Brice, C.R.[Claude R.], and
Fennema, C.L.[Claude L.],
Scene Analysis Using Regions,
AI(1), No. 3-4, Fall 1970, pp. 205-226.
BibRef
7000
CMetImAly77(79-100).
Elsevier DOI
Segmentation, Region Growing.
Segmentation, Edges.
Recognize Blocks World.
This paper was written when most researchers were concerned with
analyzing scenes using edge representations. The line and region
representation are combined by expanding the image by 2 in each
direction so that image points have both indices odd. Boundaries
are then formed by linking points in the grid where both indices
are even. This method was designed to simplify the process of
cutting regions, merging regions and determining the properties of
regions as a whole. The basic region merging method given above is
taken from this paper. An important criterion is that by merging
two regions, the total boundary should be somewhat less than the
total boundary length of the original regions. The second criterion
is the strength of the boundaries between two regions. This paper
also reports on using the regions for recognition of the block
structures in the image.
The work of Barrow and Popplestone (
See also Relational Descriptions in Picture Processing. )
is a special case of the region growing method of
this one.
BibRef
Yachida, M.[Masahiko],
Tsuji, S.[Saburo],
Application of Color Information to Visual Perception,
PR(3), No. 3, October 1971, pp. 307-318.
Elsevier DOI
Color.
Segmentation, Color. Color added to region growing.
BibRef
7110
Pavlidis, T.[Theodosios],
Segmentation of Pictures and Maps Through Functional Approximation,
CGIP(1), No. 4, December 1972, pp. 360-372.
Elsevier DOI A merging based segmentation algorithm.
For technique applied to contours:
See also Waveform Segmentation Through Functional Approximation.
BibRef
7212
Harlow, C.A.[Charles A.], and
Esenbeis, S.A.,
An Analysis of Radiographic Images,
TC(22), No. 7, July 1973, pp. 678-689.
BibRef
7307
Feldman, J.A.[Jerome A.],
Yakimovsky, Y.[Yoram],
Decision Theory and Artificial Intelligence:
I. A Semantics Based Region Analyzer,
AI(5), No. 4, 1974, pp. 349-371.
Elsevier DOI
Segmentation, Knowledge.
Relaxation.
Probability. This paper, based on the thesis of Yakimovsky
in 1973 (
See also Scene Analysis Using a Semantic Base for Region Growing. ), describes
the the use of a probabilistic model for guiding region merging.
The basic approach is to include the possible interpretation of the
regions in the merging criteria. The interpretation (probability
of a given interpretation) is based on the values measured in the
image, and the context (i.e. sky can be adjacent to the hill side).
The set of a priori probabilities must be given or derived for each
new type of scene.
BibRef
7400
Yakimovsky, Y.,
Boundary and Object Detection in Real World Images,
JACM(23), No. 4, October 1976, pp. 599-618.
BibRef
7610
Earlier:
IJCAI75(695-704).
BibRef
Yakimovsky, Y.[Yoram],
Feldman, J.A.[Jerome A.],
A Semantics-Based Decision Theory Region Analyzer,
IJCAI73(580-588).
BibRef
7300
And:
CMetImAly77(426-434).
A strong model drives the region grower, merging is
based on the identity and on the image level features.
BibRef
Yakimovsky, Y.[Yoram],
Feldman, J.A.[Jerome A.],
On the Recognition of Complex Structures:
Computer Software Using AI Applied to Pattern Recognition,
ICPR74(345-353).
BibRef
7400
Yakimovsky, Y.[Yoram],
Sequential Decision Based Edge Detection,
CGPR75(290-291).
BibRef
7500
Yakimovsky, Y.[Yoram],
Scene Analysis Using a Semantic Base for Region Growing,
Ph.D.Thesis (CS), July 1973.
BibRef
7307
Stanford AI-Memo 209.
Segmentation, Model Based.
Relaxation. A probabilistic model of the world is used to label various
regions and to merge like labeled regions to
get the final interpretation.
BibRef
Zucker, S.W.[Steven W.],
Region Growing: Childhood and Adolescence,
CGIP(5), No. 3, September 1976, pp. 382-399.
Elsevier DOI
Survey, Segmentation.
Segmentation, Survey.
BibRef
7609
Freuder, E.C.[Eugene C.],
Affinity: A Relative Approach to Region Finding,
CGIP(5), No. 2, June 1976, pp. 254-264.
Elsevier DOI For non-uniform surfaces where single threshold will not work.
BibRef
7606
Chen, P.C., and
Pavlidis, T.,
Image Segmentation as an Estimation Problem,
CGIP(12), No. 2, February 1980, pp. 153-172.
Elsevier DOI
BibRef
8002
Lai, P.G., and
Ehrich, R.W.,
Segmentation of Images with Incompletely Specified Regions,
SMC(9), 1979, pp. 864-868.
BibRef
7900
Pong, T.C.[Ting-Chuen],
Shapiro, L.G.[Linda G.],
Watson, L.T.[Layne T.], and
Haralick, R.M.[Robert M.],
Experiments in Segmentation Using a Facet Model Region Grower,
CVGIP(25), No. 1, January 1984, pp. 1-23.
Elsevier DOI
Segmentation, Facet Model.
BibRef
8401
Earlier: A1, A2, A4, Only:
A Facet Model Region Growing Algorithm,
PRIP81(279-284).
Another use of the facet model, it can now segment.
See also Edge and Region Analysis for Digital Image Data.
See also Facet Model for Image Data, A.
BibRef
Urquhart, R.[Roderick],
Graph Theoretical Clustering Based on Limited Neighbourhood Sets,
PR(15), No. 3, 1982, pp. 173-187.
Elsevier DOI Misses non-local properties.
BibRef
8200
Derin, H.[Haluk],
Won, C.S.[Chee-Sun],
A Parallel Image Segmentation Algorithm Using Relaxation with
Varying Neighborhoods and Its Mapping to Array Processors,
CVGIP(40), No. 1, October 1987, pp. 54-78.
Elsevier DOI
BibRef
8710
Besl, P.J., and
Jain, R.C.[Ramesh C.],
Segmentation Through Variable-Order Surface Fitting,
PAMI(10), No. 2, March 1988, pp. 167-192.
IEEE DOI
BibRef
8803
Earlier:
Segmentation Through Symbolic Surface Descriptions,
CVPR86(77-85).
Segmentation, Range.
Segmentation, Surfaces.
Segmentation, 3-D Data.
Surface Fitting. The system is intended for 3-D data, but was also applied to
standard images. Find a seed region that is uniform and grow it by
adding similar types of surfaces.
BibRef
Besl, P.J., and
Jain, R.C.,
Range Image Segmentation,
MVAAS88(XX-YY).
Represent surfaces with bivariate functions and use in recognition.
BibRef
8800
Monga, O.,
An Optimal Region Growing Algorithm for Image Segmentation,
PRAI(1), No. 4, December 1987, pp. 351-375.
BibRef
8712
Gagalowicz, A., and
Monga, O.,
A New Approach to Image Segmentation,
ICPR86(265-267).
BibRef
8600
Gambotto, J.P.,
A Hierarchical Segmentation Algorithm,
ICPR86(951-953).
BibRef
8600
Earlier:
Add A2:
Monga, O.,
A Parallel and Hierarchical Algorithm for Region Growing,
CVPR85(649-652).
(ETCA) Start from single pixel regions, merge based on the average
gray level in adjacent regions. Slow convergence. Sounds standard.
BibRef
Kegelmeyer, Jr., W.P.[William P.],
A Minimal Error Region Merging Technique for Segmentation,
CVPR83(144-145).
(Hughes-ES). Merge regions which would introduce the
least error in gray values.
BibRef
8300
Krakauer, L.J.,
Computer Analysis of Visual Properties of Curved Objects,
MIT Project
MAC-TR-82, May 1971.
BibRef
7105
And:
MIT AI-TR-234.
BibRef
Ph.D.Thesis (EE).
WWW Link.
Shape from Shading. Both shape from shading and region growing. Generate a tree
based on a series of thresholds.
BibRef
Adams, R.,
Bischof, L.,
Seeded Region Growing,
PAMI(16), No. 6, June 1994, pp. 641-647.
IEEE DOI
BibRef
9406
Narendra, P.M., and
Goldberg, M.,
Image Segmentation with Directed Trees,
PAMI(2), No. 2, March 1980, pp. 185-190.
BibRef
8003
Earlier:
A Graph-Theoretic Approach to Image Segmentation,
PRIP77(248-256).
BibRef
Snyder, W.E., and
Cowart, A.E.,
An Iterative Approach to Region Growing Using Associative Memories,
PAMI(5), No. 3, May 1983, pp. 349-352.
BibRef
8305
Earlier:
An Iterative Approach to Region Growing,
ICPR80(348-351).
BibRef
Beulieu, J.M.[Jean-Marie], and
Goldberg, M.[Morris],
Hierarchy in Picture Segmentation: A Stepwise Optimization Approach,
PAMI(11), No. 2, February 1989, pp. 150-163.
IEEE DOI
BibRef
8902
Earlier:
Step-Wise Optimization for Hierarchical Picture Segmentation,
CVPR83(59-64).
(Ottawa)
First break into basic regions (minimum
approximation error is used to determine how/when to stop). Then merge only
the best one first (rather than all that meet the criteria) until deciding to
stop. Intermediate segmentations represent different levels of separation of
the adjacent regions.
BibRef
Chang, Y.L.,
Li, X.B.,
Adaptive Image Region-Growing,
IP(3), No. 6, November 1994, pp. 868-872.
IEEE DOI
BibRef
9411
LaValle, S.M.,
Hutchinson, S.A.,
A Bayesian Framework for Constructing Probability-Distributions on the
Space of Image Segmentations,
CVIU(61), No. 2, March 1995, pp. 203-230.
DOI Link
BibRef
9503
LaValle, S.M.,
Hutchinson, S.A.,
A Bayesian Segmentation Methodology for Parametric Image-Models,
PAMI(17), No. 2, February 1995, pp. 211-217.
IEEE DOI
Bayes Nets.
BibRef
9502
And:
UIUCBI-AI-RCV-93-06, 1993.
BibRef
Earlier:
Bayesian Region Merging Probability for Parametric Image Models,
CVPR93(778-779).
IEEE DOI A good list of references for texture segmentation papers.
In some sources listed as:
Image Segmentation Using a Bayesian Region Merging Probability.
BibRef
LaValle, S.M.,
Moroney, K.J., and
Hutchinson, S.A.,
Agglomerative Clustering on Range Data with a Unified
Probabilistic Merging Function and Termination Criterion,
CVPR93(798-799).
IEEE DOI
BibRef
9300
Chang, Y.L.[Yian-Leng],
Li, X.B.[Xiao-Bo],
Fast image region growing,
IVC(13), No. 7, September 1995, pp. 559-571.
Elsevier DOI
0401
Effect of merge criteria.
BibRef
Chiarello, E.[Ernest],
Jolion, J.M.[Jean-Michel],
Amoros, C.[Claude],
Regions Growing with the Stochastic Pyramid:
Application in Landscape Ecology,
PR(29), No. 1, January 1996, pp. 61-75.
Elsevier DOI
BibRef
9601
Baraldi, A.,
Parmiggiani, F.,
Single Linkage Region Growing Algorithms Based on the
Vector Degree of Match,
GeoRS(34), No. 1, January 1996, pp. 137-148.
IEEE Top Reference.
BibRef
9601
Tremeau, A.[Alain],
Borel, N.[Nathalie],
A Region Growing and Merging Algorithm to Color Segmentation,
PR(30), No. 7, July 1997, pp. 1191-1203.
Elsevier DOI
9707
BibRef
And:
Correction:
PR(30), No. 10, October 1997, pp. 1799-1800.
BibRef
Moghaddamzadeh, A.,
Bourbakis, N.,
A Fuzzy Region Growing Approach for Segmentation of Color Images,
PR(30), No. 6, June 1997, pp. 867-881.
Elsevier DOI
9706
BibRef
Moghaddamzadeh, A.,
Goldman, D.,
Bourbakis, N.,
Fuzzy-Like Approach for Smoothing and Edge Detection in Color Images,
PRAI(12), No. 6, September 1998, pp. 801-816.
BibRef
9809
Moghaddamzadeh, A.,
Bourbakis, N.,
A Fuzzy Approach for Smoothing and Edge Detection in Color Images,
SPIE(2421), 1995, pp. 90-102.
BibRef
9500
Kamgar-Parsi, B.[Behrooz],
Object extraction in images,
US_Patent5,923,776, July 13, 1999.
HTML Version. Object extraction by region growing.
BibRef
9907
Kamgar-Parsi, B.,
Kamgar-Parsi, B.,
Improved Image Thresholding for Object Extraction in IR Images,
ICIP01(I: 758-761).
IEEE DOI
0108
BibRef
Yuan, X.,
Goldman, D.,
Moghaddamzadeh, A.,
Bourbakis, N.,
Segmentation of Colour Images with Highlights and Shadows Using
Fuzzy-like Reasoning,
PAA(4), No. 4 2001, pp. 272-282.
Springer DOI
0202
BibRef
Revol, C.,
Jourlin, M.,
A New Minimum-Variance Region Growing Algorithm For Image Segmentation,
PRL(18), No. 3, March 1997, pp. 249-258.
9706
BibRef
Thiran, J.P.,
Warscotte, V.,
Macq, B.,
A Queue-Based Region Growing Algorithm for Accurate Segmentation
of Multidimensional Digital Images,
SP(60), No. 1, July 1997, pp. 1-10.
9709
BibRef
Mehnert, A.J.H.,
Jackway, P.T.,
An Improved Seeded Region Growing Algorithm,
PRL(18), No. 10, October 1997, pp. 1065-1071.
9802
BibRef
Crespo, J.,
Schafer, R.W.,
Serra, J.,
Gratin, C.,
Meyer, F.,
The Flat Zone Approach:
A General Low-Level Region Merging Segmentation Method,
SP(62), No. 1, October 1997, pp. 37-60.
9801
BibRef
Hojjatoleslami, S.A.,
Kittler, J.V.,
Region Growing: A New Approach,
IP(7), No. 7, July 1998, pp. 1079-1084.
IEEE DOI
9807
BibRef
Earlier:
TRUniv. Surry, 1995.
BibRef
Coiras, E.[Enrique],
Santa-Maria, J.[Javier],
Miravet, C.[Carlos],
Hexadecagonal region growing,
PRL(19), No. 12, 30 October 1998, pp. 1111-1117.
BibRef
9810
Rosin, P.L.,
Refining Region Estimates,
PRAI(12), No. 6, September 1998, pp. 841.
BibRef
9809
Liu, J.M.[Ji-Ming],
Tang, Y.Y.[Yuan Y.],
Adaptive Image Segmentation With Distributed Behavior-Based Agents,
PAMI(21), No. 6, June 1999, pp. 544-551.
IEEE Abstract.
IEEE DOI Image is a 2-D cellular representation where the agent tries to label
homogeneous segments. (Region growing.)
See also Distributed Autonomous Agents For Chinese Document Image Segmentation.
BibRef
9906
Lira, J.,
Frulla, L.A.,
An automated region growing algorithm for segmentation of texture
regions in SAR images,
JRS(19), No. 18, December 1998, pp. 3595.
BibRef
9812
Osman, H.,
Blostein, S.D.,
Probabilistic Winner-Take-All Segmentation of Images with Application
to Ship Detection,
SMC-B(30), No. 3, June 2000, pp. 485-490.
IEEE Top Reference.
0006
BibRef
Shi, J.B.[Jian-Bo],
Malik, J.[Jitendra],
Normalized Cuts and Image Segmentation,
PAMI(22), No. 8, August 2000, pp. 888-905.
IEEE DOI Or:
PS File.
0010
BibRef
Earlier:
CVPR97(731-737).
IEEE DOI
9704
Perceptual Grouping.
Award, Longuet-Higgins. (Awarded 10 years later for contributions
that withstood the test of time.)
Arbitrary shape clusters.
PS File. Perceptual grouping approach to segmentation. Find an optimal partition
of the graph.
See also Normalized cut image segmenation software.
BibRef
Shi, J.B.[Jian-Bo],
Malik, J.[Jitendra],
Self-Inducing Relational Distance and its Application to
Image Segmentation,
ECCV98(I: 528).
Springer DOI Global minimum for segmentation, using graph method.
BibRef
9800
Cour, T.,
Yu, S., and
Shi, J.,
Normalized cut image segmenation software,
Online2006.
WWW Link.
Code, Segmentation.
Code, Segmentation, C. Matlab Code for segmentation and clustering.
C code for segmentation.
See also Normalized Cuts and Image Segmentation.
BibRef
0600
Shi, J.,
Belongie, S.J.,
Leung, T.,
Malik, J.,
Image and video segmentation: the normalized cut framework,
ICIP98(I: 943-947).
IEEE DOI
9810
BibRef
Fan, J.P.[Jian-Ping],
Yau, D.K.Y.,
Elmagarmid, A.K.,
Aref, W.G.,
Automatic image segmentation by integrating color-edge extraction and
seeded region growing,
IP(10), No. 10, October 2001, pp. 1454-1466.
IEEE DOI
0110
BibRef
Fan, J.P.[Jian-Ping],
Zhu, X.Q.[Xing-Quan],
Wu, L.D.[Li-De],
Automatic model-based semantic object extraction algorithm,
CirSysVideo(11), No. 10, October 2001, pp. 1073-1084.
IEEE Top Reference.
0110
BibRef
Guigues, L.[Laurent],
Le Men, H.[Hervé],
Cocquerez, J.P.[Jean-Pierre],
The hierarchy of the cocoons of a graph and its application to image
segmentation,
PRL(24), No. 8, May 2003, pp. 1059-1066.
Elsevier DOI
0304
See also Scale-Sets Image Analysis.
BibRef
Wan, S.Y.[Shu-Yen],
Higgins, W.E.,
Symmetric Region Growing,
IP(12), No. 9, September 2003, pp. 1007-1015.
IEEE DOI
0308
BibRef
Earlier:
ICIP00(Vol II: 96-99).
IEEE DOI
0008
Define criteria invariant to the starting seed regions.
BibRef
Wan, S.Y.,
Nung, E.,
Seed-invariant Region Growing:
Its Properties and Applications to 3-d Medical CT Images,
ICIP01(I: 710-713).
IEEE DOI
0108
BibRef
Lallich, S.[Stéphane],
Muhlenbach, F.[Fabrice],
Jolion, J.M.[Jean-Michel],
A test to control a region growing process within a hierarchical graph,
PR(36No. 10, October 2003, pp. 2201-2211.
Elsevier DOI
0308
BibRef
Brun, L.[Luc],
Domenger, J.P.[Jean-Philippe],
Mokhtari, M.[Myriam],
Incremental modifications of segmented image defined by discrete maps,
JVCIR(14), No. 3, September 2003, pp. 251-290.
Elsevier DOI
0308
BibRef
Veenman, C.J.,
Reinders, M.J.T.,
Backer, E.,
A cellular coevolutionary algorithm for image segmentation,
IP(12), No. 3, March 2003, pp. 304-316.
IEEE DOI
0301
BibRef
Cheng, S.C.,
Region-growing approach to colour segmentation using 3D clustering and
relaxation labelling,
VISP(150), No. 4, August 2003, pp. 270-276.
IEEE Abstract.
0311
Group pixels into homogeneous regions by combining 3D clustering and
relaxation labelling techniques. Each resulting small region is then
merged to the region which is the nearest to it in terms of colour
similarity and spatial proximity.
BibRef
Montoya, M.G.,
Gil, C., and
Garcia, I.,
The load unbalancing problem for region growing
image segmentation algorithms,
PDS(63), 2003, pp. 387-395.
Implementation for region growing.
BibRef
0300
Chuang, C.H.,
Lie, W.N.,
A Downstream Algorithm Based on Extended Gradient Vector Flow Field for
Object Segmentation,
IP(13), No. 10, October 2004, pp. 1379-1392.
IEEE DOI
0410
BibRef
Earlier:
Region Growing Based on Extended Gradient Vector Flow Field Model for
Multiple Objects Segmentation,
ICIP01(III: 74-77).
IEEE DOI
0108
BibRef
Nock, R.[Richard],
Nielsen, F.,
Statistical Region Merging,
PAMI(26), No. 11, November 2004, pp. 1452-1458.
IEEE Abstract.
0410
BibRef
Earlier:
On region merging: the statistical soundness of fast sorting, with
applications,
CVPR03(II: 19-26).
IEEE DOI
0307
Analysis of merging in a particular order.
See also Semi-supervised statistical region refinement for color image segmentation.
BibRef
Nielsen, F.,
Nock, R.,
Consensus Region Merging for Image Segmentation,
ACPR13(325-329)
IEEE DOI
1408
image resolution
BibRef
Fiorio, C.[Christophe],
Mas, A.[Andre],
A Sharp Concentration-Based Adaptive Segmentation Algorithm,
ISVC10(II: 85-96).
Springer DOI
1011
BibRef
Fiorio, C.,
Nock, R.,
A Concentration-Based Adaptive Approach to Region Merging of Optimal
Time and Space Complexities,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Fiorio, C.,
Sorted Region Merging to Maximize Test Reliability,
ICIP00(Vol I: 808-811).
IEEE DOI
0008
BibRef
Barbu, A.,
Zhu, S.C.[Song-Chun],
Generalizing Swendsen-Wang to Sampling Arbitrary Posterior
Probabilities,
PAMI(27), No. 8, August 2005, pp. 1239-1253.
IEEE Abstract.
0506
BibRef
Earlier:
Multigrid and Multi-Level Swendsen-Wang Cuts for Hierarchic Graph
Partition,
CVPR04(II: 731-738).
IEEE DOI
0408
BibRef
Earlier:
Graph partition by Swendsen-Wang cuts,
ICCV03(320-327).
IEEE DOI
0311
BibRef
Fan, J.P.[Jian-Ping],
Zeng, G.H.[Gui-Hua],
Body, M.[Mathurin],
Hacid, M.S.[Mohand-Said],
Seeded region growing: an extensive and comparative study,
PRL(26), No. 8, June 2005, pp. 1139-1156.
Elsevier DOI
0506
BibRef
Shih, F.Y.[Frank Y.],
Cheng, S.X.[Shou-Xian],
Automatic seeded region growing for color image segmentation,
IVC(23), No. 10, 20 September 2005, pp. 877-886.
Elsevier DOI
0509
BibRef
Kim, C.[Changick],
Segmenting a low-depth-of-field image using morphological filters and
region merging,
IP(14), No. 10, October 2005, pp. 1503-1511.
IEEE DOI
0510
BibRef
Grady, L.[Leo],
Random Walks for Image Segmentation,
PAMI(28), No. 11, November 2006, pp. 1768-1783.
IEEE DOI
0609
BibRef
Earlier:
Multilabel Random Walker Image Segmentation Using Prior Models,
CVPR05(I: 763-770).
IEEE DOI
0507
See also Isoperimetric Graph Partitioning for Image Segmentation. Interactive Segmentation. Start with small number of user labeled pixels.
Determine probability a random walk will get from unlabeled to labeled.
BibRef
Dupuis, A.[Arnaud],
Vasseur, P.[Pascal],
Image segmentation by cue selection and integration,
IVC(24), No. 10, 1 October 2006, pp. 1053-1064.
Elsevier DOI
0609
Image partitioning; Affinity matrices; Cue selection; Integration; PCA
Segmentation as graph partitioning, pixel similarity the link.
PCA at each iteration to determine affinity.
BibRef
Brunner, D.[Dominik],
Soille, P.[Pierre],
Iterative area filtering of multichannel images,
IVC(25), No. 8, 1 August 2007, pp. 1352-1364.
Elsevier DOI
0706
Partition; Image simplification; Quasi-flat zone; Seeded region growing;
Mathematical morphology; Area filter; Connected operator; Multispectral
BibRef
von Wangenheim, A.[Aldo],
Bertoldi, R.F.[Rafael F.],
Abdala, D.D.[Daniel D.],
Richter, M.M.[Michael M.],
Color image segmentation guided by a color gradient network,
PRL(28), No. 13, 1 October 2007, pp. 1795-1803.
Elsevier DOI
0709
Region-growing segmentation; Natural color scenes; Color gradient networks
BibRef
von Wangenheim, A.[Aldo],
Bertoldi, R.F.[Rafael F.],
Abdala, D.D.[Daniel D.],
Sobieranski, A.C.,
Coser, L.,
Jiang, X.,
Richter, M.M.,
Priese, L.,
Schmitt, F.,
Color image segmentation using an enhanced Gradient Network Method,
PRL(30), No. 15, 1 November 2009, pp. 1404-1412.
Elsevier DOI
0910
Color image segmentation; Region-growing; Outdoors scenes; Gradient
Network Method
BibRef
Carvalho, L.E.,
Mantelli Neto, S.L.,
von Wangenheim, A.,
Sobieranski, A.C.,
Coser, L.,
Comunello, E.,
Hybrid Color Segmentation Method Using a Customized Nonlinear
Similarity Function,
IJIG(14), No. 1-2, 2014, pp. 1450005.
DOI Link
1406
BibRef
Carvalho, L.E.,
Mantelli Neto, S.L.,
Sobieranski, A.C.,
Comunello, E.,
von Wangenheim, A.,
Improving Graph-Based Image Segmentation Using Nonlinear Color
Similarity Metrics,
IJIG(15), No. 04, 2015, pp. 1550018.
DOI Link
1509
BibRef
Udupa, J.K.[Jayaram K.],
Ajjanagadde, V.G.[Venkatramana G.],
Boundary and Object Labelling in Three-Dimensional Images,
CVGIP(51), No. 3, September 1990, pp. 355-369.
Elsevier DOI Generate the surfaces from slices.
BibRef
9009
Udupa, J.K.[Jayaram K.],
Samarasekera, S.,
Fuzzy Connectedness and Object Definition:
Theory, Algorithms, and Applications in Image Segmentation,
GMIP(58), No. 3, May 1996, pp. 246-261.
9606
BibRef
Saha, P.K.[Punam K.],
Udupa, J.K.[Jayaram K.],
Fuzzy Connected Object Delineation: Axiomatic Path Strength Definition
and the Case of Multiple Seeds,
CVIU(83), No. 3, September 2001, pp. 275-295.
DOI Link Extension of previous theory for fuzzy connections.
Each pair has a connectedness strength.
The maximum of path strengths of minimum of affinities along each path
is the only valid measure.
0110
BibRef
Saha, P.K.[Punam K.],
Udupa, J.K.[Jayaram K.],
Odhner, D.[Dewey],
Scale-Based Fuzzy Connected Image Segmentation:
Theory, Algorithms, and Validation,
CVIU(77), No. 2, February 2000, pp. 145-174.
DOI Link
0003
BibRef
Zhuge, Y.[Ying],
Udupa, J.K.[Jayaram K.],
Saha, P.K.[Punam K.],
Vectorial scale-based fuzzy-connected image segmentation,
CVIU(101), No. 3, March 2006, pp. 177-193.
Elsevier DOI
0601
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Udupa, J.K.[Jayaram K.],
Affinity functions in fuzzy connectedness based image segmentation I:
Equivalence of affinities,
CVIU(114), No. 1, January 2010, pp. 146-154.
Elsevier DOI
1001
Affinity; Fuzzy connectedness; Image segmentation; Equivalence of algorithms
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Udupa, J.K.[Jayaram K.],
Affinity functions in fuzzy connectedness based image segmentation II:
Defining and recognizing truly novel affinities,
CVIU(114), No. 1, January 2010, pp. 155-166.
Elsevier DOI
1001
Affinity; Fuzzy connectedness; Image segmentation; Equivalence of algorithms
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Udupa, J.K.[Jayaram K.],
A framework for comparing different image segmentation methods and its
use in studying equivalences between level set and fuzzy connectedness
frameworks,
CVIU(115), No. 6, June 2011, pp. 721-734.
Elsevier DOI
1104
Segmentation; Delineation; Algorithm equivalence; Convergence; Level
sets; Fuzzy connectedness; Medical images
BibRef
Zhuge, Y.[Ying],
Udupa, J.K.[Jayaram K.],
Intensity standardization simplifies brain MR image segmentation,
CVIU(113), No. 10, October 2009, pp. 1095-1103.
Elsevier DOI
0910
Inhomogeneity correction; Standardization; Fuzzy connectedness; Brain
image segmentation; MRI
BibRef
Saha, P.K.[Punam K.],
Udupa, J.K.[Jayaram K.],
Relative Fuzzy Connectedness among Multiple Objects:
Theory, Algorithms, and Applications in Image Segmentation,
CVIU(82), No. 1, April 2001, pp. 42-56.
DOI Link
0001
Fuzzy connectedness: assign strength to every path between every pair of
elements.
BibRef
Udupa, J.K.[Jayaram K.],
Saha, P.K.[Punam K.],
de Alencar Lotufo, R.[Roberto],
Relative Fuzzy Connectedness and Object Definition:
Theory, Algorithms, and Applications in Image Segmentation,
PAMI(24), No. 11, November 2002, pp. 1485-1500.
IEEE Abstract.
0211
See also Disclaimer: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation.
BibRef
Editors, T.[The],
Disclaimer: 'Relative fuzzy connectedness and object definition:
theory, algorithms, and applications in image segmentation',
PAMI(26), No. 2, February 2004, pp. 287-287.
See also Relative Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation.
See also Multiseeded Segmentation Using Fuzzy Connectedness.
IEEE Abstract.
0402
BibRef
Udupa, J.K.[Jayaram K.],
Saha, P.K.[Punam K.],
Fuzzy connectedness and image segmentation,
PIEEE(91), No. 10, October 2003, pp. 1649-1669.
IEEE DOI
0310
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Udupa, J.K.[Jayaram K.],
Saha, P.K.[Punam K.],
Zhuge, Y.[Ying],
Iterative relative fuzzy connectedness for multiple objects with
multiple seeds,
CVIU(107), No. 3, September 2007, pp. 160-182.
Elsevier DOI
0709
Image segmentation; Path strength; Path connectedness; Fuzzy connectedness
Baed on strength of connection between each pair of points.
BibRef
Yu, Q.Y.[Qi-Yao],
Clausi, D.A.[David A.],
SAR Sea-Ice Image Analysis Based on Iterative Region Growing Using
Semantics,
GeoRS(45), No. 12, December 2007, pp. 3919-3931.
IEEE DOI
0711
Sea Ice.
BibRef
Earlier:
Joint Image Segmentation and Interpretation Using Iterative Semantic
Region Growing on SAR Sea Ice Imagery,
ICPR06(II: 223-226).
IEEE DOI
0609
BibRef
And:
Filament Preserving Segmentation for SAR Sea Ice Imagery Using a New
Statistical Model,
ICPR06(IV: 849-852).
IEEE DOI
0609
BibRef
Earlier:
Combining Local and Global Features for Image Segmentation Using
Iterative Classification and Region Merging,
CRV05(579-586).
IEEE DOI
0505
BibRef
Yang, X.Z.[Xue-Zhi],
Clausi, D.A.[David A.],
SAR sea ice image segmentation using an edge-preserving region-based
MRF,
ICIP09(1721-1724).
IEEE DOI
0911
BibRef
Earlier:
SAR Sea Ice Image Segmentation Based on Edge-preserving Watersheds,
CRV07(426-431).
IEEE DOI
0705
BibRef
Yu, Q.Y.[Qi-Yao],
Clausi, D.A.[David A.],
IRGS: Image Segmentation Using Edge Penalties and Region Growing,
PAMI(30), No. 12, December 2008, pp. 2126-2139.
IEEE DOI
0811
Iterative Region Growing using Semantics.
BibRef
Qin, A.K.,
Clausi, D.A.[David A.],
Multivariate Image Segmentation Using Semantic Region Growing with
Adaptive Edge Penalty,
IP(19), No. 8, August 2010, pp. 2157-2170.
IEEE DOI
1008
BibRef
Yu, P.,
Qin, A.K.,
Clausi, D.A.,
Unsupervised Polarimetric SAR Image Segmentation and Classification
Using Region Growing With Edge Penalty,
GeoRS(50), No. 4, April 2012, pp. 1302-1317.
IEEE DOI
1204
BibRef
Ding, J.,
Ma, R.,
Chen, S.,
A Scale-Based Connected Coherence Tree Algorithm for Image Segmentation,
IP(17), No. 2, February 2008, pp. 204-216.
IEEE DOI
0801
adaptive spatial scale and an appropriate intensity-difference scale
For object extraction and figure-ground.
BibRef
Castilla, G.[Guillermo],
Hay, G.G.[Geoffrey G.],
Ruiz-Gallardo, J.R.[Jose R.],
Size-constrained Region Merging (SCRM): An Automated Delineation Tool
for Assisted Photointerpretation,
PhEngRS(74), No. 4, April 2008, pp. 409-420.
WWW Link.
0804
Generation of an initial template for assisted photointerpretation
including rationale and implementation with illustrated examples.
BibRef
Chan, D.Y.[Din-Yuen],
Lin, C.H.[Chih-Hsueh],
Hsieh, W.S.[Wen-Shyong],
Image Segmentation with Fast Wavelet-Based Color Segmenting and
Directional Region Growing,
IEICE(E88-D), No. 10, October 2005, pp. 2249-2259.
DOI Link
0510
BibRef
Regentova, E.[Emma],
Yao, D.S.[Dong-Sheng],
Latifi, S.[Shahram],
Zheng, J.[Jun],
Image Segmentation Using Ncut In The Wavelet Domain,
IJIG(6), No. 4, October 2006, pp. 569-582.
0610
BibRef
Garduńo, E.[Edgar],
Herman, G.T.[Gabor T.],
Parallel fuzzy segmentation of multiple objects,
IJIST(18), No. 5-6, 2008, pp. 336-344.
DOI Link
0804
Segmentation with fuzzy connectedness.
BibRef
Fu, Z.Y.[Zhou-Yu],
Robles-Kelly, A.[Antonio],
A quadratic programming approach to image labelling,
IET-CV(2), No. 4, December 2008, pp. 193-207.
DOI Link
0905
BibRef
Earlier:
A fast hierarchical approach to image segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Lu, F.F.[Fang-Fang],
Fu, Z.Y.[Zhou-Yu],
Robles-Kelly, A.[Antonio],
Efficient Graph Cuts for Multiclass Interactive Image Segmentation,
ACCV07(II: 134-144).
Springer DOI
0711
BibRef
Robles-Kelly, A.[Antonio],
Segmentation via Graph-Spectral Methods and Riemannian Geometry,
CAIP05(661).
Springer DOI
0509
BibRef
Ghosh, S.[Susmita],
Kothari, M.[Megha],
Halder, A.[Anindya],
Ghosh, A.[Ashish],
Use of aggregation pheromone density for image segmentation,
PRL(30), No. 10, 15 July 2009, pp. 939-949.
Elsevier DOI
0906
BibRef
Earlier: A1, A2, A4, Only:
Aggregation Pheromone Density Based Image Segmentation,
ICCVGIP06(118-127).
Springer DOI
0612
Aggregation pheromone; Ant colony optimization; Clustering; Image segmentation
BibRef
Halder, A.[Anindya],
Ghosh, S.[Susmita],
Ghosh, A.[Ashish],
Aggregation pheromone metaphor for semi-supervised classification,
PR(46), No. 8, August 2013, pp. 2239-2248.
Elsevier DOI
1304
Semi-supervised classification; Self-training; Ant colony; Aggregation
pheromone
BibRef
Garcia Ugarriza, L.,
Saber, E.,
Vantaram, S.R.,
Amuso, V.,
Shaw, M.,
Bhaskar, R.,
Automatic Image Segmentation by Dynamic Region Growth and
Multiresolution Merging,
IP(18), No. 10, October 2009, pp. 2275-2288.
IEEE DOI
0909
BibRef
Vantaram, S.R.[Sreenath Rao],
Saber, E.[Eli],
Dianat, S.A.[Sohail A.],
Shaw, M.[Mark],
Bhaskar, R.[Ranjit],
An adaptive and progressive approach for efficient Gradient-based
multiresolution color image segmentation,
ICIP09(2369-2372).
IEEE DOI
0911
Rochester IT.
BibRef
Aptoula, E.[Erchan],
Lefčvre, S.[Sébastien],
Morphological Description of Color Images for Content-Based Image
Retrieval,
IP(18), No. 11, November 2009, pp. 2505-2517.
IEEE DOI
0911
BibRef
Earlier:
A Basin Morphology Approach to Colour Image Segmentation by Region
Merging,
ACCV07(I: 935-944).
Springer DOI
0711
Color image segmentation in the context of morphology.
See also alpha-Trimmed lexicographical extrema for pseudo-morphological image analysis.
BibRef
Aptoula, E.[Erchan],
Remote Sensing Image Retrieval With Global Morphological Texture
Descriptors,
GeoRS(52), No. 5, May 2014, pp. 3023-3034.
IEEE DOI
1403
Context
BibRef
Aptoula, E.,
Courty, N.,
Lefčvre, S.[Sébastien],
An end-member based ordering relation for the morphological
description of hyperspectral images,
ICIP14(5097-5101)
IEEE DOI
1502
Accuracy
BibRef
Aptoula, E.[Erchan],
Pham, M.T.[Minh-Tan],
Lefčvre, S.[Sébastien],
Quasi-Flat Zones for Angular Data Simplification,
ISMM17(342-354).
Springer DOI
1706
BibRef
Aptoula, E.[Erhan],
Weber, J.[Jonathan],
Lefčvre, S.[Sébastien],
Vectorial Quasi-flat Zones for Color Image Simplification,
ISMM13(231-242).
Springer DOI
1305
BibRef
Bosilj, P.[Petra],
Aptoula, E.[Erchan],
Lefčvre, S.[Sébastien],
Kijak, E.[Ewa],
Retrieval of Remote Sensing Images with Pattern Spectra Descriptors,
IJGI(5), No. 12, 2016, pp. 228.
DOI Link
1612
BibRef
Wu, J.[Jue],
Cai, W.C.[Wen-Chao],
Chung, A.C.S.[Albert C.S.],
POSIT: Part-based object segmentation without intensive training,
PR(43), No. 3, March 2010, pp. 676-684.
Elsevier DOI
1001
BibRef
Earlier: A2, A1, A3:
Shape-Based Image Segmentation Using Normalized Cuts,
ICIP06(1101-1104).
IEEE DOI
0610
Object segmentation; Training; Horse and cow segmentation; Part-based model
BibRef
Shi, W.,
Liu, K.,
Huang, C.,
A Fuzzy-Topology-Based Area Object Extraction Method,
GeoRS(48), No. 1, January 2010, pp. 147-154.
IEEE DOI
1001
BibRef
Calderero, F.[Felipe],
Marques, F.[Ferran],
Region Merging Techniques Using Information Theory Statistical Measures,
IP(19), No. 6, June 2010, pp. 1567-1586.
IEEE DOI
1006
BibRef
And:
Region merging parameter dependency as information diversity to create
sparse hierarchies of partitions,
ICIP10(2237-2240).
IEEE DOI
1009
BibRef
Earlier:
General region merging approaches based on information theory
statistical measures,
ICIP08(3016-3019).
IEEE DOI
0810
BibRef
Samsudin, N.A.[Noor A.],
Bradley, A.P.[Andrew P.],
Nearest neighbour group-based classification,
PR(43), No. 10, October 2010, pp. 3458-3467.
Elsevier DOI
1007
BibRef
Earlier:
Group-based meta-classification,
ICPR08(1-4).
IEEE DOI
0812
Group-based classification; Nearest neighbour; Compound classification
Label groups of homogeneous samples rather than single samples
BibRef
Zhang, L.[Lei],
Ji, Q.A.[Qi-Ang],
Image Segmentation with a Unified Graphical Model,
PAMI(32), No. 8, August 2010, pp. 1406-1425.
IEEE DOI
1007
Both causal and noncausal relationships among random variables.
Conditional Random Field model, multilayer Bayesian Network.
BibRef
Zhang, L.[Lei],
Wang, X.[Xun],
Penwarden, N.[Nicholas],
Ji, Q.A.[Qi-Ang],
An Image Segmentation Framework Based on Patch Segmentation Fusion,
ICPR06(II: 187-190).
IEEE DOI
0609
BibRef
Zhang, L.[Lei],
Ji, Q.A.[Qi-Ang],
A Bayesian Network Model for Automatic and Interactive Image
Segmentation,
IP(20), No. 9, September 2011, pp. 2582-2593.
IEEE DOI
1109
BibRef
Zhang, L.[Lei],
Ji, Q.A.[Qi-Ang],
A multiscale hybrid model exploiting heterogeneous contextual
relationships for image segmentation,
CVPR09(2828-2835).
IEEE DOI
0906
BibRef
Earlier:
Integration of multiple contextual information for image segmentation
using a Bayesian Network,
SLAM08(1-6).
IEEE DOI
0806
BibRef
Cheng, M.M.[Ming-Ming],
Zhang, G.X.[Guo-Xin],
Connectedness of Random Walk Segmentation,
PAMI(33), No. 1, January 2011, pp. 200-202.
IEEE DOI
1011
See also Random Walks for Image Segmentation. Prior conclusions regarding connectedness may not be true.
BibRef
Peng, B.[Bo],
Zhang, L.[Lei],
Zhang, D.[David],
Yang, J.[Jian],
Image segmentation by iterated region merging with localized graph cuts,
PR(44), No. 10-11, October-November 2011, pp. 2527-2538.
Elsevier DOI
1101
BibRef
Earlier: A1, A2, A4, Only:
Iterated Graph Cuts for Image Segmentation,
ACCV09(II: 677-686).
Springer DOI
0909
Image segmentation; Graph cuts; Region merging
BibRef
Peng, B.[Bo],
Zhang, L.[Lei],
Zhang, D.[David],
A survey of graph theoretical approaches to image segmentation,
PR(46), No. 3, March 2013, pp. 1020-1038.
Elsevier DOI
1212
Survey, Segmentation. Image segmentation; Graph theoretical methods; Minimal spanning tree;
Graph cut
BibRef
Peng, B.[Bo],
Zhang, L.[Lei],
Zhang, D.[David],
Automatic Image Segmentation by Dynamic Region Merging,
IP(20), No. 12, December 2011, pp. 3592-3605.
IEEE DOI
1112
BibRef
Alpert, S.[Sharon],
Galun, M.[Meirav],
Brandt, A.[Achi],
Basri, R.[Ronen],
Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue
Integration,
PAMI(34), No. 2, February 2012, pp. 315-327.
IEEE DOI
1112
BibRef
Earlier: A1, A2, A4, A3:
CVPR07(1-8).
IEEE DOI
0706
Bottom-up proces, incrementally merge pixels.
Probabilistic test to merge adjacent regions.
Linear in number of pixels.
BibRef
Ofir, N.,
Galun, M.[Meirav],
Nadler, B.[Boaz],
Basri, R.[Ronen],
Fast Detection of Curved Edges at Low SNR,
CVPR16(213-221)
IEEE DOI
1612
BibRef
Wang, Y.Q.[Yi-Qing],
Trouvé, A.[Alain],
Amit, Y.[Yali],
Nadler, B.[Boaz],
Detecting Curved Edges in Noisy Images in Sublinear Time,
JMIV(59), No. 3, November 2017, pp. 373-393.
Springer DOI
1710
BibRef
Alpert, S.[Sharon],
Galun, M.[Meirav],
Nadler, B.[Boaz],
Basri, R.[Ronen],
Detecting Faint Curved Edges in Noisy Images,
ECCV10(IV: 750-763).
Springer DOI
1009
BibRef
Mendoza, C.S.[Carlos S.],
Acha, B.[Begońa],
Serrano, C.[Carmen],
Gómez-Cía, T.[Tomás],
Fast parameter-free region growing segmentation with application to
surgical planning,
MVA(23), No. 1, January 2012, pp. 165-177.
WWW Link.
1201
BibRef
Chen, J.J.[Jiann-Jone],
Su, C.R.[Chun-Rong],
Grimson, W.E.L.,
Liu, J.L.[Jun-Lin],
Shiue, D.H.[De-Hui],
Object Segmentation of Database Images by Dual Multiscale Morphological
Reconstructions and Retrieval Applications,
IP(21), No. 2, February 2012, pp. 828-843.
IEEE DOI
1201
BibRef
Earlier: A2, A1, A4, A5, Only:
Reconfigurable Peer-to-Peer network Image Retrieval,
VCIP11(1-4).
IEEE DOI
1201
Define the background to extract the object.
BibRef
Tilton, J.C.,
Tarabalka, Y.,
Montesano, P.M.,
Gofman, E.,
Best Merge Region-Growing Segmentation With Integrated Nonadjacent
Region Object Aggregation,
GeoRS(50), No. 11, November 2012, pp. 4454-4467.
IEEE DOI
1210
BibRef
Dawoud, A.[Amer],
Netchaev, A.[Anton],
Fusion of visual cues of intensity and texture in Markov random fields
image segmentation,
IET-CV(6), No. 6, 2012, pp. 603-609.
DOI Link
1301
BibRef
Earlier:
Fusion of Edge Information in Markov Random Fields Region Growing Image
Segmentation,
ICIAR10(I: 96-104).
Springer DOI
1006
BibRef
Han, Y.[Yu],
Feng, X.C.[Xiang-Chu],
Baciu, G.[George],
Variational and PCA based natural image segmentation,
PR(46), No. 7, July 2013, pp. 1971-1984.
Elsevier DOI
1303
Image segmentation; Principal component analysis; Region competition;
Variable splitting; Iterative reweighting
BibRef
Han, Y.[Yu],
Feng, X.C.[Xiang-Chu],
Baciu, G.[George],
Local joint entropy based non-rigid multimodality image registration,
PRL(34), No. 12, 1 September 2013, pp. 1405-1415.
Elsevier DOI
1306
Image registration; Non-rigid; Weighted Horn regularization;
Variational differential; Alternative minimization; AOS algorithm
BibRef
Weber, J.[Jonathan],
Lefčvre, S.[Sébastien],
Fast quasi-flat zones filtering using area threshold and region merging,
JVCIR(24), No. 3, April 2013, pp. 397-409.
Elsevier DOI
1303
Quasi-flat zones; Mathematical Morphology; Quasi-flat zones filtering;
Image segmentation; Image simplification; Interactive segmentation;
Video segmentation; Oversegmentation reduction
BibRef
Priego, B.[Blanca],
Souto, D.[Daniel],
Bellas, F.[Francisco],
Duro, R.J.[Richard J.],
Hyperspectral image segmentation through evolved cellular automata,
PRL(34), No. 14, 2013, pp. 1648-1658.
Elsevier DOI
1308
Hyperspectral imaging
BibRef
Sáez, A.[Aurora],
Serrano, C.[Carmen],
Acha, B.[Begońa],
Normalized Cut optimization based on color perception findings:
A comparative study,
MVA(25), No. 7, October 2014, pp. 1813-1823.
WWW Link.
1410
Springer DOI For color segmentation.
See also Normalized Cuts and Image Segmentation.
BibRef
Kalinin, P.[Pavel],
Sirota, A.[Aleksandr],
A graph based approach to hierarchical image over-segmentation,
CVIU(130), No. 1, 2015, pp. 80-86.
Elsevier DOI
1411
Segmentation
BibRef
Zhao, Q.P.[Qin-Pei],
Shi, Y.[Yang],
Liu, Q.[Qin],
Fränti, P.[Pasi],
A grid-growing clustering algorithm for geo-spatial data,
PRL(53), No. 1, 2015, pp. 77-84.
Elsevier DOI
1502
Apply region growing ideas to clustering.
Grid-based clustering
BibRef
García, J.F.G.[Juan F. García],
Venegas-Andraca, S.E.[Salvador E.],
Region-based approach for the spectral clustering Nyström approximation
with an application to burn depth assessment,
MVA(26), No. 2-3, April 2015, pp. 353-368.
Springer DOI
1504
BibRef
Fan, M.J.[Min-Jie],
Lee, T.C.M.,
Variants of seeded region growing,
IET-IPR(9), No. 6, 2015, pp. 478-485.
DOI Link
1507
image segmentation
BibRef
Lassalle, P.,
Inglada, J.,
Michel, J.,
Grizonnet, M.,
Malik, J.,
A Scalable Tile-Based Framework for Region-Merging Segmentation,
GeoRS(53), No. 10, October 2015, pp. 5473-5485.
IEEE DOI
1509
image segmentation
BibRef
Rzeszutek, R.[Richard],
Androutsos, D.[Dimitrios],
Propagating sparse labels through edge-aware filters,
SIViP(9), No. 1 Supp, December 2015, pp. 17-24.
Springer DOI
1601
BibRef
Maggiori, E.[Emmanuel],
Tarabalka, Y.[Yuliya],
Charpiat, G.[Guillaume],
Optimizing Partition Trees for Multi-Object Segmentation with Shape
Prior,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Baltaxe, M.[Michael],
Meer, P.[Peter],
Lindenbaum, M.[Michael],
Local Variation as a Statistical Hypothesis Test,
IJCV(117), No. 2, April 2016, pp. 131-141.
Springer DOI
1604
Oversegmentation.
BibRef
Li, Q.W.[Qian-Wen],
Wei, Z.H.[Zhi-Hua],
Zhao, C.R.[Cai-Rong],
Optimized Automatic Seeded Region Growing Algorithm with Application
to ROI Extraction,
IJIG(17), No. 04, 2017, pp. 1750024.
DOI Link
1711
BibRef
Zhou, D.G.[Dong-Guo],
Shao, Y.H.[Yan-Hua],
Region growing for image segmentation using an extended PCNN model,
IET-IPR(12), No. 5, May 2018, pp. 729-737.
DOI Link
1804
BibRef
Gemme, L.[Laura],
Dellepiane, S.G.[Silvana G.],
An Automatic Data-Driven Method for SAR Image Segmentation in Sea
Surface Analysis,
GeoRS(56), No. 5, May 2018, pp. 2633-2646.
IEEE DOI
1805
BibRef
Earlier:
A New Graph-Based Method for Automatic Segmentation,
CIAP15(I:601-611).
Springer DOI
1511
Cost function, Image segmentation, Marine vehicles, Oils,
Radar imaging, Robustness, Synthetic aperture radar,
unsupervised
BibRef
Coliban, R.M.[Radu-Mihai],
Ivanovici, M.[Mihai],
Reducing the oversegmentation induced by quasi-flat zones for
multivariate images,
JVCIR(53), 2018, pp. 281-293.
Elsevier DOI
1805
Quasi-flat zones, Mathematical morphology,
Color image segmentation, Hyperspectral pixel classification,
EDICS: 4.4 morphological image analysis
BibRef
Li, C.M.[Cheng-Ming],
Yin, Y.[Yong],
Liu, X.L.[Xiao-Li],
Wu, P.[Pengda],
An Automated Processing Method for Agglomeration Areas,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link
1806
Some of the same issues as merging regions.
BibRef
Tang, H.[Hong],
Zhai, X.J.[Xue-Jun],
Huang, W.[Wei],
Edge Dependent Chinese Restaurant Process for Very High Resolution
(VHR) Satellite Image Over-Segmentation,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Su, T.F.[Teng-Fei],
Scale-variable region-merging for high resolution remote sensing
image segmentation,
PandRS(147), 2019, pp. 319-334.
Elsevier DOI
1901
High resolution remote sensing imagery, Image segmentation,
Region merging, Scale-variable
BibRef
Su, T.F.[Teng-Fei],
Liu, T.X.[Ting-Xi],
Zhang, S.W.[Sheng-Wei],
Qu, Z.Y.[Zhong-Yi],
Li, R.P.[Rui-Ping],
Machine learning-assisted region merging for remote sensing image
segmentation,
PandRS(168), 2020, pp. 89 - 123.
Elsevier DOI
2009
Random forest, Machine learning, Region merging,
Merging criterion, Image segmentation, Remote sensing
BibRef
Dekavalla, M.[Maria],
Argialas, D.[Demetre],
A Region Merging Segmentation with Local Scale Parameters:
Applications to Spectral and Elevation Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Fasquel, J.B.[Jean-Baptiste],
Delanoue, N.[Nicolas],
Approach for sequential image interpretation using a priori binary
perceptual topological and photometric knowledge and k-means-based
segmentation,
JOSA-A(35), No. 6, June 2018, pp. 936-945.
DOI Link
1912
Digital image processing, Image analysis,
Anisotropic diffusion, Image analysis, Image processing,
Reconstruction algorithms
BibRef
Fasquel, J.B.[Jean-Baptiste],
Delanoue, N.[Nicolas],
A Graph Based Image Interpretation Method Using A Priori Qualitative
Inclusion and Photometric Relationships,
PAMI(41), No. 5, May 2019, pp. 1043-1055.
IEEE DOI
1904
Recover regions from initial oversegmentation.
Liver, Photometry, Image edge detection, Tumors, Uncertainty,
Databases, Analytical models, Image interpretation,
photometric relationships
BibRef
Sun, F.[Fengdong],
Li, W.H.[Wen-Hui],
Saliency guided deep network for weakly-supervised image segmentation,
PRL(120), 2019, pp. 62-68.
Elsevier DOI
1904
Weakly-supervised segmentation, Seeded region growing, Saliency guidance
BibRef
Ni, H.[Huan],
Niu, X.N.[Xiao-Nan],
Agglomerative oversegmentation using dual similarity and entropy rate,
PR(93), 2019, pp. 324-336.
Elsevier DOI
1906
Oversegmentation, Agglomerative algorithm, Entropy rate, Remote sensing
BibRef
Perret, B.[Benjamin],
Cousty, J.[Jean],
Guimarăes, S.J.F.[Silvio Jamil Ferzoli],
Kenmochi, Y.[Yukiko],
Najman, L.[Laurent],
Removing non-significant regions in hierarchical clustering and
segmentation,
PRL(128), 2019, pp. 433-439.
Elsevier DOI
1912
Hierarchy of partitions, Attribute, Segmentation, Hierarchical clustering
BibRef
Adăo, M.M.[Milena M.],
Guimarăes, S.J.F.[Silvio Jamil F.],
Patrocínio, Jr., Z.K.G.[Zenilton K.G.],
Learning to realign hierarchy for image segmentation,
PRL(133), 2020, pp. 287-294.
Elsevier DOI
2005
Hierarchical image segmentation, Alignment of hierarchy,
Regression, Random forest, Neural network
BibRef
Khan, Z.[Zubair],
Yang, J.[Jie],
Bottom-Up Unsupervised Image Segmentation Using FC-Dense U-Net Based
Deep Representation Clustering and Multidimensional Feature Fusion
Based Region Merging,
IVC(94), 2020, pp. 103871.
Elsevier DOI
2003
Unsupervised image segmentation, Deep learning, Feature fusion,
Region merging, Image processing
BibRef
Zhao, Q.H.[Quan-Hua],
Zhang, H.Y.[Hong-Yun],
Wang, G.H.[Guang-Hui],
Li, Y.[Yu],
Irregular Tessellation and Statistical Modeling Based Regionalized
Segmentation for SAR Intensity Image,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Song, Y.Y.[Yang-Yang],
Peng, G.H.[Guo-Hua],
Fast two-stage segmentation model for images with intensity
inhomogeneity,
VC(36), No. 6, June 2020, pp. 1189-1202.
WWW Link.
2005
BibRef
Shrivastava, N.[Neeraj],
Bharti, J.[Jyoti],
Automatic Seeded Region Growing Image Segmentation for Medical Image
Segmentation: A Brief Review,
IJIG(20), No. 3, July 2020, pp. 2050018.
DOI Link
2008
BibRef
Chen, F.[Fang],
Wang, N.[Ning],
Yu, B.[Bo],
Qin, Y.C.[Yu-Chu],
Wang, L.[Lei],
A Strategy of Parallel Seed-Based Image Segmentation Algorithms for
Handling Massive Image Tiles over the Spark Platform,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wang, H.Y.[Hao-Yu],
Shen, Z.F.[Zhan-Feng],
Zhang, Z.H.[Zi-Han],
Xu, Z.[Zeyu],
Li, S.[Shuo],
Jiao, S.H.[Shu-Hui],
Lei, Y.T.[Ya-Ting],
Improvement of Region-Merging Image Segmentation Accuracy Using
Multiple Merging Criteria,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Jiao, J.J.[Jian-Jun],
Wang, X.P.[Xiao-Peng],
Zhang, J.P.[Jung-Ping],
Wang, Q.S.[Qing-Sheng],
Salient region growing based on Gaussian pyramid,
IET-IPR(15), No. 13, 2021, pp. 3142-3152.
DOI Link
2110
BibRef
Baleghi, Y.[Yasser],
Rousseau, D.[David],
An analytical proof on suitability of Cauchy-Schwarz Divergence as
the aggregation criterion in Region Growing Algorithm,
IVC(115), 2021, pp. 104312.
Elsevier DOI
2110
Region Growing Algorithm, Image segmentation,
Cauchy-Schwarz divergence, Aggregation criterion
BibRef
Xu, Y.H.[Yong-Hao],
Ghamisi, P.[Pedram],
Consistency-Regularized Region-Growing Network for Semantic
Segmentation of Urban Scenes With Point-Level Annotations,
IP(31), 2022, pp. 5038-5051.
IEEE DOI
2208
Code, Segmentation.
WWW Link. Annotations, Image segmentation, Semantics, Training, Remote sensing,
Knowledge transfer, Predictive models, Semantic segmentation,
remote sensing
BibRef
Ding, H.H.[Heng-Hui],
Jiang, X.D.[Xu-Dong],
Shuai, B.[Bing],
Liu, A.Q.[Ai Qun],
Wang, G.[Gang],
Context Contrasted Feature and Gated Multi-scale Aggregation for
Scene Segmentation,
CVPR18(2393-2402)
IEEE DOI
1812
Image segmentation, Logic gates, Context modeling, Aggregates,
Context-aware services, Labeling, Task analysis
BibRef
Birodkar, V.[Vighnesh],
Lu, Z.C.[Zhi-Chao],
Li, S.Y.[Si-Yang],
Rathod, V.[Vivek],
Huang, J.[Jonathan],
The surprising impact of mask-head architecture on novel class
segmentation,
ICCV21(6995-7005)
IEEE DOI
2203
Training, Protocols, Codes, Crops, Computer architecture, Detectors,
Segmentation, grouping and shape, Detection and localization in 2D and 3D
BibRef
Remez, T.[Tal],
Huang, J.[Jonathan],
Brown, M.[Matthew],
Learning to Segment via Cut-and-Paste,
ECCV18(VII: 39-54).
Springer DOI
1810
BibRef
Nguyen, T.K.[Thanh-Khoa],
Coustaty, M.[Mickael],
Guillaume, J.L.[Jean-Loup],
An Efficient Agglomerative Algorithm Cooperating with Louvain Method
for Implementing Image Segmentation,
ACIVS18(150-162).
Springer DOI
1810
BibRef
Baghi, A.,
Karami, A.,
SAR image segmentation using region growing and spectral cluster,
IPRIA17(229-232)
IEEE DOI
1712
image segmentation, radar imaging, synthetic aperture radar,
SAR image segmentation, region growing, spectral cluster,
Spectral Cluster
BibRef
Mathieu, B.[Bérengčre],
Crouzil, A.[Alain],
Puel, J.B.[Jean Baptiste],
Oversegmentation Methods: A New Evaluation,
IbPRIA17(185-193).
Springer DOI
1706
BibRef
Mathieu, B.[Bérengčre],
Crouzil, A.[Alain],
Puel, J.B.[Jean Baptiste],
ASARI: A New Adaptive Oversegmentation Method,
IbPRIA17(194-202).
Springer DOI
1706
BibRef
Bian, A.[Ang],
Scherzinger, A.[Aaron],
Jiang, X.Y.[Xiao-Yi],
An Enhanced Multi-label Random Walk for Biomedical Image Segmentation
Using Statistical Seed Generation,
ACIVS17(748-760).
Springer DOI
1712
BibRef
Bian, A.[Ang],
Jiang, X.Y.[Xiao-Yi],
T-Test Based Adaptive Random Walk Segmentation Under Multiplicative
Speckle Noise Model,
MCBMIIA16(II: 570-582).
Springer DOI
1704
BibRef
And:
Statistical Modeling Based Adaptive Parameter Setting for Random Walk
Segmentation,
ACIVS16(698-710).
Springer DOI
1611
BibRef
Allaouil, A.E.,
Nasri, M.,
Merzougui, M.,
Mirhisse, J.,
Evolutionary Algorithm for Segmentation of Medical Images by Region
Growing,
CGiV16(119-124)
IEEE DOI
1608
evolutionary computation
BibRef
Chaibou, M.S.,
Kalti, K.,
Solaiman, B.,
Mahjoub, M.A.,
A Combined Approach Based on Fuzzy Classification and Contextual
Region Growing to Image Segmentation,
CGiV16(172-177)
IEEE DOI
1608
fuzzy set theory
BibRef
Fida, E.,
Baber, J.,
Bakhtyar, M.,
Iqbal, M.J.,
Automatic Image Segmentation Based on Maximal Similarity Based Region
Merging,
DICTA15(1-8)
IEEE DOI
1603
computer vision
BibRef
Gupta, G.[Gaurav],
Psarrou, A.[Alexandra],
Adaptive-Threshold Region Merging via Path Scanning,
ICPR14(948-953)
IEEE DOI
1412
Bismuth
BibRef
Fan, H.Q.[Hao-Qi],
Li, H.[Han],
Segment-Forest for Segmentation,
ICPR14(990-995)
IEEE DOI
1412
Adaptation models
BibRef
Ma, W.[Wei],
Liu, J.[Jing],
Duan, L.J.[Li-Juan],
Zhang, X.Y.[Xin-Yong],
Image Segmentation with Automatically Balanced Constraints,
ACPR13(557-561)
IEEE DOI
1408
graph theory
BibRef
Mirghasemi, S.,
Rayudu, R.,
Zhang, M.J.[Meng-Jie],
A new image segmentation algorithm based on modified seeded region
growing and particle swarm optimization,
IVCNZ13(382-387)
IEEE DOI
1402
image colour analysis
BibRef
Li, X.[Xiang],
Jin, L.H.[Liang-Hai],
Song, E.[Enmin],
Li, L.[Lei],
Full-range affinities for graph-based segmentation,
ICIP13(4084-4087)
IEEE DOI
1402
Graph-based segmentation;affinity learning
BibRef
Weiss, D.[David],
Taskar, B.[Ben],
SCALPEL: Segmentation Cascades with Localized Priors and Efficient
Learning,
CVPR13(2035-2042)
IEEE DOI
1309
Region merging cues with high-level knowledge.
BibRef
Liu, X.B.[Xiao-Bai],
Lin, L.[Liang],
Yuille, A.L.[Alan L.],
Robust Region Grouping via Internal Patch Statistics,
CVPR13(1931-1938)
IEEE DOI
1309
BibRef
Ren, Z.[Zhile],
Shakhnarovich, G.[Gregory],
Image Segmentation by Cascaded Region Agglomeration,
CVPR13(2011-2018)
IEEE DOI
1309
Image segmentation
BibRef
Wang, Z.[Zehan],
Wolz, R.[Robin],
Tong, T.[Tong],
Rueckert, D.[Daniel],
Spatially Aware Patch-Based Segmentation (SAPS):
An Alternative Patch-Based Segmentation Framework,
MCVM12(93-103).
Springer DOI
1305
BibRef
Elyor, K.[Kodirov],
Lee, G.[Guee_Sang],
Automatic object segmentation using mean shift and growcut,
FCV13(184-189).
IEEE DOI
1304
First mean shift, then merge with grocut.
BibRef
Chen, X.H.[Xue-Hong],
Chen, J.[Jin],
Yamaguchi, Y.S.[Yasu-Shi],
Soft image segmentation model,
CVRS12(90-93).
IEEE DOI
1302
bottom-up region merging
BibRef
Han, Y.H.[Ya-Hong],
Wu, F.[Fei],
Shao, J.[Jian],
Tian, Q.[Qi],
Zhuang, Y.T.[Yue-Ting],
Graph-guided sparse reconstruction for region tagging,
CVPR12(2981-2988).
IEEE DOI
1208
BibRef
Eigen, D.[David],
Fergus, R.[Rob],
Nonparametric image parsing using adaptive neighbor sets,
CVPR12(2799-2806).
IEEE DOI
1208
BibRef
Sellaouti, A.[Aymen],
Jaâfra, Y.[Yasmina],
Hamouda, A.[Atef],
Meta-learning for Adaptive Image Segmentation,
ICIAR14(I: 187-197).
Springer DOI
1410
BibRef
Sellaouti, A.[Aymen],
Hamouda, A.[Atef],
Deruyver, A.[Aline],
Wemmert, C.[Cédric],
Hierarchical Classification-Based Region Growing (HCBRG):
A Collaborative Approach for Object Segmentation and Classification,
ICIAR12(I: 51-60).
Springer DOI
1206
BibRef
Doggaz, N.[Narjes],
Ferjani, I.[Imene],
Image Segmentation Using Normalized Cuts and Efficient Graph-Based
Segmentation,
CIAP11(II: 229-240).
Springer DOI
1109
BibRef
Yamamoto, A.[Akifumi],
Fujiwara, T.[Takayuki],
Hashimoto, M.[Manabu],
Funahashi, T.[Takuma],
Koshimizu, H.[Hiroyasu],
A proposal of The Rareness Measure of pixel blocks and its application
to region extraction,
FCV11(1-2).
IEEE DOI
1102
BibRef
Dutta, T.,
Dogra, D.P.,
Jana, B.,
Object Extraction Using Novel Region Merging and Multidimensional
Features,
PSIVT10(356-361).
IEEE DOI
1011
Extract regions with characteristics of the desired objects first.
BibRef
He, L.[Lulu],
Pappas, T.N.[Thrasyvoulos N.],
An adaptive clustering and chrominance-based merging approach for image
segmentation and abstraction,
ICIP10(241-244).
IEEE DOI
1009
BibRef
Artan, Y.[Yusuf],
Yetik, I.S.[Imam Samil],
Improved random walker algorithm for image segmentation,
Southwest10(89-92).
IEEE DOI
1005
BibRef
Feng, W.[Wei],
Xie, L.[Lei],
Liu, Z.Q.[Zhi-Qiang],
Multicue Graph Mincut for Image Segmentation,
ACCV09(II: 707-717).
Springer DOI
0909
BibRef
Chen, G.,
Meng, X.[Xin],
Hu, T.,
Guo, X.Y.,
Liu, L.X.[Li-Xiong],
Zhang, H.Y.[Hai-Ying],
A multiphase region-based framework for image segmentation based on
least square method,
ICIP09(4009-4012).
IEEE DOI
0911
BibRef
Revol-Muller, C.[Chantal],
Grenier, T.[Thomas],
Li, T.[Ting],
Benoit-Cattin, H.[Hugues],
Feature space region growing,
ICIP12(2585-2588).
IEEE DOI
1302
BibRef
Revol-Muller, C.[Chantal],
Rose, J.L.[Jean-Löic],
Pacureanu, A.,
Peyrin, F.,
Odet, C.,
Shape prior in Variational Region Growing,
IPTA12(116-120)
IEEE DOI
1503
computerised tomography
BibRef
Rose, J.L.[Jean-Löic],
Revol-Muller, C.[Chantal],
Charpigny, D.[Delphine],
Odet, C.[Christophe],
Shape prior criterion based on Tchebichef moments in variational region
growing,
ICIP09(1081-1084).
IEEE DOI
0911
BibRef
Gomez-Lopera, J.F.,
Luque-Escamilla, P.L.,
Martinez-Aroza, J.,
Roman-Roldan, R.,
Cabrerizo-Vilchez, M.A.,
Rodriguez-Valverde, M.A.,
Montes-Ruiz-Cabello, F.J.,
Entropic segmentation by region growing and merging for drop shape
analysis,
LNLA09(98-103).
IEEE DOI
0908
BibRef
Crisp, D.J.,
Improved Data Structures for Fast Region Merging Segmentation Using a
Mumford-Shah Energy Functional,
DICTA08(586-592).
IEEE DOI
0812
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Franek, L.[Lucas],
Jiang, X.Y.[Xiao-Yi],
An Instability Problem of Region Growing Segmentation Algorithms and
Its Set Median Solution,
ISVC09(II: 737-746).
Springer DOI
0911
BibRef
Xiao, R.[Ru],
Wu, J.[Jian],
Wu, J.H.[Jian-Hua],
A New Medical Segmentation Method Based on Voronoi Diagrams and Region
Growing,
CISP09(1-4).
IEEE DOI
0910
BibRef
Cheng, Y.M.[Yong-Mei],
Wu, Y.R.[Yan-Ru],
Yang, L.H.[Li-Hua],
Zhao, C.H.[Chun-Hui],
Zhang, S.W.[Shao-Wu],
Natural Object Recognition Using the Combination of Gaussian Model and
Region Growing,
CISP09(1-5).
IEEE DOI
0910
BibRef
Pérez-Carrasco, J.A.[Jose-Antonio],
Acha-Pińero, B.[Begońa],
Serrano-Gotarredona, C.[Carmen],
Gevers, T.[Theo],
Reflectance-Based Segmentation Using Photometric and Illumination
Invariants,
ICIAR14(I: 179-186).
Springer DOI
1410
BibRef
Wassenberg, J.[Jan],
Middelmann, W.[Wolfgang],
Sanders, P.[Peter],
An Efficient Parallel Algorithm for Graph-Based Image Segmentation,
CAIP09(1003-1010).
Springer DOI
0909
BibRef
Shetty, S.[Sanketh],
Ahuja, N.[Narendra],
Supervised and Unsupervised Clustering with Probabilistic Shift,
ECCV10(V: 644-657).
Springer DOI
1009
BibRef
Earlier:
A uniformity criterion and algorithm for data clustering,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Rysavy, S.[Steven],
Flores, A.[Arturo],
Enciso, R.[Reyes],
Okada, K.[Kazunori],
Classifiability criteria for refining of random walks segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jia, Y.Q.[Yang-Qing],
Zhang, C.S.[Chang-Shui],
Learning distance metric for semi-supervised image segmentation,
ICIP08(3204-3207).
IEEE DOI
0810
BibRef
Kumar, N.[Neeraj],
Zhang, L.[Li],
Nayar, S.K.[Shree K.],
What Is a Good Nearest Neighbors Algorithm for Finding Similar Patches
in Images?,
ECCV08(II: 364-378).
Springer DOI
0810
Really comparing patches, less segmentation.
BibRef
Kim, T.H.[Tae Hoon],
Lee, K.M.[Kyoung Mu],
Lee, S.U.[Sang Uk],
Generative Image Segmentation Using Random Walks with Restart,
ECCV08(III: 264-275).
Springer DOI
0810
See also Edge-Preserving Colorization Using Data-Driven Random Walks with Restart.
BibRef
Prasad, L.[Lakshman],
Swaminarayan, S.[Sriram],
Hierarchical image segmentation by polygon grouping,
Tensor08(1-8).
IEEE DOI
0806
BibRef
Haunert, J.H.[Jan-Henrik],
A Formal Model and Mixed-Integer Program for Area Aggregation in Map
Generalization,
PIA07(161).
PDF File.
0711
Aggregation of small regions when scale of the map is reduced.
BibRef
Gómez, O.[Octavio],
González, J.A.[Jesús A.],
Morales, E.F.[Eduardo F.],
Image Segmentation Using Automatic Seeded Region Growing and
Instance-Based Learning,
CIARP07(192-201).
Springer DOI
0711
BibRef
Torsello, A.[Andrea],
di Gesu, M.[Marco],
Pelillo, M.[Marcello],
Integrating Boundary Information in Pairwise Segmentation,
CIAP07(23-28).
IEEE DOI
0709
Integrate boundary information to evaluate similar regions.
BibRef
di Gesů, V.[Vito],
lo Bosco, G.[Giosuč],
Image Segmentation Based on Genetic Algorithms Combination,
CIAP05(352-359).
Springer DOI
0509
BibRef
Rohkohl, C.[Christopher],
Engel, K.[Karin],
Efficient Image Segmentation Using Pairwise Pixel Similarities,
DAGM07(254-263).
Springer DOI
0709
BibRef
Galun, M.[Meirav],
Basri, R.[Ronen],
Brandt, A.[Achi],
Multiscale Edge Detection and Fiber Enhancement Using Differences of
Oriented Means,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Bagon, S.[Shai],
Brostovski, O.[Ori],
Galun, M.[Meirav],
Irani, M.[Michal],
Detecting and sketching the common,
CVPR10(33-40).
IEEE DOI
1006
BibRef
Fahad, A.[Ahmed],
Morris, T.[Tim],
A Faster Graph-Based Segmentation Algorithm with Statistical Region
Merge,
ISVC06(II: 286-293).
Springer DOI
0611
BibRef
Tan, Z.G.[Zhi-Gang],
Yung, N.H.C.[Nelson H.C.],
Image segmentation towards natural clusters,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tan, Z.G.[Zhi-Gang],
He, X.C.[Xiao-Chen],
Yung, N.H.C.[Nelson H.C.],
A Novel Merging Criterion Incorporating Boundary Smoothness and Region
Homogeneity for Image Segmentation,
PSIVT06(238-247).
Springer DOI
0612
BibRef
Gofman, E.,
Developing an Efficient Region Growing Engine for Image Segmentation,
ICIP06(2413-2416).
IEEE DOI
0610
BibRef
de Bock, J.[Johan],
Pires, R.[Rui],
de Smet, P.[Patrick],
Philips, W.[Wilfried],
A Fast Dynamic Border Linking Algorithm for Region Merging,
ACIVS06(232-241).
Springer DOI
0609
BibRef
He, Y.[Yuan],
Luo, Y.P.[Yu-Pin],
Hu, D.C.[Dong-Cheng],
Seeded Region Merging Based on Gradient Vector Flow for Image
Segmentation,
ACIVS06(846-854).
Springer DOI
0609
BibRef
Li, Z.R.[Zhan-Rong],
Zhang, J.Q.[Jian-Qing],
Image Segmentation Based on Inscribed circle,
ICPR06(II: 247-250).
IEEE DOI
0609
BibRef
Monay, F.[Florent],
Quelhas, P.[Pedro],
Odobez, J.M.[Jean-Marc],
Gatica-Perez, D.[Daniel],
Integrating Co-Occurrence and Spatial Contexts on Patch Based Scene
Segmentation,
BP06(14).
IEEE DOI
0609
BibRef
Micuík, B.[Branislav],
Hanbury, A.[Allan],
Automatic Image Segmentation by Positioning a Seed,
ECCV06(II: 468-480).
Springer DOI
0608
BibRef
And:
Template patch driven image segmentation,
BMVC06(II:819).
PDF File.
0609
BibRef
Earlier:
Steerable Semi-automatic Segmentation of Textured Images,
SCIA05(35-44).
Springer DOI
0506
BibRef
Tu, Z.W.[Zhuo-Wen],
An Integrated Framework for Image Segmentation and Perceptual Grouping,
ICCV05(I: 670-677).
IEEE DOI
0510
Swendsen-Wang cut algorithm for segmentation.
Grouping by belief propogation.
BibRef
Qiu, H.J.[Huai-Jun],
Hancock, E.R.[Edwin R.],
Image Segmentation using Commute times,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Gerstmayer, M.[Michael],
Haxhimusa, Y.[Yll],
Kropatsch, W.G.[Walter G.],
Hierarchical Interactive Image Segmentation Using Irregular Pyramids,
GbRPR11(245-254).
Springer DOI
1105
BibRef
Qiu, G.P.[Guo-Ping],
Lam, K.M.[Kin-Man],
Pulling, Pushing, and Grouping for Image Segmentation,
ICIAR04(I: 65-73).
Springer DOI
0409
BibRef
Wan, S.Y.[Shu-Yen],
Chen, J.T.[Jung-Tai],
Yeh, S.H.[Shu-Hung],
Efficient fuzzy-connectedness segmentation using symmetric convolution
and adaptive thresholding,
ICIP04(II: 905-908).
IEEE DOI
0505
BibRef
Loo, P.K.[Poh Kok],
Tan, C.L.[Chew Lim],
Adaptive Region Growing Color Segmentation for Text Using Irregular
Pyramid,
DAS04(264-275).
Springer DOI
0505
BibRef
Srinivasan, S.H.,
Small-world approximations in spectral segmentation,
ICPR04(II: 36-39).
IEEE DOI
0409
BibRef
Roggero, M.[Marco],
Object Segmentation with Region Growing and Principal Component
Analysis,
PCV02(A: 289).
0305
BibRef
Minagawa, A.,
Uda, K.,
Tagawa, N.,
Region extraction based on belief propagation for gaussian model,
ICPR02(II: 507-510).
IEEE DOI
0211
BibRef
Rydberg, A.,
Borgefors, G.,
Feature based merging of application specific regions,
CIAP01(56-62).
IEEE DOI
0210
BibRef
Ouerhani, N.[Nabil],
Archip, N.[Neculai],
Hügli, H.[Heinz],
Erard, P.J.[Pierre-Jean],
Visual Attention Guided Seed Selection for Color Image Segmentation,
CAIP01(630 ff.).
Springer DOI
0210
BibRef
Yu, Z.Y.[Ze-Yun],
Bajaj, C.,
Image segmentation using gradient vector diffusion and region merging,
ICPR02(II: 941-944).
IEEE DOI
0211
BibRef
Yu, Z.Y.[Ze-Yun],
Bajaj, C.[Chandrajit],
Normalized Gradient Vector Diffusion and Image Segmentation,
ECCV02(III: 517 ff.).
Springer DOI
0205
initial segmentation using Normalized Gradient
Vector Diffusion and region merging based on Region Adjacency Graph.
See also segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion, A.
BibRef
Yu, Z.Y.[Ze-Yun],
Bajaj, C.,
Anisotropic vector diffusion in image smoothing,
ICIP02(I: 828-831).
IEEE DOI
0210
BibRef
Lee, S.H.[Sang-Hoon],
Crawford, M.M.,
Unsupervised Classification Using Spatial Region Growing Segmentation
and Fuzzy Training,
ICIP01(I: 770-773).
IEEE DOI
0108
BibRef
Earlier:
Unsupervised multistage segmentation using Markov random field and
maximum entropy principle,
ICIP94(II: 192-196).
IEEE DOI
9411
BibRef
Ikonomakis, N.,
Plataniotis, K.N.,
Venetsanopoulos, A.N.,
Unsupervised Seed Determination for a Region-based Color Image
Segmentation Scheme,
ICIP00(Vol I: 537-540).
IEEE DOI
0008
BibRef
Fontaine, M.,
Macaire, L.,
Postaire, J.G.,
Image Segmentation Based on an Original Multiscale Analysis of the
Pixel Connectivity Properties,
ICIP00(Vol I: 804-807).
IEEE DOI
0008
BibRef
Sato, M.,
Lakare, S.,
Wan, M.,
Kaufman, A.,
A Gradient Magnitude Based Region Growing Algorithm for Accurate
Segmentation,
ICIP00(Vol III: 448-451).
IEEE DOI
0008
BibRef
Tomori, Z.[Zoltan],
Marcin, J.[Jozef],
Vilim, P.[Peter],
Pyramidal Seeded Region Growing Algorithm and Its Use in Image
Segmentation,
CAIP99(395-402).
Springer DOI
9909
BibRef
Ji, S.,
Park, H.W.,
Image segmentation of color image based on region coherency,
ICIP98(I: 80-83).
IEEE DOI
9810
BibRef
Cuisenaire, O.[Olivier],
Region growing Euclidean distance transforms,
CIAP97(I: 263-270).
Springer DOI
9709
BibRef
Cuisenaire, O., and
Macq, B.,
Applications of the Region Growing Euclidean Distance Transform:
Anisotropy and Skeletons,
ICIP97(I: 200-203).
IEEE DOI
BibRef
9700
Steudel, A.,
Glesner, M.,
Image coding with fuzzy region-growing segmentation,
ICIP96(II: 955-958).
IEEE DOI
9610
BibRef
Weber, J.[Joseph],
Scene Partitioning via Statistic-Based Region Growing,
SPIE(2421), February 1995, pp. 161-172.
BibRef
9502
Shimbashi, T.,
Kokubo, Y.,
Shirota, N.,
Region segmentation using edge based circle growing,
ICIP95(III: 65-68).
IEEE DOI
9510
BibRef
Brand, M.,
A short note on local region growing by pseudophysical simulation,
CVPR93(782-783).
IEEE DOI
0403
BibRef
Yu, Y.,
Segmentation coding using edge detection and region merging,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Badii, F.,
Jayawardena, J.,
Region Growing and Global Labeling in Image Analysis,
ICPR84(656-659).
BibRef
8400
Ichikawa, T.,
Hierarchical Smoothing of Grey Tone Images with Adaptive Region
Merging Capability,
ICPR80(831-834).
BibRef
8000
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Superpixel Region Extraction, Region Growing .