Krishnakumar, N.,
Iyengar, S.S.[S. Sitharama],
Holyer, R.J.[Ron J.],
Lybanon, M.[Matthew],
Feature labelling in infrared oceanographic images,
IVC(8), No. 2, May 1990, pp. 142-147.
Elsevier DOI
0401
non-linear probabilistic relaxation method.
BibRef
Krishnakumar, N.,
Iyengar, S.S.[S. Sitharama],
Holyer, R.J.[Ron J.],
Lybanon, M.[Matthew],
Topographic-Based Feature Labeling for Infrared Oceanographic Images,
PRL(14), 1993, pp. 915-925.
BibRef
9300
Simhadri, K.K.,
Iyengar, S.S.,
Holyer, R.J.,
Lybanon, M.,
Zachary, J.M.,
Wavelet Based Feature Extraction from Oceanographic Images,
GeoRS(36), No. 3, May 1998, pp. 767-778.
IEEE Top Reference.
9806
BibRef
Martin, M.L.,
Luna, M.Y.,
Valero, F.,
Lea, S.M.,
Lybanon, M.,
Finding water depths from synthetic remotely sensed images,
CIAP99(862-867).
IEEE DOI
9909
BibRef
Frazier, P.S.[Paul Shane],
Page, K.J.[Kenneth John],
Water Body Detection and Delineation with Landsat TM Data,
PhEngRS(66), No. 12, December 2000, pp. 1461-1468.
0101
BibRef
Li, J.[Jiang],
Narayanan, R.M.,
A shape-based approach to change detection of lakes using time series
remote sensing images,
GeoRS(41), No. 11, November 2003, pp. 2466-2477.
IEEE Abstract.
0311
BibRef
Matsushita, B.[Bunkei],
Yang, W.[Wei],
Chang, P.[Peng],
Yang, F.[Fan],
Fukushima, T.[Takehiko],
A simple method for distinguishing global Case-1 and Case-2 waters
using SeaWiFS measurements,
PandRS(69), No. 1, April 2012, pp. 74-87.
Elsevier DOI
1202
Inherent optical properties; Remote-sensing reflectance at 412 and
443 nm; Case-1 and Case-2 waters; GSM01
BibRef
Dash, P.,
Walker, N.,
Mishra, D.R.,
d'Sa, E.J.,
Ladner, S.,
Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean
Color Monitor (OCM) Data in Coastal Case 2 Waters,
RS(4), No. 6, June 2012, pp. 1716-1740.
DOI Link
1208
BibRef
Starek, M.J.,
Vemula, R.,
Slatton, K.C.,
Probabilistic Detection of Morphologic Indicators for Beach
Segmentation With Multitemporal LiDAR Measurements,
GeoRS(50), No. 11, November 2012, pp. 4759-4770.
IEEE DOI
1210
BibRef
Klinger, T.[Tobias],
Ziems, M.[Marcel],
Heipke, C.[Christian],
Schenke, H.W.[Hans Werner],
Ott, N.[Norbert],
Antarctic Coastline Detection using Snakes,
PFG(2011), No. 6, 2011, pp. 421-434.
WWW Link.
1211
BibRef
Tulbure, M.G.[Mirela G.],
Broich, M.[Mark],
Spatiotemporal dynamic of surface water bodies using Landsat
time-series data from 1999 to 2011,
PandRS(79), No. 1, May 2013, pp. 44-52.
Elsevier DOI
1305
Optical remote sensing; Surface water body detection; Large area
wetland inventory; Swan Coastal Plain; Western Australia; Long term
trends
BibRef
Deus, D.,
Gloaguen, R.,
Krause, P.,
Water Balance Modeling in a Semi-Arid Environment with Limited in situ
Data Using Remote Sensing in Lake Manyara, East African Rift, Tanzania,
RS(5), No. 4, April 2013, pp. 1651-1680.
DOI Link
1305
BibRef
Davis, C.[Curtiss],
Tufillaro, N.[Nicholas],
Remotely sensing the complexity of rivers and estuaries,
SPIE(Newsroom), July 22, 2013
DOI Link
1308
Data from the Hyperspectral Imager for the Coastal Ocean (HICO),
combined with innovative spectral processing algorithms, can reveal
detailed pictures of the sources of water pollution.
BibRef
McFeeters, S.K.[Stuart K.],
Using the Normalized Difference Water Index (NDWI) within a
Geographic Information System to Detect Swimming Pools for Mosquito
Abatement: A Practical Approach,
RS(5), No. 7, 2013, pp. 3544-3561.
DOI Link
1308
BibRef
Collin, A.[Antoine],
Archambault, P.[Philippe],
Planes, S.[Serge],
Bridging Ridge-to-Reef Patches:
Seamless Classification of the Coast Using Very High Resolution Satellite,
RS(5), No. 7, 2013, pp. 3583-3610.
DOI Link
1308
BibRef
Ferreira, V.G.[Vagner G.],
Gong, Z.[Zheng],
He, X.F.[Xiu-Feng],
Zhang, Y.L.[Yong-Lei],
Andam-Akorful, S.A.[Samuel A.],
Estimating Total Discharge in the Yangtze River Basin Using
Satellite-Based Observations,
RS(5), No. 7, 2013, pp. 3415-3430.
DOI Link
1308
BibRef
Dierssen, H.[Heidi],
Remote sensing of coastal habitats,
SPIE(Newsroom), August 16, 2013
DOI Link
1310
Hyperspectral imaging data from a portable spectrometer can be used to
map vulnerable and rapidly changing environments at high spatial
resolution.
BibRef
Li, W.B.[Wen-Bo],
Du, Z.Q.[Zhi-Qiang],
Ling, F.[Feng],
Zhou, D.B.[Dong-Bo],
Wang, H.[Hailei],
Gui, Y.M.[Yuan-Miao],
Sun, B.Y.[Bing-Yu],
Zhang, X.M.[Xiao-Ming],
A Comparison of Land Surface Water Mapping Using the Normalized
Difference Water Index from TM, ETM+ and ALI,
RS(5), No. 11, 2013, pp. 5530-5549.
DOI Link
1312
BibRef
Fisher, A.[Adrian],
Danaher, T.[Tim],
A Water Index for SPOT5 HRG Satellite Imagery, New South Wales,
Australia, Determined by Linear Discriminant Analysis,
RS(5), No. 11, 2013, pp. 5907-5925.
DOI Link
1312
BibRef
Fisher, A.[Adrian],
Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated
Morphological Feature Extraction,
RS(6), No. 1, 2014, pp. 776-800.
DOI Link
1402
BibRef
Liu, Y.X.[Yong-Xue],
Li, M.C.[Man-Chun],
Zhou, M.X.[Min-Xi],
Yang, K.[Kang],
Mao, L.[Liang],
Quantitative Analysis of the Waterline Method for Topographical
Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China,
RS(5), No. 11, 2013, pp. 6138-6158.
DOI Link
1312
BibRef
Medeiros, S.C.[Stephen C.],
Hagen, S.C.[Scott C.],
Chaouch, N.[Naira],
Feyen, J.[Jesse],
Temimi, M.[Marouane],
Weishampel, J.F.[John F.],
Funakoshi, Y.J.[Yu-Ji],
Khanbilvardi, R.[Reza],
Assessing the Performance of a Northern Gulf of Mexico Tidal Model
Using Satellite Imagery,
RS(5), No. 11, 2013, pp. 5662-5679.
DOI Link
1312
BibRef
Devred, E.[Emmanuel],
Turpie, K.R.[Kevin R.],
Moses, W.[Wesley],
Klemas, V.V.[Victor V.],
Moisan, T.[Tiffany],
Babin, M.[Marcel],
Toro-Farmer, G.[Gerardo],
Forget, M.H.[Marie-Hélčne],
Jo, Y.H.[Young-Heon],
Future Retrievals of Water Column Bio-Optical Properties using the
Hyperspectral Infrared Imager (HyspIRI),
RS(5), No. 12, 2013, pp. 6812-6837.
DOI Link
1402
BibRef
Schmidt, A.[Alena],
Rottensteiner, F.[Franz],
Sörgel, U.[Uwe],
Water-Land-Classification in Coastal Areas with Full Waveform Lidar
Data,
PFG(2013), No. 2, 2013, pp. 71-81.
DOI Link
1305
BibRef
Earlier:
Classification of Airborne Laser Scanning Data In Wadden Sea Areas
Using Conditional Random Fields,
ISPRS12(XXXIX-B3:161-166).
DOI Link
1209
BibRef
Rodríguez-Cuenca, B.[Borja],
Alonso, M.C.[Maria C.],
Semi-Automatic Detection of Swimming Pools from Aerial
High-Resolution Images and LIDAR Data,
RS(6), No. 4, 2014, pp. 2628-2646.
DOI Link
1405
BibRef
Rokni, K.[Komeil],
Ahmad, A.[Anuar],
Selamat, A.[Ali],
Hazini, S.[Sharifeh],
Water Feature Extraction and Change Detection Using Multitemporal
Landsat Imagery,
RS(6), No. 5, 2014, pp. 4173-4189.
DOI Link
1407
BibRef
Song, C.Q.[Chun-Qiao],
Huang, B.[Bo],
Ke, L.H.[Ling-Hong],
Richards, K.S.[Keith S.],
Remote sensing of alpine lake water environment changes on the
Tibetan Plateau and surroundings: A review,
PandRS(92), No. 1, 2014, pp. 26-37.
Elsevier DOI
1407
Tibetan Plateau
BibRef
Jiang, H.[Hao],
Feng, M.[Min],
Zhu, Y.Q.[Yun-Qiang],
Lu, N.[Ning],
Huang, J.X.[Jian-Xi],
Xiao, T.[Tong],
An Automated Method for Extracting Rivers and Lakes from Landsat
Imagery,
RS(6), No. 6, 2014, pp. 5067-5089.
DOI Link
1407
BibRef
Guzinski, R.[Radoslaw],
Kass, S.[Steve],
Huber, S.[Silvia],
Bauer-Gottwein, P.[Peter],
Jensen, I.H.[Iris Hedegaard],
Naeimi, V.[Vahid],
Doubkova, M.[Marcela],
Walli, A.[Andreas],
Tottrup, C.[Christian],
Enabling the Use of Earth Observation Data for Integrated Water
Resource Management in Africa with the Water Observation and
Information System,
RS(6), No. 8, 2014, pp. 7819-7839.
DOI Link
1410
BibRef
Mizuochi, H.[Hiroki],
Hiyama, T.[Tetsuya],
Ohta, T.[Takeshi],
Nasahara, K.N.[Kenlo N.],
Evaluation of the Surface Water Distribution in North-Central Namibia
Based on MODIS and AMSR Series,
RS(6), No. 8, 2014, pp. 7660-7682.
DOI Link
1410
BibRef
Ramillien, G.[Guillaume],
Frappart, F.[Frédéric],
Seoane, L.[Lucia],
Application of the Regional Water Mass Variations from GRACE
Satellite Gravimetry to Large-Scale Water Management in Africa,
RS(6), No. 8, 2014, pp. 7379-7405.
DOI Link
1410
BibRef
Zhang, T.T.[Ting-Ting],
Shao, Y.[Yun],
Gong, H.[Huaze],
Li, L.[Lin],
Wang, L.F.[Long-Fei],
Salt Content Distribution and Paleoclimatic Significance of the Lop
Nur 'Ear' Feature: Results from Analysis of EO-1 Hyperion Imagery,
RS(6), No. 8, 2014, pp. 7783-7799.
DOI Link
1410
BibRef
Sagar, S.,
Brando, V.,
Sambridge, M.,
Noise Estimation of Remote Sensing Reflectance Using a Segmentation
Approach Suitable for Optically Shallow Waters,
GeoRS(52), No. 12, December 2014, pp. 7504-7512.
IEEE DOI
1410
geophysical image processing
BibRef
Mann, T.[Thomas],
Westphal, H.[Hildegard],
Assessing Long-Term Changes in the Beach Width of Reef Islands Based
on Temporally Fragmented Remote Sensing Data,
RS(6), No. 8, 2014, pp. 6961-6987.
DOI Link
1410
BibRef
Collin, A.[Antoine],
Nadaoka, K.[Kazuo],
Nakamura, T.[Takashi],
Mapping VHR Water Depth, Seabed and Land Cover Using Google Earth
Data,
IJGI(3), No. 4, 2014, pp. 1157-1179.
DOI Link
1411
BibRef
Pitarch, J.[Jaime],
Odermatt, D.[Daniel],
Kawka, M.[Marcin],
Wüest, A.[Alfred],
Retrieval of Particle Scattering Coefficients and Concentrations by
Genetic Algorithms in Stratified Lake Water,
RS(6), No. 10, 2014, pp. 9530-9551.
DOI Link
1411
BibRef
Zhan, S.[Shengan],
Beck, R.A.[Richard A.],
Hinkel, K.M.[Kenneth M.],
Liu, H.X.[Hong-Xing],
Jones, B.M.[Benjamin M.],
Spatio-Temporal Analysis of Gyres in Oriented Lakes on the Arctic
Coastal Plain of Northern Alaska Based on Remotely Sensed Images,
RS(6), No. 10, 2014, pp. 9170-9193.
DOI Link
1411
BibRef
Li, J.G.[Jia-Guang],
Menenti, M.[Massimo],
Mousivand, A.[Alijafar],
Luthi, S.M.[Stefan M.],
Non-Vegetated Playa Morphodynamics Using Multi-Temporal Landsat
Imagery in a Semi-Arid Endorheic Basin: Salar de Uyuni, Bolivia,
RS(6), No. 10, 2014, pp. 10131-10151.
DOI Link
1411
BibRef
Zhang, X.P.[Xiao-Ping],
Pan, D.[Delu],
Chen, J.Y.[Jian-Yu],
Zhao, J.H.[Jian-Hua],
Zhu, Q.[Qiankun],
Huang, H.Q.[Hai-Qing],
Evaluation of Coastline Changes under Human Intervention Using
Multi-Temporal High-Resolution Images: A Case Study of the Zhoushan
Islands, China,
RS(6), No. 10, 2014, pp. 9930-9950.
DOI Link
1411
BibRef
Chen, L.[Lifan],
Michishita, R.[Ryo],
Xu, B.[Bing],
Abrupt spatiotemporal land and water changes and their potential
drivers in Poyang Lake, 2000-2012,
PandRS(98), No. 1, 2014, pp. 85-93.
Elsevier DOI
1411
MODIS
BibRef
Zhu, W.B.[Wen-Bin],
Jia, S.F.[Shao-Feng],
Lv, A.[Aifeng],
Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote
Sensing Data,
RS(6), No. 11, 2014, pp. 10457-10482.
DOI Link
1412
BibRef
Zhu, W.B.[Wen-Bin],
Yan, J.[Jiabao],
Jia, S.F.[Shao-Feng],
Monitoring Recent Fluctuations of the Southern Pool of Lake Chad
Using Multiple Remote Sensing Data: Implications for Water Balance
Analysis,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Kopacková, V.[Veronika],
Hladíková, L.[Lenka],
Applying Spectral Unmixing to Determine Surface Water Parameters in a
Mining Environment,
RS(6), No. 11, 2014, pp. 11204-11224.
DOI Link
1412
BibRef
Rosenkranz, P.W.,
A Model for the Complex Dielectric Constant of Supercooled Liquid
Water at Microwave Frequencies,
GeoRS(53), No. 3, March 2015, pp. 1387-1393.
IEEE DOI
1412
atmospheric humidity
BibRef
Wu, Q.S.[Qiu-Sheng],
Lane, C.[Charles],
Liu, H.X.[Hong-Xing],
An Effective Method for Detecting Potential Woodland Vernal Pools
Using High-Resolution LiDAR Data and Aerial Imagery,
RS(6), No. 11, 2014, pp. 11444-11467.
DOI Link
1412
BibRef
Bastiaanssen, W.G.M.[Wim G.M.],
Karimi, P.[Poolad],
Rebelo, L.M.[Lisa-Maria],
Duan, Z.[Zheng],
Senay, G.[Gabriel],
Muthuwatte, L.[Lal],
Smakhtin, V.[Vladimir],
Earth Observation Based Assessment of the Water Production and Water
Consumption of Nile Basin Agro-Ecosystems,
RS(6), No. 11, 2014, pp. 10306-10334.
DOI Link
1412
BibRef
Ghosh, M.K.[Manoj Kumer],
Kumar, L.[Lalit],
Roy, C.[Chandan],
Monitoring the coastline change of Hatiya Island in Bangladesh using
remote sensing techniques,
PandRS(101), No. 1, 2015, pp. 137-144.
Elsevier DOI
1503
Integrated technique
BibRef
Guo, Y.L.[Yu-Long],
Li, Y.M.[Yun-Mei],
Zhu, L.[Li],
Liu, G.[Ge],
Wang, S.[Shuai],
Du, C.G.[Cheng-Gong],
An Improved Unmixing-Based Fusion Method:
Potential Application to Remote Monitoring of Inland Waters,
RS(7), No. 2, 2015, pp. 1640-1666.
DOI Link
1503
BibRef
Chakroun, H.[Hedia],
Mouillot, F.[Florent],
Hamdi, A.[Abdelaziz],
Regional Equivalent Water Thickness Modeling from Remote Sensing
across a Tree Cover/LAI Gradient in Mediterranean Forests of Northern
Tunisia,
RS(7), No. 2, 2015, pp. 1937-1961.
DOI Link
1503
BibRef
Li, R.R.[Rong-Rong],
Lewis, M.D.[Mark David],
Gould, R.W.[Richard W.],
Lawson, A.[Adam],
Amin, R.[Ruhul],
Gallegos, S.C.[Sonia C.],
Ladner, S.[Sherwin],
Inter-Comparison between VIIRS and MODIS Radiances and Ocean Color
Data Products over the Chesapeake Bay,
RS(7), No. 2, 2015, pp. 2193-2207.
DOI Link
1503
BibRef
Gonçalves, J.A.,
Henriques, R.,
UAV photogrammetry for topographic monitoring of coastal areas,
PandRS(104), No. 1, 2015, pp. 101-111.
Elsevier DOI
1505
Coast
BibRef
Yang, K.[Kang],
Li, M.C.[Man-Chun],
Liu, Y.X.[Yong-Xue],
Cheng, L.[Liang],
Huang, Q.H.[Qiu-Hao],
Chen, Y.M.[Yang-Ming],
River Detection in Remotely Sensed Imagery Using Gabor Filtering and
Path Opening,
RS(7), No. 7, 2015, pp. 8779.
DOI Link
1506
BibRef
Li, L.[Lin],
Xia, H.[Hui],
Li, Z.[Zheng],
Zhang, Z.J.[Zhi-Jun],
Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the
Middle and Lower Yangtze River Basin Using Landsat Imagery Data,
RS(7), No. 8, 2015, pp. 10364.
DOI Link
1509
BibRef
Yao, F.F.[Fang-Fang],
Wang, C.[Chao],
Dong, D.[Di],
Luo, J.C.[Jian-Cheng],
Shen, Z.F.[Zhan-Feng],
Yang, K.[Kehan],
High-Resolution Mapping of Urban Surface Water Using ZY-3
Multi-Spectral Imagery,
RS(7), No. 9, 2015, pp. 12336.
DOI Link
1511
BibRef
Wu, G.P.[Gui-Ping],
Liu, Y.B.[Yuan-Bo],
Combining Multispectral Imagery with in situ Topographic Data Reveals
Complex Water Level Variation in China's Largest Freshwater Lake,
RS(7), No. 10, 2015, pp. 13466.
DOI Link
1511
BibRef
Wu, G.P.[Gui-Ping],
Liu, Y.B.[Yuan-Bo],
Assessment of the Hydro-Ecological Impacts of the Three Gorges Dam on
China's Largest Freshwater Lake,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Ji, L.[Luyan],
Gong, P.[Peng],
Geng, X.[Xiurui],
Zhao, Y.C.[Yong-Chao],
Improving the Accuracy of the Water Surface Cover Type in the 30 m
FROM-GLC Product,
RS(7), No. 10, 2015, pp. 13507.
DOI Link
1511
BibRef
Sharma, R.C.[Ram C.],
Tateishi, R.[Ryutaro],
Hara, K.[Keitarou],
Nguyen, L.V.[Luong Viet],
Developing Superfine Water Index (SWI) for Global Water Cover Mapping
Using MODIS Data,
RS(7), No. 10, 2015, pp. 13807.
DOI Link
1511
BibRef
Gökgöz, T.[Türkay],
Sen, A.[Alper],
Memduhoglu, A.[Abdulkadir],
Hacar, M.[Muslum],
A New Algorithm for Cartographic Simplification of Streams and Lakes
Using Deviation Angles and Error Bands,
IJGI(4), No. 4, 2015, pp. 2185.
DOI Link
1511
BibRef
Schroeder, R.[Ronny],
McDonald, K.C.[Kyle C.],
Chapman, B.D.[Bruce D.],
Jensen, K.[Katherine],
Podest, E.[Erika],
Tessler, Z.D.[Zachary D.],
Bohn, T.J.[Theodore J.],
Zimmermann, R.[Reiner],
Development and Evaluation of a Multi-Year Fractional Surface Water
Data Set Derived from Active/Passive Microwave Remote Sensing Data,
RS(7), No. 12, 2015, pp. 15843.
DOI Link
1601
BibRef
Du, Y.[Yun],
Zhang, Y.H.[Yi-Hang],
Ling, F.[Feng],
Wang, Q.[Qunming],
Li, W.B.[Wen-Bo],
Li, X.D.[Xiao-Dong],
Water Bodies' Mapping from Sentinel-2 Imagery with Modified
Normalized Difference Water Index at 10-m Spatial Resolution Produced
by Sharpening the SWIR Band,
RS(8), No. 4, 2016, pp. 354.
DOI Link
1604
BibRef
Bolanos, S.[Sandra],
Stiff, D.[Doug],
Brisco, B.[Brian],
Pietroniro, A.[Alain],
Operational Surface Water Detection and Monitoring Using Radarsat 2,
RS(8), No. 4, 2016, pp. 285.
DOI Link
1604
BibRef
Kuai, X.[Xi],
Li, L.[Lin],
Luo, H.[Heng],
Hang, S.[Shen],
Zhang, Z.J.[Zhi-Jun],
Liu, Y.[Yu],
Geospatial Information Categories Mapping in a Cross-lingual
Environment: A Case Study of 'Surface Water' Categories in Chinese
and American Topographic Maps,
IJGI(5), No. 6, 2016, pp. 90.
DOI Link
1608
BibRef
Xie, H.[Huan],
Luo, X.[Xin],
Xu, X.[Xiong],
Pan, H.Y.[Hai-Yan],
Tong, X.H.[Xiao-Hua],
Automated Subpixel Surface Water Mapping from Heterogeneous Urban
Environments Using Landsat 8 OLI Imagery,
RS(8), No. 7, 2016, pp. 584.
DOI Link
1608
BibRef
Hwang, C.[Cheinway],
Cheng, Y.S.[Yung-Sheng],
Han, J.C.[Jian-Cheng],
Kao, R.[Ricky],
Huang, C.Y.[Chi-Yun],
Wei, S.H.[Shiang-Hung],
Wang, H.[Haihong],
Multi-Decadal Monitoring of Lake Level Changes in the Qinghai-Tibet
Plateau by the TOPEX/Poseidon-Family Altimeters: Climate Implication,
RS(8), No. 6, 2016, pp. 446.
DOI Link
1608
BibRef
Carroll, M.[Mark],
Wooten, M.[Margaret],
di Miceli, C.[Charlene],
Sohlberg, R.[Robert],
Kelly, M.[Maureen],
Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in
the North American High Northern Latitudes 1991-2011,
RS(8), No. 8, 2016, pp. 622.
DOI Link
1609
BibRef
d'Alimonte, D.,
Kajiyama, T.,
Saptawijaya, A.,
Ocean Color Remote Sensing of Atypical Marine Optical Cases,
GeoRS(54), No. 11, November 2016, pp. 6574-6586.
IEEE DOI
1610
Absorption
BibRef
Schueler, C.[Carl],
Holmes, A.[Alan],
Monitoring coastal ocean color with low-cost CubeSats,
SPIE(Newsroom), September 13, 2016
DOI Link
1610
Miniaturization of satellite remote sensing promises lower costs, and
SeaHawk is a prime example, offering global coastal ocean color
imagery comparable to previous larger and more expensive systems.
BibRef
Bustamante, J.[Javier],
Aragonés, D.[David],
Afán, I.[Isabel],
Effect of Protection Level in the Hydroperiod of Water Bodies on
Dońana's Aeolian Sands,
RS(8), No. 10, 2016, pp. 867.
DOI Link
1609
BibRef
Dörnhöfer, K.[Katja],
Göritz, A.[Anna],
Gege, P.[Peter],
Pflug, B.[Bringfried],
Oppelt, N.[Natascha],
Water Constituents and Water Depth Retrieval from Sentinel-2A:
A First Evaluation in an Oligotrophic Lake,
RS(8), No. 11, 2016, pp. 941.
DOI Link
1612
BibRef
Bertels, L.[Luc],
Smets, B.[Bruno],
Wolfs, D.[Davy],
Dynamic Water Surface Detection Algorithm Applied on PROBA-V
Multispectral Data,
RS(8), No. 12, 2016, pp. 1010.
DOI Link
1612
BibRef
Leng, L.[Liang],
Yang, G.D.[Guo-Dong],
Chen, S.[Shengbo],
A Combinatorial Reasoning Mechanism with Topological and Metric
Relations for Change Detection in River Planforms:
An Application to GlobeLand30's Water Bodies,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Dietz, A.J.[Andreas J.],
Klein, I.[Igor],
Gessner, U.[Ursula],
Frey, C.M.[Corinne M.],
Kuenzer, C.[Claudia],
Dech, S.[Stefan],
Detection of Water Bodies from AVHRR Data: A TIMELINE Thematic
Processor,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Tan, C.[Chao],
Ma, M.G.[Ming-Guo],
Kuang, H.H.[Hong-Hai],
Spatial-Temporal Characteristics and Climatic Responses of Water
Level Fluctuations of Global Major Lakes from 2002 to 2010,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
And:
Erratum:
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
d'Andrimont, R.[Raphaël],
Marlier, C.[Catherine],
Defourny, P.[Pierre],
Hyperspatial and Multi-Source Water Body Mapping: A Framework to
Handle Heterogeneities from Observations and Targets over Large Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Eleveld, M.A.[Marieke A.],
Ruescas, A.B.[Ana B.],
Hommersom, A.[Annelies],
Moore, T.S.[Timothy S.],
Peters, S.W.M.[Steef W. M.],
Brockmann, C.[Carsten],
An Optical Classification Tool for Global Lake Waters,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Sun, W.W.[Wei-Wei],
Du, B.[Bo],
Xiong, S.[Shaolong],
Quantifying Sub-Pixel Surface Water Coverage in Urban Environments
Using Low-Albedo Fraction from Landsat Imagery,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Huang, C.[Chang],
Nguyen, B.D.[Ba Duy],
Zhang, S.Q.[Shi-Qiang],
Cao, S.M.[Sen-Mao],
Wagner, W.[Wolfgang],
A Comparison of Terrain Indices toward Their Ability in Assisting
Surface Water Mapping from Sentinel-1 Data,
IJGI(6), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Yang, X.C.[Xiu-Cheng],
Zhao, S.S.[Shan-Shan],
Qin, X.B.[Xue-Bin],
Zhao, N.[Na],
Liang, L.G.[Li-Gang],
Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at
10 m Resolution via NDWI-Based Image Sharpening,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zeng, C.Q.[Chui-Qing],
Richardson, M.[Murray],
King, D.J.[Douglas J.],
The impacts of environmental variables on water reflectance measured
using a lightweight unmanned aerial vehicle (UAV)-based spectrometer
system,
PandRS(130), No. 1, 2017, pp. 217-230.
Elsevier DOI
1708
Water, reflectance
BibRef
Shen, Y.L.[Yi-Lang],
Ai, T.H.[Ting-Hua],
A Hierarchical Approach for Measuring the Consistency of Water Areas
between Multiple Representations of Tile Maps with Different Scales,
IJGI(6), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Verplanke, J.[Jeroen],
Georgiadou, Y.[Yola],
Wicked Water Points:
The Quest for an Error Free National Water Point Database,
IJGI(6), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Lyons, E.A.[Evan A.],
Sheng, Y.W.[Yong-Wei],
LakeTime: Automated Seasonal Scene Selection for Global Lake Mapping
Using Landsat ETM+ and OLI,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Garcia, R.A.[Rodrigo A.],
Lee, Z.P.[Zhong-Ping],
Hochberg, E.J.[Eric J.],
Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic
Classifier,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Cooley, S.W.[Sarah W.],
Smith, L.C.[Laurence C.],
Stepan, L.[Leon],
Mascaro, J.[Joseph],
Tracking Dynamic Northern Surface Water Changes with High-Frequency
Planet CubeSat Imagery,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Bioresita, F.[Filsa],
Puissant, A.[Anne],
Stumpf, A.[André],
Malet, J.P.[Jean-Philippe],
A Method for Automatic and Rapid Mapping of Water Surfaces from
Sentinel-1 Imagery,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Tan, C.[Chao],
Guo, B.[Bo],
Kuang, H.H.[Hong-Hai],
Yang, H.[Hong],
Ma, M.G.[Ming-Guo],
Lake Area Changes and Their Influence on Factors in Arid and
Semi-Arid Regions along the Silk Road,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Jiang, W.[Wei],
He, G.J.[Guo-Jin],
Long, T.F.[Teng-Fei],
Ni, Y.[Yuan],
Liu, H.C.[Hui-Chan],
Peng, Y.[Yan],
Lv, K.[Kenan],
Wang, G.Z.[Gui-Zhou],
Multilayer Perceptron Neural Network for Surface Water Extraction in
Landsat 8 OLI Satellite Images,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Ji, X.[Xuan],
Li, Y.G.[Yun-Gang],
Luo, X.[Xian],
He, D.M.[Da-Ming],
Changes in the Lake Area of Tonle Sap: Possible Linkage to Runoff
Alterations in the Lancang River?,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Xie, Y.Y.[Yang-Yang],
Huang, S.Z.[Sheng-Zhi],
Liu, S.[Saiyan],
Leng, G.Y.[Guo-Yong],
Peng, J.[Jian],
Huang, Q.A.[Qi-Ang],
Li, P.[Pei],
GRACE-Based Terrestrial Water Storage in Northwest China:
Changes and Causes,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
And:
Erratum:
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Rao, P.[Pinzeng],
Jiang, W.G.[Wei-Guo],
Hou, Y.K.[Yu-Kun],
Chen, Z.[Zheng],
Jia, K.[Kai],
Dynamic Change Analysis of Surface Water in the Yangtze River Basin
Based on MODIS Products,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Wang, Z.F.[Zi-Feng],
Liu, J.G.[Jun-Guo],
Li, J.B.[Jin-Bao],
Zhang, D.D.[David D.],
Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water
Index for Accurate Water Mapping on Sentinel-2,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Bernardo, N.[Nariane],
Alcântara, E.H.[Enner Heręnio],
Watanabe, F.[Fernanda],
Rodrigues, T.[Thanan],
Carmo, A.[Alisson],
Gomes, A.[Ana],
Andrade, C.[Caroline],
Glint Removal Assessment to Estimate the Remote Sensing Reflectance
in Inland Waters with Widely Differing Optical Properties,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Ahn, J.H.[Jae-Hyun],
Park, Y.J.[Young-Je],
Fukushima, H.[Hajime],
Comparison of Aerosol Reflectance Correction Schemes Using Two
Near-Infrared Wavelengths for Ocean Color Data Processing,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Wu, W.[Wei],
Li, Q.Z.[Qiang-Zi],
Zhang, Y.[Yuan],
Du, X.[Xin],
Wang, H.Y.[Hong-Yan],
Two-Step Urban Water Index (TSUWI): A New Technique for
High-Resolution Mapping of Urban Surface Water,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Rishikeshan, C.A.,
Ramesh, H.,
An automated mathematical morphology driven algorithm for water body
extraction from remotely sensed images,
PandRS(146), 2018, pp. 11-21.
Elsevier DOI
1812
Feature extraction, Water body extraction,
Satellite image processing, Mathematical morphology
BibRef
Qi, B.G.[Bao-Gui],
Zhuang, Y.[Yin],
Chen, H.[He],
Dong, S.[Shan],
Li, L.L.[Lian-Lin],
Fusion Feature Multi-Scale Pooling for Water Body Extraction from
Optical Panchromatic Images,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Wang, D.[Dian],
Ma, R.H.[Rong-Hua],
Xue, K.[Kun],
Loiselle, S.A.[Steven Arthur],
The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for
Inland Waters,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Freitas, P.[Pedro],
Vieira, G.[Gonçalo],
Canário, J.[Joăo],
Folhas, D.[Diogo],
Vincent, W.F.[Warwick F.],
Identification of a Threshold Minimum Area for Reflectance Retrieval
from Thermokarst Lakes and Ponds Using Full-Pixel Data from
Sentinel-2,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Chen, B.Q.[Ben-Qing],
Yang, Y.M.[Yan-Ming],
Xu, D.W.[De-Wei],
Huang, E.[Erhui],
A dual band algorithm for shallow water depth retrieval from high
spatial resolution imagery with no ground truth,
PandRS(151), 2019, pp. 1-13.
Elsevier DOI
1904
High spatial resolution, No ground truth, Bathymetry,
Water depth, Remote sensing
BibRef
Yan, W.Y.[Wai Yeung],
Shaker, A.[Ahmed],
LaRocque, P.E.[Paul E.],
Scan Line Intensity-Elevation Ratio (SLIER): An Airborne LiDAR Ratio
Index for Automatic Water Surface Mapping,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Mandlburger, G.[Gottfried],
Jutzi, B.[Boris],
On the Feasibility of Water Surface Mapping with Single Photon LiDAR,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Mandlburger, G.,
Weiß, R.,
Artz, T.,
Mapping of Water Surface Levels and Slopes with Single Photon Lidar - A
Case Study At the River Rhine,
ISPRS20(B1:57-64).
DOI Link
2012
BibRef
Shaker, A.[Ahmed],
Yan, W.Y.[Wai Yeung],
LaRocque, P.E.[Paul E.],
Automatic land-water classification using multispectral airborne
LiDAR data for near-shore and river environments,
PandRS(152), 2019, pp. 94-108.
Elsevier DOI
1905
Airborne LiDAR, Gaussian mixture model,
Land-water classification, Multispectral LiDAR, SLIER
BibRef
Chand, M.B.[Mohan Bahadur],
Watanabe, T.[Teiji],
Development of Supraglacial Ponds in the Everest Region, Nepal,
between 1989 and 2018,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Li, L.W.[Li-Wei],
Yan, Z.[Zhi],
Shen, Q.[Qian],
Cheng, G.[Gang],
Gao, L.[Lianru],
Zhang, B.[Bing],
Water Body Extraction from Very High Spatial Resolution Remote
Sensing Data Based on Fully Convolutional Networks,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Bangira, T.[Tsitsi],
Alfieri, S.M.[Silvia Maria],
Menenti, M.[Massimo],
van Niekerk, A.[Adriaan],
Comparing Thresholding with Machine Learning Classifiers for Mapping
Complex Water,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Santos, G.M.D.[Gema Marco-Dos],
Melendez-Pastor, I.[Ignacio],
Navarro-Pedreńo, J.[Jose],
Koch, M.[Magaly],
Assessing Water Availability in Mediterranean Regions Affected by
Water Conflicts through MODIS Data Time Series Analysis,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Che, X.H.[Xiang-Hong],
Feng, M.[Min],
Sexton, J.[Joe],
Channan, S.[Saurabh],
Sun, Q.[Qing],
Ying, Q.[Qing],
Liu, J.P.[Ji-Ping],
Wang, Y.[Yong],
Landsat-Based Estimation of Seasonal Water Cover and Change in Arid
and Semi-Arid Central Asia (2000-2015),
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Li, Z.C.[Zhi-Chao],
Feng, Y.J.[Yu-Jie],
Dessay, N.[Nadine],
Delaitre, E.[Eric],
Gurgel, H.[Helen],
Gong, P.[Peng],
Continuous Monitoring of the Spatio-Temporal Patterns of Surface
Water in Response to Land Use and Land Cover Types in a Mediterranean
Lagoon Complex,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Xia, H.M.[Hao-Ming],
Zhao, J.Y.[Jin-Yu],
Qin, Y.C.[Yao-Chen],
Yang, J.[Jia],
Cui, Y.P.[Yao-Ping],
Song, H.Q.[Hong-Quan],
Ma, L.Q.[Li-Qun],
Jin, N.[Ning],
Meng, Q.M.[Qing-Min],
Changes in Water Surface Area during 1989-2017 in the Huai River
Basin using Landsat Data and Google Earth Engine,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Kyzivat, E.D.[Ethan D.],
Smith, L.C.[Laurence C.],
Pitcher, L.H.[Lincoln H.],
Fayne, J.V.[Jessica V.],
Cooley, S.W.[Sarah W.],
Cooper, M.G.[Matthew G.],
Topp, S.N.[Simon N.],
Langhorst, T.[Theodore],
Harlan, M.E.[Merritt E.],
Horvat, C.[Christopher],
Gleason, C.J.[Colin J.],
Pavelsky, T.M.[Tamlin M.],
A High-Resolution Airborne Color-Infrared Camera Water Mask for the
NASA ABoVE Campaign,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Fan, X.W.[Xing-Wang],
Liu, Y.B.[Yuan-Bo],
Wu, G.P.[Gui-Ping],
Zhao, X.S.[Xiao-Song],
Compositing the Minimum NDVI for Daily Water Surface Mapping,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Wang, G.J.[Guo-Jie],
Wu, M.J.[Meng-Juan],
Wei, X.K.[Xi-Kun],
Song, H.H.[Hui-Hui],
Water Identification from High-Resolution Remote Sensing Images Based
on Multidimensional Densely Connected Convolutional Neural Networks,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Fujisada, H.[Hiroyuki],
Urai, M.[Minoru],
Iwasaki, A.[Akira],
Technical Methodology for ASTER Global Water Body Data Base,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Fujisada, H.[Hiroyuki],
Urai, M.[Minoru],
Iwasaki, A.[Akira],
Manual-Based Improvement Method for the ASTER Global Water Body Data
Base,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Abrams, M.[Michael],
Crippen, R.[Robert],
Fujisada, H.[Hiroyuki],
ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water
Body Dataset (ASTWBD),
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Earlier: A1, Only:
ASTER Global DEM Version 3, and New ASTER Water Body Dataset,
ISPRS16(B4: 107-110).
DOI Link
1610
See also Technical Methodology for ASTER Global DEM.
BibRef
Liu, C.Z.[Chen-Zhou],
Shi, J.C.[Jian-Cheng],
Liu, X.Y.[Xiu-Ying],
Shi, Z.Y.[Zhao-Yong],
Zhu, J.[Ji],
Subpixel Mapping of Surface Water in the Tibetan Plateau with MODIS
Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Weng, L.G.[Li-Guo],
Xu, Y.M.[Yi-Ming],
Xia, M.[Min],
Zhang, Y.H.[Yong-Hong],
Liu, J.[Jia],
Xu, Y.Q.[Yi-Qing],
Water Areas Segmentation from Remote Sensing Images Using a Separable
Residual SegNet Network,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Alwan, I.A.[Imzahim A.],
Aziz, N.A.[Nadia A.],
Hamoodi, M.N.[Mustafa N.],
Potential Water Harvesting Sites Identification Using Spatial
Multi-Criteria Evaluation in Maysan Province, Iraq,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Guo, H.X.[Hong-Xiang],
He, G.J.[Guo-Jin],
Jiang, W.[Wei],
Yin, R.[Ranyu],
Yan, L.[Lei],
Leng, W.C.[Wan-Chun],
A Multi-Scale Water Extraction Convolutional Neural Network (MWEN)
Method for GaoFen-1 Remote Sensing Images,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Guo, Y.,
Huang, C.,
Zhang, Y.,
Li, Y.,
Chen, W.,
A Novel Multitemporal Image-Fusion Algorithm: Method and Application
to GOCI and Himawari Images for Inland Water Remote Sensing,
GeoRS(58), No. 6, June 2020, pp. 4018-4032.
IEEE DOI
2005
Geostationary Ocean Color Imager (GOCI), Himawari, image fusion,
optical complex water monitoring
BibRef
Paul, R.F.[Robert F.],
Cai, Y.P.[Ya-Ping],
Peng, B.[Bin],
Yang, W.H.[Wendy H.],
Guan, K.Y.[Kai-Yu],
de Lucia, E.H.[Evan H.],
Spatiotemporal Derivation of Intermittent Ponding in a Maize-Soybean
Landscape from Planet Labs CubeSat Images,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Qin, M.J.[Meng-Jiao],
Hu, L.S.[Lin-Shu],
Du, Z.H.[Zhen-Hong],
Gao, Y.[Yi],
Qin, L.J.[Lian-Jie],
Zhang, F.[Feng],
Liu, R.Y.[Ren-Yi],
Achieving Higher Resolution Lake Area from Remote Sensing Images
Through an Unsupervised Deep Learning Super-Resolution Method,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Zhou, S.L.[Su-Long],
Kan, P.Y.[Peng-Yu],
Silbernagel, J.[Janet],
Jin, J.F.[Jie-Feng],
Application of Image Segmentation in Surface Water Extraction of
Freshwater Lakes using Radar Data,
IJGI(9), No. 7, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Markert, K.N.[Kel N.],
Markert, A.M.[Amanda M.],
Mayer, T.[Timothy],
Nauman, C.[Claire],
Haag, A.[Arjen],
Poortinga, A.[Ate],
Bhandari, B.[Biplov],
Thwal, N.S.[Nyein Soe],
Kunlamai, T.[Thannarot],
Chishtie, F.[Farrukh],
Kwant, M.[Martijn],
Phongsapan, K.[Kittiphong],
Clinton, N.[Nicholas],
Towashiraporn, P.[Peeranan],
Saah, D.[David],
Comparing Sentinel-1 Surface Water Mapping Algorithms and Radiometric
Terrain Correction Processing in Southeast Asia Utilizing Google
Earth Engine,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Li, Y.[Yang],
Niu, Z.G.[Zhen-Guo],
Xu, Z.[Zeyu],
Yan, X.[Xin],
Construction of High Spatial-Temporal Water Body Dataset in China
Based on Sentinel-1 Archives and GEE,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Ogashawara, I.[Igor],
Jechow, A.[Andreas],
Kiel, C.[Christine],
Kohnert, K.[Katrin],
Berger, S.A.[Stella A.],
Wollrab, S.[Sabine],
Performance of the Landsat 8 Provisional Aquatic Reflectance Product
for Inland Waters,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Seaton, D.[Dylan],
Dube, T.[Timothy],
Mazvimavi, D.[Dominic],
Use of multi-temporal satellite data for monitoring pool surface
areas occurring in non-perennial rivers in semi-arid environments of
the Western Cape, South Africa,
PandRS(167), 2020, pp. 375-384.
Elsevier DOI
2008
Multi-date monitoring, Non-perennial rivers, Pool area,
Remote sensing, Semi-arid environments, Variability,
South Africa
BibRef
Han, Q.Q.[Qian-Qian],
Niu, Z.G.[Zhen-Guo],
Construction of the Long-Term Global Surface Water Extent Dataset
Based on Water-NDVI Spatio-Temporal Parameter Set,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Yu, Z.Q.[Zhi-Qi],
Di, L.P.[Li-Ping],
Rahman, M.S.[Md. Shahinoor],
Tang, J.M.[Jun-Mei],
Fishpond Mapping by Spectral and Spatial-Based Filtering on Google
Earth Engine: A Case Study in Singra Upazila of Bangladesh,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Sun, F.D.[Fang-Di],
Ma, R.H.[Rong-Hua],
He, B.[Bin],
Zhao, X.L.[Xiao-Li],
Zeng, Y.C.[Yu-Chao],
Zhang, S.Y.[Si-Yi],
Tang, S.L.[Shi-Lin],
Changing Patterns of Lakes on The Southern Tibetan Plateau Based on
Multi-Source Satellite Data,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Somasundaram, D.[Deepakrishna],
Zhang, F.F.[Fang-Fang],
Ediriweera, S.[Sisira],
Wang, S.L.[Sheng-Lei],
Li, J.S.[Jun-Sheng],
Zhang, B.[Bing],
Spatial and Temporal Changes in Surface Water Area of Sri Lanka over
a 30-Year Period,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Wei, X.F.[Xu-Feng],
Xu, W.B.[Wen-Bo],
Bao, K.[Kuanle],
Hou, W.M.[Wei-Min],
Su, J.[Jia],
Li, H.N.[Hai-Ning],
Miao, Z.[Zhuang],
A Water Body Extraction Methods Comparison Based on FengYun Satellite
Data: A Case Study of Poyang Lake Region, China,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wang, Z.B.[Zhao-Bin],
Gao, X.[Xiong],
Zhang, Y.[Yaonan],
Zhao, G.H.[Guo-Hui],
MSLWENet: A Novel Deep Learning Network for Lake Water Body
Extraction of Google Remote Sensing Images,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Li, Z.[Zhi],
Yang, X.M.[Xiao-Mei],
Fusion of High- and Medium-Resolution Optical Remote Sensing Imagery
and GlobeLand30 Products for the Automated Detection of Intra-Urban
Surface Water,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zekoll, V.[Viktoria],
Main-Knorn, M.[Magdalena],
Louis, J.[Jerome],
Frantz, D.[David],
Richter, R.[Rudolf],
Pflug, B.[Bringfried],
Comparison of Masking Algorithms for Sentinel-2 Imagery,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
And:
Erratum:
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
1806
Masking of clouds, cloud shadow, water and snow/ice in
optical satellite imagery.
BibRef
Veremeeva, A.[Alexandra],
Nitze, I.[Ingmar],
Günther, F.[Frank],
Grosse, G.[Guido],
Rivkina, E.[Elizaveta],
Geomorphological and Climatic Drivers of Thermokarst Lake Area
Increase Trend (1999-2018) in the Kolyma Lowland Yedoma Region,
North-Eastern Siberia,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Li, L.R.[Lin-Rong],
Su, H.J.[Hong-Jun],
Du, Q.[Qian],
Wu, T.X.[Tai-Xia],
A novel surface water index using local background information for
long term and large-scale Landsat images,
PandRS(172), 2021, pp. 59-78.
Elsevier DOI
2101
Sufarce water extraction, Landsat, Background information, Water index
BibRef
Mizuochi, H.[Hiroki],
Iijima, Y.[Yoshihiro],
Nagano, H.[Hirohiko],
Kotani, A.[Ayumi],
Hiyama, T.[Tetsuya],
Dynamic Mapping of Subarctic Surface Water by Fusion of Microwave and
Optical Satellite Data Using Conditional Adversarial Networks,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Chen, F.[Fen],
van de Voorde, T.[Tim],
Roberts, D.[Dar],
Zhao, H.J.[Hao-Jie],
Chen, J.B.[Jing-Bo],
Detection of Ground Materials Using Normalized Difference Indices
with a Threshold: Risk and Ways to Improve,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Li, J.J.[Juan-Juan],
Wang, C.[Chao],
Xu, L.[Lu],
Wu, F.[Fan],
Zhang, H.[Hong],
Zhang, B.[Bo],
Multitemporal Water Extraction of Dongting Lake and Poyang Lake Based
on an Automatic Water Extraction and Dynamic Monitoring Framework,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
He, M.J.[Ming-Jun],
He, S.Y.[Shuang-Yan],
Zhang, X.D.[Xiao-Dong],
Zhou, F.[Feng],
Li, P.L.[Pei-Liang],
Assessment of Normalized Water-Leaving Radiance Derived from GOCI
Using AERONET-OC Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Zhang, Z.L.[Zhi-Li],
Lu, M.[Meng],
Ji, S.P.[Shun-Ping],
Yu, H.[Huafen],
Nie, C.H.[Chen-Hui],
Rich CNN Features for Water-Body Segmentation from Very High
Resolution Aerial and Satellite Imagery,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Tambe, R.G.[Rishikesh G.],
Talbar, S.N.[Sanjay N.],
Chavan, S.S.[Satishkumar S.],
Deep multi-feature learning architecture for water body segmentation
from satellite images,
JVCIR(77), 2021, pp. 103141.
Elsevier DOI
2106
Convolutional neural network, Deep learning,
Refinement modules, Satellite image analysis, Water body extraction
BibRef
Mayr, S.[Stefan],
Klein, I.[Igor],
Rutzinger, M.[Martin],
Kuenzer, C.[Claudia],
Systematic Water Fraction Estimation for a Global and Daily Surface
Water Time-Series,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Al-Khaldi, M.M.[Mohammad M.],
Johnson, J.T.[Joel T.],
Gleason, S.[Scott],
Chew, C.C.[Clara C.],
Gerlein-Safdi, C.[Cynthia],
Shah, R.[Rashmi],
Zuffada, C.[Cinzia],
Inland Water Body Mapping Using CYGNSS Coherence Detection,
GeoRS(59), No. 9, September 2021, pp. 7385-7394.
IEEE DOI
2109
Land surface, Surface roughness, Rough surfaces,
Surface topography, Sea surface, Vegetation mapping, Coherence,
rough surface scattering
BibRef
Dang, B.[Bo],
Li, Y.S.[Yan-Sheng],
MSResNet: Multiscale Residual Network via Self-Supervised Learning
for Water-Body Detection in Remote Sensing Imagery,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, W.N.[Wen-Ning],
Li, Y.[Yi],
Gong, J.H.[Jian-Hua],
Feng, Q.L.[Quan-Long],
Zhou, J.P.[Jie-Ping],
Sun, J.[Jun],
Shi, C.H.[Chen-Hui],
Hu, W.D.[Wei-Dong],
Urban Water Extraction with UAV High-Resolution Remote Sensing Data
Based on an Improved U-Net Model,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Peńa-Luque, S.[Santiago],
Ferrant, S.[Sylvain],
Cordeiro, M.C.R.[Mauricio C. R.],
Ledauphin, T.[Thomas],
Maxant, J.[Jerome],
Martinez, J.M.[Jean-Michel],
Sentinel-1&2 Multitemporal Water Surface Detection Accuracies,
Evaluated at Regional and Reservoirs Level,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liang, G.[Gang],
Zhao, X.L.[Xing-Lei],
Zhao, J.H.[Jian-Hu],
Zhou, F.N.[Feng-Nian],
Feature Selection and Mislabeled Waveform Correction for Water-Land
Discrimination Using Airborne Infrared Laser,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Huang, Z.L.[Ze-Lin],
Wu, W.[Wei],
Liu, H.B.[Hong-Bin],
Zhang, W.[Weichun],
Hu, J.[Jin],
Identifying Dynamic Changes in Water Surface Using Sentinel-1 Data
Based on Genetic Algorithm and Machine Learning Techniques,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Wang, C.[Chao],
Okuyama, M.[Michihiko],
Matsuoka, R.[Ryo],
Okabe, T.[Takahiro],
Per-Pixel Water Detection on Surfaces with Unknown Reflectance,
IEICE(E104-D), No. 10, October 2021, pp. 1555-1562.
WWW Link.
2110
BibRef
Bernal, D.C.H.[Diana Carolina Huertas],
Purwestri, R.C.[Ratna Chrismiari],
Perdana, M.C.[Mayang Christy],
Hájek, M.[Miroslav],
Tahri, M.[Meryem],
Palátová, P.[Petra],
Hochmalová, M.[Miroslava],
Societal Implications of Forest and Water Body Area Evolution in
Czechia and Selected Regions,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Wang, Z.B.[Zhao-Bin],
Gao, X.[Xiong],
Zhang, Y.[Yaonan],
HA-Net: A Lake Water Body Extraction Network Based on Hybrid-Scale
Attention and Transfer Learning,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Qin, Y.Q.[Yu-Qing],
Su, J.[Jie],
Wang, M.F.[Ming-Feng],
Melt Pond Retrieval Based on the LinearPolar Algorithm Using Landsat
Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Su, J.[Jie],
Yu, P.,
Qin, Y.Q.[Yu-Qing],
Zhang, G.,
Wang, M.F.[Ming-Feng],
Study on Arctic Melt Pond Fraction Retrieval Algorithm Using Modis Data,
ISPRS20(B3:893-898).
DOI Link
2012
BibRef
Duan, Y.M.[Yue-Ming],
Zhang, W.Y.[Wen-Yi],
Huang, P.[Peng],
He, G.J.[Guo-Jin],
Guo, H.X.[Hong-Xiang],
A New Lightweight Convolutional Neural Network for Multi-Scale Land
Surface Water Extraction from GaoFen-1D Satellite Images,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lasko, K.[Kristofer],
Maloney, M.C.[Megan C.],
Becker, S.J.[Sarah J.],
Griffin, A.W.H.[Andrew W. H.],
Lyon, S.L.[Susan L.],
Griffin, S.P.[Sean P.],
Automated Training Data Generation from Spectral Indexes for Mapping
Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20
m Resolutions,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Worden, J.[James],
de Beurs, K.M.[Kirsten M.],
Koch, J.[Jennifer],
Owsley, B.C.[Braden C.],
Application of Spectral Index-Based Logistic Regression to Detect
Inland Water in the South Caucasus,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Issa, H.[Hamza],
Stienne, G.[Georges],
Reboul, S.[Serge],
Raad, M.[Mohamad],
Faour, G.[Ghaleb],
Airborne GNSS Reflectometry for Water Body Detection,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Ma, Y.[Yintao],
Zhou, Z.[Zheng],
She, X.X.[Xiao-Xiong],
Zhou, L.[Longyu],
Ren, T.[Tao],
Liu, S.[Shishi],
Lu, J.W.[Jian-Wei],
Identifying Dike-Pond System Using an Improved Cascade R-CNN Model
and High-Resolution Satellite Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ticehurst, C.[Catherine],
Teng, J.[Jin],
Sengupta, A.[Ashmita],
Development of a Multi-Index Method Based on Landsat Reflectance Data
to Map Open Water in a Complex Environment,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Li, Y.S.[Yan-Sheng],
Dang, B.[Bo],
Zhang, Y.J.[Yong-Jun],
Du, Z.H.[Zhen-Hong],
Water body classification from high-resolution optical remote sensing
imagery: Achievements and perspectives,
PandRS(187), 2022, pp. 306-327.
Elsevier DOI
2205
Water body classification, High-resolution,
Optical remote sensing (RS) image, Deep learning (DL)
BibRef
Wang, Y.[Yalan],
Li, X.D.[Xiao-Dong],
Zhou, P.[Pu],
Jiang, L.[Lai],
Du, Y.[Yun],
AHSWFM: Automated and Hierarchical Surface Water Fraction Mapping for
Small Water Bodies Using Sentinel-2 Images,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Yang, X.H.[Xiao-Hong],
Chu, Q.[Qiannian],
Wang, L.[Lizhe],
Yu, M.[Menghui],
Water Body Super-Resolution Mapping Based on Multiple Endmember
Spectral Mixture Analysis and Multiscale Spatio-Temporal Dependence,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Oliver, J.A.[Jacqueline A.],
Pivot, F.C.[Frédérique C.],
Tan, Q.[Qing],
Cantin, A.S.[Alan S.],
Wooster, M.J.[Martin J.],
Johnston, J.M.[Joshua M.],
A Machine Learning Approach to Waterbody Segmentation in Thermal
Infrared Imagery in Support of Tactical Wildfire Mapping,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chen, C.[Chao],
Chen, H.X.[Hui-Xin],
Liang, J.T.[Jin-Tao],
Huang, W.L.[Wen-Lang],
Xu, W.X.[Wen-Xue],
Li, B.[Bin],
Wang, J.Q.[Jian-Qiang],
Extraction of Water Body Information from Remote Sensing Imagery
While Considering Greenness and Wetness Based on Tasseled Cap
Transformation,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, J.[Ji],
Hu, Y.F.[Yu-Feng],
Li, Z.H.[Zhen-Hong],
A New Coherence Detection Method for Mapping Inland Water Bodies
Using CYGNSS Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Mazhar, S.[Sarah],
Sun, G.M.[Guang-Min],
Bilal, A.[Anas],
Hassan, B.[Bilal],
Li, Y.[Yu],
Zhang, J.J.[Jun-Jie],
Lin, Y.[Yinyi],
Khan, A.[Ali],
Ahmed, R.[Ramsha],
Hassan, T.[Taimur],
AUnet: A Deep Learning Framework for Surface Water Channel Mapping
Using Large-Coverage Remote Sensing Images and Sparse Scribble
Annotations from OSM Data,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Liu, J.H.[Jia-Hang],
Wang, Y.[Yue],
Water Body Extraction in Remote Sensing Imagery Using Domain
Adaptation-Based Network Embedding Selective Self-Attention and
Multi-Scale Feature Fusion,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
An, S.H.[Shi-Hao],
Rui, X.P.[Xiao-Ping],
A High-Precision Water Body Extraction Method Based on Improved
Lightweight U-Net,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, X.S.[Xu-Sheng],
Zhang, D.H.[Dong-Hui],
Jiang, C.C.[Chen-Chen],
Zhao, Y.J.[Ying-Jun],
Li, H.[Hu],
Lu, D.H.[Dong-Hua],
Qin, K.[Kai],
Chen, D.H.[Dong-Hua],
Liu, Y.F.[Yu-Feng],
Sun, Y.[Yu],
Liu, S.S.[Sai-Sai],
Comparison of Lake Area Extraction Algorithms in Qinghai Tibet
Plateau Leveraging Google Earth Engine and Landsat-9 Data,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, Z.S.[Zhen-Shi],
Zhang, X.L.[Xue-Liang],
Xiao, P.F.[Peng-Feng],
Spectral index-driven FCN model training for water extraction from
multispectral imagery,
PandRS(192), 2022, pp. 344-360.
Elsevier DOI
2209
Water delineation, Spectral index, Sentinel-2,
Semantic labeling, Deep fully convolutional network
BibRef
Braga, F.[Federica],
Fabbretto, A.[Alice],
Vanhellemont, Q.[Quinten],
Bresciani, M.[Mariano],
Giardino, C.[Claudia],
Scarpa, G.M.[Gian Marco],
Manfč, G.[Giorgia],
Concha, J.A.[Javier Alonso],
Brando, V.E.[Vittorio Ernesto],
Assessment of PRISMA water reflectance using autonomous hyperspectral
radiometry,
PandRS(192), 2022, pp. 99-114.
Elsevier DOI
2209
Imaging spectroscopy, Autonomous hyperspectral radiometer systems,
PRISMA mission
BibRef
Jiang, C.W.[Chao-Wei],
Zhang, H.[Hong],
Wang, C.[Chao],
Ge, J.[Ji],
Wu, F.[Fan],
Water Surface Mapping from Sentinel-1 Imagery Based on
Attention-UNet3+: A Case Study of Poyang Lake Region,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Lyu, X.[Xin],
Fang, Y.W.[Yi-Wei],
Tong, B.[Baogen],
Li, X.[Xin],
Zeng, T.[Tao],
Multiscale Normalization Attention Network for Water Body Extraction
from Remote Sensing Imagery,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Yu, J.[Jie],
Cai, Y.[Yang],
Lyu, X.[Xin],
Xu, Z.[Zhennan],
Wang, X.Y.[Xin-Yuan],
Fang, Y.W.[Yi-Wei],
Jiang, W.X.[Wen-Xuan],
Li, X.[Xin],
Boundary-Guided Semantic Context Network for Water Body Extraction
from Remote Sensing Images,
RS(15), No. 17, 2023, pp. 4325.
DOI Link
2310
BibRef
Lyu, X.[Xin],
Jiang, W.X.[Wen-Xuan],
Li, X.[Xin],
Fang, Y.W.[Yi-Wei],
Xu, Z.[Zhennan],
Wang, X.Y.[Xin-Yuan],
MSAFNet: Multiscale Successive Attention Fusion Network for Water
Body Extraction of Remote Sensing Images,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Luo, J.P.[Jian-Ping],
Liang, X.D.[Xing-Dong],
Guo, Q.C.[Qi-Chang],
Zhao, T.G.[Ting-Gang],
Xin, J.[Jihao],
Bu, X.X.[Xiang-Xi],
A Novel Estimation Method of Water Surface Micro-Amplitude Wave
Frequency for Cross-Media Communication,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lubczonek, J.[Jacek],
Terefenko, P.[Pawel],
Bradtke, K.[Katarzyna],
Wlodarczyk-Sielicka, M.[Marta],
Advances in Remote Sensing of the Inland and Coastal Water Zones,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liu, Z.H.[Zhi-Heng],
Chen, X.M.[Xue-Mei],
Zhou, S.P.[Sui-Ping],
Yu, H.[Hang],
Guo, J.H.[Jian-Hua],
Liu, Y.M.[Yan-Ming],
DUPnet: Water Body Segmentation with Dense Block and Multi-Scale
Spatial Pyramid Pooling for Remote Sensing Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chang, L.W.[Li-Wei],
Cheng, L.[Lei],
Huang, C.[Chang],
Qin, S.J.[Shu-Jing],
Fu, C.H.[Chen-Hao],
Li, S.Q.[Shi-Qiong],
Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and
HSV Transformation,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Niu, L.F.[Li-Feng],
Kaufmann, H.[Hermann],
Xu, G.C.[Guo-Chang],
Zhang, G.Z.[Guang-Zong],
Ji, C.[Chaonan],
He, Y.F.[Yu-Fang],
Sun, M.F.[Meng-Fei],
Triangle Water Index (TWI): An Advanced Approach for More Accurate
Detection and Delineation of Water Surfaces in Sentinel-2 Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chen, X.P.[Xiao-Peng],
Gao, F.[Fang],
Li, Y.Y.[Ying-Ye],
Wang, B.[Bin],
Li, X.J.[Xiao-Jie],
All-Weather and Superpixel Water Extraction Methods Based on
Multisource Remote Sensing Data Fusion,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
He, W.[Weiye],
Jiang, X.L.[Xian-Liang],
Jin, G.[Guang],
RaRWS: A Radar-assisted Real-time Water Segmentation Network to Meet
the Autonomous Navigation of USV in Inland Waterways,
ICPR22(4168-4174)
IEEE DOI
2212
Visualization, Fuses, Radar detection, Radar, Real-time systems,
Surface fitting, Reflection
BibRef
Wang, X.L.[Xiao-Liang],
Zhou, G.S.[Guang-Sheng],
Lv, X.M.[Xiao-Min],
Zhou, L.[Li],
Hu, M.C.[Ming-Cheng],
He, X.H.[Xiao-Hui],
Tian, Z.H.[Zhi-Hui],
Comparison of Lake Extraction and Classification Methods for the
Tibetan Plateau Based on Topographic-Spectral Information,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Song, J.[Jia],
Yan, X.B.[Xiang-Bing],
The Effect of Negative Samples on the Accuracy of Water Body
Extraction Using Deep Learning Networks,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Yang, X.[Xiao],
Chen, M.W.[Ming-Wei],
Yu, C.J.[Cheng-Jun],
Huang, H.Z.[Hao-Zhe],
Yue, X.B.[Xia-Bin],
Zhou, B.[Bei],
Ni, M.[Ming],
WaterSegformer: A lightweight model for water body information
extraction from remote sensing images,
IET-IPR(17), No. 3, 2023, pp. 862-871.
DOI Link
2303
convolutional neural nets, image segmentation,
learning (artificial intelligence), remote sensing
BibRef
Liu, S.[Shu],
Wu, Y.F.[Yan-Feng],
Zhang, G.X.[Guang-Xin],
Lin, N.[Nan],
Liu, Z.H.[Zi-Hao],
Comparing Water Indices for Landsat Data for Automated Surface Water
Body Extraction under Complex Ground Background:
A Case Study in Jilin Province,
RS(15), No. 6, 2023, pp. 1678.
DOI Link
2304
BibRef
Aravena, R.A.[Ricardo A.],
Lyons, M.B.[Mitchell B.],
Keith, D.A.[David A.],
Holistic Reduction to Compare and Create New Indices for Global
Inter-Seasonal Monitoring: Case Study for High Resolution Surface
Water Mapping,
RS(15), No. 8, 2023, pp. 2063.
DOI Link
2305
BibRef
Tan, J.B.[Jian-Bo],
Tang, Y.[Yi],
Liu, B.[Bin],
Zhao, G.[Guang],
Mu, Y.[Yu],
Sun, M.J.[Ming-Jiang],
Wang, B.[Bo],
A Self-Adaptive Thresholding Approach for Automatic Water Extraction
Using Sentinel-1 SAR Imagery Based on OTSU Algorithm and Distance
Block,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Kossieris, S.[Stylianos],
Asgarimehr, M.[Milad],
Wickert, J.[Jens],
Unsupervised Machine Learning for GNSS Reflectometry Inland Water
Body Detection,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhao, M.[Minyan],
O'Loughlin, F.[Fiachra],
Mapping Irish Water Bodies: Comparison of Platforms, Indices and
Water Body Type,
RS(15), No. 14, 2023, pp. 3677.
DOI Link
2307
BibRef
Zhang, Y.H.[Yong-Hong],
Lu, H.Y.[Huan-Yu],
Ma, G.Y.[Guang-Yi],
Zhao, H.J.[Hua-Jun],
Xie, D.L.[Dong-Lin],
Geng, S.[Sutong],
Tian, W.[Wei],
Sian, K.T.C.L.K.[Kenny Thiam Choy Lim Kam],
MU-Net: Embedding MixFormer into Unet to Extract Water Bodies from
Remote Sensing Images,
RS(15), No. 14, 2023, pp. 3559.
DOI Link
2307
BibRef
Huang, W.J.[Wen-Jing],
Wang, F.Q.[Fu-Qiang],
Duan, W.[Weili],
Tang, L.[Lei],
Qin, J.X.[Jing-Xiu],
Meng, X.Y.[Xiao-Yu],
Image similarity-based gap filling method can effectively enrich
surface water mapping information,
PandRS(202), 2023, pp. 528-544.
Elsevier DOI
2308
BibRef
Marinho, G.C.[Giovanna Carreira],
Júnior, W.E.M.[Wilson Estécio Marcílio],
Dias, M.A.[Mauricio Araujo],
Eler, D.M.[Danilo Medeiros],
Negri, R.G.[Rogério Galante],
Casaca, W.[Wallace],
Dimensionality Reduction and Anomaly Detection Based on Kittler's
Taxonomy: Analyzing Water Bodies in Two Dimensional Spaces,
RS(15), No. 16, 2023, pp. 4085.
DOI Link
2309
BibRef
Samaranayake, H.[Harin],
Mudannayake, O.[Oshan],
Perera, D.[Dushani],
Kumarasinghe, P.[Prabhash],
Suduwella, C.[Chathura],
de Zoysa, K.[Kasun],
Wimalaratne, P.[Prasad],
Detecting Water in Visual Image Streams from UAV with Flight
Constraints,
JVCIR(96), 2023, pp. 103933.
Elsevier DOI
2310
Water Surface Identification, Unmanned Ariel Vehicles, Drones,
UNet, Dense Optical Flow
BibRef
de Andrade-Costa, D.[David],
Bayissa, Y.[Yared],
Junior, J.L.[Jader Lugon],
Yamasaki, E.N.[Edna N.],
Kyriakides, I.[Ioannis],
Neto, A.J.S.[Antônio J. Silva],
Cyprus Surface Water Area Variation Based on the 1984-2021 Time
Series Built from Remote Sensing Products,
RS(15), No. 22, 2023, pp. 5288.
DOI Link
2311
BibRef
Kang, J.[Jian],
Guan, H.Y.[Hai-Yan],
Ma, L.F.[Ling-Fei],
Wang, L.[Lanying],
Xu, Z.[Zhengsen],
Li, J.[Jonathan],
WaterFormer: A coupled transformer and CNN network for waterbody
detection in optical remotely-sensed imagery,
PandRS(206), 2023, pp. 222-241.
Elsevier DOI Code:
WWW Link.
2312
Optical remotely-sensed imagery, Convolutional neural networks (CNNs),
Visual Transformer, Long-range dependency
BibRef
Wang, R.F.[Rong-Fang],
Zhang, C.C.[Chen-Chen],
Chen, C.[Chao],
Hao, H.X.[Hong-Xia],
Li, W.B.[Wei-Bin],
Jiao, L.C.[Li-Cheng],
A Multi-Modality Fusion and Gated Multi-Filter U-Net for Water Area
Segmentation in Remote Sensing,
RS(16), No. 2, 2024, pp. 419.
DOI Link
2402
BibRef
Pang, Y.[Yunxuan],
Yu, J.C.[Jun-Chuan],
Xi, L.[Laidian],
Ge, D.[Daqing],
Zhou, P.[Ping],
Hou, C.H.[Chang-Hong],
He, P.[Peng],
Zhao, L.[Liu],
Remote Sensing Extraction of Lakes on the Tibetan Plateau Based on
the Google Earth Engine and Deep Learning,
RS(16), No. 3, 2024, pp. 583.
DOI Link
2402
BibRef
Shih, N.J.[Naai-Jung],
Tasi, Y.T.[Yun-Ting],
Qiu, Y.T.[Yi-Ting],
Hsu, T.W.[Ting-Wei],
Inspecting Pond Fabric Using Unmanned Aerial Vehicle-Assisted
Modeling, Smartphone Augmented Reality, and a Gaming Engine,
RS(16), No. 6, 2024, pp. 943.
DOI Link
2403
BibRef
Huang, C.[Chang],
Chen, Y.[Yun],
Zhang, S.Q.[Shi-Qiang],
Li, L.Y.[Lin-Yi],
Shi, K.F.[Kai-Fang],
Liu, R.[Rui],
Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution
via Blending with Landsat Data,
RS(8), No. 8, 2016, pp. 631.
DOI Link
1609
BibRef
Yan, X.B.[Xiang-Bing],
Song, J.[Jia],
Terrain Shadow Interference Reduction for Water Surface Extraction in
the Hindu Kush Himalaya Using a Transformer-Based Network,
RS(16), No. 11, 2024, pp. 2032.
DOI Link
2406
BibRef
Chen, J.[Jie],
Wang, Y.K.[Yan-Kun],
Wang, J.Z.[Jing-Zhe],
Zhang, Y.H.[Ying-Hui],
Xu, Y.[Yue],
Yang, O.[Ou],
Zhang, R.[Rui],
Wang, J.[Jing],
Wang, Z.S.[Zhen-Sheng],
Lu, F.D.[Fei-Dong],
Hu, Z.W.[Zhong-Wen],
The Performance of Landsat-8 and Landsat-9 Data for Water Body
Extraction Based on Various Water Indices: A Comparative Analysis,
RS(16), No. 11, 2024, pp. 1984.
DOI Link
2406
BibRef
Su, Z.F.[Zhen-Feng],
Xiang, L.[Longwei],
Steffen, H.[Holger],
Jia, L.[Lulu],
Deng, F.[Fan],
Wang, W.L.[Wen-Liang],
Hu, K.Y.[Ke-Yu],
Guo, J.J.[Jing-Jing],
Nong, A.[Aile],
Cui, H.[Haifu],
Gao, P.[Peng],
A New and Robust Index for Water Body Extraction from Sentinel-2
Imagery,
RS(16), No. 15, 2024, pp. 2749.
DOI Link
2408
BibRef
Ma, W.Q.[Wen-Qiu],
Liu, X.[Xiao],
Zhao, X.[Xinglei],
Extraction of River Water Bodies Based on ICESat-2 Photon
Classification,
RS(16), No. 16, 2024, pp. 3034.
DOI Link
2408
BibRef
Li, Z.W.[Zhi-Wei],
Xu, S.[Shaofen],
Weng, Q.H.[Qi-Hao],
Beyond clouds: Seamless flood mapping using Harmonized Landsat and
Sentinel-2 time series imagery and water occurrence data,
PandRS(216), 2024, pp. 185-199.
Elsevier DOI Code:
WWW Link.
2408
Flood mapping, Water body extraction, Cloud removal,
HLS imagery, Cloudy and rainy environments, Time series
BibRef
Atwood, E.C.[Elizabeth C.],
Jackson, T.[Thomas],
Laurenson, A.[Angus],
Jönsson, B.F.[Bror F.],
Spyrakos, E.[Evangelos],
Jiang, D.[Dalin],
Sent, G.[Giulia],
Selmes, N.[Nick],
Simis, S.[Stefan],
Danne, O.[Olaf],
Tyler, A.[Andrew],
Groom, S.[Steve],
Framework for Regional to Global Extension of Optical Water Types for
Remote Sensing of Optically Complex Transitional Water Bodies,
RS(16), No. 17, 2024, pp. 3267.
DOI Link
2409
BibRef
Li, N.[Nan],
Xu, X.H.[Xiao-Hua],
Huang, S.F.[Shi-Feng],
Sun, Y.Y.[Ya-Yong],
Ma, J.W.[Jian-Wei],
Zhu, H.[He],
Hu, M.C.[Meng-Cheng],
CRAUnet++: A New Convolutional Neural Network for Land Surface Water
Extraction from Sentinel-2 Imagery by Combining RWI with Improved
Unet++,
RS(16), No. 18, 2024, pp. 3391.
DOI Link
2410
BibRef
Cheng, X.[Xi],
Zhu, Q.[Qian],
Song, Y.J.[Yu-Jian],
Yang, J.[Jieyu],
Wang, T.T.[Ting-Ting],
Zhao, B.[Bin],
Shen, Z.F.[Zhan-Feng],
Precise City-Scale Urban Water Body Semantic Segmentation and
Open-Source Sampleset Construction Based on Very High-Resolution
Remote Sensing: A Case Study in Chengdu,
RS(16), No. 20, 2024, pp. 3873.
DOI Link
2411
BibRef
Cheng, X.J.[Xue-Jun],
Han, K.[Kuikui],
Xu, J.[Jian],
Li, G.Z.[Guo-Zhong],
Xiao, X.[Xiao],
Zhao, W.G.[Wen-Gang],
Gao, X.J.[Xian-Jun],
SPFDNet: Water Extraction Method Based on Spatial Partition and
Feature Decoupling,
RS(16), No. 21, 2024, pp. 3959.
DOI Link
2411
BibRef
O'Kane, S.[Sean],
McCarthy, T.[Tim],
Fealy, R.[Rowan],
Kratzer, S.[Susanne],
A Validation of OLCI Sentinel-3 Water Products in the Baltic Sea and
an Evaluation of the Effect of System Vicarious Calibration (SVC) on
the Level-2 Water Products,
RS(16), No. 21, 2024, pp. 3932.
DOI Link
2411
BibRef
Nakano, T.,
Endo, R.,
Ohno, H.,
Iwahashi, J.,
Water Area Observation Experiment Using Optical Sensor for Extracting
Inundation Boundary At Night,
ISPRS20(B3:169-173).
DOI Link
2012
BibRef
Akiyama, T.S.,
Junior, J.M.[J. Marcato],
Gonçalves, W.N.,
Bressan, P.O.,
Eltner, A.,
Binder, F.,
Singer, T.,
Deep Learning Applied to Water Segmentation,
ISPRS20(B2:1189-1193).
DOI Link
2012
BibRef
Xu, R.G.,
Qiao, G.,
Wu, Y.J.,
Cao, Y.J.,
Extraction of Rivers and Lakes On Tibetan Plateau Based On Google Earth
Engine,
CHGCS19(1797-1801).
DOI Link
1912
BibRef
Wieland, M.,
Martinis, S.,
Li, Y.,
Semantic Segmentation of Water Bodies in Multi-spectral Satellite
Images for Situational Awareness in Emergency Response,
PIA19(273-277).
DOI Link
1912
BibRef
Han, X.F.[Xiao-Feng],
Nguyen, C.[Chuong],
You, S.D.[Shao-Di],
Lu, J.F.[Jian-Feng],
Single Image Water Hazard Detection Using FCN with Reflection Attention
Units,
ECCV18(VI: 105-121).
Springer DOI
1810
BibRef
Li, S.,
Wang, S.,
Zheng, Z.,
Wan, D.,
Feng, J.,
A New Algorithm for Water Information Extraction from High Resolution
Remote Sensing Imagery,
ICIP16(4359-4363)
IEEE DOI
1610
Decision support systems
BibRef
Grenzdörffer, G.J.,
Naumann, M.,
Investigations On The Possibilities Of Monitoring Coastal Changes
Including Shallow Under Water Areas With Uas Photo Bathmetry,
ISPRS16(B1: 843-850).
DOI Link
1610
BibRef
Lian, S.Z.[Shi-Zhong],
Chen, J.P.[Jiang-Ping],
Luo, M.H.[Ming-Hai],
A Probability-based Statistical Method To Extract Water Body Of Tm
Images With Missing Information,
ISPRS16(B2: 21-26).
DOI Link
1610
BibRef
Schmidt, A.,
Rottensteiner, F.,
Soergel, U.,
Heipke, C.,
A Graph Based Model for the Detection of Tidal Channels Using Marked
Point Processes,
CMRT15(115-121).
DOI Link
1602
BibRef
Olasz, A.,
Kristóf, D.,
Belényesi, M.,
Bakos, K.,
Kovács, Z.,
Balázs, B.,
Szabó, S.,
IQPC 2015 TRACK: Water Detection and Classification on Multisource
Remote Sensing and Terrain Data,
GeoBigData15(583-588).
DOI Link
1602
BibRef
Li-Chee-Ming, J.,
Murnaghan, K.,
Sherman, D.,
Poncos, V.,
Brisco, B.,
Armenakis, C.,
Validation of Spaceborne Radar Surface Water Mapping with Optical sUAS
Images,
UAV-g15(363-368).
DOI Link
1512
BibRef
Bruinink, M.[Machiel],
Chandarr, A.[Aswin],
Rudinac, M.[Maja],
van Overloop, P.J.[Peter-Jules],
Jonker, P.[Pieter],
Portable, automatic water level estimation using mobile phone cameras,
MVA15(426-429)
IEEE DOI
1507
Cameras
BibRef
Skurikhin, A.N.,
Wilson, C.J.,
Liljedahl, A.,
Rowland, J.C.,
Recursive active contours for hierarchical segmentation of wetlands
in high-resolution satellite imagery of Arctic landscapes,
Southwest14(137-140)
IEEE DOI
1406
geophysical image processing
BibRef
Kalkan, K.,
Bayram, B.,
Maktav, D.,
Sunar, F.,
Comparison of support vector machine and object based classification
methods for coastline detection,
SSG13(125-127).
DOI Link
1402
BibRef
Sui, H.G.,
Chen, G.,
Hua, L.,
An automatic integrated image segmentation, registration and change
detection method for water-body extraction using HSR images and GIS
data,
SSG13(237-242).
DOI Link
1402
BibRef
Luo, C.F.[Cheng-Feng],
Wang, Y.[Yuan],
You, H.Y.[Hao-Yan],
Liu, Z.J.[Zheng-Jun],
Monitoring the Changes of Lakes in the Source Region of Three Rivers
with Remote Sensing Data from 1976 To 2009,
IWIDF13(15-18).
DOI Link
1311
BibRef
Smeeckaert, J.,
Mallet, C.,
David, N.,
Classification of Water Surfaces Using Airborne Topographic LIDAR Data,
Hannover13(321-326).
DOI Link
1308
BibRef
Honkavaara, E.,
Hakala, T.,
Kirjasniemi, J.,
Lindfors, A.,
Mäkynen, J.,
Nurminen, K.,
Ruokokoski, P.,
Saari, H.,
Markelin, L.,
New Light-Weight Stereosopic Spectrometric Airborne Imaging Technology
for High-Resolution Environmental Remote Sensing: Case Studies in Water
Quality Mapping,
Hannover13(139-144).
DOI Link
1308
BibRef
Yi, Y.H.[Yun-Hui],
Wang, C.[Cheng],
Li, J.[Jonathan],
Closed water body extraction from low-solution and Low SNR
meteorological satellite imagery based on MSER,
CVRS12(226-229).
IEEE DOI
1302
BibRef
Bao, X.F.[Xin-Feng],
Zinger, S.[Svitlana],
Wijnhoven, R.[Rob],
de With, P.H.N.[Peter H. N.],
Water Region Detection Supporting Ship Identification in Port
Surveillance,
ACIVS12(444-454).
Springer DOI
1209
BibRef
Leach, J.H.J.,
Kitchingman, A.,
The Use of Modis Data To Define Natural Boundaries and Regions In The
Marine Water Column,
ISPRS12(XXXIX-B8:545-550).
DOI Link
1209
BibRef
Tarikhi, P.,
Insar Of Aquatic Bodies,
ISPRS12(XXXIX-B7:85-90).
DOI Link
1209
BibRef
Lazaridou, M.A.,
Image Interpretation Of Coastal Areas,
ISPRS12(XXXIX-B8:171-174).
DOI Link
1209
BibRef
Nguyen, D.D.,
Water Body Extraction From Multi Spectral Image By Spectral Pattern
Analysis,
ISPRS12(XXXIX-B8:181-186).
DOI Link
1209
BibRef
Sui, H.G.,
Xu, C.,
Automatic Extraction Of Water In High-resolution Sar Images Based On
Multi-scale Level Set Method And Otsu Algorithm,
ISPRS12(XXXIX-B7:453-457).
DOI Link
1209
BibRef
Steinbacher, F.,
Pfennigbauer, M.,
Aufleger, M.,
Ullrich, A.,
High Resolution Airborne Shallow Water Mapping,
ISPRS12(XXXIX-B1:55-60).
DOI Link
1209
BibRef
d'Andrimont, R.[Raphael],
Pekel, J.F.[Jean-Francois],
Defourny, P.[Pierre],
Monitoring African surface water dynamic using medium resolution daily
data allows anomalies detection in nearly real time,
MultiTemp11(241-244).
IEEE DOI
1109
BibRef
Schmidt, A.,
Rottensteiner, F.,
Sörgel, U.,
Detection of Water Surfaces in Full-Waveform Laser Scanning Data,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Steinbacher, F.[Frank],
Airborne hydromapping area-wide surveying of shallow water areas,
CGC10(191).
PDF File.
1006
BibRef
Dialameh, A.[Ameneh],
Faisal, K.[Kamil],
Shaker, A.[Ahmed],
Yan, W.Y.[Wai Yeung],
Remote sensing techniques as a tool for runoff water estimation,
CGC10(175).
PDF File.
1006
BibRef
Long, Z.Y.[Zhi-Yong],
He, M.Y.[Ming-Yuan],
Shi, H.Q.[Han-Qing],
Rao, R.[Ruoyu],
Study on Water Bodies Extraction with FY3A Satellite Image,
CISP09(1-5).
IEEE DOI
0910
BibRef
Silveira, M.[Margarida],
Nascimento, J.C.[Jacinto C.],
Marques, J.S.[Jorge S.],
Level set segmentation with outlier rejection,
ICIP08(1085-1088).
IEEE DOI
0810
BibRef
Brzank, A.,
Heipke, C.,
Supervised Classification of Water Regions from Lidar Data in the
Wadden Sea Using a Fuzzy Logic Concept,
Laser07(90).
PDF File.
0709
BibRef
Taniguchi, R.I.,
Kawaguchi, E.,
Knowledge-Based Image Analysis of Landsat Data:
How to Extract and How to Describe Water Information,
ICPR86(1236-1239).
BibRef
8600
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Water, Water Body Detection Using SAR .