21.9 Medical Applications -- Brain, Cortex Applications

Chapter Contents (Back)
Brain. Cortex.
See also Brain, Cortex, Alzheimer's Disease.
See also White Matter Fiber Tractography MRI.
See also Autism Analysis, Behavior, Cognitive, Other Analysis.

Toga, A.W.[Arthur W.], Arnicar, T.L.[Tamara L.],
Image Analysis of Brain Physiology,
IEEE_CGA(5), No. 12, December, 1985, pp. 20-25. BibRef 8512

Sokolowska, E., Newell, J.A.,
Multi-Layered Image Representation: Structure And Application in Recognition of Parts of Brain Anatomy,
PRL(4), 1986, pp. 223-230. BibRef 8600

Schwartz, E.L.[Eric L.], Merker, B.[Bjorn], Wolfson, E.[Estarose], Shaw, A.[Alan],
Applications of Computer Graphics and Image Processing to 2-D and 3-D Modeling of the Functional Architecture of Visual Cortex,
IEEE_CGA(8), No. 4, July, 1988, pp. 13-23. BibRef 8807

Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.,
Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping,
MedImg(23), No. 8, August 2004, pp. 949-958.
IEEE Abstract. 0409
BibRef

Fang, H.[Haian], Nurre, J.H.,
Smoothing random noise from human head scan data,
MedImg(15), No. 1, February 1996, pp. 102-111.
IEEE Top Reference. 0203
BibRef

Murase, K., Kuwabara, H., Yasuhara, Y., Evans, A.C., Gjedde, A.,
Mapping of change in cerebral glucose utilization using fluorine-18 fluorodeoxyglucose double injection and the constrained weighted-integration method,
MedImg(15), No. 6, December 1996, pp. 824-835.
IEEE Top Reference. 0203
BibRef

Charland, P., Peters, T.,
Optimal display conditions for quantitative analysis of stereoscopic cerebral angiograms,
MedImg(15), No. 5, October 1996, pp. 648-656.
IEEE Top Reference. 0203
BibRef

Guimond, A., Roche, A., Ayache, N.J., Meunier, J.,
Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections,
MedImg(20), No. 1, January 2001, pp. 58-69.
IEEE Top Reference. 0110
BibRef

Ollikainen, J.O., Vaukhonen, M., Karjalainen, P.A., Kaipio, J.P.,
A new computational approach for cortical imaging,
MedImg(20), No. 4, April 2001, pp. 325-332.
IEEE Top Reference. 0110
BibRef

Angenent, S., Haker, S.[Steven], Tannenbaum, A., Kikinis, R.,
On the Laplace-Beltrami operator and brain surface flattening,
MedImg(18), No. 8, August 1999, pp. 700-711.
IEEE Top Reference. 0110

See also Nondistorting flattening maps and the 3-D visualization of colon CT images.
See also Flattening Maps for the Visualization of Multibranched Vessels. BibRef

Shattuck, D.W., Leahy, R.M.,
Automated graph-based analysis and correction of cortical volume topology,
MedImg(20), No. 11, November 2001, pp. 1167-1177.
IEEE Top Reference. 0111
BibRef

Falcão, A.X., da Fontoura Costa, L.[Luciano], da Cunha, B.S.,
Multiscale skeletons by image foresting transform and its application to neuromorphometry,
PR(35), No. 7, July 2002, pp. 1571-1582.
Elsevier DOI 0204
BibRef
And: Erratum: PR(36), No. 12, December 2003, pp. 3013.
Elsevier DOI 0310
BibRef

Tao, X.D.[Xiao-Dong], Prince, J.L., Davatzikos, C.,
Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain,
MedImg(21), No. 5, May 2002, pp. 513-524.
IEEE Top Reference. 0206
BibRef

Toga, A.W.[Arthur W.],
The laboratory of neuro imaging: What it is, why it is, and how it came to be,
MedImg(21), No. 11, November 2002, pp. 1333-1343.
IEEE Top Reference. 0301
BibRef

Cachia, A., Mangin, J.F., Riviere, D., Kherif, F., Boddaert, N., Andrade, A., Papadopoulos-Orfanos, D., Poline, J.B., Bloch, I., Zilbovicius, M., Sonigo, P., Brunelle, F., Regis, J.,
A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns,
MedImg(22), No. 6, June 2003, pp. 754-765.
IEEE Abstract. 0308
BibRef

Mangin, J.F., Riviere, D., Cachia, A., Duchesnay, E., Cointepas, Y., Papadopoulos-Orfanos, D., Collins, D.L., Evans, A.C., Regis, J.,
Object-Based Morphometry of the Cerebral Cortex,
MedImg(23), No. 8, August 2004, pp. 968-982.
IEEE Abstract. 0409
BibRef

Studholme, C.[Colin], Cardenas, V.[Valerie],
A template free approach to volumetric spatial normalization of brain anatomy,
PRL(25), No. 10, 16 July 2004, pp. 1191-1202.
Elsevier DOI 0407
BibRef

Rousseau, F., Habas, P.A., Studholme, C.,
A Supervised Patch-Based Approach for Human Brain Labeling,
MedImg(30), No. 10, October 2011, pp. 1852-1862.
IEEE DOI 1110
BibRef

Hurdal, M.K., and Stephenson, K.,
Cortical cartography using the discrete conformal approach of circle packings,
NeuroImage(23), 2004, pp. 119-128. BibRef 0400

Sinha, T.K., Dawant, B.M., Duay, V., Cash, D.M., Weil, R.J., Thompson, R.C., Weaver, K.D., Miga, M.I.,
A Method to Track Cortical Surface Deformations Using a Laser Range Scanner,
MedImg(24), No. 6, June 2005, pp. 767-781.
IEEE Abstract. 0506
BibRef

Frosio, I., Ferrigno, G., Borghese, N.A.,
Enhancing Digital Cephalic Radiography With Mixture Models and Local Gamma Correction,
MedImg(25), No. 1, January 2006, pp. 113-121.
IEEE DOI 0601
BibRef

Lucchese, M.[Mirko], Frosio, I.[Iuri], Borghese, N.A.[N. Alberto],
Optimal Choice of Regularization Parameter in Image Denoising,
CIAP11(I: 534-543).
Springer DOI 1109
BibRef

Lucchese, M.[Mirko], Borghese, N.A.[N. Alberto],
Denoising of Digital Radiographic Images with Automatic Regularization Based on Total Variation,
CIAP09(711-720).
Springer DOI 0909
BibRef

Frosio, I., Lucchese, M., Borghese, N.A.,
A new and reliable Poisson noise estimator for radiographic images,
CIAP07(725-730).
IEEE DOI 0709
BibRef

Frosio, I., Borghese, N.A.,
Statistical Based Impulsive Noise Removal in Digital Radiography,
MedImg(28), No. 1, January 2009, pp. 3-16.
IEEE DOI 0901
BibRef

Qiu, A., Bitouk, D., Miller, M.I.,
Smooth Functional and Structural Maps on the Neocortex Via Orthonormal Bases of the Laplace-Beltrami Operator,
MedImg(25), No. 10, October 2006, pp. 1296-1306.
IEEE DOI 0609
BibRef

Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.,
Twenty New Digital Brain Phantoms for Creation of Validation Image Data Bases,
MedImg(25), No. 11, November 2006, pp. 1410-1416.
IEEE DOI 0611
BibRef

Camara, O.[Oscar], Schweiger, M., Scahill, R.I., Crum, W.R., Sneller, B.I., Schnabel, J.A., Ridgway, G.R., Cash, D.M., Hill, D.L.G., Fox, N.C.,
Phenomenological Model of Diffuse Global and Regional Atrophy Using Finite-Element Methods,
MedImg(25), No. 11, November 2006, pp. 1417-1430.
IEEE DOI 0611

See also Generalized Overlap Measures for Evaluation and Validation in Medical Image Analysis. BibRef

Bansal, R., Staib, L.H., Xu, D.R.[Dong-Rong], Zhu, H., Peterson, B.S.,
Statistical Analyses of Brain Surfaces Using Gaussian Random Fields on 2-D Manifolds,
MedImg(26), No. 1, January 2007, pp. 46-57.
IEEE DOI 0701
BibRef

Bansal, R., Staib, L.H., Xu, D.R.[Dong-Rong], Laine, A.F., Royal, J., Peterson, B.S.,
Using Perturbation Theory to Compute the Morphological Similarity of Diffusion Tensors,
MedImg(27), No. 5, May 2008, pp. 589-607.
IEEE DOI 0711
BibRef

Yu, P.[Peng], Grant, P.E.[P. Ellen], Qi, Y.[Yuan], Han, X.[Xiao], Segonne, F.[Florent], Pienaar, R.[Rudolph], Busa, E.[Evelina], Pacheco, J.[Jenni], Makris, N.[Nikos], Buckner, R.L.[Randy L.], Golland, P.[Polina], Fischl, B.[Bruce],
Cortical Surface Shape Analysis Based on Spherical Wavelets,
MedImg(26), No. 4, April 2007, pp. 582-597.
IEEE DOI 0704
BibRef

Qiu, A., Brown, T., Fischl, B., Ma, J., Miller, M.I.,
Atlas Generation for Subcortical and Ventricular Structures With Its Applications in Shape Analysis,
IP(19), No. 6, June 2010, pp. 1539-1547.
IEEE DOI 1006
BibRef

Yu, P.[Peng], Han, X.[Xiao], Ségonne, F.[Florent], Pienaar, R.[Rudolph], Buckner, R.L.[Randy L.], Golland, P.[Polina], Grant, P.E.[P. Ellen], Fischl, B.[Bruce],
Cortical Surface Shape Analysis Based on Spherical Wavelet Transformation,
MMBIA06(60).
IEEE DOI 0609
BibRef

Yu, P.[Peng], Han, X.[Xiao], Segonne, F.[Florent], Liu, A.K.[Arthur K.], Poldrack, R.A.[Russell A.], Golland, P.[Polina], Fischl, B.[Bruce],
Shape-based Discrimination and Classification of Cortical Surfaces,
ICPR06(III: 445-448).
IEEE DOI 0609
BibRef

Segonne, F.[Florent], Pacheco, J.[Jenni], Fischl, B.[Bruce],
Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops,
MedImg(26), No. 4, April 2007, pp. 518-529.
IEEE DOI 0704
BibRef

Shi, Y.G.[Yong-Gang], Thompson, P.M., Dinov, I.D., Toga, A.W.,
Hamilton-Jacobi Skeleton on Cortical Surfaces,
MedImg(27), No. 5, May 2008, pp. 664-673.
IEEE DOI 0711

See also Computational Model of Multidimensional Shape, A. BibRef

Shi, Y.G.[Yong-Gang], Lai, R.J.[Rong-Jie], Morra, J.H., Dinov, I.D., Thompson, P.M., Toga, A.W.,
Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and Boundary Deformation,
MedImg(29), No. 12, December 2010, pp. 2009-2022.
IEEE DOI 1101
BibRef

Duchesnay, E.[Edouard], Cachia, A.[Arnaud], Roche, A.[Alexis], Riviere, D.[Denis], Cointepas, Y.[Yann], Papadopoulos-Orfanos, D.[Dimitri], Zilbovicius, M.[Monica], Martinot, J.L.[Jean-Luc], Regis, J.[Jean], Mangin, J.F.[Jean-Franois],
Classification Based on Cortical Folding Patterns,
MedImg(26), No. 4, April 2007, pp. 553-565.
IEEE DOI 0704
BibRef

Kao, C.Y.[Chiu-Yen], Hofer, M.[Michael], Sapiro, G.[Guillermo], Stern, J.[Josh], Rehm, K.[Kelly], Rottenberg, D.A.[David A.],
A Geometric Method for Automatic Extraction of Sulcal Fundi,
MedImg(26), No. 4, April 2007, pp. 530-540.
IEEE DOI 0704
BibRef

Zhu, H., Ibrahim, J.G., Tang, N., Rowe, D.B., Hao, X., Bansal, R., Peterson, B.S.,
A Statistical Analysis of Brain Morphology Using Wild Bootstrapping,
MedImg(26), No. 7, July 2007, pp. 954-966.
IEEE DOI 0707
BibRef

Sun, H.[Hui], Yushkevich, P.A.[Paul A.], Zhang, H.[Hui], Cook, P.A., Duda, J.T., Simon, T.J.[Tony J.], Gee, J.C.[James C.],
Shape-Based Normalization of the Corpus Callosum for DTI Connectivity Analysis,
MedImg(26), No. 9, September 2007, pp. 1166-1178.
IEEE DOI 0710
BibRef

Sun, H.[Hui], Yushkevich, P.A.[Paul A.], Zhang, H.[Hui], Gee, J.C.[James C.], Simon, T.J.[Tony J.],
Efficient Generation of Shape-Based Reference Frames for the Corpus Callosum for DTI-based Connectivity Analysis,
MMBIA06(87).
IEEE DOI 0609
BibRef

Zhang, H.[Hui], Yushkevich, P.A.[Paul A.], Rueckert, D.[Daniel], Gee, J.C.[James C.],
A Computational White Matter Atlas for Aging with Surface-Based Representation of Fasciculi,
WBIR10(83-90).
Springer DOI 1007
BibRef

Wang, H.Z.[Hong-Zhi], Suh, J.W.[Jung Wook], Das, S.R.[Sandhitsu R.], Pluta, J.B.[John B.], Craige, C., Yushkevich, P.A.[Paul A.],
Multi-Atlas Segmentation with Joint Label Fusion,
PAMI(35), No. 3, March 2013, pp. 611-623.
IEEE DOI 1303
BibRef

Wang, H.Z.[Hong-Zhi], Cao, Y.[Yu], Syeda-Mahmood, T.[Tanveer],
Multi-atlas Segmentation with Learning-Based Label Fusion,
MLMI14(256-263).
Springer DOI 1410
BibRef

Wang, H.Z.[Hong-Zhi], Suh, J.W.[Jung Wook], Das, S.R.[Sandhitsu R.], Pluta, J.B.[John B.], Altinay, M.[Murat], Yushkevich, P.A.[Paul A.],
Regression-based label fusion for multi-atlas segmentation,
CVPR11(1113-1120).
IEEE DOI 1106
BibRef

Hope, T.A., Gregson, P.H., Linney, N.C., Schmidt, M.H., Abdolell, M.,
Selecting and Assessing Quantitative Early Ultrasound Texture Measures for Their Association With Cerebral Palsy,
MedImg(27), No. 2, February 2008, pp. 228-236.
IEEE DOI 0802
BibRef

Sanchez, D.[Danmary], Adjouadi, M.[Malek], Altman, N.R.[Nolan R.], Sanchez, D.[Daniel], Bernal, B.[Byron],
Comprehensive 3d Fiber Tracking As A New Visualization System In Brain Studies,
IJIG(7), No. 4, October 2007, pp. 749-765. 0710
BibRef

Koh, W., McCormick, B.H.,
Topology-graph Directed Separating Boundary Surfaces Approximation of Nonmanifold Neuroanatomical Structures: Application to Mouse Brain Olfactory Bulb,
MedImg(28), No. 4, April 2009, pp. 555-563.
IEEE DOI 0904
BibRef

Zalesky, A., Fornito, A.,
A DTI-Derived Measure of Cortico-Cortical Connectivity,
MedImg(28), No. 7, July 2009, pp. 1023-1036.
IEEE DOI 0906
BibRef

Rocha, K.R.[Kelvin R.], Sundaramoorthi, G.[Ganesh], Yezzi, A.J.[Anthony J.], Prince, J.L.[Jerry L.],
3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding,
IJCV(85), No. 3, December 2009, pp. xx-yy.
Springer DOI 0911
BibRef
Earlier: A1, A2, A3, Only: MMBIA07(1-8).
IEEE DOI 0710
BibRef

He, L.[Lili], Orten, B., Do, S.[Synho], Karl, W.C., Kambadakone, A., Sahani, D.V., Pien, H.,
A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification,
MedImg(29), No. 5, May 2010, pp. 1182-1191.
IEEE DOI 1006
BibRef

Pham, D.L.[Dzung L.], Bazin, P.L.[Pierre-Louis], Prince, J.L.[Jerry L.],
Digital Topology in Brain Imaging,
SPMag(27), No. 4, 2010, pp. 51-59.
IEEE DOI 1007
BibRef

Copeland, A.D., Mangoubi, R.S., Desai, M.N., Mitter, S.K., Malek, A.M.,
Spatio-Temporal Data Fusion for 3D+T Image Reconstruction in Cerebral Angiography,
MedImg(29), No. 6, June 2010, pp. 1238-1251.
IEEE DOI 1007
BibRef

Caan, M.W.A., Khedoe, H.G., Poot, D.H.J., den Dekker, A.J., Olabarriaga, S.D., Grimbergen, C.A., van Vliet, L.J., Vos, F.M.,
Estimation of Diffusion Properties in Crossing Fiber Bundles,
MedImg(29), No. 8, August 2010, pp. 1504-1515.
IEEE DOI 1008
BibRef

Rmeily-Haddad, M.[Mireille], Balédent, O.[Olivier], Stoquart-El Sankari, S.[Souraya], Sérot, J.M.[Jean-Marie], Bailly, P.[Pascal], Meyer, M.E.[Marc-Etienne],
The Kinetics Of 18f-Fluorodeoxyglucose Uptake In The Choroid Plexus,
IJIST(21), No. 1, 2011, pp. 107-114.
DOI Link FDG kinetics, choroid plexus, brain imaging BibRef 1100

Lee, H.Y.[Hyek-Young], Lee, D.S.[Dong Soo], Kang, H.J.[Hye-Jin], Kim, B.N.[Boong-Nyun], Chung, M.K.[Moo K.],
Sparse Brain Network Recovery Under Compressed Sensing,
MedImg(30), No. 5, May 2011, pp. 1154-1165.
IEEE DOI 1105
BibRef

Lee, H.Y.[Hyek-Young], Chung, M.K.[Moo K.], Choi, H.Y.[Hong-Yoon], Kang, H.J.[Hye-Jin], Ha, S.G.[Seung-Gyun], Kim, Y.K.[Yu Kyeong], Lee, D.S.[Dong Soo],
Harmonic Holes as the Submodules of Brain Network and Network Dissimilarity,
CTIC19(110-122).
Springer DOI 1901
BibRef

Lee, H.Y.[Hyek-Young], Kang, H.J.[Hye-Jin], Chung, M.K.[Moo K.], Kim, B.N.[Boong-Nyun], Lee, D.S.,
Persistent Brain Network Homology From the Perspective of Dendrogram,
MedImg(31), No. 12, December 2012, pp. 2267-2277.
IEEE DOI 1212
BibRef

Nirmala, S., Palanisamy, V.,
Clinical decision support system for early prediction of Down syndrome fetus using sonogram images,
SIViP(5), No. 2, June 2011, pp. 245-255.
WWW Link. 1101
BibRef

Ho, H.P., Wang, F., Papademetris, X., Blumberg, H.P., Staib, L.H.,
Fasciculography: Robust Prior-Free Real-Time Normalized Volumetric Neural Tract Parcellation,
MedImg(31), No. 2, February 2012, pp. 217-230.
IEEE DOI 1202
BibRef

Liang, X.Y.[Xiao-Yun], Tournier, J.D.[Jacques-Donald], Masterton, R.[Richard], Connelly, A.[Alan], Calamante, F.[Fernando],
A k-space sharing 3D GRASE pseudocontinuous ASL method for whole-brain resting-state functional connectivity,
IJIST(22), No. 1, March 2012, pp. 37-43.
DOI Link 1202
BibRef

Ng, B., McKeown, M.J., Abugharbieh, R.,
Group Replicator Dynamics: A Novel Group-Wise Evolutionary Approach for Sparse Brain Network Detection,
MedImg(31), No. 3, March 2012, pp. 576-585.
IEEE DOI 1203
BibRef

Wong, T.W.[Tsz Wai], Lui, L.M.[Lok Ming], Thompson, P.M.[Paul M.], Chan, T.F.[Tony F.],
Intrinsic Feature Extraction on Hippocampal Surfaces and Its Applications,
SIIMS(5), No. 1 2012, pp. 746-768.
DOI Link 1208
BibRef

Koch, L.M., Rajchl, M., Bai, W., Baumgartner, C.F., Tong, T., Passerat-Palmbach, J., Aljabar, P., Rueckert, D.,
Multi-Atlas Segmentation Using Partially Annotated Data: Methods and Annotation Strategies,
PAMI(40), No. 7, July 2018, pp. 1683-1696.
IEEE DOI 1806
Biomedical imaging, Image segmentation, Labeling, Manuals, Robustness, Sociology, Training, Markov Random Field, unifying framework BibRef

Honorio, J., Tomasi, D., Goldstein, R.Z., Leung, H.C., Samaras, D.,
Can a Single Brain Region Predict a Disorder?,
MedImg(31), No. 11, November 2012, pp. 2062-2072.
IEEE DOI 1211
BibRef

Mesejo, P.[Pablo], Ugolotti, R.[Roberto], di Cunto, F.[Ferdinando], Giacobini, M.[Mario], Cagnoni, S.[Stefano],
Automatic hippocampus localization in histological images using Differential Evolution-based deformable models,
PRL(34), No. 3, 1 February 2013, pp. 299-307.
Elsevier DOI 1301
Hippocampus; Deformable models; Automatic localization; Histological images; Global continuous optimization; Differential Evolution BibRef

Durrleman, S.[Stanley], Pennec, X.[Xavier], Trouvé, A.[Alain], Braga, J.[José], Gerig, G.[Guido], Ayache, N.J.[Nicholas J.],
Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data,
IJCV(103), No. 1, May 2013, pp. 22-59.
Springer DOI 1305
Time based evaluation of subjects. (e.g. endocranium in chimpanzees) BibRef

Gerig, G., Davis, B., Lorenzen, P., Xu, S.[Shun], Jomier, M., Piven, J., Joshi, S.,
Computational Anatomy to Assess Longitudinal Trajectory of Brain Growth,
3DPVT06(1041-1047).
IEEE DOI 0606
BibRef

Han, J.W.[Jun-Wei], Ji, X.[Xiang], Hu, X.T.[Xin-Tao], Zhu, D.J.[Da-Jiang], Li, K.M.[Kai-Ming], Jiang, X.[Xi], Cui, G.B.[Guang-Bin], Guo, L.[Lei], Liu, T.M.[Tian-Ming],
Representing and Retrieving Video Shots in Human-Centric Brain Imaging Space,
IP(22), No. 7, 2013, pp. 2723-2736.
IEEE DOI video retrieval; video stimulus comprehension; magnetic resonance imaging; video shot retrieval 1307
BibRef

Ji, X.[Xiang], Han, J.W.[Jun-Wei], Hu, X.T.[Xin-Tao], Li, K.M.[Kai-Ming], Deng, F.[Fan], Fang, J.[Jun], Guo, L.[Lei], Liu, T.M.[Tian-Ming],
Retrieving video shots in semantic brain imaging space using manifold-ranking,
ICIP11(3633-3636).
IEEE DOI 1201
BibRef

Iversen, D.H., Lindseth, F., Unsgaard, G., Torp, H., Lovstakken, L.,
Model-Based Correction of Velocity Measurements in Navigated 3-D Ultrasound Imaging During Neurosurgical Interventions,
MedImg(32), No. 9, 2013, pp. 1622-1631.
IEEE DOI 1309
Blood vessels; brain; ultrasound; velocity estimation BibRef

Rudek, M.[Marcelo], Canciglieri, Jr., O.[Osiris], Greboge, T.[Thiago],
A PSO Application in Skull Prosthesis Modelling by Superellipse,
ELCVIA(12), No. 2, 2013, pp. xx-yy.
DOI Link 1403
BibRef

Collard, A.[Anne], Bonnabel, S.[Silvère], Phillips, C.[Christophe], Sepulchre, R.[Rodolphe],
Anisotropy Preserving DTI Processing,
IJCV(107), No. 1, March 2014, pp. 58-74.
Springer DOI 1403
BibRef

Yuan, Y.F.[Yong-Feng], Wang, K.Q.[Kuan-Quan],
A Mixed Gauss and Directional Distance Filter for Fiber Direction Tracking,
IJIG(14), No. 1-2, 2014, pp. 1450001.
DOI Link 1406
BibRef

Li, M., Liu, Y., Chen, F., Hu, D.,
Including Signal Intensity Increases the Performance of Blind Source Separation on Brain Imaging Data,
MedImg(34), No. 2, February 2015, pp. 551-563.
IEEE DOI 1502
Algorithm design and analysis BibRef

Wang, S.H.[Shui-Hua], Zhang, Y.D.[Yu-Dong], Dong, Z.C.[Zheng-Chao], Du, S.[Sidan], Ji, G.[Genlin], Yan, J.[Jie], Yang, J.Q.[Ji-Quan], Wang, Q.[Qiong], Feng, C.M.[Chun-Mei], Phillips, P.[Preetha],
Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection,
IJIST(25), No. 2, 2015, pp. 153-164.
DOI Link 1506
particle swarm optimization BibRef

Yan, Z.[Zheng], Lin, X.H.[Xiao-Hong], Lin, C.D.[Chao-Dong],
The study of brain networks driven by steady-state visual evoked potentials,
IJIST(25), No. 2, 2015, pp. 165-171.
DOI Link 1506
brain network BibRef

Liu, X.X.[Xiao-Xiao], Niethammer, M., Kwitt, R., Singh, N., McCormick, M., Aylward, S.,
Low-Rank Atlas Image Analyses in the Presence of Pathologies,
MedImg(34), No. 12, December 2015, pp. 2583-2591.
IEEE DOI 1601
brain BibRef

Schulz, J.[Jörn], Pizer, S.M.[Stephen M.], Marron, J.S., Godtliebsen, F.[Fred],
Non-linear Hypothesis Testing of Geometric Object Properties of Shapes Applied to Hippocampi,
JMIV(54), No. 1, January 2016, pp. 15-34.
Springer DOI 1601
BibRef

Yoldemir, B., Ng, B., Abugharbieh, R.,
Stable Overlapping Replicator Dynamics for Brain Community Detection,
MedImg(35), No. 2, February 2016, pp. 529-538.
IEEE DOI 1602
Correlation. Brain structure understanding. BibRef

Jeong, H.S.[Hyeonseok S.], Chung, Y.A.[Yong-An],
Contribution of neuroimaging in the diagnosis of brain disorders: Recent findings and future applications,
IJIST(26), No. 2, 2016, pp. 124-135.
DOI Link 1606
neuroimaging, diagnosis, biomarker, brain disorders BibRef

Li, J.N.[Jun-Ning], Shi, Y.G.[Yong-Gang], Toga, A.W.[Arthur W.],
Transformation Invariant Control of Voxel-Wise False Discovery Rate,
MedImg(35), No. 10, October 2016, pp. 2243-2257.
IEEE DOI 1610
Aerospace electronics BibRef

Fakhry, A., Zeng, T., Ji, S.,
Residual Deconvolutional Networks for Brain Electron Microscopy Image Segmentation,
MedImg(36), No. 2, February 2017, pp. 447-456.
IEEE DOI 1702
Convolution BibRef

Qiu, W., Chen, Y., Kishimoto, J., de Ribaupierre, S., Chiu, B., Fenster, A., Menon, B.K., Yuan, J.,
Longitudinal Analysis of Pre-Term Neonatal Cerebral Ventricles From 3D Ultrasound Images Using Spatial-Temporal Deformable Registration,
MedImg(36), No. 4, April 2017, pp. 1016-1026.
IEEE DOI 1704
Convex functions BibRef

Sheng, J.H.[Jin-Hua],
Data modeling and method analysis for brain imaging genetics,
IJIST(27), No. 2, 2017, pp. 162-170.
DOI Link 1706
data synthesis, genotype, linear model, neuroimaging, phenotype, sparse, canonical, correlation, analysis BibRef

Hughes, N.J., Goodhill, G.J.,
Estimating Cortical Feature Maps with Dependent Gaussian Processes,
PAMI(39), No. 10, October 2017, pp. 1918-1928.
IEEE DOI 1709
Covariance matrices, Gaussian processes, Image reconstruction, Imaging, Kernel, Noise measurement, Visualization, Gaussian processes, multitask learning, neuroimaging, visual cortical maps BibRef

Huang, J.Y., Hughes, N.J., Goodhill, G.J.,
Segmenting Neuronal Growth Cones Using Deep Convolutional Neural Networks,
DICTA16(1-7)
IEEE DOI 1701
Axons BibRef

Lopes, P., Baudisch, P.,
Interactive Systems Based on Electrical Muscle Stimulation,
Computer(50), No. 10, 2017, pp. 28-35.
IEEE DOI 1710
electromyography, interactive systems, muscle, EMS, electrical muscle stimulation, guided training, immersive virtual experiences, information access, interactive systems, mechanical actuation, BibRef

Zeng, D., Xie, Q., Cao, W., Lin, J., Zhang, H., Zhang, S., Huang, J., Bian, Z., Meng, D., Xu, Z., Liang, Z., Chen, W., Ma, J.,
Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization,
MedImg(36), No. 12, December 2017, pp. 2546-2556.
IEEE DOI 1712
Biomedical imaging, Brain modeling, Computed tomography, Correlation, Image reconstruction, Tensile stress, tensor BibRef

Li, S.[Sui], Zeng, D.[Dong], Peng, J.J.[Jiang-Jun], Bian, Z.Y.[Zhao-Ying], Zhang, H.[Hao], Xie, Q.[Qi], Wang, Y.B.[Yong-Bo], Liao, Y.T.[Yu-Ting], Zhang, S.L.[Shan-Li], Huang, J.[Jing], Meng, D.Y.[De-Yu], Xu, Z.B.[Zong-Ben], Ma, J.H.[Jian-Hua],
An Efficient Iterative Cerebral Perfusion CT Reconstruction via Low-Rank Tensor Decomposition With Spatial-Temporal Total Variation Regularization,
MedImg(38), No. 2, February 2019, pp. 360-370.
IEEE DOI 1902
Tensile stress, Image reconstruction, Hemodynamics, Matrix decomposition, Numerical models, Computed tomography, regularization BibRef

Masood, S.[Saleha], Sheng, B.[Bin], Li, P.[Ping], Shen, R.M.[Rui-Min], Fang, R.G.[Ruo-Gu], Wu, Q.A.[Qi-Ang],
Automatic choroid layer segmentation using normalized graph cut,
IET-IPR(12), No. 1, January 2018, pp. 53-59.
DOI Link 1712
BibRef

Li, L.L.[Liang-Liang], Si, Y.J.[Yu-Juan], Jia, Z.H.[Zhen-Hong],
A novel brain image enhancement method based on nonsubsampled contourlet transform,
IJIST(28), No. 2, 2018, pp. 124-131.
WWW Link. 1806
BibRef

Chitra, S., Kumaratharan, N., Ramesh, S.,
Enhanced brain image retrieval using carrier frequency offset compensated orthogonal frequency division multiplexing for telemedicine applications,
IJIST(28), No. 3, September 2018, pp. 186-195.
WWW Link. 1808
BibRef

Mondal, P.[Prasenjit], Bhowmick, P.[Partha], Mukherjee, J.[Jayanta], Sural, S.[Shamik],
Efficient computation of cross-sections from human brain model by geometric processing,
RealTimeIP(15), No. 2, August 2018, pp. 421-434.
Springer DOI 1808
BibRef

Zhang, D., Huang, J., Jie, B., Du, J., Tu, L., Liu, M.,
Ordinal Pattern: A New Descriptor for Brain Connectivity Networks,
MedImg(37), No. 7, July 2018, pp. 1711-1722.
IEEE DOI 1808
biomedical MRI, brain, diseases, feature extraction, image classification, learning (artificial intelligence), regression BibRef

Zia, R.[Razia], Akhtar, P.[Pervez], Aziz, A.[Arshad],
A new rectangular window based image cropping method for generalization of brain neoplasm classification systems,
IJIST(28), No. 3, September 2018, pp. 153-162.
WWW Link. 1808
BibRef

Lyu, I.[Ilwoo], Kim, S.H.[Sun Hyung], Woodward, N.D.[Neil D.], Styner, M.A.[Martin A.], Landman, B.A.[Bennett A.],
TRACE: A Topological Graph Representation for Automatic Sulcal Curve Extraction,
MedImg(37), No. 7, July 2018, pp. 1653-1663.
IEEE DOI 1808
Cortex. data acquisition, feature extraction, image reconstruction, image registration, medical image processing, valley detection BibRef

Ning, L., Rathi, Y.,
A Dynamic Regression Approach for Frequency-Domain Partial Coherence and Causality Analysis of Functional Brain Networks,
MedImg(37), No. 9, September 2018, pp. 1957-1969.
IEEE DOI 1809
Correlation, Frequency-domain analysis, Time series analysis, Entropy, Coherence, Standards, Causality, coherence, frequency, simulation BibRef

Hazarika, A.[Anil], Dutta, L.[Lachit], Boro, M.[Meenakshi], Barthakur, M.[Mausumi], Bhuyan, M.[Manabendra],
An automatic feature extraction and fusion model: Application to electromyogram (EMG) signal classification,
MultInfoRetr(8), No. 3, September 2018, pp. 173-186.
Springer DOI 1809
BibRef

Zille, P., Calhoun, V.D., Wang, Y.,
Enforcing Co-Expression Within a Brain-Imaging Genomics Regression Framework,
MedImg(37), No. 12, December 2018, pp. 2561-2571.
IEEE DOI 1812
Bioinformatics, Genomics, Imaging, Feature extraction, Correlation, Data models, Data integration, biomedical signal processing, signal representation BibRef

Baselice, F., Sorriso, A., Rucco, R., Sorrentino, P.,
Phase Linearity Measurement: A Novel Index for Brain Functional Connectivity,
MedImg(38), No. 4, April 2019, pp. 873-882.
IEEE DOI 1904
Phase measurement, Synchronization, Oscillators, Correlation, Indexes, Brain, Brain functional connectivity, functional coupling, volume conduction BibRef

Ma, M.[Ming], Wang, X.[Xu], Duan, Y.[Ye], Frey, S.H.[Scott H.], Gu, X.F.[Xian-Feng],
Optimal mass transport based brain morphometry for patients with congenital hand deformities,
VC(35), No. 9, September 2018, pp. 1311-1325.
WWW Link. 1908
BibRef

Pang, S., Lu, Z., Jiang, J., Zhao, L., Lin, L., Li, X., Lian, T., Huang, M., Yang, W., Feng, Q.,
Hippocampus Segmentation Based on Iterative Local Linear Mapping With Representative and Local Structure-Preserved Feature Embedding,
MedImg(38), No. 10, October 2019, pp. 2271-2280.
IEEE DOI 1910
Manifolds, Image segmentation, Hippocampus, Dictionaries, Image reconstruction, Diseases, Training, Deep learning, manifold regularization BibRef

Shen, L., Thompson, P.M.,
Brain Imaging Genomics: Integrated Analysis and Machine Learning,
PIEEE(108), No. 1, January 2020, pp. 125-162.
IEEE DOI 2001
Genomics, Bioinformatics, Brain modeling, Machine learning, Biomedical imaging, Big data, brain imaging, genomics, statistics BibRef

Zhang, G., Cai, B., Zhang, A., Stephen, J.M., Wilson, T.W., Calhoun, V.D., Wang, Y.,
Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model,
MedImg(39), No. 2, February 2020, pp. 488-498.
IEEE DOI 2002
Uniform resource locators, Bibliographies, Standards, Documentation, Databases, Sorting, Memory management, brain development BibRef

Jose, S.[Shobha], George, S.T.[S. Thomas], Roopchand, P.S.,
DWT-based electromyogram signal classification using maximum likelihood-estimated features for neurodiagnostic applications,
SIViP(14), No. 3, April 2020, pp. 601-608.
WWW Link. 2004
BibRef

Kaur, T.[Taranjit], Gandhi, T.K.[Tapan Kumar],
Deep convolutional neural networks with transfer learning for automated brain image classification,
MVA(31), No. 3, March 2020, pp. Article20.
Springer DOI 2004
BibRef

CHAN, H.L.[Hei Long], YAM, T.C.[Tsz Chun], LUI, L.M.[Lok Ming],
Automatic characteristic-calibrated registration (ACC-REG): Hippocampal surface registration using eigen-graphs,
PR(103), 2020, pp. 107142.
Elsevier DOI 2005
Feature extraction, Feature correspondence, Surface registration, Surface deformation, Eigen-graph BibRef

Huang, S., Lyu, I., Qiu, A., Chung, M.K.,
Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis,
MedImg(39), No. 6, June 2020, pp. 2201-2212.
IEEE DOI 2006
Heat diffusion, Laplace-Beltrami operator, brain cortical sulcal curves, diffusion wavelets, Chebyshev polynomials BibRef

Tang, Z., Liu, X., Li, Y., Yap, P., Shen, D.,
Multi-Atlas Brain Parcellation Using Squeeze-and-Excitation Fully Convolutional Networks,
IP(29), 2020, pp. 6864-6872.
IEEE DOI 2007
Brain, Generators, Artificial neural networks, Generative adversarial networks, brain atlas selection BibRef

Agrawal, P., Whitaker, R.T., Elhabian, S.Y.,
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps,
MedImg(39), No. 7, July 2020, pp. 2316-2326.
IEEE DOI 2007
Probabilistic logic, Image segmentation, Shape, Brain modeling, Imaging, Sociology, Statistics, Probabilistic label maps, log ratio transformation BibRef

Ray, S.[Soumi], Kumar, V.[Vinod],
Information count and distribution matrix: A contemporary approach for content-based brain image indexing,
IJIST(30), No. 3, 2020, pp. 779-793.
DOI Link 2008
classification, feature extraction, image retrieval, indexing, pixel BibRef

Ji, J.Z.[Jun-Zhong], Xing, X.Y.[Xin-Ying], Yao, Y.[Yao], Li, J.W.[Jun-Wei], Zhang, X.D.[Xiao-Dan],
Convolutional kernels with an element-wise weighting mechanism for identifying abnormal brain connectivity patterns,
PR(109), 2021, pp. 107570.
Elsevier DOI 2009
Brain network classification, Convolutional kernels, Element-wise weighting mechanism, Topological features, Abnormal connectivity patterns BibRef

Han, M., Özdenizci, O., Wang, Y., Koike-Akino, T., Erdogmus, D.,
Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction,
SPLetters(27), 2020, pp. 1565-1569.
IEEE DOI 2009
Feature extraction, Task analysis, Decoding, Stress, Training, Physiology, Biomedical monitoring, Adversarial deep learning, stress assessment BibRef

Zhu, B., Sevick-Muraca, E.M., Nguyen, R.D., Shah, M.N.,
Cap-Based Transcranial Optical Tomography in an Awake Infant,
MedImg(39), No. 11, November 2020, pp. 3300-3308.
IEEE DOI 2011
Optical fiber couplers, Detectors, Optical imaging, Optical fiber devices, Functional magnetic resonance imaging, validation BibRef

Wang, L., Sun, B., Robinson, J., Jing, T., Fu, Y.,
EV-Action: Electromyography-Vision Multi-Modal Action Dataset,
FG20(160-167)
IEEE DOI 2102
biomechanics, electromyography, feature extraction, image motion analysis, image recognition, EMG BibRef

Saravanan, S., Karthigaivel, R.,
A fuzzy and spline based dynamic histogram equalization for contrast enhancement of brain images,
IJIST(31), No. 2, 2021, pp. 802-827.
DOI Link 2105
brightness, contrast enhancement, fuzzy and gray level, histogram equalization BibRef

Tang, Y.[Yunbo], Chen, D.[Dan], Li, X.L.[Xiao-Li],
Dimensionality Reduction Methods for Brain Imaging Data Analysis,
Surveys(54), No. 4, May 2021, pp. xx-yy.
DOI Link 2107
Survey, Brain Imaging. dimensionality reduction, factorization, feature learning, statistical tensor analysis, Brain imaging data, big data BibRef

Li, J.N.[Jian-Ning], Pimentel, P.[Pedro], Szengel, A.[Angelika], Ehlke, M.[Moritz], Lamecker, H.[Hans], Zachow, S.[Stefan], Estacio, L.[Laura], Doenitz, C.[Christian], Ramm, H.[Heiko], Shi, H.C.[Hao-Chen], Chen, X.J.[Xiao-Jun], Matzkin, F.[Franco], Newcombe, V.[Virginia], Ferrante, E.[Enzo], Jin, Y.[Yuan], Ellis, D.G.[David G.], Aizenberg, M.R.[Michele R.], Kodym, O.[Oldrich], Španel, M.[Michal], Herout, A.[Adam], Mainprize, J.G.[James G.], Fishman, Z.[Zachary], Hardisty, M.R.[Michael R.], Bayat, A.[Amirhossein], Shit, S.[Suprosanna], Wang, B.M.[Bo-Min], Liu, Z.[Zhi], Eder, M.[Matthias], Pepe, A.[Antonio], Gsaxner, C.[Christina], Alves, V.[Victor], Zefferer, U.[Ulrike], von Campe, G.[Gord], Pistracher, K.[Karin], Schäfer, U.[Ute], Schmalstieg, D.[Dieter], Menze, B.H.[Bjoern H.], Glocker, B.[Ben], Egger, J.[Jan],
AutoImplant 2020-First MICCAI Challenge on Automatic Cranial Implant Design,
MedImg(40), No. 9, September 2021, pp. 2329-2342.
IEEE DOI 2109
Skull, Shape, Implants, Cranial, Image reconstruction, Biomedical imaging, cranioplasty BibRef

Bai, P.L.[Pei-Liang], Safikhani, A.[Abolfazl], Michailidis, G.[George],
A Fast Detection Method of Break Points in Effective Connectivity Networks,
MedImg(41), No. 5, May 2022, pp. 1017-1030.
IEEE DOI 2205
Reactive power, Covariance matrices, Brain modeling, Hidden Markov models, Data models, Time series analysis, tuning parameters BibRef

Jiang, R.T.[Rong-Tao], Woo, C.W.[Choong-Wan], Qi, S.[Shile], Wu, J.[Jing], Sui, J.[Jing],
Interpreting Brain Biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging,
SPMag(39), No. 4, July 2022, pp. 107-118.
IEEE DOI 2207
Neuroimaging, Precision medicine, Predictive models, Biomarkers, Brain modeling, Data models, Behavioral sciences BibRef

Wilms, M.[Matthias], Bannister, J.J.[Jordan J.], Mouches, P.[Pauline], MacDonald, M.E.[M. Ethan], Rajashekar, D.[Deepthi], Langner, S.[Sönke], Forkert, N.D.[Nils D.],
Invertible Modeling of Bidirectional Relationships in Neuroimaging With Normalizing Flows: Application to Brain Aging,
MedImg(41), No. 9, September 2022, pp. 2331-2347.
IEEE DOI 2209
Brain modeling, Morphology, Aging, Data models, Solid modeling, Predictive models, Bidirectional modeling, normalizing flows, brain aging BibRef

Yang, D.[Defu], Chen, J.Z.[Jia-Zhou], Yan, C.G.[Cheng-Gang], Kim, M.[Minjeong], Laurienti, P.J.[Paul J.], Styner, M.[Martin], Wu, G.R.[Guo-Rong],
Group-Wise Hub Identification by Learning Common Graph Embeddings on Grassmannian Manifold,
PAMI(44), No. 11, November 2022, pp. 8249-8260.
IEEE DOI 2210
Connectors, Manifolds, Neuroscience, Sociology, Diseases, Replicability, Psychiatry, Graph embedding, optimization, connector hub BibRef

Ha, S.[Seungbo], Lyu, I.[Ilwoo],
SPHARM-Net: Spherical Harmonics-Based Convolution for Cortical Parcellation,
MedImg(41), No. 10, October 2022, pp. 2739-2751.
IEEE DOI 2210
Convolution, Harmonic analysis, Surface morphology, Transforms, Task analysis, Semantics, Feature extraction, spherical harmonics BibRef

Zhang, J.J.[Jian-Jia], Zhou, L.P.[Lu-Ping], Wang, L.[Lei], Liu, M.T.[Meng-Ting], Shen, D.G.[Ding-Gang],
Diffusion Kernel Attention Network for Brain Disorder Classification,
MedImg(41), No. 10, October 2022, pp. 2814-2827.
IEEE DOI 2210
Transformers, Kernel, Feature extraction, Brain modeling, Task analysis, Time series analysis, Training, Attention network, transformer BibRef

Wu, E.Q.[Edmond Q.], Tang, Z.[Zhiri], Yao, Y.X.[Yu-Xuan], Qiu, X.Y.[Xu-Yi], Deng, P.Y.[Ping-Yu], Xiong, P.W.[Peng-Wen], Song, A.[Aiguo], Zhu, L.M.[Li-Min], Zhou, M.C.[Meng-Chu],
Scalable Gamma-Driven Multilayer Network for Brain Workload Detection Through Functional Near-Infrared Spectroscopy,
Cyber(52), No. 11, November 2022, pp. 12464-12478.
IEEE DOI 2211
Fatigue, Matrix decomposition, Nonhomogeneous media, Neurons, Brain modeling, Gamma distribution, Blood, Brain workload, Wigner-Ville distribution BibRef

Zhu, Q.[Qi], Xu, R.T.[Ru-Ting], Wang, R.[Ran], Xu, X.J.[Xi-Jia], Zhang, Z.Q.[Zhi-Qiang], Zhang, D.Q.[Dao-Qiang],
Stacked Topological Preserving Dynamic Brain Networks Representation and Classification,
MedImg(41), No. 11, November 2022, pp. 3473-3484.
IEEE DOI 2211
Time-domain analysis, Feature extraction, Diseases, Epilepsy, Correlation, Tensors, Sparse matrices, Dynamic brain networks, computer-aided diagnosis BibRef

Ma, K.[Kai], Wen, X.[Xuyun], Zhu, Q.[Qi], Zhang, D.Q.[Dao-Qiang],
Ordinal Pattern Tree: A New Representation Method for Brain Network Analysis,
MedImg(43), No. 4, April 2024, pp. 1526-1538.
IEEE DOI 2404
Kernel, Optimized production technology, Diseases, Graph theory, Feature extraction, Task analysis, Medical diagnosis, classification BibRef

Zhu, Q.[Qi], Li, S.R.[Sheng-Rong], Meng, X.S.[Xiang-Shui], Xu, Q.[Qiang], Zhang, Z.Q.[Zhi-Qiang], Shao, W.[Wei], Zhang, D.Q.[Dao-Qiang],
Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain Network Classification,
MedImg(43), No. 6, June 2024, pp. 2381-2394.
IEEE DOI 2406
Feature extraction, Network topology, Topology, Brain modeling, Functional magnetic resonance imaging, Medical diagnosis, brain disease diagnosis BibRef

Sun, L.[Liang], Fu, Y.L.[Yan-Ling], Zhao, J.Y.[Jun-Yong], Shao, W.[Wei], Zhu, Q.[Qi], Zhang, D.Q.[Dao-Qiang],
MAS-CL: An End-to-End Multi-Atlas Supervised Contrastive Learning Framework for Brain ROI Segmentation,
IP(33), 2024, pp. 4319-4333.
IEEE DOI 2408
Image segmentation, Contrastive learning, Task analysis, Labeling, Deep learning, Data augmentation, Brain modeling, brain segmentation BibRef

Wang, Y.J.[Yan-Jiang], Ma, J.C.[Ji-Chao], Chen, X.[Xue], Liu, B.[Baodi],
Accurately Modeling the Resting Brain Functional Correlations Using Wave Equation With Spatiotemporal Varying Hypergraph Laplacian,
MedImg(41), No. 12, December 2022, pp. 3787-3798.
IEEE DOI 2212
Brain modeling, Laplace equations, Correlation, Mathematical models, Propagation, Predictive models, resonance BibRef

Cui, H.[Hejie], Dai, W.[Wei], Zhu, Y.Q.[Yan-Qiao], Kan, X.[Xuan], Gu, A.A.C.[Antonio Aodong Chen], Lukemire, J.[Joshua], Zhan, L.[Liang], He, L.F.[Li-Fang], Guo, Y.[Ying], Yang, C.[Carl],
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks,
MedImg(42), No. 2, February 2023, pp. 493-506.
IEEE DOI 2302
Brain modeling, Network analyzers, Neuroimaging, Benchmark testing, Functional magnetic resonance imaging, Pipelines, Neuroscience, benchmarks BibRef

Song, X.[Xiao], Zhang, X.D.[Xiao-Dan], Ji, J.Z.[Jun-Zhong], Liu, Y.[Ying],
Multi-scale Superpixel based Hierarchical Attention model for brain CT classification,
JVCIR(91), 2023, pp. 103773.
Elsevier DOI 2303
Brian CT classification, Medical image processing, Multi-scale superpixel, Hierarchical attention BibRef

Gong, W.K.[Wei-Kang], Bai, S.[Song], Zheng, Y.Q.[Ying-Qiu], Smith, S.M.[Stephen M.], Beckmann, C.F.[Christian F.],
Supervised Phenotype Discovery From Multimodal Brain Imaging,
MedImg(42), No. 3, March 2023, pp. 834-849.
IEEE DOI 2303
Imaging, Task analysis, Magnetic resonance imaging, Predictive models, Multitasking, Loading, non-imaging derived phenotypes BibRef

Zou, Y.X.[Yong-Xiang], Cheng, L.[Long], Han, L.J.[Li-Jun], Li, Z.W.[Zheng-Wei], Song, L.P.[Lu-Ping],
Decoding Electromyographic Signal With Multiple Labels for Hand Gesture Recognition,
SPLetters(30), 2023, pp. 483-487.
IEEE DOI 2305
Feature extraction, Gesture recognition, Decoding, Aggregates, Muscles, Hospitals, Graph neural networks, Electromyogram decoding, multiple labels BibRef

Anand, D.V.[D. Vijay], Chung, M.K.[Moo K.],
Hodge Laplacian of Brain Networks,
MedImg(42), No. 5, May 2023, pp. 1563-1573.
IEEE DOI
WWW Link. 2305
Laplace equations, Brain modeling, Neuroimaging, Faces, Kernel, Inference algorithms, Graph theory, Hodge Laplacian, heat kernel smoothing BibRef

Guo, W.Y.[Wei-Yu], Jiang, N.[Ning], Farina, D.[Dario], Su, J.Y.[Jing-Yong], Wang, Z.[Zheng], Lin, C.[Chuang], Xiong, H.[Hui],
Multi-Attention Feature Fusion Network for Accurate Estimation of Finger Kinematics From Surface Electromyographic Signals,
HMS(53), No. 3, June 2023, pp. 512-519.
IEEE DOI 2306
Convolution, Smoothing methods, Long short term memory, Logic gates, Feature extraction, Kinematics, Estimation, surface EMG BibRef

Gürler, Z.[Zeynep], Rekik, I.[Islem],
Federated Brain Graph Evolution Prediction Using Decentralized Connectivity Datasets With Temporally-Varying Acquisitions,
MedImg(42), No. 7, July 2023, pp. 2022-2031.
IEEE DOI 2307
Hospitals, Trajectory, Brain modeling, Predictive models, Training, Training data, Task analysis, Federated GNN learning, data with missing timepoints BibRef

Vienneau, E.P.[Emelina P.], Byram, B.C.[Brett C.],
A Coded Excitation Framework for High SNR Transcranial Ultrasound Imaging,
MedImg(42), No. 10, October 2023, pp. 2886-2898.
IEEE DOI 2310
BibRef

Liu, J.W.[Jia-Wei], Xing, F.[Fuyong], Shaikh, A.[Abbas], French, B.[Brooke], Linguraru, M.G.[Marius George], Porras, A.R.[Antonio R],
Joint Cranial Bone Labeling and Landmark Detection in Pediatric CT Images Using Context Encoding,
MedImg(42), No. 10, October 2023, pp. 3117-3126.
IEEE DOI 2310
BibRef

Vindas, Y.[Yamil], Roux, E.[Emmanuel], Guépié, B.K.[Blaise Kévin], Almar, M.[Marilys], Delachartre, P.[Philippe],
Guided deep embedded clustering regularization for multifeature medical signal classification,
PR(143), 2023, pp. 109812.
Elsevier DOI 2310
Multifeature learning, Deep regularization, Guided training, Signal classification, Transcranial doppler BibRef

Wang, S.B.[Shao-Bo], Chen, Z.[Zaoqin], Liu, Y.Y.[Yang-Yang], Liu, Y.B.[Yu-Bing], Qian, Z.[Zhiyu], Meng, L.[Lin],
Relationship between reduced scattering coefficient and intracranial pressure in clinical patients under different brain edema states,
IJIST(33), No. 6, 2023, pp. 2194-2202.
DOI Link 2311
brain edema, intracranial pressure, near infrared technology, reduced scattering coefficient BibRef

Wang, Z.F.[Ze-Feng], Yao, J.F.[Jun-Feng], Xu, M.[Meiyan], Jiang, M.[Min], Su, J.S.[Jin-Song],
Transformer-based network with temporal depthwise convolutions for sEMG recognition,
PR(145), 2024, pp. 109967.
Elsevier DOI 2311
Surface electromyography, Feature learning, Gesture recognition, Transformer, Self-attention, Temporal depthwise convolution BibRef

Liu, J.Y.[Jing-Yu], Cui, W.G.[Wei-Gang], Chen, Y.P.[Yi-Peng], Ma, Y.L.[Yu-Lan], Dong, Q.[Qunxi], Cai, R.[Ran], Li, Y.[Yang], Hu, B.[Bin],
Deep Fusion of Multi-Template Using Spatio-Temporal Weighted Multi-Hypergraph Convolutional Networks for Brain Disease Analysis,
MedImg(43), No. 2, February 2024, pp. 860-873.
IEEE DOI 2402
Diseases, Time series analysis, Neurological diseases, Fuses, Correlation, Brain modeling, multi-template BibRef

Du, L.[Lei], Zhao, Y.[Ying], Zhang, J.T.[Jian-Ting], Shang, M.[Muheng], Zhang, J.[Jin], Han, J.W.[Jun-Wei],
Identification of Genetic Risk Factors Based on Disease Progression Derived From Longitudinal Brain Imaging Phenotypes,
MedImg(43), No. 3, March 2024, pp. 928-939.
IEEE DOI 2403
Genetics, Diseases, Imaging, Brain modeling, Neuroimaging, Trajectory, Data models, Brain imaging genetics, disease progression, sparse multi-task mixed-effects model BibRef

Liang, Q.M.[Quan-Min], Ma, J.J.[Jun-Ji], Chen, X.T.[Xi-Tian], Lin, Q.X.[Qi-Xiang], Shu, N.[Ni], Dai, Z.J.[Zheng-Jia], Lin, Y.[Ying],
A Hybrid Routing Pattern in Human Brain Structural Network Revealed By Evolutionary Computation,
MedImg(43), No. 5, May 2024, pp. 1895-1909.
IEEE DOI 2405
Routing, Head, Brain modeling, Navigation, Magnetic heads, Knowledge engineering, Image segmentation, Brain connectome, evolutionary computation BibRef

Liu, M.J.[Meng-Jun], Zhang, H.F.[Hui-Feng], Liu, M.X.[Mian-Xin], Chen, D.D.[Dong-Dong], Zhuang, Z.X.[Zi-Xu], Wang, X.[Xin], Zhang, L.C.[Li-Chi], Peng, D.H.[Dai-Hui], Wang, Q.[Qian],
Randomizing Human Brain Function Representation for Brain Disease Diagnosis,
MedImg(43), No. 7, July 2024, pp. 2537-2546.
IEEE DOI Code:
WWW Link. 2407
Brain, Diseases, Medical diagnosis, Functional magnetic resonance imaging, Transformers, brain disease diagnosis BibRef

Costa, L.[Lilia], Anacleto, O.[Osvaldo], Nascimento, D.C.[Diego C.], Smith, J.Q.[James Q.], Queen, C.M.[Catriona M.], Louzada, F.[Francisco], Nichols, T.[Thomas],
Evaluating brain group structure methods using hierarchical dynamic models,
PR(155), 2024, pp. 110687.
Elsevier DOI 2408
Multiregression dynamic model, Bayesian network, Group analysis, Cluster analysis, Hierarchical models BibRef


Kwarciak, K.[Kamil], Wodzinski, M.[Marek],
Deep Generative Networks for Heterogeneous Augmentation of Cranial Defects,
LIMIT23(1058-1066)
IEEE DOI 2401
BibRef

De, A.[Arijit], Tiwari, M.[Mona], Chowdhury, A.S.[Ananda S.],
3D Hippocampus Segmentation Using a Hog Based Loss Function with Majority Pooling,
ICIP23(2260-2264)
IEEE DOI 2312
BibRef

Zhdanov, M.[Maksim], Steinmann, S.[Saskia], Hoffmann, N.[Nico],
Investigating Brain Connectivity with Graph Neural Networks and GNNExplainer,
ICPR22(5155-5161)
IEEE DOI 2212
Deep learning, Pathology, Neuroscience, Mental disorders, Electroencephalography, Graph neural networks, Recording BibRef

Bohi, A.[Amine], Auzias, G.[Guillaume], Noûs, C.[Camille], Lefèvre, J.[Julien],
Comparing Vector Fields Across Surfaces: Interest for Characterizing the Orientations of Cortical Folds,
ICIP22(391-395)
IEEE DOI 2211
Geometry, Neuroimaging, Surface reconstruction, Task analysis, Surface treatment, Kidney, Image reconstruction, Vector field, Differential geometry BibRef

Huang, Y.W.[Ya-Wen], Zheng, F.[Feng], Sun, X.[Xu], Li, Y.X.[Yue-Xiang], Shao, L.[Ling], Zheng, Y.F.[Ye-Feng],
Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks,
ECCV22(XXXIV:183-199).
Springer DOI 2211
BibRef

Zhang, K.[Ke], Wu, F.[Fei], Sun, J.X.[Jun-Xiao], Yang, G.Y.[Guan-Yu], Shu, H.Z.[Hua-Zhong], Kong, Y.Y.[You-Yong],
Iterative Seeded Region Growing for Brain Tissue Segmentation,
ICIP22(886-890)
IEEE DOI 2211
Training, Deep learning, Image segmentation, Brain, Magnetic resonance imaging, Iterative methods, Task analysis, supervoxel matching BibRef

Ranem, A.[Amin], González, C.[Camila], Mukhopadhyay, A.[Anirban],
Continual Hippocampus Segmentation with Transformers,
CLVision22(3710-3719)
IEEE DOI 2210
Image segmentation, Semantics, Sociology, Computer architecture, Artificial neural networks, Transformers, Task analysis BibRef

Zhang, M.[Min], Guo, Y.[Yang], Lei, N.[Na], Zhao, Z.[Zhou], Wu, J.F.[Jian-Feng], Xu, X.Y.[Xiao-Yin], Wang, Y.L.[Ya-Lin], Gu, X.F.[Xian-Feng],
Cortical Surface Shape Analysis Based on Alexandrov Polyhedra,
ICCV21(14224-14232)
IEEE DOI 2203
Geometry, Visualization, Shape, Prognostics and health management, Alzheimer's disease, Diseases, Biometrics, Segmentation, grouping and shape BibRef

Zhou, H.[Haiyu], Zhang, D.Q.[Dao-Qiang],
Graph-In-Graph Convolutional Networks for Brain Disease Diagnosis,
ICIP21(111-115)
IEEE DOI 2201
Correlation, Convolution, Image processing, Sociology, Data structures, Medical diagnosis, Graph convolutional network, brain disease diagnosis BibRef

Cheng, K.[Kellen], Atchaneeyasakul, K.[Kunakorn], Barakat, Z.[Zeid], Liebeskind, D.S.[David S.], Scalzo, F.[Fabien],
CT Perfusion Imaging of the Brain with Machine Learning,
ISVC21(II:41-52).
Springer DOI 2112
BibRef

Torbati, M.E.[Mahbaneh Eshaghzadeh], Tudorascu, D.L.[Dana L.], Minhas, D.S.[Davneet S.], Maillard, P.[Pauline], DeCarli, C.S.[Charles S.], Hwang, S.J.[Seong Jae],
Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning,
CVAMD21(3277-3286)
IEEE DOI 2112
Neuroimaging, Measurement, Brain BibRef

Nguyen, N.P.[Nguyen P.], Yoo, Y.[Youngjin], Chekkoury, A.[Andrei], Eibenberger, E.[Eva], Re, T.J.[Thomas J.], Das, J.[Jyotipriya], Balachandran, A.[Abishek], Lui, Y.W.[Yvonne W.], Sanelli, P.C.[Pina C.], Schroeppel, T.J.[Thomas J.], Bodanapally, U.[Uttam], Nicolaou, S.[Savvas], White, T.A.[Tommi A.], Bunyak, F.[Filiz], Comaniciu, D.[Dorin], Gibson, E.[Eli],
Brain midline shift detection and quantification by a cascaded deep network pipeline on non-contrast computed tomography scans,
MIA-COVID19D21(487-495)
IEEE DOI 2112
Location awareness, Heating systems, Head, Computed tomography, Pipelines, Radiology BibRef

Cruz, R.S.[Rodrigo Santa], Lebrat, L.[Leo], Bourgeat, P.[Pierrick], Fookes, C.[Clinton], Fripp, J.[Jurgen], Salvado, O.[Olivier],
DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction,
WACV21(806-815)
IEEE DOI 2106
Deep learning, Surface reconstruction, Image resolution, Feature extraction BibRef

Gribel, D.[Daniel], Vidal, T.[Thibaut], Gendreau, M.[Michel],
Assortative-Constrained Stochastic Block Models,
ICPR21(6212-6218)
IEEE DOI 2105
networks for cerebral-cortex activity regions. Maximum likelihood detection, Cats, Image edge detection, Stochastic processes, Brain modeling, Partitioning algorithms BibRef

Murabito, F., Palazzo, S., Salanitri, F.P.[F. Proietto], Rundo, F., Bagci, U., Giordano, D., Leonardi, R., Spampinato, C.,
Deep Recurrent-Convolutional Model for Automated Segmentation of Craniomaxillofacial CT Scans,
ICPR21(9062-9067)
IEEE DOI 2105
Convolutional codes, Image segmentation, Shape, Computed tomography, Atmospheric modeling, Semantics, Imaging, Pharyngeal airways BibRef

Barile, B.[Beradino], Marzullo, A.[Aldo], Stamile, C.[Claudio], Durand-Dubief, F.[Francoise], Sappey-Marinier, D.[Dominique],
Tensor Factorization of Brain Structural Graph for Unsupervised Classification in Multiple Sclerosis,
ICPR21(5052-5059)
IEEE DOI 2105
Tensors, Multiple sclerosis, Pathological processes, Brain modeling, Data models, Classification algorithms, Pattern recognition BibRef

Rojas, A.[Andrés], Kroupi, E.[Eleni], Martens, G.[Géraldine], Thibaut, A.[Aurore], Barra, A.[Alice], Laureys, S.[Steven], Ruffini, G.[Giulio], Soria-Frisch, A.[Aureli],
Prediction of Minimally Conscious State Responder Patients to Non-invasive Brain Stimulation Using Machine Learning Algorithms,
AIHA20(515-525).
Springer DOI 2103
Transcranial Electrical Stimulation (tES) therapy. BibRef

Rahali, R., Ben Salem, Y., Dridi, N., Dahman, H.,
B-Spline Level Set For Drosophila Image Segmentation,
ICIP20(413-417)
IEEE DOI 2011
Level set, Image segmentation, Splines (mathematics), Biology, Noise measurement, Clustering algorithms, Smoothing methods, DICE BibRef

Wen, C.F.[Cheng-Feng], Lei, N.[Na], Ma, M.[Ming], Qi, X.[Xin], Zhang, W.[Wen], Wang, Y.L.[Ya-Lin], Gu, X.F.[Xian-Feng],
Surface Foliation Based Brain Morphometry Analysis,
MFCA19(186-195).
Springer DOI 1912
BibRef

Tward, D.[Daniel], Li, X.[Xu], Huo, B.X.[Bing-Xing], Lee, B.[Brian], Mitra, P.[Partha], Miller, M.[Michael],
3d Mapping of Serial Histology Sections with Anomalies Using a Novel Robust Deformable Registration Algorithm,
MFCA19(162-173).
Springer DOI 1912
BibRef

Marinescu, R.V.[Razvan V.], Eshaghi, A.[Arman], Alexander, D.C.[Daniel C.], Golland, P.[Polina],
Brainpainter: A Software for the Visualisation of Brain Structures, Biomarkers and Associated Pathological Processes,
MBIA19(112-120).
Springer DOI 1912
BibRef

Sagindykov, T.B., Brazhe, A.R., Sorokin, D.V.,
Preprocessing and Registration of Miniscope-based Calcium Imaging Of The Rodent Brain,
PTVSBB19(185-188).
DOI Link 1912
BibRef

Rashed, E.A., Gomez-Tames, J., Hirata, A.,
Generation of Head Models for Brain Stimulation Using Deep Convolution Networks,
ICIP19(2621-2625)
IEEE DOI 1910
Transcranial magnetic stimulation, image segmentation, deep learning, convolution neural networks BibRef

Yang, C., Lo, C., Wang, H., Chou, J., FrankWang, Y.,
Weakly-Supervised Learning for Attention-Guided Skull Fracture Classification In Computed Tomography Imaging,
ICIP19(1337-1341)
IEEE DOI 1910
Medical imaging, image attention, weakly-supervised learning, deep learning, convolutional neural networks BibRef

Sarbazvatan, S., Ventura, R., Esteves, F.F., Lima, S.Q., Sanches, J.M.,
A Novel Graph-Based Approach for Seriation of Mouse Brain Cross-Section from Images,
IbPRIA19(I:461-471).
Springer DOI 1910
BibRef

Mohanty, K.[Kaustav], Yousefian, O.[Omid], Karbalaeisadegh, Y.[Yasamin], Ulrich, M.[Micah], Muller, M.[Marie],
Predicting Structural Properties of Cortical Bone by Combining Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD Study,
ICIAR19(I:407-417).
Springer DOI 1909
BibRef

Fonal, K., Zdunek, R., Wolczowski, A.,
Feature-Fusion HALS-based Algorithm for Linked CP Decomposition Model in Application to Joint EMG/MMG Signal Classification,
ICPR18(928-933)
IEEE DOI 1812
Tensile stress, Feature extraction, Electromyography, Brain modeling, Pattern recognition, Numerical models, EMG/MMG signal classification BibRef

Guo, Y.L.[Yi-Luan], Nejati, H.[Hossein], Cheung, N.M.[Ngai-Man],
Deep neural networks on graph signals for brain imaging analysis,
ICIP17(3295-3299)
IEEE DOI 1803
Biological neural networks, Brain modeling, Convolution, Feature extraction, Imaging, Sensors, Brain imaging, autoencoder, graph signal processing BibRef

Robles, F.A.B.[Felipe-Andrés Bello], Panerai, R.B.[Ronney B.], Pacheco, M.C.[Max Chacón],
Linear Modelling of Cerebral Autoregulation System Using Genetic Algorithms,
CIARP17(94-101).
Springer DOI 1802
BibRef

Xie, S.D.[Shu-Dong], Leow, W.K.[Wee Kheng], Lim, T.C.[Thiam Chye],
Laplacian Deformation with Symmetry Constraints for Reconstruction of Defective Skulls,
CAIP17(II: 24-35).
Springer DOI 1708
BibRef

Ghaemmaghami, P., Nabi, M., Yan, Y., Sebe, N.,
Sparse-coded cross-domain adaptation from the visual to the brain domain,
ICPR16(4214-4219)
IEEE DOI 1705
Adaptation models, Brain, Decoding, Dictionaries, Machine learning algorithms, Neuroimaging, Visualization BibRef

Gordon, J., Lerner, B.,
Exposing and modeling underlying mechanisms in ALS with machine learning,
ICPR16(2168-2173)
IEEE DOI 1705
Clinical trials, Databases, Diseases, Prediction algorithms, Predictive models, Radio frequency, Vegetation BibRef

Turgut, U.O.[Umut Orcun], Gokcay, D.[Didem],
Shape Preservation Based on Gaussian Radial Basis Function Interpolation on Human Corpus Callosum,
SeSAME16(118-132).
Springer DOI 1703
BibRef

Liu, Y., Zhang, M., Yang, W., Lu, Z., Feng, Q.,
Hippocampus Segmentation Based on Orientation-Scale Descriptor and Sparse Coding,
DICTA16(1-8)
IEEE DOI 1701
Deformable models BibRef

Robinson, E.C., Glocker, B., Rajchl, M., Rueckert, D.,
Discrete Optimisation for Group-Wise Cortical Surface Atlasing,
WBIR16(442-448)
IEEE DOI 1612
BibRef

Hafri, M., Jennane, R., Lespessailles, E., Toumi, H.,
Dual active contours model for HR-pQCT cortical bone segmentation,
ICPR16(2270-2275)
IEEE DOI 1705
Active contours, Bones, Computed tomography, Cortical bone, Image segmentation, Nonhomogeneous media, HR-pQCT, Segmentation, active contours, cortical bone, local, energy BibRef

Hafri, M., Toumi, H., Boutroy, S., Chapurlat, R.D., Lespessailles, E., Jennane, R.,
Fuzzy energy based active contours model for HR-PQCT cortical bone segmentation,
ICIP16(4334-4338)
IEEE DOI 1610
Active contours BibRef

Pei, Y., Kou, L., Zha, H.,
Anatomical structure similarity estimation by random forest,
ICIP16(2941-2945)
IEEE DOI 1610
Anatomical structure BibRef

Pei, Y., Dai, F., Xu, T., Zha, H., Ma, G.,
Volumetric reconstruction of craniofacial structures from 2D lateral cephalograms by regression forest,
ICIP16(4052-4056)
IEEE DOI 1610
Image reconstruction BibRef

Moshobane, M.C., de Bruyn, P.J.N., Bester, M.N.,
Assessing 3d Photogrammetry Techniques In Craniometrics,
ISPRS16(B6: 267-273).
DOI Link 1610
BibRef

Jovic, A., Kukolja, D., Jozic, K., Horvat, M.,
A web platform for analysis of multivariate heterogeneous biomedical time-series: A preliminary report,
WSSIP16(1-4)
IEEE DOI 1608
BibRef
And: WSSIP16(1-4)
IEEE DOI 1608
Brain modeling Internet BibRef

Liu, S.D.[Si-Dong], Cai, W.D.[Wei-Dong], Liu, S.Q.[Si-Qi], Pujol, S.[Sonia], Kikinis, R.[Ron], Feng, D.D.[David Dagan],
Subject-centered multi-view feature fusion for neuroimaging retrieval and classification,
ICIP15(2505-2509)
IEEE DOI 1512
classification; multi-view; neuroimaging; retrieval BibRef

Nava, R.[Rodrigo], Kybic, J.[Jan],
Supertexton-based segmentation in early Drosophila oogenesis,
ICIP15(2656-2659)
IEEE DOI 1512
Drosophila BibRef

Hou, M.[Ming], Chaib-draa, B.[Brahim],
Hierarchical tucker tensor regression: Application to brain imaging data analysis,
ICIP15(1344-1348)
IEEE DOI 1512
Brain Imaging BibRef

Kim, J.Y.[Jin-Young], Duchin, Y.[Yuval], Sapiro, G.[Guillermo], Vitek, J.[Jerrold], Harel, N.[Noam],
Clinical deep brain stimulation region prediction using regression forests from high-field MRI,
ICIP15(2480-2484)
IEEE DOI 1512
Deep brain stimulation BibRef

Zheng, L.G.[Li-Gang], Kim, H.W.J.[Hyun-Woo J.], Adluru, N.[Nagesh], Newton, M.A.[Michael A.], Singh, V.[Vikas],
Riemannian Variance Filtering: An Independent Filtering Scheme for Statistical Tests on Manifold-Valued Data,
Diff-CVML17(699-708)
IEEE DOI 1709
Brain, Diseases, Imaging, Manifolds, Statistical analysis, Tensile stress, Testing BibRef

Kim, W.H.[Won Hwa], Bendlin, B.B.[Barbara B.], Chung, M.K.[Moo K.], Johnson, S.C.[Sterling C.], Singh, V.[Vikas],
Statistical inference models for image datasets with systematic variations,
CVPR15(4795-4803)
IEEE DOI 1510
BibRef

Kowalik-Urbaniak, I.A.[Ilona A.], Castelli, J.[Jane], Hemmati, N.[Nasim], Koff, D.[David], Smolarski-Koff, N.[Nadine], Vrscay, E.R.[Edward R.], Wang, J.[Jiheng], Wang, Z.[Zhou],
Modelling of Subjective Radiological Assessments with Objective Image Quality Measures of Brain and Body CT Images,
ICIAR15(3-13).
Springer DOI 1507
BibRef

Thomas, R.M., Yatawatta, S., Keysers, C.,
Sparse coding with a global connectivity constraint,
ICIP14(4087-4091)
IEEE DOI 1502
Brain modeling BibRef

Yang, Z.[Zhen], Zhong, S.H.[Sheng-Hua], Carass, A.[Aaron], Ying, S.H.[Sarah H.], Prince, J.L.[Jerry L.],
Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression,
MLMI14(68-76).
Springer DOI 1410
BibRef

Yaqub, M.[Mohammad], Kopuri, A.[Anil], Rueda, S.[Sylvia], Sullivan, P.B.[Peter B.], McCormick, K.[Kenneth], Noble, J.A.[J. Alison],
A Constrained Regression Forests Solution to 3D Fetal Ultrasound Plane Localization for Longitudinal Analysis of Brain Growth and Maturation,
MLMI14(109-116).
Springer DOI 1410
BibRef

Rudek, M.[Marcelo], Canciglieri, O.[Osiris], Jahnen, A.[Andreas], Bichinho, G.L.[Gerson Linck],
CT slice retrieval by shape ellipses descriptors for skull repairing,
ICIP13(761-764)
IEEE DOI 1402
Biomedical imaging BibRef

Li, C.[Cheng], Jin, D.[Dakai], Burns, T.L.[Trudy L.],
A New Algorithm for Cortical Bone Segmentation with Its Validation and Applications to In Vivo Imaging,
CIAP13(II:349-358).
Springer DOI 1309
BibRef

Lyu, I.[Ilwoo], Li, G.[Gang], Kim, M.J.[Min-Jeong], Shen, D.G.[Ding-Gang],
Multiple Atlases-Based Joint Labeling of Human Cortical Sulcal Curves,
MCVM12(124-132).
Springer DOI 1305
BibRef

Portman, N.[Nataliya], Evans, A.[Alan],
Novel Vector-Valued Approach to Automatic Brain Tissue Classification,
MCVM12(70-81).
Springer DOI 1305
BibRef

Smitha, C.K., Narayanan, N.K.,
Study of brain dynamics under mobile phone radiation using various fractal dimension methods,
ICSIPR13(288-292).
IEEE DOI 1304
BibRef

Feng, M.L.[Meng-Ling], Loy, L.Y.[Liang Yu], Sim, K.[Kelvin], Phua, C.[Clifton], Zhang, F.[Feng], Guan, C.T.[Cun-Tai],
Artifact correction with robust statistics for non-stationary intracranial pressure signal monitoring,
ICPR12(557-560).
WWW Link. 1302
BibRef

Zhang, F.[Feng], Feng, M.L.[Meng-Ling], Loy, L.Y.[Liang Yu], Zhang, Z.[Zhuo], Guan, C.T.[Cun-Tai],
Online ICP forecast for patients with traumatic brain injury,
ICPR12(37-40).
WWW Link. 1302
BibRef

Ulas, A.[Aydin], Gönen, M.[Mehmet], Castellani, U.[Umberto], Murino, V.[Vittorio], Bellani, M.[Marcella], Tansella, M.[Michele], Brambilla, P.[Paolo],
A Localized MKL Method for Brain Classification with Known Intra-class Variability,
MLMI12(152-159).
Springer DOI 1211
BibRef

Liao, S.[Shu], Zhang, D.Q.[Dao-Qiang], Yap, P.T.[Pew-Thian], Wu, G.R.[Guo-Rong], Shen, D.G.[Ding-Gang],
Group Sparsity Constrained Automatic Brain Label Propagation,
MLMI12(45-53).
Springer DOI 1211
BibRef

Cheng, Y.[Yuan], Leow, W.K.[Wee Kheng], Lim, T.C.[Thiam Chye],
Automatic identification of Frankfurt plane and mid-sagittal plane of skull,
WACV12(233-238).
IEEE DOI 1203
human skull features. Surgery, forensics. Deals with know asymmetries. BibRef

Berkels, B.[Benjamin], Kotowski, M.[Marc], Rumpf, M.[Martin], Schaller, C.[Carlo],
Sulci Detection in Photos of the Human Cortex Based on Learned Discriminative Dictionaries,
SSVM11(326-337).
Springer DOI 1201
BibRef

Aloui, K., Nait-Ali, A., Naceur, M.S.,
New biometric approach based on geometrical humain brain patterns recognition: Some preliminary results,
EUVIP11(258-263).
IEEE DOI 1110
BibRef

Fang, S.F.[Shiao-Fen], Liu, Y.[Ying], Vinci-Booher, S.[Sophia], Anthony, B.[Bruce], Zhou, F.[Feng],
Surface Analysis from Video Volumes for Fetal Alcohol Syndrome Classification,
DICTA10(22-26).
IEEE DOI 1012
BibRef

Elnakib, A.[Ahmed], El-Baz, A.[Ayman], Casanova, M.F.[Manuel F.], Switala, A.E.[Andrew E.],
Dyslexia Diagnostics by Centerline-Based Shape Analysis of the Corpus Callosum,
ICPR10(261-264).
IEEE DOI 1008
BibRef

Sona, D.[Diego], Avesani, P.[Paolo],
Multivariate Brain Mapping by Random Subspaces,
ICPR10(2576-2579).
IEEE DOI 1008
BibRef

Moreira, M.[Miguel], Dias, P.[Paulo], Cordeiro, M.[Miguel], Santos, G.[Gustavo], Fernandes, J.M.[José Maria],
A Framework for Cerebral CT Perfusion Imaging Methods Comparison,
ICIAR10(II: 141-150).
Springer DOI 1006
BibRef

Chen, Y.J.[Yun-Jie], Zhang, J.W.[Jian-Wei], Wang, S.F.[Shun-Feng],
A New Fast Chinese Visible Human Brain Skull Stripping Method,
CISP09(1-5).
IEEE DOI 0910
BibRef

Su, Z.Y.[Zheng-Yu], Zeng, W.[Wei], Shi, R.[Rui], Wang, Y.L.[Ya-Lin], Sun, J.[Jian], Gu, X.F.[Xian-Feng],
Area Preserving Brain Mapping,
CVPR13(2235-2242)
IEEE DOI 1309
BibRef

Quachtran, B., Hamilton, R., Scalzo, F.,
Detection of Intracranial Hypertension using Deep Learning,
ICPR16(2491-2496)
IEEE DOI 1705
Convolution, Convolutional codes, Hypertension, Iterative closest point algorithm, Machine learning, Neural networks, Training BibRef

Scalzo, F.[Fabien], Xu, P.[Peng], Bergsneider, M.[Marvin], Hu, X.[Xiao],
Random Subwindows for Robust Peak Recognition in Intracranial Pressure Signals,
ISVC08(I: 370-380).
Springer DOI 0812
BibRef

Przybyszewski, A.W.[Andrzej W.],
Rough Set Theory of Pattern Classification in the Brain,
PReMI07(295-303).
Springer DOI 0712
BibRef

Ponce, E.[Ernesto], Ponce, D.[Daniel],
FEM 2D Analysis of Mild Traumatic Brain Injury on a Child,
PReMI07(186-191).
Springer DOI 0712
BibRef

Yang, F.[Faguo], Kruggel, F.[Frithjof],
Optimization Algorithms for Labeling Brain Sulci Based on Graph Matching,
MMBIA07(1-7).
IEEE DOI 0710
BibRef

Kruggel, F.,
Automatical Adaptation of Anatomical Masks to the Neocortex,
CVRMed95(XX-YY) BibRef 9500

Favreau, J.M.[Jean-Marie], Hemm, S.[Simone], Nuti, C.[Christophe], Coste, J.[Jerome], Barra, V.[Vincent], Lemaire, J.J.[Jean-Jacques],
A Tool for Topographic Analysis of Electrode Contacts in Human Cortical Stimulation,
MMBIA07(1-6).
IEEE DOI 0710
BibRef

Vázquez, F.[Fernando], Gómez, P.[Pilar],
Automatic Construction of Fuzzy Rules for Modelling and Prediction of the Central Nervous System,
IbPRIA07(I: 443-450).
Springer DOI 0706
BibRef

Ólafsdóttir, H.[Hildur], Hansen, M.S.[Michael Sass], Sjöstrand, K.[Karl], Darvann, T.A.[Tron A.], Hermann, N.V.[Nuno V.], Oubel, E.[Estanislao], Ersbøll, B.K.[Bjarne K.], Larsen, R.[Rasmus], Frangi, A.F.[Alejandro F.], Larsen, P.[Per], Perlyn, C.A.[Chad A.], Morriss-Kay, G.M.[Gillian M.], Kreiborg, S.[Sven],
Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse,
SCIA07(112-121).
Springer DOI 0706
BibRef

Hansen, M.S.[Michael S.], Hansen, M.F.[Mads F.], Larsen, R.[Rasmus],
Diffeomorphic Statistical Deformation Models,
NRTL07(1-8).
IEEE DOI 0710
BibRef

Battiato, S.[Sebastiano], Farinella, G.M.[Giovanni M.], Impoco, G.[Gaetano], Garretto, O.[Orazio], Privitera, C.[Carmelo],
Cortical Bone Classification by Local Context Analysis,
MIRAGE07(567-578).
Springer DOI 0703
BibRef

Avants, B.B.[Brian B.], Hurt, H., Giannetta, J., Epstein, C.L., Shera, D., Wang, J., Gee, J.C.,
Analyzing Effects of Intra-Uterine Cocaine Exposure on Adolescent Brain Structure with Symmetric Diffeomorphisms,
MMBIA06(94).
IEEE DOI 0609
BibRef

Cathier, P.[Pascal], Mangin, J.F.[Jean-Francois],
Registration of Cortical Connectivity Matrices,
MMBIA06(66).
IEEE DOI 0609
BibRef

Mei, L.[Lin], Figl, M.[Michael], Rueckert, D.[Daniel], Darzi, A.[Ara], Edwards, P.[Philip],
Statistical shape modelling: How many modes should be retained?,
MMBIA08(1-8).
IEEE DOI 0806
BibRef

Rao, A.[Anil], Cootes, T.F.[Tim F.], Rueckert, D.[Daniel],
Hierarchical Statistical Shape Analysis and Prediction of Sub-Cortical Brain Structures,
MMBIA06(75).
IEEE DOI 0609
BibRef

d'Haese, P.F.[Pierre-François], Pallavaram, S.[Srivatsan], Yu, H.[Hong], Spooner, J.[John], Konrad, P.E.[Peter E.], Dawant, B.M.[Benoit M.],
Deformable Physiological Atlas-Based Programming of Deep Brain Stimulators: A Feasibility Study,
WBIR06(144-150).
Springer DOI 0607
BibRef

He, Y.[Ying], Li, X.[Xin], Gu, X.F.[Xian-Feng], Qin, H.[Hong],
Brain Image Analysis Using Spherical Splines,
EMMCVPR05(633-644).
Springer DOI 0601
BibRef

Lin, H.J.[H. Jill], Ruiz-Correa, S.[Salvador], Sze, R.W.[Raymond W.], Cunningham, M.L.[Michael L.], Speltz, M.L.[Matthew L.], Hing, A.V.[Anne V.], Shapiro, L.G.[Linda G.],
Efficient Symbolic Signatures for Classifying Craniosynostosis Skull Deformities,
CVBIA05(302-313).
Springer DOI 0601
BibRef

Yue, W.N.[Wei-Ning], Yin, D.[Dali], Li, C.J.[Cheng-Jun], Wang, G.P.[Guo-Ping], Xu, T.M.[Tian-Min],
Locating Large-Scale Craniofacial Feature Points on X-ray Images for Automated Cephalometric Analysis,
ICIP05(II: 1246-1249).
IEEE DOI 0512
BibRef

Takeda, T., Wu, J.[Jin], Lwin, T.T.[Thet-Thet], Sunaguchi, N., Yuasa, T., Hyodo, K., Dilmanian, F.A., Minami, M., Akatsuka, T.,
Cerebral Perfusion Imaging of Live Mice by Fluorescent X-Ray CT,
ICIP05(III: 593-596).
IEEE DOI 0512
BibRef

Snoussi, H., Calhoun, V.D.,
Bayesian Blind Source Separation for Brain Imaging,
ICIP05(III: 581-584).
IEEE DOI 0512
BibRef

Kovalev, V.A.,
A new method for quantification of age-related brain changes,
ICPR04(III: 770-773).
IEEE DOI 0409
BibRef

Chung, M.K., Worsley, K.J., Robbins, S., Evans, A.C.,
Tensor-based brain surface modeling and analysis,
CVPR03(I: 467-473).
IEEE DOI 0307
BibRef

Wu, C.C.[Cheng-Chi], Chen, C.Y.[Chao-Yu], Chang, H.M.[Hsiu-Ming], Chiang, A.S.[Ann-Shyn], Chen, Y.C.[Yung-Chang],
Improved Two-Level Model Averaging Techniques in Drosophila Brain Modeling,
PSIVT09(921-931).
Springer DOI 0901
BibRef

Chen, Y.C.[Ying-Cheng], Chen, Y.C.[Yung-Chang], Chiang, A.S.[Ann-Shyn],
Two-level model averaging techniques in drosophila brain imaging,
ICIP02(II: 941-944).
IEEE DOI 0210
BibRef

Pielot, R., Scholz, M., Obermayer, K., Gundelfinger, E.D., Hess, A.,
Performance of 3D landmark detection methods for point-based warping in autoradiographic brain imaging,
Southwest02(269-273).
IEEE Top Reference. 0208
BibRef

Hult, R.[Roger], Bengtsson, E.[Ewert],
Combined Visualisation of Functional and Anatomical Brain Images,
SCIA01(P-W3A). 0206
BibRef

Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.,
Shape Analysis of Brain Ventricles Using SPHARM,
MMBIA01(xx-yy). 0110
BibRef

Pielot, R., Scholz, M., Obermayer, K., Gundelfinger, E., Hess, A.,
3D Edge Detection to Define Landmarks for Point-based Warping in Brain Imaging,
ICIP01(II: 343-346).
IEEE DOI 0108
BibRef

Pavlidis, I.[Ioannis], Levine, J.[James], Baukol, P.[Paulette],
Thermal Image Analysis for Anxiety Detection,
ICIP01(II: 315-318).
IEEE DOI 0108
BibRef
Earlier:
Thermal Imaging for Anxiety Detection,
CVBVS00(104).
IEEE DOI 0006
BibRef

Renault, C., Desvignes, M., Revenu, M.,
3d Curves Tracking and Its Application to Cortical Sulci Detection,
ICIP00(Vol II: 491-494).
IEEE DOI 0008
BibRef

Gorodnitsky, I., Hershey, J.,
A Low-level Cortical Perception Model with Applications to Image Analysis,
ICIP00(Vol III: 308-311).
IEEE DOI 0008
BibRef

Lundqvist, R., Thurfjell, L., Pagani, M., Jacobsson, H., Jonsson, C., Larsson, S., Wägner, A., Bengtsson, E.,
Classification of Functional Patterns in SPECT Brain Scans Based on Partial Least Squares Analysis,
SCIA99(Biological Applications I). BibRef 9900

Poxton, D., Graham, J., Deakin, J.F.W.,
Detecting Asymmetries in Hippocampal Shape and Receptor Distribution using Statistical Appearance Models and Linear Discriminant Analysis,
BMVC98(xx-yy). BibRef 9800

Slater, R., Healey, G., Sheu, P., Cotman, C.W., Su, J., Wasserman, A., and Shankle, R.,
A Machine Vision System for the Automated Classification and Counting of Neurons in 3-D Brain Tissue Samples,
WACV96(224-229).
IEEE DOI 9609
Abstract:
HTML Version. BibRef

Hermosillo, G.[Gerardo], Faugeras, O.D.[Olivier D.], Gomes, J.[Jose],
Unfolding the Cerebral Cortex Using Level Set Methods,
ScaleSpace99(58-69). BibRef 9900

Caunce, A., and Taylor, C.J.,
3D Point Distribution Models of the Cortical Sulci,
ICCV98(402-407).
IEEE DOI BibRef 9800
Earlier: BMVC97(xx-yy).
HTML Version. 0209
BibRef

Nowinski, W.L., Fang, A., Nguyen, B.T., Raghavan, R., Bryan, R.N., Miller, J.,
Talairach-Tournoux / Schaltenbrand-Wahren Based Electronic Brain Atlas System,
CVRMed95(XX-YY) BibRef 9500

Lee, T.S.[Tai Sing],
Representational strategy in the visual cortex,
ICIP94(II: 590-594).
IEEE DOI 9411
BibRef

Schwartz, E.L., Rojer, A.S.,
Cortical hypercolumns and the topology of random orientation maps,
ICPR94(B:150-155).
IEEE DOI 9410
BibRef

Davis, D.N., Taylor, C.J.,
An intelligent visual task system for lateral skull X-ray images,
BMVC90(xx-yy).
PDF File. 9009
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain Tumors, Cortex, Cancer .


Last update:Aug 28, 2024 at 16:02:19