14.2.8 Mixture Models, Mixed Pixels

Chapter Contents (Back)
Mixed Pixels. Mixture Models. 9905
Hyperspectral specific:
See also Hyperspectral Mixture Models, Mixed Pixels.

Lawoko, C.R.O., McLachlan, G.J.,
Bias associated with the discriminant analysis approach to the estimation of mixing proportions,
PR(22), No. 6, 1989, pp. 763-766.
Elsevier DOI 0309
BibRef

Lawoko, C.R.O., McLachlan, G.J.,
Discrimination with autocorrelated observations,
PR(18), No. 2, 1985, pp. 145-149.
Elsevier DOI 0309
BibRef
And: Extensions:
Further results on discrimination with autocorrelated observations,
PR(21), No. 1, 1988, pp. 69-72.
Elsevier DOI 0309

See also Discriminant Analysis and Statistical Pattern Recognition. BibRef

Yarman-Vural, F.T.[Fatos T.], Ataman, E.[Ergin],
Noise, histogram and cluster validity for Gaussian-mixtured data,
PR(20), No. 4, 1987, pp. 385-401.
Elsevier DOI 0309
BibRef

Derin, H.,
Estimating Components of Univariate Gaussian Mixtures Using Prony's Method,
PAMI(9), No. 1, January 1987, pp. 142-148. BibRef 8701

Parker, I.M.,
Finding the overlap integral between two classes of object,
PR(26), No. 7, July 1993, pp. 1117-1119.
Elsevier DOI 0401
BibRef

Santago, P., Gage, H.D.,
Statistical models of partial volume effect,
IP(4), No. 11, November 1995, pp. 1531-1540.
IEEE DOI 0402
BibRef

Zhuang, X.H., Huang, Y., Palaniappan, K., Zhao, Y.X.,
Gaussian Mixture Density Modeling, Decomposition, and Applications,
IP(5), No. 9, September 1996, pp. 1293-1302.
IEEE DOI Extraction of clusters. BibRef 9609

Schowengerdt, R.A.,
On the Estimation of Spatial-Spectral Mixing with Classifier Likelihood Functions,
PRL(17), No. 13, November 25 1996, pp. 1379-1387. 9701
BibRef

Sand, F.[Francis], Dougherty, E.R.[Edward R.],
Asymptotic Granulometric Mixing Theorem: Morphological Estimation of Sizing Parameters and Mixture Proportions,
PR(31), No. 1, January 1998, pp. 53-61.
Elsevier DOI 9802
BibRef

Kehtarnavaz, N.[Nasser], Nakamura, E.[Eiji],
Generalization of the EM Algorithm for Mixture Density Estimation,
PRL(19), No. 2, February 1998, pp. 133-140. 9808
BibRef

Medasani, S.[Swarup], Krishnapuram, R.[Raghu],
A Comparison of Gaussian and Pearson Mixture Modeling for Pattern Recognition and Computer Vision Applications,
PRL(20), No. 3, March 1999, pp. 305-313. BibRef 9903

Celeux, G.[Gilles], Govaert, G.[Gérard],
Gaussian parsimonious clustering models,
PR(28), No. 5, May 1995, pp. 781-793.
Elsevier DOI 0401
BibRef

Biernacki, C.[Christophe], Celeux, G.[Gilles], Govaert, G.[Gérard],
An improvement of the NEC criterion for assessing the number of clusters in a mixture model,
PRL(20), No. 3, March 1999, pp. 267-272. BibRef 9903

Biernacki, C.[Christophe], Celeux, G.[Gilles], Govaert, G.[Gerard],
Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood,
PAMI(22), No. 7, July 2000, pp. 719-725.
IEEE DOI 0008
BibRef

Kitamoto, A.[Asanbou], Takagi, M.[Mikio],
Image Classification using Probabilistic Models that Reflect the Internal Structure of Mixels,
PAA(2), No. 1, 1999, pp. 31-43. BibRef 9900
Earlier:
A stochastic model of mixels and image classification,
ICPR96(II: 745-749).
IEEE DOI 9608
(Univ. of Tokyo, J) BibRef

Cootes, T.F., Taylor, C.J.,
A Mixture Model for Representing Shape Variation,
IVC(17), No. 8, June 1999, pp. 567-573.
Elsevier DOI BibRef 9906
Earlier: BMVC97(xx-yy).
HTML Version. 0209
BibRef

Boshra, M.[Michael], Zhang, H.[Hong],
Accommodating uncertainty in pixel-based verification of 3-D object hypotheses,
PRL(20), No. 7, July 1999, pp. 689-698. BibRef 9907

Aguiar, A.P.D., Shimabukuro, Y.E., Mascarenhas, N.D.A.,
Use of synthetic bands derived from mixing models in the multispectral classification of remote sensing images,
JRS(20), No. 4, March 1999, pp. 647. BibRef 9903

Tadjudin, S., Landgrebe, D.A.,
Robust Parameter Estimation for Mixture Model,
GeoRS(38), No. 1, January 2000, pp. 439-445.
IEEE Top Reference. 0002
BibRef

Erol, H.[Hamza],
A practical method for constructing the mixture model for a spectral class,
JRS(21), No. 4, March 2000, pp. 823. 0002
BibRef

Geva, A.B.[Amir B.], Steinberg, Y.[Yossef], Bruckmair, S.[Shay], Nahum, G.[Gerry],
A comparison of cluster validity criteria for a mixture of normal distributed data,
PRL(21), No. 6-7, June 2000, pp. 511-529. 0006
BibRef

Martínez, A.M.[Aleix M.], Vitriŕ, J.[Jordi],
Learning mixture models using a genetic version of the EM algorithm,
PRL(21), No. 6-7, June 2000, pp. 759-769. 0006
BibRef

Brown, M., Lewis, H.G., Gunn, S.R.,
Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing,
GeoRS(38), No. 5, September 2000, pp. 2346-2360.
IEEE Top Reference. 0010
BibRef

Lee, T.W.[Te-Won], Lewicki, M.S.[Michael S.], Sejnowski, T.J.[Terrence J.],
ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Separation,
PAMI(22), No. 10, October 2000, pp. 1078-1089.
IEEE DOI 0011
Modeling classes as linear combinations of independent, non-Gaussian densities. BibRef

Lee, T.W.[Te-Won], Lewicki, M.S.,
Unsupervised image classification, segmentation, and enhancement using ICA mixture models,
IP(11), No. 3, March 2002, pp. 270-279.
IEEE DOI 0203
BibRef

Park, H.J.[Hyun-Jin], Lee, T.W.[Te-Won],
Unsupervised learning of nonlinear dependencies in natural images,
IJIST(15), No. 1, 2005, pp. 34-47.
DOI Link 0507
BibRef

Carreira-Perpińán, M.Á.[Miguel Á.],
Mode-Finding for Mixtures of Gaussian Distributions,
PAMI(22), No. 11, November 2000, pp. 1318-1323.
IEEE DOI 0012
Matlab implementation and TR with mathematical details:
HTML Version. Code, Modes. BibRef

Carreira-Perpińán, M.Á.[Miguel Á.], Williams, C.K.I.[Christopher K.I.],
On the Number of Modes of a Gaussian Mixture,
ScaleSpace03(625-640).
Springer DOI 0310
BibRef

Carreira-Perpinan, M.A.[Miguel A.],
Gaussian Mean-Shift Is an EM Algorithm,
PAMI(29), No. 5, May 2007, pp. 767-776.
IEEE DOI 0704
BibRef
Earlier:
Acceleration Strategies for Gaussian Mean-Shift Image Segmentation,
CVPR06(I: 1160-1167).
IEEE DOI 0606

See also Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, The. Convergence is fast for very narrow or very wide, but slow for intermediate. Ways to accelerate. BibRef

Carreira-Perpinan, M.A.[Miguel A.],
Generalised blurring mean-shift algorithms for nonparametric clustering,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Yang, Z.R.[Zheng Rong], Zwolinski, M.[Mark],
Mutual Information Theory for Adaptive Mixture Models,
PAMI(23), No. 4, April 2001, pp. 396-403.
IEEE DOI 0104
Analyze whether components are independent, if so then the information is important. BibRef

Simon, C., Loubaton, P., Jutten, C.,
Separation of a Class of Convolutive Mixtures: A Contrast Function Approach,
SP(81), No. 4, April 2001, pp. 883-887.
Elsevier DOI 0105
BibRef

Dahmen, J.[Jörg], Keysers, D.[Daniel], Ney, H.[Hermann], Güld, M.O.[Mark Oliver],
Statistical Image Object Recognition using Mixture Densities,
JMIV(14), No. 3, May 2001, pp. 285-296.
DOI Link 0106
BibRef
Earlier: A1, A2, A4, A3:
Invariant Image Object Recognition Using Mixture Densities,
ICPR00(Vol II: 614-617).
IEEE DOI 0009
BibRef

Keysers, D.[Daniel], Macherey, W.[Wolfgang], Ney, H.[Hermann], Dahmen, J.[Jorg],
Adaptation in Statistical Pattern Recognition Using Tangent Vectors,
PAMI(26), No. 2, February 2004, pp. 269-274.
IEEE Abstract. 0402
Integrate the tangent method into statistical framework to improve classisification. BibRef

Rand, R.S., Keenan, D.M.,
A spectral mixture process conditioned by Gibbs-based partitioning,
GeoRS(39), No. 7, July 2001, pp. 1421-1434.
IEEE Top Reference. 0108
BibRef

Collins, E.F., Roberts, D.A., Borel, C.C.,
Spectral mixture analysis of simulated thermal infrared spectrometry data: an initial temperature estimate bounded TESSMA search approach,
GeoRS(39), No. 7, July 2001, pp. 1435-1446.
IEEE Top Reference. 0108
BibRef

Yang, X.Y.[Xiang-Yu], Liu, J.[Jun],
Mixture density estimation with group membership functions,
PRL(23), No. 5, March 2002, pp. 501-512.
Elsevier DOI 0202
BibRef

Figueiredo, M.A.T., Jain, A.K.,
Unsupervised Learning of Finite Mixture Models,
PAMI(24), No. 3, March 2002, pp. 381-396.
IEEE DOI 0202
BibRef
Earlier:
Unsupervised Selection and Estimation of Finite Mixture Models,
ICPR00(Vol II: 87-90).
IEEE DOI 0009
BibRef

Figueiredo, M.A.T.,
On Gaussian Radial Basis Function Approximations: Interpretation, Extensions, and Learning Strategies,
ICPR00(Vol II: 618-621).
IEEE DOI 0009
BibRef

Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.,
Simultaneous Feature Selection and Clustering Using Mixture Models,
PAMI(26), No. 9, September 2004, pp. 1154-1166.
IEEE Abstract. 0409
Add Feature Salience in clustering method and an EM algorithm to estimate it. Salience of irrelevant features goes to 0, thus de-selecting them. BibRef

Dattatreya, G.R.,
Unsupervised context estimation in a mesh of pattern classes for image recognition,
PR(24), No. 7, 1991, pp. 685-694.
Elsevier DOI 0401
BibRef
And:
Estimation of class correlation parameters in images for context classification,
ICPR90(I: 937-941).
IEEE DOI 9006
BibRef

Dattatreya, G.R.,
Gaussian mixture parameter estimation with known means and unknown class-dependent variances,
PR(35), No. 7, July 2002, pp. 1611-1616.
Elsevier DOI 0204
BibRef

Dattatreya, G.R., Fang, X.R.F.[Xiao-Ri Frank],
Parameter estimation: known vector signals in unknown Gaussian noise,
PR(36No. 10, October 2003, pp. 2317-2332.
Elsevier DOI 0308
BibRef

Aylward, S.R.[Stephen R.],
Continuous mixture modeling via goodness-of-fit ridges,
PR(35), No. 9, September 2002, pp. 1821-1833.
Elsevier DOI 0206
BibRef

Govaert, G.[Gérard], Nadif, M.[Mohamed],
Clustering with block mixture models,
PR(36), No. 2, February 2003, pp. 463-473.
Elsevier DOI 0211
BibRef

Govaert, G.[Gerard], Nadif, M.[Mohamed],
An EM Algorithm for the Block Mixture Model,
PAMI(27), No. 4, April 2005, pp. 643-647.
IEEE Abstract. 0501
BibRef

Frey, B.J.[Brendan J.], Jojic, N.[Nebojsa],
Transformation-invariant clustering using the EM algorithm,
PAMI(25), No. 1, January 2003, pp. 1-17.
IEEE DOI 0301
BibRef
Earlier:
Estimating Mixture Models of Images and Inferring Spatial Transformations Using the EM Algorithm,
CVPR99(I: 416-422).
IEEE DOI BibRef
Earlier:
Transformed Component Analysis: Joint Estimation of Spatial Transformations and Image Components,
ICCV99(1190-1196).
IEEE DOI BibRef

Perina, A.[Alessandro], Cristani, M.[Marco], Murino, V.[Vittorio],
2LDA: Segmentation for Recognition,
ICPR10(995-998).
IEEE DOI 1008
BibRef

Perina, A.[Alessandro], Jojic, N.[Nebojsa], Castellani, U.[Umberto], Cristani, M.[Marco], Murino, V.[Vittorio],
Object Recognition with Hierarchical Stel Models,
ECCV10(VI: 15-28).
Springer DOI 1009
BibRef

Perina, A.[Alessandro], Jojic, N.[Nebojsa], Cristani, M.[Marco], Murino, V.[Vittorio],
Stel Component Analysis: Joint Segmentation, Modeling and Recognition of Objects Classes,
IJCV(100), No. 3, December 2012, pp. 241-260.
WWW Link. 1210
BibRef

Jojic, N.[Nebojsa], Perina, A.[Alessandro], Cristani, M.[Marco], Murino, V.[Vittorio], Frey, B.J.[Brendan J.],
Stel component analysis: Modeling spatial correlations in image class structure,
CVPR09(2044-2051).
IEEE DOI 0906
BibRef

Frey, B.J., Jojic, N., Kannan, A.,
Learning appearance and transparency manifolds of occluded objects in layers,
CVPR03(I: 45-52).
IEEE DOI 0307
BibRef

Jojic, N.[Nebojsa], Petrovic, N.[Nemanja], Frey, B.J.[Brendan J.], Huang, T.S.[Thomas S.],
Transformed Hidden Markov Models: Estimating Mixture Models of Images and Inferring Spatial Transformations in Video Sequences,
CVPR00(II: 26-33).
IEEE DOI 0005
BibRef

Titsias, M.K., Likas, A.C.,
Class conditional density estimation using mixtures with constrained component sharing,
PAMI(25), No. 7, July 2003, pp. 924-928.
IEEE Abstract. 0307
BibRef

Constantinopoulos, C.[Constantinos], Titsias, M.K., Likas, A.C.[Aristidis C.],
Bayesian Feature and Model Selection for Gaussian Mixture Models,
PAMI(28), No. 6, June 2006, pp. 1013-1018.
IEEE DOI 0605
Feature and model selection together BibRef

Nikou, C.[Christophoros], Galatsanos, N.P.[Nikolaos P.], Likas, A.C.[Aristidis C.],
A Class-Adaptive Spatially Variant Mixture Model for Image Segmentation,
IP(16), No. 4, April 2007, pp. 1121-1130.
IEEE DOI 0704
BibRef

Constantinopoulos, C.[Constantinos], Likas, A.C.[Aristidis C.],
Image Modeling and Segmentation Using Incremental Bayesian Mixture Models,
CAIP07(596-603).
Springer DOI 0708
BibRef

Zhang, Z.H.[Zhi-Hua], Chen, C.B.[Chi-Biao], Sun, J.[Jian], Chan, K.L.[Kap Luk],
EM algorithms for Gaussian mixtures with split-and-merge operation,
PR(36), No. 9, September 2003, pp. 1973-1983.
Elsevier DOI 0307
BibRef

Igual, J.[Jorge], Camacho, A.[Andres], Bernabeu, P.[Pablo], Vergara, L.[Luis],
A maximum a posteriori estimate for the source separation problem with statistical knowledge about the mixing matrix,
PRL(24), No. 15, November 2003, pp. 2519-2523.
Elsevier DOI 0308
BibRef

Zhang, B.B.[Bai-Bo], Zhang, C.S.[Chang-Shui], Yi, X.[Xing],
Competitive EM algorithm for finite mixture models,
PR(37), No. 1, January 2004, pp. 131-144.
Elsevier DOI 0311
BibRef

Zhang, M.H.[Ming-Heng], Cheng, Q.S.[Qian-Sheng],
Determine the number of components in a mixture model by the extended KS test,
PRL(25), No. 2, January 2004, pp. 211-216.
Elsevier DOI 0401
BibRef

Liu, W.X.[Wei-Xiang], Zheng, N.N.[Nan-Ning],
Learning sparse features for classification by mixture models,
PRL(25), No. 2, January 2004, pp. 155-161.
Elsevier DOI 0401
BibRef

Zivkovic, Z.[Zoran], van der Heijden, F.[Ferdinand],
Recursive unsupervised learning of finite mixture models,
PAMI(26), No. 5, May 2004, pp. 651-656.
IEEE Abstract. 0404
Estimate parameters of mixture and select the number of components. BibRef

Wang, H.X.[Hai Xian], Zhang, Q.B.[Quan Bing], Luo, B.[Bin], Wei, S.[Sui],
Robust mixture modelling using multivariate t-distribution with missing information,
PRL(25), No. 6, 19 April 2004, pp. 701-710.
Elsevier DOI 0405
BibRef

Wang, H.X.[Hai Xian], Luo, B.[Bin], Zhang, Q.B.[Quan Bing], Wei, S.[Sui],
Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm,
PRL(25), No. 16, December 2004, pp. 1799-1809.
Elsevier DOI 0411
BibRef

Chen, S.B.[Si-Bao], Wang, H.X.[Hai-Xian], Luo, B.[Bin],
On Dynamic Weighting of Data in Clustering with K-Alpha Means,
ICPR10(774-777).
IEEE DOI 1008
BibRef

Settle, J.J.,
On the use of remotely sensed data to estimate spatially averaged geophysical variables,
GeoRS(42), No. 3, March 2004, pp. 620-631.
IEEE Abstract. 0407
Examine errors that arise, e.g. mixtures. BibRef

Settle, J.J.,
On the residual term in the linear mixture model and its dependence on the point spread function,
GeoRS(43), No. 2, February 2005, pp. 398-401.
IEEE Abstract. 0501
BibRef

Settle, J.J.,
On the Effect of Variable Endmember Spectra in the Linear Mixture Model,
GeoRS(44), No. 2, February 2006, pp. 389-396.
IEEE DOI 0602
BibRef

Xiong, Y.M.[Yi-Min], Yeung, D.Y.[Dit-Yan],
Time series clustering with ARMA mixtures,
PR(37), No. 8, August 2004, pp. 1675-1689.
Elsevier DOI 0407
BibRef

Yang, X.Y.[Xiang-Yu], Krishnan, S.M.[Shankar M.],
Image segmentation using finite mixtures and spatial information,
IVC(22), No. 9, 20 August 2004, pp. 735-745.
Elsevier DOI 0407
BibRef

Bouguila, N.[Nizar], Ziou, D., Vaillancourt, J.,
Unsupervised Learning of a Finite Mixture Model Based on the Dirichlet Distribution and Its Application,
IP(13), No. 11, November 2004, pp. 1533-1543.
IEEE DOI 0411
BibRef

Bouguila, N.[Nizar], Ziou, D.[Djemel],
Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications,
PRL(26), No. 12, September 2005, pp. 1916-1925.
Elsevier DOI 0508
BibRef
And:
MML-Based Approach for High-Dimensional Unsupervised Learning Using the Generalized Dirichlet Mixture,
LCV05(III: 53-53).
IEEE DOI 0507
BibRef
Earlier: A2, A1:
Unsupervised learning of a finite gamma mixture using MML: Application to SAR image analysis,
ICPR04(II: 68-71).
IEEE DOI 0409
BibRef

Bouguila, N.[Nizar], Ziou, D.[Djemel],
A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture,
IP(15), No. 9, August 2006, pp. 2657-2668.
IEEE DOI 0608
BibRef
Earlier:
Powerful finite mixture model based on the generalized dirichlet distribution: unsupervised learning and applications,
ICPR04(I: 280-283).
IEEE DOI 0409
BibRef

Bouguila, N.[Nizar], Ziou, D.[Djemel],
Unsupervised learning of a finite discrete mixture: Applications to texture modeling and image databases summarization,
JVCIR(18), No. 4, August 2007, pp. 295-309.
Elsevier DOI 0711
Multinomial Dirichlet; Finite mixture models; Maximum likelihood; EM; Semantic features; Image retrieval; Vistex; Cooccurrence matrix BibRef

Bouguila, N.[Nizar], Ziou, D.[Djemel],
High-Dimensional Unsupervised Selection and Estimation of a Finite Generalized Dirichlet Mixture Model Based on Minimum Message Length,
PAMI(29), No. 10, October 2007, pp. 1716-1731.
IEEE DOI 0710
Structure of data withou knowing number of clusters. BibRef

Bouguila, N.[Nizar],
Bayesian hybrid generative discriminative learning based on finite Liouville mixture models,
PR(44), No. 6, June 2011, pp. 1183-1200.
Elsevier DOI 1102
Liouville family of distributions; Generative models; Discriminative models; Mixture models; SVM; Bayesian inference; Exponential family; Conjugate prior; Gibbs sampling; Bayes factor; Image classification; Texture modeling BibRef

Bouguila, N.[Nizar],
Infinite Liouville mixture models with application to text and texture categorization,
PRL(33), No. 2, 15 January 2012, pp. 103-110.
Elsevier DOI 1112
Liouville family of distributions; Infinite mixture models; Proportional data; Nonparametric Bayesian inference; MCMC; Gibbs sampling BibRef

Allili, M.S.[Mohand Saďd], Ziou, D.[Djemel], Bouguila, N.[Nizar], Boutemedjet, S.[Sabri],
Image and Video Segmentation by Combining Unsupervised Generalized Gaussian Mixture Modeling and Feature Selection,
CirSysVideo(20), No. 10, October 2010, pp. 1373-1377.
IEEE DOI 1011
BibRef
Earlier:
Unsupervised Feature Selection and Learning for Image Segmentation,
CRV10(285-292).
IEEE DOI 1005
BibRef

Larivičre, G.[Guillaume], Allili, M.S.[Mohand Saďd],
A Learning Probabilistic Approach for Object Segmentation,
CRV12(86-93).
IEEE DOI 1207
BibRef

Bouguila, N.[Nizar], El Guebaly, W.[Walid],
Discrete data clustering using finite mixture models,
PR(42), No. 1, January 2009, pp. 33-42.
Elsevier DOI 0809
Discrete data; Finite mixture models; Multinomial; Generalized Dirichlet distribution; EM; Spatial color; Image databases; Labeled and unlabeled images; Summarization; Text classification BibRef

Maanicshah, K.[Kamal], Amayri, M.[Manar], Bouguila, N.[Nizar],
Interactive Generalized Dirichlet Mixture Allocation Model,
SSSPR22(33-42).
Springer DOI 2301
BibRef

Nguyen, H.[Hieu], Maanicshah, K.[Kamal], Azam, M.[Muhammad], Bouguila, N.[Nizar],
Data Clustering Using Variational Learning of Finite Scaled Dirichlet Mixture Models with Component Splitting,
ICIAR19(II:117-128).
Springer DOI 1909
BibRef

Maanicshah, K.[Kamal], Ali, S.[Samr], Fan, W.T.[Wen-Tao], Bouguila, N.[Nizar],
Unsupervised Variational Learning of Finite Generalized Inverted Dirichlet Mixture Models with Feature Selection and Component Splitting,
ICIAR19(II:94-105).
Springer DOI 1909
BibRef

Bouguila, N.[Nizar],
Non-Gaussian mixture image models prediction,
ICIP08(2580-2583).
IEEE DOI 0810
BibRef

Boutemedjet, S.[Sabri], Bouguila, N.[Nizar], Ziou, D.[Djemel],
A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Clustering,
PAMI(31), No. 8, August 2009, pp. 1429-1443.
IEEE DOI 0906
BibRef
Earlier:
Unsupervised Feature and Model Selection for Generalized Dirichlet Mixture Models,
ICIAR07(330-341).
Springer DOI 0708
Feature selection in mixtures BibRef

El Guebaly, T.[Tarek], Bouguila, N.[Nizar],
Generalized Gaussian mixture models as a nonparametric Bayesian approach for clustering using class-specific visual features,
JVCIR(23), No. 8, November 2012, pp. 1199-1212.
Elsevier DOI 1211
Mixture models; Generalized Gaussian; Feature selection; Nonparametric Bayes; MCMC; Gibbs sampling; Photographic; Painting; Segmentation; Infrared images BibRef

El Guebaly, T.[Tarek], Bouguila, N.[Nizar],
Finite asymmetric generalized Gaussian mixture models learning for infrared object detection,
CVIU(117), No. 12, 2013, pp. 1659-1671.
Elsevier DOI 1310
Infrared
See also Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection. BibRef

Song, Z.Y.[Zi-Yang], Ali, S.[Samr], Bouguila, N.[Nizar],
Background subtraction using infinite asymmetric Gaussian mixture models with simultaneous feature selection,
IET-IPR(14), No. 11, September 2020, pp. 2321-2332.
DOI Link 2009
BibRef
Earlier:
Bayesian Learning of Infinite Asymmetric Gaussian Mixture Models for Background Subtraction,
ICIAR19(I:264-274).
Springer DOI 1909
BibRef

El Guebaly, T.[Tarek], Bouguila, N.[Nizar],
Simultaneous high-dimensional clustering and feature selection using asymmetric Gaussian mixture models,
IVC(34), No. 1, 2015, pp. 27-41.
Elsevier DOI 1502
Asymmetric Gaussian distribution BibRef

Bouguila, N.[Nizar], Ghimire, M.N.[Mukti Nath],
Discrete visual features modeling via leave-one-out likelihood estimation and applications,
JVCIR(21), No. 7, October 2010, pp. 613-626.
Elsevier DOI 1003
Discrete features; Finite mixture models; Multinomial; Dirichlet; Generalized Dirichlet; Leave-one-out likelihood; SVM; Generative/discriminative; Scene classification; Visual words BibRef

Jin, H.D.[Hui-Dong], Leung, K.S.[Kwong-Sak], Wong, M.L.[Man-Leung], Xu, Z.B.[Zong-Ben],
Scalable model-based cluster analysis using clustering features,
PR(38), No. 5, May 2005, pp. 637-649.
Elsevier DOI 0501
BibRef

Jin, H.D.[Hui-Dong], Wong, M.L.[Man-Leung], Leung, K.S.,
Scalable Model-Based Clustering for Large Databases Based on Data Summarization,
PAMI(27), No. 11, November 2005, pp. 1710-1719.
IEEE DOI 0510
BibRef

Aiyer, A.[Anuradha], Pyun, K.P.[Kyungsuk Peter], Huang, Y.Z.[Ying-Zong], O'Brien, D.B.[Deirdre B.], Gray, R.M.[Robert M.],
Lloyd clustering of Gauss mixture models for image compression and classification,
SP:IC(20), No. 5, June 2005, pp. 459-485.
Elsevier DOI 0506
BibRef

Pernkopf, F.[Franz], Bouchaffra, D.[Djamel],
Genetic-Based EM Algorithm for Learning Gaussian Mixture Models,
PAMI(27), No. 8, August 2005, pp. 1344-1348.
IEEE Abstract. 0506
BibRef

Zhang, B.B.[Bai-Bo], Zhang, C.S.[Chang-Shui], Yi, X.[Xing],
Active curve axis Gaussian mixture models,
PR(38), No. 12, December 2005, pp. 2351-2362.
Elsevier DOI 0510
BibRef

Ma, J.W.[Jin-Wen], Fu, S.Q.[Shu-Qun],
On the correct convergence of the EM algorithm for Gaussian mixtures,
PR(38), No. 12, December 2005, pp. 2602-2611.
Elsevier DOI 0510
BibRef

Haertel, V.F., Shimabukuro, Y.E.,
Spectral linear mixing model in low spatial resolution image data,
GeoRS(43), No. 11, November 2005, pp. 2555-2562.
IEEE DOI 0512
BibRef

Shi, Z.W.[Zhen-Wei], Tang, H.W.[Huan-Wen], Tang, Y.Y.[Yi-Yuan],
Blind source separation of more sources than mixtures using sparse mixture models,
PRL(26), No. 16, December 2005, pp. 2491-2499.
Elsevier DOI 0512
BibRef

Shi, Z.W.[Zhen-Wei], Zhang, C.S.[Chang-Shui],
Fast nonlinear autocorrelation algorithm for source separation,
PR(42), No. 9, September 2009, pp. 1732-1741.
Elsevier DOI 0905
Blind source separation (BSS); Independent component analysis (ICA); Linear autocorrelation; Nonlinear autocorrelation BibRef

Permuter, H.H.[Haim H.], Francos, J.M.[Joseph M.], Jermyn, I.H.[Ian H.],
A study of Gaussian mixture models of color and texture features for image classification and segmentation,
PR(39), No. 4, April 2006, pp. 695-706.
Elsevier DOI 0604
Image classification; Texture; Color; Gaussian mixture models; Expectation maximization; k-means; Background model; Decision fusion; Aerial images BibRef

Paalanen, P.[Pekka], Kamarainen, J.K.[Joni-Kristian], Ilonen, J.[Jarmo], Kälviäinen, H.[Heikki],
Feature representation and discrimination based on Gaussian mixture model probability densities: Practices and algorithms,
PR(39), No. 7, July 2006, pp. 1346-1358.
Elsevier DOI 0606
Gaussian mixture model; EM; Classifier; Confidence; Highest density region BibRef

Zhou, X., Wang, X.,
Optimisation of Gaussian mixture model for satellite image classification,
VISP(153), No. 3, June 2006, pp. 349-356.
DOI Link 0608
BibRef

Brandt, S.S.[Sami S.],
Maximum Likelihood Robust Regression by Mixture Models,
JMIV(25), No. 1, July 2006, pp. 25-48.
Springer DOI 0610
BibRef

Tawfick, M.M.[Mohamad M.], Abbas, H.M.[Hazem M.], Shahein, H.I.[Hussein I.],
An integer-coded evolutionary approach for mixture maximum likelihood clustering,
PRL(29), No. 4, 1 March 2008, pp. 515-524.
Elsevier DOI 0711
Clustering; Mixture maximum likelihood; Evolutionary algorithms; Genetic algorithms BibRef

Goldberger, J.[Jacob], Greenspan, H.K.[Hayit K.], Dreyfuss, J.[Jeremie],
Simplifying Mixture Models Using the Unscented Transform,
PAMI(30), No. 8, August 2008, pp. 1496-1502.
IEEE DOI 0806
BibRef

Rotem, O.[Omer], Greenspan, H.K.[Hayit K.], Goldberger, J.[Jacob],
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework,
CVPR07(1-8).
IEEE DOI 0706
BibRef

Reddy, C.K.[Chandan K.], Chiang, H.D.[Hsiao-Dong], Rajaratnam, B.[Bala],
TRUST-TECH-Based Expectation Maximization for Learning Finite Mixture Models,
PAMI(30), No. 7, July 2008, pp. 1146-1157.
IEEE DOI 0806
BibRef

Omachi, S.[Shinichiro], Omachi, M.[Masako], Aso, H.[Hirotomo],
An Approximation Method of the Quadratic Discriminant Function and Its Application to Estimation of High-Dimensional Distribution,
IEICE(E90-D), No. 8, August 2007, pp. 1160-1167.
DOI Link 0708
BibRef

Omachi, S., Sun, F., Aso, H.,
A Discriminant Function for Noisy Pattern Recognition,
SCIA99(Statistical Methods). BibRef 9900

Sun, F., Omachi, S., Aso, H.,
An Algorithm for Estimating Mixture Distribution of High Dimensional Vectors and its Application to Character Recognition,
SCIA99(Statistical Methods). BibRef 9900

Liang, Z., Wang, S.,
An EM Approach to MAP Solution of Segmenting Tissue Mixtures: A Numerical Analysis,
MedImg(28), No. 2, February 2009, pp. 297-310.
IEEE DOI 0902
BibRef
And: Erratum: MedImg(28), No. 4, April 2009, pp. 631-631.
IEEE DOI 0904
Mixed voxels. BibRef

Sabuncu, M.R., Balci, S.K., Shenton, M.E., Golland, P.,
Image-Driven Population Analysis Through Mixture Modeling,
MedImg(28), No. 9, September 2009, pp. 1473-1487.
IEEE DOI 0909
BibRef

Yamada, M.[Makoto], Sugiyama, M.[Masashi],
Direct Importance Estimation with Gaussian Mixture Models,
IEICE(E92-D), No. 10, October 2009, pp. 2159-2162.
WWW Link. 0910
BibRef

Bruneau, P.[Pierrick], Gelgon, M.[Marc], Picarougne, F.[Fabien],
Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach,
PR(43), No. 3, March 2010, pp. 850-858.
Elsevier DOI 1001
BibRef
Earlier:
Parameter-based reduction of Gaussian mixture models with a variational-Bayes approach,
ICPR08(1-4).
IEEE DOI 0812
Mixture models; Bayesian estimation; Model aggregation BibRef

Kristan, M.[Matej], Skocaj, D.[Danijel], Leonardis, A.[Ales],
Online kernel density estimation for interactive learning,
IVC(28), No. 7, July 2010, pp. 1106-1116.
Elsevier DOI 1006
Online learning; Kernel density estimation; Mixture models; Unlearning; Compression; Hellinger distance; Unscented transform BibRef

Kristan, M.[Matej], Leonardis, A.[Ales], Skocaj, D.[Danijel],
Multivariate online kernel density estimation with Gaussian kernels,
PR(44), No. 10-11, October-November 2011, pp. 2630-2642.
Elsevier DOI 1101
BibRef
Earlier: A1, A2, Only:
Online Discriminative Kernel Density Estimation,
ICPR10(581-584).
IEEE DOI 1008
Online models; Probability density estimation; Kernel density estimation; Gaussian mixture models BibRef

Vogler, N.[Nadine], Bocklitz, T.[Thomas], Mariani, M.[Melissa], Deckert, V.[Volker], Markova, A.[Aneta], Schelkens, P.[Peter], Rösch, P.[Petra], Akimov, D.[Denis], Dietzek, B.[Benjamin], Popp, J.[Jürgen],
Separation of CARS image contributions with a Gaussian mixture model,
JOSA-A(27), No. 6, June 2010, pp. 1361-1371.
WWW Link. 1006
BibRef

Hidot, S.[Sullivan], Saint-Jean, C.[Christophe],
An Expectation-Maximization algorithm for the Wishart mixture model: Application to movement clustering,
PRL(31), No. 14, 15 October 2010, pp. 2318-2324.
Elsevier DOI 1003
Wishart mixture model; EM algorithm; Clustering; Second-order cross moments; Movement recognition BibRef

Rabbani, H., Gazor, S.,
Image denoising employing local mixture models in sparse domains,
IET-IPR(4), No. 5, October 2010, pp. 413-428.
DOI Link 1011
BibRef

Sun, J.Y.[Jian-Yong], Kaban, A.[Ata], Garibaldi, J.M.[Jonathan M.],
Robust mixture clustering using Pearson type VII distribution,
PRL(31), No. 16, December 2010, pp. 2447-2454.
Elsevier DOI 1011
Robust mixture modeling; Pearson type VII distribution; Outlier detection; Robust learning BibRef

Ulker, Y.[Yener], Gunsel, B.[Bilge], Cemgil, A.T.[Ali Taylan],
Annealed SMC Samplers for Nonparametric Bayesian Mixture Models,
SPLetters(18), No. 1, January 2011, pp. 3-6.
IEEE DOI 1011
BibRef
Earlier:
Annealed SMC Samplers for Dirichlet Process Mixture Models,
ICPR10(2808-2811).
IEEE DOI 1008
BibRef

Xie, C.H.[Cong-Hua], Song, Y.Q.[Yu-Qing], Chen, J.M.[Jian-Mei],
Fast medical image mixture density clustering segmentation using stratification sampling and kernel density estimation,
SIViP(5), No. 2, June 2011, pp. 257-267.
WWW Link. 1101
BibRef

Ma, Z.Y.[Zhan-Yu], Leijon, A.[Arne],
Bayesian Estimation of Beta Mixture Models with Variational Inference,
PAMI(33), No. 11, November 2011, pp. 2160-2173.
IEEE DOI 1110
BibRef
Earlier:
Beta mixture models and the application to image classification,
ICIP09(2045-2048).
IEEE DOI 0911
BibRef

Taghia, J., Ma, Z.Y.[Zhan-Yu], Leijon, A.[Arne],
Bayesian Estimation of the von-Mises Fisher Mixture Model with Variational Inference,
PAMI(36), No. 9, September 2014, pp. 1701-1715.
IEEE DOI 1408
Approximation methods BibRef

Ma, Z.Y.[Zhan-Yu], Rana, P.K.[Pravin Kumar], Taghia, J.[Jalil], Flierl, M.[Markus], Leijon, A.[Arne],
Bayesian estimation of Dirichlet mixture model with variational inference,
PR(47), No. 9, 2014, pp. 3143-3157.
Elsevier DOI 1406
Bayesian estimation BibRef

Taghia, J.[Jalil], Leijon, A.[Arne],
Variational Inference for Watson Mixture Model,
PAMI(38), No. 9, September 2016, pp. 1886-1900.
IEEE DOI 1609
Bayes methods BibRef

Chatzis, S.P.[Sotirios P.], Tsechpenakis, G.[Gavriil],
A possibilistic clustering approach toward generative mixture models,
PR(45), No. 5, May 2012, pp. 1819-1825.
Elsevier DOI 1201
Possibilistic clustering; Finite mixture models BibRef

Platanios, E.A., Chatzis, S.P.[Sotirios P.],
Gaussian Process-Mixture Conditional Heteroscedasticity,
PAMI(36), No. 5, May 2014, pp. 888-900.
IEEE DOI 1405
Bayes methods BibRef

Raitoharju, M., Ali-Loytty, S.,
An Adaptive Derivative Free Method for Bayesian Posterior Approximation,
SPLetters(19), No. 2, February 2012, pp. 87-90.
IEEE DOI 1201
BibRef

Browne, R.P.[Ryan P.], McNicholas, P.D.[Paul D.], Sparling, M.D.[Matthew D.],
Model-Based Learning Using a Mixture of Mixtures of Gaussian and Uniform Distributions,
PAMI(34), No. 4, April 2012, pp. 814-817.
IEEE DOI 1203
BibRef

Franczak, B.C., Browne, R.P., McNicholas, P.D.,
Mixtures of Shifted Asymmetric Laplace Distributions,
PAMI(36), No. 6, June 2014, pp. 1149-1157.
IEEE DOI 1406
Algorithm design and analysis BibRef

Gallaugher, M.P.B.[Michael P.B.], McNicholas, P.D.[Paul D.],
Finite mixtures of skewed matrix variate distributions,
PR(80), 2018, pp. 83-93.
Elsevier DOI 1805
Clustering, Matrix variate, Mixture models, Skewed distributions BibRef

Andrews, J.L.[Jeffrey L.], McNicholas, P.D.[Paul D.],
Using evolutionary algorithms for model-based clustering,
PRL(34), No. 9, July 2013, pp. 987-992.
Elsevier DOI 1305
Cluster analysis; EM algorithm; Evolutionary algorithms; Finite mixture models; Model-based clustering BibRef

Tits, L., Somers, B., Coppin, P.,
The Potential and Limitations of a Clustering Approach for the Improved Efficiency of Multiple Endmember Spectral Mixture Analysis in Plant Production System Monitoring,
GeoRS(50), No. 6, June 2012, pp. 2273-2286.
IEEE DOI 1205
BibRef

Wang, Z., Lan, L., Vucetic, S.,
Mixture Model for Multiple Instance Regression and Applications in Remote Sensing,
GeoRS(50), No. 6, June 2012, pp. 2226-2237.
IEEE DOI 1205
BibRef

Yang, M.S.[Miin-Shen], Lai, C.Y.[Chien-Yo], Lin, C.Y.[Chih-Ying],
A robust EM clustering algorithm for Gaussian mixture models,
PR(45), No. 11, November 2012, pp. 3950-3961.
Elsevier DOI 1206
Cluster analysis; EM algorithm; Gaussian mixture model; Robust EM; Initialization; Number of clusters BibRef

Liu, G.Q.[Guo-Qing], Wu, J.X.[Jian-Xin], Zhou, S.P.[Sui-Ping],
Probabilistic classifiers with a generalized Gaussian scale mixture prior,
PR(46), No. 1, January 2013, pp. 332-345.
Elsevier DOI 1209
Classification; Prior distribution; Generalized Gaussian scale mixture; Likelihood function BibRef

Zhao, Q.P.[Qin-Pei], Hautamäki, V.[Ville], Kärkkäinen, I.[Ismo], Fränti, P.[Pasi],
Random swap EM algorithm for Gaussian mixture models,
PRL(33), No. 16, 1 December 2012, pp. 2120-2126.
Elsevier DOI 1210
BibRef
Earlier:
Random swap EM algorithm for finite mixture models in image segmentation,
ICIP09(2397-2400).
IEEE DOI 0911
Expectation maximization; Random swap EM; Gaussian mixture model; Split and merge EM; Genetic-based EM; Data clustering BibRef

Fränti, P.[Pasi], Rezaei, M.[Mohammad], Zhao, Q.P.[Qin-Pei],
Centroid index: Cluster level similarity measure,
PR(47), No. 9, 2014, pp. 3034-3045.
Elsevier DOI 1406
Clustering BibRef

Fränti, P.[Pasi], Rezaei, M.[Mohammad],
Generalizing Centroid Index to Different Clustering Models,
SSSPR16(285-296).
Springer DOI 1611
BibRef

Beaulieu, N.C.,
Special Values of the Bivariate Gaussian Distribution,
SPLetters(20), No. 1, January 2013, pp. 99-101.
IEEE DOI 1212
BibRef

Ali, A.M.[Asem M.], Farag, A.A., Alajlan, N., Farag, A.A.,
Multimodal imaging: modelling and segmentation with biomedical applications,
IET-CV(6), No. 6, 2012, pp. 524-539.
DOI Link 1301
BibRef

Ali, A.M.[Asem M.], Farag, A.A.[Amal A.], Farag, A.A.[Aly A.],
Labelling color images by modelling the colors density using a linear combination of Gaussians and EM algorithm,
ICIP09(1645-1648).
IEEE DOI 0911
BibRef

Mostafa, E., Ali, A.M.[Asem M.], Farag, A.A.[Aly A.],
Learning a non-linear combination of Mahalanobis distances using statistical inference for similarity measure,
IET-CV(9), No. 4, 2015, pp. 541-548.
DOI Link 1509
computer vision BibRef

Ali, A.M.[Asem M.], Farag, A.A.[Aly A.],
Density estimation using a new AIC-type criterion and the EM algorithm for a linear combination of Gaussians,
ICIP08(3024-3027).
IEEE DOI 0810
BibRef

Farag, A.A., El-Baz, A., Gimel'farb, G.L.,
Density estimation using modified expectation-maximization algorithm for a linear combination of gaussians,
ICIP04(III: 1871-1874).
IEEE DOI 0505
BibRef
And: A3, A1, A2:
Expectation-maximization for a linear combination of Gaussians,
ICPR04(III: 422-425).
IEEE DOI 0409
BibRef

Fan, W.T.[Wen-Tao], Bouguila, N.[Nizar],
Variational learning of a Dirichlet process of generalized Dirichlet distributions for simultaneous clustering and feature selection,
PR(46), No. 10, October 2013, pp. 2754-2769.
Elsevier DOI 1306
Infinite mixture models; Dirichlet process; Generalized Dirichlet; Feature selection; Clustering; Images categorization; Image auto-annotation BibRef

Fan, W.T.[Wen-Tao], Bouguila, N.[Nizar],
Dynamic Textures Clustering Using a Hierarchical Pitman-Yor Process Mixture of Dirichlet Distributions,
ICIP15(296-300)
IEEE DOI 1512
Dirichlet distribution BibRef

Song, T.C.[Tie-Cheng], Li, H.L.[Hong-Liang],
WaveLBP based hierarchical features for image classification,
PRL(34), No. 12, 1 September 2013, pp. 1323-1328.
Elsevier DOI 1306
Image descriptor; Wavelet decomposition; Local binary pattern (LBP); Gaussian mixture model (GMM); Image classification BibRef

Hara, K., Inoue, K.[Kohei], Urahama, K.[Kiichi],
Generalized Mixture Ratio Based Blind Image Separation,
SPLetters(20), No. 8, 2013, pp. 743-746.
IEEE DOI 1307
blind source separation BibRef

Roy, A.[Anandarup], Parui, S.K.[Swapan K.],
Pair-copula based mixture models and their application in clustering,
PR(47), No. 4, 2014, pp. 1689-1697.
Elsevier DOI 1402
Pair-copula construction BibRef

Zeng, H.[Hong], Cheung, Y.M.[Yiu-Ming],
Learning a mixture model for clustering with the completed likelihood minimum message length criterion,
PR(47), No. 5, 2014, pp. 2011-2030.
Elsevier DOI 1402
Completed likelihood BibRef

Li, D.W.[Da-Wei], Xu, L.H.[Li-Hong], Goodman, E.[Erik],
On-line EM Variants for Multivariate Normal Mixture Model in Background Learning and Moving Foreground Detection,
JMIV(48), No. 1, January 2014, pp. 114-133.
WWW Link. 1402
BibRef

Chai, J.[Jing], Chen, H.T.[Hong-Tao], Huang, L.X.[Li-Xia], Shang, F.H.[Fan-Hua],
Maximum margin multiple-instance feature weighting,
PR(47), No. 6, 2014, pp. 2091-2103.
Elsevier DOI 1403
Feature weighting BibRef

Hu, L.X.[Li-Xia],
A note on order statistics-based parametric pattern classification,
PR(48), No. 1, 2015, pp. 43-49.
Elsevier DOI 1410
Pattern classification BibRef

Zanotta, D.C., Haertel, V., Shimabukuro, Y.E., Renno, C.D.,
Linear Spectral Mixing Model for Identifying Potential Missing Endmembers in Spectral Mixture Analysis,
GeoRS(52), No. 5, May 2014, pp. 3005-3012.
IEEE DOI 1403
Correlation BibRef

Qu, Q., Nasrabadi, N.M., Tran, T.D.,
Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation,
GeoRS(52), No. 7, July 2014, pp. 4404-4423.
IEEE DOI 1403
Data models BibRef

Sun, X., Nasrabadi, N.M., Tran, T.D.,
Supervised Deep Sparse Coding Networks for Image Classification,
IP(29), No. 1, 2020, pp. 405-418.
IEEE DOI 1910
BibRef
Earlier:
Supervised Deep Sparse Coding Networks,
ICIP18(346-350)
IEEE DOI 1809
computational complexity, image classification, image coding, learning (artificial intelligence), neural nets, image recognition. Encoding, Dictionaries, Training, Optimization, Neural networks, Nonhomogeneous media, Computer architecture BibRef

Kersten, J.[Jens],
Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems,
PR(47), No. 8, 2014, pp. 2582-2595.
Elsevier DOI 1405
Gaussian mixture models BibRef

Zhang, R., Gong, W., Grzeda, V., Yaworski, A., Greenspan, M.,
Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models,
SPLetters(21), No. 9, Sept 2014, pp. 1130-1134.
IEEE DOI 1406
Cameras BibRef

Bot, R.I.[Radu Ioan], Hendrich, C.[Christopher],
Convergence Analysis for a Primal-Dual Monotone + Skew Splitting Algorithm with Applications to Total Variation Minimization,
JMIV(49), No. 3, July 2014, pp. 551-568.
Springer DOI 1407
Monotone inclusions involving mixtures of composite sum type operators. BibRef

Ari, C.[Caglar], Aksoy, S.[Selim],
Detection of Compound Structures Using a Gaussian Mixture Model With Spectral and Spatial Constraints,
GeoRS(52), No. 10, October 2014, pp. 6627-6638.
IEEE DOI 1407
BibRef
Earlier:
Maximum Likelihood Estimation of Gaussian Mixture Models Using Particle Swarm Optimization,
ICPR10(746-749).
IEEE DOI 1008
Compounds BibRef

Xie, C.H.[Cong-Hua], Chang, J.Y.[Jin-Yi], Xu, W.B.[Wen-Bin],
Medical image denoising by generalised Gaussian mixture modelling with edge information,
IET-IPR(8), No. 8, August 2014, pp. 464-476.
DOI Link 1410
Bayes methods BibRef

Wang, B.H.[Bing-Hui], Lin, C.[Chuang], Fan, X.[Xin], Jiang, N.[Ning], Farina, D.[Dario],
Hierarchical Bayes based Adaptive Sparsity in Gaussian Mixture Model,
PRL(49), No. 1, 2014, pp. 238-247.
Elsevier DOI 1410
High-dimensional parameter estimation BibRef

Dedecius, K., Reichl, J., Djuric, P.M.,
Sequential Estimation of Mixtures in Diffusion Networks,
SPLetters(22), No. 2, February 2015, pp. 197-201.
IEEE DOI 1410
Bayes methods BibRef

Costa, M., Koivunen, V., Poor, H.V.,
Estimating Directional Statistics Using Wavefield Modeling and Mixtures of von-Mises Distributions,
SPLetters(21), No. 12, December 2014, pp. 1496-1500.
IEEE DOI 1410
Gaussian processes BibRef

Huang, S.M.[Shih-Ming], Chou, Y.T.[Yang-Ting], Yang, J.F.[Jar-Ferr],
Low-resolution face recognition in uses of multiple-size discrete cosine transforms and selective Gaussian mixture models,
IET-CV(8), No. 5, October 2014, pp. 382-390.
DOI Link 1412
Gaussian processes BibRef

Kay, S.,
A Probabilistic Interpretation of the Exponential Mixture,
SPLetters(22), No. 7, July 2015, pp. 935-937.
IEEE DOI 1412
Computer simulation BibRef

Zhou, X.[Xin], Peng, R.K.[Rong-Kun], Wang, C.Q.[Cong-Qing],
A Two-Component K-Lognormal Mixture Model and Its Parameter Estimation Method,
GeoRS(53), No. 5, May 2015, pp. 2640-2651.
IEEE DOI 1502
expectation-maximisation algorithm BibRef

Gan, H.T.[Hai-Tao], Sang, N.[Nong], Huang, R.[Rui],
Manifold regularized semi-supervised Gaussian mixture model,
JOSA-A(32), No. 4, April 2015, pp. 566-575.
DOI Link 1504
Pattern recognition BibRef

Gan, H.T.[Hai-Tao], Sang, N.[Nong], Huang, R.[Rui], Chen, X.[Xi],
Manifold Regularized Gaussian Mixture Model for Semi-supervised Clustering,
ACPR13(361-365)
IEEE DOI 1408
Gaussian processes BibRef

Franczak, B.C.[Brian C.], Tortora, C.[Cristina], Browne, R.P.[Ryan P.], McNicholas, P.D.[Paul D.],
Unsupervised learning via mixtures of skewed distributions with hypercube contours,
PRL(58), No. 1, 2015, pp. 69-76.
Elsevier DOI 1505
BibRef
And: Corrigendum: PRL(62), No. 1, 2015, pp. 68-.
Elsevier DOI 1507
Finite mixture models BibRef

Mehrjou, A.[Arash], Hosseini, R.[Reshad], Araabi, B.N.[Babak Nadjar],
Improved Bayesian information criterion for mixture model selection,
PRL(69), No. 1, 2016, pp. 22-27.
Elsevier DOI 1601
Model selection BibRef

Li, H.C., Krylov, V.A., Fan, P.Z., Zerubia, J.B., Emery, W.J.,
Unsupervised Learning of Generalized Gamma Mixture Model With Application in Statistical Modeling of High-Resolution SAR Images,
GeoRS(54), No. 4, April 2016, pp. 2153-2170.
IEEE DOI 1604
Image resolution BibRef

Ma, L., Chen, J., Zhou, Y., Chen, X.,
Two-Step Constrained Nonlinear Spectral Mixture Analysis Method for Mitigating the Collinearity Effect,
GeoRS(54), No. 5, May 2016, pp. 2873-2886.
IEEE DOI 1604
geophysical techniques BibRef

Nielsen, F., Sun, K.,
Guaranteed Bounds on the Kullback-Leibler Divergence of Univariate Mixtures,
SPLetters(23), No. 11, November 2016, pp. 1543-1546.
IEEE DOI 1609
Gaussian processes BibRef

Yerebakan, H.Z.[Halid Ziya], Dundar, M.[Murat],
Partially collapsed parallel Gibbs sampler for Dirichlet process mixture models,
PRL(90), No. 1, 2017, pp. 22-27.
Elsevier DOI 1704
Dirichlet process BibRef

Salvadori, C.[Claudio], Petracca, M.[Matteo], del Rincon, J.M.[Jesus Martinez], Velastin, S.A.[Sergio A.], Makris, D.[Dimitrios],
An optimisation of Gaussian mixture models for integer processing units,
RealTimeIP(13), No. 2, June 2017, pp. 273-289.
Springer DOI 1708
BibRef

Assa, A., Plataniotis, K.N.,
Wasserstein-Distance-Based Gaussian Mixture Reduction,
SPLetters(25), No. 10, October 2018, pp. 1465-1469.
IEEE DOI 1810
approximation theory, Gaussian processes, mixture models, signal processing, signal processing applications, Wasserstein distance (WD) BibRef

Marinoni, A., Plaza, J., Plaza, A., Gamba, P.,
Estimating Nonlinearities in p-Linear Hyperspectral Mixtures,
GeoRS(56), No. 11, November 2018, pp. 6586-6595.
IEEE DOI 1811
Hyperspectral imaging, Mixture models, Image reconstruction, Measurement, Earth, Adaptive fitting, nonorthogonal projection BibRef

Liu, C.[Chi], Li, H.C.[Heng-Chao], Fu, K.[Kun], Zhang, F.[Fan], Datcu, M.[Mihai], Emery, W.J.[William J.],
Bayesian estimation of generalized Gamma mixture model based on variational EM algorithm,
PR(87), 2019, pp. 269-284.
Elsevier DOI 1812
Finite mixture models, Generalized Gamma distribution, Variational expectation-maximization (VEM), Extended factorized approximation BibRef

Do, T.D.[Trung Dung], Jin, C.B.[Cheng-Bin], Nguyen, V.H.[Van Huan], Kim, H.[Hakil],
Mixture separability loss in a deep convolutional network for image classification,
IET-IPR(13), No. 1, January 2019, pp. 135-141.
DOI Link 1812
BibRef

Mukhopadhaya, S.[Sayan], Kumar, A.[Anil], Stein, A.[Alfred],
FCM Approach of Similarity and Dissimilarity Measures with a-Cut for Handling Mixed Pixels,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

He, D.[Da], Zhong, Y.F.[Yan-Fei], Zhang, L.P.[Liang-Pei],
Spatiotemporal Subpixel Geographical Evolution Mapping,
GeoRS(57), No. 4, April 2019, pp. 2198-2220.
IEEE DOI 1904
ecology, environmental monitoring (geophysics), geophysical image processing, image classification, subpixel mapping (SPM) BibRef

Zhu, D.H.[De-Hui], Du, B.[Bo], Zhang, L.P.[Liang-Pei],
Single-Spectrum-Driven Binary-Class Sparse Representation Target Detector for Hyperspectral Imagery,
GeoRS(59), No. 2, February 2021, pp. 1487-1500.
IEEE DOI 2101
Dictionaries, Detectors, Training, Hyperspectral imaging, Object detection, Classification algorithms, Binary hypothesis, target detection BibRef

Safont, G.[Gonzalo], Salazar, A.[Addisson], Vergara, L.[Luis], Gómez, E.[Enriqueta], Villanueva, V.[Vicente],
Multichannel dynamic modeling of non-Gaussian mixtures,
PR(93), 2019, pp. 312-323.
Elsevier DOI 1906
Dynamic modeling, Non-Gaussian mixtures, ICA, HMM, EEG BibRef

Safont, G.[Gonzalo], Salazar, A.[Addisson], Vergara, L.[Luis],
Vector score alpha integration for classifier late fusion,
PRL(136), 2020, pp. 48-55.
Elsevier DOI 2008
BibRef

Zhao, Y., Shrivastava, A.K., Tsui, K.L.,
Regularized Gaussian Mixture Model for High-Dimensional Clustering,
Cyber(49), No. 10, October 2019, pp. 3677-3688.
IEEE DOI 1907
Covariance matrices, Correlation, Maximum likelihood estimation, Feature extraction, Gaussian mixture model, unsupervised learning BibRef

Alroobaea, R.[Roobaea], Rubaiee, S.[Saeed], Bourouis, S.[Sami], Bouguila, N.[Nizar], Alsufyani, A.[Abdulmajeed],
Bayesian inference framework for bounded generalized Gaussian-based mixture model and its application to biomedical images classification,
IJIST(30), No. 1, 2020, pp. 18-30.
DOI Link 2002
Bayesian inference, biomedical imaging, bounded mixture models, generalized Gaussian distribution, image classification, Markov chain Monte Carlo (MCMC) BibRef

Rahmani, D.[Donya], Niranjan, M.[Mahesan], Fay, D.[Damien], Takeda, A.[Akiko], Brodzki, J.[Jacek],
Estimation of Gaussian mixture models via tensor moments with application to online learning,
PRL(131), 2020, pp. 285-292.
Elsevier DOI 2004
Method of moments, Alternating gradient descent, Online learning, Tensor analysis BibRef

Delon, J.[Julie], Desolneux, A.[Agnčs],
A Wasserstein-Type Distance in the Space of Gaussian Mixture Models,
SIIMS(13), No. 2, 2020, pp. 936-970.
DOI Link 2007
BibRef

Sun, K., Tao, W., Qian, Y.,
Guide to Match: Multi-Layer Feature Matching With a Hybrid Gaussian Mixture Model,
MultMed(22), No. 9, September 2020, pp. 2246-2261.
IEEE DOI 2008
Feature extraction, Gaussian mixture model, Task analysis, Information processing, Sun, Image color analysis, hybrid gaussian mixture model BibRef

Manouchehri, N.[Narges], Bouguila, N.[Nizar], Fan, W.T.[Wen-Tao],
Nonparametric variational learning of multivariate beta mixture models in medical applications,
IJIST(31), No. 1, 2021, pp. 128-140.
DOI Link 2102
batch variational learning, Dirichlet process mixtures, medical applications, mixture models, online variational learning BibRef

Manouchehri, N.[Narges], Kalra, M.[Meeta], Bouguila, N.[Nizar],
Online variational inference on finite multivariate Beta mixture models for medical applications,
IET-IPR(15), No. 9, 2021, pp. 1869-1882.
DOI Link 2106
BibRef

Asheri, H.[Hadi], Hosseini, R.[Reshad], Araabi, B.N.[Babak Nadjar],
A new EM algorithm for flexibly tied GMMs with large number of components,
PR(114), 2021, pp. 107836.
Elsevier DOI 2103
Gaussian mixture model, Parameter sharing, Tied GMM, Computation factorization and reduction, Newton method, Clustering BibRef

Ge, C.Y.[Chen-Yu], Wang, M.M.[Meng-Meng], Zhang, H.M.[Hong-Ming], Chen, H.[Huan], Sun, H.G.[Hong-Guang], Chang, Y.[Yi], Yang, Q.[Qinke],
A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Chasani, P.[Paraskevi], Likas, A.[Aristidis],
The UU-test for statistical modeling of unimodal data,
PR(122), 2022, pp. 108272.
Elsevier DOI 2112
Unimodal data, Unimodality test, Statistical modeling, Uniform mixture model BibRef

Xie, J.Y.[Ji-Yang], Ma, Z.Y.[Zhan-Yu], Xue, J.H.[Jing-Hao], Zhang, G.Q.[Guo-Qiang], Sun, J.[Jian], Zheng, Y.[Yinhe], Guo, J.[Jun],
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference in Image Recognition,
IP(30), 2021, pp. 9208-9219.
IEEE DOI 2112
Uncertainty, Feature extraction, Image recognition, Stochastic processes, Optimization, Bayes methods, mixture of gaussian mixture models BibRef

Giry Fouquet, E.[Erwan], Fauvel, M.[Mathieu], Mallet, C.[Clément],
Fast estimation for robust supervised classification with mixture models,
PRL(152), 2021, pp. 320-326.
Elsevier DOI 2112
Classification, Label noise, ADMM, Convex optimization, Clustering BibRef

Li, Y.S.[Yun-Song], Shi, Y.Z.[Yan-Zi], Wang, K.[Keyan], Xi, B.[Bobo], Li, J.J.[Jiao-Jiao], Gamba, P.[Paolo],
Target Detection With Unconstrained Linear Mixture Model and Hierarchical Denoising Autoencoder in Hyperspectral Imagery,
IP(31), 2022, pp. 1418-1432.
IEEE DOI 2202
Detectors, Object detection, Hyperspectral imaging, Noise reduction, Mixture models, Interference, Deep learning, hyperspectral target detection BibRef

Liu, Z.Q.[Zi-Quan], Yu, L.[Lei], Hsiao, J.H.[Janet H.], Chan, A.B.[Antoni B.],
PRIMAL-GMM: PaRametrIc MAnifold Learning of Gaussian Mixture Models,
PAMI(44), No. 6, June 2022, pp. 3197-3211.
IEEE DOI 2205
Manifolds, Hidden Markov models, Kernel, Data models, Probabilistic logic, Approximation algorithms, Analytical models, probabilistic models BibRef

Jeon, Y.[Younghwan], Hwang, G.[Ganguk],
Bayesian mixture of gaussian processes for data association problem,
PR(127), 2022, pp. 108592.
Elsevier DOI 2205
Gaussian processes, Bayesian models, Variational inference, Expectation maximization BibRef

Seo, D.M.[Dong-Min], Oh, S.[Sangwoo], Lee, D.[Daekyeom],
Classification and Identification of Spectral Pixels with Low Maritime Occupancy Using Unsupervised Machine Learning,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Melnykov, V.[Volodymyr], Wang, Y.[Yang],
Conditional mixture modeling and model-based clustering,
PR(133), 2023, pp. 108994.
Elsevier DOI 2210
finite mixture model, model-based clustering, non-compact clusters, regression, variable selection BibRef

Yu, Q.Q.[Qi-Qiong], Cao, G.[Guo], Shi, H.[Hao], Zhang, Y.Q.[You-Qiang], Fu, P.[Peng],
EPLL image restoration with a bounded asymmetrical Student's-t mixture model,
JVCIR(88), 2022, pp. 103611.
Elsevier DOI 2210
EPLL image restoration, Finite mixture model, Bounded asymmetrical Student's-t mixture model, Regularization parameters BibRef

Chen, C.[Chen], Tang, M.J.[Meng-Jiao], Rong, Y.[Yao],
Detection of a Rare Multichannel Gaussian Signal via Higher Criticism,
SPLetters(29), 2022, pp. 2063-2067.
IEEE DOI 2211
Detectors, Sparse matrices, Mixture models, Signal detection, Eigenvalues and eigenfunctions, Data models, asymptotic optimality BibRef

Bonnaire, T.[Tony], Decelle, A.[Aurélien], Aghanim, N.[Nabila],
Regularization of Mixture Models for Robust Principal Graph Learning,
PAMI(44), No. 12, December 2022, pp. 9119-9130.
IEEE DOI 2212
Mixture models, Convergence, Symmetric matrices, Manifolds, Computational modeling, Topology, Optimization, manifold learning BibRef

Fan, W.T.[Wen-Tao], Yang, L.[Lin], Bouguila, N.[Nizar],
Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models With Watson Distributions,
PAMI(44), No. 12, December 2022, pp. 9654-9668.
IEEE DOI 2212
Data models, Bayes methods, Analytical models, Mixture models, Modeling, Tools, Task analysis, Axial data, Watson distribution, depth image BibRef

Butt, J.A.[Jemil Avers], Salido-Monzú, D.[David], Wieser, A.[Andreas],
Phase ambiguity resolution and mixed pixel detection in EDM with multiple modulation wavelengths,
PandRS(198), 2023, pp. 255-271.
Elsevier DOI 2304
Electro-optical distance measurement (EDM), Phase measurement, Ambiguity resolution, Mixed pixel, Mixed integer linear programming BibRef

Castella, M.[Marc],
Unsupervised Linear Component Analysis for a Class of Probability Mixture Models,
SPLetters(31), 2024, pp. 31-35.
IEEE DOI 2401
BibRef

Pasande, M.[Mohammad], Hosseini, R.[Reshad], Araabi, B.N.[Babak Nadjar],
Stochastic first-order learning for large-scale flexibly tied Gaussian mixture models,
PRL(178), 2024, pp. 138-144.
Elsevier DOI 2402
Gaussian mixture models, First-order optimization, Manifold optimization BibRef

Greggio, N.[Nicola], Bernardino, A.[Alexandre],
Unsupervised incremental estimation of Gaussian mixture models with 1D split moves,
PR(150), 2024, pp. 110306.
Elsevier DOI 2403
Unsupervised learning, Gaussian mixture models, Model selection, Split and merge methods BibRef

Wang, S.J.[Shi-Jie], Shin, M.[Minsuk], Bai, R.[Ray],
Fast Bootstrapping Nonparametric Maximum Likelihood for Latent Mixture Models,
SPLetters(31), 2024, pp. 870-874.
IEEE DOI 2404
Signal processing algorithms, Generators, Approximation algorithms, Mixture models, Monte Carlo methods, two-stage algorithm BibRef

Small, C.[Christopher], Sousa, D.[Daniel],
The Standardized Spectroscopic Mixture Model,
RS(16), No. 20, 2024, pp. 3768.
DOI Link 2411
BibRef


Tan, X.[Xu], Chen, J.Q.[Jun-Qi], Yang, J.W.[Jia-Wei], Rahardja, S.[Sylwan], Wang, M.[Mou], Rahardja, S.[Susanto],
Ensemble of Deep Variational Mixture Models for Unsupervised Clustering,
ICIP24(807-813)
IEEE DOI 2411
Temperature distribution, Uncertainty, Merging, Mixture models, Predictive models, Vectors, Entropy, Clustering, trustworthy machine learning BibRef

Zach, M.[Martin], Pock, T.[Thomas], Kobler, E.[Erich], Chambolle, A.[Antonin],
Explicit Diffusion of Gaussian Mixture Model Based Image Priors,
SSVM23(3-15).
Springer DOI 2307
BibRef

Ye, F.[Fei], Bors, A.G.[Adrian G.],
Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet Process,
ICCV21(10675-10684)
IEEE DOI 2203
BibRef
Earlier:
Lifelong learning of interpretable image representations,
IPTA20(1-6)
IEEE DOI 2206
Analytical models, Adaptation models, Codes, Computational modeling, Mixture models, Network architecture, Representation learning. Learning systems, Interpolation, Databases, Image synthesis, Tools, Generators, Mutual information, Lifelong learning, Mutual information BibRef

Gelvez, T.[Tatiana], Bacca, J.[Jorge], Arguello, H.[Henry],
Interpretable Deep Image Prior Method Inspired in Linear Mixture Model for Compressed Spectral Image Recovery,
ICIP21(1934-1938)
IEEE DOI 2201
Training, Image segmentation, Image coding, Neural networks, Imaging, Mixture models, Silicon, Spectral image, Deep image prior, Linear mixture model BibRef

La Grassa, R.[Riccardo], Gallo, I.[Ignazio], Vetro, C.[Calogero], Landro, N.[Nicola],
Learning to Navigate in the Gaussian Mixture Surface,
CAIP21(I:414-423).
Springer DOI 2112
BibRef

Zwicker, M.[Matthias], Hu, Q.Y.[Qi-Yang], Szabó, A.[Attila], Portenier, T.[Tiziano], Favaro, P.[Paolo],
Disentangling Factors of Variation by Mixing Them,
CVPR18(3399-3407)
IEEE DOI 1812
Training, Decoding, Labeling, Image coding, Image representation, Image color analysis BibRef

Kolouri, S., Rohde, G.K., Hoffmann, H.,
Sliced Wasserstein Distance for Learning Gaussian Mixture Models,
CVPR18(3427-3436)
IEEE DOI 1812
Radon, Transforms, Kernel, Gaussian mixture model, Machine learning BibRef

Yu, X., Liu, T., Gong, M., Batmanghelich, K., Tao, D.,
An Efficient and Provable Approach for Mixture Proportion Estimation Using Linear Independence Assumption,
CVPR18(4480-4489)
IEEE DOI 1812
Estimation, Kernel, Convergence, Semisupervised learning, Training data, Quadratic programming, Noise measurement BibRef

Pu, C., Li, N., Tylecek, R., Fisher, B.,
DUGMA: Dynamic Uncertainty-Based Gaussian Mixture Alignment,
3DV18(766-774)
IEEE DOI 1812
Gaussian processes, image registration, probability, statistical distributions, uncertainty model, invariant GMM, uncertainty estimation BibRef

Martins, I.[Isabel], Carvalho, P.[Pedro], Corte-Real, L.[Luís], Alba-Castro, J.L.[José Luis],
BMOG: Boosted Gaussian Mixture Model with Controlled Complexity,
IbPRIA17(50-57).
Springer DOI 1706
BibRef

Mezuman, E., Weiss, Y.,
A tight convex upper bound on the likelihood of a finite mixture,
ICPR16(1683-1688)
IEEE DOI 1705
Computational modeling, Convex functions, Data models, Entropy, Mathematical model, Mixture models, Upper, bound BibRef

Wan, Y.C.[Yu-Chai], Liu, X.B.[Xia-Bi], Tang, Y.Y.[Yu-Yang],
Simplifying Gaussian mixture model via model similarity,
ICPR16(3180-3185)
IEEE DOI 1705
Computational modeling, Gaussian mixture model, Linear programming, Merging, Mixture models, Neurons BibRef

Lee, S.X., Leemaqz, K.L., McLachlan, G.J.,
A Simple Parallel EM Algorithm for Statistical Learning via Mixture Models,
DICTA16(1-8)
IEEE DOI 1701
Algorithm design and analysis BibRef

Wilhelm, T., Wohler, C.,
Flexible Mixture Models for Colour Image Segmentation of Natural Images,
DICTA16(1-7)
IEEE DOI 1701
Bayes methods BibRef

Chamroukhi, F.[Faicel], Bartcus, M.[Marius], Glotin, H.[Herve],
Bayesian Non-parametric Parsimonious Gaussian Mixture for Clustering,
ICPR14(1460-1465)
IEEE DOI 1412
Adaptation models BibRef

Tsuchiya, C.[Chikao], Malisiewicz, T.[Tomasz], Torralba, A.B.[Antonio B.],
Exemplar Network: A Generalized Mixture Model,
ICPR14(598-603)
IEEE DOI 1412
Big data BibRef

Guillemot, T.[Thierry], Almansa, A.[Andres], Boubekeur, T.[Tamy],
Covariance Trees for 2D and 3D Processing,
CVPR14(556-563)
IEEE DOI 1409
Gaussian Mixture Models. Statistical image processing. bayesian a posteriori BibRef

Psutka, J.V.[Josef V.],
Gaussian Mixture Model Selection Using Multiple Random Subsampling with Initialization,
CAIP15(I:678-689).
Springer DOI 1511
BibRef

Vanek, J.[Jan], Machlica, L.[Lukáš], Psutka, J.V.[Josef V.],
Estimation of Single-Gaussian and Gaussian Mixture Models for Pattern Recognition,
CIARP13(I:49-56).
Springer DOI 1311
BibRef

Frouzesh, F.[Faezeh], Pledger, S.[Shirley], Hirose, Y.[Yuichi],
A combined method for finding best starting points for optimisation in bernoulli mixture models,
ICPR12(1128-1131).
WWW Link. 1302
BibRef

Tsuboshita, Y.[Yukihiro], Kato, N.[Noriji], Fukui, M.[Motofumi], Okada, M.[Masato],
Image annotation using adapted Gaussian mixture model,
ICPR12(1346-1350).
WWW Link. 1302
BibRef

Nielsen, F.[Frank],
Closed-form information-theoretic divergences for statistical mixtures,
ICPR12(1723-1726).
WWW Link. 1302
BibRef

Schwander, O.[Olivier], Schutz, A.J.[Aurelien J.], Nielsen, F.[Frank], Berthoumieu, Y.[Yannick],
k-MLE for mixtures of generalized Gaussians,
ICPR12(2825-2828).
WWW Link. 1302
BibRef

Elnakib, A.[Ahmed], Gimel'farb, G.L.[Georgy L.], Inanc, T.[Tamer], El-Baz, A.[Ayman],
Modified Akaike information criterion for estimating the number of components in a probability mixture model,
ICIP12(2497-2500).
IEEE DOI 1302
BibRef

Evangelio, R.H.[Ruben Heras], Patzold, M.[Michael], Sikora, T.[Thomas],
Splitting Gaussians in Mixture Models,
AVSS12(300-305).
IEEE DOI 1211
BibRef

Li, B.[Bo], Liu, W.J.[Wen-Ju], Dou, L.H.[Li-Hua],
Learning GMM Using Elliptically Contoured Distributions,
ICPR10(511-514).
IEEE DOI 1008
Gaussian mixture model BibRef

Ji, Y.F.[Yang-Feng], Lin, T.[Tong], Zha, H.B.[Hong-Bin],
CDP Mixture Models for Data Clustering,
ICPR10(637-640).
IEEE DOI 1008
BibRef

Nielsen, F.[Frank], Boltz, S.[Sylvain], Schwander, O.[Olivier],
Bhattacharyya Clustering with Applications to Mixture Simplifications,
ICPR10(1437-1440).
IEEE DOI 1008
BibRef

Martinez-Uso, A.[Adolfo], Pla, F.[Filiberto], Sotoca, J.M.[Jose M.],
A Semi-supervised Gaussian Mixture Model for Image Segmentation,
ICPR10(2941-2944).
IEEE DOI 1008
BibRef

Nacereddine, N.[Nafaa], Tabbone, S.A.[Salavatore A.], Ziou, D.[Djemel], Hamami, L.[Latifa],
Asymmetric Generalized Gaussian Mixture Models and EM Algorithm for Image Segmentation,
ICPR10(4557-4560).
IEEE DOI 1008
BibRef

Nickisch, H.[Hannes], Rasmussen, C.E.[Carl Edward],
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models,
DAGM10(272-282).
Springer DOI 1009
BibRef

Wang, R.B.[Rong-Bo], Hou, C.H.[Chao-Huan], Chen, D.[Dong],
Blind separation of instantaneous linear mixtures of cyclostationary signals,
IASP10(492-495).
IEEE DOI 1004
BibRef

Garcia, V.[Vincent], Nielsen, F.[Frank], Nock, R.[Richard],
Levels of Details for Gaussian Mixture Models,
ACCV09(II: 514-525).
Springer DOI 0909
BibRef

Mancera, L., Babacan, S.D.[S. Derin], Molina, R., Katsaggelos, A.K.,
Image restoration by mixture modelling of an overcomplete linear representation,
ICIP09(3949-3952).
IEEE DOI 0911
BibRef

Barcelos, C.A.Z.[Celia A. Zorzo], Chen, Y.M.[Yun-Mei], Chen, F.[Fuhua],
A soft multiphase segmentation model via Gaussian mixture,
ICIP09(4049-4052).
IEEE DOI 0911
BibRef

Dey, C.[Chandrama], Jia, X.P.[Xiu-Ping], Fraser, D., Wang, L.,
Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine,
DICTA09(291-295).
IEEE DOI 0912
BibRef

Otoom, A.F.[Ahmed Fawzi], Concha, O.P.[Oscar Perez], Gunes, H.[Hatice], Piccardi, M.[Massimo],
Mixtures of Normalized Linear Projections,
ACIVS09(66-76).
Springer DOI 0909
BibRef

Piccardi, M.[Massimo], Gunes, H.[Hatice], Otoom, A.F.[Ahmed Fawzi],
Maximum-likelihood dimensionality reduction in gaussian mixture models with an application to object classification,
ICPR08(1-4).
IEEE DOI 0812

See also Feature extraction techniques for abandoned object classification in video surveillance. BibRef

Horta, M.M.[Michelle M.], Mascarenhas, N.D.A.[Nelson D. A.], Frery, A.C.[Alejandro C.],
A comparison of clustering fully polarimetric SAR images using SEM algorithm and G0P mixture model with different initializations,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Reddy, C.K.[Chandan K.], Rajaratnam, B.[Bala],
Component-wise parameter smoothing for learning mixture models,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Mansjur, D.S.[Dwi Sianto], Fu, Q.A.[Qi-Ang], Juang, B.H.[Biing Hwang],
Utilizing non-uniform cost learning for active control of inter-class confusion,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Mansjur, D.S.[Dwi Sianto], Juang, B.H.[Biing Hwang],
Incremental learning of mixture models for simultaneous estimation of class distribution and inter-class decision boundaries,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Tang, H.[Hao], Huang, T.S.[Thomas S.],
Boosting Gaussian mixture models via discriminant analysis,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Bordes, J.B., Prinet, V.,
Mixture Distributions for Weakly Supervised Classification in Remote Sensing Images,
BMVC08(xx-yy).
PDF File. 0809
BibRef

Hou, S.B.[Shao-Bo], Galata, A.[Aphrodite],
Robust estimation of gaussian mixtures from noisy input data,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Corona, E.[Enrique], Nutter, B.[Brian], Mitra, S.[Sunanda],
Optimized data-driven order selection method for Gaussian mixtures on clustering problems,
Southwest10(73-76).
IEEE DOI 1005
BibRef
Earlier:
Non-parametric Estimation of Mixture Model Order,
Southwest08(145-148).
IEEE DOI 0803
BibRef

Santos-Villalobos, H.J.[Hector J.], Boutin, M.[Mireille],
An empirical method for comparing the shape of two Gaussian mixtures,
ICIP10(4269-4272).
IEEE DOI 1009
recognize planar objects consisting of blobs. BibRef

Boutin, M.[Mireille], Comer, M.L.[Mary L.],
Faithful Shape Representation for 2D Gaussian Mixtures,
ICIP07(VI: 369-372).
IEEE DOI 0709
BibRef

Romero, V.[Verónica], Giménez, A.[Adriŕ], Juan, A.[Alfons],
Explicit Modelling of Invariances in Bernoulli Mixtures for Binary Images,
IbPRIA07(I: 539-546).
Springer DOI 0706

See also Embedded Bernoulli Mixture HMMs for Continuous Handwritten Text Recognition. BibRef

Alabau, V.[Vicente], Casacuberta, F.[Francisco], Vidal, E.[Enrique], Juan, A.[Alfons],
Inference of Stochastic Finite-State Transducers Using N -Gram Mixtures,
IbPRIA07(II: 282-289).
Springer DOI 0706
BibRef

Bouguila, N.[Nizar], Ziou, D.[Djemel], Hammoud, R.I.[Riad I.],
A Bayesian Non-Gaussian Mixture Analysis: Application to Eye Modeling,
Learning07(1-8).
IEEE DOI 0706
BibRef

Wang, P.[Peng], Kohler, C.[Christian], Verma, R.[Ragini],
Estimating Cluster Overlap on Manifolds and its Application to Neuropsychiatric Disorders,
ComponentAnalysis07(1-6).
IEEE DOI 0706
BibRef

Penalver Benavent, A.[Antonio], Escolano Ruiz, F.[Francisco], Saez Martinez, J.M.[Juan M.],
Two Entropy-Based Methods for Learning Unsupervised Gaussian Mixture Models,
SSPR06(649-657).
Springer DOI 0608
BibRef
Earlier:
EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models,
ICPR06(II: 451-455).
IEEE DOI 0609
BibRef

Lin, B.[Bin], Wang, X.J.[Xian-Ji], Zhong, R.T.[Run-Tian], Zhuang, Z.Q.[Zhen-Quan],
Continuous Optimization based-on Boosting Gaussian Mixture Model,
ICPR06(I: 1192-1195).
IEEE DOI 0609
BibRef

Lu, X.[Xiqun],
Joint Distributions based on DFB and Gaussian Mixtures for Evaluation of Style Similarity among Paintings,
ICPR06(II: 865-868).
IEEE DOI 0609
BibRef

Chen, D.T.[Da-Tong], Yang, J.[Jie],
Exploiting High Dimensional Video Features Using Layered Gaussian Mixture Models,
ICPR06(II: 1078-1081).
IEEE DOI 0609
BibRef

Abd-Almageed, W.[Wael], Davis, L.S.[Larry S.],
Density Estimation Using Mixtures of Mixtures of Gaussians,
ECCV06(IV: 410-422).
Springer DOI 0608
BibRef

Zhu, Y.N.[Ya-Nong], Fisher, M.H.[Mark H.], Zwiggelaar, R.[Reyer],
Improving ASM Search Using Mixture Models for Grey-Level Profiles,
IbPRIA05(I:292).
Springer DOI 0509
BibRef

de Ridder, D., Franc, V.,
Robust subspace mixture models using t-distributions,
BMVC03(xx-yy).
HTML Version. 0409
BibRef

Cheung, Y.M.[Yiu-Ming],
A rival penalized EM algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model selection,
ICPR04(IV: 633-636).
IEEE DOI 0409
BibRef

Sminchisescu, C.[Cristian], Jepson, A.D.[Allan D.],
Variational mixture smoothing for non-linear dynamical systems,
CVPR04(II: 608-615).
IEEE DOI 0408
BibRef

Huang, K.[Kun], Ma, Y.[Yi], Vidal, R.,
Minimum Effective Dimension for Mixtures of Subspaces: A Robust GPCA Algorithm and its Applications,
CVPR04(II: 631-638).
IEEE DOI 0408

See also Generalized Principal Component Analysis (GPCA).
See also Motion segmentation with missing data using powerfactorization and GPCA. BibRef

Vermaak, J., Doucet, A., Perez, P.,
Maintaining multi-modality through mixture tracking,
ICCV03(1110-1116).
IEEE DOI 0311
BibRef

Antoniuk, K.[Konstiantyn], Franc, V.[Vojtech], Hlavac, V.[Vaclav],
Learning Markov Networks by Analytic Center Cutting Plane Method,
ICPR12(2250-2253).
WWW Link. 1302
BibRef

Franc, V.[Vojtech], Hlavác, V.[Václav],
A Contribution to the Schlesinger's Algorithm Separating Mixtures of Gaussians,
CAIP01(169 ff.).
Springer DOI 0210
BibRef

Niemistö, A., Lukin, V.V., Shmulevich, I., Yli-Harja, O.[Olli], Dolia, A.,
A Training-based Optimization Framework for Misclassification Correction,
SCIA01(O-W2). 0206
BibRef

Kudo, M., Imai, H., Shimbo, M.,
A Histogram-based Classifier on Overlapped Bins,
ICPR00(Vol II: 29-33).
IEEE DOI 0009
BibRef

Hammoud, R., Mohr, R.,
Mixture Densities for Video Objects Recognition,
ICPR00(Vol II: 71-75).
IEEE DOI 0009
BibRef

Zwart, J.P., Kröse, B.J.A.,
Constrained Mixture Modeling of Intrinsically Low-dimensional Distributions,
ICPR00(Vol II: 610-613).
IEEE DOI 0009
BibRef

Somol, P., Grim, J.[Jiri], Novovicova, J.[Jana], Pudil, P.[Pavel], Ferri, F.J.[Francesc J.],
Initializing Normal Mixtures of Densities,
ICPR98(Vol I: 886-890).
IEEE DOI 9808
BibRef

Kudo, M.[Mineichi], Shimbo, M.[Masaru], Sumiyoshi, S.[Satoru], Tenmoto, H.[Hiroshi],
A Subclass-Based Mixture Model for Pattern Recognition,
ICPR98(Vol I: 870-872).
IEEE DOI 9808
BibRef

Schultz, N.[Nette], Carstensen, J.M.[Jens Michael],
Bimodal histogram transformation based on maximum likelihood parameter estimates in univariate Gaussian mixtures,
CIAP97(II: 532-543).
Springer DOI 9709
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Hyperspectral Mixture Models, Mixed Pixels .


Last update:Nov 26, 2024 at 16:40:19