MOTA Object Tracking Benchmark,
2021 for workshop.
WWW Link.
Dataset, Cell Tracking.
von Wegner, F.,
Both, M.,
Fink, R.H.A.,
Friedrich, O.,
Fast XYT Imaging of Elementary Calcium Release Events in Muscle With
Multifocal Multiphoton Microscopy and Wavelet Denoising and Detection,
MedImg(26), No. 7, July 2007, pp. 925-934.
IEEE DOI
0707
BibRef
Yeom, S.,
Moon, I,
Javidi, B.,
Real-Time 3-D Sensing, Visualization and Recognition of Dynamic
Biological Microorganisms,
PIEEE(94), No. 3, March 2006, pp. 550-566.
IEEE DOI
0603
BibRef
Cortés, L.[Leandro],
Amit, Y.[Yali],
Efficient Annotation of Vesicle Dynamics Video Microscopy,
PAMI(30), No. 11, November 2008, pp. 1998-2010.
IEEE DOI
0809
BibRef
Bodvarsson, B.,
Klim, S.,
Morkebjerg, M.,
Mortensen, S.,
Yoon, C.H.,
Chen, J.,
Maclaren, J.R.,
Luther, P.K.,
Squire, J.M.,
Bones, P.J.,
Millane, R.P.,
A morphological image processing method for locating myosin filaments
in muscle electron micrographs,
IVC(26), No. 8, 1 August 2008, pp. 1073-1080.
Elsevier DOI
0806
Image analysis; Morphology; Electron micrograph; Disorder; Myosin; Muscle
BibRef
Wojtas, D.H.,
Ayyer, K.,
Liang, M.,
Mossou, E.,
Seuring, C.,
Forsyth, V.T.,
Chapman, H.N.,
Millane, R.P.,
Orientation and analysis of XFEL serial diffraction patterns from
fibrous molecular assemblies,
IVCNZ17(1-6)
IEEE DOI
1902
biological techniques, crystal structure, free electron lasers,
molecular biophysics, molecular configurations,
biological system
BibRef
Begelman, G.,
Zibulevsky, M.,
Rivlin, E.,
Kolatt, T.,
Blind Decomposition of Transmission Light Microscopic Hyperspectral
Cube Using Sparse Representation,
MedImg(28), No. 8, August 2009, pp. 1317-1324.
IEEE DOI
0909
BibRef
Begelman, G.[Grigory],
Pechuk, M.[Michael],
Rivlin, E.[Ehud],
Sabo, E.[Edmond],
System for Computer-Aided Multiresolution Microscopic Pathology
Diagnostics,
CVS06(16).
IEEE DOI
0602
BibRef
Maurer, M.R.[Mauricio Rafael],
Pedrini, H.[Helio],
Ferreira Randi, M.A.[Marco Antonio],
Processing and Visualization of Light Microscope Images,
IJIG(9), No. 3, July 2009, pp. 369-388.
DOI Link
0911
BibRef
Calapez, A.,
Rosa, A.,
A Statistical Pixel Intensity Model for Segmentation of Confocal Laser
Scanning Microscopy Images,
IP(19), No. 9, September 2010, pp. 2408-2418.
IEEE DOI
1008
BibRef
Roberts, T.J.[Timothy J.],
McKenna, S.J.[Stephen J.],
Du, C.J.[Cheng-Jin],
Wuyts, N.[Nathalie],
Valentine, T.A.[Tracy A.],
Bengough, A.G.[A. Glyn],
Estimating the motion of plant root cells from in vivo confocal laser
scanning microscopy images,
MVA(21), No. 6, October 2010, pp. 921-939.
WWW Link.
1011
BibRef
Díaz, M.E.[María Elena],
Ayala, G.[Guillermo],
Díaz, E.[Ester],
Estimating the Duration of Overlapping Events from Image Sequences
Using Cylindrical Temporal Boolean Models,
JMIV(38), No. 2, October 2010, pp. 83-94.
WWW Link.
1011
Cell biology, microscope analysis.
BibRef
Kenig, T.[Tal],
Kam, Z.[Zvi],
Feuer, A.[Arie],
Blind Image Deconvolution Using Machine Learning for Three-Dimensional
Microscopy,
PAMI(32), No. 12, December 2010, pp. 2191-2204.
IEEE DOI
1011
for microscopic image enhancement.
BibRef
Wang, Z.,
Millet, L.J.,
Mir, M.,
Ding, H.,
Unarunotai, S.,
Rogers, J.A.,
Gillette, M.U.,
Popescu, G.,
Spatial light interference microscopy (SLIM),
OptExp(19), No. 2, 2011, pp. 1016.
WWW Link.
WWW Link.
1109
BibRef
Babacan, D.,
Wang, Z.,
Do, M.,
opescu, G.,
Cell imaging beyond the diffraction limit using sparse deconvolution
spatial light interference microscopy,
BioOptExp(2), No. 7, 2011.
WWW Link.
1109
BibRef
Pham, H.,
Ding, H.,
Sobh, N.,
Do, M.,
Patel, S.,
Popescu, G.,
Off-axis quantitative phase imaging processing using CUDA:
Toward real-time applications,
BioOptExp(2), No. 7, 2011.
WWW Link.
1109
BibRef
Lucchi, A.,
Smith, K.,
Achanta, R.,
Knott, G.,
Fua, P.,
Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With
Learned Shape Features,
MedImg(31), No. 2, February 2012, pp. 474-486.
IEEE DOI
1202
Electron Microscope
BibRef
Fehrenbach, J.,
Weiss, P.,
Lorenzo, C.,
Variational Algorithms to Remove Stationary Noise:
Applications to Microscopy Imaging,
IP(21), No. 10, October 2012, pp. 4420-4430.
IEEE DOI
1209
BibRef
Fehrenbach, J.,
Weiss, P.,
Processing Stationary Noise: Model and Parameter Selection in
Variational Methods,
SIIMS(7), No. 2, 2014, pp. 613-640.
DOI Link
1405
BibRef
Seelamantula, C.S.[Chandra Sekhar],
Pavillon, N.[Nicolas],
Depeursinge, C.[Christian],
Unser, M.[Michael],
Local demodulation of holograms using the Riesz transform with
application to microscopy,
JOSA-A(29), No. 10, October 2012, pp. 2118-2129.
WWW Link.
1210
BibRef
Benazzouz, M.[Mourtada],
Baghli, I.[Ismahan],
Chikh, M.A.[Med Amine],
Microscopic image segmentation based on pixel classification and
dimensionality reduction,
IJIST(23), No. 1, March 2013, pp. 22-28.
DOI Link
1303
BibRef
Park, C.[Chiwoo],
Huang, J.Z.,
Ji, J.X.,
Ding, Y.[Yu],
Segmentation, Inference and Classification of Partially Overlapping
Nanoparticles,
PAMI(35), No. 3, March 2013, pp. 1.
IEEE DOI
1303
morphology process.
BibRef
Histace, A.,
Meziou, L.,
Matuszewski, B.J.,
Precioso, F.,
Murphy, M.F.,
Carreiras, F.,
Statistical region based active contour using a fractional entropy
descriptor: Application to nuclei cell segmentation in confocal
microscopy images,
BMVA(2013), No. 1, 2013, pp. 5, 1-15.
PDF File.
1304
BibRef
Meziou, L.[Leila],
Histace, A.[Aymeric],
Precioso, F.[Frederic],
Statistical region-based active contour using optimization of
alpha-divergence family for image segmentation,
ICIP14(6066-6070)
IEEE DOI
1502
Decision support systems
BibRef
Meziou, L.,
Histace, A.,
Precioso, F.,
Matuszewski, B.J.,
Murphy, M.F.,
Confocal microscopy segmentation using active contour based on
alpha(alpha)-divergence,
ICIP11(3077-3080).
IEEE DOI
1201
BibRef
Smochina, C.[Cristian],
Manta, V.[Vasile],
Kropatsch, W.G.[Walter G.],
Crypts detection in microscopic images using hierarchical structures,
PRL(34), No. 8, June 2013, pp. 934-941.
Elsevier DOI
1305
BibRef
Earlier:
Semantic Segmentation of Microscopic Images Using a Morphological
Hierarchy,
CAIP11(I: 102-109).
Springer DOI
1109
Crypt segmentation; Morphological hierarchy; Morphological pyramid;
Biomedical imaging; Pathology; Microscopy
BibRef
Kumar, V.,
Orientation Imaging Microscopy With Optimized Convergence Angle Using
CBED Patterns in TEMs,
IP(22), No. 7, 2013, pp. 2637-2645.
IEEE DOI
1307
electron diffraction; orientation imaging microscopy
BibRef
Bostan, E.,
Kamilov, U.S.,
Nilchian, M.,
Unser, M.,
Sparse Stochastic Processes and Discretization
of Linear Inverse Problems,
IP(22), No. 7, 2013, pp. 2699-2710.
IEEE DOI
1307
X-ray microscopy; magnetic resonance imaging
BibRef
Chao, J.[Jerry],
Ram, S.[Sripad],
Ober, R.[Raimund],
Ward, E.S.[E. Sally],
Low-light imaging method provides highly accurate molecule localization,
SPIE(Newsroom), June 24, 2013
DOI Link
1307
Imaging technique estimates the location of individual particles with
nearly the same accuracy that is achievable only in the absence of
detector noise and pixelation.
BibRef
Maire, G.[Guillaume],
Ruan, Y.[Yi],
Zhang, T.[Ting],
Chaumet, P.C.[Patrick C.],
Giovannini, H.[Hugues],
Sentenac, D.[Daniel],
Talneau, A.[Anne],
Belkebir, K.[Kamal],
Sentenac, A.[Anne],
High-resolution tomographic diffractive microscopy in reflection
configuration,
JOSA-A(30), No. 10, October 2013, pp. 2133-2139.
WWW Link.
1310
BibRef
Trattner, S.[Sigal],
Kashdan, E.[Eugene],
Feigin, M.[Micha],
Sochen, N.A.[Nir A.],
Image formation of thick three-dimensional objects in
differential-interference-contrast microscopy,
JOSA-A(31), No. 5, May 2014, pp. 968-980.
DOI Link
1405
Image formation theory; Microscopy; Scattering
BibRef
Ghita, O.,
Dietlmeier, J.,
Whelan, P.F.,
Automatic Segmentation of Mitochondria in EM Data Using Pairwise
Affinity Factorization and Graph-Based Contour Searching,
IP(23), No. 10, October 2014, pp. 4576-4586.
IEEE DOI
1410
biomembranes
BibRef
Dietlmeier, J.[Julia],
Ghita, O.[Ovidiu],
Whelan, P.F.[Paul F.],
On the projection similarity in line grouping,
PRL(51), No. 1, 2015, pp. 50-56.
Elsevier DOI
1412
Line grouping
BibRef
Rieger, B.,
Nieuwenhuizen, R.,
Stallinga, S.,
Image Processing and Analysis for Single-Molecule Localization
Microscopy: Computation for nanoscale imaging,
SPMag(32), No. 1, January 2015, pp. 49-57.
IEEE DOI
1502
fluorescence
BibRef
Bal, U.[Ufuk],
Engin, M.[Mehmet],
Utzinger, U.[Urs],
A multiresolution approach for enhancement and denoising of microscopy
images,
SIViP(9), No. 4, May 2015, pp. 787-799.
WWW Link.
1504
BibRef
Merola, F.,
Memmolo, P.,
Miccio, L.,
Bianco, V.,
Paturzo, M.,
Ferraro, P.,
Diagnostic Tools for Lab-on-Chip Applications Based on Coherent
Imaging Microscopy,
PIEEE(103), No. 2, February 2015, pp. 192-204.
IEEE DOI
1504
Biomedical optical imaging
BibRef
Becker, C.,
Christoudias, C.M.,
Fua, P.,
Domain Adaptation for Microscopy Imaging,
MedImg(34), No. 5, May 2015, pp. 1125-1139.
IEEE DOI
1505
Boosting
BibRef
Nellros, F.[Frida],
Thurley, M.J.[Matthew J.],
Jonsson, H.[Hĺkan],
Andersson, C.[Charlotte],
Forsmo, S.P.E.[Seija P.E.],
Automated measurement of sintering degree in optical microscopy
through image analysis of particle joins,
PR(48), No. 11, 2015, pp. 3451-3465.
Elsevier DOI
1506
Image analysis
BibRef
Zuo, C.[Chao],
Computational phase imaging for light microscopes,
SPIE(Newsroom), November 4, 2015
DOI Link
1511
A combination of optics coding and digital processing enhances the
capabilities of traditional light microscopes, enabling acquisition of
information such as phase, which cannot otherwise be captured.
BibRef
Moser, C.[Christophe],
Loterie, D.[Damien],
Digital confocal microscopy through a multimode fiber,
SPIE(Newsroom), October 16, 2015
DOI Link
1511
Compensating for modal scrambling during illumination and detection
enables the use of multimode fibers to transmit high-contrast,
confocal images for endoscopic applications.
BibRef
Cohen, E.A.K.,
Kim, D.,
Ober, R.J.,
Cramer-Rao Lower Bound for Point Based Image Registration With
Heteroscedastic Error Model for Application in Single Molecule
Microscopy,
MedImg(34), No. 12, December 2015, pp. 2632-2644.
IEEE DOI
1601
affine transforms
BibRef
Yukihara, E.G.,
Foiez Ahmed, M.,
Pixel Bleeding Correction in Laser Scanning Luminescence Imaging
Demonstrated Using Optically Stimulated Luminescence,
MedImg(34), No. 12, December 2015, pp. 2506-2517.
IEEE DOI
1601
aluminium compounds
BibRef
Verrier, N.[Nicolas],
Fournier, C.[Corinne],
Cazier, A.[Anthony],
Fournel, T.[Thierry],
Co-design of an in-line holographic microscope with enhanced axial
resolution: Selective filtering digital holography,
JOSA-A(33), No. 1, January 2016, pp. 107-116.
DOI Link
1601
Image reconstruction techniques
BibRef
Bostan, E.[Emrah],
Froustey, E.[Emmanuel],
Nilchian, M.,
Sage, D.[Daniel],
Unser, M.[Michael],
Variational Phase Imaging Using the Transport-of-Intensity Equation,
IP(25), No. 2, February 2016, pp. 807-817.
IEEE DOI
1601
Image reconstruction
BibRef
Bostan, E.[Emrah],
Froustey, E.[Emmanuel],
Rappaz, B.[Benjamin],
Shaffer, E.[Etienne],
Sage, D.[Daniel],
Unser, M.[Michael],
Phase retrieval by using transport-of-intensity equation and
differential interference contrast microscopy,
ICIP14(3939-3943)
IEEE DOI
1502
Equations
BibRef
Wang, Y.F.[Yun-Feng],
Kilpatrick, J.I.[Jason I.],
Jarvis, S.P.[Suzanne P.],
Boland, F.M.[Francis M.],
Kokaram, A.[Anil],
Corrigan, D.[David],
Double-Tip Artifact Removal From Atomic Force Microscopy Images,
IP(25), No. 6, June 2016, pp. 2774-2788.
IEEE DOI
1605
Deconvolution
BibRef
Yu, Z.X.[Zhi-Xian],
Prasad, S.[Sudhakar],
High-numerical-aperture microscopy with a rotating point spread
function,
JOSA-A(33), No. 7, July 2016, pp. B58-B69.
DOI Link
1608
Image analysis
BibRef
Gopakumar, G.,
Babu, K.H.[K. Hari],
Mishra, D.[Deepak],
Gorthi, S.S.[Sai Siva],
Subrahmanyam, G.R.K.S.[Gorthi. R. K. Sai],
Cytopathological image analysis using deep-learning networks in
microfluidic microscopy,
JOSA-A(34), No. 1, January 2017, pp. 111-121.
DOI Link
1701
Digital image processing
BibRef
Yoshida, S.[Shunsuke],
Novel glasses-free tabletop 3D imaging technology
for collaborative applications,
SPIE(Newsroom), February 2, 2017
DOI Link
1703
BibRef
Simsek, B.[Burcin],
Iyengar, S.[Satish],
On the Distribution of Photon Counts with Censoring in Two-Photon Laser
Scanning Microscopy,
JMIV(58), No. 1, May 2017, pp. 47-56.
WWW Link.
1704
BibRef
Kosov, S.[Sergey],
Shirahama, K.[Kimiaki],
Li, C.[Chen],
Grzegorzek, M.[Marcin],
Environmental microorganism classification using conditional random
fields and deep convolutional neural networks,
PR(77), 2018, pp. 248-261.
Elsevier DOI
1802
Environmental microorganism, Conditional random fields,
Global feature extraction, Image classification, Image segmentation
BibRef
Zou, Y.,
Li, C.[Chen],
Shirahama, K.[Kimiaki],
Jiang, T.,
Grzegorzek, M.[Marcin],
Environmental microorganism image retrieval using multiple colour
channels fusion and particle swarm optimisation,
ICIP16(2475-2479)
IEEE DOI
1610
Feature extraction
BibRef
Nguyen, Q.T.[Quoc Thong],
Delignon, Y.[Yves],
Septier, F.[François],
Phan-Ho, A.T.[Anh Thu],
Probabilistic modelling of printed dots at the microscopic scale,
SP:IC(62), 2018, pp. 129-138.
Elsevier DOI
1802
Probabilistic model, Bernoulli process,
Metropolis-Hastings within Gibbs, Microscopic printing, Markov chain
BibRef
Meiniel, W.,
Olivo-Marin, J.C.,
Angelini, E.D.,
Denoising of Microscopy Images: A Review of the State-of-the-Art, and
a New Sparsity-Based Method,
IP(27), No. 8, August 2018, pp. 3842-3856.
IEEE DOI
1806
Gaussian noise, image denoising, microscopy, Gaussian noise,
Poisson noise, biological microscopy images, denoising methods,
total variation
BibRef
Qin, F.,
Shen, F.,
Zhang, D.,
Liu, X.,
Xu, D.,
Contour Primitives of Interest Extraction Method for Microscopic
Images and Its Application on Pose Measurement,
SMCS(48), No. 8, August 2018, pp. 1348-1359.
IEEE DOI
1808
Feature extraction, Microscopy, Cameras, Image edge detection,
Manipulators, Machine vision, Robustness, Geometric constraint,
precision assembly
BibRef
Han, L.[Liang],
Yin, Z.Z.[Zhao-Zheng],
Learning to transfer microscopy image modalities,
MVA(29), No. 8, November 2018, pp. 1257-1267.
WWW Link.
1811
BibRef
Kuniyoshi, F.[Fusataka],
Funatomi, T.[Takuya],
Kubo, H.[Hiroyuki],
Sawada, Y.[Yoshihide],
Kato, Y.O.[Yumiko O.],
Mukaigawa, Y.[Yasuhiro],
Visibility Enhancement by Integrating Refocusing and Direct-Global
Separation with Contact Imaging,
IJCV(127), No. 8, August 2019, pp. 1162-1174.
Springer DOI
1907
Compact lensless microscopy technique for living cells.
BibRef
Chouzenoux, E.[Emilie],
Lau, T.T.K.[Tim Tsz-Kit],
Lefort, C.[Claire],
Pesquet, J.C.[Jean-Christophe],
Optimal Multivariate Gaussian Fitting with Applications to PSF Modeling
in Two-Photon Microscopy Imaging,
JMIV(61), No. 7, September 2019, pp. 1037-1050.
Springer DOI
1908
BibRef
Kim, D.W.[Dae Woo],
Aguilar, C.,
Zhao, H.,
Comer, M.L.[Mary L.],
Narrow Gap Detection in Microscope Images Using Marked Point Process
Modeling,
IP(28), No. 10, October 2019, pp. 5064-5076.
IEEE DOI
1909
BibRef
Earlier: A1, A4, Only:
Channel detection in microscope images of materials using marked
point process modeling,
ICIP15(3054-3058)
IEEE DOI
1512
Image segmentation, Microscopy, Channel models, Shape,
Markov processes, Task analysis, Monte Carlo methods, MPP,
segmentation.
Channel detection; Marked Point Process; Segmentation
BibRef
Sintorn, M.,
Bischof, L.,
Jackway, P.,
Haggarty, S.,
Buckley, M.,
Gradient based intensity normalization,
J. Microsc(240), 2010, pp. 249-258.
DOI Link
BibRef
1000
Dietlmeier, J.[Julia],
McGuinness, K.[Kevin],
Rugonyi, S.[Sandra],
Wilson, T.[Teresa],
Nuttall, A.[Alfred],
O'Connor, N.E.[Noel E.],
Few-shot hypercolumn-based mitochondria segmentation in cardiac and
outer hair cells in focused ion beam-scanning electron microscopy
(FIB-SEM) data,
PRL(128), 2019, pp. 521-528.
Elsevier DOI
1912
Deep learning, Few-shot learning, Cardiac and outer hair cells,
Gradient boosting, Mitochondria segmentation, Transfer learning
BibRef
Sheppard, C.J.R.[Colin J. R.],
Partially coherent microscope imaging system in phase space:
Effect of defocus and phase reconstruction,
JOSA-A(35), No. 11, November 2018, pp. 1846-1854.
DOI Link
1912
Paraxial wave optics, Microscopy, Optical transfer functions,
Partial coherence in imaging, X-ray imaging, Spatial frequency
BibRef
Mehta, S.B.[Shalin B.],
Sheppard, C.J.R.[Colin J. R.],
Partially coherent microscope in phase space,
JOSA-A(35), No. 8, August 2018, pp. 1272-1282.
DOI Link
1912
Paraxial wave optics , Microscopy, Optical transfer functions,
Partial coherence in imaging, X-ray imaging, Spatial frequency
BibRef
Usmani, K.[Kashif],
Ahmad, A.[Azeem],
Joshi, R.[Rakesh],
Dubey, V.[Vishesh],
Butola, A.[Ankit],
Mehta, D.S.[Dalip Singh],
Relationship between the source size at the diffuser plane and the
longitudinal spatial coherence function of the optical coherence
microscopy system,
JOSA-A(36), No. 12, December 2019, pp. D41-D46.
DOI Link
1912
Coherence theory, Laser sources, Light sources, Optical fields,
Spatial frequency, White light
BibRef
Zhang, L.G.[Li-Guo],
Yin, G.S.[Gui-Sheng],
Han, Q.L.[Qi-Long],
Sun, J.G.[Jian-Guo],
Wide-field and full-focus optical microscopic imaging system,
JOSA-A(36), No. 6, June 2019, pp. 950-963.
DOI Link
1912
Digital image processing, Image fusion, Image metrics,
Image processing, Image quality, Medical image processing
BibRef
Francis, B.[Bibin],
Mathew, M.[Manoj],
Arigovindan, M.[Muthuvel],
Multiresolution-based weighted regularization for denoised image
interpolation from scattered samples with application to confocal
microscopy,
JOSA-A(35), No. 10, October 2018, pp. 1749-1759.
DOI Link
1912
Image reconstruction-restoration, Fluorescence microscopy,
Image reconstruction techniques, Inverse problems
BibRef
Sentenac, A.[Anne],
Mertz, J.[Jerome],
Unified description of three-dimensional optical diffraction
microscopy: from transmission microscopy to optical coherence
tomography: tutorial,
JOSA-A(35), No. 5, May 2018, pp. 748-754.
DOI Link
1912
Imaging systems, Three-dimensional microscopy,
Confocal microscopy, Light fields, Phase imaging, Three dimensional imaging
BibRef
Mobiny, A.,
Lu, H.,
Nguyen, H.V.,
Roysam, B.,
Varadarajan, N.,
Automated Classification of Apoptosis in Phase Contrast Microscopy
Using Capsule Network,
MedImg(39), No. 1, January 2020, pp. 1-10.
IEEE DOI
2001
Routing, Task analysis, Training, Microscopy, Face, Feature extraction,
Pediatrics, Apoptosis, capsule network, cell classification
BibRef
Hosseini, M.S.,
Brawley-Hayes, J.A.Z.,
Zhang, Y.,
Chan, L.,
Plataniotis, K.N.,
Damaskinos, S.,
Focus Quality Assessment of High-Throughput Whole Slide Imaging in
Digital Pathology,
MedImg(39), No. 1, January 2020, pp. 62-74.
IEEE DOI
2001
Pathology, Measurement, Kernel, Quality assessment,
Feature extraction, Microscopy,
MaxPol derivative library
BibRef
de Haan, K.,
Rivenson, Y.,
Wu, Y.,
Ozcan, A.,
Deep-Learning-Based Image Reconstruction and Enhancement in Optical
Microscopy,
PIEEE(108), No. 1, January 2020, pp. 30-50.
IEEE DOI
2001
Deep learning, Biomedical imaging, Optical imaging, Microscopy,
Image reconstruction, Machine learning, Biomedical imaging, deep learning
BibRef
Liu, W.Q.[Wen-Qian],
Li, W.H.[Wei-Hong],
Gong, W.G.[Wei-Guo],
Ensemble of fine-tuned convolutional neural networks for urine sediment
microscopic image classification,
IET-CV(14), No. 1, February 2020, pp. 18-25.
DOI Link
2002
BibRef
Yamaguchi, T.[Takahiro],
Nagahara, H.[Hajime],
Morooka, K.[Ken'ichi],
Nakashima, Y.[Yuta],
Uranishi, Y.[Yuki],
Miyauchi, S.[Shoko],
Kurazume, R.[Ryo],
3d Image Reconstruction from Multi-focus Microscopic Images,
PSIVT19(73-85).
Springer DOI
2003
BibRef
Loewke, N.O.,
Qiu, Z.,
Mandella, M.J.,
Ertsey, R.,
Loewke, A.,
Gunaydin, L.A.,
Rosenthal, E.L.,
Contag, C.H.,
Solgaard, O.,
Software-Based Phase Control, Video-Rate Imaging, and Real-Time
Mosaicing With a Lissajous-Scanned Confocal Microscope,
MedImg(39), No. 4, April 2020, pp. 1127-1137.
IEEE DOI
2004
Phase control, Microscopy, Spatial resolution, Real-time systems,
Mirrors, Confocal microscopy, Lissajous imaging, mosaicing,
software-based phase control
BibRef
Shajkofci, A.,
Liebling, M.,
Spatially-Variant CNN-Based Point Spread Function Estimation for
Blind Deconvolution and Depth Estimation in Optical Microscopy,
IP(29), 2020, pp. 5848-5861.
IEEE DOI
2005
BibRef
Earlier:
Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with
Local Point Spread Function Estimation by Use of Convolutional Neural
Networks,
ICIP18(3818-3822)
IEEE DOI
1809
Microscopy, Optical imaging, Optical diffraction, Deconvolution,
Estimation, Optical microscopy, Calibration,
depth from focus.
Deconvolution, Optical imaging, Training,
Integrated optics, Optical diffraction,
convolutional neural networks
BibRef
Cardoen, B.,
Yedder, H.B.,
Sharma, A.,
Chou, K.C.,
Nabi, I.R.,
Hamarneh, G.,
ERGO: Efficient Recurrent Graph Optimized Emitter Density Estimation
in Single Molecule Localization Microscopy,
MedImg(39), No. 6, June 2020, pp. 1942-1956.
IEEE DOI
2006
Image reconstruction, Microscopy, Proteins, Estimation,
Labeling, astigmatism
BibRef
Jirik, M.[Miroslav],
Moulisova, V.[Vladimira],
Schindler, C.[Claudia],
Cervenkova, L.[Lenka],
Palek, R.[Richard],
Rosendorf, J.[Jachym],
Arlt, J.[Janine],
Bolek, L.[Lukas],
Dejmek, J.[Jiri],
Dahmen, U.[Uta],
Jirikova, K.[Kamila],
Gruber, I.[Ivan],
Liska, V.[Vaclav],
Zelezny, M.[Milos],
Micrant: Towards Regression Task Oriented Annotation Tool for
Microscopic Images,
IWCIA20(209-218).
Springer DOI
2009
BibRef
Liu, D.,
Zhang, D.,
Song, Y.,
Zhang, F.,
O'Donnell, L.,
Huang, H.,
Chen, M.,
Cai, W.,
PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised
Domain Adaptive Instance Segmentation in Microscopy Images,
MedImg(40), No. 1, January 2021, pp. 154-165.
IEEE DOI
2012
Image segmentation, Semantics, Task analysis, Feature extraction,
Microscopy, Training, Adaptation models,
microscopy images
BibRef
Nehme, E.[Elias],
Ferdman, B.[Boris],
Weiss, L.E.[Lucien E.],
Naor, T.[Tal],
Freedman, D.[Daniel],
Michaeli, T.[Tomer],
Shechtman, Y.[Yoav],
Learning Optimal Wavefront Shaping for Multi-Channel Imaging,
PAMI(43), No. 7, July 2021, pp. 2179-2192.
IEEE DOI
2106
Imaging, Microscopy,
Location awareness, Optical microscopy, Optical imaging,
end-to-end optimization
BibRef
Li, A.C.[An-Cin],
Vyas, S.I.[Sun-Il],
Lin, Y.H.[Yu-Hsiang],
Huang, Y.Y.[Yi-You],
Huang, H.M.[Hsuan-Ming],
Luo, Y.[Yuan],
Patch-Based U-Net Model for Isotropic Quantitative Differential Phase
Contrast Imaging,
MedImg(40), No. 11, November 2021, pp. 3229-3237.
IEEE DOI
2111
Microscopy, Transfer functions, Imaging, Phase measurement,
Image reconstruction, Biomedical measurement, CycleGAN
BibRef
Huang, L.[Ling],
Cheng, D.[Deruo],
Yang, X.[Xulei],
Lin, T.[Tong],
Shi, Y.Q.[Yi-Qiong],
Yang, K.[Kaiyi],
Gwee, B.H.[Bah Hwee],
Wen, B.[Bihan],
Joint Anomaly Detection and Inpainting for Microscopy Images Via Deep
Self-Supervised Learning,
ICIP21(3497-3501)
IEEE DOI
2201
Deep learning, Training, Shape, Microscopy, Manufacturing, Labeling,
Microstructure, Microscopy, anomaly detection, inpainting,
real-world dataset
BibRef
Arbelle, A.[Assaf],
Cohen, S.[Shaked],
Raviv, T.R.[Tammy Riklin],
Dual-Task ConvLSTM-UNet for Instance Segmentation of Weakly Annotated
Microscopy Videos,
MedImg(41), No. 8, August 2022, pp. 1948-1960.
IEEE DOI
2208
Computer architecture, Microprocessors, Image segmentation,
Annotations, Microscopy, Training, Deep learning, image sequences,
object segmentation
BibRef
Xie, Y.C.[Yao-Chen],
Ding, Y.[Yu],
Ji, S.W.[Shui-Wang],
Augmented Equivariant Attention Networks for Microscopy Image
Transformation,
MedImg(41), No. 11, November 2022, pp. 3194-3206.
IEEE DOI
2211
Computational modeling, Training, Deep learning, Superresolution,
Task analysis, Electron microscopy, Neural networks, Deep learning,
image transformation
BibRef
Wang, Y.K.[Yu-Kun],
Gu, Y.F.[Yan-Feng],
Li, X.[Xiaomei],
A Novel Low Rank Smooth Flat-Field Correction Algorithm for
Hyperspectral Microscopy Imaging,
MedImg(41), No. 12, December 2022, pp. 3862-3872.
IEEE DOI
2212
Microscopy, Hyperspectral imaging, Imaging, Pathology,
Optical microscopy, Optical imaging, Adaptive optics,
vignetting
BibRef
Yang, Y.[Yang],
Tu, Y.[Yanlun],
Lei, H.[Houchao],
Long, W.[Wei],
HAMIL: Hierarchical aggregation-based multi-instance learning for
microscopy image classification,
PR(136), 2023, pp. 109245.
Elsevier DOI
2301
Multi-instance learning, Biomedical image, Hierarchical aggregation
BibRef
Courbot, J.B.[Jean-Baptiste],
Colicchio, B.[Bruno],
Transformed Gaussian Random Fields for Unsupervised Image
Deconvolution,
SPLetters(29), 2022, pp. 2702-2706.
IEEE DOI
2301
Solid modeling, Deconvolution, Monte Carlo methods,
Computational modeling, Microscopy, Numerical models,
Hamiltonian Monte Carlo
BibRef
di Marco, N.[Niccolň],
Frosini, A.[Andrea],
The Generalized Microscopic Image Reconstruction Problem for
Hypergraphs,
IWCIA22(317-331).
Springer DOI
2301
BibRef
Liu, Y.[Yi],
Caplan, J.[Jeffrey],
Kambhamettu, C.[Chandra],
Extraction and Quantification of Actin Cytoskeleton in Microscopic
Images Using a Deep Learning Based Framework and a Curve Clustering
Model,
ICPR22(4270-4276)
IEEE DOI
2212
Deep learning, Histograms, Shape, Microscopy, Pipelines, Organizations,
Feature extraction
BibRef
Yayci, Z.O.[Zeynep Ovgu],
Dura, U.[Ugur],
Kaya, Z.B.[Zeynep Betul],
Cetin, A.E.[Arif E.],
Turkan, M.[Mehmet],
Microscale Image Enhancement Via PCA and Well-Exposedness Maps,
ICIP22(2092-2096)
IEEE DOI
2211
Histograms, Visualization, Laplace equations, Image color analysis,
Microscopy, Lighting, Colored noise, Microscale image enhancement,
principle component analysis
BibRef
Chattopadhyay, S.,
Malachowski, A.,
Swain, J.K.,
Dalmo, R.A.,
Horsch, A.,
Prasad, D.K.,
Mapping Functional Changes in the Embryonic Heart of Atlantic Salmon
Post Viral Infection Using AI Technique,
ICIP22(3101-3105)
IEEE DOI
2211
Heart, Perturbation methods, Microscopy, Heuristic algorithms, Fish,
Salmon fish, Embryonic heart
BibRef
Pedraza, A.[Anibal],
Ruiz-Santaquiteria, J.[Jesus],
Deniz, O.[Oscar],
Bueno, G.[Gloria],
Parasitic Egg Detection and Classification with Transformer-Based
Architectures,
ICIP22(4301-4305)
IEEE DOI
2211
Microscopy, Object detection, Medical services, Transformers,
Object recognition, Task analysis, Deep Learning, Object Detection,
Parasitic Eggs
BibRef
Pratama, Y.[Yohanssen],
Fujimura, Y.[Yuki],
Funatomi, T.[Takuya],
Mukaigawa, Y.[Yasuhiro],
Parasitic Egg Detection and Classification by Utilizing the YOLO
Algorithm with Deep Latent Space Image Restoration and GrabCut
Augmentation,
ICIP22(4311-4315)
IEEE DOI
2211
Image resolution, Microscopy, Lighting, Object detection, Detectors,
Classification algorithms, Image restoration, Classification, YOLO
BibRef
Ruiz-Santaquiteria, J.[Jesus],
Pedraza, A.[Anibal],
Vallez, N.[Noelia],
Velasco, A.[Alberto],
Parasitic Egg Detection with a Deep Learning Ensemble,
ICIP22(4283-4286)
IEEE DOI
2211
Deep learning, Object detection, Medical services, Manuals,
Task analysis, Parasitic Eggs, Object Detection, Neural networks, Deep Learning
BibRef
Aung, Z.H.[Zaw Htet],
Srithaworn, K.[Kittinan],
Achakulvisut, T.[Titipat],
Multitask learning via pseudo-label generation and ensemble
prediction for parasitic egg cell detection: IEEE ICIP Challenge 2022,
ICIP22(4273-4277)
IEEE DOI
2211
Training, Representation learning, Head, Computational modeling,
Parasitic diseases, Training data, Object detection, parasitic egg
BibRef
Tureckova, A.[Alzbeta],
Turecek, T.[Tomas],
Oplatkova, Z.K.[Zuzana Kominkova],
ICIP 2022 Challenge: PEDCMI, TOOD Enhanced by Slicing-Aided
Fine-Tuning and Inference,
ICIP22(4292-4295)
IEEE DOI
2211
Deep learning, Training, Analytical models, Data analysis,
Image resolution, Microscopy, Pipelines, Deep Learning Pipeline,
Slicing Aided Inference
BibRef
AlDahoul, N.[Nouar],
Karim, H.A.[Hezerul Abdul],
Kee, S.L.[Shaira Limson],
Tan, M.J.T.[Myles Joshua Toledo],
Localization and Classification of Parasitic Eggs in Microscpic
Images Using An Efficientdet Detector,
ICIP22(4253-4257)
IEEE DOI
2211
Location awareness, Training, Microscopy, Detectors,
Pattern recognition, EfficientDet, microscopic image,
parasitic egg
BibRef
Wang, Y.Q.[Yu-Qi],
He, Z.Q.[Zhi-Qiang],
Huang, S.H.[Sheng-Hui],
Du, H.B.[Hua-Bin],
A Robust Ensemble Model For Parasitic Egg Detection And
Classification,
ICIP22(4258-4262)
IEEE DOI
2211
Deep learning, Biological system modeling, Microscopy,
Transfer learning, Interference, Feature extraction, Robustness,
robustness
BibRef
Anantrasirichai, N.[Nantheera],
Chalidabhongse, T.H.[Thanarat H.],
Palasuwan, D.[Duangdao],
Naruenatthanaset, K.[Korranat],
Kobchaisawat, T.[Thananop],
Nunthanasup, N.[Nuntiporn],
Boonpeng, K.[Kanyarat],
Ma, X.D.[Xu-Dong],
Achim, A.[Alin],
ICIP 2022 Challenge on Parasitic Egg Detection and Classification in
Microscopic Images: Dataset, Methods and Results,
ICIP22(4306-4310)
IEEE DOI
2211
Deep learning, Image color analysis, Microscopy, Brightness,
Object detection, Manuals, Colored noise, parasitic egg,
deep learning
BibRef
Zhang, H.[Hongrun],
Meng, Y.[Yanda],
Zhao, Y.T.[Yi-Tian],
Qiao, Y.H.[Yi-Hong],
Yang, X.Y.[Xiao-Yun],
Coupland, S.E.[Sarah E.],
Zheng, Y.L.[Ya-Lin],
DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning
for Histopathology Whole Slide Image Classification,
CVPR22(18780-18790)
IEEE DOI
2210
Measurement, Image resolution, Histopathology, Lung cancer,
Feature extraction, Pattern recognition, Medical,
Self- semi- meta- unsupervised learning
BibRef
Chen, R.J.[Richard J.],
Lu, M.Y.[Ming Y.],
Weng, W.H.[Wei-Hung],
Chen, T.Y.[Tiffany Y.],
Williamson, D.F.[Drew FK.],
Manz, T.[Trevor],
Shady, M.[Maha],
Mahmood, F.[Faisal],
Multimodal Co-Attention Transformer for Survival Prediction in
Gigapixel Whole Slide Images,
ICCV21(3995-4005)
IEEE DOI
2203
Representation learning, Visualization, Histopathology, Genomics,
Predictive models, Transformers, Biological information theory,
Vision + other modalities
BibRef
Albuquerque, T.[Tomé],
Moreira, A.[Ana],
Cardoso, J.S.[Jaime S.],
Deep Ordinal Focus Assessment for Whole Slide Images,
CDPath21(657-663)
IEEE DOI
2112
Training, Measurement, Image quality, Decision support systems,
Manufacturing processes, Databases, Computational modeling
BibRef
Theelke, L.[Luisa],
Wilm, F.[Frauke],
Marzahl, C.[Christian],
Bertram, C.A.[Christof A.],
Klopfleisch, R.[Robert],
Maier, A.[Andreas],
Aubreville, M.[Marc],
Breininger, K.[Katharina],
Iterative Cross-Scanner Registration for Whole Slide Images,
CDPath21(582-590)
IEEE DOI
2112
Pathology, Image resolution, Microscopy,
Estimation, Registers
BibRef
Yang, K.[Karren],
Goldman, S.[Samuel],
Jin, W.[Wengong],
Lu, A.X.[Alex X.],
Barzilay, R.[Regina],
Jaakkola, T.[Tommi],
Uhler, C.[Caroline],
Mol2Image: Improved Conditional Flow Models for Molecule to Image
Synthesis,
CVPR21(6684-6694)
IEEE DOI
2111
Training, Measurement, Image resolution, Image synthesis,
Microprocessors, Biological system modeling, Microscopy
BibRef
Li, B.[Bin],
Li, Y.[Yin],
Eliceiri, K.W.[Kevin W.],
Dual-stream Multiple Instance Learning Network for Whole Slide Image
Classification with Self-supervised Contrastive Learning,
CVPR21(14313-14323)
IEEE DOI
2111
Training, Location awareness, Image resolution, Annotations,
Feature extraction, Distance measurement, Pattern recognition
BibRef
Venkataramanan, A.[Aishwarya],
Laviale, M.[Martin],
Figus, C.[Cécile],
Usseglio-Polatera, P.[Philippe],
Pradalier, C.[Cédric],
Tackling Inter-class Similarity and Intra-class Variance for
Microscopic Image-Based Classification,
CVS21(93-103).
Springer DOI
2109
BibRef
Shrivastava, A.[Aman],
Adorno, W.[William],
Sharma, Y.[Yash],
Ehsan, L.[Lubaina],
Ali, S.A.[S. Asad],
Moore, S.R.[Sean R.],
Amadi, B.[Beatrice],
Kelly, P.[Paul],
Syed, S.[Sana],
Brown, D.E.[Donald E.],
Self-attentive Adversarial Stain Normalization,
AIDP20(120-140).
Springer DOI
2103
Stained biopsy images.
BibRef
Zhang, Q.C.[Qing-Chao],
Heldermon, C.D.[Coy D.],
Toler-Franklin, C.[Corey],
Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans,
ISVC20(II:139-153).
Springer DOI
2103
BibRef
Page, J.,
Favaros, P.,
Learning to Model and Calibrate Optics Via a Differentiable Wave
Optics Simulator,
ICIP20(2995-2999)
IEEE DOI
2011
Microscopy, Optical diffraction, Optical imaging, Adaptive optics,
Optical sensors, Computational modeling, Lenses, PSF engineering,
differentiable simulator
BibRef
Aktar, R.,
Huxley, V.H.,
Guidoboni, G.,
Ali Akbarpour, H.,
Bunyak, F.,
Palaniappan, K.,
Mosaicing of Dynamic Mesentery Video with Gradient Blending,
ICIP20(563-567)
IEEE DOI
2011
Correlation, Robustness, Microscopy, Feature extraction,
Biomedical imaging, Image edge detection, Image registration,
Gradient blending
BibRef
Sandhan, T.,
Choi, J.Y.,
Separating Particulate Matter From a Single Microscopic Image,
CVPR20(4583-4592)
IEEE DOI
2008
Microscopy, Glass, Optical microscopy, Visualization, Diffraction, Lenses
BibRef
Miolane, N.[Nina],
Holmes, S.,
Learning Weighted Submanifolds With Variational Autoencoders and
Riemannian Variational Autoencoders,
CVPR20(14491-14499)
IEEE DOI
2008
Manifolds, Data models, Principal component analysis,
Task analysis, Probabilistic logic, Biomedical imaging, Uncertainty
BibRef
Miolane, N.[Nina],
Poitevin, F.,
Li, Y.,
Holmes, S.,
Estimation of Orientation and Camera Parameters from Cryo-Electron
Microscopy Images with Variational Autoencoders and Generative
Adversarial Networks,
Microscopy20(4174-4183)
IEEE DOI
2008
Space vehicles,
Orbits, Cameras, Estimation, Image reconstruction
BibRef
Weigert, M.,
Schmidt, U.,
Haase, R.,
Sugawara, K.,
Myers, G.,
Star-convex Polyhedra for 3D Object Detection and Segmentation in
Microscopy,
WACV20(3655-3662)
IEEE DOI
2006
Shape, Microscopy, Image segmentation,
Anisotropic magnetoresistance, Training
BibRef
Khan, S.S.[Salman Siddique],
Adarsh, V.R.,
Boominathan, V.[Vivek],
Tan, J.[Jasper],
Veeraraghavan, A.[Ashok],
Mitra, K.[Kaushik],
Towards Photorealistic Reconstruction of Highly Multiplexed Lensless
Images,
ICCV19(7859-7868)
IEEE DOI
2004
cameras, image reconstruction, image sensors, neural nets,
optical microscopes, miniature cameras, distributed monitoring,
Lenses
BibRef
Singh, H.[Harbinder],
Sánchez, C.[Carlos],
Cristóbal, G.[Gabriel],
Bueno, G.[Gloria],
Pencil Drawing of Microscopic Images Through Edge Preserving Filtering,
IbPRIA19(II:189-200).
Springer DOI
1910
BibRef
Forero, M.G.[Manuel G.],
Arias-Rubio, C.[Carlos],
Horta-Júnior, J.D.C.[José De_Anchieta C.],
López, D.E.[Dolores E.],
A Note on Gradient-Based Intensity Normalization,
IbPRIA19(I:161-169).
Springer DOI
1910
Builds on work of Sintorn.
See also Gradient based intensity normalization.
BibRef
Tran, D.H.[Duc Hoa],
Meunier, M.[Michel],
Cheriet, F.[Farida],
WaveM-CNN for Automatic Recognition of Sub-cellular Organelles,
ICIAR19(I:186-194).
Springer DOI
1909
BibRef
Zafari, S.[Sahar],
Eerola, T.[Tuomas],
Ferreira, P.[Paulo],
Kälviäinen, H.[Heikki],
Bovik, A.[Alan],
Automated Segmentation of Nanoparticles in BF TEM Images by U-Net
Binarization and Branch and Bound,
CAIP19(I:113-125).
Springer DOI
1909
BibRef
Bhugra, S.[Swati],
Mishra, D.[Deepak],
Anupama, A.[Anupama],
Chaudhury, S.[Santanu],
Lall, B.[Brejesh],
Chugh, A.[Archana],
Chinnusamy, V.[Viswanathan],
Deep Convolutional Neural Networks Based Framework for Estimation of
Stomata Density and Structure from Microscopic Images,
BioIm18(VI:412-423).
Springer DOI
1905
BibRef
Basu, S.,
Rexhepaj, E.,
Spassky, N.,
Genovesio, A.,
Paulsen, R.R.,
Shihavuddin, A.S.M.,
FastSME: Faster and Smoother Manifold Extraction from 3D Stack,
Microscopy18(2362-23628)
IEEE DOI
1812
Manifolds, Indexes, Biology, Microscopy, Optimization
BibRef
Aziz, A.,
Pande, H.,
Cheluvaraju, B.,
Dastidar, T.R.,
Improved Extraction of Objects from Urine Microscopy Images with
Unsupervised Thresholding and Supervised U-net Techniques,
Microscopy18(2311-23118)
IEEE DOI
1812
Image segmentation, Microscopy, Image edge detection, Shape,
Transforms, Microorganisms
BibRef
Levis, A.,
Schechner, Y.Y.,
Talmon, R.,
Statistical Tomography of Microscopic Life,
CVPR18(6411-6420)
IEEE DOI
1812
Microscopy, Tomography, Estimation, Organisms
BibRef
Zhang, T.,
Carvajal, J.,
Smith, D.F.,
Zhao, K.,
Wiliem, A.,
Hobson, P.,
Jennings, A.,
Lovell, B.C.,
SlideNet: Fast and Accurate Slide Quality Assessment Based on Deep
Neural Networks,
ICPR18(2314-2319)
IEEE DOI
1812
Task analysis, Quality assessment, Microscopy, Neural networks,
Microorganisms, Image analysis, Support vector machines
BibRef
Yang, C.,
Bu, X.,
Ma, H.,
Zhang, L.,
Cao, X.,
Yue, T.,
Hua, X.,
Yan, F.,
Resolution-Enhanced Lensless Color Shadow Imaging Microscopy Based on
Large Field-of-View Submicron-Pixel Imaging Sensors,
Microscopy18(2327-23277)
IEEE DOI
1812
Microscopy, Sensors, Image sensors, Spatial resolution, Lighting
BibRef
Chen, X.,
Xie, Q.,
Shen, L.,
Han, H.,
Morphology-Retained Non-Linear Image Registration of Serial Electron
Microscopy Sections,
ICIP18(3833-3837)
IEEE DOI
1809
Image reconstruction, Biological tissues, Image registration,
Reliability, Scanning electron microscopy, Image registration,
correspondence extraction
BibRef
Liu, D.N.[Dong-Nan],
Zhang, D.H.[Dong-Hao],
Song, Y.[Yang],
Zhang, C.Y.[Chao-Yi],
Huang, H.[Heng],
Chen, M.[Mei],
Cai, W.D.[Wei-Dong],
Large Kernel Refine Fusion Net for Neuron Membrane Segmentation,
Microscopy18(2293-22938)
IEEE DOI
1812
Kernel, Image segmentation, Task analysis, Image resolution, Neurons,
Decoding, Biomembranes
BibRef
Liu, D.N.[Dong-Nan],
Zhang, D.H.[Dong-Hao],
Liu, S.Q.[Si-Qi],
Song, Y.[Yang],
Jia, H.Z.[Hao-Zhe],
Feng, D.D.[David Dagan],
Xia, Y.[Yong],
Cai, W.D.[Wei-Dong],
Densely Connected Large Kernel Convolutional Network for Semantic
Membrane Segmentation in Microscopy Images,
ICIP18(2461-2465)
IEEE DOI
1809
Kernel, Image segmentation, Decoding, Neurons, Image resolution,
Semantics, Microscopy, neuronal boundary segmentation,
deep neural network
BibRef
Luo, Y.,
Andersson, S.B.,
Sampling pattern design algorithm for atomic force microscopy images,
ICIP17(2109-2113)
IEEE DOI
1803
Force, Image reconstruction, Imaging, Indexes,
Matching pursuit algorithms, Surface topography,
sampling pattern design
BibRef
Cheng, H.C.,
Cardone, A.,
Varshney, A.,
Interactive exploration of microstructural features in gigapixel
microscopy images,
ICIP17(335-339)
IEEE DOI
1803
Image color analysis, Image resolution, Image segmentation,
Intestines, Microscopy, Muscles, Visualization, Image segmentation,
gigapixel images
BibRef
Saponaro, P.,
Treible, W.,
Kolagunda, A.,
Rhein, S.,
Caplan, J.,
Kambhamettu, C.,
Wisser, R.,
Three-dimensional segmentation of vesicular networks of fungal hyphae
in macroscopic microscopy image stacks,
ICIP17(3285-3289)
IEEE DOI
1803
Feature extraction, Generators, Image edge detection,
Image segmentation, Microscopy, Skeleton, Fungal Hyphae,
Skeletonization
BibRef
Sadanandan, S.K.[Sajith Kecheril],
Karlsson, J.[Johan],
Wählby, C.[Carolina],
Spheroid Segmentation Using Multiscale Deep Adversarial Networks,
BioIm17(36-41)
IEEE DOI
1802
Convolution, Feature extraction,
Image segmentation, Neural networks, Shape, Training
BibRef
Hast, A.[Anders],
Kylberg, G.[Gustaf],
Sintorn, I.M.[Ida-Maria],
An Efficient Descriptor Based on Radial Line Integration for Fast
Non-invariant Matching and Registration of Microscopy Images,
ACIVS17(723-734).
Springer DOI
1712
BibRef
Han, L.[Liang],
Yin, Z.Z.[Zhao-Zheng],
Transferring Microscopy Image Modalities with Conditional Generative
Adversarial Networks,
Microscopy17(851-859)
IEEE DOI
1709
Biology, Generators, Image segmentation,
Interference, Microscopy, Visualization
BibRef
Saponaro, P.,
Treible, W.,
Kolagunda, A.,
Chaya, T.,
Caplan, J.,
Kambhamettu, C.,
Wisser, R.,
DeepXScope: Segmenting Microscopy Images with a Deep Neural Network,
Microscopy17(843-850)
IEEE DOI
1709
Computer architecture, Image segmentation, Measurement, Microscopy,
Training, Training, data
BibRef
Bao, J.,
Fan, J.,
Hu, X.,
Wang, J.,
Wang, L.,
An effective consistency correction and blending method for
camera-array-based microscopy imaging,
WSSIP17(1-5)
IEEE DOI
1707
Cameras, Distribution functions, Lenses, Lighting,
Mathematical model, Microscopy, Camera Array,
Consistency Correction, Illumination Compensation,
Improved Alpha Blending, Response Function, Vignetting, Compensation
BibRef
Koos, K.[Krisztian],
Molnár, J.[József],
Horvath, P.[Peter],
Pipette Hunter: Patch-Clamp Pipette Detection,
SCIA17(I: 172-183).
Springer DOI
1706
detect the tip of glass pipettes in microscopy images
BibRef
Godehardt, M.[Michael],
Schladitz, K.[Katja],
Dietrich, S.[Sascha],
Meyndt, R.[Renate],
Schulz, H.[Haiko],
Segmentation of Collagen Fiber Bundles in 3D by Waterfall on
Orientations,
ISMM17(447-454).
Springer DOI
1706
BibRef
Zelenka, C.,
Koch, R.,
Restoration of images with wavefront aberrations,
ICPR16(1388-1393)
IEEE DOI
1705
Adaptive optics, Fourier transforms, Image restoration, Microscopy,
Optical distortion, Optical, imaging
BibRef
Ambikumar, A.S.,
Bailey, D.G.,
Gupta, G.S.,
Extending the depth of field in microscopy: A review,
ICVNZ16(1-6)
IEEE DOI
1701
Image fusion
BibRef
Almutairi, Y.,
Cootes, T.,
Kadler, K.,
Analysing the Structure of Collagen Fibres in SBFSEM Images,
Microscopy16(1342-1349)
IEEE DOI
1612
BibRef
Roels, J.[Joris],
de Vylder, J.[Jonas],
Saeys, Y.[Yvan],
Goossens, B.[Bart],
Philips, W.[Wilfried],
Decreasing Time Consumption of Microscopy Image Segmentation Through
Parallel Processing on the GPU,
ACIVS16(147-159).
Springer DOI
1611
BibRef
Akram, S.U.,
Kannala, J.,
Eklund, L.,
Heikkilä, J.,
Cell proposal network for microscopy image analysis,
ICIP16(3199-3203)
IEEE DOI
1610
Feature extraction
BibRef
Cossairt, O.,
He, K.,
Shang, R.,
Matsuda, N.,
Sharma, M.,
Huang, X.,
Katsaggelos, A.K.,
Spinoulas, L.,
Yoo, S.,
Compressive reconstruction for 3D incoherent holographic microscopy,
ICIP16(958-962)
IEEE DOI
1610
Coherence
BibRef
Maska, M.[Martin],
Ederra, C.[Cristina],
Fernandez-Marques, J.[Javier],
Munoz-Barrutia, A.[Arrate],
Kozubek, M.[Michal],
Ortiz-de-Solorzano, C.[Carlos],
Quantification of the 3D collagen network geometry in confocal
reflection microscopy,
ICIP15(1791-1794)
IEEE DOI
1512
Collagen network geometry
BibRef
Kharma, N.[Nawwaf],
Ebne-Alian, M.[Mohammad],
Charbonneau, L.[Louis],
Evolution of Programs for Segmentation of Microscopic Images,
CRV15(253-260)
IEEE DOI
1507
Atmospheric measurements
BibRef
Jorstad, A.[Anne],
Fua, P.[Pascal],
Refining Mitochondria Segmentation in Electron Microscopy Imagery with
Active Surfaces,
NORDIA14(367-379).
Springer DOI
1504
BibRef
Kromwijk, S.[Sander],
Lefkimmiatis, S.[Stamatios],
Unser, M.[Michael],
High-performance 3D deconvolution of fluorescence micrographs,
ICIP14(1718-1722)
IEEE DOI
1502
Deconvolution
BibRef
Lukes, T.[Tomas],
Kehrt, D.[Daniel],
Fliegel, K.[Karel],
Klima, M.[Milos],
Binarization of noisy microscopy images through signal reconstruction
using iterative detection network,
ICIP14(3949-3952)
IEEE DOI
1502
Cameras
BibRef
Svoboda, D.[David],
Ulman, V.[Vladimir],
Matyska, L.[Ludek],
Maska, M.[Martin],
Bella, J.[Jan],
Stejskal, S.[Stanislav],
On proper simulation of phenomena influencing image formation in
fluorescence microscopy,
ICIP14(3944-3948)
IEEE DOI
1502
Biological system modeling
BibRef
Seelamantula, C.S.[Chandra Sekhar],
Shenoy, B.A.[Basty Ajay],
Coquoz, S.[Severine],
Lasser, T.[Theo],
Exact reconstruction in Quantitative Phase Microscopy,
ICIP14(3934-3938)
IEEE DOI
1502
Fourier transforms
BibRef
Soubies, E.[Emmanuel],
Blanc-Feraud, L.[Laure],
Schaub, S.[Sebastien],
Aubert, G.[Gilles],
Sparse reconstruction from Multiple-Angle Total Internal Reflection
fluorescence Microscopy,
ICIP14(2844-2848)
IEEE DOI
1502
Approximation methods
BibRef
Martinez-Corral, M.,
Llavador, A.,
Sanchez-Ortiga, E.,
Saavedra, G.,
Time-multiplexing Integral Microscopy,
3DTV-CON14(1-4)
IEEE DOI
1409
cameras
BibRef
Fan, Y.L.[Yi-Lun],
Gal, Y.,
Bradley, A.P.,
Performance Analysis of Three Microscope Slide Scanning Techniques,
DICTA13(1-6)
IEEE DOI
1402
biomedical optical imaging
BibRef
Li, H.[Hui],
Chen, Y.Q.[Yan Qiu],
Automatic 3D reconstruction of mitochondrion with local intensity
distribution signature and shape feature,
ICIP13(596-600)
IEEE DOI
1402
Clustering algorithms
BibRef
Ramesh, N.[Nisha],
Otsuna, H.[Hideo],
Tasdizen, T.[Tolga],
Three-dimensional alignment and merging of confocal microscopy stacks,
ICIP13(1447-1450)
IEEE DOI
1402
Confocal Microscopy
BibRef
Altinay, D.[Doreen],
Bradley, A.P.[Andrew P.],
Illumination Effects in Quantitative Virtual Microscopy,
CAIP13(II:449-456).
Springer DOI
1311
BibRef
Rana, M.S.,
Pota, H.R.,
Petersen, I.R.,
High performance control of atomic force microscope for high-speed
image scanning,
ICARCV12(1187-1192).
IEEE DOI
1304
BibRef
Kemmler, M.[Michael],
Denzler, J.[Joachim],
Finding discriminative features for Raman spectroscopy,
ICPR12(1823-1826).
WWW Link.
1302
BibRef
Ponti, M.P.[Moacir P.],
Improving restoration of microscopy images using iterative prototypes
and a sequence of support constraints,
ICIP12(3065-3068).
IEEE DOI
1302
BibRef
Lou, X.H.[Xing-Hua],
Fiaschi, L.[Luca],
Koethe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Quality Classification of Microscopic Imagery with Weakly Supervised
Learning,
MLMI12(176-183).
Springer DOI
1211
BibRef
Cao, T.[Tian],
Zach, C.[Christopher],
Modla, S.[Shannon],
Powell, D.[Debbie],
Czymmek, K.[Kirk],
Niethammer, M.[Marc],
Registration for Correlative Microscopy Using Image Analogies,
WBIR12(296-306).
Springer DOI
1208
BibRef
Altinay, D.,
Bradley, A.P.,
An Evaluation of Multi-resolution Microscope Slide Scanning Algorithms,
DICTA11(319-324).
IEEE DOI
1205
BibRef
Pietschmann, J.F.[Jan-Frederik],
Schlake, B.[Barbel],
Lane formation in a microscopic model and the corresponding partial
differential equation,
MSVALC11(173-179).
IEEE DOI
1201
BibRef
Kim, H.C.[Hee-Chang],
Stamon, G.[Georges],
Genovesio, A.[Auguste],
A method for discontinuous neurite reconstruction based on diffusion
tensor, Hessian eigenvector, and diffused gradient vector fields,
ICIP11(1401-1404).
IEEE DOI
1201
BibRef
Burton, D.R.,
Murphy, M.F.,
Lilley, F.,
Gdeisat, M.A.,
The formulation of a non-linear hertzian model in order to assess the
mechanical strength of human cells based on data from an atomic force
microscope,
ICIP11(3061-3064).
IEEE DOI
1201
BibRef
Ahtaiba, A.,
Gdeisat, M.A.,
Burton, D.R.,
Lilley, F.,
Murphy, M.F.,
Johnston, G.,
A novel technique for the restoration of atomic force microscope images
enabling an approximation of AFM impulse response,
ICIP11(3065-3068).
IEEE DOI
1201
BibRef
Johnston, G.,
Burton, D.R.,
Lilley, F.,
Doyle, A.,
Murphy, M.F.,
Madden, G.,
Gdeisat, M.A.,
Moore, C.J.,
Marchant, T.E.,
Matuszewski, B.,
Analysis of microscopy and reconstructive images for applications in
medicine and biology,
ICIP11(3069-3072).
IEEE DOI
1201
BibRef
Pop, S.[Sorin],
Dufour, A.[Alexandre],
Olivo-Marin, J.C.[Jean-Christophe],
Image filtering using anisotropic structure tensor for cell membrane
enhancement in 3D microscopy,
ICIP11(2041-2044).
IEEE DOI
1201
BibRef
Makkapati, V.V.[Vishnu V.],
Pathangay, V.,
Adaptive Color Illumination for Microscopes,
NCC11(1-5).
IEEE DOI
BibRef
1100
Lalys, F.[Florent],
Riffaud, L.[Laurent],
Morandi, X.[Xavier],
Jannin, P.[Pierre],
Surgical Phases Detection from Microscope Videos by Combining SVM and
HMM,
MCV10(54-62).
Springer DOI
1009
BibRef
Altinay, D.[Doreen],
Bradley, A.P.[Andrew P.],
Mehnert, A.J.H.[Andrew J.H.],
On the Estimation of Extrinsic and Intrinsic Parameters of Optical
Microscope Calibration,
DICTA10(190-195).
IEEE DOI
1012
BibRef
Yang, H.F.[Huei-Fang],
Choe, Y.S.[Yoon-Suck],
Ground Truth Estimation by Maximizing Topological Agreements in
Electron Microscopy Data,
ISVC11(I: 371-380).
Springer DOI
1109
BibRef
Earlier:
Electron Microscopy Image Segmentation with Graph Cuts Utilizing
Estimated Symmetric Three-Dimensional Shape Prior,
ISVC10(II: 322-331).
Springer DOI
1011
BibRef
Suksmono, A.B.[Andriyan B.],
Hirose, A.[Akira],
Numerical reconstruction of holographic microscopy images based on
matching pursuits on a pair of domains,
ICIP10(4197-4200).
IEEE DOI
1009
BibRef
Zhang, X.[Xin],
Lam, E.Y.[Edmund Y.],
Edge detection of three-dimensional objects by manipulating pupil
functions in an optical scanning holography system,
ICIP10(3661-3664).
IEEE DOI
1009
BibRef
Wortmann, T.[Tim],
Fatikow, S.[Sergej],
Carbon Nanotube Detection by Scanning Electron Microscopy,
MVA09(370-).
PDF File.
0905
BibRef
Usenik, P.[Peter],
Vrtovec, T.[Tomaz],
Pernus, F.[Franjo],
Likar, B.[Bostjan],
Automated Tracking of Vesicles in Phase Contrast Microscopy Images,
ICPR10(2520-2523).
IEEE DOI
1008
BibRef
Kemmler, M.[Michael],
Denzler, J.[Joachim],
Rösch, P.[Petra],
Popp, J.[Jürgen],
Classification of Microorganisms via Raman Spectroscopy Using Gaussian
Processes,
DAGM10(81-90).
Springer DOI
1009
See also Divergence-Based One-Class Classification Using Gaussian Processes.
BibRef
Mele, K.[Katarina],
Coster, A.[Adelle],
Burchfield, J.G.[James G.],
Lopez, J.[Jamie],
James, D.E.[David E.],
Hughes, W.E.[William E.],
Vallotton, P.[Pascal],
Automatic identification of fusion events in TIRF microscopy image
sequences,
ObjectEvent09(578-584).
IEEE DOI
0910
BibRef
Adeyemi, A.A.,
Darcie, T.E.,
Programmable Point-Source Digital In-Line Holographic Microscope with
Enhanced Field of View,
CISP09(1-4).
IEEE DOI
0910
BibRef
Marim, M.M.[Marcio M.],
Angelini, E.D.[Elsa D.],
Olivo-Marin, J.C.,
Compressed Sensing in microscopy with random projections in the Fourier
domain,
ICIP09(2121-2124).
IEEE DOI
0911
BibRef
Gadgil, N.J.,
Salama, P.,
Dunn, K.W.,
Delp, E.J.,
Nuclei segmentation of fluorescence microscopy images based on
midpoint analysis and marked point process,
Southwest16(37-40)
IEEE DOI
1605
Biology
BibRef
Lorenz, K.S.[Kevin S.],
Serrano, F.[Francisco],
Salama, P.[Paul],
Delp, E.J.[Edward J.],
Segmentation and registration based analysis of microscopy images,
ICIP09(4213-4216).
IEEE DOI
0911
BibRef
Wurflinger, T.[Thomas],
Sechi, A.S.[Antonio S.],
Aach, T.[Til],
Segmentation, tracking, and analysis of focal adhesion dynamics in
cellular microscopy imaging,
ICIP09(4209-4212).
IEEE DOI
0911
BibRef
Zhao, Y.[Yang],
Xiong, H.K.[Hong-Kai],
Zhang, K.[Kai],
Zhou, X.B.[Xiao-Bo],
Equilibrium modeling for 3D curvilinear structure tracking of confocal
microscopy images,
ICIP09(2533-2536).
IEEE DOI
0911
BibRef
Misiak, D.[Danny],
Posch, S.[Stefan],
Stohr, N.[Nadine],
Huttelmaier, S.[Stefan],
Moller, B.[Birgit],
Automatic analysis of flourescence labeled neurites in microscope
images,
WACV09(1-7).
IEEE DOI
0912
BibRef
Rong, W.[Wen],
Chen, H.[Hui],
Liu, J.J.[Jia-Ju],
Xu, Y.Y.[Yan-Yan],
Haeusler, R.,
Mosaicing of microscope images based on SURF,
IVCNZ09(271-275).
IEEE DOI
0911
BibRef
Zhang, H.Z.[Huai-Zhong],
Rodriguez, E.P.[E. Patricia],
Morrow, P.J.[Philip J.],
McClean, S.[Sally],
Saetzler, K.[Kurt],
MCMC-Based Algorithm to Adjust Scale Bias in Large Series of Electron
Microscopical Ultrathin Sections,
CAIP09(557-564).
Springer DOI
0909
BibRef
Zhang, H.Z.[Huai-Zhong],
Morrow, P.J.[Philip J.],
McClean, S.[Sally],
Saetzler, K.[Kurt],
Contour Detection of Labelled Cellular Structures from Serial Ultrathin
Electron Microscopy Sections using GAC and Prior Analysis,
IPTA08(1-7).
IEEE DOI
0811
BibRef
Vazquez, Y.,
Bravo, A.,
Mantilla, J.,
Alayon, M.,
Automatic Approach for Emulsions Stability Assessment in Microscope
Images,
DICTA08(162-167).
IEEE DOI
0812
BibRef
Hamey, L.G.C.[Leonard G. C.],
Connally, R.E.[Russell E.],
Yen, S.W.T.[Simon Wong Too],
Lawson, T.S.[Thomas S.],
Piper, J.A.[James A.],
Iredell, J.[Jon],
Luminescent Microspheres Resolved from Strong Background on an
Automated Time-Gated Luminescence Microscopy Workstation,
DICTA09(223-228).
IEEE DOI
0912
BibRef
Alexander, S.K.,
Azencott, R.,
Bodmann, B.G.,
Bouamrani, A.,
Chiappini, C.,
Ferrari, M.,
Liu, X.,
Tasciotti, E.,
SEM Image Analysis for Quality Control of Nanoparticles,
CAIP09(590-597).
Springer DOI
0909
SEM: scanning electronic microscopy.
BibRef
Tsaftaris, S.A.,
Zujovic, J.,
Katsaggelos, A.K.,
Automated line flattening of Atomic Force Microscopy images,
ICIP08(2968-2971).
IEEE DOI
0810
BibRef
Karlsson, A.[Adam],
Overgaard, N.C.[Niels C.],
Heyden, A.[Anders],
A Two-Step Area Based Method for Automatic Tight Segmentation of Zona
Pellucida in HMC Images of Human Embryos,
ScaleSpace05(503-514).
Springer DOI
0505
BibRef
And:
Automatic segmentation of Zona pellucida in HMC images of human embryos,
ICPR04(III: 518-521).
IEEE DOI
0409
Hoffman modulation contrast microscopy
BibRef
van Kempen, G.M.P.,
van den Brink, N.,
van Vliet, L.J.,
van Ginkel, M.,
Verbeek, P.W.,
Blonk, H.,
The Application of a Local Dimensionality Estimator to the Analysis of
3-D Microscopic Network Structures,
SCIA99(Biological Applications II).
BibRef
9900
Brugal, G.,
Pattern recognition, image processing, related data analysis and expert
systems integrated in medical microscopy,
ICPR88(I: 286-293).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Super Resolution in Microscope Image Analysis .