Lawoko, C.R.O.,
McLachlan, G.J.,
Bias associated with the discriminant analysis approach to the
estimation of mixing proportions,
PR(22), No. 6, 1989, pp. 763-766.
Elsevier DOI
0309
BibRef
Lawoko, C.R.O.,
McLachlan, G.J.,
Discrimination with autocorrelated observations,
PR(18), No. 2, 1985, pp. 145-149.
Elsevier DOI
0309
BibRef
And:
Extensions:
Further results on discrimination with autocorrelated observations,
PR(21), No. 1, 1988, pp. 69-72.
Elsevier DOI
0309
See also Discriminant Analysis and Statistical Pattern Recognition.
BibRef
Yarman-Vural, F.T.[Fatos T.],
Ataman, E.[Ergin],
Noise, histogram and cluster validity for Gaussian-mixtured data,
PR(20), No. 4, 1987, pp. 385-401.
Elsevier DOI
0309
BibRef
Derin, H.,
Estimating Components of Univariate Gaussian Mixtures
Using Prony's Method,
PAMI(9), No. 1, January 1987, pp. 142-148.
BibRef
8701
Parker, I.M.,
Finding the overlap integral between two classes of object,
PR(26), No. 7, July 1993, pp. 1117-1119.
Elsevier DOI
0401
BibRef
Santago, P.,
Gage, H.D.,
Statistical models of partial volume effect,
IP(4), No. 11, November 1995, pp. 1531-1540.
IEEE DOI
0402
BibRef
Zhuang, X.H.,
Huang, Y.,
Palaniappan, K.,
Zhao, Y.X.,
Gaussian Mixture Density Modeling, Decomposition, and Applications,
IP(5), No. 9, September 1996, pp. 1293-1302.
IEEE DOI Extraction of clusters.
BibRef
9609
Schowengerdt, R.A.,
On the Estimation of Spatial-Spectral Mixing with
Classifier Likelihood Functions,
PRL(17), No. 13, November 25 1996, pp. 1379-1387.
9701
BibRef
Sand, F.[Francis],
Dougherty, E.R.[Edward R.],
Asymptotic Granulometric Mixing Theorem:
Morphological Estimation of Sizing Parameters and Mixture Proportions,
PR(31), No. 1, January 1998, pp. 53-61.
Elsevier DOI
9802
BibRef
Kehtarnavaz, N.[Nasser],
Nakamura, E.[Eiji],
Generalization of the EM Algorithm for Mixture Density Estimation,
PRL(19), No. 2, February 1998, pp. 133-140.
9808
BibRef
Medasani, S.[Swarup],
Krishnapuram, R.[Raghu],
A Comparison of Gaussian and Pearson Mixture Modeling for Pattern
Recognition and Computer Vision Applications,
PRL(20), No. 3, March 1999, pp. 305-313.
BibRef
9903
Celeux, G.[Gilles],
Govaert, G.[Gérard],
Gaussian parsimonious clustering models,
PR(28), No. 5, May 1995, pp. 781-793.
Elsevier DOI
0401
BibRef
Biernacki, C.[Christophe],
Celeux, G.[Gilles],
Govaert, G.[Gérard],
An improvement of the NEC criterion for assessing the number of
clusters in a mixture model,
PRL(20), No. 3, March 1999, pp. 267-272.
BibRef
9903
Biernacki, C.[Christophe],
Celeux, G.[Gilles],
Govaert, G.[Gerard],
Assessing a Mixture Model for Clustering with the Integrated Completed
Likelihood,
PAMI(22), No. 7, July 2000, pp. 719-725.
IEEE DOI
0008
BibRef
Kitamoto, A.[Asanbou],
Takagi, M.[Mikio],
Image Classification using Probabilistic Models that Reflect the
Internal Structure of Mixels,
PAA(2), No. 1, 1999, pp. 31-43.
BibRef
9900
Earlier:
A stochastic model of mixels and image classification,
ICPR96(II: 745-749).
IEEE DOI
9608
(Univ. of Tokyo, J)
BibRef
Cootes, T.F.,
Taylor, C.J.,
A Mixture Model for Representing Shape Variation,
IVC(17), No. 8, June 1999, pp. 567-573.
Elsevier DOI
BibRef
9906
Earlier:
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Boshra, M.[Michael],
Zhang, H.[Hong],
Accommodating uncertainty in pixel-based verification of 3-D object
hypotheses,
PRL(20), No. 7, July 1999, pp. 689-698.
BibRef
9907
Aguiar, A.P.D.,
Shimabukuro, Y.E.,
Mascarenhas, N.D.A.,
Use of synthetic bands derived from mixing models in the multispectral
classification of remote sensing images,
JRS(20), No. 4, March 1999, pp. 647.
BibRef
9903
Tadjudin, S.,
Landgrebe, D.A.,
Robust Parameter Estimation for Mixture Model,
GeoRS(38), No. 1, January 2000, pp. 439-445.
IEEE Top Reference.
0002
BibRef
Erol, H.[Hamza],
A practical method for constructing the mixture model for a spectral
class,
JRS(21), No. 4, March 2000, pp. 823.
0002
BibRef
Geva, A.B.[Amir B.],
Steinberg, Y.[Yossef],
Bruckmair, S.[Shay],
Nahum, G.[Gerry],
A comparison of cluster validity criteria for a mixture of normal
distributed data,
PRL(21), No. 6-7, June 2000, pp. 511-529.
0006
BibRef
Martínez, A.M.[Aleix M.],
Vitriŕ, J.[Jordi],
Learning mixture models using a genetic version of the EM algorithm,
PRL(21), No. 6-7, June 2000, pp. 759-769.
0006
BibRef
Brown, M.,
Lewis, H.G.,
Gunn, S.R.,
Linear Spectral Mixture Models and Support Vector Machines for Remote
Sensing,
GeoRS(38), No. 5, September 2000, pp. 2346-2360.
IEEE Top Reference.
0010
BibRef
Lee, T.W.[Te-Won],
Lewicki, M.S.[Michael S.],
Sejnowski, T.J.[Terrence J.],
ICA Mixture Models for Unsupervised Classification of Non-Gaussian
Classes and Automatic Context Switching in Blind Separation,
PAMI(22), No. 10, October 2000, pp. 1078-1089.
IEEE DOI
0011
Modeling classes as linear combinations of independent,
non-Gaussian densities.
BibRef
Lee, T.W.[Te-Won],
Lewicki, M.S.,
Unsupervised image classification, segmentation, and enhancement using
ICA mixture models,
IP(11), No. 3, March 2002, pp. 270-279.
IEEE DOI
0203
BibRef
Park, H.J.[Hyun-Jin],
Lee, T.W.[Te-Won],
Unsupervised learning of nonlinear dependencies in natural images,
IJIST(15), No. 1, 2005, pp. 34-47.
DOI Link
0507
BibRef
Carreira-Perpińán, M.Á.[Miguel Á.],
Mode-Finding for Mixtures of Gaussian Distributions,
PAMI(22), No. 11, November 2000, pp. 1318-1323.
IEEE DOI
0012
Matlab implementation and TR with mathematical details:
HTML Version.
Code, Modes.
BibRef
Carreira-Perpińán, M.Á.[Miguel Á.],
Williams, C.K.I.[Christopher K.I.],
On the Number of Modes of a Gaussian Mixture,
ScaleSpace03(625-640).
Springer DOI
0310
BibRef
Carreira-Perpinan, M.A.[Miguel A.],
Gaussian Mean-Shift Is an EM Algorithm,
PAMI(29), No. 5, May 2007, pp. 767-776.
IEEE DOI
0704
BibRef
Earlier:
Acceleration Strategies for Gaussian Mean-Shift Image Segmentation,
CVPR06(I: 1160-1167).
IEEE DOI
0606
See also Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, The. Convergence is fast for very narrow or very wide, but slow for intermediate.
Ways to accelerate.
BibRef
Carreira-Perpinan, M.A.[Miguel A.],
Generalised blurring mean-shift algorithms for nonparametric clustering,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Yang, Z.R.[Zheng Rong],
Zwolinski, M.[Mark],
Mutual Information Theory for Adaptive Mixture Models,
PAMI(23), No. 4, April 2001, pp. 396-403.
IEEE DOI
0104
Analyze whether components are independent, if so then the information
is important.
BibRef
Simon, C.,
Loubaton, P.,
Jutten, C.,
Separation of a Class of Convolutive Mixtures:
A Contrast Function Approach,
SP(81), No. 4, April 2001, pp. 883-887.
Elsevier DOI
0105
BibRef
Dahmen, J.[Jörg],
Keysers, D.[Daniel],
Ney, H.[Hermann],
Güld, M.O.[Mark Oliver],
Statistical Image Object Recognition using Mixture Densities,
JMIV(14), No. 3, May 2001, pp. 285-296.
DOI Link
0106
BibRef
Earlier: A1, A2, A4, A3:
Invariant Image Object Recognition Using Mixture Densities,
ICPR00(Vol II: 614-617).
IEEE DOI
0009
BibRef
Keysers, D.[Daniel],
Macherey, W.[Wolfgang],
Ney, H.[Hermann],
Dahmen, J.[Jorg],
Adaptation in Statistical Pattern Recognition Using Tangent Vectors,
PAMI(26), No. 2, February 2004, pp. 269-274.
IEEE Abstract.
0402
Integrate the tangent method into statistical framework to improve
classisification.
BibRef
Rand, R.S.,
Keenan, D.M.,
A spectral mixture process conditioned by Gibbs-based partitioning,
GeoRS(39), No. 7, July 2001, pp. 1421-1434.
IEEE Top Reference.
0108
BibRef
Collins, E.F.,
Roberts, D.A.,
Borel, C.C.,
Spectral mixture analysis of simulated thermal infrared spectrometry
data: an initial temperature estimate bounded TESSMA search approach,
GeoRS(39), No. 7, July 2001, pp. 1435-1446.
IEEE Top Reference.
0108
BibRef
Yang, X.Y.[Xiang-Yu],
Liu, J.[Jun],
Mixture density estimation with group membership functions,
PRL(23), No. 5, March 2002, pp. 501-512.
Elsevier DOI
0202
BibRef
Figueiredo, M.A.T.,
Jain, A.K.,
Unsupervised Learning of Finite Mixture Models,
PAMI(24), No. 3, March 2002, pp. 381-396.
IEEE DOI
0202
BibRef
Earlier:
Unsupervised Selection and Estimation of Finite Mixture Models,
ICPR00(Vol II: 87-90).
IEEE DOI
0009
BibRef
Figueiredo, M.A.T.,
On Gaussian Radial Basis Function Approximations:
Interpretation, Extensions, and Learning Strategies,
ICPR00(Vol II: 618-621).
IEEE DOI
0009
BibRef
Law, M.H.C.,
Figueiredo, M.A.T.,
Jain, A.K.,
Simultaneous Feature Selection and Clustering Using Mixture Models,
PAMI(26), No. 9, September 2004, pp. 1154-1166.
IEEE Abstract.
0409
Add Feature Salience in clustering method and an EM algorithm to estimate
it. Salience of irrelevant features goes to 0, thus de-selecting them.
BibRef
Dattatreya, G.R.,
Unsupervised context estimation in a mesh of pattern classes for image
recognition,
PR(24), No. 7, 1991, pp. 685-694.
Elsevier DOI
0401
BibRef
And:
Estimation of class correlation parameters in images for context
classification,
ICPR90(I: 937-941).
IEEE DOI
9006
BibRef
Dattatreya, G.R.,
Gaussian mixture parameter estimation with known means and unknown
class-dependent variances,
PR(35), No. 7, July 2002, pp. 1611-1616.
Elsevier DOI
0204
BibRef
Dattatreya, G.R.,
Fang, X.R.F.[Xiao-Ri Frank],
Parameter estimation: known vector signals in unknown Gaussian noise,
PR(36No. 10, October 2003, pp. 2317-2332.
Elsevier DOI
0308
BibRef
Aylward, S.R.[Stephen R.],
Continuous mixture modeling via goodness-of-fit ridges,
PR(35), No. 9, September 2002, pp. 1821-1833.
Elsevier DOI
0206
BibRef
Govaert, G.[Gérard],
Nadif, M.[Mohamed],
Clustering with block mixture models,
PR(36), No. 2, February 2003, pp. 463-473.
Elsevier DOI
0211
BibRef
Govaert, G.[Gerard],
Nadif, M.[Mohamed],
An EM Algorithm for the Block Mixture Model,
PAMI(27), No. 4, April 2005, pp. 643-647.
IEEE Abstract.
0501
BibRef
Frey, B.J.[Brendan J.],
Jojic, N.[Nebojsa],
Transformation-invariant clustering using the EM algorithm,
PAMI(25), No. 1, January 2003, pp. 1-17.
IEEE DOI
0301
BibRef
Earlier:
Estimating Mixture Models of Images and Inferring Spatial Transformations
Using the EM Algorithm,
CVPR99(I: 416-422).
IEEE DOI
BibRef
Earlier:
Transformed Component Analysis: Joint Estimation of Spatial
Transformations and Image Components,
ICCV99(1190-1196).
IEEE DOI
BibRef
Perina, A.[Alessandro],
Cristani, M.[Marco],
Murino, V.[Vittorio],
2LDA: Segmentation for Recognition,
ICPR10(995-998).
IEEE DOI
1008
BibRef
Perina, A.[Alessandro],
Jojic, N.[Nebojsa],
Castellani, U.[Umberto],
Cristani, M.[Marco],
Murino, V.[Vittorio],
Object Recognition with Hierarchical Stel Models,
ECCV10(VI: 15-28).
Springer DOI
1009
BibRef
Perina, A.[Alessandro],
Jojic, N.[Nebojsa],
Cristani, M.[Marco],
Murino, V.[Vittorio],
Stel Component Analysis: Joint Segmentation, Modeling and Recognition
of Objects Classes,
IJCV(100), No. 3, December 2012, pp. 241-260.
WWW Link.
1210
BibRef
Jojic, N.[Nebojsa],
Perina, A.[Alessandro],
Cristani, M.[Marco],
Murino, V.[Vittorio],
Frey, B.J.[Brendan J.],
Stel component analysis: Modeling spatial correlations in image class
structure,
CVPR09(2044-2051).
IEEE DOI
0906
BibRef
Frey, B.J.,
Jojic, N.,
Kannan, A.,
Learning appearance and transparency manifolds of occluded objects in
layers,
CVPR03(I: 45-52).
IEEE DOI
0307
BibRef
Jojic, N.[Nebojsa],
Petrovic, N.[Nemanja],
Frey, B.J.[Brendan J.],
Huang, T.S.[Thomas S.],
Transformed Hidden Markov Models: Estimating Mixture Models of Images
and Inferring Spatial Transformations in Video Sequences,
CVPR00(II: 26-33).
IEEE DOI
0005
BibRef
Titsias, M.K.,
Likas, A.C.,
Class conditional density estimation using mixtures with constrained
component sharing,
PAMI(25), No. 7, July 2003, pp. 924-928.
IEEE Abstract.
0307
BibRef
Constantinopoulos, C.[Constantinos],
Titsias, M.K.,
Likas, A.C.[Aristidis C.],
Bayesian Feature and Model Selection for Gaussian Mixture Models,
PAMI(28), No. 6, June 2006, pp. 1013-1018.
IEEE DOI
0605
Feature and model selection together
BibRef
Nikou, C.[Christophoros],
Galatsanos, N.P.[Nikolaos P.],
Likas, A.C.[Aristidis C.],
A Class-Adaptive Spatially Variant Mixture Model for Image Segmentation,
IP(16), No. 4, April 2007, pp. 1121-1130.
IEEE DOI
0704
BibRef
Constantinopoulos, C.[Constantinos],
Likas, A.C.[Aristidis C.],
Image Modeling and Segmentation Using Incremental Bayesian Mixture
Models,
CAIP07(596-603).
Springer DOI
0708
BibRef
Zhang, Z.H.[Zhi-Hua],
Chen, C.B.[Chi-Biao],
Sun, J.[Jian],
Chan, K.L.[Kap Luk],
EM algorithms for Gaussian mixtures with split-and-merge operation,
PR(36), No. 9, September 2003, pp. 1973-1983.
Elsevier DOI
0307
BibRef
Igual, J.[Jorge],
Camacho, A.[Andres],
Bernabeu, P.[Pablo],
Vergara, L.[Luis],
A maximum a posteriori estimate for the source separation problem with
statistical knowledge about the mixing matrix,
PRL(24), No. 15, November 2003, pp. 2519-2523.
Elsevier DOI
0308
BibRef
Zhang, B.B.[Bai-Bo],
Zhang, C.S.[Chang-Shui],
Yi, X.[Xing],
Competitive EM algorithm for finite mixture models,
PR(37), No. 1, January 2004, pp. 131-144.
Elsevier DOI
0311
BibRef
Zhang, M.H.[Ming-Heng],
Cheng, Q.S.[Qian-Sheng],
Determine the number of components in a mixture model by the extended
KS test,
PRL(25), No. 2, January 2004, pp. 211-216.
Elsevier DOI
0401
BibRef
Liu, W.X.[Wei-Xiang],
Zheng, N.N.[Nan-Ning],
Learning sparse features for classification by mixture models,
PRL(25), No. 2, January 2004, pp. 155-161.
Elsevier DOI
0401
BibRef
Zivkovic, Z.[Zoran],
van der Heijden, F.[Ferdinand],
Recursive unsupervised learning of finite mixture models,
PAMI(26), No. 5, May 2004, pp. 651-656.
IEEE Abstract.
0404
Estimate parameters of mixture and select the number of components.
BibRef
Wang, H.X.[Hai Xian],
Zhang, Q.B.[Quan Bing],
Luo, B.[Bin],
Wei, S.[Sui],
Robust mixture modelling using multivariate t-distribution with missing
information,
PRL(25), No. 6, 19 April 2004, pp. 701-710.
Elsevier DOI
0405
BibRef
Wang, H.X.[Hai Xian],
Luo, B.[Bin],
Zhang, Q.B.[Quan Bing],
Wei, S.[Sui],
Estimation for the number of components in a mixture model using
stepwise split-and-merge EM algorithm,
PRL(25), No. 16, December 2004, pp. 1799-1809.
Elsevier DOI
0411
BibRef
Chen, S.B.[Si-Bao],
Wang, H.X.[Hai-Xian],
Luo, B.[Bin],
On Dynamic Weighting of Data in Clustering with K-Alpha Means,
ICPR10(774-777).
IEEE DOI
1008
BibRef
Settle, J.J.,
On the use of remotely sensed data to estimate spatially averaged
geophysical variables,
GeoRS(42), No. 3, March 2004, pp. 620-631.
IEEE Abstract.
0407
Examine errors that arise, e.g. mixtures.
BibRef
Settle, J.J.,
On the residual term in the linear mixture model and its dependence on
the point spread function,
GeoRS(43), No. 2, February 2005, pp. 398-401.
IEEE Abstract.
0501
BibRef
Settle, J.J.,
On the Effect of Variable Endmember Spectra in the Linear Mixture Model,
GeoRS(44), No. 2, February 2006, pp. 389-396.
IEEE DOI
0602
BibRef
Xiong, Y.M.[Yi-Min],
Yeung, D.Y.[Dit-Yan],
Time series clustering with ARMA mixtures,
PR(37), No. 8, August 2004, pp. 1675-1689.
Elsevier DOI
0407
BibRef
Yang, X.Y.[Xiang-Yu],
Krishnan, S.M.[Shankar M.],
Image segmentation using finite mixtures and spatial information,
IVC(22), No. 9, 20 August 2004, pp. 735-745.
Elsevier DOI
0407
BibRef
Bouguila, N.[Nizar],
Ziou, D.,
Vaillancourt, J.,
Unsupervised Learning of a Finite Mixture Model Based on the Dirichlet
Distribution and Its Application,
IP(13), No. 11, November 2004, pp. 1533-1543.
IEEE DOI
0411
BibRef
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
Using unsupervised learning of a finite Dirichlet mixture model to
improve pattern recognition applications,
PRL(26), No. 12, September 2005, pp. 1916-1925.
Elsevier DOI
0508
BibRef
And:
MML-Based Approach for High-Dimensional Unsupervised Learning Using the
Generalized Dirichlet Mixture,
LCV05(III: 53-53).
IEEE DOI
0507
BibRef
Earlier: A2, A1:
Unsupervised learning of a finite gamma mixture using MML:
Application to SAR image analysis,
ICPR04(II: 68-71).
IEEE DOI
0409
BibRef
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using
a Finite Generalized Dirichlet Mixture,
IP(15), No. 9, August 2006, pp. 2657-2668.
IEEE DOI
0608
BibRef
Earlier:
Powerful finite mixture model based on the generalized dirichlet
distribution: unsupervised learning and applications,
ICPR04(I: 280-283).
IEEE DOI
0409
BibRef
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
Unsupervised learning of a finite discrete mixture: Applications to
texture modeling and image databases summarization,
JVCIR(18), No. 4, August 2007, pp. 295-309.
Elsevier DOI
0711
Multinomial Dirichlet; Finite mixture models; Maximum likelihood; EM;
Semantic features; Image retrieval; Vistex; Cooccurrence matrix
BibRef
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
High-Dimensional Unsupervised Selection and Estimation of a Finite
Generalized Dirichlet Mixture Model Based on Minimum Message Length,
PAMI(29), No. 10, October 2007, pp. 1716-1731.
IEEE DOI
0710
Structure of data withou knowing number of clusters.
BibRef
Bouguila, N.[Nizar],
Bayesian hybrid generative discriminative learning based on finite
Liouville mixture models,
PR(44), No. 6, June 2011, pp. 1183-1200.
Elsevier DOI
1102
Liouville family of distributions; Generative models; Discriminative
models; Mixture models; SVM; Bayesian inference; Exponential family;
Conjugate prior; Gibbs sampling; Bayes factor; Image classification;
Texture modeling
BibRef
Bouguila, N.[Nizar],
Infinite Liouville mixture models with application to text and texture
categorization,
PRL(33), No. 2, 15 January 2012, pp. 103-110.
Elsevier DOI
1112
Liouville family of distributions; Infinite mixture models;
Proportional data; Nonparametric Bayesian inference; MCMC; Gibbs
sampling
BibRef
Allili, M.S.[Mohand Saďd],
Ziou, D.[Djemel],
Bouguila, N.[Nizar],
Boutemedjet, S.[Sabri],
Image and Video Segmentation by Combining Unsupervised Generalized
Gaussian Mixture Modeling and Feature Selection,
CirSysVideo(20), No. 10, October 2010, pp. 1373-1377.
IEEE DOI
1011
BibRef
Earlier:
Unsupervised Feature Selection and Learning for Image Segmentation,
CRV10(285-292).
IEEE DOI
1005
BibRef
Larivičre, G.[Guillaume],
Allili, M.S.[Mohand Saďd],
A Learning Probabilistic Approach for Object Segmentation,
CRV12(86-93).
IEEE DOI
1207
BibRef
Bouguila, N.[Nizar],
El Guebaly, W.[Walid],
Discrete data clustering using finite mixture models,
PR(42), No. 1, January 2009, pp. 33-42.
Elsevier DOI
0809
Discrete data; Finite mixture models; Multinomial;
Generalized Dirichlet distribution; EM; Spatial color; Image databases;
Labeled and unlabeled images; Summarization; Text classification
BibRef
Maanicshah, K.[Kamal],
Amayri, M.[Manar],
Bouguila, N.[Nizar],
Interactive Generalized Dirichlet Mixture Allocation Model,
SSSPR22(33-42).
Springer DOI
2301
BibRef
Nguyen, H.[Hieu],
Maanicshah, K.[Kamal],
Azam, M.[Muhammad],
Bouguila, N.[Nizar],
Data Clustering Using Variational Learning of Finite Scaled Dirichlet
Mixture Models with Component Splitting,
ICIAR19(II:117-128).
Springer DOI
1909
BibRef
Maanicshah, K.[Kamal],
Ali, S.[Samr],
Fan, W.T.[Wen-Tao],
Bouguila, N.[Nizar],
Unsupervised Variational Learning of Finite Generalized Inverted
Dirichlet Mixture Models with Feature Selection and Component Splitting,
ICIAR19(II:94-105).
Springer DOI
1909
BibRef
Bouguila, N.[Nizar],
Non-Gaussian mixture image models prediction,
ICIP08(2580-2583).
IEEE DOI
0810
BibRef
Boutemedjet, S.[Sabri],
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
A Hybrid Feature Extraction Selection Approach for High-Dimensional
Non-Gaussian Data Clustering,
PAMI(31), No. 8, August 2009, pp. 1429-1443.
IEEE DOI
0906
BibRef
Earlier:
Unsupervised Feature and Model Selection for Generalized Dirichlet
Mixture Models,
ICIAR07(330-341).
Springer DOI
0708
Feature selection in mixtures
BibRef
El Guebaly, T.[Tarek],
Bouguila, N.[Nizar],
Generalized Gaussian mixture models as a nonparametric Bayesian
approach for clustering using class-specific visual features,
JVCIR(23), No. 8, November 2012, pp. 1199-1212.
Elsevier DOI
1211
Mixture models; Generalized Gaussian; Feature selection; Nonparametric
Bayes; MCMC; Gibbs sampling; Photographic; Painting; Segmentation;
Infrared images
BibRef
El Guebaly, T.[Tarek],
Bouguila, N.[Nizar],
Finite asymmetric generalized Gaussian mixture models learning for
infrared object detection,
CVIU(117), No. 12, 2013, pp. 1659-1671.
Elsevier DOI
1310
Infrared
See also Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection.
BibRef
Song, Z.Y.[Zi-Yang],
Ali, S.[Samr],
Bouguila, N.[Nizar],
Background subtraction using infinite asymmetric Gaussian mixture
models with simultaneous feature selection,
IET-IPR(14), No. 11, September 2020, pp. 2321-2332.
DOI Link
2009
BibRef
Earlier:
Bayesian Learning of Infinite Asymmetric Gaussian Mixture Models for
Background Subtraction,
ICIAR19(I:264-274).
Springer DOI
1909
BibRef
El Guebaly, T.[Tarek],
Bouguila, N.[Nizar],
Simultaneous high-dimensional clustering and feature selection using
asymmetric Gaussian mixture models,
IVC(34), No. 1, 2015, pp. 27-41.
Elsevier DOI
1502
Asymmetric Gaussian distribution
BibRef
Bouguila, N.[Nizar],
Ghimire, M.N.[Mukti Nath],
Discrete visual features modeling via leave-one-out likelihood
estimation and applications,
JVCIR(21), No. 7, October 2010, pp. 613-626.
Elsevier DOI
1003
Discrete features; Finite mixture models; Multinomial; Dirichlet;
Generalized Dirichlet; Leave-one-out likelihood; SVM;
Generative/discriminative; Scene classification; Visual words
BibRef
Jin, H.D.[Hui-Dong],
Leung, K.S.[Kwong-Sak],
Wong, M.L.[Man-Leung],
Xu, Z.B.[Zong-Ben],
Scalable model-based cluster analysis using clustering features,
PR(38), No. 5, May 2005, pp. 637-649.
Elsevier DOI
0501
BibRef
Jin, H.D.[Hui-Dong],
Wong, M.L.[Man-Leung],
Leung, K.S.,
Scalable Model-Based Clustering for Large Databases Based on Data
Summarization,
PAMI(27), No. 11, November 2005, pp. 1710-1719.
IEEE DOI
0510
BibRef
Aiyer, A.[Anuradha],
Pyun, K.P.[Kyungsuk Peter],
Huang, Y.Z.[Ying-Zong],
O'Brien, D.B.[Deirdre B.],
Gray, R.M.[Robert M.],
Lloyd clustering of Gauss mixture models for image compression and
classification,
SP:IC(20), No. 5, June 2005, pp. 459-485.
Elsevier DOI
0506
BibRef
Pernkopf, F.[Franz],
Bouchaffra, D.[Djamel],
Genetic-Based EM Algorithm for Learning Gaussian Mixture Models,
PAMI(27), No. 8, August 2005, pp. 1344-1348.
IEEE Abstract.
0506
BibRef
Zhang, B.B.[Bai-Bo],
Zhang, C.S.[Chang-Shui],
Yi, X.[Xing],
Active curve axis Gaussian mixture models,
PR(38), No. 12, December 2005, pp. 2351-2362.
Elsevier DOI
0510
BibRef
Ma, J.W.[Jin-Wen],
Fu, S.Q.[Shu-Qun],
On the correct convergence of the EM algorithm for Gaussian mixtures,
PR(38), No. 12, December 2005, pp. 2602-2611.
Elsevier DOI
0510
BibRef
Haertel, V.F.,
Shimabukuro, Y.E.,
Spectral linear mixing model in low spatial resolution image data,
GeoRS(43), No. 11, November 2005, pp. 2555-2562.
IEEE DOI
0512
BibRef
Shi, Z.W.[Zhen-Wei],
Tang, H.W.[Huan-Wen],
Tang, Y.Y.[Yi-Yuan],
Blind source separation of more sources than mixtures using sparse
mixture models,
PRL(26), No. 16, December 2005, pp. 2491-2499.
Elsevier DOI
0512
BibRef
Shi, Z.W.[Zhen-Wei],
Zhang, C.S.[Chang-Shui],
Fast nonlinear autocorrelation algorithm for source separation,
PR(42), No. 9, September 2009, pp. 1732-1741.
Elsevier DOI
0905
Blind source separation (BSS); Independent component analysis (ICA);
Linear autocorrelation; Nonlinear autocorrelation
BibRef
Permuter, H.H.[Haim H.],
Francos, J.M.[Joseph M.],
Jermyn, I.H.[Ian H.],
A study of Gaussian mixture models of color and texture features for
image classification and segmentation,
PR(39), No. 4, April 2006, pp. 695-706.
Elsevier DOI
0604
Image classification; Texture; Color; Gaussian mixture models;
Expectation maximization; k-means; Background model;
Decision fusion; Aerial images
BibRef
Paalanen, P.[Pekka],
Kamarainen, J.K.[Joni-Kristian],
Ilonen, J.[Jarmo],
Kälviäinen, H.[Heikki],
Feature representation and discrimination based on Gaussian mixture
model probability densities: Practices and algorithms,
PR(39), No. 7, July 2006, pp. 1346-1358.
Elsevier DOI
0606
Gaussian mixture model; EM; Classifier; Confidence; Highest density region
BibRef
Zhou, X.,
Wang, X.,
Optimisation of Gaussian mixture model for satellite image
classification,
VISP(153), No. 3, June 2006, pp. 349-356.
DOI Link
0608
BibRef
Brandt, S.S.[Sami S.],
Maximum Likelihood Robust Regression by Mixture Models,
JMIV(25), No. 1, July 2006, pp. 25-48.
Springer DOI
0610
BibRef
Tawfick, M.M.[Mohamad M.],
Abbas, H.M.[Hazem M.],
Shahein, H.I.[Hussein I.],
An integer-coded evolutionary approach for mixture maximum likelihood
clustering,
PRL(29), No. 4, 1 March 2008, pp. 515-524.
Elsevier DOI
0711
Clustering; Mixture maximum likelihood; Evolutionary algorithms;
Genetic algorithms
BibRef
Goldberger, J.[Jacob],
Greenspan, H.K.[Hayit K.],
Dreyfuss, J.[Jeremie],
Simplifying Mixture Models Using the Unscented Transform,
PAMI(30), No. 8, August 2008, pp. 1496-1502.
IEEE DOI
0806
BibRef
Rotem, O.[Omer],
Greenspan, H.K.[Hayit K.],
Goldberger, J.[Jacob],
Combining Region and Edge Cues for Image Segmentation in a
Probabilistic Gaussian Mixture Framework,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Reddy, C.K.[Chandan K.],
Chiang, H.D.[Hsiao-Dong],
Rajaratnam, B.[Bala],
TRUST-TECH-Based Expectation Maximization for Learning Finite Mixture
Models,
PAMI(30), No. 7, July 2008, pp. 1146-1157.
IEEE DOI
0806
BibRef
Omachi, S.[Shinichiro],
Omachi, M.[Masako],
Aso, H.[Hirotomo],
An Approximation Method of the Quadratic Discriminant Function and Its
Application to Estimation of High-Dimensional Distribution,
IEICE(E90-D), No. 8, August 2007, pp. 1160-1167.
DOI Link
0708
BibRef
Omachi, S.,
Sun, F.,
Aso, H.,
A Discriminant Function for Noisy Pattern Recognition,
SCIA99(Statistical Methods).
BibRef
9900
Sun, F.,
Omachi, S.,
Aso, H.,
An Algorithm for Estimating Mixture Distribution of High Dimensional
Vectors and its Application to Character Recognition,
SCIA99(Statistical Methods).
BibRef
9900
Liang, Z.,
Wang, S.,
An EM Approach to MAP Solution of Segmenting Tissue Mixtures:
A Numerical Analysis,
MedImg(28), No. 2, February 2009, pp. 297-310.
IEEE DOI
0902
BibRef
And:
Erratum:
MedImg(28), No. 4, April 2009, pp. 631-631.
IEEE DOI
0904
Mixed voxels.
BibRef
Sabuncu, M.R.,
Balci, S.K.,
Shenton, M.E.,
Golland, P.,
Image-Driven Population Analysis Through Mixture Modeling,
MedImg(28), No. 9, September 2009, pp. 1473-1487.
IEEE DOI
0909
BibRef
Yamada, M.[Makoto],
Sugiyama, M.[Masashi],
Direct Importance Estimation with Gaussian Mixture Models,
IEICE(E92-D), No. 10, October 2009, pp. 2159-2162.
WWW Link.
0910
BibRef
Bruneau, P.[Pierrick],
Gelgon, M.[Marc],
Picarougne, F.[Fabien],
Parsimonious reduction of Gaussian mixture models with a
variational-Bayes approach,
PR(43), No. 3, March 2010, pp. 850-858.
Elsevier DOI
1001
BibRef
Earlier:
Parameter-based reduction of Gaussian mixture models with a
variational-Bayes approach,
ICPR08(1-4).
IEEE DOI
0812
Mixture models; Bayesian estimation; Model aggregation
BibRef
Kristan, M.[Matej],
Skocaj, D.[Danijel],
Leonardis, A.[Ales],
Online kernel density estimation for interactive learning,
IVC(28), No. 7, July 2010, pp. 1106-1116.
Elsevier DOI
1006
Online learning; Kernel density estimation; Mixture models;
Unlearning; Compression; Hellinger distance; Unscented transform
BibRef
Kristan, M.[Matej],
Leonardis, A.[Ales],
Skocaj, D.[Danijel],
Multivariate online kernel density estimation with Gaussian kernels,
PR(44), No. 10-11, October-November 2011, pp. 2630-2642.
Elsevier DOI
1101
BibRef
Earlier: A1, A2, Only:
Online Discriminative Kernel Density Estimation,
ICPR10(581-584).
IEEE DOI
1008
Online models; Probability density estimation; Kernel density
estimation; Gaussian mixture models
BibRef
Vogler, N.[Nadine],
Bocklitz, T.[Thomas],
Mariani, M.[Melissa],
Deckert, V.[Volker],
Markova, A.[Aneta],
Schelkens, P.[Peter],
Rösch, P.[Petra],
Akimov, D.[Denis],
Dietzek, B.[Benjamin],
Popp, J.[Jürgen],
Separation of CARS image contributions with a Gaussian mixture model,
JOSA-A(27), No. 6, June 2010, pp. 1361-1371.
WWW Link.
1006
BibRef
Hidot, S.[Sullivan],
Saint-Jean, C.[Christophe],
An Expectation-Maximization algorithm for the Wishart mixture model:
Application to movement clustering,
PRL(31), No. 14, 15 October 2010, pp. 2318-2324.
Elsevier DOI
1003
Wishart mixture model; EM algorithm; Clustering; Second-order cross
moments; Movement recognition
BibRef
Rabbani, H.,
Gazor, S.,
Image denoising employing local mixture models in sparse domains,
IET-IPR(4), No. 5, October 2010, pp. 413-428.
DOI Link
1011
BibRef
Sun, J.Y.[Jian-Yong],
Kaban, A.[Ata],
Garibaldi, J.M.[Jonathan M.],
Robust mixture clustering using Pearson type VII distribution,
PRL(31), No. 16, December 2010, pp. 2447-2454.
Elsevier DOI
1011
Robust mixture modeling; Pearson type VII distribution; Outlier
detection; Robust learning
BibRef
Ulker, Y.[Yener],
Gunsel, B.[Bilge],
Cemgil, A.T.[Ali Taylan],
Annealed SMC Samplers for Nonparametric Bayesian Mixture Models,
SPLetters(18), No. 1, January 2011, pp. 3-6.
IEEE DOI
1011
BibRef
Earlier:
Annealed SMC Samplers for Dirichlet Process Mixture Models,
ICPR10(2808-2811).
IEEE DOI
1008
BibRef
Xie, C.H.[Cong-Hua],
Song, Y.Q.[Yu-Qing],
Chen, J.M.[Jian-Mei],
Fast medical image mixture density clustering segmentation using
stratification sampling and kernel density estimation,
SIViP(5), No. 2, June 2011, pp. 257-267.
WWW Link.
1101
BibRef
Ma, Z.Y.[Zhan-Yu],
Leijon, A.[Arne],
Bayesian Estimation of Beta Mixture Models with Variational Inference,
PAMI(33), No. 11, November 2011, pp. 2160-2173.
IEEE DOI
1110
BibRef
Earlier:
Beta mixture models and the application to image classification,
ICIP09(2045-2048).
IEEE DOI
0911
BibRef
Taghia, J.,
Ma, Z.Y.[Zhan-Yu],
Leijon, A.[Arne],
Bayesian Estimation of the von-Mises Fisher Mixture Model with
Variational Inference,
PAMI(36), No. 9, September 2014, pp. 1701-1715.
IEEE DOI
1408
Approximation methods
BibRef
Ma, Z.Y.[Zhan-Yu],
Rana, P.K.[Pravin Kumar],
Taghia, J.[Jalil],
Flierl, M.[Markus],
Leijon, A.[Arne],
Bayesian estimation of Dirichlet mixture model with variational
inference,
PR(47), No. 9, 2014, pp. 3143-3157.
Elsevier DOI
1406
Bayesian estimation
BibRef
Taghia, J.[Jalil],
Leijon, A.[Arne],
Variational Inference for Watson Mixture Model,
PAMI(38), No. 9, September 2016, pp. 1886-1900.
IEEE DOI
1609
Bayes methods
BibRef
Chatzis, S.P.[Sotirios P.],
Tsechpenakis, G.[Gavriil],
A possibilistic clustering approach toward generative mixture models,
PR(45), No. 5, May 2012, pp. 1819-1825.
Elsevier DOI
1201
Possibilistic clustering; Finite mixture models
BibRef
Platanios, E.A.,
Chatzis, S.P.[Sotirios P.],
Gaussian Process-Mixture Conditional Heteroscedasticity,
PAMI(36), No. 5, May 2014, pp. 888-900.
IEEE DOI
1405
Bayes methods
BibRef
Raitoharju, M.,
Ali-Loytty, S.,
An Adaptive Derivative Free Method for Bayesian Posterior Approximation,
SPLetters(19), No. 2, February 2012, pp. 87-90.
IEEE DOI
1201
BibRef
Browne, R.P.[Ryan P.],
McNicholas, P.D.[Paul D.],
Sparling, M.D.[Matthew D.],
Model-Based Learning Using a Mixture of Mixtures of Gaussian and
Uniform Distributions,
PAMI(34), No. 4, April 2012, pp. 814-817.
IEEE DOI
1203
BibRef
Franczak, B.C.,
Browne, R.P.,
McNicholas, P.D.,
Mixtures of Shifted Asymmetric Laplace Distributions,
PAMI(36), No. 6, June 2014, pp. 1149-1157.
IEEE DOI
1406
Algorithm design and analysis
BibRef
Gallaugher, M.P.B.[Michael P.B.],
McNicholas, P.D.[Paul D.],
Finite mixtures of skewed matrix variate distributions,
PR(80), 2018, pp. 83-93.
Elsevier DOI
1805
Clustering, Matrix variate, Mixture models, Skewed distributions
BibRef
Andrews, J.L.[Jeffrey L.],
McNicholas, P.D.[Paul D.],
Using evolutionary algorithms for model-based clustering,
PRL(34), No. 9, July 2013, pp. 987-992.
Elsevier DOI
1305
Cluster analysis; EM algorithm; Evolutionary algorithms; Finite mixture
models; Model-based clustering
BibRef
Tits, L.,
Somers, B.,
Coppin, P.,
The Potential and Limitations of a Clustering Approach for the Improved
Efficiency of Multiple Endmember Spectral Mixture Analysis in Plant
Production System Monitoring,
GeoRS(50), No. 6, June 2012, pp. 2273-2286.
IEEE DOI
1205
BibRef
Wang, Z.,
Lan, L.,
Vucetic, S.,
Mixture Model for Multiple Instance Regression and Applications in
Remote Sensing,
GeoRS(50), No. 6, June 2012, pp. 2226-2237.
IEEE DOI
1205
BibRef
Yang, M.S.[Miin-Shen],
Lai, C.Y.[Chien-Yo],
Lin, C.Y.[Chih-Ying],
A robust EM clustering algorithm for Gaussian mixture models,
PR(45), No. 11, November 2012, pp. 3950-3961.
Elsevier DOI
1206
Cluster analysis; EM algorithm; Gaussian mixture model; Robust EM;
Initialization; Number of clusters
BibRef
Liu, G.Q.[Guo-Qing],
Wu, J.X.[Jian-Xin],
Zhou, S.P.[Sui-Ping],
Probabilistic classifiers with a generalized Gaussian scale mixture
prior,
PR(46), No. 1, January 2013, pp. 332-345.
Elsevier DOI
1209
Classification; Prior distribution; Generalized Gaussian scale mixture;
Likelihood function
BibRef
Zhao, Q.P.[Qin-Pei],
Hautamäki, V.[Ville],
Kärkkäinen, I.[Ismo],
Fränti, P.[Pasi],
Random swap EM algorithm for Gaussian mixture models,
PRL(33), No. 16, 1 December 2012, pp. 2120-2126.
Elsevier DOI
1210
BibRef
Earlier:
Random swap EM algorithm for finite mixture models in image
segmentation,
ICIP09(2397-2400).
IEEE DOI
0911
Expectation maximization; Random swap EM; Gaussian mixture model; Split
and merge EM; Genetic-based EM; Data clustering
BibRef
Fränti, P.[Pasi],
Rezaei, M.[Mohammad],
Zhao, Q.P.[Qin-Pei],
Centroid index: Cluster level similarity measure,
PR(47), No. 9, 2014, pp. 3034-3045.
Elsevier DOI
1406
Clustering
BibRef
Fränti, P.[Pasi],
Rezaei, M.[Mohammad],
Generalizing Centroid Index to Different Clustering Models,
SSSPR16(285-296).
Springer DOI
1611
BibRef
Beaulieu, N.C.,
Special Values of the Bivariate Gaussian Distribution,
SPLetters(20), No. 1, January 2013, pp. 99-101.
IEEE DOI
1212
BibRef
Ali, A.M.[Asem M.],
Farag, A.A.,
Alajlan, N.,
Farag, A.A.,
Multimodal imaging: modelling and segmentation with biomedical
applications,
IET-CV(6), No. 6, 2012, pp. 524-539.
DOI Link
1301
BibRef
Ali, A.M.[Asem M.],
Farag, A.A.[Amal A.],
Farag, A.A.[Aly A.],
Labelling color images by modelling the colors density using a linear
combination of Gaussians and EM algorithm,
ICIP09(1645-1648).
IEEE DOI
0911
BibRef
Mostafa, E.,
Ali, A.M.[Asem M.],
Farag, A.A.[Aly A.],
Learning a non-linear combination of Mahalanobis distances using
statistical inference for similarity measure,
IET-CV(9), No. 4, 2015, pp. 541-548.
DOI Link
1509
computer vision
BibRef
Ali, A.M.[Asem M.],
Farag, A.A.[Aly A.],
Density estimation using a new AIC-type criterion and the EM algorithm
for a linear combination of Gaussians,
ICIP08(3024-3027).
IEEE DOI
0810
BibRef
Farag, A.A.,
El-Baz, A.,
Gimel'farb, G.L.,
Density estimation using modified expectation-maximization algorithm
for a linear combination of gaussians,
ICIP04(III: 1871-1874).
IEEE DOI
0505
BibRef
And: A3, A1, A2:
Expectation-maximization for a linear combination of Gaussians,
ICPR04(III: 422-425).
IEEE DOI
0409
BibRef
Fan, W.T.[Wen-Tao],
Bouguila, N.[Nizar],
Variational learning of a Dirichlet process of generalized Dirichlet
distributions for simultaneous clustering and feature selection,
PR(46), No. 10, October 2013, pp. 2754-2769.
Elsevier DOI
1306
Infinite mixture models; Dirichlet process; Generalized
Dirichlet; Feature selection; Clustering; Images categorization; Image
auto-annotation
BibRef
Fan, W.T.[Wen-Tao],
Bouguila, N.[Nizar],
Dynamic Textures Clustering Using a Hierarchical Pitman-Yor Process
Mixture of Dirichlet Distributions,
ICIP15(296-300)
IEEE DOI
1512
Dirichlet distribution
BibRef
Song, T.C.[Tie-Cheng],
Li, H.L.[Hong-Liang],
WaveLBP based hierarchical features for image classification,
PRL(34), No. 12, 1 September 2013, pp. 1323-1328.
Elsevier DOI
1306
Image descriptor; Wavelet decomposition; Local binary pattern
(LBP); Gaussian mixture model (GMM); Image classification
BibRef
Hara, K.,
Inoue, K.[Kohei],
Urahama, K.[Kiichi],
Generalized Mixture Ratio Based Blind Image Separation,
SPLetters(20), No. 8, 2013, pp. 743-746.
IEEE DOI
1307
blind source separation
BibRef
Roy, A.[Anandarup],
Parui, S.K.[Swapan K.],
Pair-copula based mixture models and their application in clustering,
PR(47), No. 4, 2014, pp. 1689-1697.
Elsevier DOI
1402
Pair-copula construction
BibRef
Zeng, H.[Hong],
Cheung, Y.M.[Yiu-Ming],
Learning a mixture model for clustering with the completed likelihood
minimum message length criterion,
PR(47), No. 5, 2014, pp. 2011-2030.
Elsevier DOI
1402
Completed likelihood
BibRef
Li, D.W.[Da-Wei],
Xu, L.H.[Li-Hong],
Goodman, E.[Erik],
On-line EM Variants for Multivariate Normal Mixture Model in Background
Learning and Moving Foreground Detection,
JMIV(48), No. 1, January 2014, pp. 114-133.
WWW Link.
1402
BibRef
Chai, J.[Jing],
Chen, H.T.[Hong-Tao],
Huang, L.X.[Li-Xia],
Shang, F.H.[Fan-Hua],
Maximum margin multiple-instance feature weighting,
PR(47), No. 6, 2014, pp. 2091-2103.
Elsevier DOI
1403
Feature weighting
BibRef
Hu, L.X.[Li-Xia],
A note on order statistics-based parametric pattern classification,
PR(48), No. 1, 2015, pp. 43-49.
Elsevier DOI
1410
Pattern classification
BibRef
Zanotta, D.C.,
Haertel, V.,
Shimabukuro, Y.E.,
Renno, C.D.,
Linear Spectral Mixing Model for Identifying Potential Missing
Endmembers in Spectral Mixture Analysis,
GeoRS(52), No. 5, May 2014, pp. 3005-3012.
IEEE DOI
1403
Correlation
BibRef
Qu, Q.,
Nasrabadi, N.M.,
Tran, T.D.,
Abundance Estimation for Bilinear Mixture Models via Joint Sparse and
Low-Rank Representation,
GeoRS(52), No. 7, July 2014, pp. 4404-4423.
IEEE DOI
1403
Data models
BibRef
Sun, X.,
Nasrabadi, N.M.,
Tran, T.D.,
Supervised Deep Sparse Coding Networks for Image Classification,
IP(29), No. 1, 2020, pp. 405-418.
IEEE DOI
1910
BibRef
Earlier:
Supervised Deep Sparse Coding Networks,
ICIP18(346-350)
IEEE DOI
1809
computational complexity, image classification, image coding,
learning (artificial intelligence), neural nets,
image recognition.
Encoding, Dictionaries, Training, Optimization, Neural networks,
Nonhomogeneous media, Computer architecture
BibRef
Kersten, J.[Jens],
Simultaneous feature selection and Gaussian mixture model estimation
for supervised classification problems,
PR(47), No. 8, 2014, pp. 2582-2595.
Elsevier DOI
1405
Gaussian mixture models
BibRef
Zhang, R.,
Gong, W.,
Grzeda, V.,
Yaworski, A.,
Greenspan, M.,
Scene Dynamics Estimation for Parameter Adjustment of Gaussian
Mixture Models,
SPLetters(21), No. 9, Sept 2014, pp. 1130-1134.
IEEE DOI
1406
Cameras
BibRef
Bot, R.I.[Radu Ioan],
Hendrich, C.[Christopher],
Convergence Analysis for a Primal-Dual Monotone + Skew Splitting
Algorithm with Applications to Total Variation Minimization,
JMIV(49), No. 3, July 2014, pp. 551-568.
Springer DOI
1407
Monotone inclusions involving mixtures of composite sum type operators.
BibRef
Ari, C.[Caglar],
Aksoy, S.[Selim],
Detection of Compound Structures Using a Gaussian Mixture Model With
Spectral and Spatial Constraints,
GeoRS(52), No. 10, October 2014, pp. 6627-6638.
IEEE DOI
1407
BibRef
Earlier:
Maximum Likelihood Estimation of Gaussian Mixture Models Using Particle
Swarm Optimization,
ICPR10(746-749).
IEEE DOI
1008
Compounds
BibRef
Xie, C.H.[Cong-Hua],
Chang, J.Y.[Jin-Yi],
Xu, W.B.[Wen-Bin],
Medical image denoising by generalised Gaussian mixture modelling
with edge information,
IET-IPR(8), No. 8, August 2014, pp. 464-476.
DOI Link
1410
Bayes methods
BibRef
Wang, B.H.[Bing-Hui],
Lin, C.[Chuang],
Fan, X.[Xin],
Jiang, N.[Ning],
Farina, D.[Dario],
Hierarchical Bayes based Adaptive Sparsity in Gaussian Mixture Model,
PRL(49), No. 1, 2014, pp. 238-247.
Elsevier DOI
1410
High-dimensional parameter estimation
BibRef
Dedecius, K.,
Reichl, J.,
Djuric, P.M.,
Sequential Estimation of Mixtures in Diffusion Networks,
SPLetters(22), No. 2, February 2015, pp. 197-201.
IEEE DOI
1410
Bayes methods
BibRef
Costa, M.,
Koivunen, V.,
Poor, H.V.,
Estimating Directional Statistics Using Wavefield Modeling and
Mixtures of von-Mises Distributions,
SPLetters(21), No. 12, December 2014, pp. 1496-1500.
IEEE DOI
1410
Gaussian processes
BibRef
Huang, S.M.[Shih-Ming],
Chou, Y.T.[Yang-Ting],
Yang, J.F.[Jar-Ferr],
Low-resolution face recognition in uses of multiple-size discrete
cosine transforms and selective Gaussian mixture models,
IET-CV(8), No. 5, October 2014, pp. 382-390.
DOI Link
1412
Gaussian processes
BibRef
Kay, S.,
A Probabilistic Interpretation of the Exponential Mixture,
SPLetters(22), No. 7, July 2015, pp. 935-937.
IEEE DOI
1412
Computer simulation
BibRef
Zhou, X.[Xin],
Peng, R.K.[Rong-Kun],
Wang, C.Q.[Cong-Qing],
A Two-Component K-Lognormal Mixture Model and Its Parameter
Estimation Method,
GeoRS(53), No. 5, May 2015, pp. 2640-2651.
IEEE DOI
1502
expectation-maximisation algorithm
BibRef
Gan, H.T.[Hai-Tao],
Sang, N.[Nong],
Huang, R.[Rui],
Manifold regularized semi-supervised Gaussian mixture model,
JOSA-A(32), No. 4, April 2015, pp. 566-575.
DOI Link
1504
Pattern recognition
BibRef
Gan, H.T.[Hai-Tao],
Sang, N.[Nong],
Huang, R.[Rui],
Chen, X.[Xi],
Manifold Regularized Gaussian Mixture Model for Semi-supervised
Clustering,
ACPR13(361-365)
IEEE DOI
1408
Gaussian processes
BibRef
Franczak, B.C.[Brian C.],
Tortora, C.[Cristina],
Browne, R.P.[Ryan P.],
McNicholas, P.D.[Paul D.],
Unsupervised learning via mixtures of skewed distributions with
hypercube contours,
PRL(58), No. 1, 2015, pp. 69-76.
Elsevier DOI
1505
BibRef
And:
Corrigendum:
PRL(62), No. 1, 2015, pp. 68-.
Elsevier DOI
1507
Finite mixture models
BibRef
Mehrjou, A.[Arash],
Hosseini, R.[Reshad],
Araabi, B.N.[Babak Nadjar],
Improved Bayesian information criterion for mixture model selection,
PRL(69), No. 1, 2016, pp. 22-27.
Elsevier DOI
1601
Model selection
BibRef
Li, H.C.,
Krylov, V.A.,
Fan, P.Z.,
Zerubia, J.B.,
Emery, W.J.,
Unsupervised Learning of Generalized Gamma Mixture Model With
Application in Statistical Modeling of High-Resolution SAR Images,
GeoRS(54), No. 4, April 2016, pp. 2153-2170.
IEEE DOI
1604
Image resolution
BibRef
Ma, L.,
Chen, J.,
Zhou, Y.,
Chen, X.,
Two-Step Constrained Nonlinear Spectral Mixture Analysis Method for
Mitigating the Collinearity Effect,
GeoRS(54), No. 5, May 2016, pp. 2873-2886.
IEEE DOI
1604
geophysical techniques
BibRef
Nielsen, F.,
Sun, K.,
Guaranteed Bounds on the Kullback-Leibler Divergence of Univariate
Mixtures,
SPLetters(23), No. 11, November 2016, pp. 1543-1546.
IEEE DOI
1609
Gaussian processes
BibRef
Yerebakan, H.Z.[Halid Ziya],
Dundar, M.[Murat],
Partially collapsed parallel Gibbs sampler for Dirichlet process
mixture models,
PRL(90), No. 1, 2017, pp. 22-27.
Elsevier DOI
1704
Dirichlet process
BibRef
Salvadori, C.[Claudio],
Petracca, M.[Matteo],
del Rincon, J.M.[Jesus Martinez],
Velastin, S.A.[Sergio A.],
Makris, D.[Dimitrios],
An optimisation of Gaussian mixture models for integer processing units,
RealTimeIP(13), No. 2, June 2017, pp. 273-289.
Springer DOI
1708
BibRef
Assa, A.,
Plataniotis, K.N.,
Wasserstein-Distance-Based Gaussian Mixture Reduction,
SPLetters(25), No. 10, October 2018, pp. 1465-1469.
IEEE DOI
1810
approximation theory, Gaussian processes, mixture models,
signal processing, signal processing applications,
Wasserstein distance (WD)
BibRef
Marinoni, A.,
Plaza, J.,
Plaza, A.,
Gamba, P.,
Estimating Nonlinearities in p-Linear Hyperspectral Mixtures,
GeoRS(56), No. 11, November 2018, pp. 6586-6595.
IEEE DOI
1811
Hyperspectral imaging, Mixture models,
Image reconstruction, Measurement, Earth, Adaptive fitting,
nonorthogonal projection
BibRef
Liu, C.[Chi],
Li, H.C.[Heng-Chao],
Fu, K.[Kun],
Zhang, F.[Fan],
Datcu, M.[Mihai],
Emery, W.J.[William J.],
Bayesian estimation of generalized Gamma mixture model based on
variational EM algorithm,
PR(87), 2019, pp. 269-284.
Elsevier DOI
1812
Finite mixture models, Generalized Gamma distribution,
Variational expectation-maximization (VEM),
Extended factorized approximation
BibRef
Do, T.D.[Trung Dung],
Jin, C.B.[Cheng-Bin],
Nguyen, V.H.[Van Huan],
Kim, H.[Hakil],
Mixture separability loss in a deep convolutional network for image
classification,
IET-IPR(13), No. 1, January 2019, pp. 135-141.
DOI Link
1812
BibRef
Mukhopadhaya, S.[Sayan],
Kumar, A.[Anil],
Stein, A.[Alfred],
FCM Approach of Similarity and Dissimilarity Measures with a-Cut for
Handling Mixed Pixels,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
He, D.[Da],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Spatiotemporal Subpixel Geographical Evolution Mapping,
GeoRS(57), No. 4, April 2019, pp. 2198-2220.
IEEE DOI
1904
ecology, environmental monitoring (geophysics),
geophysical image processing, image classification,
subpixel mapping (SPM)
BibRef
Zhu, D.H.[De-Hui],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Single-Spectrum-Driven Binary-Class Sparse Representation Target
Detector for Hyperspectral Imagery,
GeoRS(59), No. 2, February 2021, pp. 1487-1500.
IEEE DOI
2101
Dictionaries, Detectors, Training, Hyperspectral imaging,
Object detection, Classification algorithms, Binary hypothesis,
target detection
BibRef
Safont, G.[Gonzalo],
Salazar, A.[Addisson],
Vergara, L.[Luis],
Gómez, E.[Enriqueta],
Villanueva, V.[Vicente],
Multichannel dynamic modeling of non-Gaussian mixtures,
PR(93), 2019, pp. 312-323.
Elsevier DOI
1906
Dynamic modeling, Non-Gaussian mixtures, ICA, HMM, EEG
BibRef
Safont, G.[Gonzalo],
Salazar, A.[Addisson],
Vergara, L.[Luis],
Vector score alpha integration for classifier late fusion,
PRL(136), 2020, pp. 48-55.
Elsevier DOI
2008
BibRef
Zhao, Y.,
Shrivastava, A.K.,
Tsui, K.L.,
Regularized Gaussian Mixture Model for High-Dimensional Clustering,
Cyber(49), No. 10, October 2019, pp. 3677-3688.
IEEE DOI
1907
Covariance matrices, Correlation, Maximum likelihood estimation,
Feature extraction, Gaussian mixture model,
unsupervised learning
BibRef
Alroobaea, R.[Roobaea],
Rubaiee, S.[Saeed],
Bourouis, S.[Sami],
Bouguila, N.[Nizar],
Alsufyani, A.[Abdulmajeed],
Bayesian inference framework for bounded generalized Gaussian-based
mixture model and its application to biomedical images classification,
IJIST(30), No. 1, 2020, pp. 18-30.
DOI Link
2002
Bayesian inference, biomedical imaging, bounded mixture models,
generalized Gaussian distribution, image classification,
Markov chain Monte Carlo (MCMC)
BibRef
Rahmani, D.[Donya],
Niranjan, M.[Mahesan],
Fay, D.[Damien],
Takeda, A.[Akiko],
Brodzki, J.[Jacek],
Estimation of Gaussian mixture models via tensor moments with
application to online learning,
PRL(131), 2020, pp. 285-292.
Elsevier DOI
2004
Method of moments, Alternating gradient descent,
Online learning, Tensor analysis
BibRef
Delon, J.[Julie],
Desolneux, A.[Agnčs],
A Wasserstein-Type Distance in the Space of Gaussian Mixture Models,
SIIMS(13), No. 2, 2020, pp. 936-970.
DOI Link
2007
BibRef
Sun, K.,
Tao, W.,
Qian, Y.,
Guide to Match: Multi-Layer Feature Matching With a Hybrid Gaussian
Mixture Model,
MultMed(22), No. 9, September 2020, pp. 2246-2261.
IEEE DOI
2008
Feature extraction, Gaussian mixture model, Task analysis,
Information processing, Sun, Image color analysis,
hybrid gaussian mixture model
BibRef
Manouchehri, N.[Narges],
Bouguila, N.[Nizar],
Fan, W.T.[Wen-Tao],
Nonparametric variational learning of multivariate beta mixture
models in medical applications,
IJIST(31), No. 1, 2021, pp. 128-140.
DOI Link
2102
batch variational learning, Dirichlet process mixtures,
medical applications, mixture models, online variational learning
BibRef
Manouchehri, N.[Narges],
Kalra, M.[Meeta],
Bouguila, N.[Nizar],
Online variational inference on finite multivariate Beta mixture
models for medical applications,
IET-IPR(15), No. 9, 2021, pp. 1869-1882.
DOI Link
2106
BibRef
Asheri, H.[Hadi],
Hosseini, R.[Reshad],
Araabi, B.N.[Babak Nadjar],
A new EM algorithm for flexibly tied GMMs with large number of
components,
PR(114), 2021, pp. 107836.
Elsevier DOI
2103
Gaussian mixture model, Parameter sharing, Tied GMM,
Computation factorization and reduction, Newton method, Clustering
BibRef
Ge, C.Y.[Chen-Yu],
Wang, M.M.[Meng-Meng],
Zhang, H.M.[Hong-Ming],
Chen, H.[Huan],
Sun, H.G.[Hong-Guang],
Chang, Y.[Yi],
Yang, Q.[Qinke],
A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data
for SRTM1,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Chasani, P.[Paraskevi],
Likas, A.[Aristidis],
The UU-test for statistical modeling of unimodal data,
PR(122), 2022, pp. 108272.
Elsevier DOI
2112
Unimodal data, Unimodality test, Statistical modeling, Uniform mixture model
BibRef
Xie, J.Y.[Ji-Yang],
Ma, Z.Y.[Zhan-Yu],
Xue, J.H.[Jing-Hao],
Zhang, G.Q.[Guo-Qiang],
Sun, J.[Jian],
Zheng, Y.[Yinhe],
Guo, J.[Jun],
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
Uncertainty Inference in Image Recognition,
IP(30), 2021, pp. 9208-9219.
IEEE DOI
2112
Uncertainty, Feature extraction, Image recognition,
Stochastic processes, Optimization, Bayes methods,
mixture of gaussian mixture models
BibRef
Giry Fouquet, E.[Erwan],
Fauvel, M.[Mathieu],
Mallet, C.[Clément],
Fast estimation for robust supervised classification with mixture
models,
PRL(152), 2021, pp. 320-326.
Elsevier DOI
2112
Classification, Label noise, ADMM, Convex optimization, Clustering
BibRef
Li, Y.S.[Yun-Song],
Shi, Y.Z.[Yan-Zi],
Wang, K.[Keyan],
Xi, B.[Bobo],
Li, J.J.[Jiao-Jiao],
Gamba, P.[Paolo],
Target Detection With Unconstrained Linear Mixture Model and
Hierarchical Denoising Autoencoder in Hyperspectral Imagery,
IP(31), 2022, pp. 1418-1432.
IEEE DOI
2202
Detectors, Object detection, Hyperspectral imaging,
Noise reduction, Mixture models, Interference, Deep learning,
hyperspectral target detection
BibRef
Liu, Z.Q.[Zi-Quan],
Yu, L.[Lei],
Hsiao, J.H.[Janet H.],
Chan, A.B.[Antoni B.],
PRIMAL-GMM: PaRametrIc MAnifold Learning of Gaussian Mixture Models,
PAMI(44), No. 6, June 2022, pp. 3197-3211.
IEEE DOI
2205
Manifolds, Hidden Markov models, Kernel, Data models,
Probabilistic logic, Approximation algorithms, Analytical models,
probabilistic models
BibRef
Jeon, Y.[Younghwan],
Hwang, G.[Ganguk],
Bayesian mixture of gaussian processes for data association problem,
PR(127), 2022, pp. 108592.
Elsevier DOI
2205
Gaussian processes, Bayesian models, Variational inference,
Expectation maximization
BibRef
Seo, D.M.[Dong-Min],
Oh, S.[Sangwoo],
Lee, D.[Daekyeom],
Classification and Identification of Spectral Pixels with Low
Maritime Occupancy Using Unsupervised Machine Learning,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Melnykov, V.[Volodymyr],
Wang, Y.[Yang],
Conditional mixture modeling and model-based clustering,
PR(133), 2023, pp. 108994.
Elsevier DOI
2210
finite mixture model, model-based clustering,
non-compact clusters, regression, variable selection
BibRef
Yu, Q.Q.[Qi-Qiong],
Cao, G.[Guo],
Shi, H.[Hao],
Zhang, Y.Q.[You-Qiang],
Fu, P.[Peng],
EPLL image restoration with a bounded asymmetrical Student's-t
mixture model,
JVCIR(88), 2022, pp. 103611.
Elsevier DOI
2210
EPLL image restoration, Finite mixture model,
Bounded asymmetrical Student's-t mixture model,
Regularization parameters
BibRef
Chen, C.[Chen],
Tang, M.J.[Meng-Jiao],
Rong, Y.[Yao],
Detection of a Rare Multichannel Gaussian Signal via Higher Criticism,
SPLetters(29), 2022, pp. 2063-2067.
IEEE DOI
2211
Detectors, Sparse matrices, Mixture models, Signal detection,
Eigenvalues and eigenfunctions, Data models,
asymptotic optimality
BibRef
Bonnaire, T.[Tony],
Decelle, A.[Aurélien],
Aghanim, N.[Nabila],
Regularization of Mixture Models for Robust Principal Graph Learning,
PAMI(44), No. 12, December 2022, pp. 9119-9130.
IEEE DOI
2212
Mixture models, Convergence, Symmetric matrices, Manifolds,
Computational modeling, Topology, Optimization, manifold learning
BibRef
Fan, W.T.[Wen-Tao],
Yang, L.[Lin],
Bouguila, N.[Nizar],
Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian
Nonparametric Models With Watson Distributions,
PAMI(44), No. 12, December 2022, pp. 9654-9668.
IEEE DOI
2212
Data models, Bayes methods, Analytical models, Mixture models,
Modeling, Tools, Task analysis, Axial data, Watson distribution,
depth image
BibRef
Butt, J.A.[Jemil Avers],
Salido-Monzú, D.[David],
Wieser, A.[Andreas],
Phase ambiguity resolution and mixed pixel detection in EDM with
multiple modulation wavelengths,
PandRS(198), 2023, pp. 255-271.
Elsevier DOI
2304
Electro-optical distance measurement (EDM), Phase measurement,
Ambiguity resolution, Mixed pixel, Mixed integer linear programming
BibRef
Castella, M.[Marc],
Unsupervised Linear Component Analysis for a Class of Probability
Mixture Models,
SPLetters(31), 2024, pp. 31-35.
IEEE DOI
2401
BibRef
Pasande, M.[Mohammad],
Hosseini, R.[Reshad],
Araabi, B.N.[Babak Nadjar],
Stochastic first-order learning for large-scale flexibly tied
Gaussian mixture models,
PRL(178), 2024, pp. 138-144.
Elsevier DOI
2402
Gaussian mixture models, First-order optimization, Manifold optimization
BibRef
Greggio, N.[Nicola],
Bernardino, A.[Alexandre],
Unsupervised incremental estimation of Gaussian mixture models with
1D split moves,
PR(150), 2024, pp. 110306.
Elsevier DOI
2403
Unsupervised learning, Gaussian mixture models,
Model selection, Split and merge methods
BibRef
Wang, S.J.[Shi-Jie],
Shin, M.[Minsuk],
Bai, R.[Ray],
Fast Bootstrapping Nonparametric Maximum Likelihood for Latent
Mixture Models,
SPLetters(31), 2024, pp. 870-874.
IEEE DOI
2404
Signal processing algorithms, Generators, Approximation algorithms,
Mixture models, Monte Carlo methods, two-stage algorithm
BibRef
Small, C.[Christopher],
Sousa, D.[Daniel],
The Standardized Spectroscopic Mixture Model,
RS(16), No. 20, 2024, pp. 3768.
DOI Link
2411
BibRef
Zach, M.[Martin],
Pock, T.[Thomas],
Kobler, E.[Erich],
Chambolle, A.[Antonin],
Explicit Diffusion of Gaussian Mixture Model Based Image Priors,
SSVM23(3-15).
Springer DOI
2307
BibRef
Ye, F.[Fei],
Bors, A.G.[Adrian G.],
Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet
Process,
ICCV21(10675-10684)
IEEE DOI
2203
BibRef
Earlier:
Lifelong learning of interpretable image representations,
IPTA20(1-6)
IEEE DOI
2206
Analytical models, Adaptation models, Codes,
Computational modeling, Mixture models, Network architecture,
Representation learning.
Learning systems, Interpolation, Databases, Image synthesis, Tools,
Generators, Mutual information, Lifelong learning,
Mutual information
BibRef
Gelvez, T.[Tatiana],
Bacca, J.[Jorge],
Arguello, H.[Henry],
Interpretable Deep Image Prior Method Inspired in Linear Mixture
Model for Compressed Spectral Image Recovery,
ICIP21(1934-1938)
IEEE DOI
2201
Training, Image segmentation, Image coding, Neural networks, Imaging,
Mixture models, Silicon, Spectral image, Deep image prior,
Linear mixture model
BibRef
La Grassa, R.[Riccardo],
Gallo, I.[Ignazio],
Vetro, C.[Calogero],
Landro, N.[Nicola],
Learning to Navigate in the Gaussian Mixture Surface,
CAIP21(I:414-423).
Springer DOI
2112
BibRef
Zwicker, M.[Matthias],
Hu, Q.Y.[Qi-Yang],
Szabó, A.[Attila],
Portenier, T.[Tiziano],
Favaro, P.[Paolo],
Disentangling Factors of Variation by Mixing Them,
CVPR18(3399-3407)
IEEE DOI
1812
Training, Decoding, Labeling, Image coding,
Image representation, Image color analysis
BibRef
Kolouri, S.,
Rohde, G.K.,
Hoffmann, H.,
Sliced Wasserstein Distance for Learning Gaussian Mixture Models,
CVPR18(3427-3436)
IEEE DOI
1812
Radon, Transforms, Kernel, Gaussian mixture model, Machine learning
BibRef
Yu, X.,
Liu, T.,
Gong, M.,
Batmanghelich, K.,
Tao, D.,
An Efficient and Provable Approach for Mixture Proportion Estimation
Using Linear Independence Assumption,
CVPR18(4480-4489)
IEEE DOI
1812
Estimation, Kernel, Convergence, Semisupervised learning,
Training data, Quadratic programming, Noise measurement
BibRef
Pu, C.,
Li, N.,
Tylecek, R.,
Fisher, B.,
DUGMA: Dynamic Uncertainty-Based Gaussian Mixture Alignment,
3DV18(766-774)
IEEE DOI
1812
Gaussian processes, image registration, probability,
statistical distributions, uncertainty model, invariant GMM,
uncertainty estimation
BibRef
Martins, I.[Isabel],
Carvalho, P.[Pedro],
Corte-Real, L.[Luís],
Alba-Castro, J.L.[José Luis],
BMOG: Boosted Gaussian Mixture Model with Controlled Complexity,
IbPRIA17(50-57).
Springer DOI
1706
BibRef
Mezuman, E.,
Weiss, Y.,
A tight convex upper bound on the likelihood of a finite mixture,
ICPR16(1683-1688)
IEEE DOI
1705
Computational modeling, Convex functions, Data models, Entropy,
Mathematical model, Mixture models, Upper, bound
BibRef
Wan, Y.C.[Yu-Chai],
Liu, X.B.[Xia-Bi],
Tang, Y.Y.[Yu-Yang],
Simplifying Gaussian mixture model via model similarity,
ICPR16(3180-3185)
IEEE DOI
1705
Computational modeling, Gaussian mixture model,
Linear programming, Merging, Mixture models, Neurons
BibRef
Lee, S.X.,
Leemaqz, K.L.,
McLachlan, G.J.,
A Simple Parallel EM Algorithm for Statistical Learning via Mixture
Models,
DICTA16(1-8)
IEEE DOI
1701
Algorithm design and analysis
BibRef
Wilhelm, T.,
Wohler, C.,
Flexible Mixture Models for Colour Image Segmentation of Natural
Images,
DICTA16(1-7)
IEEE DOI
1701
Bayes methods
BibRef
Chamroukhi, F.[Faicel],
Bartcus, M.[Marius],
Glotin, H.[Herve],
Bayesian Non-parametric Parsimonious Gaussian Mixture for Clustering,
ICPR14(1460-1465)
IEEE DOI
1412
Adaptation models
BibRef
Tsuchiya, C.[Chikao],
Malisiewicz, T.[Tomasz],
Torralba, A.B.[Antonio B.],
Exemplar Network: A Generalized Mixture Model,
ICPR14(598-603)
IEEE DOI
1412
Big data
BibRef
Guillemot, T.[Thierry],
Almansa, A.[Andres],
Boubekeur, T.[Tamy],
Covariance Trees for 2D and 3D Processing,
CVPR14(556-563)
IEEE DOI
1409
Gaussian Mixture Models. Statistical image processing.
bayesian a posteriori
BibRef
Psutka, J.V.[Josef V.],
Gaussian Mixture Model Selection Using Multiple Random Subsampling with
Initialization,
CAIP15(I:678-689).
Springer DOI
1511
BibRef
Vanek, J.[Jan],
Machlica, L.[Luká],
Psutka, J.V.[Josef V.],
Estimation of Single-Gaussian and Gaussian Mixture Models for Pattern
Recognition,
CIARP13(I:49-56).
Springer DOI
1311
BibRef
Frouzesh, F.[Faezeh],
Pledger, S.[Shirley],
Hirose, Y.[Yuichi],
A combined method for finding best starting points for optimisation in
bernoulli mixture models,
ICPR12(1128-1131).
WWW Link.
1302
BibRef
Tsuboshita, Y.[Yukihiro],
Kato, N.[Noriji],
Fukui, M.[Motofumi],
Okada, M.[Masato],
Image annotation using adapted Gaussian mixture model,
ICPR12(1346-1350).
WWW Link.
1302
BibRef
Nielsen, F.[Frank],
Closed-form information-theoretic divergences for statistical mixtures,
ICPR12(1723-1726).
WWW Link.
1302
BibRef
Schwander, O.[Olivier],
Schutz, A.J.[Aurelien J.],
Nielsen, F.[Frank],
Berthoumieu, Y.[Yannick],
k-MLE for mixtures of generalized Gaussians,
ICPR12(2825-2828).
WWW Link.
1302
BibRef
Elnakib, A.[Ahmed],
Gimel'farb, G.L.[Georgy L.],
Inanc, T.[Tamer],
El-Baz, A.[Ayman],
Modified Akaike information criterion for estimating the number of
components in a probability mixture model,
ICIP12(2497-2500).
IEEE DOI
1302
BibRef
Evangelio, R.H.[Ruben Heras],
Patzold, M.[Michael],
Sikora, T.[Thomas],
Splitting Gaussians in Mixture Models,
AVSS12(300-305).
IEEE DOI
1211
BibRef
Li, B.[Bo],
Liu, W.J.[Wen-Ju],
Dou, L.H.[Li-Hua],
Learning GMM Using Elliptically Contoured Distributions,
ICPR10(511-514).
IEEE DOI
1008
Gaussian mixture model
BibRef
Ji, Y.F.[Yang-Feng],
Lin, T.[Tong],
Zha, H.B.[Hong-Bin],
CDP Mixture Models for Data Clustering,
ICPR10(637-640).
IEEE DOI
1008
BibRef
Nielsen, F.[Frank],
Boltz, S.[Sylvain],
Schwander, O.[Olivier],
Bhattacharyya Clustering with Applications to Mixture Simplifications,
ICPR10(1437-1440).
IEEE DOI
1008
BibRef
Martinez-Uso, A.[Adolfo],
Pla, F.[Filiberto],
Sotoca, J.M.[Jose M.],
A Semi-supervised Gaussian Mixture Model for Image Segmentation,
ICPR10(2941-2944).
IEEE DOI
1008
BibRef
Nacereddine, N.[Nafaa],
Tabbone, S.A.[Salavatore A.],
Ziou, D.[Djemel],
Hamami, L.[Latifa],
Asymmetric Generalized Gaussian Mixture Models and EM Algorithm for
Image Segmentation,
ICPR10(4557-4560).
IEEE DOI
1008
BibRef
Nickisch, H.[Hannes],
Rasmussen, C.E.[Carl Edward],
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models,
DAGM10(272-282).
Springer DOI
1009
BibRef
Wang, R.B.[Rong-Bo],
Hou, C.H.[Chao-Huan],
Chen, D.[Dong],
Blind separation of instantaneous linear mixtures of cyclostationary
signals,
IASP10(492-495).
IEEE DOI
1004
BibRef
Garcia, V.[Vincent],
Nielsen, F.[Frank],
Nock, R.[Richard],
Levels of Details for Gaussian Mixture Models,
ACCV09(II: 514-525).
Springer DOI
0909
BibRef
Mancera, L.,
Babacan, S.D.[S. Derin],
Molina, R.,
Katsaggelos, A.K.,
Image restoration by mixture modelling of an overcomplete linear
representation,
ICIP09(3949-3952).
IEEE DOI
0911
BibRef
Barcelos, C.A.Z.[Celia A. Zorzo],
Chen, Y.M.[Yun-Mei],
Chen, F.[Fuhua],
A soft multiphase segmentation model via Gaussian mixture,
ICIP09(4049-4052).
IEEE DOI
0911
BibRef
Dey, C.[Chandrama],
Jia, X.P.[Xiu-Ping],
Fraser, D.,
Wang, L.,
Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector
Machine,
DICTA09(291-295).
IEEE DOI
0912
BibRef
Otoom, A.F.[Ahmed Fawzi],
Concha, O.P.[Oscar Perez],
Gunes, H.[Hatice],
Piccardi, M.[Massimo],
Mixtures of Normalized Linear Projections,
ACIVS09(66-76).
Springer DOI
0909
BibRef
Piccardi, M.[Massimo],
Gunes, H.[Hatice],
Otoom, A.F.[Ahmed Fawzi],
Maximum-likelihood dimensionality reduction in gaussian mixture models
with an application to object classification,
ICPR08(1-4).
IEEE DOI
0812
See also Feature extraction techniques for abandoned object classification in video surveillance.
BibRef
Horta, M.M.[Michelle M.],
Mascarenhas, N.D.A.[Nelson D. A.],
Frery, A.C.[Alejandro C.],
A comparison of clustering fully polarimetric SAR images using SEM
algorithm and G0P mixture model with different initializations,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Reddy, C.K.[Chandan K.],
Rajaratnam, B.[Bala],
Component-wise parameter smoothing for learning mixture models,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mansjur, D.S.[Dwi Sianto],
Fu, Q.A.[Qi-Ang],
Juang, B.H.[Biing Hwang],
Utilizing non-uniform cost learning for active control of inter-class
confusion,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mansjur, D.S.[Dwi Sianto],
Juang, B.H.[Biing Hwang],
Incremental learning of mixture models for simultaneous estimation of
class distribution and inter-class decision boundaries,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tang, H.[Hao],
Huang, T.S.[Thomas S.],
Boosting Gaussian mixture models via discriminant analysis,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bordes, J.B.,
Prinet, V.,
Mixture Distributions for Weakly Supervised Classification in Remote
Sensing Images,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Hou, S.B.[Shao-Bo],
Galata, A.[Aphrodite],
Robust estimation of gaussian mixtures from noisy input data,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Corona, E.[Enrique],
Nutter, B.[Brian],
Mitra, S.[Sunanda],
Optimized data-driven order selection method for Gaussian mixtures on
clustering problems,
Southwest10(73-76).
IEEE DOI
1005
BibRef
Earlier:
Non-parametric Estimation of Mixture Model Order,
Southwest08(145-148).
IEEE DOI
0803
BibRef
Santos-Villalobos, H.J.[Hector J.],
Boutin, M.[Mireille],
An empirical method for comparing the shape of two Gaussian mixtures,
ICIP10(4269-4272).
IEEE DOI
1009
recognize planar objects consisting of blobs.
BibRef
Boutin, M.[Mireille],
Comer, M.L.[Mary L.],
Faithful Shape Representation for 2D Gaussian Mixtures,
ICIP07(VI: 369-372).
IEEE DOI
0709
BibRef
Romero, V.[Verónica],
Giménez, A.[Adriŕ],
Juan, A.[Alfons],
Explicit Modelling of Invariances in Bernoulli Mixtures for Binary
Images,
IbPRIA07(I: 539-546).
Springer DOI
0706
See also Embedded Bernoulli Mixture HMMs for Continuous Handwritten Text Recognition.
BibRef
Alabau, V.[Vicente],
Casacuberta, F.[Francisco],
Vidal, E.[Enrique],
Juan, A.[Alfons],
Inference of Stochastic Finite-State Transducers Using N -Gram Mixtures,
IbPRIA07(II: 282-289).
Springer DOI
0706
BibRef
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
Hammoud, R.I.[Riad I.],
A Bayesian Non-Gaussian Mixture Analysis: Application to Eye Modeling,
Learning07(1-8).
IEEE DOI
0706
BibRef
Wang, P.[Peng],
Kohler, C.[Christian],
Verma, R.[Ragini],
Estimating Cluster Overlap on Manifolds and its Application to
Neuropsychiatric Disorders,
ComponentAnalysis07(1-6).
IEEE DOI
0706
BibRef
Penalver Benavent, A.[Antonio],
Escolano Ruiz, F.[Francisco],
Saez Martinez, J.M.[Juan M.],
Two Entropy-Based Methods for Learning Unsupervised Gaussian Mixture
Models,
SSPR06(649-657).
Springer DOI
0608
BibRef
Earlier:
EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models,
ICPR06(II: 451-455).
IEEE DOI
0609
BibRef
Lin, B.[Bin],
Wang, X.J.[Xian-Ji],
Zhong, R.T.[Run-Tian],
Zhuang, Z.Q.[Zhen-Quan],
Continuous Optimization based-on Boosting Gaussian Mixture Model,
ICPR06(I: 1192-1195).
IEEE DOI
0609
BibRef
Lu, X.[Xiqun],
Joint Distributions based on DFB and Gaussian Mixtures for Evaluation
of Style Similarity among Paintings,
ICPR06(II: 865-868).
IEEE DOI
0609
BibRef
Chen, D.T.[Da-Tong],
Yang, J.[Jie],
Exploiting High Dimensional Video Features Using Layered Gaussian
Mixture Models,
ICPR06(II: 1078-1081).
IEEE DOI
0609
BibRef
Abd-Almageed, W.[Wael],
Davis, L.S.[Larry S.],
Density Estimation Using Mixtures of Mixtures of Gaussians,
ECCV06(IV: 410-422).
Springer DOI
0608
BibRef
Zhu, Y.N.[Ya-Nong],
Fisher, M.H.[Mark H.],
Zwiggelaar, R.[Reyer],
Improving ASM Search Using Mixture Models for Grey-Level Profiles,
IbPRIA05(I:292).
Springer DOI
0509
BibRef
de Ridder, D.,
Franc, V.,
Robust subspace mixture models using t-distributions,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Cheung, Y.M.[Yiu-Ming],
A rival penalized EM algorithm towards maximizing weighted likelihood
for density mixture clustering with automatic model selection,
ICPR04(IV: 633-636).
IEEE DOI
0409
BibRef
Sminchisescu, C.[Cristian],
Jepson, A.D.[Allan D.],
Variational mixture smoothing for non-linear dynamical systems,
CVPR04(II: 608-615).
IEEE DOI
0408
BibRef
Huang, K.[Kun],
Ma, Y.[Yi],
Vidal, R.,
Minimum Effective Dimension for Mixtures of Subspaces:
A Robust GPCA Algorithm and its Applications,
CVPR04(II: 631-638).
IEEE DOI
0408
See also Generalized Principal Component Analysis (GPCA).
See also Motion segmentation with missing data using powerfactorization and GPCA.
BibRef
Vermaak, J.,
Doucet, A.,
Perez, P.,
Maintaining multi-modality through mixture tracking,
ICCV03(1110-1116).
IEEE DOI
0311
BibRef
Antoniuk, K.[Konstiantyn],
Franc, V.[Vojtech],
Hlavac, V.[Vaclav],
Learning Markov Networks by Analytic Center Cutting Plane Method,
ICPR12(2250-2253).
WWW Link.
1302
BibRef
Franc, V.[Vojtech],
Hlavác, V.[Václav],
A Contribution to the Schlesinger's Algorithm Separating Mixtures of
Gaussians,
CAIP01(169 ff.).
Springer DOI
0210
BibRef
Niemistö, A.,
Lukin, V.V.,
Shmulevich, I.,
Yli-Harja, O.[Olli],
Dolia, A.,
A Training-based Optimization Framework for Misclassification
Correction,
SCIA01(O-W2).
0206
BibRef
Kudo, M.,
Imai, H.,
Shimbo, M.,
A Histogram-based Classifier on Overlapped Bins,
ICPR00(Vol II: 29-33).
IEEE DOI
0009
BibRef
Hammoud, R.,
Mohr, R.,
Mixture Densities for Video Objects Recognition,
ICPR00(Vol II: 71-75).
IEEE DOI
0009
BibRef
Zwart, J.P.,
Kröse, B.J.A.,
Constrained Mixture Modeling of Intrinsically Low-dimensional
Distributions,
ICPR00(Vol II: 610-613).
IEEE DOI
0009
BibRef
Somol, P.,
Grim, J.[Jiri],
Novovicova, J.[Jana],
Pudil, P.[Pavel],
Ferri, F.J.[Francesc J.],
Initializing Normal Mixtures of Densities,
ICPR98(Vol I: 886-890).
IEEE DOI
9808
BibRef
Kudo, M.[Mineichi],
Shimbo, M.[Masaru],
Sumiyoshi, S.[Satoru],
Tenmoto, H.[Hiroshi],
A Subclass-Based Mixture Model for Pattern Recognition,
ICPR98(Vol I: 870-872).
IEEE DOI
9808
BibRef
Schultz, N.[Nette],
Carstensen, J.M.[Jens Michael],
Bimodal histogram transformation based on maximum likelihood parameter
estimates in univariate Gaussian mixtures,
CIAP97(II: 532-543).
Springer DOI
9709
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Hyperspectral Mixture Models, Mixed Pixels .