
0706
BibRef
Chuang, C.C.,
Fuzzy Weighted Support Vector Regression With a Fuzzy Partition,
SMC-B(37), No. 3, June 2007, pp. 630-640.
IEEE DOI
0706
BibRef
Tian, S.F.[Sheng-Feng],
Mu, S.M.[Shao-Min],
Yin, C.H.[Chuan-Huan],
Length-weighted string kernels for sequence data classification,
PRL(28), No. 13, 1 October 2007, pp. 1651-1656.
Elsevier DOI
0709
Support vector machine; String kernel; Classification
BibRef
Zingman, I.[Igor],
Meir, R.[Ron],
El-Yaniv, R.[Ran],
Size-density spectra and their application to image classification,
PR(40), No. 12, December 2007, pp. 3336-3348.
Elsevier DOI
0709
Image classification; Algebraic opening; Density opening; Rank-max opening;
Pattern size spectrum; Pattern density spectrum;
Pattern size-density spectrum; Size-density signature; Support vector machine
BibRef
Bayro-Corrochano, E.[Eduardo],
Arana-Daniel, N.[Nancy],
Theory and Applications of Clifford Support Vector Machines,
JMIV(28), No. 1, May 2007, pp. 29-46.
Springer DOI
0710
BibRef
López-González, G.,
Arana-Daniel, N.[Nancy],
Bayro-Corrochano, E.[Eduardo],
Quaternion Support Vector Classifier,
CIARP14(722-729).
Springer DOI
1411
BibRef
Ye, W.[Wang],
Huang, S.T.[Shang-Teng],
Reducing the number of sub-classifiers for pairwise multi-category
support vector machines,
PRL(28), No. 15, 1 November 2007, pp. 2088-2093.
Elsevier DOI
0711
SVM; Multi-category classification; Pairwise; Uncertainty sampling
BibRef
Zafeiriou, S.P.,
Tefas, A.,
Pitas, I.,
Minimum Class Variance Support Vector Machines,
IP(16), No. 10, October 2007, pp. 2551-2564.
IEEE DOI
0711
BibRef
Vretos, N.,
Tefas, A.,
Pitas, I.,
Using robust dispersion estimation in support vector machines,
PR(46), No. 12, 2013, pp. 3441-3451.
Elsevier DOI
1308
Support vector machines
BibRef
Zhou, S.S.[Shui-Sheng],
Liu, H.W.[Hong-Wei],
Zhou, L.H.[Li-Hua],
Ye, F.[Feng],
Semismooth Newton support vector machine,
PRL(28), No. 15, 1 November 2007, pp. 2054-2062.
Elsevier DOI
0711
Support vector machines; Semismooth; Lagrangian dual; Cholesky factorization
BibRef
Astorino, A.[Annabella],
Fuduli, A.[Antonio],
Nonsmooth Optimization Techniques for Semisupervised Classification,
PAMI(29), No. 12, December 2007, pp. 2135-2142.
IEEE DOI
0711
Transductive Support Vector Machine.
BibRef
Guo, G.[Gao],
Zhang, J.S.[Jiang-She],
Reducing examples to accelerate support vector regression,
PRL(28), No. 16, December 2007, pp. 2173-2183.
Elsevier DOI
0711
Support vector machine; Support vector regression; Data reduced method;
Cross validation; k-Nearest neighbor
BibRef
Kang, W.S.[Woo-Sung],
Choi, J.Y.[Jin Young],
Domain density description for multiclass pattern classification with
reduced computational load,
PR(41), No. 6, June 2008, pp. 1997-2009.
Elsevier DOI
0802
Multiclass pattern classification; Computational load reduction;
Support vector learning
BibRef
Li, D.F.[Ding-Fang],
Hu, W.C.[Wen-Chao],
Xiong, W.[Wei],
Yang, J.B.[Jin-Bo],
Fuzzy relevance vector machine for learning from unbalanced data and
noise,
PRL(29), No. 9, 1 July 2008, pp. 1175-1181.
Elsevier DOI
0711
Relevance vector machine; Unbalanced data; Noise; Fuzzy membership;
Bayesian inference
BibRef
Kumar, M.A.[M. Arun],
Gopal, M.,
Application of smoothing technique on twin support vector machines,
PRL(29), No. 13, 1 October 2008, pp. 1842-1848.
Elsevier DOI
0804
Support vector machines; Pattern recognition; Twin support vector machines
BibRef
Kumar, M.A.[M. Arun],
Gopal, M.,
A comparison study on multiple binary-class SVM methods for unilabel
text categorization,
PRL(31), No. 11, 1 August 2010, pp. 1437-1444.
Elsevier DOI
1008
Multiclass classification; One-against-all; One-against-one; Text
categorization; Support vector machines (SVMs)
BibRef
Yin, J.S.[Jun-Song],
Hu, D.[Dewen],
Zhou, Z.T.[Zong-Tan],
Noisy manifold learning using neighborhood smoothing embedding,
PRL(29), No. 11, 1 August 2008, pp. 1613-1620.
Elsevier DOI
0804
Neighbor smoothing embedding (NSE); Manifold learning; Locally linear
embedding (LLE); Local linear surface estimator
BibRef
Guo, S.M.,
Chen, L.C.,
Tsai, J.S.H.,
A boundary method for outlier detection based on support vector domain
description,
PR(42), No. 1, January 2009, pp. 77-83.
Elsevier DOI
0809
Outlier detection; Support vector domain description
BibRef
Wang, L.,
Xue, P.,
Chan, K.L.,
Two Criteria for Model Selection in Multiclass Support Vector Machines,
SMC-B(38), No. 6, December 2008, pp. 1432-1448.
IEEE DOI
0812
BibRef
Wu, K.P.[Kuo-Ping],
Wang, S.D.[Sheng-De],
Choosing the kernel parameters for support vector machines by the
inter-cluster distance in the feature space,
PR(42), No. 5, May 2009, pp. 710-717.
Elsevier DOI
0902
SVM; Support vector machines; Kernel parameters; Inter-cluster distances
BibRef
Zhao, Y.P.[Yong-Ping],
Sun, J.G.[Jian-Guo],
Recursive reduced least squares support vector regression,
PR(42), No. 5, May 2009, pp. 837-842.
Elsevier DOI
0902
Least squares support vector regression; Reduced technique; Iterative
strategy; Parsimoniousness; Classification
BibRef
Filippi, A.M.,
Archibald, R.,
Support Vector Machine-Based Endmember Extraction,
GeoRS(47), No. 3, March 2009, pp. 771-791.
IEEE DOI
0903
BibRef
Liang, X.[Xun],
Wang, C.[Chao],
Separating hypersurfaces of SVMs in input spaces,
PRL(30), No. 5, 1 April 2009, pp. 469-476.
Elsevier DOI
0903
Separating hyperplane; Separating hypersurface; Input sample space;
High-dimensional feature space; Support vector machine
BibRef
Mu, T.,
Nandi, A.K.[Asoke K.],
Multiclass Classification Based on Extended Support Vector Data
Description,
SMC-B(39), No. 5, October 2009, pp. 1206-1216.
IEEE DOI
0906
BibRef
Chen, G.Y.[Guang-Yi],
Dudek, G.[Gregory],
Auto-correlation wavelet support vector machine,
IVC(27), No. 8, 2 July 2009, pp. 1040-1046.
Elsevier DOI
0906
BibRef
Earlier:
Auto-Correlation Wavelet Support Vector Machine and Its Applications to
Regression,
CRV05(246-252).
IEEE DOI
0505
Wavelets; Support vector machine; Machine learning; Pattern
recognition; Function regression; Auto-correlation
BibRef
Chen, J.,
Wang, C.,
Wang, R.,
Using Stacked Generalization to Combine SVMs in Magnitude and Shape
Feature Spaces for Classification of Hyperspectral Data,
GeoRS(47), No. 7, July 2009, pp. 2193-2205.
IEEE DOI
0906
BibRef
Peleg, D.[Dori],
Meir, R.[Ron],
A sparsity driven kernel machine based on minimizing a generalization
error bound,
PR(42), No. 11, November 2009, pp. 2607-2614.
Elsevier DOI
0907
Sparsity; Classification; Generalization error bounds; Statistical
learning theory
BibRef
Tuia, D.,
Pacifici, F.[Fabio],
Kanevski, M.,
Emery, W.J.[William J.],
Classification of Very High Spatial Resolution Imagery Using
Mathematical Morphology and Support Vector Machines,
GeoRS(47), No. 11, November 2009, pp. 3866-3879.
IEEE DOI
0911
See also Comparing Statistical and Neural Network Methods Applied to Very High Resolution Satellite Images Showing Changes in Man-Made Structures at Rocky Flats.
BibRef
Zhao, W.Z.[Wen-Zhi],
Du, S.H.[Shi-Hong],
Wang, Q.[Qiao],
Emery, W.J.[William J.],
Contextually guided very-high-resolution imagery classification with
semantic segments,
PandRS(132), No. 1, 2017, pp. 48-60.
Elsevier DOI
1710
VHR, images
BibRef
Tuia, D.,
Camps-Valls, G.,
Matasci, G.,
Kanevski, M.,
Learning Relevant Image Features with Multiple-Kernel Classification,
GeoRS(48), No. 10, October 2010, pp. 3780-3791.
IEEE DOI
1003
BibRef
Volpi, M.,
Tuia, D.,
Kanevski, M.,
Memory-Based Cluster Sampling for Remote Sensing Image Classification,
GeoRS(50), No. 8, August 2012, pp. 3096-3106.
IEEE DOI
1208
BibRef
Matasci, G.,
Volpi, M.,
Kanevski, M.,
Bruzzone, L.,
Tuia, D.,
Semisupervised Transfer Component Analysis for Domain Adaptation in
Remote Sensing Image Classification,
GeoRS(53), No. 7, July 2015, pp. 3550-3564.
IEEE DOI
1503
Feature extraction
BibRef
Huang, X.,
Shi, L.,
Suykens, J.A.K.[Johan A.K.],
Support Vector Machine Classifier With Pinball Loss,
PAMI(36), No. 5, May 2014, pp. 984-997.
IEEE DOI
1405
Fasteners
BibRef
Deselaers, T.[Thomas],
Heigold, G.[Georg],
Ney, H.[Hermann],
Object classification by fusing SVMs and Gaussian mixtures,
PR(43), No. 7, July 2010, pp. 2476-2484.
Elsevier DOI
1003
BibRef
Earlier:
SVMs, Gaussian mixtures, and their generative/discriminative fusion,
ICPR08(1-4).
IEEE DOI
0812
Support vector machine; Gaussian mixtures; Discriminative classifiers;
Generative classifiers; Local-feature-based object recognition
BibRef
Weyand, T.[Tobias],
Deselaers, T.[Thomas],
Ney, H.[Hermann],
Log-linear Mixtures for Object Class Recognition,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Muñoz, A.[Alberto],
González, J.[Javier],
Representing Functional Data Using Support Vector Machines,
PRL(31), No. 6, 15 April 2010, pp. 511-516.
Elsevier DOI
1004
BibRef
Earlier: A2, A1:
CIARP08(332-339).
Springer DOI
0809
Functional Data Analysis (FDA); Kernel methods; Support vector
machines; Cluster; Classification
BibRef
Muñoz, A.[Alberto],
González, J.[Javier],
de Diego, I.M.[Isaac Martín],
Local Linear Approximation for Kernel Methods: The Railway Kernel,
CIARP06(936-944).
Springer DOI
0611
BibRef
Moguerza, J.M.[Javier M.],
Muñoz, A.[Alberto],
de Diego, I.M.[Isaac Martín],
Fusion of Gaussian Kernels Within Support Vector Classification,
CIARP06(945-953).
Springer DOI
0611
BibRef
Lin, H.J.[Hwei-Jen],
Yeh, J.P.[Jih Pin],
A hybrid optimization strategy for simplifying the solutions of support
vector machines,
PRL(31), No. 7, 1 May 2010, pp. 563-571.
Elsevier DOI
1004
Support vector machine; Particle swarm optimization; Genetic
algorithm; Optimization; Discriminant function; Hyperplane
BibRef
Wang, X.M.[Xiao-Ming],
Chung, F.L.[Fu-Lai],
Wang, S.T.[Shi-Tong],
On minimum class locality preserving variance support vector machine,
PR(43), No. 8, August 2010, pp. 2753-2762.
Elsevier DOI
1006
Supervised learning; Support vector machine; Minimum class variance
support machine; Locality preserving projections
BibRef
Glasmachers, T.[Tobias],
Igel, C.[Christian],
Maximum Likelihood Model Selection for 1-Norm Soft Margin SVMs with
Multiple Parameters,
PAMI(32), No. 8, August 2010, pp. 1522-1528.
IEEE DOI
1007
With few initial points.
BibRef
Cevikalp, H.[Hakan],
New clustering algorithms for the support vector machine based
hierarchical classification,
PRL(31), No. 11, 1 August 2010, pp. 1285-1291.
Elsevier DOI
1008
Hierarchical classification; Support vector machines; Multi-class
classification; Clustering; Normalized cuts
BibRef
Saha, S.K.[Sujan Kumar],
Narayan, S.[Shashi],
Sarkar, S.[Sudeshna],
Mitra, P.[Pabitra],
A composite kernel for named entity recognition,
PRL(31), No. 12, 1 September 2010, pp. 1591-1597.
Elsevier DOI
1008
Named entity recognition; Support vector machine; Kernel methods;
String kernel; Machine learning
BibRef
Kumar, M.A.[M. Arun],
Gopal, M.,
A hybrid SVM based decision tree,
PR(43), No. 12, December 2010, pp. 3977-3987.
Elsevier DOI
1003
Support vector machines; Decision trees; Hybridization; Pattern recognition
BibRef
Giacco, F.,
Thiel, C.,
Pugliese, L.,
Scarpetta, S.,
Marinaro, M.,
Uncertainty Analysis for the Classification of Multispectral Satellite
Images Using SVMs and SOMs,
GeoRS(48), No. 10, October 2010, pp. 3769-3779.
IEEE DOI
1003
BibRef
Huang, K.Z.[Kai-Zhu],
Zheng, D.N.[Da-Nian],
Sun, J.[Jun],
Hotta, Y.[Yoshinobu],
Fujimoto, K.[Katsuhito],
Naoi, S.[Satoshi],
Sparse learning for support vector classification,
PRL(31), No. 13, 1 October 2010, pp. 1944-1951.
Elsevier DOI
1003
Sparse representation; Implementations of L0-norm; Regularization
term; Support vector machine; Kernel methods
BibRef
Ye, Q.[Qiaolin],
Zhao, C.X.[Chun-Xia],
Ye, N.[Ning],
Chen, Y.N.[Yan-Nan],
Multi-weight vector projection support vector machines,
PRL(31), No. 13, 1 October 2010, pp. 2006-2011.
Elsevier DOI
1003
Generalized eigenvalues; Multi-weight vector; Matrix singularity;
Standard eigenvalues; Singular problems
BibRef
Ye, Q.[Qiaolin],
Ye, N.[Ning],
Yin, T.M.[Tong-Ming],
Enhanced multi-weight vector projection support vector machine,
PRL(42), No. 1, 2014, pp. 91-100.
Elsevier DOI
1404
Multiple weight vectors
BibRef
Bovolo, F.,
Bruzzone, L.,
Carlin, L.,
A Novel Technique for Subpixel Image Classification Based on Support
Vector Machine,
IP(19), No. 11, November 2010, pp. 2983-2999.
IEEE DOI
1011
BibRef
Ertekin, S.[Seyda],
Bottou, L.[Leon],
Giles, C.L.[C. Lee],
Nonconvex Online Support Vector Machines,
PAMI(33), No. 2, February 2011, pp. 368-381.
IEEE DOI
1101
Ramp Loss. Supress influence of outliesrs.
BibRef
Han, D.Q.[De-Qiang],
Han, C.Z.[Chong-Zhao],
Yang, Y.[Yi],
A novel classifier based on shortest feature line segment,
PRL(32), No. 3, 1 February 2011, pp. 485-493.
Elsevier DOI
1101
Nearest feature line (NFL); Trespass inaccuracy; Feature line segment;
Geometric relation; Neighborhood-based classifier
BibRef
Han, D.Q.[De-Qiang],
Han, C.Z.[Chong-Zhao],
Yang, Y.[Yi],
Liu, Y.[Yu],
Mao, W.T.[Wen-Tao],
Pre-extracting method for SVM classification based on the
non-parametric K-NN rule,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chang, C.C.[Chih-Cheng],
Chien, L.J.[Li-Jen],
Lee, Y.J.[Yuh-Jye],
A novel framework for multi-class classification via ternary smooth
support vector machine,
PR(44), No. 6, June 2011, pp. 1235-1244.
Elsevier DOI
1102
Confidence; Hidden classes; Multi-class classification; Smooth method;
Support vector machine; Ternary voting games
BibRef
Guo, L.H.[Li-Hua],
Jin, L.W.[Lian-Wen],
Laplacian Support Vector Machines with Multi-Kernel Learning,
IEICE(E94-D), No. 2, February 2011, pp. 379-383.
WWW Link.
1102
BibRef
Sahbi, H.[Hichem],
Audibert, J.Y.[Jean-Yves],
Keriven, R.[Renaud],
Context-Dependent Kernels for Object Classification,
PAMI(33), No. 4, April 2011, pp. 699-708.
IEEE DOI
1103
Not just correlation kernels.
BibRef
Sahbi, H.[Hichem],
Audibert, J.Y.[Jean-Yves],
Rabarisoa, J.[Jaonary],
Keriven, R.[Renaud],
Context-dependent kernel design for object matching and recognition,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Sahbi, H.[Hichem],
Fleuret, F.[François],
Scale-Invariance of Support Vector Machines based on the Triangular
Kernel,
INRIARR-4601, Octobre 2002.
HTML Version.
0306
BibRef
Sahbi, H.[Hichem],
Li, X.[Xi],
Context-Based Support Vector Machines for Interconnected Image
Annotation,
ACCV10(I: 214-227).
Springer DOI
1011
Award, ACCV.
BibRef
Jiu, M.,
Sahbi, H.[Hichem],
Nonlinear Deep Kernel Learning for Image Annotation,
IP(26), No. 4, April 2017, pp. 1820-1832.
IEEE DOI
1704
Feature extraction
BibRef
Veenman, C.J.[Cor J.],
Bolck, A.[Annabel],
A sparse nearest mean classifier for high dimensional multi-class
problems,
PRL(32), No. 6, 15 April 2011, pp. 854-859.
Elsevier DOI
1103
Classification; Multi-class; Support vector machine; High dimensional;
Chemometrics; Bioinformatics
BibRef
Ozer, S.[Sedat],
Chen, C.H.[Chi H.],
Cirpan, H.A.[Hakan A.],
A set of new Chebyshev kernel functions for support vector machine
pattern classification,
PR(44), No. 7, July 2011, pp. 1435-1447.
Elsevier DOI
1103
Generalized Chebyshev kernel; Modified Chebyshev kernel;
Semi-parametric kernel; Kernel construction
BibRef
Ozer, S.[Sedat],
Chen, C.H.[Chi Hau],
Generalized Chebyshev Kernels for Support Vector Classification,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ozer, S.[Sedat],
Similarity Domains Machine for Scale-Invariant and Sparse Shape
Modeling,
IP(28), No. 2, February 2019, pp. 534-545.
IEEE DOI
1811
image classification, image filtering, image representation,
support vector machines, similarity domains machine,
sparse spatial kernel machine
BibRef
Wang, Z.[Zheng],
Yan, S.C.[Shui-Cheng],
Zhang, C.S.[Chang-Shui],
Active learning with adaptive regularization,
PR(44), No. 10-11, October-November 2011, pp. 2375-2383.
Elsevier DOI
1101
Active learning; Adaptive regularization; SVM; TSVM
BibRef
Peng, X.J.[Xin-Jun],
TPMSVM: A novel twin parametric-margin support vector machine for
pattern recognition,
PR(44), No. 10-11, October-November 2011, pp. 2678-2692.
Elsevier DOI
1101
Support vector machine; Twin support vector machine; Nonparallel
hyperplanes; Heteroscedastic noise structure; Parametric-margin model
BibRef
Chen, X.B.[Xiao-Bo],
Yang, J.[Jian],
Ye, Q.L.[Qiao-Lin],
Liang, J.[Jun],
Recursive projection twin support vector machine via within-class
variance minimization,
PR(44), No. 10-11, October-November 2011, pp. 2643-2655.
Elsevier DOI
1101
Multiple-surface classifier; Twin support vector machine; Quadratic programming
BibRef
Wittek, P.[Peter],
Tan, C.L.[Chew Lim],
Compactly Supported Basis Functions as Support Vector Kernels for
Classification,
PAMI(33), No. 10, October 2011, pp. 2039-2050.
IEEE DOI
1109
Wavelet kernels. Use inner product of kernels.
BibRef
Laanaya, H.[Hicham],
Abdallah, F.[Fahed],
Snoussi, H.[Hichem],
Richard, C.[Cédric],
Learning general Gaussian kernel hyperparameters of SVMs using
optimization on symmetric positive-definite matrices manifold,
PRL(32), No. 13, 1 October 2011, pp. 1511-1515.
Elsevier DOI
1109
Kernel optimization; Support vector machines; General Gaussian kernel;
Symmetric positive-definite matrices manifold
BibRef
Li, B.[Bing],
Song, S.J.[Shi-Ji],
Li, K.[Kang],
Improved conjugate gradient implementation for least squares support
vector machines,
PRL(33), No. 2, 15 January 2012, pp. 121-125.
Elsevier DOI
1112
Least square; Support vector machine; Unconstrained optimization;
Conjugate gradient method
BibRef
Clark, A.R.J.[Andrew R.J.],
Everson, R.M.[Richard M.],
Multi-objective learning of Relevance Vector Machine classifiers with
multi-resolution kernels,
PR(45), No. 9, September 2012, pp. 3535-3543.
Elsevier DOI
1206
Relevance Vector Machine; Evolutionary algorithm; Classification;
Multi-resolution kernels; Cross-validation
BibRef
Gkalelis, N.,
Mezaris, V.,
Kompatsiaris, I.,
Stathaki, T.,
Linear Subclass Support Vector Machines,
SPLetters(19), No. 9, September 2012, pp. 575-578.
IEEE DOI
1208
BibRef
Wu, J.X.[Jian-Xin],
Efficient HIK SVM Learning for Image Classification,
IP(21), No. 10, October 2012, pp. 4442-4453.
IEEE DOI
1209
BibRef
Earlier:
Power mean SVM for large scale visual classification,
CVPR12(2344-2351).
IEEE DOI
1208
BibRef
Earlier:
A Fast Dual Method for HIK SVM Learning,
ECCV10(II: 552-565).
Springer DOI
1009
BibRef
Wang, C.D.[Chang-Dong],
Lai, J.H.[Jian-Huang],
Position regularized Support Vector Domain Description,
PR(46), No. 3, March 2013, pp. 875-884.
Elsevier DOI
1212
Support Vector Domain Description; Weighting; Data clustering; Support
vector clustering; SVDD k-Means
BibRef
Gonzalez-Abril, L.,
Velasco, F.,
Angulo, C.,
Ortega, J.A.,
A study on output normalization in multiclass SVMs,
PRL(34), No. 3, 1 February 2013, pp. 344-348.
Elsevier DOI
1301
1-v-r SVM; Convex hull; Kernel methods; Multiclassification
BibRef
Minoura, K.[Kentaro],
Tamura, S.[Satoshi],
Hayamizu, S.[Satoru],
Probabilistic expression of Polynomial Semantic Indexing and its
application for classification,
PRL(34), No. 13, 2013, pp. 1485-1489.
Elsevier DOI
1308
Polynomial Semantic Indexing
BibRef
Abrahamsen, T.J.[Trine Julie],
Hansen, L.K.[Lars Kai],
Variance inflation in high dimensional Support Vector Machines,
PRL(34), No. 16, 2013, pp. 2173-2180.
Elsevier DOI
1310
Variance inflation
BibRef
Faußer, S.[Stefan],
Schwenker, F.[Friedhelm],
Semi-supervised clustering of large data sets with kernel methods,
PRL(37), No. 1, 2014, pp. 78-84.
Elsevier DOI
1402
BibRef
Earlier:
Clustering large datasets with kernel methods,
ICPR12(501-504).
WWW Link.
1302
Semi-supervised clustering
BibRef
Cheng, Q.A.[Qi-Ang],
Tezcan, J.[Jale],
Cheng, J.[Jie],
Confidence and prediction intervals for semiparametric mixed-effect
least squares support vector machine,
PRL(40), No. 1, 2014, pp. 88-95.
Elsevier DOI
1403
Semiparametric function estimation
BibRef
Demir, B.[Begüm],
Bruzzone, L.[Lorenzo],
A multiple criteria active learning method for support vector
regression,
PR(47), No. 7, 2014, pp. 2558-2567.
Elsevier DOI
1404
Regression
BibRef
Demir, B.[Begm],
Ertrk, S.[Sarp],
Improving SVM classification accuracy using a hierarchical approach for
hyperspectral images,
ICIP09(2849-2852).
IEEE DOI
0911
BibRef
Serra-Toro, C.[Carlos],
Traver, V.J.[V. Javier],
Pla, F.[Filiberto],
Exploring some practical issues of SVM+:
Is really privileged information that helps?,
PRL(42), No. 1, 2014, pp. 40-46.
Elsevier DOI
1404
Privileged information
BibRef
Chen, W.J.[Wei-Jie],
Shao, Y.H.[Yuan-Hai],
Li, C.N.[Chun-Na],
Deng, N.Y.[Nai-Yang],
MLTSVM: A novel twin support vector machine to multi-label learning,
PR(52), No. 1, 2016, pp. 61-74.
Elsevier DOI
1601
Multi-label classification
BibRef
Zhang, H.X.[Hua-Xiang],
Cao, L.L.[Lin-Lin],
Gao, S.[Shuang],
A locality correlation preserving support vector machine,
PR(47), No. 9, 2014, pp. 3168-3178.
Elsevier DOI
1406
Support vector machine
BibRef
Tuia, D.,
Volpi, M.,
Dalla Mura, M.,
Rakotomamonjy, A.,
Flamary, R.,
Automatic Feature Learning for Spatio-Spectral Image Classification
With Sparse SVM,
GeoRS(52), No. 10, October 2014, pp. 6062-6074.
IEEE DOI
1407
Feature extraction
BibRef
Nasiri, J.A.[Jalal A.],
Charkari, N.M.[Nasrollah Moghadam],
Jalili, S.[Saeed],
Least squares twin multi-class classification support vector machine,
PR(48), No. 3, 2015, pp. 984-992.
Elsevier DOI
1412
Twin support vector machine
BibRef
Peng, S.L.[Shi-Li],
Hu, Q.H.[Qing-Hua],
Chen, Y.L.[Yin-Li],
Dang, J.[Jianwu],
Improved support vector machine algorithm for heterogeneous data,
PR(48), No. 6, 2015, pp. 2072-2083.
Elsevier DOI
1503
Support vector machine
BibRef
Chen, J.H.[Jin-Hui],
Takiguchi, T.[Tetsuya],
Ariki, Y.[Yasuo],
A robust SVM classification framework using PSM for multi-class
recognition,
JIVP(2015), No. 1, 2015, pp. 7.
DOI Link
1503
BibRef
And:
Multithreading AdaBoost framework for object recognition,
ICIP15(1235-1239)
IEEE DOI
1512
AUC; Ri-HOG; multithreading AdaBoost
BibRef
Chen, J.H.[Jin-Hui],
Kitano, Y.[Yosuke],
Li, Y.T.[Yi-Ting],
Takiguchi, T.[Tetsuya],
Ariki, Y.[Yasuo],
A Robust Learning Framework Using PSM and Ameliorated SVMs for
Emotional Recognition,
CV4AC14(629-643).
Springer DOI
1504
BibRef
Xu, J.,
Tang, Y.Y.[Yuan Yan],
Zou, B.[Bin],
Xu, Z.B.[Zong-Ben],
Li, L.Q.[Luo-Qing],
Lu, Y.[Yang],
Zhang, B.,
The Generalization Ability of SVM Classification Based on Markov
Sampling,
Cyber(45), No. 6, June 2015, pp. 1169-1179.
IEEE DOI
1506
Cybernetics
BibRef
Li, Y.[Ya],
Tian, X.M.[Xin-Mei],
Song, M.L.[Ming-Li],
Tao, D.C.[Da-Cheng],
Multi-task proximal support vector machine,
PR(48), No. 10, 2015, pp. 3249-3257.
Elsevier DOI
1507
Multi-task learning
BibRef
Bae, J.S.[Ji-Sang],
Kim, J.O.[Jong-Ok],
Multiclass Probabilistic Classification for Support Vector Machines,
IEICE(E98-D), No. 6, June 2015, pp. 1251-1255.
WWW Link.
1505
BibRef
Zheng, S.F.[Song-Feng],
Smoothly approximated support vector domain description,
PR(49), No. 1, 2016, pp. 55-64.
Elsevier DOI
1511
Support vector domain description
BibRef
Ferreira, M.R.P.[Marcelo R.P.],
de Carvalho, F.A.T.[Francisco A.T.],
Simões, E.C.[Eduardo C.],
Kernel-based hard clustering methods with kernelization of the metric
and automatic weighting of the variables,
PR(51), No. 1, 2016, pp. 310-321.
Elsevier DOI
1601
Kernel clustering
BibRef
de Carvalho, F.A.T.[Francisco A.T.],
Simões, E.C.[Eduardo C.],
Santana, L.V.C.[Lucas V.C.],
Ferreira, M.R.P.[Marcelo R.P.],
Gaussian kernel c-means hard clustering algorithms with automated
computation of the width hyper-parameters,
PR(79), 2018, pp. 370-386.
Elsevier DOI
1804
Gaussian kernel clustering, Kernelization of the metric,
Feature space, Width hyper-parameter
BibRef
Simões, E.C.[Eduardo C.],
de Carvalho, F.A.T.[Francisco A. T.],
Gaussian kernel fuzzy c-means with width parameter computation and
regularization,
PR(143), 2023, pp. 109749.
Elsevier DOI
2310
Gaussian kernel fuzzy clustering, Kernelization of the metric,
Width parameter, Entropy regularization
BibRef
Osadchy, M.[Margarita],
Keren, D.[Daniel],
Raviv, D.,
Recognition Using Hybrid Classifiers,
PAMI(38), No. 4, April 2016, pp. 759-771.
IEEE DOI
1603
Computational complexity
BibRef
Osadchy, M.[Margarita],
Keren, D.[Daniel],
Fadida-Specktor, B.[Bella],
Hybrid Classifiers for Object Classification with a Rich Background,
ECCV12(V: 284-297).
Springer DOI
1210
treat the non-object as background.
BibRef
Osadchy, M.[Margarita],
Keren, D.[Daniel],
Incorporating the Boltzmann Prior in Object Detection Using SVM,
CVPR06(II: 2095-2101).
IEEE DOI
0606
BibRef
Samat, A.[Alim],
Gamba, P.[Paolo],
Abuduwaili, J.[Jilili],
Liu, S.C.[Si-Cong],
Miao, Z.[Zelang],
Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image
Classification by Unsupervised Subspace Feature Transfer,
RS(8), No. 3, 2016, pp. 234.
DOI Link
1604
BibRef
Moghaddam, V.H.[Vahid Hooshmand],
Hamidzadeh, J.[Javad],
New Hermite orthogonal polynomial kernel and combined kernels in
Support Vector Machine classifier,
PR(60), No. 1, 2016, pp. 921-935.
Elsevier DOI
1609
Support Vector Machine (SVM)
BibRef
Ji, Y.S.[Ying-Sheng],
Chen, Y.S.[Yu-Shu],
Fu, H.H.[Hao-Huan],
Yang, G.W.[Guang-Wen],
An EnKF-based scheme to optimize hyper-parameters and features for
SVM classifier,
PR(62), No. 1, 2017, pp. 202-213.
Elsevier DOI
1705
EnKF
BibRef
Xu, G.[Guibiao],
Cao, Z.[Zheng],
Hu, B.G.[Bao-Gang],
Principe, J.C.[Jose C.],
Robust support vector machines based on the rescaled hinge loss
function,
PR(63), No. 1, 2017, pp. 139-148.
Elsevier DOI
1612
Support vector machine
BibRef
Cheng, F.Y.[Fan-Yong],
Zhang, J.[Jing],
Li, Z.Y.[Zuo-Yong],
Tang, M.Z.[Ming-Zhu],
Double distribution support vector machine,
PRL(88), No. 1, 2017, pp. 20-25.
Elsevier DOI
1703
Minimum margin
BibRef
Lin, L.[Liang],
Wang, G.R.[Guang-Run],
Zuo, W.M.[Wang-Meng],
Feng, X.C.[Xiang-Chu],
Zhang, L.[Lei],
Cross-Domain Visual Matching via Generalized Similarity Measure and
Feature Learning,
PAMI(39), No. 6, June 2017, pp. 1089-1102.
IEEE DOI
1705
Euclidean distance, Face, Neural networks, Pattern matching, Videos,
Visualization, Similarity model, cross-domain matching,
deep learning, person, verification
BibRef
Wang, S.S.[Shan-Shan],
Zhang, L.[Lei],
Zuo, W.M.[Wang-Meng],
Zhang, B.,
Class-Specific Reconstruction Transfer Learning for Visual
Recognition Across Domains,
IP(29), 2020, pp. 2424-2438.
IEEE DOI
2001
BibRef
Earlier: A1, A2, A3, Only:
Class-Specific Reconstruction Transfer Learning via Sparse Low-Rank
Constraint,
CEFR-LCV17(949-957)
IEEE DOI
1802
Image reconstruction, Adaptation models, Machine learning,
Data models, Correlation, Semantics, Learning systems, image classification
BibRef
Gu, B.[Bin],
Sheng, V.S.[Victor S.],
Tay, K.Y.[Keng Yeow],
Romano, W.[Walter],
Li, S.[Shuo],
Cross Validation Through Two-Dimensional Solution Surface for
Cost-Sensitive SVM,
PAMI(39), No. 6, June 2017, pp. 1103-1121.
IEEE DOI
1705
Computational modeling, Fasteners, Kernel, Search methods,
Space exploration, Support vector machines, Training,
Solution surface, cost-sensitive support vector machine,
cross validation, solution path, space, partition
BibRef
Zhang, X.[Xin],
Zhang, X.[Xiu],
Withdrawn: Adaptive multiclass support vector machine for multimodal data
analysis,
PR(70), No. 1, 2017, pp. 177-184.
Elsevier DOI
1706
BibRef
And:
Withdrawn - premature publication.
PR(76), No. 1, 2018, pp. 762.
Elsevier DOI
1801
Artificial bee colony
BibRef
Maggu, J.[Jyoti],
Majumdar, A.[Angshul],
Kernel transform learning,
PRL(98), No. 1, 2017, pp. 117-122.
Elsevier DOI
1710
BibRef
And:
Greedy deep transform learning,
ICIP17(1822-1826)
IEEE DOI
1803
Dictionaries, Inverse problems, Machine learning, Neural networks,
Tools, Training, Transforms, deep learning, greedy learning, transform learning
BibRef
Yan, H.[He],
Ye, Q.L.[Qiao-Lin],
Zhang, T.A.[Tian-An],
Yu, D.J.[Dong-Jun],
Yuan, X.[Xia],
Xu, Y.Q.[Yi-Qing],
Fu, L.Y.[Li-Yong],
Least squares twin bounded support vector machines based on L1-norm
distance metric for classification,
PR(74), No. 1, 2018, pp. 434-447.
Elsevier DOI
1711
L1-LSTBSVM
BibRef
Dai, J.S.[Ji-Sheng],
Xu, W.C.[Wei-Chao],
Ye, Z.F.[Zhong-Fu],
Chang, C.Q.[Chun-Qi],
Effective subset approach for SVMpath singularities,
PRL(100), No. 1, 2017, pp. 51-58.
Elsevier DOI
1712
Support vector machine (SVM)
BibRef
Zheng, Q.Q.[Qing-Qing],
Zhu, F.Y.[Feng-Yuan],
Qin, J.[Jing],
Chen, B.D.[Ba-Dong],
Heng, P.A.[Pheng-Ann],
Sparse Support Matrix Machine,
PR(76), No. 1, 2018, pp. 715-726.
Elsevier DOI
1801
Classification
BibRef
Chen, G.[Gang],
Xu, R.[Ran],
Yang, Z.[Zhi],
Deep ranking structural support vector machine for image tagging,
PRL(105), 2018, pp. 30-38.
Elsevier DOI
1804
Image tagging, Maximum margin learning, Deep learning, Ranking
BibRef
Gu, B.[Bin],
Quan, X.[Xin],
Gu, Y.H.[Yun-Hua],
Sheng, V.S.[Victor S.],
Zheng, G.S.[Guan-Sheng],
Chunk incremental learning for cost-sensitive hinge loss support
vector machine,
PR(83), 2018, pp. 196-208.
Elsevier DOI
1808
Cost-sensitive learning, Chunk incremental learning,
Hinge loss, Support vector machines
BibRef
Chen, H.Y.[Hai-Yan],
Yu, Y.[Ying],
Jia, Y.Z.[Yi-Zhen],
Gu, B.[Bin],
Incremental learning for transductive support vector machine,
PR(133), 2023, pp. 108982.
Elsevier DOI
2210
Transductive support vector machine, Incremental learning,
Non-convex optimization, Infinitesimal annealing
BibRef
Padierna, L.C.[Luis Carlos],
Carpio, M.[Martín],
Rojas-Domínguez, A.[Alfonso],
Puga, H.[Héctor],
Fraire, H.[Héctor],
A novel formulation of orthogonal polynomial kernel functions for SVM
classifiers: The Gegenbauer family,
PR(84), 2018, pp. 211-225.
Elsevier DOI
1809
SVM classifier, Orthogonal polynomials, Gegenbauer kernel, Binary classification
BibRef
Tzelepis, C.[Christos],
Mezaris, V.[Vasileios],
Patras, I.[Ioannis],
Linear Maximum Margin Classifier for Learning from Uncertain Data,
PAMI(40), No. 12, December 2018, pp. 2948-2962.
IEEE DOI
1811
Uncertainty, Support vector machines, Gaussian processes,
Brain modeling, Statistical analysis, Covariance matrices,
statistical learning theory
BibRef
Liu, W.,
Shen, X.,
Du, B.,
Tsang, I.W.,
Zhang, W.,
Lin, X.,
Hyperspectral Imagery Classification via Stochastic HHSVMs,
IP(28), No. 2, February 2019, pp. 577-588.
IEEE DOI
1811
computational complexity, geophysical image processing,
hyperspectral imaging, image classification, iterative methods,
HHSVM
BibRef
Abe, S.[Shigeo],
Are twin hyperplanes necessary?,
PRL(116), 2018, pp. 218-224.
Elsevier DOI
1812
BibRef
Ma, J.J.[Jia-Jun],
Zhou, S.[Shuisheng],
Chen, L.[Li],
Wang, W.W.[Wei-Wei],
Zhang, Z.[Zhuan],
A sparse robust model for large scale multi-class classification
based on K-SVCR,
PRL(117), 2019, pp. 16-23.
Elsevier DOI
1901
SVM, Multi-class classification, Outliers, K-SVCR, Sparse solution
BibRef
Weerasinghe, S.[Sandamal],
Erfani, S.M.[Sarah M.],
Alpcan, T.[Tansu],
Leckie, C.[Christopher],
Support vector machines resilient against training data integrity
attacks,
PR(96), 2019, pp. 106985.
Elsevier DOI
1909
Support Vector Machines, Integrity attack
BibRef
Menezes, M.V.F.[Murilo V.F.],
Torres, L.C.B.[Luiz C.B.],
Braga, A.P.[Antonio P.],
Width optimization of RBF kernels for binary classification of
support vector machines: A density estimation-based approach,
PRL(128), 2019, pp. 1-7.
Elsevier DOI
1912
Classification, RBF Kernel, Support vector machine, Density estimation
BibRef
Alam, S.[Shamshe],
Sonbhadra, S.K.[Sanjay Kumar],
Agarwal, S.[Sonali],
Nagabhushan, P.,
Tanveer, M.,
Sample reduction using farthest boundary point estimation (FBPE) for
support vector data description (SVDD),
PRL(131), 2020, pp. 268-276.
Elsevier DOI
2004
Support vector data description (SVDD), Data distribution,
Sample reduction, Farthest boundary point
BibRef
Okwuashi, O.[Onuwa],
Ndehedehe, C.E.[Christopher E.],
Deep support vector machine for hyperspectral image classification,
PR(103), 2020, pp. 107298.
Elsevier DOI
2005
Remote sensing, Hyperspectral image,
Deep support vector machine, Image classification
BibRef
Gu, B.[Bin],
Geng, X.[Xiang],
Shi, W.L.[Wan-Li],
Shan, Y.Y.[Ying-Ying],
Huang, Y.F.[Yu-Fang],
Wang, Z.J.[Zhi-Jie],
Zheng, G.S.[Guan-Sheng],
Solving large-scale support vector ordinal regression with
asynchronous parallel coordinate descent algorithms,
PR(109), 2021, pp. 107592.
Elsevier DOI
2009
Asynchronous parallel, Coordinate descent, Support vector, Ordinal regression
BibRef
Sohrab, F.[Fahad],
Raitoharju, J.[Jenni],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Multimodal subspace support vector data description,
PR(110), 2021, pp. 107648.
Elsevier DOI
2011
BibRef
Earlier: A1, A2, A4, A3:
Subspace Support Vector Data Description,
ICPR18(722-727)
IEEE DOI
1812
Feature transformation, Multimodal data,
One-class classification, Support vector data description, Subspace learning.
Optimization, Training, Kernel, Data models,
Support vector machine classification
BibRef
Sohrab, F.[Fahad],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Raitoharju, J.[Jenni],
Graph-embedded subspace support vector data description,
PR(133), 2023, pp. 108999.
Elsevier DOI
2210
One-Class classification, Support vector data description,
Subspace learning, Spectral regression
BibRef
Chaudhuri, A.[Arin],
Sadek, C.[Carol],
Kakde, D.[Deovrat],
Wang, H.Y.[Hao-Yu],
Hu, W.H.[Wen-Hao],
Jiang, H.[Hansi],
Kong, S.H.[Seung-Hyun],
Liao, Y.W.[Yu-Wei],
Peredriy, S.[Sergiy],
The trace kernel bandwidth criterion for support vector data
description,
PR(111), 2021, pp. 107662.
Elsevier DOI
2012
Support vector data description, SVDD,
One-class support vector machines, OCSVM, Gaussian kernel,
Gaussian kernel bandwidth
BibRef
Liu, X.,
Guan, Y.L.,
Xu, Q.,
Support Vector Machine-Based Blind Equalization for High-Order QAM
With Short Data Length,
SPLetters(28), 2021, pp. 259-263.
IEEE DOI
2102
Quadrature amplitude modulation, Blind equalizers, Convergence,
Reactive power, Cost function, Support vector machines,
support vector regression
BibRef
Lantzanakis, G.[Giannis],
Mitraka, Z.[Zina],
Chrysoulakis, N.[Nektarios],
X-SVM: An Extension of C-SVM Algorithm for Classification of
High-Resolution Satellite Imagery,
GeoRS(59), No. 5, May 2021, pp. 3805-3815.
IEEE DOI
2104
Support vector machines, Training data, Static VAr compensators,
Training, Remote sensing, Earth, Satellites,
urban areas
BibRef
An, Y.X.[Yue-Xuan],
Xue, H.[Hui],
Indefinite twin support vector machine with DC functions programming,
PR(121), 2022, pp. 108195.
Elsevier DOI
2109
SVM, TWSVM, Indefinite kernel, DC Programming,
Structural risk minimization principle
BibRef
Chen, C.[Cong],
Batselier, K.[Kim],
Yu, W.J.[Wen-Jian],
Wong, N.[Ngai],
Kernelized support tensor train machines,
PR(122), 2022, pp. 108337.
Elsevier DOI
2112
Image classification, Tensor, Support tensor machine
BibRef
Singh, D.[Dalwinder],
Singh, B.[Birmohan],
Feature wise normalization: An effective way of normalizing data,
PR(122), 2022, pp. 108307.
Elsevier DOI
2112
Data normalization, -nearest neighbor classification,
Machine learning, Metaheuristic optimization, Support vector machines
BibRef
Wang, H.Q.[Hai-Qi],
Li, L.K.[Liu-Ke],
Che, L.[Lei],
Kong, H.R.[Hao-Ran],
Wang, Q.[Qiong],
Wang, Z.H.[Zhi-Hai],
Xu, J.B.[Jian-Bo],
Geospatial Least Squares Support Vector Regression Fused with Spatial
Weight Matrix,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Shu, Y.Y.[Yang-Yang],
Li, Q.[Qian],
Xu, C.[Chang],
Liu, S.W.[Shao-Wu],
Xu, G.D.[Guan-Dong],
V-SVR+:
Support Vector Regression With Variational Privileged Information,
MultMed(24), 2022, pp. 876-889.
IEEE DOI
2202
Training, Support vector machines, Task analysis, Testing,
Optimization, Object recognition, Kernel,
variational privileged information
BibRef
Maldonado, S.[Sebastián],
López, J.[Julio],
Carrasco, M.[Miguel],
The Cobb-Douglas Learning Machine,
PR(128), 2022, pp. 108701.
Elsevier DOI
2205
Cobb-Douglas, Minimax Probability Machine,
Minimum Error Minimax Probability Machine, Support Vector Machines
BibRef
Liu, G.X.[Guang-Xin],
Wang, L.G.[Li-Guo],
Liu, D.F.[Dan-Feng],
Fei, L.[Lei],
Yang, J.H.[Jing-Hui],
Hyperspectral Image Classification Based on Non-Parallel Support
Vector Machine,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liu, G.X.[Guang-Xin],
Wang, L.G.[Li-Guo],
Liu, D.F.[Dan-Feng],
Hyperspectral Image Classification Based on a Least Square Bias
Constraint Additional Empirical Risk Minimization Nonparallel Support
Vector Machine,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Akram-Ali-Hammouri, Z.[Ziad],
Fernández-Delgado, M.[Manuel],
Cernadas, E.[Eva],
Barro, S.[Senén],
Fast Support Vector Classification for Large-Scale Problems,
PAMI(44), No. 10, October 2022, pp. 6184-6195.
IEEE DOI
2209
Training, Support vector machines, Static VAr compensators,
Memory management, Prototypes, Kernel, Random access memory, model selection
BibRef
Guo, Y.W.[Yi-Wen],
Zhang, C.S.[Chang-Shui],
Recent Advances in Large Margin Learning,
PAMI(44), No. 10, October 2022, pp. 7167-7174.
IEEE DOI
2209
Robustness, Training, Perturbation methods, Neural networks,
Support vector machines, Stochastic processes, Kernel,
deep neural networks
BibRef
Wang, H.J.[Hua-Jun],
Shao, Y.H.[Yuan-Hai],
Zhou, S.L.[Sheng-Long],
Zhang, C.[Ce],
Xiu, N.[Naihua],
Support Vector Machine Classifier via L_0/1 Soft-Margin Loss,
PAMI(44), No. 10, October 2022, pp. 7253-7265.
IEEE DOI
2209
Support vector machines, Training, Optimization, Fasteners,
Training data, Standards, Robustness, L0/1 soft-margin loss,
L_0/1 ADMM
BibRef
Marchetti, F.,
Perracchione, E.,
Local-to-Global Support Vector Machines (LGSVMs),
PR(132), 2022, pp. 108920.
Elsevier DOI
2209
Local-to-global support vector machines, Partition of unity,
Supervised classification, Kernel models
BibRef
Ramezan, C.A.[Christopher A.],
Transferability of Recursive Feature Elimination (RFE)-Derived
Feature Sets for Support Vector Machine Land Cover Classification,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, R.[Rui],
Jiao, Z.H.[Zi-Heng],
Zhang, H.Y.[Hong-Yuan],
Li, X.L.[Xue-Long],
Manifold Neural Network With Non-Gradient Optimization,
PAMI(45), No. 3, March 2023, pp. 3986-3993.
IEEE DOI
2302
Manifolds, Support vector machines, Convergence,
Biological neural networks, Optimization, Feature extraction,
non-gradient optimization
BibRef
Wan, Y.L.[Yi-Liang],
Fei, Y.[Yuwen],
Jin, R.[Rui],
Wu, T.[Tao],
He, X.[Xinguang],
An Object-Oriented Deep Multi-Sphere Support Vector Data Description
Method for Impervious Surfaces Extraction Based on Multi-Sourced Data,
IJGI(12), No. 6, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Rezvani, S.[Salim],
Wu, J.H.[Jun-Hao],
Handling Multi-Class Problem by Intuitionistic Fuzzy Twin Support
Vector Machines Based on Relative Density Information,
PAMI(45), No. 12, December 2023, pp. 14653-14664.
IEEE DOI
2311
BibRef
Liang, R.M.[Rong-Mei],
Wu, X.F.[Xiao-Fei],
Zhang, Z.M.[Zhi-Min],
Linearized alternating direction method of multipliers for
elastic-net support vector machines,
PR(148), 2024, pp. 110134.
Elsevier DOI
2402
Convex optimization, Linearized ADMM, Elastic-net, Support vector machines
BibRef
Tran, N.K.[Nguyen Khoa],
Kühle, L.C.[Laura C.],
Klau, G.W.[Gunnar W.],
A critical review of multi-output support vector regression,
PRL(178), 2024, pp. 69-75.
Elsevier DOI
2402
Multi-output regression, Support vector, Least-squares
BibRef
Sun, H.T.[He-Ting],
Wang, L.G.[Li-Guo],
Liu, H.T.[Hai-Tao],
Sun, Y.[Yinbang],
Hyperspectral Image Classification with the Orthogonal Self-Attention
ResNet and Two-Step Support Vector Machine,
RS(16), No. 6, 2024, pp. 1010.
DOI Link
2403
BibRef
Wang, H.J.[Hua-Jun],
Zhang, H.W.[Hong-Wei],
Li, W.Q.[Wen-Qian],
Sparse and robust support vector machine with capped squared loss for
large-scale pattern classification,
PR(153), 2024, pp. 110544.
Elsevier DOI
2405
Capped squared loss, Fast algorithm, Support vectors,
Low computational complexity, Working set
BibRef
Yang, Z.J.[Zhi-Ji],
Chen, W.[Wanyi],
Zhang, H.[Huan],
Xu, Y.T.[Yi-Tian],
Shi, L.[Lei],
Zhao, J.H.[Jian-Hua],
A safe screening rule with bi-level optimization of v support vector
machine,
PR(155), 2024, pp. 110644.
Elsevier DOI
2408
BibRef
Lu, J.Q.[Jun-Qi],
Xie, X.J.[Xi-Jiong],
Xiong, Y.J.[Yu-Jie],
Multi-view hypergraph regularized Lp norm least squares twin support
vector machines for semi-supervised learning,
PR(156), 2024, pp. 110753.
Elsevier DOI
2408
Multi-view semi-supervised learning, Twin support vector machines,
Lp norm graph regularization, Hypergraph regularized
BibRef
Liu, S.[Shiyao],
Yan, B.R.[Bao-Rong],
Guo, W.[Wei],
Hua, Y.[Yu],
Zhang, S.G.[Shou-Gang],
Lu, J.[Jun],
Xu, L.[Lu],
Yang, D.[Dong],
Research on ELoran Demodulation Algorithm Based on Multiclass Support
Vector Machine,
RS(16), No. 17, 2024, pp. 3349.
DOI Link
2409
BibRef
Schleif, F.M.[Frank-Michael],
Raab, C.[Christoph],
Tino, P.[Peter],
Sparsification of Indefinite Learning Models,
SSSPR18(173-183).
Springer DOI
1810
BibRef
Mygdalis, V.,
Tefas, A.,
Pitas, I.,
Learning Multi-Graph Regularization for SVM Classification,
ICIP18(1608-1612)
IEEE DOI
1809
Support vector machines, Kernel, Optimization, Training data,
Standards, Face recognition, Semantics,
object recognition
BibRef
Lyu, X.R.[Xin-Rui],
Zepeda, J.[Joaquin],
Perez, P.[Patrick],
Maximum Margin Linear Classifiers in Unions of Subspaces,
BMVC16(xx-yy).
HTML Version.
1805
Union-of-Subspaces SVM.
BibRef
Blaschko, M.B.[Matthew B.],
Slack and Margin Rescaling as Convex Extensions of Supermodular
Functions,
EMMCVPR17(439-454).
Springer DOI
1805
variants of the structured output SVM.
BibRef
Tran, D.T.,
Waris, M.A.,
Gabbouj, M.[Moncef],
Iosifidis, A.[Alexandros],
Sample-based regularization for support vector machine classification,
IPTA17(1-6)
IEEE DOI
1804
image classification, support vector machines, SVM,
human action recognition tasks, linear combination,
kernel methods
BibRef
Huang, D.,
Wang, C.D.,
Lai, J.H.,
Liang, Y.,
Bian, S.,
Chen, Y.,
Ensemble-driven support vector clustering: From ensemble learning to
automatic parameter estimation,
ICPR16(444-449)
IEEE DOI
1705
Clustering algorithms, Kernel, Labeling, Parameter estimation, Shape,
Static VAr compensators, Support vector machines
BibRef
Riera, C.R.[Carles R.],
Pujol, O.[Oriol],
An Approximate Support Vector Machines Solver with Budget Control,
CIARP16(377-384).
Springer DOI
1703
BibRef
Trichet, R.[Remi],
O'Connor, N.E.[Noel E.],
A flexible ensemble-SVM for computer vision tasks,
AVSS16(51-58)
IEEE DOI
1611
Bagging
BibRef
Elhoseiny, M.[Mohamed],
Elgammal, A.M.[Ahmed M.],
Overlapping Domain Cover for Scalable and Accurate Regression Kernel
Machines,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Debnath, S.[Subhabrata],
Banerjee, A.[Anjan],
Namboodiri, V.[Vinay],
Adapting RANSAC SVM to Detect Outliers for Robust Classification,
BMVC15(xx-yy).
WWW Link.
1601
BibRef
Peters, E.[Ethan],
Savakis, A.[Andreas],
SVM with OpenCL: High performance implementation of support vector
machines on heterogeneous systems,
ICIP15(4322-4326)
IEEE DOI
1512
GPU Acceleration
BibRef
Shi, X.S.[Xiao-Shuang],
Guo, Z.H.[Zhen-Hua],
Yang, Y.J.[Yu-Jiu],
Yang, L.[Lin],
Within-class penalty based multi-class support vector machine,
ICIP15(2746-2750)
IEEE DOI
1512
SVM; multi-class; within-class scatter
BibRef
Lu, S.X.[Shu-Xia],
Tian, R.[Runa],
Zhang, Y.F.[Yu-Fen],
A weighted least squares support vector machine based on covariance
matrix,
ICWAPR15(192-197)
IEEE DOI
1511
covariance matrices
BibRef
Reininghaus, J.[Jan],
Huber, S.[Stefan],
Bauer, U.[Ulrich],
Kwitt, R.[Roland],
A stable multi-scale kernel for topological machine learning,
CVPR15(4741-4748)
IEEE DOI
1510
BibRef
Kobayashi, T.[Takumi],
Three viewpoints toward exemplar SVM,
CVPR15(2765-2773)
IEEE DOI
1510
BibRef
Rezende, R.S.[Rafael S.],
Zepeda, J.[Joaquin],
Ponce, J.[Jean],
Bach, F.[Francis],
Pérez, P.[Patrick],
Kernel Square-Loss Exemplar Machines for Image Retrieval,
CVPR17(7263-7271)
IEEE DOI
1711
Covariance matrices, Fasteners, Image retrieval, Kernel,
Support vector machines, Training
BibRef
Zepeda, J.[Joaquin],
Perez, P.[Patrick],
Exemplar SVMs as visual feature encoders,
CVPR15(3052-3060)
IEEE DOI
1510
BibRef
Modolo, D.[Davide],
Vezhnevets, A.[Alexander],
Russakovsky, O.[Olga],
Ferrari, V.[Vittorio],
Joint calibration of Ensemble of Exemplar SVMs,
CVPR15(3955-3963)
IEEE DOI
1510
BibRef
Shen, B.[Bin],
Liu, B.D.[Bao-Di],
Allebach, J.P.[Jan P.],
TISVM: Large margin classifier for misaligned image classification,
ICIP14(4251-4255)
IEEE DOI
1502
Computer vision
BibRef
Zhang, G.P.[Guo-Peng],
Piccardi, M.[Massimo],
Sequential Labeling with Structural SVM Under an Average Precision Loss,
SSSPR16(344-354).
Springer DOI
1611
BibRef
Earlier:
Sequential labeling with structural SVM under the F1 loss,
ICIP14(5272-5276)
IEEE DOI
1502
Accuracy
BibRef
Liu, S.C.[Shu-Chun],
Guo, J.[Jun],
Zhong, S.Z.[Si-Zhi],
Li, Y.F.[Yi-Fan],
A Novel Robust Modified Support Vector Machines,
ICPR14(3834-3838)
IEEE DOI
1412
Classification algorithms
BibRef
Raval, N.[Nisarg],
Tonge, R.[Rashmi],
Jawahar, C.V.,
Efficient Evaluation of SVM Classifiers Using Error Space Encoding,
ICPR14(4411-4416)
IEEE DOI
1412
Accuracy
BibRef
Lv, X.T.[Xu-Tao],
Han, T.[Tony],
Liu, Z.C.[Zi-Cheng],
He, Z.H.[Zhi-Hai],
Randomized Support Vector Forest,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Nour-Eddine, L.[Lachachi],
Abdelkader, A.[Adla],
Reduced Data Based Improved MEB/L2-SVM Equivalence,
MCPR14(1-10).
Springer DOI
1407
BibRef
Long, C.J.[Cheng-Jiang],
Hua, G.[Gang],
Correlational Gaussian Processes for Cross-Domain Visual Recognition,
CVPR17(4932-4940)
IEEE DOI
1711
Gaussian processes, Image recognition, Pattern recognition,
Random variables, Semantics, Tensile stress, Visualization
See also Joint Gaussian Process Model for Active Visual Recognition with Expertise Estimation in Crowdsourcing, A.
BibRef
Long, C.J.[Cheng-Jiang],
Hua, G.[Gang],
Multi-class Multi-annotator Active Learning with Robust Gaussian
Process for Visual Recognition,
ICCV15(2839-2847)
IEEE DOI
1602
Bayes methods
See also Joint Gaussian Process Model for Active Visual Recognition with Expertise Estimation in Crowdsourcing, A.
BibRef
Hua, G.[Gang],
Long, C.J.[Cheng-Jiang],
Yang, M.[Ming],
Gao, Y.[Yan],
Collaborative Active Visual Recognition from Crowds:
A Distributed Ensemble Approach,
PAMI(40), No. 3, March 2018, pp. 582-594.
IEEE DOI
1802
BibRef
Earlier:
Collaborative Active Learning of a Kernel Machine Ensemble for
Recognition,
ICCV13(1209-1216)
IEEE DOI
1403
Collaboration, Crowdsourcing, Data models, Kernel, Labeling,
Noise measurement, Visualization, Active learning,
multiple oracles.
BibRef
Sharma, G.[Gaurav],
Jurie, F.[Frederic],
A Novel Approach for Efficient SVM Classification with Histogram
Intersection Kernel,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Shao, Y.H.[Yuan-Hai],
Deng, N.Y.[Nai-Yang],
Chen, W.J.[Wei-Jie],
Wang, Z.[Zhen],
Improved Generalized Eigenvalue Proximal Support Vector Machine,
SPLetters(20), No. 3, March 2013, pp. 213-216.
IEEE DOI
1303
BibRef
Ren, Y.M.[Yue-Mei],
Zhang, Y.N.[Yan-Ning],
Meng, Q.J.[Qing-Jie],
Zhang, L.[Lei],
Hyperspectral image classification based on Multiple Improved particle
swarm cooperative optimization and SVM,
ICPR12(2274-2277).
WWW Link.
1302
BibRef
Seredin, O.[Oleg],
Mottl, V.[Vadim],
Tatarchuk, A.[Alexander],
Razin, N.[Nikolay],
Windridge, D.[David],
Convex support and Relevance Vector Machines for selective multimodal
pattern recognition,
ICPR12(1647-1650).
WWW Link.
1302
BibRef
Xue, H.[Hui],
Chen, S.C.[Song-Can],
Huang, J.J.[Ji-Jian],
Discriminative indefinite kernel classifier from pairwise constraints
and unlabeled data,
ICPR12(497-500).
WWW Link.
1302
BibRef
Ji, Y.[You],
Sun, S.L.[Shi-Liang],
Lu, Y.[Yue],
Multitask multiclass privileged information support vector machines,
ICPR12(2323-2326).
WWW Link.
1302
BibRef
Litayem, S.[Saloua],
Joly, A.[Alexis],
Boujemaa, N.[Nozha],
Hash-Based Support Vector Machines Approximation for Large Scale
Prediction,
BMVC12(86).
DOI Link
1301
BibRef
Darkner, S.[Sune],
Clemmensen, L.H.[Line H.],
Data Driven Constraints for the SVM,
MLMI12(70-77).
Springer DOI
1211
BibRef
Bazavan, E.G.[Eduard Gabriel],
Li, F.X.[Fu-Xin],
Sminchisescu, C.[Cristian],
Fourier Kernel Learning,
ECCV12(II: 459-473).
Springer DOI
1210
BibRef
González, F.A.[Fabio A.],
Bermeo, D.[David],
Ramos, L.[Laura],
Nasraoui, O.[Olfa],
On the Robustness of Kernel-based Clustering,
CIARP12(122-129).
Springer DOI
1209
BibRef
Cohen, D.A.[Diego Arab],
Fernández, E.A.[Elmer Andrés],
SVMTOCP: A Binary Tree Base SVM Approach through Optimal Multi-class
Binarization,
CIARP12(472-478).
Springer DOI
1209
BibRef
Porro-Muñoz, D.[Diana],
Duin, R.P.W.[Robert P.W.],
Talavera, I.[Isneri],
Missing Values in Dissimilarity-Based Classification of Multi-way Data,
CIARP13(I:214-221).
Springer DOI
1311
BibRef
Hernández, N.[Noslen],
Biscay, R.J.[Rolando J.],
Talavera, I.[Isneri],
A Non Bayesian Predictive Approach for Functional Calibration,
CIARP12(781-788).
Springer DOI
1209
BibRef
Earlier:
Support Vector Regression Methods for Functional Data,
CIARP07(564-573).
Springer DOI
0711
BibRef
Hernández, N.[Noslen],
Biscay, R.J.[Rolando J.],
Villa-Vialaneix, N.[Nathalie],
Talavera, I.[Isneri],
A Functional Density-Based Nonparametric Approach for Statistical
Calibration,
CIARP10(450-457).
Springer DOI
1011
BibRef
Veon, K.L.[Kevin L.],
Mahoor, M.H.[Mohammad H.],
Localized support vector machines using Parzen window for incomplete
sets of categories,
WACV11(448-454).
IEEE DOI
1101
Deal with objects that are undefined.
BibRef
Wu, J.[Jun],
Lin, Z.K.[Zheng-Kui],
Lu, M.Y.[Ming-Yu],
Asymmetric semi-supervised boosting for SVM active learning in CBIR,
CIVR10(182-188).
DOI Link
1007
BibRef
Gripton, A.[Adam],
Lu, W.P.[Wei-Ping],
Kernel Domain Description with Incomplete Data:
Using Instance-Specific Margins to Avoid Imputation,
ICPR10(2921-2924).
IEEE DOI
1008
BibRef
Gao, J.[Jun],
Hu, W.M.[Wei-Ming],
Li, W.[Wei],
Zhang, Z.F.M.[Zhong-Fei Mark],
Wu, O.[Ou],
Local Outlier Detection Based on Kernel Regression,
ICPR10(585-588).
IEEE DOI
1008
BibRef
He, H.[He],
Ghodsi, A.[Ali],
Rare Class Classification by Support Vector Machine,
ICPR10(548-551).
IEEE DOI
1008
BibRef
Li, J.[Jinbo],
Sun, S.L.[Shi-Liang],
Nonlinear Combination of Multiple Kernels for Support Vector Machines,
ICPR10(2889-2892).
IEEE DOI
1008
BibRef
Wu, J.[Jun],
Lu, M.Y.[Ming-Yu],
Wang, C.L.[Chun-Li],
Enhancing SVM Active Learning for Image Retrieval Using Semi-supervised
Bias-Ensemble,
ICPR10(3175-3178).
IEEE DOI
1008
BibRef
Khan, N.M.[Naimul Mefraz],
Ksantini, R.[Riadh],
Ahmad, I.S.[Imran Shafiq],
Boufama, B.[Boubaker],
A New SVM + NDA Model for Improved Classification and Recognition,
ICIAR10(I: 127-136).
Springer DOI
1006
BibRef
Chen, S.[Shuo],
Zhang, C.S.[Chang-Shui],
Image classification via SVM using in-between universum samples,
ICIP09(1421-1424).
IEEE DOI
0911
I.e. samples that do not belong to any task related classes.
BibRef
Banki, M.H.[Mohammad Hossein],
Shirazi, A.A.B.[Ali Asghar Beheshti],
Using Wavelet Support Vector Machine for Classification of
Hyperspectral Images,
ICMV09(154-157).
IEEE DOI
0912
BibRef
Kim, J.[Junae],
Shen, C.H.[Chun-Hua],
Wang, L.[Lei],
Learning Cascaded Reduced-Set SVMs Using Linear Programming,
DICTA08(619-626).
IEEE DOI
0812
BibRef
Sun, Z.C.[Zhi-Chao],
Liu, Z.G.[Zhi-Gang],
Liu, S.H.[Su-Hong],
Zhang, Y.[Yun],
Yang, B.[Bing],
Active Learning with Support Vector Machines in Remotely Sensed Image
Classification,
CISP09(1-6).
IEEE DOI
0910
BibRef
Hai-Yuan, L.[Liu],
Sun, J.C.[Jian-Cheng],
A Modulation Type Recognition Method Using Wavelet Support Vector
Machines,
CISP09(1-4).
IEEE DOI
0910
BibRef
Nowozin, S.[Sebastian],
Gehler, P.V.[Peter V.],
Lampert, C.H.[Christoph H.],
On Parameter Learning in CRF-Based Approaches to Object Class Image
Segmentation,
ECCV10(VI: 98-111).
Springer DOI
1009
BibRef
Gehler, P.V.[Peter Vincent],
Nowozin, S.[Sebastian],
On Feature Combination for Multiclass Object Classification,
ICCV09(221-228).
IEEE DOI
0909
BibRef
And:
Let the kernel figure it out; Principled learning of pre-processing for
kernel classifiers,
CVPR09(2836-2843).
IEEE DOI
0906
BibRef
Basak, J.[Jayanta],
A least square kernel machine with box constraints,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Alpcan, T.[Tansu],
Bauckhage, C.[Christian],
A discrete-time parallel update algorithm for distributed learning,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ilayaraja, P.,
Neeba, N.V.,
Jawahar, C.V.,
Efficient implementation of SVM for large class problems,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Nishida, K.[Kenji],
Fujiki, J.[Jun],
Kurita, T.[Takio],
Multiple Random Subset-Kernel Learning,
CAIP11(I: 343-350).
Springer DOI
1109
BibRef
Nishida, K.[Kenji],
Kurita, T.[Takio],
RANSAC-SVM for large-scale datasets,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tatarchuk, A.,
Mottl, V.,
Eliseyev, A.,
Windridge, D.,
Selectivity supervision in combining pattern-recognition modalities by
feature- and kernel-selective support vector machines,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mao, W.T.[Wen-Tao],
Dong, L.L.[Long-Lei],
Zhang, G.[Gang],
Weighted solution path algorithm of support vector regression for
abnormal data,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Yu, X.D.[Xiao-Dong],
DeMenthon, D.F.[Daniel F.],
Doermann, D.[David],
Support Vector Data Description for image categorization from Internet
images,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Lienemann, K.[Kai],
Plotz, T.[Thomas],
Fink, G.A.[Gernot A.],
SVM ensemble classification of NMR spectra based on different
configurations of data processing techniques,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Habib, T.[Tarek],
Inglada, J.[Jordi],
Mercier, G.[Gregoire],
Chanussot, J.[Jocelyn],
Speeding up Support Vector Machine (SVM) image classification by a
kernel series expansion,
ICIP08(865-868).
IEEE DOI
0810
See also New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis, A.
BibRef
Sadeghi, M.T.[Mohammad T.],
Samiei, M.[Masoumeh],
Kittler, J.V.[Josef V.],
Selection and Fusion of Similarity Measure Based Classifiers Using
Support Vector Machines,
SSPR08(479-488).
Springer DOI
0812
BibRef
Schnitzspan, P.[Paul],
Fritz, M.[Mario],
Roth, S.[Stefan],
Schiele, B.[Bernt],
Discriminative structure learning of hierarchical representations for
object detection,
CVPR09(2238-2245).
IEEE DOI
0906
BibRef
Demirkesen, C.[Can],
Cherifi, H.[Hocine],
A Comparison of Multiclass SVM Methods for Real World Natural Scenes,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Hazan, T.[Tamir],
Man, A.[Amit],
Shashua, A.[Amnon],
A Parallel Decomposition Solver for SVM:
Distributed dual ascend using Fenchel Duality,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Maji, S.[Subhransu],
Linearized Smooth Additive Classifiers,
WebScale12(I: 239-248).
Springer DOI
1210
BibRef
Maji, S.[Subhransu],
Berg, A.C.[Alexander C.],
Max-margin additive classifiers for detection,
ICCV09(40-47).
IEEE DOI
0909
BibRef
Maji, S.[Subhransu],
Berg, A.C.[Alexander C.],
Malik, J.[Jitendra],
Classification using intersection kernel support vector machines is
efficient,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Bristow, H.[Hilton],
Lucey, S.[Simon],
V1-Inspired Features Induce a Weighted Margin in SVMs,
ECCV12(II: 59-72).
Springer DOI
1210
BibRef
Lucey, S.[Simon],
Enforcing non-positive weights for stable support vector tracking,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Sluzhivoy, A.[Andrey],
Pauli, J.[Josef],
Rölke, V.[Volker],
Noglik, A.[Anastasia],
Improving the Run-Time Performance of Multi-class Support Vector
Machines,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Varma, C.M.B.S.[C.M.B. Seshikanth],
Asharaf, S.,
Murty, M.N.[M. Narasimha],
Rough Core Vector Clustering,
PReMI07(304-310).
Springer DOI
0712
BibRef
Kong, X.D.[Xiao-Dong],
Luo, Q.S.[Qing-Shan],
Zeng, G.H.[Gui-Hua],
A Novel SVM-Based Method for Moving Video Objects Recognition,
Visual07(136-145).
Springer DOI
0706
BibRef
Ionescu, C.[Catalin],
Bo, L.F.[Lie-Feng],
Sminchisescu, C.[Cristian],
Structural SVM for visual localization and continuous state estimation,
ICCV09(1157-1164).
IEEE DOI
0909
BibRef
Kumar, A.[Ankita],
Sminchisescu, C.[Cristian],
Support Kernel Machines for Object Recognition,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Moguerza, J.M.[Javier M.],
Muñoz, A.[Alberto],
Psarakis, S.[Stelios],
Monitoring Nonlinear Profiles Using Support Vector Machines,
CIARP07(574-583).
Springer DOI
0711
BibRef
Chatelain, C.,
Adam, S.,
Lecourtier, Y.,
Heutte, L.,
Paquet, T.,
Multi-Objective Optimization for SVM Model Selection,
ICDAR07(427-431).
IEEE DOI
0709
BibRef
Karim, R.[Rezaul],
Bergtholdt, M.[Martin],
Kappes, J.H.[Jörg H.],
Schnörr, C.[Christoph],
Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification,
DAGM07(395-404).
Springer DOI
0709
BibRef
Tanaka, A.[Akira],
Takigawa, I.[Ichigaku],
Imai, H.[Hideyuki],
Kudo, M.[Mineichi],
Analyses on Generalization Error of Ensemble Kernel Regressors,
SSSPR14(273-281).
Springer DOI
1408
BibRef
Earlier:
Extended Analyses for an Optimal Kernel in a Class of Kernels with an
Invariant Metric,
SSSPR12(345-353).
Springer DOI
1211
BibRef
Tanaka, A.[Akira],
Imai, H.[Hideyuki],
Kudo, M.[Mineichi],
Miyakoshi, M.[Masaaki],
A Relationship Between Generalization Error and Training Samples in
Kernel Regressors,
ICPR10(1421-1424).
IEEE DOI
1008
BibRef
And:
Optimal Kernel in a Class of Kernels with an Invariant Metric,
SSPR08(530-539).
Springer DOI
0812
BibRef
Tanaka, A.[Akira],
Sugiyama, M.[Masashi],
Imai, H.[Hideyuki],
Kudo, M.[Mineichi],
Miyakoshi, M.[Masaaki],
Model Selection Using a Class of Kernels with an Invariant Metric,
SSPR06(862-870).
Springer DOI
0608
BibRef
Joachims, T.[Thorsten],
Structured Output Prediction with Support Vector Machines,
SSPR06(1-7).
Springer DOI
0608
BibRef
Zhu, Y.S.[Yong-Sheng],
Yang, J.Y.[Jun-Yan],
Ye, J.[Jian],
Zhang, Y.Y.[You-Yun],
A Speedup Method for SVM Decision,
SSPR06(494-501).
Springer DOI
0608
BibRef
Zhang, R.,
Metaxas, D.,
RO-SVM: Support Vector Machine with Reject Option for Image
Categorization,
BMVC06(III:1209).
PDF File.
0609
BibRef
Tzotsos, A.,
A support vector machine approach for object based image analysis,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Liu, Y.[Yi],
Zheng, Y.F.[Yuan F.],
Minimum Enclosing and Maximum Excluding Machine for Pattern Description
and Discrimination,
ICPR06(III: 129-132).
IEEE DOI
0609
Extend SVM to enable rejection of out of class.
BibRef
Kropotov, D.[Dmitry],
Ptashko, N.[Nikita],
Vasiliev, O.[Oleg],
Vetrov, D.[Dmitry],
On Kernel Selection in Relevance Vector Machines Using Stability
Principle,
ICPR06(IV: 233-236).
IEEE DOI
0609
BibRef
Qin, J.Z.[Jian-Zhao],
Li, Y.Q.[Yuan-Qing],
An Improved Semi-Supervised Support Vector Machine Based Translation
Algorithm for BCI Systems,
ICPR06(I: 1240-1243).
IEEE DOI
0609
BibRef
Chen, G.Y.,
Bhattacharya, P.,
Function Dot Product Kernels for Support Vector Machine,
ICPR06(II: 614-617).
IEEE DOI
0609
BibRef
Ye, N.[Ning],
Sun, R.X.[Rui-Xiang],
Liu, Y.G.[Yin-Gan],
Cao, L.[Lin],
Support vector machine with orthogonal Chebyshev kernel,
ICPR06(II: 752-755).
IEEE DOI
0609
BibRef
Barakat, N.[Nahla],
Bradley, A.P.[Andrew P.],
Rule Extraction from Support Vector Machines: Measuring the Explanation
Capability Using the Area under the ROC Curve,
ICPR06(II: 812-815).
IEEE DOI
0609
BibRef
Zhang, X.F.[Xian-Fei],
Li, B.C.[Bi-Cheng],
Shi, W.[Wang],
Cheng, L.[Luo],
An Efficient SVM Classifier for Lopsided Corpora,
ICPR06(I: 1144-1147).
IEEE DOI
0609
BibRef
Sung, E.[Eric],
Yan, Z.[Zhu],
Li, X.C.[Xu-Chun],
Accelerating the SVM Learning for Very Large Data Sets,
ICPR06(II: 484-489).
IEEE DOI
0609
BibRef
Wu, Z.L.[Zhi-Li],
Li, C.H.[Chun-Hung],
Zhu, J.[Ji],
Huang, J.[Jian],
A Semi-supervised SVM for Manifold Learning,
ICPR06(II: 490-493).
IEEE DOI
0609
BibRef
Arreola, K.Z.[Karina Zapien],
Fehr, J.[Janis],
Burkhardt, H.[Hans],
Fast Support Vector Machine Classification using linear SVMs,
ICPR06(III: 366-369).
IEEE DOI
0609
BibRef
Zhan, Y.Q.[Yi-Qiang],
Shen, D.G.[Ding-Gang],
Increasing Efficiency of SVM by Adaptively Penalizing Outliers,
EMMCVPR05(539-551).
Springer DOI
0601
BibRef
Tung, J.W.[Jia-Wen],
Hsu, C.T.[Chiou-Ting],
Learning Hidden Semantic Cues Using Support Vector Clustering,
ICIP05(I: 1189-1192).
IEEE DOI
0512
BibRef
Kahsay, L.[Laine],
Schwenker, F.[Friedhelm],
Palm, G.[Günther],
Comparison of Multiclass SVM Decomposition Schemes for Visual Object
Recognition,
DAGM05(334).
Springer DOI
0509
BibRef
Lyu, S.W.[Si-Wei],
Mercer Kernels for Object Recognition with Local Features,
CVPR05(II: 223-229).
IEEE DOI
0507
BibRef
Sun, Q.A.[Qi-Ang],
DeJong, G.[Gerald],
Feature Kernel Functions: Improving SVMs Using High-Level Knowledge,
CVPR05(II: 177-183).
IEEE DOI
0507
BibRef
Tarel, J.P.[Jean-Philippe],
Boughorbel, S.[Sabri],
Object Predetection Based on Kernel Parametric Distribution Fitting,
ICPR06(II: 808-811).
IEEE DOI
0609
BibRef
Boughorbel, S.,
Tarel, J.P.,
Boujemaa, N.,
Generalized Histogram Intersection Kernel for Image Recognition,
ICIP05(III: 161-164).
IEEE DOI
0512
BibRef
Boughorbel, S.,
Tarel, J.P.,
Fleuret, F.,
Non-Mercer Kernels for SVM Object Recognition,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Wang, Y.C.A.[Yu-Chi-Ang],
Casasent, D.,
A hierarchical classifier using new support vector machine,
ICDAR05(II: 851-855).
IEEE DOI
0508
BibRef
Yu, W.M.[Wei Miao],
Du, T.H.[Tie-Hua],
Lim, K.B.[Kah Bin],
Comparison of the support vector machine and relevant vector machine in
regression and classification problems,
ICARCV04(II: 1309-1314).
IEEE DOI
0412
BibRef
Man, H.[Hong],
Chen, L.[Ling],
Duan, R.[Rong],
Rotation invariant texture classification using directional filter bank
and support vector machine,
ICIP04(III: 1545-1548).
IEEE DOI
0505
BibRef
Hein, M.[Matthias],
Lal, T.N.[Thomas Navin],
Bousquet, O.[Olivier],
Hilbertian Metrics on Probability Measures and Their Application in
SVMs,
DAGM04(270-277).
Springer DOI
0505
BibRef
Horikawa, Y.[Yo],
Comparison of support vector machines with autocorrelation kernels for
invariant texture classification,
ICPR04(I: 660-663).
IEEE DOI
0409
BibRef
Park, J.H.[Jin-Hyeong],
Ji, X.[Xiang],
Zha, H.Y.[Hong-Yuan],
Kasturi, R.,
Support vector clustering combined with spectral graph partitioning,
ICPR04(IV: 581-584).
IEEE DOI
0409
BibRef
Imbault, F.,
Lebart, K.,
A stochastic optimization approach for parameter tuning of support
vector machines,
ICPR04(IV: 597-600).
IEEE DOI
0409
BibRef
Hoi, S.C.H.[Steven C. H.],
Lyu, M.R.[Michael R.],
Group-based relevance feedback with support vector machine ensembles,
ICPR04(III: 874-877).
IEEE DOI
0409
BibRef
Chen, J.H.[Jiun-Hung],
M-estimator based robust kernels for support vector machines,
ICPR04(I: 168-171).
IEEE DOI
0409
BibRef
Gokcen, I.,
Joachim, D.,
Deller, J.R.,
Comparing optimal bounding ellipsoid and support vector machine active
learning,
ICPR04(I: 172-175).
IEEE DOI
0409
BibRef
Zhang, P.[Peng],
Peng, J.[Jing],
Riedel, N.,
Discriminant Analysis: A Least Squares Approximation View,
LCV05(III: 46-46).
IEEE DOI
0507
BibRef
Zhang, P.[Peng],
Peng, J.[Jing],
Efficient Regularized Least Squares Classification,
LCV04(98).
IEEE DOI
0406
BibRef
And:
SVM vs regularized least squares classification,
ICPR04(I: 176-179).
IEEE DOI
0409
BibRef
Tortorella, F.,
An empirical comparison of in-learning and post-learning optimization
schemes for tuning the support vector machines in cost-sensitive
applications,
CIAP03(560-566).
IEEE DOI
0310
BibRef
Yuan, C.[Chao],
Casasent, D.,
A novel support vector classifier with better rejection performance,
CVPR03(I: 419-424).
IEEE DOI
0307
BibRef
Vishwanathan, S.V.N.,
Murty, M.N.,
Geometric SVM: a fast and intuitive SVM algorithm,
ICPR02(II: 56-59).
IEEE DOI
0211
BibRef
Xiao, X.[Xipan],
Ai, H.Z.[Hai-Zhou],
Xu, G.Y.[Guang-You],
Pair-wise sequential reduced set for optimization of support vector
machines,
ICPR02(II: 860-863).
IEEE DOI
0211
BibRef
Zhong, S.W.[Sheng-Wei],
Chang, C.I.[Chein-I],
Zhang, Y.[Ye],
Iterative Support Vector Machine for Hyperspectral Image
Classification,
ICIP18(3309-3312)
IEEE DOI
1809
Hyperspectral imaging, Support vector machines,
Image classification, Information filters,
hyperspectral image classification
BibRef
Zhang, J.P.[Jun-Ping],
Zhang, Y.[Ye],
Zhou, T.X.[Ting-Xian],
Classification of Hyperspectral Data Using Support Vector Machine,
ICIP01(I: 882-885).
IEEE DOI
0108
BibRef
Nakamura, E.,
Murayama, N.,
Sawada, K.,
Okuizumi, H.,
RLGS Profile Segmentation Via a SVM,
ICIP01(I: 533-536).
IEEE DOI
0108
BibRef
Ben-Hur, A.,
Horn, D.,
Siegelmann, H.T.,
Vapnik, V.,
A Support Vector Clustering Method,
ICPR00(Vol II: 724-727).
IEEE DOI
0009
BibRef
Odone, F.,
Trucco, M.,
Verri, A.,
Visual Learning of Weight from Shape Using Support Vector Machines,
BMVC98(xx-yy).
BibRef
9800
Pawlak, M.,
Ng, M.F.Y.F.[M.F. Yat Fung],
On kernel and radial basis function techniques for classification and
function recovering,
ICPR94(B:454-456).
IEEE DOI
9410
BibRef
Pawlak, M.,
Siedlecki, W.,
Kernel classification rules in the presence of missing values,
ICPR90(I: 677-680).
IEEE DOI
9006
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Training Support Vector Machines, SVM Training, Learning .