Discriminant Function Analysis,
StatSoftElectronic Text, 2003.
HTML Version.
BibRef
0300
Larsen, L.E.,
Walter, D.O.,
McNew, J.J.,
Adey, W.R.,
On the problem of bias in error rate estimation for discriminant
analysis,
PR(3), No. 3, October 1971, pp. 217-223.
Elsevier DOI
0309
BibRef
Chhikara, R.S.,
Odell, P.L.,
Discriminant analysis using certain normed exponential densities with
emphasis on remote sensing application,
PR(5), No. 3, September 1973, pp. 259-272.
Elsevier DOI
0309
BibRef
Foley, D.H., and
Sammon, Jr., J.W.,
An optimal set of discriminant vectors,
TC(24), No. 3, March 1975, pp. 281-289.
See also nonlinear mapping for data structure analysis, A.
BibRef
7503
McLachlan, G.J.,
Further results on the effect of intraclass correlation among training
samples in discriminant analysis,
PR(8), No. 4, October 1976, pp. 273-275.
Elsevier DOI
0309
BibRef
McLachlan, G.J.,
Discriminant Analysis and Statistical Pattern Recognition,
John
Wileyand Sons, New York, 1992.
General reference book.
BibRef
9200
Pudil, P.[Pavel],
Bláha, S.[Svatopluk],
Evaluation of the effectiveness of features selected by discriminant
analysis methods,
PR(14), No. 1-6, 1981, pp. 81-85.
Elsevier DOI
0309
BibRef
Somol, P.[Petr],
Grim, J.[Jirí],
Filip, J.[Jirí],
Pudil, P.[Pavel],
On Stopping Rules in Dependency-Aware Feature Ranking,
CIARP13(I:286-293).
Springer DOI
1311
BibRef
Lawoko, C.R.O.,
McLachlan, G.J.,
Some asymptotic results on the effect of autocorrelation on the error
rates of the sample linear discriminant function,
PR(16), No. 1, 1983, pp. 119-121.
Elsevier DOI
0309
BibRef
Bobrowski, L.,
Niemiro, W.,
A method of synthesis of linear discriminant function in the case of
nonseparability,
PR(17), No. 2, 1984, pp. 205-210.
Elsevier DOI
0309
BibRef
Okada, T.[Toshiniko],
Tomita, S.[Shingo],
An optimal orthonormal system for discriminant analysis,
PR(18), No. 2, 1985, pp. 139-144.
Elsevier DOI
0309
BibRef
Tutz, G.E.[Gerhard E.],
Smoothed additive estimators for non-error rates in multiple
discriminant analysis,
PR(18), No. 2, 1985, pp. 151-159.
Elsevier DOI
0309
BibRef
Krishnan, T.,
Nandy, S.C.,
Discriminant analysis with a stochastic supervisor,
PR(20), No. 4, 1987, pp. 379-384.
Elsevier DOI
0309
BibRef
Krishnan, T.,
Nandy, S.C.,
Efficiency of logistic-normal stochastic supervision,
PR(23), No. 11, 1990, pp. 1275-1279.
Elsevier DOI
0401
logarithm of odds ratio of the supervisor classification has a normal
distribution and is independent of the feature vector.
BibRef
Katre, U.A.,
Krishnan, T.,
Pattern recognition with an imperfect supervisor,
PR(22), No. 4, 1989, pp. 423-431.
Elsevier DOI
0309
BibRef
Titterington, D.M.,
An alternative stochastic supervisor in discriminant analysis,
PR(22), No. 1, 1989, pp. 91-95.
Elsevier DOI
0309
BibRef
Krusinska, E.[Ewa],
Two step semi-optimal branch and bound algorithm for feature selection
in mixed variable discrimination,
PR(22), No. 4, 1989, pp. 455-459.
Elsevier DOI
0309
BibRef
Wyman, F.J.[Frank J.],
Young, D.M.[Dean M.],
Turner, D.W.[Danny W.],
A comparison of asymptotic error rate expansions for the sample linear
discriminant function,
PR(23), No. 7, 1990, pp. 775-783.
Elsevier DOI
0401
BibRef
Flasinski, M.[Mariusz],
Lewicki, G.[Grzegorz],
The convergent method of constructing polynomial discriminant functions
for pattern recognition,
PR(24), No. 10, 1991, pp. 1009-1015.
Elsevier DOI
0401
BibRef
Cox, T.F.[Trevor F.],
Ferry, G.[Gillian],
Discriminant analysis using non-metric multidimensional scaling,
PR(26), No. 1, January 1993, pp. 145-153.
Elsevier DOI
0401
BibRef
Brasher, J.D.,
Kinser, J.M.,
Fractional-power synthetic discriminant functions,
PR(27), No. 4, April 1994, pp. 577-585.
Elsevier DOI
0401
BibRef
Lovell, D.R.,
Dance, C.R.,
Niranjan, M.,
Prager, R.W.,
Dalton, K.J.,
Derom, R.,
Feature-Selection Using Expected Attainable Discrimination,
PRL(19), No. 5-6, April 1998, pp. 393-402.
9808
BibRef
Saito, N.[Naoki],
Coifman, R.R.[Ronald R.],
Geshwind, F.B.[Frank B.],
Warner, F.[Fred],
Discriminant feature extraction using empirical probability density
estimation and a local basis library,
PR(35), No. 12, December 2002, pp. 2841-2852.
Elsevier DOI
0209
BibRef
Jing, X.Y.[Xiao-Yuan],
Zhang, D.[David],
Jin, Z.[Zhong],
Improvements on the Uncorrelated Optimal Discriminant Vectors,
PR(36), No. 8, August 2003, pp. 1921-1923.
Elsevier DOI
0304
See also Face recognition based on a group decision-making combination approach.
BibRef
Xu, Y.[Yong],
Yang, J.Y.[Jing-Yu],
Jin, Z.[Zhong],
Theory analysis on FSLDA and ULDA,
PR(36), No. 12, December 2003, pp. 3031-3033.
Elsevier DOI
0310
Uncorrelated linear discriminant analysis.
See also Face recognition based on the uncorrelated discriminant transformation.
BibRef
Jing, X.Y.[Xiao-Yuan],
Zhang, D.[David],
Jin, Z.[Zhong],
UODV: Improved Algorithm and Generalized Theory,
PR(36), No. 11, November 2003, pp. 2593-2602.
Elsevier DOI
0309
BibRef
Ma, J.S.[Jun-Shui],
Theiler, J.[James],
Perkins, S.[Simon],
Two realizations of a general feature extraction framework,
PR(37), No. 5, May 2004, pp. 875-887.
Elsevier DOI
0405
Extension of conventional linear discriminant analysis.
Kernel feature extraction, mean-norm feature extraction.
BibRef
Chen, S.C.[Song-Can],
Yang, X.B.[Xu-Bing],
Alternative linear discriminant classifier,
PR(37), No. 7, July 2004, pp. 1545-1547.
Elsevier DOI
0405
BibRef
Park, C.H.[Cheong Hee],
Park, H.S.[Hae-Sun],
A comparison of generalized linear discriminant analysis algorithms,
PR(41), No. 3, March 2008, pp. 1083-1097.
Elsevier DOI
0711
Dimension reduction; Feature extraction;
Generalized linear discriminant analysis; Kernel methods;
Nonlinear discriminant analysis; Undersampled problems
See also Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis.
BibRef
Ye, J.P.[Jie-Ping],
Janardan, R.[Ravi],
Park, C.H.[Cheong Hee],
Park, H.S.[Hae-Sun],
An Optimization Criterion for Generalized Discriminant Analysis on
Undersampled Problems,
PAMI(26), No. 8, August 2004, pp. 982-994.
IEEE Abstract.
0407
Extend LDA by using pseudoinverse with matricies are singular.
BibRef
Howland, P.[Peg],
Park, H.S.[Hae-Sun],
Generalizing Discriminant Analysis Using the Generalized Singular Value
Decomposition,
PAMI(26), No. 8, August 2004, pp. 995-1006.
IEEE Abstract.
0407
Use GSVD to deal with singular matricies.
BibRef
Howland, P.[Peg],
Wang, J.L.[Jian-Lin],
Park, H.S.[Hae-Sun],
Solving the small sample size problem in face recognition using
generalized discriminant analysis,
PR(39), No. 2, February 2006, pp. 277-287.
Elsevier DOI
0512
BibRef
Kim, H.[Hyunsoo],
Drake, B.L.[Barry L.],
Park, H.S.[Hae-Sun],
Multiclass classifiers based on dimension reduction with generalized
LDA,
PR(40), No. 11, November 2007, pp. 2939-2945.
Elsevier DOI
0707
Multiclass classifier; Generalized linear discriminant analysis (LDA);
Generalized singular value decomposition (GSVD); Dimension reduction;
Undersampled problems
BibRef
Li, Q.[Qi],
Kambhamettu, C.[Chandra],
Ye, J.P.[Jie-Ping],
Integrating Spatial and Discriminant Strength for Feature Selection and
Linear Dimensionality Reduction,
BP06(21).
IEEE DOI
0609
BibRef
Liang, Z.Z.[Zhi-Zheng],
Shi, P.F.[Peng-Fei],
Uncorrelated discriminant vectors using a kernel method,
PR(38), No. 2, February 2005, pp. 307-310.
Elsevier DOI
0411
Extend approach of:
See also Face recognition based on the uncorrelated discriminant transformation. for character recognition.
BibRef
Liang, Z.Z.[Zhi-Zheng],
Shi, P.F.[Peng-Fei],
Kernel direct discriminant analysis and its theoretical foundation,
PR(38), No. 3, March 2005, pp. 445-447.
Elsevier DOI
0412
BibRef
Liang, Z.Z.[Zhi-Zheng],
Li, Y.F.[You-Fu],
Shi, P.F.[Peng-Fei],
A note on two-dimensional linear discriminant analysis,
PRL(29), No. 16, 1 December 2008, pp. 2122-2128.
Elsevier DOI
0811
Feature extraction; Linear discriminant analysis; 2DLDA;
Discriminant power; Distance measure
BibRef
Hua, J.P.[Jian-Ping],
Xiong, Z.X.[Zi-Xiang],
Dougherty, E.R.[Edward R.],
Determination of the optimal number of features for quadratic
discriminant analysis via the normal approximation to the discriminant
distribution,
PR(38), No. 3, March 2005, pp. 403-421.
Elsevier DOI
0412
BibRef
Dougherty, E.R.[Edward R.],
Hua, J.P.[Jiang-Ping],
Xiong, Z.X.[Zi-Xiang],
Chen, Y.D.[Yi-Dong],
Optimal robust classifiers,
PR(38), No. 10, October 2005, pp. 1520-1532.
Elsevier DOI
0508
BibRef
Halbe, Z.[Zohar],
Aladjem, M.[Mayer],
Model-Based Mixture Discriminant Analysis: An Experimental Study,
PR(38), No. 3, March 2005, pp. 437-440.
Elsevier DOI
0412
BibRef
Weng, S.F.[Shi-Feng],
Zhang, C.S.[Chang-Shui],
Lin, Z.[Zhonglin],
Exploring the structure of supervised data by Discriminant Isometric
Mapping,
PR(38), No. 4, April 2005, pp. 599-601.
Elsevier DOI
0501
BibRef
Demir, G.K.,
Ozmehmet, K.,
Online local learning algorithms for linear discriminant analysis,
PRL(26), No. 4, March 2005, pp. 421-431.
Elsevier DOI
0501
BibRef
Zheng, W.M.[Wen-Ming],
A note on kernel uncorrelated discriminant analysis,
PR(38), No. 11, November 2005, pp. 2185-2187.
Elsevier DOI
0509
BibRef
Pang, S.N.[Shao-Ning],
Ozawa, S.,
Kasabov, N.,
Incremental linear discriminant analysis for classification of data
streams,
SMC-B(35), No. 5, October 2005, pp. 905-914.
IEEE DOI
0510
BibRef
Zhao, Q.J.[Qi-Jun],
Lu, H.T.[Hong-Tao],
Zhang, D.[David],
A fast evolutionary pursuit algorithm based on linearly combining
vectors,
PR(39), No. 2, February 2006, pp. 310-312.
Elsevier DOI
0512
Searches for optimal discriminant vectors through
linearly combining standard bases.
BibRef
Xu, Y.[Yong],
Zhang, D.[David],
Jin, Z.[Zhong],
Li, M.[Miao],
Yang, J.Y.[Jing-Yu],
A fast kernel-based nonlinear discriminant analysis for multi-class
problems,
PR(39), No. 6, June 2006, pp. 1026-1033.
Elsevier DOI
0604
Fisher discriminant analysis; Kernel-based nonlinear discriminant analysis;
Fast kernel-based nonlinear method; Face recognition
BibRef
Zhu, M.L.[Man-Li],
Martinez, A.M.[Aleix M.],
Subclass Discriminant Analysis,
PAMI(28), No. 8, August 2006, pp. 1274-1286.
IEEE DOI
0606
BibRef
Earlier:
Optimal Subclass Discovery for Discriminant Analysis,
LCV04(97).
IEEE DOI
0406
BibRef
Hamsici, O.C.[Onur C.],
Martinez, A.M.[Aleix M.],
Bayes Optimality in Linear Discriminant Analysis,
PAMI(30), No. 4, April 2008, pp. 647-657.
WWW Link.
0803
BibRef
Earlier:
Sparse Kernels for Bayes Optimal Discriminant Analysis,
ComponentAnalysis07(1-7).
IEEE DOI
0706
BibRef
Martinez, A.M.[Aleix M.],
Hamsici, O.C.[Onur C.],
Who is LB1? Discriminant analysis for the classification of specimens,
PR(41), No. 11, November 2008, pp. 3436-3441.
Elsevier DOI
0808
Pattern recognition; Paleontology; Discriminant analysis;
Morphological model; Physical anthropology; Homo floresiensis
BibRef
You, D.[Di],
Hamsici, O.C.[Onur C.],
Martinez, A.M.[Aleix M.],
Kernel Optimization in Discriminant Analysis,
PAMI(33), No. 3, March 2011, pp. 631-638.
IEEE DOI
1102
To derive non-linear classifier.
Applied in several kernel discriminant analysis algorithms.
BibRef
You, D.[Di],
Martinez, A.M.[Aleix M.],
Bayes optimal kernel discriminant analysis,
CVPR10(3533-3538).
IEEE DOI
1006
BibRef
Wu, X.H.[Xiao-Hong],
Zhou, J.J.[Jian-Jiang],
Fuzzy discriminant analysis with kernel methods,
PR(39), No. 11, November 2006, pp. 2236-2239.
Elsevier DOI
0608
Kernel methods; Kernel fuzzy discriminant analysis
BibRef
Guo, Y.F.[Yue-Fei],
Wu, L.D.[Li-De],
Lu, H.[Hong],
Feng, Z.[Zhe],
Xue, X.Y.[Xiang-Yang],
Null Foley-Sammon transform,
PR(39), No. 11, November 2006, pp. 2248-2251.
Elsevier DOI
0608
Linear discriminant analysis; Feature extraction;
Fisher criterion; Foley-Sammon transform
See also optimal set of discriminant vectors, An.
BibRef
Dai, G.[Guang],
Yeung, D.Y.[Dit-Yan],
Qian, Y.T.[Yun-Tao],
Face recognition using a kernel fractional-step discriminant analysis
algorithm,
PR(40), No. 1, January 2007, pp. 229-243.
Elsevier DOI
0611
Face Recognition; Feature extraction; Nonlinear dimensionality reduction;
Kernel discriminant analysis; Kernel fractional-step discriminant analysis
BibRef
Dai, G.[Guang],
Qian, Y.T.[Yun-Tao],
Jia, S.[Sen],
A kernel fractional-step nonlinear discriminant analysis for pattern
recognition,
ICPR04(II: 431-434).
IEEE DOI
0409
BibRef
Dai, G.[Guang],
Qian, Y.T.[Yun-Tao],
Kernel generalized nonlinear discriminant analysis algorithm for
pattern recognition,
ICIP04(IV: 2697-2700).
IEEE DOI
0505
BibRef
Zhang, Y.[Yu],
Yeung, D.Y.[Dit-Yan],
Semi-Supervised Discriminant Analysis using robust path-based
similarity,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Liu, J.[Jun],
Chen, S.C.[Song-Can],
Tan, X.Y.[Xiao-Yang],
A study on three linear discriminant analysis based methods in small
sample size problem,
PR(41), No. 1, January 2008, pp. 102-116.
Elsevier DOI
0710
Regularized discriminant analysis (RDA); Discriminant common vectors (DCV);
Maximal margin criterion (MMC); Small sample size (SSS);
Eigenvalue distribution
BibRef
Yu, X.,
Wang, X.,
Liu, B.,
A Direct Kernel Uncorrelated Discriminant Analysis Algorithm,
SPLetters(14), No. 10, October 2007, pp. 742-745.
IEEE DOI
0711
BibRef
Halbe, Z.[Zohar],
Aladjem, M.[Mayer],
Regularized mixture discriminant analysis,
PRL(28), No. 15, 1 November 2007, pp. 2104-2115.
Elsevier DOI
0711
Gaussian mixture models; Model selection; Bayesian information criterion;
Classification; Regularized discriminant analysis
BibRef
Guo, P.[Ping],
Jia, Y.D.[Yun-De],
Lyu, M.R.[Michael R.],
A study of regularized Gaussian classifier in high-dimension small
sample set case based on MDL principle with application to spectrum
recognition,
PR(41), No. 9, September 2008, pp. 2842-2854.
Elsevier DOI
0806
Classification; Covariance matrix estimation; Discriminant analysis method;
Regularization parameter selection; Minimum description length
BibRef
Zhang, W.Q.[Wei-Qiang],
Liu, J.[Jia],
An Equalized Heteroscedastic Linear Discriminant Analysis Algorithm,
SPLetters(15), No. 1, 2008, pp. 585-588.
IEEE DOI
0811
BibRef
Pe, K.[Kalska],
Haasdonk, B.[Bernard],
Kernel Discriminant Analysis for Positive Definite and Indefinite
Kernels,
PAMI(31), No. 6, June 2009, pp. 1017-1032.
IEEE DOI
0904
BibRef
Haasdonk, B.[Bernard],
Pekalska, E.[Elÿzbieta],
Indefinite Kernel Fisher Discriminant,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Na, J.H.[Jin Hee],
Park, M.S.[Myoung Soo],
Choi, J.Y.[Jin Young],
Linear boundary discriminant analysis,
PR(43), No. 3, March 2010, pp. 929-936.
Elsevier DOI
1001
Feature extraction; Linear boundary discriminant analysis;
Boundary/non-boundary pattern
BibRef
Suzuki, M.[Michitaka],
Itoh, A.[Akiyoshi],
Reduction of processing time for optimal and quadratic discriminant
analyses,
PR(43), No. 9, September 2010, pp. 3144-3150.
Elsevier DOI
1006
Optimal discriminant analysis; Quadratic discriminant analysis; Fast
algorithm; Character recognition
BibRef
Chai, J.[Jing],
Liu, H.W.[Hong-Wei],
Bao, Z.[Zheng],
Generalized re-weighting local sampling mean discriminant analysis,
PR(43), No. 10, October 2010, pp. 3422-3432.
Elsevier DOI
1007
Pattern recognition; Linear discriminant analysis; Local sampling mean
discriminant analysis; Generalized re-weighting framework;
Classification
BibRef
Salmen, J.[Jan],
Schlipsing, M.[Marc],
Igel, C.[Christian],
Efficient update of the covariance matrix inverse in iterated linear
discriminant analysis,
PRL(31), No. 13, 1 October 2010, pp. 1903-1907.
Elsevier DOI
1003
LDA; Feature selection; Feature optimization; Meta-heuristics;
Covariance matrix update
BibRef
An, S.J.[Sen-Jian],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Yan, H.[Hong],
Unified formulation of linear discriminant analysis methods and optimal
parameter selection,
PR(44), No. 2, February 2011, pp. 307-319.
Elsevier DOI
1011
Linear discriminant analysis; Model selection; Under-sampled problem;
Face recognition; Principal component analysis; Constrained ridge
regression
BibRef
Heo, G.Y.[Gyeong-Yong],
Gader, P.D.[Paul D.],
Robust kernel discriminant analysis using fuzzy memberships,
PR(44), No. 3, March 2011, pp. 716-723.
Elsevier DOI
1011
Linear discriminant analysis; Kernel methods; Fuzzy memberships;
Reconstruction error; Robust membership calculation
BibRef
Zhang, H.H.[Hai-Hong],
Guan, C.T.[Cun-Tai],
Li, Y.Q.[Yuan-Qing],
A linear discriminant analysis method based on mutual information
maximization,
PR(44), No. 4, April 2011, pp. 877-885.
Elsevier DOI
1101
Discriminant analysis; Mutual information; Feature extraction
BibRef
Zhang, H.H.[Hai-Hong],
Guan, C.T.[Cun-Tai],
Ang, K.K.[Kai Keng],
An Information Theoretic Linear Discriminant Analysis Method,
ICPR10(4182-4185).
IEEE DOI
1008
BibRef
Zhang, L.H.[Lei-Hong],
Uncorrelated trace ratio linear discriminant analysis for undersampled
problems,
PRL(32), No. 3, 1 February 2011, pp. 476-484.
Elsevier DOI
1101
Dimension reduction; Fisher criterion; Linear discriminant analysis;
The ratio trace criterion; The trace ratio criterion; The uncorrelated
LDA
BibRef
Kim, T.K.[Tae-Kyun],
Stenger, B.[Björn],
Kittler, J.V.[Josef V.],
Cipolla, R.[Roberto],
Incremental Linear Discriminant Analysis Using Sufficient Spanning Sets
and Its Applications,
IJCV(91), No. 2, January 2011, pp. 216-232.
WWW Link.
1101
BibRef
Kim, T.K.[Tae-Kyun],
Wong, S.F.[Shu-Fai],
Stenger, B.[Bjorn],
Kittler, J.V.[Josef V.],
Cipolla, R.[Roberto],
Incremental Linear Discriminant Analysis Using Sufficient Spanning Set
Approximations,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Yang, J.[Jian],
Zhang, L.[Lei],
Yang, J.Y.[Jing-Yu],
Zhang, D.[David],
From classifiers to discriminators:
A nearest neighbor rule induced discriminant analysis,
PR(44), No. 7, July 2011, pp. 1387-1402.
Elsevier DOI
1103
Classification; Classifier; Feature extraction; Discriminant analysis;
Dimensionality reduction; Pattern recognition
BibRef
Yang, J.[Jian],
Zhang, L.[Lei],
Xu, Y.[Yong],
Yang, J.Y.[Jing-Yu],
Beyond sparsity: The role of L1-optimizer in pattern classification,
PR(45), No. 3, March 2012, pp. 1104-1118.
Elsevier DOI
1111
Sparse representation; Pattern classification; Classifier; Feature extraction
BibRef
Zhang, J.[Jian],
Yang, J.[Jian],
Linear reconstruction measure steered nearest neighbor classification
framework,
PR(47), No. 4, 2014, pp. 1709-1720.
Elsevier DOI
1402
Linear reconstruction measure (LRM)
BibRef
An, S.[Shounan],
Yoo, J.[Jiho],
Choi, S.J.[Seung-Jin],
Manifold-respecting discriminant nonnegative matrix factorization,
PRL(32), No. 6, 15 April 2011, pp. 832-837.
Elsevier DOI
1103
Discriminant analysis; Manifold regularization; Nonnegative matrix
factorization
BibRef
Nie, F.P.[Fei-Ping],
Xiang, S.M.[Shi-Ming],
Liu, Y.[Yun],
Hou, C.P.[Chen-Ping],
Zhang, C.S.[Chang-Shui],
Orthogonal vs. uncorrelated least squares discriminant analysis for
feature extraction,
PRL(33), No. 5, 1 April 2012, pp. 485-491.
Elsevier DOI
1202
Least squares; Subspace learning; Discriminant analysis; Feature
extraction; Image recognition
BibRef
Françoisse, K.[Kevin],
Fouss, F.[François],
Saerens, M.[Marco],
A link-analysis-based discriminant analysis for exploring partially
labeled graphs,
PRL(34), No. 2, 15 January 2013, pp. 146-154.
Elsevier DOI
1212
Discriminant analysis; Link analysis; Semi-supervised classification;
Graph mining; Dimensionality reduction; Kernels on a graph
BibRef
Yeh, Y.R.[Yi-Ren],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
A rank-one update method for least squares linear discriminant analysis
with concept drift,
PR(46), No. 5, May 2013, pp. 1267-1276.
Elsevier DOI
1302
Linear discriminant analysis; Least squares solution; Rank-one update;
Concept drift
BibRef
Yeh, Y.R.[Yi-Ren],
Huang, C.H.[Chun-Hao],
Wang, Y.C.F.,
Heterogeneous Domain Adaptation and Classification by Exploiting the
Correlation Subspace,
IP(23), No. 5, May 2014, pp. 2009-2018.
IEEE DOI
1405
image classification
BibRef
Chen, X.B.[Xiao-Bo],
Yang, J.[Jian],
Zhang, D.[David],
Liang, J.[Jun],
Complete large margin linear discriminant analysis using mathematical
programming approach,
PR(46), No. 6, June 2013, pp. 1579-1594.
Elsevier DOI
1302
Feature extraction; Linear discriminant analysis; Large margin
classifier; Constrained concave-convex procedure
BibRef
Zhi, X.B.[Xiao-Bin],
Fan, J.L.[Jiu-Lun],
Zhao, F.[Feng],
Fuzzy Linear Discriminant Analysis-guided maximum entropy fuzzy
clustering algorithm,
PR(46), No. 6, June 2013, pp. 1604-1615.
Elsevier DOI
1302
Fuzzy scatter matrix; Fuzzy Linear Discriminant Analysis; Optimal
transformation matrix; Maximum entropy fuzzy clustering algorithm
BibRef
Xing, X.L.[Xiang-Lei],
Du, S.[Sidan],
Jiang, H.[Hua],
Semi-Supervised Nonparametric Discriminant Analysis,
IEICE(E96-D), No. 2, February 2013, pp. 375-378.
WWW Link.
1301
BibRef
Leung, K.C.,
Leung, C.H.,
Dynamic discriminant functions with missing feature values,
PRL(34), No. 13, 2013, pp. 1548-1556.
Elsevier DOI
1308
Fisher's linear discriminant
BibRef
Lai, Z.,
Xu, Y.,
Yang, J.,
Tang, J.,
Zhang, D.,
Sparse tensor discriminant analysis,
IP(22), No. 10, 2013, pp. 3904-3915.
IEEE DOI
1309
Linear discriminant analysis
BibRef
de Lima, M.S.[Max Sousa],
Pereira, J.R.G.[Jose R.G.],
Souza, D.S.[Diego Silva],
Bayesian predictive kernel discriminant analysis,
PRL(34), No. 16, 2013, pp. 2079-2085.
Elsevier DOI
1310
Discriminant analysis
BibRef
Zhao, H.T.[Hai-Tao],
Wong, W.K.,
Regularized discriminant entropy analysis,
PR(47), No. 2, 2014, pp. 806-819.
Elsevier DOI
1311
Regularized discriminant entropy
BibRef
Guo, J.[Jia],
Huang, H.[Hu],
Chen, C.[Cheng],
Rohde, G.K.,
Optimized Nonlinear Discriminant Analysis (ONDA) for Supervised Pixel
Classification,
SPLetters(20), No. 12, 2013, pp. 1155-1158.
IEEE DOI
1311
channel bank filters
BibRef
Tahir, M.A.,
Yan, F.[Fei],
Koniusz, P.,
Awais, M.,
Barnard, M.,
Mikolajczyk, K.,
Bouridane, A.,
Kittler, J.V.,
A Robust and Scalable Visual Category and Action Recognition System
Using Kernel Discriminant Analysis With Spectral Regression,
MultMed(15), No. 7, 2013, pp. 1653-1664.
IEEE DOI
1312
computational complexity
BibRef
Tahir, M.A.,
Kittler, J.V.,
Mikolajczyk, K.,
Yan, F.,
van de Sande, K.E.A.,
Gevers, T.,
Visual category recognition using Spectral Regression and Kernel
Discriminant Analysis,
Subspace09(178-185).
IEEE DOI
0910
BibRef
Tao, Y.T.[Yu-Ting],
Yang, J.[Jian],
Chang, H.[Heyou],
Enhanced iterative projection for subclass discriminant analysis
under EM-alike framework,
PR(47), No. 3, 2014, pp. 1113-1125.
Elsevier DOI
1312
Linear discriminant analysis
BibRef
Hayashi, K.[Kuniyoshi],
Influence functions for a linear subspace method,
PR(47), No. 6, 2014, pp. 2241-2254.
Elsevier DOI
1403
CLAFIC
BibRef
Ly, N.H.[Nam Hoai],
Du, Q.[Qian],
Fowler, J.E.[James E.],
Sparse Graph-Based Discriminant Analysis for Hyperspectral Imagery,
GeoRS(52), No. 7, July 2014, pp. 3872-3884.
IEEE DOI
1403
Eigenvalues and eigenfunctions
BibRef
Li, W.[Wei],
Prasad, S.[Saurabh],
Fowler, J.E.[James E.],
Bruce, L.M.[Lori Mann],
Locality-Preserving Dimensionality Reduction and Classification for
Hyperspectral Image Analysis,
GeoRS(50), No. 4, April 2012, pp. 1185-1198.
IEEE DOI
1204
BibRef
Feng, F.B.[Fu-Biao],
Li, W.[Wei],
Du, Q.[Qian],
Zhang, B.[Bing],
Dimensionality Reduction of Hyperspectral Image with Graph-Based
Discriminant Analysis Considering Spectral Similarity,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Deng, Y.,
Li, H.,
Fu, K.,
Du, Q.,
Emery, W.J.,
Tensor Low-Rank Discriminant Embedding for Hyperspectral Image
Dimensionality Reduction,
GeoRS(56), No. 12, December 2018, pp. 7183-7194.
IEEE DOI
1812
Tensile stress, Feature extraction, Hyperspectral imaging,
Robustness, Dimensionality reduction, Data models, Classification,
tensor
BibRef
Deng, Y.,
Li, H.,
Song, X.,
Sun, Y.,
Zhang, X.,
Du, Q.,
Patch Tensor-Based Multigraph Embedding Framework for Dimensionality
Reduction of Hyperspectral Images,
GeoRS(58), No. 3, March 2020, pp. 1630-1643.
IEEE DOI
2003
Feature extraction, Germanium, Hyperspectral imaging, Manifolds,
Dimensionality reduction, Classification,
tensor analysis
BibRef
Zhang, M.M.[Meng-Meng],
Li, W.[Wei],
Du, Q.[Qian],
Diverse Region-Based CNN for Hyperspectral Image Classification,
IP(27), No. 6, June 2018, pp. 2623-2634.
IEEE DOI
1804
feature extraction, hyperspectral imaging, image classification,
learning (artificial intelligence), neural nets,
pattern recognition
BibRef
Li, Y.[Yuan],
Xu, Q.Z.[Qi-Zhi],
Li, W.[Wei],
Nie, J.Y.[Jin-Yan],
Automatic Clustering-Based Two-Branch CNN for Hyperspectral Image
Classification,
GeoRS(59), No. 9, September 2021, pp. 7803-7816.
IEEE DOI
2109
Strips, Spectral shape, Convolution, Roads, Neural networks,
Interference, Feature extraction, Automatic clustering,
hyperspectral image (HSI)
BibRef
Pan, L.[Lei],
Li, H.C.[Heng-Chao],
Deng, Y.J.[Yang-Jun],
Zhang, F.[Fan],
Chen, X.D.[Xiang-Dong],
Du, Q.[Qian],
Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank
Graph-Based Discriminant Analysis,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Pan, L.[Lei],
Li, H.C.[Heng-Chao],
Li, W.[Wei],
Chen, X.D.[Xiang-Dong],
Wu, G.N.[Guang-Ning],
Du, Q.[Qian],
Discriminant Analysis of Hyperspectral Imagery Using Fast Kernel
Sparse and Low-Rank Graph,
GeoRS(55), No. 11, November 2017, pp. 6085-6098.
IEEE DOI
1711
Hyperspectral imaging, Kernel, Laplace equations, Manifolds,
Principal component analysis, Sparse matrices,
Dimensionality reduction (DR), graph embedding (GE),
hyperspectral image, kernel methods, sparse, and, low-rank, graph
BibRef
Li, W.[Wei],
Du, Q.[Qian],
Laplacian Regularized Collaborative Graph for Discriminant Analysis
of Hyperspectral Imagery,
GeoRS(54), No. 12, December 2016, pp. 7066-7076.
IEEE DOI
1612
geophysical techniques
BibRef
Li, W.[Wei],
Liu, J.,
Du, Q.[Qian],
Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral
Imagery,
GeoRS(54), No. 7, July 2016, pp. 4094-4105.
IEEE DOI
1606
Dictionaries
BibRef
Wang, H.X.[Hai-Xian],
Lu, X.,
Hu, Z.[Zilan],
Zheng, W.M.[Wen-Ming],
Fisher Discriminant Analysis With L1-Norm,
Cyber(44), No. 6, June 2014, pp. 828-842.
IEEE DOI
1406
Dispersion
BibRef
Wang, H.X.[Hai-Xian],
Zheng, W.M.[Wen-Ming],
Hu, Z.[Zilan],
Chen, S.B.[Si-Bao],
Local and Weighted Maximum Margin Discriminant Analysis,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Li, L.Y.[Li-Yuan],
Goh, W.[Weixun],
Lim, J.H.[Joo Hwee],
Pan, S.J.L.[Sinno Jia-Lin],
Extended Spectral Regression for efficient scene recognition,
PR(47), No. 9, 2014, pp. 2940-2951.
Elsevier DOI
1406
Spectral Regression
BibRef
Liu, H.W.[Hua-Wen],
Ma, Z.J.[Zong-Jie],
Zhang, S.C.[Shi-Chao],
Wu, X.D.[Xin-Dong],
Penalized partial least square discriminant analysis with for
multi-label data,
PR(48), No. 5, 2015, pp. 1724-1733.
Elsevier DOI
1502
Partial least squares
BibRef
Ding, C.T.[Chun-Tao],
Zhang, L.[Li],
Double adjacency graphs-based discriminant neighborhood embedding,
PR(48), No. 5, 2015, pp. 1734-1742.
Elsevier DOI
1502
Supervised learning
BibRef
Abou-Moustafa, K.T.[Karim T.],
de la Torre, F.[Fernando],
Ferrie, F.P.[Frank P.],
Pareto models for discriminative multiclass linear dimensionality
reduction,
PR(48), No. 5, 2015, pp. 1863-1877.
Elsevier DOI
1502
Fisher discriminant analysis
BibRef
Bose, S.[Smarajit],
Pal, A.[Amita],
SahaRay, R.[Rita],
Nayak, J.[Jitadeepa],
Generalized quadratic discriminant analysis,
PR(48), No. 8, 2015, pp. 2676-2684.
Elsevier DOI
1505
Linear discriminant analysis
BibRef
Li, H.,
Shen, C.,
van den Hengel, A.J.[Anton J.],
Shi, Q.,
Worst Case Linear Discriminant Analysis as Scalable Semidefinite
Feasibility Problems,
IP(24), No. 8, August 2015, pp. 2382-2392.
IEEE DOI
1505
Computational complexity
BibRef
Han, X.X.[Xi-Xuan],
Clemmensen, L.[Line],
Regularized generalized eigen-decomposition with applications to
sparse supervised feature extraction and sparse discriminant analysis,
PR(49), No. 1, 2016, pp. 43-54.
Elsevier DOI
1511
Sparse discriminant analysis
BibRef
Kan, M.,
Shan, S.G.[Shi-Guang],
Zhang, H.H.[Hai-Hong],
Lao, S.H.[Shi-Hong],
Chen, X.L.[Xi-Lin],
Multi-View Discriminant Analysis,
PAMI(38), No. 1, January 2016, pp. 188-194.
IEEE DOI
1601
Bellows
BibRef
Cui, Z.[Zhen],
Shan, S.G.[Shi-Guang],
Zhang, H.H.[Hai-Hong],
Lao, S.H.[Shi-Hong],
Chen, X.L.[Xi-Lin],
Structured Sparse Linear Discriminant Analysis,
ICIP12(1161-1164).
IEEE DOI
1302
BibRef
Wang, Y.[Ying],
Ni, H.Y.[Hong-Yin],
Liu, P.X.[Pei-Xun],
Li, W.H.[Wen-Hui],
Improved SDA based on mixed weighted Mahalanobis distance,
SIViP(10), No. 1, January 2016, pp. 65-74.
Springer DOI
1601
Subclass Discriminant Analysis.
BibRef
Cherian, A.[Anoop],
Morellas, V.[Vassilios],
Papanikolopoulos, N.[Nikolaos],
Bayesian Nonparametric Clustering for Positive Definite Matrices,
PAMI(38), No. 5, May 2016, pp. 862-874.
IEEE DOI
1604
Clustering algorithms
BibRef
Cherian, A.[Anoop],
Stanitsas, P.[Panagiotis],
Harandi, M.,
Morellas, V.[Vassilios],
Papanikolopoulos, N.[Nikolaos],
Learning Discriminative alpha-beta-Divergences for Positive
Definite Matrices,
ICCV17(4280-4289)
IEEE DOI
1802
learning (artificial intelligence),
matrix algebra, statistics, Dictionary Learning,
Symmetric matrices
BibRef
Cherian, A.[Anoop],
Stanitsas, P.[Panagiotis],
Wang, J.[Jue],
Harandi, M.[Mehrtash],
Morellas, V.[Vassilios],
Papanikolopoulos, N.[Nikolaos],
Learning Log-Determinant Divergences for Positive Definite Matrices,
PAMI(44), No. 9, September 2022, pp. 5088-5102.
IEEE DOI
2208
BibRef
Earlier: A2, A1, A5, A6, Only:
Clustering Positive Definite Matrices by Learning Information
Divergences,
Manifold17(1304-1312)
IEEE DOI
1802
Measurement, Symmetric matrices, Sparse matrices,
Covariance matrices, Standards, Kernel, Geometry,
texture recognition.
Clustering algorithms, Geometry, Manifolds,
Matrices, Measurement, Optimization
BibRef
Sun, S.,
Xie, X.,
Yang, M.,
Multiview Uncorrelated Discriminant Analysis,
Cyber(46), No. 12, December 2016, pp. 3272-3284.
IEEE DOI
1612
Correlation
BibRef
Wu, G.[Gang],
Feng, T.T.[Ting-Ting],
Zhang, L.J.[Li-Jia],
Yang, M.[Meng],
Inexact implementation using Krylov subspace methods for large scale
exponential discriminant analysis with applications to high
dimensionality reduction problems,
PR(66), No. 1, 2017, pp. 328-341.
Elsevier DOI
1704
Dimensionality reduction
BibRef
Huang, R.B.[Rong-Bing],
Liu, C.[Chang],
Zhou, J.L.[Ji-Liu],
Discriminant analysis via jointly -norm sparse tensor preserving
embedding for image classification,
JVCIR(47), No. 1, 2017, pp. 10-22.
Elsevier DOI
1706
Sparse, representation
BibRef
Tran, D.T.[Dat Thanh],
Gabbouj, M.[Moncef],
Iosifidis, A.[Alexandros],
Multilinear class-specific discriminant analysis,
PRL(100), No. 1, 2017, pp. 131-136.
Elsevier DOI
1712
Multilinear discriminant analysis
BibRef
Iosifidis, A.[Alexandros],
Class mean vector component and discriminant analysis,
PRL(140), 2020, pp. 207-213.
Elsevier DOI
2012
Kernel subspace learning, Principal component analysis,
Kernel discriminant analysis, Approximate kernel subspace learning
BibRef
Xu, L.,
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Weighted Linear Discriminant Analysis Based on Class Saliency
Information,
ICIP18(2306-2310)
IEEE DOI
1809
Estimation, Probabilistic logic, Visualization, Optimization,
Linear discriminant analysis, Task analysis, Robustness,
Linear Discriminant Analysis(LDA)
BibRef
Wan, H.[Huan],
Wang, H.[Hui],
Guo, G.[Gongde],
Wei, X.[Xin],
Separability-Oriented Subclass Discriminant Analysis,
PAMI(40), No. 2, February 2018, pp. 409-422.
IEEE DOI
1801
BibRef
Earlier: A1, A3, A2, A4:
A New Linear Discriminant Analysis Method to Address the Over-Reducing
Problem,
PReMI15(65-72).
Springer DOI
1511
Data analysis, Face recognition, Feature extraction,
Linear discriminant analysis, Optimization,
subclass discriminant analysis
BibRef
Liao, S.,
Gao, Q.,
Yang, Z.,
Chen, F.,
Nie, F.,
Han, J.,
Discriminant Analysis via Joint Euler Transform and L_2,1-Norm,
IP(27), No. 11, November 2018, pp. 5668-5682.
IEEE DOI
1809
Measurement, Robustness, Feature extraction,
Principal component analysis, Transforms, Kernel,
1-norm
BibRef
Tavernier, J.[Joris],
Simm, J.[Jaak],
Meerbergen, K.[Karl],
Wegner, J.K.[Joerg Kurt],
Ceulemans, H.[Hugo],
Moreau, Y.[Yves],
Fast semi-supervised discriminant analysis for binary classification
of large data sets,
PR(91), 2019, pp. 86-99.
Elsevier DOI
1904
Semi-supervised learning,
Semi-supervised discriminant analysis, Large-scale
BibRef
Wang, L.,
Li, Q.,
Zhou, Y.,
Multiple-Instance Discriminant Analysis for Weakly Supervised Segment
Annotation,
IP(28), No. 11, November 2019, pp. 5716-5728.
IEEE DOI
1909
Image segmentation, Semantics, Visualization, Proposals,
Linear programming, Training, Support vector machines,
region selection
BibRef
Hu, P.,
Peng, D.,
Sang, Y.,
Xiang, Y.,
Multi-View Linear Discriminant Analysis Network,
IP(28), No. 11, November 2019, pp. 5352-5365.
IEEE DOI
1909
Correlation, Linear programming, Feature extraction, Kernel,
Neural networks, Image reconstruction,
multi-view representation learning
BibRef
Zollanvari, A.,
Abdirash, M.,
Dadlani, A.,
Abibullaev, B.,
Asymptotically Bias-Corrected Regularized Linear Discriminant
Analysis for Cost-Sensitive Binary Classification,
SPLetters(26), No. 9, September 2019, pp. 1300-1304.
IEEE DOI
1909
Gaussian distribution, matrix algebra, pattern classification,
multivariate Gaussian distributions, regularization parameter,
cost-sensitive classification
BibRef
Song, X.[Xin],
Jiang, X.W.[Xin-Wei],
Gao, J.B.[Jun-Bin],
Cai, Z.H.[Zhi-Hua],
Gaussian Process Graph-Based Discriminant Analysis for Hyperspectral
Images Classification,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Tzelepi, M.[Maria],
Tefas, A.[Anastasios],
Improving the performance of lightweight CNNs for binary
classification using quadratic mutual information regularization,
PR(106), 2020, pp. 107407.
Elsevier DOI
2006
BibRef
Earlier:
Discriminant Analysis Regularization in Lightweight Deep CNN Models,
ICIP19(3841-3845)
IEEE DOI
1910
Hinge loss, Cross entropy loss, Binary classification problems,
Quadratic mutual information, Regularizer, Lightweight models,
Deep learning.
Discriminant Analysis Regularization,
Convolutional Neural Networks, Drones.
BibRef
Huang, H.H.[Hsin-Hsiung],
Zhang, T.[Teng],
Robust discriminant analysis using multi-directional projection
pursuit,
PRL(138), 2020, pp. 651-656.
Elsevier DOI
2010
Classification, Dimension reduction, Optimal scores,
Projection pursuit, Robustness
BibRef
Alarcón, Y.C.C.[Yonatan Carlos Carranza],
Destercke, S.[Sébastien],
Imprecise Gaussian discriminant classification,
PR(112), 2021, pp. 107739.
Elsevier DOI
2102
Discriminant analysis, Robust Bayesian, Classification, Near-ignorance
BibRef
Zheng, Z.C.[Zhi-Chao],
Sun, H.J.[Huai-Jiang],
Zhou, Y.[Ying],
Multiple discriminant analysis for collaborative representation-based
classification,
PR(112), 2021, pp. 107819.
Elsevier DOI
2102
Collaborative representation,
Orthogonal discriminative projection, Face recognition, Binary classification
BibRef
Ghosh, A.[Abhik],
SahaRay, R.[Rita],
Chakrabarty, S.[Sayan],
Bhadra, S.[Sayan],
Robust generalised quadratic discriminant analysis,
PR(117), 2021, pp. 107981.
Elsevier DOI
2106
Linear discriminant analysis, Quadratic discriminant analysis,
Generalized quadratic discriminant analysis, Robust estimators
BibRef
Kouw, W.M.[Wouter M.],
Loog, M.[Marco],
Robust domain-adaptive discriminant analysis,
PRL(148), 2021, pp. 107-113.
Elsevier DOI
2107
Domain adaptation, Robust estimator, Discriminant analysis, Transduction
BibRef
Zollanvari, A.[Amin],
Abibullaev, B.[Berdakh],
Bias correction for linear discriminant analysis,
PRL(151), 2021, pp. 41-47.
Elsevier DOI
2110
Discriminant analysis, Bias-correction
BibRef
Sofuoglu, S.E.[Seyyid Emre],
Aviyente, S.[Selin],
Multi-Branch Tensor Network Structure for Tensor-Train Discriminant
Analysis,
IP(30), 2021, pp. 8926-8938.
IEEE DOI
2111
Tensors, Feature extraction, Merging, Supervised learning,
Computational complexity, Training, Matrix decomposition,
supervised tensor-train analysis
BibRef
Zhu, F.[Fa],
Gao, J.B.[Jun-Bin],
Yang, J.[Jian],
Ye, N.[Ning],
Neighborhood linear discriminant analysis,
PR(123), 2022, pp. 108422.
Elsevier DOI
2112
Linear discriminant analysis, Reverse nearest neighbors,
Neighborhood linear discriminant analysis, Multimodal class
BibRef
Dufrenois, F.,
Incremental and compressible kernel null discriminant analysis,
PR(127), 2022, pp. 108642.
Elsevier DOI
2205
Incremental kernel discriminant analysis, Null space,
Compression mechanism, Multi-class learning, Novelty detection
BibRef
Chang, W.[Wei],
Nie, F.P.[Fei-Ping],
Wang, Z.[Zheng],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Self-weighted learning framework for adaptive locality discriminant
analysis,
PR(129), 2022, pp. 108778.
Elsevier DOI
2206
Supervised dimensionality reduction,
Linear discriminant analysis, Re-weighted method
BibRef
Ibañez, I.[Isaías],
Forzani, L.[Liliana],
Tomassi, D.[Diego],
Generalized discriminant analysis via kernel exponential families,
PR(132), 2022, pp. 108933.
Elsevier DOI
2209
Discriminant analysis, Sufficient dimension reduction,
Reproducing kernel Hilbert spaces, Support vector machine
BibRef
Li, S.Y.[Shu-Yi],
Zhang, H.M.[Heng-Min],
Ma, R.J.[Rui-Jun],
Zhou, J.H.[Jian-Hang],
Wen, J.[Jie],
Zhang, B.[Bob],
Linear discriminant analysis with generalized kernel constraint for
robust image classification,
PR(136), 2023, pp. 109196.
Elsevier DOI
2301
Linear discriminant analysis, Kernel constraint,
Intra-class and inter-class distance, Separability, Image classification
BibRef
Kim, J.[Jiae],
Lee, Y.[Yoonkyung],
Liang, Z.Y.[Zhi-Yu],
The Geometry of Nonlinear Embeddings in Kernel Discriminant Analysis,
PAMI(45), No. 4, April 2023, pp. 5203-5217.
IEEE DOI
2303
Kernel, Sociology, Covariance matrices,
Linear discriminant analysis, Geometry, spectral analysis
BibRef
Liang, Z.Z.[Zhi-Zheng],
Zhang, L.[Lei],
L1-norm discriminant analysis via Bhattacharyya error bounds under
Laplace distributions,
PR(141), 2023, pp. 109609.
Elsevier DOI
2306
BibRef
And:
Erratum:
PR(146), 2024, pp. 110070.
Elsevier DOI
2311
Laplace distributions, Bhattacharyya error bound,
Discriminant criteria, Kernel functions, Data classification
BibRef
Min, K.Q.[Ke-Qian],
Mai, Q.[Qing],
Li, J.[Junge],
Optimality in high-dimensional tensor discriminant analysis,
PR(143), 2023, pp. 109803.
Elsevier DOI
2310
Discriminant analysis, Minimax optimality, Tensor
BibRef
Nagananda, N.[Navya],
Savakis, A.[Andreas],
GILDA++: Grassmann Incremental Linear Discriminant Analysis,
Diff-CVML21(4448-4456)
IEEE DOI
2109
Manifolds, Training, Neural networks, Training data,
Stochastic processes, Optimization methods, Eigenvalues and eigenfunctions
BibRef
Chen, X.,
Improved Robust Discriminant Analysis for Feature Extraction,
ICPR18(1444-1449)
IEEE DOI
1812
Principal component analysis, Feature extraction, Optimization,
Dispersion, Noise measurement, Complexity theory,
I1-norm
BibRef
Zhong, G.,
Zheng, Y.,
Zhang, X.,
Wei, H.,
Ling, X.,
Convolutional Discriminant Analysis,
ICPR18(1456-1461)
IEEE DOI
1812
Training, Task analysis, Convolutional neural networks,
Face recognition, Optimization
BibRef
Guo, M.,
Nie, F.,
Li, X.,
Self-Weighted Adaptive Locality Discriminant Analysis,
ICIP18(3378-3382)
IEEE DOI
1809
Data structures, Dimensionality reduction, Linear programming,
Optical imaging, Linear discriminant analysis, Optimization,
re-weighted method
BibRef
Saglam, A.,
Baykan, N.A.,
A Satellite Image Classification Approach By Using One Dimensional
Discriminant Analysis,
Gi4DM18(429-435).
DOI Link
1805
BibRef
Ihou, K.E.[Koffi Eddy],
Bouguila, N.[Nizar],
A new latent generalized dirichlet allocation model for image
classification,
IPTA17(1-6)
IEEE DOI
1804
belief networks, image classification, inference mechanisms,
learning (artificial intelligence), CVB-LGDA,
topic modeling
BibRef
Liu, Y.Z.[Yan-Zhen],
Bai, X.[Xiao],
Yan, C.[Cheng],
Zhou, J.[Jun],
Bilinear Discriminant Analysis Hashing:
A Supervised Hashing Approach for High-Dimensional Data,
ACCV16(V: 297-310).
Springer DOI
1704
BibRef
Xu, Z.[Zheng],
Li, X.[Xue],
Yang, K.[Kuiyuan],
Goldstein, T.[Thomas],
Exploiting Low-rank Structure for Discriminative Sub-categorization,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Juefei-Xu, F.[Felix],
Savvides, M.[Marios],
Pareto-optimal discriminant analysis,
ICIP15(611-615)
IEEE DOI
1512
Discriminant Analysis; LDA; LPP; PCA; Sparse Representation; UDP
BibRef
Grzymala-Busse, J.W.[Jerzy W.],
Mroczek, T.[Teresa],
A Comparison of Two Approaches to Discretization:
Multiple Scanning and C4.5,
PReMI15(44-53).
Springer DOI
1511
BibRef
Wang, S.Y.[Shu-Yang],
Fu, Y.[Yun],
Locality-constrained discriminative learning and coding,
Biometrics15(17-24)
IEEE DOI
1510
Dictionaries. Structure of the data.
BibRef
Chen, X.B.[Xiao-Bo],
Yang, J.[Jian],
Jin, Z.[Zhong],
An Improved Linear Discriminant Analysis with L1-Norm for Robust
Feature Extraction,
ICPR14(1585-1590)
IEEE DOI
1412
Databases
BibRef
Zhang, X.Y.[Xu-Yao],
Liu, C.L.[Cheng-Lin],
Locally Smoothed Modified Quadratic Discriminant Function,
ICDAR13(8-12)
IEEE DOI
1312
covariance matrices
BibRef
Sakano, H.[Hitoshi],
Ohashi, T.[Tsukasa],
Kimura, A.[Akisato],
Sawada, H.[Hiroshi],
Ishiguro, K.[Katsuhiko],
Extended Fisher Criterion Based on Auto-correlation Matrix Information,
SSSPR12(409-416).
Springer DOI
1211
BibRef
Zafeiriou, S.P.[Stefanos P.],
Subspace Learning in Krein Spaces: Complete Kernel Fisher Discriminant
Analysis with Indefinite Kernels,
ECCV12(IV: 488-501).
Springer DOI
1210
BibRef
Su, T.H.[Tong-Hua],
Liu, C.L.[Cheng-Lin],
Zhang, X.Y.[Xu-Yao],
Perceptron Learning of Modified Quadratic Discriminant Function,
ICDAR11(1007-1011).
IEEE DOI
1111
BibRef
Gao, H.Y.[Hao-Yuan],
Zhuang, L.S.[Lian-Sheng],
Yu, N.H.[Neng-Hai],
A New Graph Constructor for Semi-supervised Discriminant Analysis via
Group Sparsity,
ICIG11(691-695).
IEEE DOI
1109
BibRef
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Cluster-Pairwise Discriminant Analysis,
ICPR10(577-580).
IEEE DOI
1008
BibRef
Abou-Moustafa, K.T.[Karim T.],
de la Torre, F.[Fernando],
Ferrie, F.P.[Frank P.],
Pareto discriminant analysis,
CVPR10(3602-3609).
IEEE DOI
1006
To deal with multiclass problems.
BibRef
Zhai, D.M.[De-Ming],
Li, B.[Bo],
Chang, H.[Hong],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Gao, W.[Wen],
Manifold Alignment via Corresponding Projections,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Earlier: A1, A3, A2, A4, A5, A6:
Semi-supervised Discriminant Analysis via Spectral Transduction,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Zeng, Z.X.[Zhao-Xiong],
Liu, C.P.[Chang-Ping],
Huang, L.[Lei],
Analysis on two Fisher methods and a synthesized discriminant
projection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Park, H.S.[Hae-Sun],
Choo, J.[Jaegul],
Drake, B.L.[Barry L.],
Kang, J.[Jinwoo],
Linear discriminant analysis for data with subcluster structure,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhang, L.[Li],
Zhou, W.D.[Wei-Da],
Zhang, H.[Hua],
Jiao, L.C.[Li-Cheng],
Generalized Nonlinear Discriminant Analysis,
ICPR08(1-4).
IEEE DOI
0812
BibRef
An, S.J.[Sen-Jian],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Exploiting side information in locality preserving projection,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Leszczynski, M.[Mariusz],
Skarbek, W.[Wadysaw],
On Design of Discriminant Analysis Diagram for Error Based Pattern
Recognition,
ICIAR07(342-351).
Springer DOI
0708
BibRef
Nie, F.P.[Fei-Ping],
Xiang, S.M.[Shi-Ming],
Song, Y.Q.[Yang-Qiu],
Zhang, C.S.[Chang-Shui],
Optimal Dimensionality Discriminant Analysis and Its Application to
Image Recognition,
ComponentAnalysis07(1-8).
IEEE DOI
0706
BibRef
Ioffe, S.[Sergey],
Probabilistic Linear Discriminant Analysis,
ECCV06(IV: 531-542).
Springer DOI
0608
BibRef
Xiong, T.[Tao],
Ye, J.P.[Jie-Ping],
Cherkassky, V.S.[Vladimir S.],
Kernel Uncorrelated and Orthogonal Discriminant Analysis:
A Unified Approach,
CVPR06(I: 125-131).
IEEE DOI
0606
BibRef
Zhang, Q.A.[Qi-Ang],
Liu, X.W.[Xiu-Wen],
Kernel Optimal Component Analysis,
LCV04(99).
IEEE DOI
0406
BibRef
Kosinov, S.[Serhiy],
Marchand-Maillet, S.[Stephane],
Pun, T.[Thierry],
Visual Object Categorization using Distance-Based Discriminant Analysis,
MMDE04(145).
IEEE DOI
0406
BibRef
Chen, H.T.[Hwann-Tzong],
Chang, H.W.[Huang-Wei],
Liu, T.L.[Tyng-Luh],
Local Discriminant Embedding and Its Variants,
CVPR05(II: 846-853).
IEEE DOI
0507
BibRef
Yan, S.C.[Shui-Cheng],
Zhang, H.J.[Hong-Jiang],
Hu, Y.X.[Yu-Xiao],
Zhang, B.Y.[Ben-Yu],
Cheng, Q.S.[Qian-Sheng],
Discriminant Analysis on Embedded Manifold,
ECCV04(Vol I: 121-132).
Springer DOI
0405
BibRef
Hazaveh, K.,
Raahemifar, K.,
Optimized two-dimensional local discriminant basis algorithm,
ICIP03(I: 1037-1040).
IEEE DOI
0312
BibRef
Vasconcelos, N.M.[Nuno M.],
Ho, P.[Purdy],
Moreno, P.[Pedro],
The Kullback-Leibler Kernel as a Framework for Discriminant and
Localized Representations for Visual Recognition,
ECCV04(Vol III: 430-441).
Springer DOI
0405
BibRef
Vasconcelos, N.M.,
Feature selection by maximum marginal diversity:
Optimality and Implications for Visual Recognition,
CVPR03(I: 762-769).
IEEE DOI
0307
BibRef
Schulerud, H.,
Bias of Error Rates in Linear Discriminant Analysis Caused by Feature
Selection and Sample Size,
ICPR00(Vol II: 372-377).
IEEE DOI
0009
BibRef
Gao, J.,
Ding, X.Q.[Xiao-Qing],
On Improvement of Feature Extraction Algorithms for Discriminative
Pattern Classification,
ICPR00(Vol II: 101-104).
IEEE DOI
0009
BibRef
Huang, X.J.[Xiao-Jei],
Wu, Y.S.[Yuo-Shou],
Ding, X.Q.[Xiao-Qing],
The estimation of error bounds and feature selection in large character
set recognition,
ICPR88(II: 1242-1244).
IEEE DOI
8811
BibRef
Hiraoka, K.,
Hidai, K.,
Hamahira, M.,
Mizoguchi, H.,
Mishima, T.,
Yoshizawa, S.,
Successive Learning of Linear Discriminant Analysis:
Sanger-type Algorithm,
ICPR00(Vol II: 664-667).
IEEE DOI
0009
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Training Set Size, Sample Size, Analysis, Selection .