Horowitz, S.L., and
Pavlidis, T.,
Picture Segmentation by a Tree Traversal Algorithm,
JACM(23), No. 2, April 1976, pp. 368-388.
Segmentation, Split and Merge. The standard split and merge basic reference. The basics
are, split the image into regular shapes (quarters), if it is non-uniform
recursively split the subimages.
When no more splits, merge adjacent similar subimages, and
merge those remaining that are too small.
BibRef
7604
Horowitz, S.L., and
Pavlidis, T.,
Picture Segmentation by a Directed Split and Merge Procedure,
ICPR74(424-433).
BibRef
7400
CMetImAly77(101-11).
Good early reference to the method.
BibRef
Horowitz, S.L.[Steven L.],
Pavlidis, T.[Theodosios],
A Graph-Theoretic Approach to Picture Processing,
CGIP(7), No. 2, April 1978, pp. 282-291.
Elsevier DOI
BibRef
7804
Earlier:
Picture Processing by Graph Analysis,
CGPR75(125-129).
Efficient data structures.
BibRef
Tanimoto, S.L., and
Pavlidis, T.,
The Editing of Picture Segmentations Using Local Analysis of Graphs,
CACM(20), No. 4, April 1977, pp. 223-229.
BibRef
7704
Pavlidis, T.,
Tanimoto, S.L.,
Texture Identification by a Directed Split-and Merge Procedure,
CGPR75(201-203).
BibRef
7500
Gupta, J.N., and
Wintz, P.A.,
A Boundary Finding Algorithm and Its Applications,
CirSys(22), No. 4, April 1975, pp. 351-362.
Segmentation, Texture. Merging on texture, use one or both of first or second order statistics.
BibRef
7504
Lemkin, P.[Peter],
An Approach to Region Splitting,
CGIP(10), No. 3, July 1979, pp. 281-288.
Elsevier DOI
BibRef
7907
Browning, J.D.[Jason D.],
Tanimoto, S.L.[Steven L.],
Segmentation of Pictures into Regions with a Tile-by-Tile Method,
PR(15), No. 1, 1982, pp. 1-10.
Elsevier DOI Extension of split and merge to handle large images by looking at a small
portion at one time. Grouping must allow for boundary conditions.
BibRef
8200
Browning, J.D.,
A Method for Picture Segmentation by Parts:
Split and Group with Linking,
PRAI-78(191).
BibRef
7800
Chen, M.H., and
Pavlidis, T.,
Image Seaming for Segmentation on Parallel Architecture,
PAMI(12), No. 6, June 1990, pp. 588-594.
IEEE DOI Same problems as the above paper, but with architecture issues.
BibRef
9006
Pavlidis, T., and
Liow, Y.T.,
Integrating Region Growing and Edge Detection,
PAMI(12), No. 3, March 1990, pp. 225-233.
IEEE DOI
BibRef
9003
Earlier:
CVPR88(208-214).
IEEE DOI
Segmentation, Edges.
Use edges in the merging portion of a split and merge
segmentation algorithm.
BibRef
Autonisse, H.J.,
Image Segmentation in Pyramids,
CGIP(19), No. 4, 1982, pp. 367-383.
BibRef
8200
Spann, M.,
Wilson, R.,
A Quad-Tree Approach to Image Segmentation Which Combines Statistical
and Spatial Information,
PR(18), No. 3-4, 1985, pp. 257-269.
Elsevier DOI
BibRef
8500
Cheevasuvit, F.[Fusak],
Maitre, H.[Henri],
Vidal-Madjar, D.[Daniel],
A Robust Method for Picture Segmentation Based on a
Split-and-Merge Procedure,
CVGIP(34), No. 3, June 1986, pp. 268-281.
Elsevier DOI The aim is to get the consistent regions, the method is to segment
all members of the sequence, reduce regions to an ellipse, and
keep those regions whose ellipses are consistent.
BibRef
8606
Laprade, R.H.[Robert H.],
Split-and-Merge Segmentation of Aerial Photographs,
CVGIP(44), No. 1, October 1988, pp. 77-86.
Elsevier DOI Lockheed work on segmentation. This uses a facet type
representation of the resulting regions and the parameters
are also used in the merge phase.
BibRef
8810
Doherty, M.F.,
Bjorklund, C.M., and
Noga, M.T.,
Split-Merge-merge: An Enhanced Segmentation Capability,
CVPR86(325-330).
Add another merge step with more hueristics to eliminate the
standard small region problems.
BibRef
8600
Lee, C.H.[Chin-Hwa],
Recursive Region Splitting at Hierarchial Scope Views,
CVGIP(33), No. 2, February 1986, pp. 237-258.
Elsevier DOI
BibRef
8602
And:
Image Surface Approximation with Irregular Samples,
PAMI(11), No. 2, February 1989, pp. 206-212.
IEEE DOI
Segmentation, Multi-Level. This method combines the regular splitting, and the quad-tree data
structure of the split and merge techniques with the general
threshold based region extraction method of the recursive splitting
techniques. The main problem being addressed is how to merge the
regions generated in one branch of the quad-tree with those in
spatially adjacent branches of the tree. This requires an analysis
of regions that touch the boundaries of the quad-tree nodes to
determine how they should extend or connect to regions in the other nodes.
BibRef
Imao, K.[Kaoru],
Watanabe, H.[Hideyuki],
Method of describing image information,
US_Patent4,944,023, Jul 24, 1990
WWW Link.
BibRef
9007
Wu, X.,
Adaptive Split-and-Merge Segmentation Based on Piecewise
Least-Square Approximation,
PAMI(15), No. 8, August 1993, pp. 808-815.
IEEE DOI
BibRef
9308
Doherty, M.F.,
Noga, M.T., and
Bjorklund, C.M.,
Use of Compound Predicates in Split-and-Merge Segmentation,
Lockheed Palo Alto Research Labs,
CVPR85(659-661).
Add constant texture measures to the standard splitting criteria.
BibRef
8500
Cohen, Jr., E.A.[Edgar A.],
Generalized Sloped Facet Models Useful in
Multispectral Image Analysis,
CVGIP(32), No. 2, November 1985, pp. 171-190.
Elsevier DOI
Segmentation, Facet Model. Seems to combine split and merge techniques with the
facet model for analysis.
BibRef
8511
Khan, G.N.,
Gillies, D.F.,
Parallel-Hierarchical Image Partitioning and Region Extraction,
CVIP92(123-140).
BibRef
9200
Wu, Z., and
Leahy, R.,
An Optimal Graph Theoretic Approach to Data Clustering:
Theory and Its Application to Image Segmentation,
PAMI(15), No. 11, November 1993, pp. 1101-1113.
IEEE DOI
BibRef
9311
Wu, Z.,
Leahy, R.,
Image segmentation via edge contour finding: a graph theoretic approach,
CVPR92(613-619).
IEEE DOI
0403
BibRef
Panjwani, D.K.[Dileep K.],
Healey, G.,
Markov Random-Field Models for Unsupervised Segmentation
of Textured Color Images,
PAMI(17), No. 10, October 1995, pp. 939-954.
IEEE DOI
Markov Random Field. Abstract:
HTML Version.
BibRef
9510
And:
Erratta for Rotated Figures,
PAMI(17), No. 11, November 1995, pp. 1128-1128.
IEEE Top Reference.
BibRef
Earlier:
Results Using Random Field Models for the Segmentation of Color Images,
ICCV95(714-719).
IEEE DOI
Segmentation, MRF.
Color. Segmentation using split and merge type of algorithm.
See also Analytical and Experimental Study of the Performance of Markov Random-Fields Applied to Textured Images Using Small Samples, An.
BibRef
Panjwani, D.K., and
Healey, G.,
Unsupervised Segmentation of Textured Color Images Using Markov
Random Field Models,
CVPR93(776-777).
IEEE DOI
BibRef
9300
Panjwani, D.K., and
Healey, G.,
Selecting Neighbors in Random Field Models for Color Images,
ICIP94(II: 56-60).
IEEE DOI
9411
Abstract:
HTML Version.
BibRef
Fiorio, C., and
Gustedt, J.,
Two Linear Time Union-Find Strategies for Image Processing,
TCS(A: 154), No. 2, 1996, pp. 165-181.
ON2 algorithm.
BibRef
9600
de Queiroz, R.L.[Ricardo L.],
Bozdagi, G.[Gozde],
Using encoding cost data for segmentation of compressed image sequences,
US_Patent6,058,210, May 2, 2000
WWW Link. Processing compressed data.
BibRef
0005
Li, C.T.,
Multiresolution image segmentation integrating Gibbs sampler and region
merging algorithm,
SP(83), No. 1, January 2003, pp. 67-78.
HTML Version.
0211
BibRef
Li, C.T.[Chang-Tsun],
Chiao, R.[Randy],
Multiresolution genetic clustering algorithm for texture segmentation,
IVC(21), No. 11, October 2003, pp. 955-966.
Elsevier DOI
0310
BibRef
And:
Unsupervised texture segmentation using multiresolution hybrid genetic
algorithm,
ICIP03(II: 1033-1036).
IEEE DOI
0312
BibRef
Storkey, A.J.[Amos J.],
Williams, C.K.I.[Christopher K.I.],
Image modeling with position-encoding dynamic trees,
PAMI(25), No. 7, July 2003, pp. 859-871.
IEEE Abstract.
0307
Tree descriptions for segmentation.
BibRef
Adams, N.J.,
Storkey, A.J.,
Ghahramani, Z.,
Williams, C.K.I.,
MFDTs: Mean Field Dynamic Trees,
ICPR00(Vol III: 147-150).
IEEE DOI
0009
BibRef
Chung, K.L.[Kuo-Liang],
Huang, H.L.[Hsu-Lien],
Lu, H.I.[Hsueh-I],
Efficient region segmentation on compressed gray images using quadtree
and shading representation,
PR(37), No. 8, August 2004, pp. 1591-1605.
Elsevier DOI
0407
Segment the compressed image, in split-merge tree framework.
Compares to
See also Two Linear Time Union-Find Strategies for Image Processing.
BibRef
Chung, R.H.Y.[Ronald H.Y.],
Yung, N.H.C.[Nelson H.C.],
Cheung, P.Y.S.[Paul Y.S.],
An Efficient Parameterless Quadrilateral-Based Image Segmentation
Method,
PAMI(27), No. 9, September 2005, pp. 1446-1458.
IEEE DOI
0508
BibRef
Zhu, S.S.[Shan-Shan],
Yung, N.H.C.[Nelson H.C.],
Sub-scene segmentation using constraints based on Gestalt principles,
JVCIR(25), No. 5, 2014, pp. 994-1005.
Elsevier DOI
1406
Unsupervised image segmentation
BibRef
Zhu, S.S.[Shan-Shan],
Yung, N.H.C.[Nelson H. C.],
Improve scene categorization via sub-scene recognition,
MVA(25), No. 6, 2014, pp. 1561-1572.
Springer DOI
1408
Use spatial information, similar objects with different arrangements.
BibRef
Grady, L.[Leo],
Schwartz, E.L.[Eric L.],
Isoperimetric Graph Partitioning for Image Segmentation,
PAMI(28), No. 3, March 2006, pp. 469-475.
IEEE DOI
0602
BibRef
Earlier:
Faster graph-theoretic image processing via small-world and quadtree
topologies,
CVPR04(II: 360-365).
IEEE DOI
0408
Segmentation approach.
See also Random Walks for Image Segmentation.
BibRef
Grady, L.[Leo],
Minimal Surfaces Extend Shortest Path Segmentation Methods to 3D,
PAMI(32), No. 2, February 2010, pp. 321-334.
IEEE DOI
1001
BibRef
Earlier:
Computing Exact Discrete Minimal Surfaces: Extending and Solving the
Shortest Path Problem in 3D with Application to Segmentation,
CVPR06(I: 69-78).
IEEE DOI
0606
Segmentation, Range.
BibRef
Grady, L.[Leo],
Fast, Quality, Segmentation of Large Volumes:
Isoperimetric Distance Trees,
ECCV06(III: 449-462).
Springer DOI
0608
BibRef
El-Zehiry, N.Y.[Noha Youssry],
Grady, L.[Leo],
Contrast Driven Elastica for Image Segmentation,
IP(25), No. 6, June 2016, pp. 2508-2518.
IEEE DOI
1605
BibRef
Earlier:
Fast global optimization of curvature,
CVPR10(3257-3264).
IEEE DOI
1006
combinatorial mathematics.
Regularization that minimized curvature.
BibRef
Kumar, S.,
Ong, S.H.,
Ranganath, S.,
Ong, T.C.,
Chew, F.T.,
A rule-based approach for robust clump splitting,
PR(39), No. 6, June 2006, pp. 1088-1098.
Elsevier DOI
0604
Concavity analysis; Overlapping objects; Clump splitting
BibRef
Pichel, J.C.[Juan C.],
Singh, D.E.[David E.],
Rivera, F.F.[Francisco F.],
Image segmentation based on merging of sub-optimal segmentations,
PRL(27), No. 10, 15 July 2006, pp. 1105-1116.
Elsevier DOI
0606
Region-merging heuristic; Segmentation evaluation
BibRef
Duarte, A.[Abraham],
Sánchez, Á.[Ángel],
Fernández, F.[Felipe],
Montemayor, A.S.[Antonio S.],
Improving image segmentation quality through effective region merging
using a hierarchical social metaheuristic,
PRL(27), No. 11, August 2006, pp. 1239-1251.
Elsevier DOI Evolutionary metaheuristics; Watershed; Region merging;
Graph-based segmentation; Hierarchical social algorithm
0606
BibRef
Ouzounis, G.K.[Georgios K.],
Wilkinson, M.H.F.[Michael H.F.],
Mask-Based Second-Generation Connectivity and Attribute Filters,
PAMI(29), No. 6, June 2007, pp. 990-1004.
IEEE DOI
0704
BibRef
Earlier:
Countering Oversegmentation in Partitioning-Based Connectivities,
ICIP05(III: 844-847).
IEEE DOI
0512
BibRef
Ouzounis, G.K.[Georgios K.],
Wilkinson, M.H.F.[Michael H. F.],
Hyperconnected Attribute Filters Based on k-Flat Zones,
PAMI(33), No. 2, February 2011, pp. 224-239.
IEEE DOI
1101
Attribute filtering. Supress background detail, keep internal details.
BibRef
Kiwanuka, F.N.[Fred N.],
Ouzounis, G.K.[Georgios K.],
Wilkinson, M.H.F.[Michael H. F.],
Surface-Area-Based Attribute Filtering in 3D,
ISMM09(70-81).
Springer DOI
0908
BibRef
Moschini, U.[Ugo],
Meijster, A.[Arnold],
Wilkinson, M.H.F.[Michael H. F.],
A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme
Dynamic-Range Images,
PAMI(40), No. 3, March 2018, pp. 513-526.
IEEE DOI
1802
Algorithm design and analysis, Buildings, Data structures,
Dynamic range, Heuristic algorithms, Merging, Parallel algorithms,
parallel algorithms
BibRef
Wilkinson, M.H.F.[Michael H.F.],
A fast component-tree algorithm for high dynamic-range images and
second generation connectivity,
ICIP11(1021-1024).
IEEE DOI
1201
BibRef
Ouzounis, G.K.[Georgios K.],
An Efficient Algorithm for Computing Multi-scale Connectivity Measures,
ISMM09(307-319).
Springer DOI
0908
BibRef
Wilkinson, M.H.F.[Michael H.F.],
An Axiomatic Approach to Hyperconnectivity,
ISMM09(35-46).
Springer DOI
0908
BibRef
Wilkinson, M.H.F.[Michael H.F.],
Hyperconnectivity, Attribute-Space Connectivity and Path Openings:
Theoretical Relationships,
ISMM09(47-58).
Springer DOI
0908
BibRef
Wu, Y.T.[Yi-Ta],
Shih, F.Y.[Frank Y.],
Shi, J.Z.[Jia-Zheng],
Wu, Y.T.[Yih-Tyng],
A top-down region dividing approach for image segmentation,
PR(41), No. 6, June 2008, pp. 1948-1960.
Elsevier DOI
0802
Image segmentation; Feature-based segmentation; Spatial-based segmentation;
Watershed; Medical image analysis
BibRef
Stewart, L.[Liam],
He, X.M.[Xu-Ming],
Zemel, R.S.[Richard S.],
Learning Flexible Features for Conditional Random Fields,
PAMI(30), No. 8, August 2008, pp. 1415-1426.
IEEE DOI
0806
hierarchical models.
BibRef
He, X.M.[Xu-Ming],
Zemel, R.S.[Richard S.],
Ray, D.[Debajyoti],
Learning and Incorporating Top-Down Cues in Image Segmentation,
ECCV06(I: 338-351).
Springer DOI
0608
BibRef
Levin, A.[Anat],
Weiss, Y.[Yair],
Learning to Combine Bottom-Up and Top-Down Segmentation,
IJCV(81), No. 1, January 2009, pp. xx-yy.
Springer DOI
0901
BibRef
Earlier:
ECCV06(IV: 581-594).
Springer DOI
0608
BibRef
Zhu, L.L.[Long Leo],
Chen, Y.H.[Yuan-Hao],
Lin, Y.[Yuan],
Lin, C.X.[Chen-Xi],
Yuille, A.L.[Alan L.],
Recursive Segmentation and Recognition Templates for Image Parsing,
PAMI(34), No. 2, February 2012, pp. 359-371.
IEEE DOI
1112
Hirarchical image model. Segment and recognize at multiple levels.
See also Learning a Hierarchical Deformable Template for Rapid Deformable Object Parsing.
See also Max Margin Learning of Hierarchical Configural Deformable Templates (HCDTs) for Efficient Object Parsing and Pose Estimation.
See also Unsupervised Learning of Probabilistic Object Models (POMs) for Object Classification, Segmentation, and Recognition Using Knowledge Propagation.
BibRef
Chen, L.C.,
Yang, Y.,
Wang, J.,
Xu, W.,
Yuille, A.L.,
Attention to Scale: Scale-Aware Semantic Image Segmentation,
CVPR16(3640-3649)
IEEE DOI
1612
BibRef
Helle, P.,
Oudin, S.,
Bross, B.,
Marpe, D.,
Bici, M.O.,
Ugur, K.,
Jung, J.,
Clare, G.,
Wiegand, T.,
Block Merging for Quadtree-Based Partitioning in HEVC,
CirSysVideo(22), No. 12, December 2012, pp. 1720-1731.
IEEE DOI
1302
BibRef
Yuan, Y.,
Kim, I.K.,
Zheng, X.,
Liu, L.,
Cao, X.,
Lee, S.,
Cheon, M.S.,
Lee, T.,
He, Y.,
Park, J.H.,
Quadtree Based Nonsquare Block Structure for Inter Frame Coding in High
Efficiency Video Coding,
CirSysVideo(22), No. 12, December 2012, pp. 1707-1719.
IEEE DOI
1302
BibRef
Cao, X.R.[Xiao-Ran],
Lai, C.C.[Chang-Cai],
Wang, Y.F.[Yun-Fei],
Liu, L.Z.[Ling-Zhi],
Zheng, J.H.[Jian-Hua],
He, Y.[Yun],
Short Distance Intra Coding Scheme for High Efficiency Video Coding,
IP(22), No. 2, February 2013, pp. 790-801.
IEEE DOI
1302
BibRef
Tech, G.,
Chen, Y.,
Muller, K.,
Ohm, J.,
Vetro, A.,
Wang, Y.,
Overview of the Multiview and 3D Extensions of High Efficiency Video
Coding,
CirSysVideo(26), No. 1, January 2016, pp. 35-49.
IEEE DOI
1601
Decoding
BibRef
Fu, G.[Gang],
Zhao, H.R.[Hong-Rui],
Li, C.[Cong],
Shi, L.[Limei],
Segmentation for High-Resolution Optical Remote Sensing Imagery Using
Improved Quadtree and Region Adjacency Graph Technique,
RS(5), No. 7, 2013, pp. 3259-3279.
DOI Link
1308
BibRef
Nadernejad, E.[Ehsan],
Sharifzadeh, S.[Sara],
A new method for image segmentation based on Fuzzy C-means algorithm on
pixonal images formed by bilateral filtering,
SIViP(7), No. 5, September 2013, pp. 855-863.
Springer DOI
1309
Fuzzy C-mean.
eliminates the unnecessary details of the image.
BibRef
Kiran, B.R.[Bangalore Ravi],
Serra, J.[Jean],
Global-local optimizations by hierarchical cuts and climbing energies,
PR(47), No. 1, 2014, pp. 12-24.
Elsevier DOI
1310
BibRef
Earlier: A2, A1:
Optima on Hierarchies of Partitions,
ISMM13(147-158).
Springer DOI
1305
BibRef
And: A1, A2:
Scale Space Operators on Hierarchies of Segmentations,
SSVM13(331-342).
Springer DOI
1305
BibRef
And: A1, A2:
Ground Truth Energies for Hierarchies of Segmentations,
ISMM13(123-134).
Springer DOI
1305
Hierarchical segmentation
BibRef
Kiran, B.R.[Bangalore Ravi],
Serra, J.[Jean],
Braids of Partitions,
ISMM15(217-228).
Springer DOI
1506
BibRef
Serra, J.[Jean],
Kiran, B.R.[Bangalore Ravi],
Cousty, J.[Jean],
Hierarchies and Climbing Energies,
CIARP12(821-828).
Springer DOI
1209
BibRef
And: A2, A1, A3:
Climbing: A Unified Approach for Global Constraints on Hierarchical
Segmentation,
Global12(III: 324-334).
Springer DOI
1210
BibRef
Kiran, B.R.[Bangalore Ravi],
Serra, J.[Jean],
Fusion of ground truths and hierarchies of segmentations,
PRL(47), No. 1, 2014, pp. 63-71.
Elsevier DOI
1408
Hierarchical segmentation
BibRef
Wang, M.,
Li, R.,
Segmentation of High Spatial Resolution Remote Sensing Imagery Based
on Hard-Boundary Constraint and Two-Stage Merging,
GeoRS(52), No. 9, September 2014, pp. 5712-2725.
IEEE DOI
1407
Accuracy
BibRef
Zhang, X.L.[Xue-Liang],
Xiao, P.F.[Peng-Feng],
Feng, X.Z.[Xue-Zhi],
Wang, J.G.[Jian-Geng],
Wang, Z.[Zuo],
Hybrid region merging method for segmentation of high-resolution
remote sensing images,
PandRS(98), No. 1, 2014, pp. 19-28.
Elsevier DOI
1411
High-resolution remote sensing
BibRef
Zhang, X.L.[Xue-Liang],
Xiao, P.F.[Peng-Feng],
Feng, X.Z.[Xue-Zhi],
He, G.J.[Guang-Jun],
Another look on region merging procedure from seed region shift for
high-resolution remote sensing image segmentation,
PandRS(148), 2019, pp. 197-207.
Elsevier DOI
1901
High-resolution remote sensing, Image segmentation,
Region merging, Seed region, Geographic object-based image analysis
BibRef
Zhang, X.L.[Xue-Liang],
Feng, X.Z.[Xue-Zhi],
Xiao, P.F.[Peng-Feng],
He, G.J.[Guang-Jun],
Zhu, L.J.[Liu-Jun],
Segmentation quality evaluation using region-based precision and
recall measures for remote sensing images,
PandRS(102), No. 1, 2015, pp. 73-84.
Elsevier DOI
1503
High-spatial resolution remote sensing
BibRef
Dai, L.Z.[Ling-Zheng],
Yang, J.[Jian],
Chen, L.[Liang],
Li, J.X.[Jun-Xia],
Category-specific object segmentation via unsupervised discriminant
shape,
PR(64), No. 1, 2017, pp. 202-214.
Elsevier DOI
1701
Object segmentation
BibRef
Dai, L.Z.[Ling-Zheng],
Li, J.X.[Jun-Xia],
Ding, J.D.[Jun-Di],
Yang, J.[Jian],
CCTA-based region-wise segmentation,
ICPR12(238-241).
WWW Link.
1302
Connected Coherence Tree Algorithm.
Oversegment, then merge.
BibRef
Shi, J.[Jiao],
Lei, Y.[Yu],
Wu, J.J.[Jia-Ji],
Paul, A.[Anand],
Kim, M.[Mucheol],
Jeon, G.G.[Gwang-Gil],
Uncertain clustering algorithms based on rough and fuzzy sets for
real-time image segmentation,
RealTimeIP(13), No. 3, September 2017, pp. 645-663.
Springer DOI
1710
BibRef
Xing, J.,
Hu, W.,
Ai, H.,
Yan, S.,
FatRegion: A Fast Adaptive Tree-Structured Region Extraction Approach,
CirSysVideo(28), No. 3, March 2018, pp. 601-615.
IEEE DOI
1804
Feature extraction, Image edge detection, Image segmentation,
Merging, Object tracking, Pipelines, Time complexity,
superpixel
BibRef
Roy, P.[Pradipta],
Biswas, P.K.[Prabir Kumar],
A parallel LEGION algorithm and cell-based architecture for real time
split and merge video segmentation,
RealTimeIP(15), No. 2, August 2018, pp. 363-387.
WWW Link.
1808
BibRef
Zhang, Y.H.[Yu-Han],
Wang, X.[Xi],
Tan, H.S.[Hai-Shu],
Xu, C.[Chang],
Ma, X.[Xu],
Xu, T.F.[Ting-Fa],
Region Merging Method for Remote Sensing Spectral Image Aided by
Inter-Segment and Boundary Homogeneities,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Dao, P.D.[Phuong D.],
Mantripragada, K.[Kiran],
He, Y.H.[Yu-Hong],
Qureshi, F.Z.[Faisal Z.],
Improving hyperspectral image segmentation by applying inverse noise
weighting and outlier removal for optimal scale selection,
PandRS(171), 2021, pp. 348-366.
Elsevier DOI
2012
Inverse noise weighting, Outlier detection,
Optimal scale selection, Image segmentation,
Hyperspectral image classification
BibRef
Wang, X.F.[Xiao-Feng],
Wang, Y.[Yan],
Lei, J.J.[Jin-Jin],
Li, B.[Bin],
Wang, Q.[Qin],
Xue, J.R.[Jian-Ru],
Coarse-to-fine-grained method for image splicing region detection,
PR(122), 2022, pp. 108347.
Elsevier DOI
2112
Image splicing detection, CFA interpolation algorithm,
Forensics features, Texture strength features, Edges smoothing
BibRef
ur Rehman, A.[Atiq],
Belhaouari, S.B.[Samir Brahim],
Divide well to merge better: A novel clustering algorithm,
PR(122), 2022, pp. 108305.
Elsevier DOI
2112
Clustering, Data projection,
Joint probability density estimation, Non-parametric techniques
BibRef
Zheng, Y.P.[Yun-Ping],
Yang, B.[Bowen],
Sarem, M.[Mudar],
FNRegion: A fast NAM-based region extraction algorithm,
IET-IPR(17), No. 14, 2023, pp. 4076-4088.
DOI Link
2312
image processing, image representation
See also FatRegion: A Fast Adaptive Tree-Structured Region Extraction Approach.
BibRef
Qiang, Z.[Zhe],
Ma, J.W.[Jin-Wen],
Wu, D.[Di],
Split-and-merge model selection of mixtures of Gaussian processes
with RJMCMC,
PR(157), 2025, pp. 110913.
Elsevier DOI
2409
Mixture of Gaussian processes, Model selection,
Curve clustering, Penalized prior RJMCMC, Full Bayesian inference
BibRef
Murshed, M.[Manzur],
Teng, S.W.[Shyh Wei],
Lu, G.J.[Guo-Jun],
Cuboid Segmentation for Effective Image Retrieval,
DICTA17(1-8)
IEEE DOI
1804
Rectangle partitions.
content-based retrieval, image colour analysis, image retrieval,
image segmentation, indexing, police data processing,
Indexing
BibRef
Chen, Y.,
Dai, D.,
Pont-Tuset, J.,
Van Gool, L.J.,
Scale-Aware Alignment of Hierarchical Image Segmentation,
CVPR16(364-372)
IEEE DOI
1612
BibRef
Wang, F.,
Li, Z.,
Liu, Q.,
Coarse-to-fine human parsing with Fast R-CNN and over-segment
retrieval,
ICIP16(1938-1942)
IEEE DOI
1610
Belts
BibRef
do Patrocínio, Jr., Z.K.G.[Zenilton Kleber G.],
Guimarăes, S.J.F.[Silvio Jamil F.],
Re-ranking of the Merging Order for Hierarchical Image Segmentation,
CIARP15(375-382).
Springer DOI
1511
BibRef
Ferreira, D.P.L.[Daniela Portes L.],
Backes, A.R.[André R.],
Barcelos, C.A.Z.[Celia A. Zorzo],
Bregman Divergence Applied to Hierarchical Segmentation Problems,
CIARP15(493-500).
Springer DOI
1511
BibRef
Wang, C.Y.[Chao-Yang],
Zhao, L.[Long],
Liang, S.[Shuang],
Zhang, L.Q.[Li-Qing],
Jia, J.Y.[Jin-Yuan],
Wei, Y.C.[Yi-Chen],
Object proposal by multi-branch hierarchical segmentation,
CVPR15(3873-3881)
IEEE DOI
1510
BibRef
tarha, P.[Pavel],
Druckmüllerová, H.[Hana],
Decomposition of a Bunch of Objects in Digital Images,
IWCIA14(146-157).
Springer DOI
1405
Decomposing overlapping objects.
BibRef
Mirghasemi, S.,
Rayudu, R.,
Zhang, M.J.[Meng-Jie],
A feature-based region growing-merging approach to color image
segmentation,
IVCNZ13(376-381)
IEEE DOI
1402
image colour analysis
BibRef
Dragon, R.[Ralf],
Ostermann, J.[Jörn],
Van Gool, L.J.[Luc J.],
Robust Realtime Motion-Split-And-Merge for Motion Segmentation,
GCPR13(425-434).
Springer DOI
1311
BibRef
Slimene, A.[Alya],
Zagrouba, E.[Ezzeddine],
Kernel Maximum Mean Discrepancy for Region Merging Approach,
CAIP13(II:475-482).
Springer DOI
1311
BibRef
Zankl, G.[Georg],
Haxhimusa, Y.[Yll],
Ion, A.[Adrian],
Interactive Labeling of Image Segmentation Hierarchies,
DAGM12(11-20).
Springer DOI
1209
BibRef
Tong, B.[Biao],
Li, J.M.[Jun-Ming],
Influence of shape parameters on optimal scale selection in
multi-resolution segmentation,
IASP11(235-239).
IEEE DOI
1112
BibRef
Happ, P.N.,
Ferreira, R.S.,
Bentes, C.,
Costa, G.A.O.P.,
Feitosa, R.Q.,
Multiresolution Segmentation: A Parallel Approach for High Resolution
Image Segmentation in Multicore Architectures,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
de Carvalho, M.A.G.[Marco Antonio Garcia],
Branco Ferreira, A.C.[Anselmo Castelo],
Costa, A.L.[André Luis],
Image Segmentation Using Quadtree-Based Similarity Graph and Normalized
Cut,
CIARP10(329-337).
Springer DOI
1011
BibRef
Stojmenovic, M.[Milos],
Solis-Montero, A.[Andres],
Nayak, A.[Amiya],
Co-parent selection for fast region merging in pyramidal image
segmentation,
IPTA10(243-248).
IEEE DOI
1007
BibRef
Zhang, R.G.[Rong-Guo],
Xiao, B.H.[Bai-Hua],
Wang, C.H.[Chun-Heng],
Oversegment an image to get the candidate detection windows,
ICIP09(845-848).
IEEE DOI
0911
BibRef
Atsumi, M.[Masayasu],
Attention-Based Segmentation on an Image Pyramid Sequence,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Zeng, G.[Gang],
Van Gool, L.J.[Luc J.],
Multi-label image segmentation via point-wise repetition,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Baldacci, F.[Fabien],
Braquelaire, A.[Achille],
Damiand, G.[Guillaume],
3D Topological Map Extraction from Oriented Boundary Graph,
GbRPR09(283-292).
Springer DOI
0905
BibRef
Baldacci, F.[Fabien],
Braquelaire, A.[Achille],
Domenger, J.P.[Jean-Philippe],
Oriented Boundary Graph: A Framework to Design and Implement 3D
Segmentation Algorithms,
ICPR10(1116-1119).
IEEE DOI
1008
See also Unbiased and Intervoxel Watershed Algorithm for 3D Image Segmentation, An.
BibRef
Baldacci, F.[Fabien],
Braquelaire, A.[Achille],
Desbarats, P.[Pascal],
Domenger, J.P.[Jean-Philippe],
3D Image Topological Structuring with an Oriented Boundary Graph for
Split and Merge Segmentation,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Blanton, W.B.[W. Brendan],
Barner, K.E.[Kenneth E.],
Texture-Based Infrared Image Segmentation by Combined Merging and
Partitioning,
ICIP07(II: 45-48).
IEEE DOI
0709
BibRef
Tehami, S.[Samy],
Bigand, A.[André],
Colot, O.[Olivier],
Color Image Segmentation Based on Type-2 Fuzzy Sets and Region Merging,
ACIVS07(943-954).
Springer DOI
0708
BibRef
Micusik, B.[Banislav],
Pajdla, T.[Tomas],
Multi-label image segmentation via max-sum solver,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Radhakrishnan, M.L.,
Su, S.L.,
Dead-End Elimination as a Heuristic for Min-Cut Image Segmentation,
ICIP06(2429-2432).
IEEE DOI
0610
BibRef
Zhan, Y.W.[Yao-Wen],
Wang, W.Q.[Wei-Qiang],
Gao, W.[Wen],
A Robust Split-and-Merge Text Segmentation Approach for Images,
ICPR06(II: 1002-1005).
IEEE DOI
0609
BibRef
Varma, M.[Manik],
Ray, D.[Debajyoti],
Learning The Discriminative Power-Invariance Trade-Off,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Estrada, F.J.,
Jepson, A.D.,
Chennubhotla, C.,
Spectral Embedding and Min Cut for Image Segmentation,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Tolliver, D.A.[David A.],
Collins, R.T.[Robert T.],
Baker, S.[Simon],
Multilevel Spectral Partitioning for Efficient Image Segmentation and
Tracking,
WACV05(I: 414-420).
IEEE DOI
0502
Normalized cut image segmentation.
BibRef
Merigot, A.,
Revisiting image splitting,
CIAP03(314-319).
IEEE DOI
0310
BibRef
Kaplan, L.M.,
Oh, S.M.,
Yoon, Y.S.,
McClellan, J.H.,
Target Detection Features for Pruned Quadtree Image Formation,
CVBVS01(xx-yy).
0110
BibRef
Borges, G.A.,
Aldon, M.J.,
A Split-and-merge Segmentation Algorithm for Line Extraction in 2-d
Range Images,
ICPR00(Vol I: 441-444).
IEEE DOI
0009
BibRef
Yang, H.S.[Hee Soo],
Lee, S.U.[Sang Uk],
Split-and-merge segmentation employing thresholding technique,
ICIP97(I: 239-242).
IEEE DOI
9710
BibRef
Basman, A.[Antranig],
Lasenby, J.[Joan],
Cipolla, R.[Roberto],
Efficient region segmentation through 'creep-and-merge',
CIAP97(I: 223-230).
Springer DOI
9709
BibRef
Gevers, T.,
Smeulders, A.W.M.,
Combining Region Splitting and Edge Detection Through
Guided Delaunay Image Subdivision,
CVPR97(1021-1026).
IEEE DOI
9704
BibRef
Kropatsch, W.G.,
Ben-Yacoub, S.,
A Revision of Pyramid Segmentation,
ICPR96(II: 477-481).
IEEE DOI
9608
(Technical Univ. Vienna, A)
BibRef
Kropatsch, W.G.,
Ben-Yacoub, S.,
A Universal Pyramid Segmentation Algorithm,
SPIE(2826), August 1996, pp. 216-224.
BibRef
9608
Gevers, T.,
Kajcovski, V.K.,
Image Segmentation by Directed Region Subdivision,
ICPR94(A:342-346).
IEEE DOI
BibRef
9400
Schutte, K.,
Region Growing with Planar Facets,
SCIA93(719-725).
BibRef
9300
Kalvin, A.,
Peleg, S.,
Hummel, R.,
Pyramid Segmentation in 2D and 3D Images Using Local Optimization,
ICPR88(I: 276-278).
IEEE DOI
8811
BibRef
Parvin, B.A.,
A Split and Merge Algorithm for Segmentation of Natural Scenes,
ICPR84(294-296).
BibRef
8400
Gerbrands, J.J.,
Backer, E.,
Split-and-Merge Segmentation of SLAR Imagery: Segmentation Consistency,
ICPR84(284-286).
BibRef
8400
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Multi-level, Multi-Scale Segmentation and Smoothing Methods .