23.5 Land Cover Analysis, Water Detection, Water Areas, Water Body

Chapter Contents (Back)
Classification. Water Detection. Land Cover. Water Body.
See also Water, Water Body Detection Using SAR. How much water:
See also Reservoir Monitoring, Reservoir Usage, Water Level, Lake Level. For shore lines specifically:
See also Shore Line Detection, Analysis along Shore Line.
See also Sea Level Measurement and Change, Satellite Altimetric Data.
See also Flood Analysis, Flood Mapping, Flood Monitoring.
See also Hydrological Analysis, Hydrological Modeling.
See also Aquaculture, Analysis, Extraction.

Krishnakumar, N., Iyengar, S.S.[S. Sitharama], Holyer, R.J.[Ron J.], Lybanon, M.[Matthew],
Feature labelling in infrared oceanographic images,
IVC(8), No. 2, May 1990, pp. 142-147.
Elsevier DOI 0401
non-linear probabilistic relaxation method. BibRef

Krishnakumar, N., Iyengar, S.S.[S. Sitharama], Holyer, R.J.[Ron J.], Lybanon, M.[Matthew],
Topographic-Based Feature Labeling for Infrared Oceanographic Images,
PRL(14), 1993, pp. 915-925. BibRef 9300

Simhadri, K.K., Iyengar, S.S., Holyer, R.J., Lybanon, M., Zachary, J.M.,
Wavelet Based Feature Extraction from Oceanographic Images,
GeoRS(36), No. 3, May 1998, pp. 767-778.
IEEE Top Reference. 9806
BibRef

Martin, M.L., Luna, M.Y., Valero, F., Lea, S.M., Lybanon, M.,
Finding water depths from synthetic remotely sensed images,
CIAP99(862-867).
IEEE DOI 9909
BibRef

Frazier, P.S.[Paul Shane], Page, K.J.[Kenneth John],
Water Body Detection and Delineation with Landsat TM Data,
PhEngRS(66), No. 12, December 2000, pp. 1461-1468. 0101
BibRef

Li, J.[Jiang], Narayanan, R.M.,
A shape-based approach to change detection of lakes using time series remote sensing images,
GeoRS(41), No. 11, November 2003, pp. 2466-2477.
IEEE Abstract. 0311
BibRef

Matsushita, B.[Bunkei], Yang, W.[Wei], Chang, P.[Peng], Yang, F.[Fan], Fukushima, T.[Takehiko],
A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements,
PandRS(69), No. 1, April 2012, pp. 74-87.
Elsevier DOI 1202
Inherent optical properties; Remote-sensing reflectance at 412 and 443 nm; Case-1 and Case-2 waters; GSM01 BibRef

Dash, P., Walker, N., Mishra, D.R., d'Sa, E.J., Ladner, S.,
Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters,
RS(4), No. 6, June 2012, pp. 1716-1740.
DOI Link 1208
BibRef

Starek, M.J., Vemula, R., Slatton, K.C.,
Probabilistic Detection of Morphologic Indicators for Beach Segmentation With Multitemporal LiDAR Measurements,
GeoRS(50), No. 11, November 2012, pp. 4759-4770.
IEEE DOI 1210
BibRef

Klinger, T.[Tobias], Ziems, M.[Marcel], Heipke, C.[Christian], Schenke, H.W.[Hans Werner], Ott, N.[Norbert],
Antarctic Coastline Detection using Snakes,
PFG(2011), No. 6, 2011, pp. 421-434.
WWW Link. 1211
BibRef

Tulbure, M.G.[Mirela G.], Broich, M.[Mark],
Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011,
PandRS(79), No. 1, May 2013, pp. 44-52.
Elsevier DOI 1305
Optical remote sensing; Surface water body detection; Large area wetland inventory; Swan Coastal Plain; Western Australia; Long term trends BibRef

Deus, D., Gloaguen, R., Krause, P.,
Water Balance Modeling in a Semi-Arid Environment with Limited in situ Data Using Remote Sensing in Lake Manyara, East African Rift, Tanzania,
RS(5), No. 4, April 2013, pp. 1651-1680.
DOI Link 1305
BibRef

Davis, C.[Curtiss], Tufillaro, N.[Nicholas],
Remotely sensing the complexity of rivers and estuaries,
SPIE(Newsroom), July 22, 2013
DOI Link 1308
Data from the Hyperspectral Imager for the Coastal Ocean (HICO), combined with innovative spectral processing algorithms, can reveal detailed pictures of the sources of water pollution. BibRef

McFeeters, S.K.[Stuart K.],
Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach,
RS(5), No. 7, 2013, pp. 3544-3561.
DOI Link 1308
BibRef

Collin, A.[Antoine], Archambault, P.[Philippe], Planes, S.[Serge],
Bridging Ridge-to-Reef Patches: Seamless Classification of the Coast Using Very High Resolution Satellite,
RS(5), No. 7, 2013, pp. 3583-3610.
DOI Link 1308
BibRef

Ferreira, V.G.[Vagner G.], Gong, Z.[Zheng], He, X.F.[Xiu-Feng], Zhang, Y.L.[Yong-Lei], Andam-Akorful, S.A.[Samuel A.],
Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations,
RS(5), No. 7, 2013, pp. 3415-3430.
DOI Link 1308
BibRef

Dierssen, H.[Heidi],
Remote sensing of coastal habitats,
SPIE(Newsroom), August 16, 2013
DOI Link 1310
Hyperspectral imaging data from a portable spectrometer can be used to map vulnerable and rapidly changing environments at high spatial resolution. BibRef

Li, W.B.[Wen-Bo], Du, Z.Q.[Zhi-Qiang], Ling, F.[Feng], Zhou, D.B.[Dong-Bo], Wang, H.[Hailei], Gui, Y.M.[Yuan-Miao], Sun, B.Y.[Bing-Yu], Zhang, X.M.[Xiao-Ming],
A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI,
RS(5), No. 11, 2013, pp. 5530-5549.
DOI Link 1312
BibRef

Fisher, A.[Adrian], Danaher, T.[Tim],
A Water Index for SPOT5 HRG Satellite Imagery, New South Wales, Australia, Determined by Linear Discriminant Analysis,
RS(5), No. 11, 2013, pp. 5907-5925.
DOI Link 1312
BibRef

Fisher, A.[Adrian],
Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction,
RS(6), No. 1, 2014, pp. 776-800.
DOI Link 1402
BibRef

Liu, Y.X.[Yong-Xue], Li, M.C.[Man-Chun], Zhou, M.X.[Min-Xi], Yang, K.[Kang], Mao, L.[Liang],
Quantitative Analysis of the Waterline Method for Topographical Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China,
RS(5), No. 11, 2013, pp. 6138-6158.
DOI Link 1312
BibRef

Medeiros, S.C.[Stephen C.], Hagen, S.C.[Scott C.], Chaouch, N.[Naira], Feyen, J.[Jesse], Temimi, M.[Marouane], Weishampel, J.F.[John F.], Funakoshi, Y.J.[Yu-Ji], Khanbilvardi, R.[Reza],
Assessing the Performance of a Northern Gulf of Mexico Tidal Model Using Satellite Imagery,
RS(5), No. 11, 2013, pp. 5662-5679.
DOI Link 1312
BibRef

Devred, E.[Emmanuel], Turpie, K.R.[Kevin R.], Moses, W.[Wesley], Klemas, V.V.[Victor V.], Moisan, T.[Tiffany], Babin, M.[Marcel], Toro-Farmer, G.[Gerardo], Forget, M.H.[Marie-Hélčne], Jo, Y.H.[Young-Heon],
Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI),
RS(5), No. 12, 2013, pp. 6812-6837.
DOI Link 1402
BibRef

Schmidt, A.[Alena], Rottensteiner, F.[Franz], Sörgel, U.[Uwe],
Water-Land-Classification in Coastal Areas with Full Waveform Lidar Data,
PFG(2013), No. 2, 2013, pp. 71-81.
DOI Link 1305
BibRef
Earlier:
Classification of Airborne Laser Scanning Data In Wadden Sea Areas Using Conditional Random Fields,
ISPRS12(XXXIX-B3:161-166).
DOI Link 1209
BibRef

Rodríguez-Cuenca, B.[Borja], Alonso, M.C.[Maria C.],
Semi-Automatic Detection of Swimming Pools from Aerial High-Resolution Images and LIDAR Data,
RS(6), No. 4, 2014, pp. 2628-2646.
DOI Link 1405
BibRef

Rokni, K.[Komeil], Ahmad, A.[Anuar], Selamat, A.[Ali], Hazini, S.[Sharifeh],
Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery,
RS(6), No. 5, 2014, pp. 4173-4189.
DOI Link 1407
BibRef

Song, C.Q.[Chun-Qiao], Huang, B.[Bo], Ke, L.H.[Ling-Hong], Richards, K.S.[Keith S.],
Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review,
PandRS(92), No. 1, 2014, pp. 26-37.
Elsevier DOI 1407
Tibetan Plateau BibRef

Jiang, H.[Hao], Feng, M.[Min], Zhu, Y.Q.[Yun-Qiang], Lu, N.[Ning], Huang, J.X.[Jian-Xi], Xiao, T.[Tong],
An Automated Method for Extracting Rivers and Lakes from Landsat Imagery,
RS(6), No. 6, 2014, pp. 5067-5089.
DOI Link 1407
BibRef

Guzinski, R.[Radoslaw], Kass, S.[Steve], Huber, S.[Silvia], Bauer-Gottwein, P.[Peter], Jensen, I.H.[Iris Hedegaard], Naeimi, V.[Vahid], Doubkova, M.[Marcela], Walli, A.[Andreas], Tottrup, C.[Christian],
Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System,
RS(6), No. 8, 2014, pp. 7819-7839.
DOI Link 1410
BibRef

Mizuochi, H.[Hiroki], Hiyama, T.[Tetsuya], Ohta, T.[Takeshi], Nasahara, K.N.[Kenlo N.],
Evaluation of the Surface Water Distribution in North-Central Namibia Based on MODIS and AMSR Series,
RS(6), No. 8, 2014, pp. 7660-7682.
DOI Link 1410
BibRef

Ramillien, G.[Guillaume], Frappart, F.[Frédéric], Seoane, L.[Lucia],
Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa,
RS(6), No. 8, 2014, pp. 7379-7405.
DOI Link 1410
BibRef

Zhang, T.T.[Ting-Ting], Shao, Y.[Yun], Gong, H.[Huaze], Li, L.[Lin], Wang, L.F.[Long-Fei],
Salt Content Distribution and Paleoclimatic Significance of the Lop Nur 'Ear' Feature: Results from Analysis of EO-1 Hyperion Imagery,
RS(6), No. 8, 2014, pp. 7783-7799.
DOI Link 1410
BibRef

Sagar, S., Brando, V., Sambridge, M.,
Noise Estimation of Remote Sensing Reflectance Using a Segmentation Approach Suitable for Optically Shallow Waters,
GeoRS(52), No. 12, December 2014, pp. 7504-7512.
IEEE DOI 1410
geophysical image processing BibRef

Mann, T.[Thomas], Westphal, H.[Hildegard],
Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data,
RS(6), No. 8, 2014, pp. 6961-6987.
DOI Link 1410
BibRef

Collin, A.[Antoine], Nadaoka, K.[Kazuo], Nakamura, T.[Takashi],
Mapping VHR Water Depth, Seabed and Land Cover Using Google Earth Data,
IJGI(3), No. 4, 2014, pp. 1157-1179.
DOI Link 1411
BibRef

Pitarch, J.[Jaime], Odermatt, D.[Daniel], Kawka, M.[Marcin], Wüest, A.[Alfred],
Retrieval of Particle Scattering Coefficients and Concentrations by Genetic Algorithms in Stratified Lake Water,
RS(6), No. 10, 2014, pp. 9530-9551.
DOI Link 1411
BibRef

Zhan, S.[Shengan], Beck, R.A.[Richard A.], Hinkel, K.M.[Kenneth M.], Liu, H.X.[Hong-Xing], Jones, B.M.[Benjamin M.],
Spatio-Temporal Analysis of Gyres in Oriented Lakes on the Arctic Coastal Plain of Northern Alaska Based on Remotely Sensed Images,
RS(6), No. 10, 2014, pp. 9170-9193.
DOI Link 1411
BibRef

Li, J.G.[Jia-Guang], Menenti, M.[Massimo], Mousivand, A.[Alijafar], Luthi, S.M.[Stefan M.],
Non-Vegetated Playa Morphodynamics Using Multi-Temporal Landsat Imagery in a Semi-Arid Endorheic Basin: Salar de Uyuni, Bolivia,
RS(6), No. 10, 2014, pp. 10131-10151.
DOI Link 1411
BibRef

Zhang, X.P.[Xiao-Ping], Pan, D.[Delu], Chen, J.Y.[Jian-Yu], Zhao, J.H.[Jian-Hua], Zhu, Q.[Qiankun], Huang, H.Q.[Hai-Qing],
Evaluation of Coastline Changes under Human Intervention Using Multi-Temporal High-Resolution Images: A Case Study of the Zhoushan Islands, China,
RS(6), No. 10, 2014, pp. 9930-9950.
DOI Link 1411
BibRef

Chen, L.[Lifan], Michishita, R.[Ryo], Xu, B.[Bing],
Abrupt spatiotemporal land and water changes and their potential drivers in Poyang Lake, 2000-2012,
PandRS(98), No. 1, 2014, pp. 85-93.
Elsevier DOI 1411
MODIS BibRef

Zhu, W.B.[Wen-Bin], Jia, S.F.[Shao-Feng], Lv, A.[Aifeng],
Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data,
RS(6), No. 11, 2014, pp. 10457-10482.
DOI Link 1412
BibRef

Zhu, W.B.[Wen-Bin], Yan, J.[Jiabao], Jia, S.F.[Shao-Feng],
Monitoring Recent Fluctuations of the Southern Pool of Lake Chad Using Multiple Remote Sensing Data: Implications for Water Balance Analysis,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Kopacková, V.[Veronika], Hladíková, L.[Lenka],
Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment,
RS(6), No. 11, 2014, pp. 11204-11224.
DOI Link 1412
BibRef

Rosenkranz, P.W.,
A Model for the Complex Dielectric Constant of Supercooled Liquid Water at Microwave Frequencies,
GeoRS(53), No. 3, March 2015, pp. 1387-1393.
IEEE DOI 1412
atmospheric humidity BibRef

Wu, Q.S.[Qiu-Sheng], Lane, C.[Charles], Liu, H.X.[Hong-Xing],
An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery,
RS(6), No. 11, 2014, pp. 11444-11467.
DOI Link 1412
BibRef

Bastiaanssen, W.G.M.[Wim G.M.], Karimi, P.[Poolad], Rebelo, L.M.[Lisa-Maria], Duan, Z.[Zheng], Senay, G.[Gabriel], Muthuwatte, L.[Lal], Smakhtin, V.[Vladimir],
Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems,
RS(6), No. 11, 2014, pp. 10306-10334.
DOI Link 1412
BibRef

Ghosh, M.K.[Manoj Kumer], Kumar, L.[Lalit], Roy, C.[Chandan],
Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques,
PandRS(101), No. 1, 2015, pp. 137-144.
Elsevier DOI 1503
Integrated technique BibRef

Guo, Y.L.[Yu-Long], Li, Y.M.[Yun-Mei], Zhu, L.[Li], Liu, G.[Ge], Wang, S.[Shuai], Du, C.G.[Cheng-Gong],
An Improved Unmixing-Based Fusion Method: Potential Application to Remote Monitoring of Inland Waters,
RS(7), No. 2, 2015, pp. 1640-1666.
DOI Link 1503
BibRef

Chakroun, H.[Hedia], Mouillot, F.[Florent], Hamdi, A.[Abdelaziz],
Regional Equivalent Water Thickness Modeling from Remote Sensing across a Tree Cover/LAI Gradient in Mediterranean Forests of Northern Tunisia,
RS(7), No. 2, 2015, pp. 1937-1961.
DOI Link 1503
BibRef

Li, R.R.[Rong-Rong], Lewis, M.D.[Mark David], Gould, R.W.[Richard W.], Lawson, A.[Adam], Amin, R.[Ruhul], Gallegos, S.C.[Sonia C.], Ladner, S.[Sherwin],
Inter-Comparison between VIIRS and MODIS Radiances and Ocean Color Data Products over the Chesapeake Bay,
RS(7), No. 2, 2015, pp. 2193-2207.
DOI Link 1503
BibRef

Gonçalves, J.A., Henriques, R.,
UAV photogrammetry for topographic monitoring of coastal areas,
PandRS(104), No. 1, 2015, pp. 101-111.
Elsevier DOI 1505
Coast BibRef

Yang, K.[Kang], Li, M.C.[Man-Chun], Liu, Y.X.[Yong-Xue], Cheng, L.[Liang], Huang, Q.H.[Qiu-Hao], Chen, Y.M.[Yang-Ming],
River Detection in Remotely Sensed Imagery Using Gabor Filtering and Path Opening,
RS(7), No. 7, 2015, pp. 8779.
DOI Link 1506
BibRef

Li, L.[Lin], Xia, H.[Hui], Li, Z.[Zheng], Zhang, Z.J.[Zhi-Jun],
Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the Middle and Lower Yangtze River Basin Using Landsat Imagery Data,
RS(7), No. 8, 2015, pp. 10364.
DOI Link 1509
BibRef

Yao, F.F.[Fang-Fang], Wang, C.[Chao], Dong, D.[Di], Luo, J.C.[Jian-Cheng], Shen, Z.F.[Zhan-Feng], Yang, K.[Kehan],
High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery,
RS(7), No. 9, 2015, pp. 12336.
DOI Link 1511
BibRef

Wu, G.P.[Gui-Ping], Liu, Y.B.[Yuan-Bo],
Combining Multispectral Imagery with in situ Topographic Data Reveals Complex Water Level Variation in China's Largest Freshwater Lake,
RS(7), No. 10, 2015, pp. 13466.
DOI Link 1511
BibRef

Wu, G.P.[Gui-Ping], Liu, Y.B.[Yuan-Bo],
Assessment of the Hydro-Ecological Impacts of the Three Gorges Dam on China's Largest Freshwater Lake,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Ji, L.[Luyan], Gong, P.[Peng], Geng, X.[Xiurui], Zhao, Y.C.[Yong-Chao],
Improving the Accuracy of the Water Surface Cover Type in the 30 m FROM-GLC Product,
RS(7), No. 10, 2015, pp. 13507.
DOI Link 1511
BibRef

Sharma, R.C.[Ram C.], Tateishi, R.[Ryutaro], Hara, K.[Keitarou], Nguyen, L.V.[Luong Viet],
Developing Superfine Water Index (SWI) for Global Water Cover Mapping Using MODIS Data,
RS(7), No. 10, 2015, pp. 13807.
DOI Link 1511
BibRef

Gökgöz, T.[Türkay], Sen, A.[Alper], Memduhoglu, A.[Abdulkadir], Hacar, M.[Muslum],
A New Algorithm for Cartographic Simplification of Streams and Lakes Using Deviation Angles and Error Bands,
IJGI(4), No. 4, 2015, pp. 2185.
DOI Link 1511
BibRef

Schroeder, R.[Ronny], McDonald, K.C.[Kyle C.], Chapman, B.D.[Bruce D.], Jensen, K.[Katherine], Podest, E.[Erika], Tessler, Z.D.[Zachary D.], Bohn, T.J.[Theodore J.], Zimmermann, R.[Reiner],
Development and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave Remote Sensing Data,
RS(7), No. 12, 2015, pp. 15843.
DOI Link 1601
BibRef

Du, Y.[Yun], Zhang, Y.H.[Yi-Hang], Ling, F.[Feng], Wang, Q.[Qunming], Li, W.B.[Wen-Bo], Li, X.D.[Xiao-Dong],
Water Bodies' Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band,
RS(8), No. 4, 2016, pp. 354.
DOI Link 1604
BibRef

Bolanos, S.[Sandra], Stiff, D.[Doug], Brisco, B.[Brian], Pietroniro, A.[Alain],
Operational Surface Water Detection and Monitoring Using Radarsat 2,
RS(8), No. 4, 2016, pp. 285.
DOI Link 1604
BibRef

Kuai, X.[Xi], Li, L.[Lin], Luo, H.[Heng], Hang, S.[Shen], Zhang, Z.J.[Zhi-Jun], Liu, Y.[Yu],
Geospatial Information Categories Mapping in a Cross-lingual Environment: A Case Study of 'Surface Water' Categories in Chinese and American Topographic Maps,
IJGI(5), No. 6, 2016, pp. 90.
DOI Link 1608
BibRef

Xie, H.[Huan], Luo, X.[Xin], Xu, X.[Xiong], Pan, H.Y.[Hai-Yan], Tong, X.H.[Xiao-Hua],
Automated Subpixel Surface Water Mapping from Heterogeneous Urban Environments Using Landsat 8 OLI Imagery,
RS(8), No. 7, 2016, pp. 584.
DOI Link 1608
BibRef

Hwang, C.[Cheinway], Cheng, Y.S.[Yung-Sheng], Han, J.C.[Jian-Cheng], Kao, R.[Ricky], Huang, C.Y.[Chi-Yun], Wei, S.H.[Shiang-Hung], Wang, H.[Haihong],
Multi-Decadal Monitoring of Lake Level Changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family Altimeters: Climate Implication,
RS(8), No. 6, 2016, pp. 446.
DOI Link 1608
BibRef

Carroll, M.[Mark], Wooten, M.[Margaret], di Miceli, C.[Charlene], Sohlberg, R.[Robert], Kelly, M.[Maureen],
Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011,
RS(8), No. 8, 2016, pp. 622.
DOI Link 1609
BibRef

d'Alimonte, D., Kajiyama, T., Saptawijaya, A.,
Ocean Color Remote Sensing of Atypical Marine Optical Cases,
GeoRS(54), No. 11, November 2016, pp. 6574-6586.
IEEE DOI 1610
Absorption BibRef

Schueler, C.[Carl], Holmes, A.[Alan],
Monitoring coastal ocean color with low-cost CubeSats,
SPIE(Newsroom), September 13, 2016
DOI Link 1610
Miniaturization of satellite remote sensing promises lower costs, and SeaHawk is a prime example, offering global coastal ocean color imagery comparable to previous larger and more expensive systems. BibRef

Bustamante, J.[Javier], Aragonés, D.[David], Afán, I.[Isabel],
Effect of Protection Level in the Hydroperiod of Water Bodies on Dońana's Aeolian Sands,
RS(8), No. 10, 2016, pp. 867.
DOI Link 1609
BibRef

Dörnhöfer, K.[Katja], Göritz, A.[Anna], Gege, P.[Peter], Pflug, B.[Bringfried], Oppelt, N.[Natascha],
Water Constituents and Water Depth Retrieval from Sentinel-2A: A First Evaluation in an Oligotrophic Lake,
RS(8), No. 11, 2016, pp. 941.
DOI Link 1612
BibRef

Bertels, L.[Luc], Smets, B.[Bruno], Wolfs, D.[Davy],
Dynamic Water Surface Detection Algorithm Applied on PROBA-V Multispectral Data,
RS(8), No. 12, 2016, pp. 1010.
DOI Link 1612
BibRef

Leng, L.[Liang], Yang, G.D.[Guo-Dong], Chen, S.[Shengbo],
A Combinatorial Reasoning Mechanism with Topological and Metric Relations for Change Detection in River Planforms: An Application to GlobeLand30's Water Bodies,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Dietz, A.J.[Andreas J.], Klein, I.[Igor], Gessner, U.[Ursula], Frey, C.M.[Corinne M.], Kuenzer, C.[Claudia], Dech, S.[Stefan],
Detection of Water Bodies from AVHRR Data: A TIMELINE Thematic Processor,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Tan, C.[Chao], Ma, M.G.[Ming-Guo], Kuang, H.H.[Hong-Hai],
Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef
And: Erratum: RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

d'Andrimont, R.[Raphaël], Marlier, C.[Catherine], Defourny, P.[Pierre],
Hyperspatial and Multi-Source Water Body Mapping: A Framework to Handle Heterogeneities from Observations and Targets over Large Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Eleveld, M.A.[Marieke A.], Ruescas, A.B.[Ana B.], Hommersom, A.[Annelies], Moore, T.S.[Timothy S.], Peters, S.W.M.[Steef W. M.], Brockmann, C.[Carsten],
An Optical Classification Tool for Global Lake Waters,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Sun, W.W.[Wei-Wei], Du, B.[Bo], Xiong, S.[Shaolong],
Quantifying Sub-Pixel Surface Water Coverage in Urban Environments Using Low-Albedo Fraction from Landsat Imagery,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Huang, C.[Chang], Nguyen, B.D.[Ba Duy], Zhang, S.Q.[Shi-Qiang], Cao, S.M.[Sen-Mao], Wagner, W.[Wolfgang],
A Comparison of Terrain Indices toward Their Ability in Assisting Surface Water Mapping from Sentinel-1 Data,
IJGI(6), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Yang, X.C.[Xiu-Cheng], Zhao, S.S.[Shan-Shan], Qin, X.B.[Xue-Bin], Zhao, N.[Na], Liang, L.G.[Li-Gang],
Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Zeng, C.Q.[Chui-Qing], Richardson, M.[Murray], King, D.J.[Douglas J.],
The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-based spectrometer system,
PandRS(130), No. 1, 2017, pp. 217-230.
Elsevier DOI 1708
Water, reflectance BibRef

Shen, Y.L.[Yi-Lang], Ai, T.H.[Ting-Hua],
A Hierarchical Approach for Measuring the Consistency of Water Areas between Multiple Representations of Tile Maps with Different Scales,
IJGI(6), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Verplanke, J.[Jeroen], Georgiadou, Y.[Yola],
Wicked Water Points: The Quest for an Error Free National Water Point Database,
IJGI(6), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Lyons, E.A.[Evan A.], Sheng, Y.W.[Yong-Wei],
LakeTime: Automated Seasonal Scene Selection for Global Lake Mapping Using Landsat ETM+ and OLI,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Garcia, R.A.[Rodrigo A.], Lee, Z.P.[Zhong-Ping], Hochberg, E.J.[Eric J.],
Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic Classifier,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Cooley, S.W.[Sarah W.], Smith, L.C.[Laurence C.], Stepan, L.[Leon], Mascaro, J.[Joseph],
Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Bioresita, F.[Filsa], Puissant, A.[Anne], Stumpf, A.[André], Malet, J.P.[Jean-Philippe],
A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Tan, C.[Chao], Guo, B.[Bo], Kuang, H.H.[Hong-Hai], Yang, H.[Hong], Ma, M.G.[Ming-Guo],
Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Jiang, W.[Wei], He, G.J.[Guo-Jin], Long, T.F.[Teng-Fei], Ni, Y.[Yuan], Liu, H.C.[Hui-Chan], Peng, Y.[Yan], Lv, K.[Kenan], Wang, G.Z.[Gui-Zhou],
Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Ji, X.[Xuan], Li, Y.G.[Yun-Gang], Luo, X.[Xian], He, D.M.[Da-Ming],
Changes in the Lake Area of Tonle Sap: Possible Linkage to Runoff Alterations in the Lancang River?,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Xie, Y.Y.[Yang-Yang], Huang, S.Z.[Sheng-Zhi], Liu, S.[Saiyan], Leng, G.Y.[Guo-Yong], Peng, J.[Jian], Huang, Q.A.[Qi-Ang], Li, P.[Pei],
GRACE-Based Terrestrial Water Storage in Northwest China: Changes and Causes,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef
And: Erratum: RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Rao, P.[Pinzeng], Jiang, W.G.[Wei-Guo], Hou, Y.K.[Yu-Kun], Chen, Z.[Zheng], Jia, K.[Kai],
Dynamic Change Analysis of Surface Water in the Yangtze River Basin Based on MODIS Products,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Wang, Z.F.[Zi-Feng], Liu, J.G.[Jun-Guo], Li, J.B.[Jin-Bao], Zhang, D.D.[David D.],
Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Bernardo, N.[Nariane], Alcântara, E.H.[Enner Heręnio], Watanabe, F.[Fernanda], Rodrigues, T.[Thanan], Carmo, A.[Alisson], Gomes, A.[Ana], Andrade, C.[Caroline],
Glint Removal Assessment to Estimate the Remote Sensing Reflectance in Inland Waters with Widely Differing Optical Properties,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Ahn, J.H.[Jae-Hyun], Park, Y.J.[Young-Je], Fukushima, H.[Hajime],
Comparison of Aerosol Reflectance Correction Schemes Using Two Near-Infrared Wavelengths for Ocean Color Data Processing,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Wu, W.[Wei], Li, Q.Z.[Qiang-Zi], Zhang, Y.[Yuan], Du, X.[Xin], Wang, H.Y.[Hong-Yan],
Two-Step Urban Water Index (TSUWI): A New Technique for High-Resolution Mapping of Urban Surface Water,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Rishikeshan, C.A., Ramesh, H.,
An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images,
PandRS(146), 2018, pp. 11-21.
Elsevier DOI 1812
Feature extraction, Water body extraction, Satellite image processing, Mathematical morphology BibRef

Qi, B.G.[Bao-Gui], Zhuang, Y.[Yin], Chen, H.[He], Dong, S.[Shan], Li, L.L.[Lian-Lin],
Fusion Feature Multi-Scale Pooling for Water Body Extraction from Optical Panchromatic Images,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Wang, D.[Dian], Ma, R.H.[Rong-Hua], Xue, K.[Kun], Loiselle, S.A.[Steven Arthur],
The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Freitas, P.[Pedro], Vieira, G.[Gonçalo], Canário, J.[Joăo], Folhas, D.[Diogo], Vincent, W.F.[Warwick F.],
Identification of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes and Ponds Using Full-Pixel Data from Sentinel-2,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Chen, B.Q.[Ben-Qing], Yang, Y.M.[Yan-Ming], Xu, D.W.[De-Wei], Huang, E.[Erhui],
A dual band algorithm for shallow water depth retrieval from high spatial resolution imagery with no ground truth,
PandRS(151), 2019, pp. 1-13.
Elsevier DOI 1904
High spatial resolution, No ground truth, Bathymetry, Water depth, Remote sensing BibRef

Yan, W.Y.[Wai Yeung], Shaker, A.[Ahmed], LaRocque, P.E.[Paul E.],
Scan Line Intensity-Elevation Ratio (SLIER): An Airborne LiDAR Ratio Index for Automatic Water Surface Mapping,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Mandlburger, G.[Gottfried], Jutzi, B.[Boris],
On the Feasibility of Water Surface Mapping with Single Photon LiDAR,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Mandlburger, G., Weiß, R., Artz, T.,
Mapping of Water Surface Levels and Slopes with Single Photon Lidar - A Case Study At the River Rhine,
ISPRS20(B1:57-64).
DOI Link 2012
BibRef

Shaker, A.[Ahmed], Yan, W.Y.[Wai Yeung], LaRocque, P.E.[Paul E.],
Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments,
PandRS(152), 2019, pp. 94-108.
Elsevier DOI 1905
Airborne LiDAR, Gaussian mixture model, Land-water classification, Multispectral LiDAR, SLIER BibRef

Chand, M.B.[Mohan Bahadur], Watanabe, T.[Teiji],
Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Li, L.W.[Li-Wei], Yan, Z.[Zhi], Shen, Q.[Qian], Cheng, G.[Gang], Gao, L.[Lianru], Zhang, B.[Bing],
Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Bangira, T.[Tsitsi], Alfieri, S.M.[Silvia Maria], Menenti, M.[Massimo], van Niekerk, A.[Adriaan],
Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Santos, G.M.D.[Gema Marco-Dos], Melendez-Pastor, I.[Ignacio], Navarro-Pedreńo, J.[Jose], Koch, M.[Magaly],
Assessing Water Availability in Mediterranean Regions Affected by Water Conflicts through MODIS Data Time Series Analysis,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Che, X.H.[Xiang-Hong], Feng, M.[Min], Sexton, J.[Joe], Channan, S.[Saurabh], Sun, Q.[Qing], Ying, Q.[Qing], Liu, J.P.[Ji-Ping], Wang, Y.[Yong],
Landsat-Based Estimation of Seasonal Water Cover and Change in Arid and Semi-Arid Central Asia (2000-2015),
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Li, Z.C.[Zhi-Chao], Feng, Y.J.[Yu-Jie], Dessay, N.[Nadine], Delaitre, E.[Eric], Gurgel, H.[Helen], Gong, P.[Peng],
Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Xia, H.M.[Hao-Ming], Zhao, J.Y.[Jin-Yu], Qin, Y.C.[Yao-Chen], Yang, J.[Jia], Cui, Y.P.[Yao-Ping], Song, H.Q.[Hong-Quan], Ma, L.Q.[Li-Qun], Jin, N.[Ning], Meng, Q.M.[Qing-Min],
Changes in Water Surface Area during 1989-2017 in the Huai River Basin using Landsat Data and Google Earth Engine,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Kyzivat, E.D.[Ethan D.], Smith, L.C.[Laurence C.], Pitcher, L.H.[Lincoln H.], Fayne, J.V.[Jessica V.], Cooley, S.W.[Sarah W.], Cooper, M.G.[Matthew G.], Topp, S.N.[Simon N.], Langhorst, T.[Theodore], Harlan, M.E.[Merritt E.], Horvat, C.[Christopher], Gleason, C.J.[Colin J.], Pavelsky, T.M.[Tamlin M.],
A High-Resolution Airborne Color-Infrared Camera Water Mask for the NASA ABoVE Campaign,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Fan, X.W.[Xing-Wang], Liu, Y.B.[Yuan-Bo], Wu, G.P.[Gui-Ping], Zhao, X.S.[Xiao-Song],
Compositing the Minimum NDVI for Daily Water Surface Mapping,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Wang, G.J.[Guo-Jie], Wu, M.J.[Meng-Juan], Wei, X.K.[Xi-Kun], Song, H.H.[Hui-Hui],
Water Identification from High-Resolution Remote Sensing Images Based on Multidimensional Densely Connected Convolutional Neural Networks,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Fujisada, H.[Hiroyuki], Urai, M.[Minoru], Iwasaki, A.[Akira],
Technical Methodology for ASTER Global Water Body Data Base,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Fujisada, H.[Hiroyuki], Urai, M.[Minoru], Iwasaki, A.[Akira],
Manual-Based Improvement Method for the ASTER Global Water Body Data Base,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Abrams, M.[Michael], Crippen, R.[Robert], Fujisada, H.[Hiroyuki],
ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD),
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef
Earlier: A1, Only:
ASTER Global DEM Version 3, and New ASTER Water Body Dataset,
ISPRS16(B4: 107-110).
DOI Link 1610

See also Technical Methodology for ASTER Global DEM. BibRef

Liu, C.Z.[Chen-Zhou], Shi, J.C.[Jian-Cheng], Liu, X.Y.[Xiu-Ying], Shi, Z.Y.[Zhao-Yong], Zhu, J.[Ji],
Subpixel Mapping of Surface Water in the Tibetan Plateau with MODIS Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Weng, L.G.[Li-Guo], Xu, Y.M.[Yi-Ming], Xia, M.[Min], Zhang, Y.H.[Yong-Hong], Liu, J.[Jia], Xu, Y.Q.[Yi-Qing],
Water Areas Segmentation from Remote Sensing Images Using a Separable Residual SegNet Network,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Alwan, I.A.[Imzahim A.], Aziz, N.A.[Nadia A.], Hamoodi, M.N.[Mustafa N.],
Potential Water Harvesting Sites Identification Using Spatial Multi-Criteria Evaluation in Maysan Province, Iraq,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Guo, H.X.[Hong-Xiang], He, G.J.[Guo-Jin], Jiang, W.[Wei], Yin, R.[Ranyu], Yan, L.[Lei], Leng, W.C.[Wan-Chun],
A Multi-Scale Water Extraction Convolutional Neural Network (MWEN) Method for GaoFen-1 Remote Sensing Images,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Guo, Y., Huang, C., Zhang, Y., Li, Y., Chen, W.,
A Novel Multitemporal Image-Fusion Algorithm: Method and Application to GOCI and Himawari Images for Inland Water Remote Sensing,
GeoRS(58), No. 6, June 2020, pp. 4018-4032.
IEEE DOI 2005
Geostationary Ocean Color Imager (GOCI), Himawari, image fusion, optical complex water monitoring BibRef

Paul, R.F.[Robert F.], Cai, Y.P.[Ya-Ping], Peng, B.[Bin], Yang, W.H.[Wendy H.], Guan, K.Y.[Kai-Yu], de Lucia, E.H.[Evan H.],
Spatiotemporal Derivation of Intermittent Ponding in a Maize-Soybean Landscape from Planet Labs CubeSat Images,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Qin, M.J.[Meng-Jiao], Hu, L.S.[Lin-Shu], Du, Z.H.[Zhen-Hong], Gao, Y.[Yi], Qin, L.J.[Lian-Jie], Zhang, F.[Feng], Liu, R.Y.[Ren-Yi],
Achieving Higher Resolution Lake Area from Remote Sensing Images Through an Unsupervised Deep Learning Super-Resolution Method,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Zhou, S.L.[Su-Long], Kan, P.Y.[Peng-Yu], Silbernagel, J.[Janet], Jin, J.F.[Jie-Feng],
Application of Image Segmentation in Surface Water Extraction of Freshwater Lakes using Radar Data,
IJGI(9), No. 7, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Markert, K.N.[Kel N.], Markert, A.M.[Amanda M.], Mayer, T.[Timothy], Nauman, C.[Claire], Haag, A.[Arjen], Poortinga, A.[Ate], Bhandari, B.[Biplov], Thwal, N.S.[Nyein Soe], Kunlamai, T.[Thannarot], Chishtie, F.[Farrukh], Kwant, M.[Martijn], Phongsapan, K.[Kittiphong], Clinton, N.[Nicholas], Towashiraporn, P.[Peeranan], Saah, D.[David],
Comparing Sentinel-1 Surface Water Mapping Algorithms and Radiometric Terrain Correction Processing in Southeast Asia Utilizing Google Earth Engine,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Li, Y.[Yang], Niu, Z.G.[Zhen-Guo], Xu, Z.[Zeyu], Yan, X.[Xin],
Construction of High Spatial-Temporal Water Body Dataset in China Based on Sentinel-1 Archives and GEE,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Ogashawara, I.[Igor], Jechow, A.[Andreas], Kiel, C.[Christine], Kohnert, K.[Katrin], Berger, S.A.[Stella A.], Wollrab, S.[Sabine],
Performance of the Landsat 8 Provisional Aquatic Reflectance Product for Inland Waters,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Seaton, D.[Dylan], Dube, T.[Timothy], Mazvimavi, D.[Dominic],
Use of multi-temporal satellite data for monitoring pool surface areas occurring in non-perennial rivers in semi-arid environments of the Western Cape, South Africa,
PandRS(167), 2020, pp. 375-384.
Elsevier DOI 2008
Multi-date monitoring, Non-perennial rivers, Pool area, Remote sensing, Semi-arid environments, Variability, South Africa BibRef

Han, Q.Q.[Qian-Qian], Niu, Z.G.[Zhen-Guo],
Construction of the Long-Term Global Surface Water Extent Dataset Based on Water-NDVI Spatio-Temporal Parameter Set,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Yu, Z.Q.[Zhi-Qi], Di, L.P.[Li-Ping], Rahman, M.S.[Md. Shahinoor], Tang, J.M.[Jun-Mei],
Fishpond Mapping by Spectral and Spatial-Based Filtering on Google Earth Engine: A Case Study in Singra Upazila of Bangladesh,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Sun, F.D.[Fang-Di], Ma, R.H.[Rong-Hua], He, B.[Bin], Zhao, X.L.[Xiao-Li], Zeng, Y.C.[Yu-Chao], Zhang, S.Y.[Si-Yi], Tang, S.L.[Shi-Lin],
Changing Patterns of Lakes on The Southern Tibetan Plateau Based on Multi-Source Satellite Data,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Somasundaram, D.[Deepakrishna], Zhang, F.F.[Fang-Fang], Ediriweera, S.[Sisira], Wang, S.L.[Sheng-Lei], Li, J.S.[Jun-Sheng], Zhang, B.[Bing],
Spatial and Temporal Changes in Surface Water Area of Sri Lanka over a 30-Year Period,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Wei, X.F.[Xu-Feng], Xu, W.B.[Wen-Bo], Bao, K.[Kuanle], Hou, W.M.[Wei-Min], Su, J.[Jia], Li, H.N.[Hai-Ning], Miao, Z.[Zhuang],
A Water Body Extraction Methods Comparison Based on FengYun Satellite Data: A Case Study of Poyang Lake Region, China,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Wang, Z.B.[Zhao-Bin], Gao, X.[Xiong], Zhang, Y.[Yaonan], Zhao, G.H.[Guo-Hui],
MSLWENet: A Novel Deep Learning Network for Lake Water Body Extraction of Google Remote Sensing Images,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Li, Z.[Zhi], Yang, X.M.[Xiao-Mei],
Fusion of High- and Medium-Resolution Optical Remote Sensing Imagery and GlobeLand30 Products for the Automated Detection of Intra-Urban Surface Water,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Zekoll, V.[Viktoria], Main-Knorn, M.[Magdalena], Louis, J.[Jerome], Frantz, D.[David], Richter, R.[Rudolf], Pflug, B.[Bringfried],
Comparison of Masking Algorithms for Sentinel-2 Imagery,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef
And: Erratum: RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 1806
Masking of clouds, cloud shadow, water and snow/ice in optical satellite imagery. BibRef

Veremeeva, A.[Alexandra], Nitze, I.[Ingmar], Günther, F.[Frank], Grosse, G.[Guido], Rivkina, E.[Elizaveta],
Geomorphological and Climatic Drivers of Thermokarst Lake Area Increase Trend (1999-2018) in the Kolyma Lowland Yedoma Region, North-Eastern Siberia,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Li, L.R.[Lin-Rong], Su, H.J.[Hong-Jun], Du, Q.[Qian], Wu, T.X.[Tai-Xia],
A novel surface water index using local background information for long term and large-scale Landsat images,
PandRS(172), 2021, pp. 59-78.
Elsevier DOI 2101
Sufarce water extraction, Landsat, Background information, Water index BibRef

Mizuochi, H.[Hiroki], Iijima, Y.[Yoshihiro], Nagano, H.[Hirohiko], Kotani, A.[Ayumi], Hiyama, T.[Tetsuya],
Dynamic Mapping of Subarctic Surface Water by Fusion of Microwave and Optical Satellite Data Using Conditional Adversarial Networks,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Chen, F.[Fen], van de Voorde, T.[Tim], Roberts, D.[Dar], Zhao, H.J.[Hao-Jie], Chen, J.B.[Jing-Bo],
Detection of Ground Materials Using Normalized Difference Indices with a Threshold: Risk and Ways to Improve,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Li, J.J.[Juan-Juan], Wang, C.[Chao], Xu, L.[Lu], Wu, F.[Fan], Zhang, H.[Hong], Zhang, B.[Bo],
Multitemporal Water Extraction of Dongting Lake and Poyang Lake Based on an Automatic Water Extraction and Dynamic Monitoring Framework,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

He, M.J.[Ming-Jun], He, S.Y.[Shuang-Yan], Zhang, X.D.[Xiao-Dong], Zhou, F.[Feng], Li, P.L.[Pei-Liang],
Assessment of Normalized Water-Leaving Radiance Derived from GOCI Using AERONET-OC Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Zhang, Z.L.[Zhi-Li], Lu, M.[Meng], Ji, S.P.[Shun-Ping], Yu, H.[Huafen], Nie, C.H.[Chen-Hui],
Rich CNN Features for Water-Body Segmentation from Very High Resolution Aerial and Satellite Imagery,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Tambe, R.G.[Rishikesh G.], Talbar, S.N.[Sanjay N.], Chavan, S.S.[Satishkumar S.],
Deep multi-feature learning architecture for water body segmentation from satellite images,
JVCIR(77), 2021, pp. 103141.
Elsevier DOI 2106
Convolutional neural network, Deep learning, Refinement modules, Satellite image analysis, Water body extraction BibRef

Mayr, S.[Stefan], Klein, I.[Igor], Rutzinger, M.[Martin], Kuenzer, C.[Claudia],
Systematic Water Fraction Estimation for a Global and Daily Surface Water Time-Series,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Al-Khaldi, M.M.[Mohammad M.], Johnson, J.T.[Joel T.], Gleason, S.[Scott], Chew, C.C.[Clara C.], Gerlein-Safdi, C.[Cynthia], Shah, R.[Rashmi], Zuffada, C.[Cinzia],
Inland Water Body Mapping Using CYGNSS Coherence Detection,
GeoRS(59), No. 9, September 2021, pp. 7385-7394.
IEEE DOI 2109
Land surface, Surface roughness, Rough surfaces, Surface topography, Sea surface, Vegetation mapping, Coherence, rough surface scattering BibRef

Dang, B.[Bo], Li, Y.S.[Yan-Sheng],
MSResNet: Multiscale Residual Network via Self-Supervised Learning for Water-Body Detection in Remote Sensing Imagery,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Li, W.N.[Wen-Ning], Li, Y.[Yi], Gong, J.H.[Jian-Hua], Feng, Q.L.[Quan-Long], Zhou, J.P.[Jie-Ping], Sun, J.[Jun], Shi, C.H.[Chen-Hui], Hu, W.D.[Wei-Dong],
Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Peńa-Luque, S.[Santiago], Ferrant, S.[Sylvain], Cordeiro, M.C.R.[Mauricio C. R.], Ledauphin, T.[Thomas], Maxant, J.[Jerome], Martinez, J.M.[Jean-Michel],
Sentinel-1&2 Multitemporal Water Surface Detection Accuracies, Evaluated at Regional and Reservoirs Level,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Liang, G.[Gang], Zhao, X.L.[Xing-Lei], Zhao, J.H.[Jian-Hu], Zhou, F.N.[Feng-Nian],
Feature Selection and Mislabeled Waveform Correction for Water-Land Discrimination Using Airborne Infrared Laser,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Huang, Z.L.[Ze-Lin], Wu, W.[Wei], Liu, H.B.[Hong-Bin], Zhang, W.[Weichun], Hu, J.[Jin],
Identifying Dynamic Changes in Water Surface Using Sentinel-1 Data Based on Genetic Algorithm and Machine Learning Techniques,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Wang, C.[Chao], Okuyama, M.[Michihiko], Matsuoka, R.[Ryo], Okabe, T.[Takahiro],
Per-Pixel Water Detection on Surfaces with Unknown Reflectance,
IEICE(E104-D), No. 10, October 2021, pp. 1555-1562.
WWW Link. 2110
BibRef

Bernal, D.C.H.[Diana Carolina Huertas], Purwestri, R.C.[Ratna Chrismiari], Perdana, M.C.[Mayang Christy], Hájek, M.[Miroslav], Tahri, M.[Meryem], Palátová, P.[Petra], Hochmalová, M.[Miroslava],
Societal Implications of Forest and Water Body Area Evolution in Czechia and Selected Regions,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Wang, Z.B.[Zhao-Bin], Gao, X.[Xiong], Zhang, Y.[Yaonan],
HA-Net: A Lake Water Body Extraction Network Based on Hybrid-Scale Attention and Transfer Learning,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Qin, Y.Q.[Yu-Qing], Su, J.[Jie], Wang, M.F.[Ming-Feng],
Melt Pond Retrieval Based on the LinearPolar Algorithm Using Landsat Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Su, J.[Jie], Yu, P., Qin, Y.Q.[Yu-Qing], Zhang, G., Wang, M.F.[Ming-Feng],
Study on Arctic Melt Pond Fraction Retrieval Algorithm Using Modis Data,
ISPRS20(B3:893-898).
DOI Link 2012
BibRef

Duan, Y.M.[Yue-Ming], Zhang, W.Y.[Wen-Yi], Huang, P.[Peng], He, G.J.[Guo-Jin], Guo, H.X.[Hong-Xiang],
A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Lasko, K.[Kristofer], Maloney, M.C.[Megan C.], Becker, S.J.[Sarah J.], Griffin, A.W.H.[Andrew W. H.], Lyon, S.L.[Susan L.], Griffin, S.P.[Sean P.],
Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Worden, J.[James], de Beurs, K.M.[Kirsten M.], Koch, J.[Jennifer], Owsley, B.C.[Braden C.],
Application of Spectral Index-Based Logistic Regression to Detect Inland Water in the South Caucasus,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Issa, H.[Hamza], Stienne, G.[Georges], Reboul, S.[Serge], Raad, M.[Mohamad], Faour, G.[Ghaleb],
Airborne GNSS Reflectometry for Water Body Detection,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Ma, Y.[Yintao], Zhou, Z.[Zheng], She, X.X.[Xiao-Xiong], Zhou, L.[Longyu], Ren, T.[Tao], Liu, S.[Shishi], Lu, J.W.[Jian-Wei],
Identifying Dike-Pond System Using an Improved Cascade R-CNN Model and High-Resolution Satellite Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Ticehurst, C.[Catherine], Teng, J.[Jin], Sengupta, A.[Ashmita],
Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Li, Y.S.[Yan-Sheng], Dang, B.[Bo], Zhang, Y.J.[Yong-Jun], Du, Z.H.[Zhen-Hong],
Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives,
PandRS(187), 2022, pp. 306-327.
Elsevier DOI 2205
Water body classification, High-resolution, Optical remote sensing (RS) image, Deep learning (DL) BibRef

Wang, Y.[Yalan], Li, X.D.[Xiao-Dong], Zhou, P.[Pu], Jiang, L.[Lai], Du, Y.[Yun],
AHSWFM: Automated and Hierarchical Surface Water Fraction Mapping for Small Water Bodies Using Sentinel-2 Images,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Yang, X.H.[Xiao-Hong], Chu, Q.[Qiannian], Wang, L.[Lizhe], Yu, M.[Menghui],
Water Body Super-Resolution Mapping Based on Multiple Endmember Spectral Mixture Analysis and Multiscale Spatio-Temporal Dependence,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Oliver, J.A.[Jacqueline A.], Pivot, F.C.[Frédérique C.], Tan, Q.[Qing], Cantin, A.S.[Alan S.], Wooster, M.J.[Martin J.], Johnston, J.M.[Joshua M.],
A Machine Learning Approach to Waterbody Segmentation in Thermal Infrared Imagery in Support of Tactical Wildfire Mapping,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Chen, C.[Chao], Chen, H.X.[Hui-Xin], Liang, J.T.[Jin-Tao], Huang, W.L.[Wen-Lang], Xu, W.X.[Wen-Xue], Li, B.[Bin], Wang, J.Q.[Jian-Qiang],
Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Wang, J.[Ji], Hu, Y.F.[Yu-Feng], Li, Z.H.[Zhen-Hong],
A New Coherence Detection Method for Mapping Inland Water Bodies Using CYGNSS Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Mazhar, S.[Sarah], Sun, G.M.[Guang-Min], Bilal, A.[Anas], Hassan, B.[Bilal], Li, Y.[Yu], Zhang, J.J.[Jun-Jie], Lin, Y.[Yinyi], Khan, A.[Ali], Ahmed, R.[Ramsha], Hassan, T.[Taimur],
AUnet: A Deep Learning Framework for Surface Water Channel Mapping Using Large-Coverage Remote Sensing Images and Sparse Scribble Annotations from OSM Data,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Liu, J.H.[Jia-Hang], Wang, Y.[Yue],
Water Body Extraction in Remote Sensing Imagery Using Domain Adaptation-Based Network Embedding Selective Self-Attention and Multi-Scale Feature Fusion,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

An, S.H.[Shi-Hao], Rui, X.P.[Xiao-Ping],
A High-Precision Water Body Extraction Method Based on Improved Lightweight U-Net,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Li, X.S.[Xu-Sheng], Zhang, D.H.[Dong-Hui], Jiang, C.C.[Chen-Chen], Zhao, Y.J.[Ying-Jun], Li, H.[Hu], Lu, D.H.[Dong-Hua], Qin, K.[Kai], Chen, D.H.[Dong-Hua], Liu, Y.F.[Yu-Feng], Sun, Y.[Yu], Liu, S.S.[Sai-Sai],
Comparison of Lake Area Extraction Algorithms in Qinghai Tibet Plateau Leveraging Google Earth Engine and Landsat-9 Data,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Li, Z.S.[Zhen-Shi], Zhang, X.L.[Xue-Liang], Xiao, P.F.[Peng-Feng],
Spectral index-driven FCN model training for water extraction from multispectral imagery,
PandRS(192), 2022, pp. 344-360.
Elsevier DOI 2209
Water delineation, Spectral index, Sentinel-2, Semantic labeling, Deep fully convolutional network BibRef

Braga, F.[Federica], Fabbretto, A.[Alice], Vanhellemont, Q.[Quinten], Bresciani, M.[Mariano], Giardino, C.[Claudia], Scarpa, G.M.[Gian Marco], Manfč, G.[Giorgia], Concha, J.A.[Javier Alonso], Brando, V.E.[Vittorio Ernesto],
Assessment of PRISMA water reflectance using autonomous hyperspectral radiometry,
PandRS(192), 2022, pp. 99-114.
Elsevier DOI 2209
Imaging spectroscopy, Autonomous hyperspectral radiometer systems, PRISMA mission BibRef

Jiang, C.W.[Chao-Wei], Zhang, H.[Hong], Wang, C.[Chao], Ge, J.[Ji], Wu, F.[Fan],
Water Surface Mapping from Sentinel-1 Imagery Based on Attention-UNet3+: A Case Study of Poyang Lake Region,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Lyu, X.[Xin], Fang, Y.W.[Yi-Wei], Tong, B.[Baogen], Li, X.[Xin], Zeng, T.[Tao],
Multiscale Normalization Attention Network for Water Body Extraction from Remote Sensing Imagery,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Yu, J.[Jie], Cai, Y.[Yang], Lyu, X.[Xin], Xu, Z.[Zhennan], Wang, X.Y.[Xin-Yuan], Fang, Y.W.[Yi-Wei], Jiang, W.X.[Wen-Xuan], Li, X.[Xin],
Boundary-Guided Semantic Context Network for Water Body Extraction from Remote Sensing Images,
RS(15), No. 17, 2023, pp. 4325.
DOI Link 2310
BibRef

Lyu, X.[Xin], Jiang, W.X.[Wen-Xuan], Li, X.[Xin], Fang, Y.W.[Yi-Wei], Xu, Z.[Zhennan], Wang, X.Y.[Xin-Yuan],
MSAFNet: Multiscale Successive Attention Fusion Network for Water Body Extraction of Remote Sensing Images,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
BibRef

Luo, J.P.[Jian-Ping], Liang, X.D.[Xing-Dong], Guo, Q.C.[Qi-Chang], Zhao, T.G.[Ting-Gang], Xin, J.[Jihao], Bu, X.X.[Xiang-Xi],
A Novel Estimation Method of Water Surface Micro-Amplitude Wave Frequency for Cross-Media Communication,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Lubczonek, J.[Jacek], Terefenko, P.[Pawel], Bradtke, K.[Katarzyna], Wlodarczyk-Sielicka, M.[Marta],
Advances in Remote Sensing of the Inland and Coastal Water Zones,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Liu, Z.H.[Zhi-Heng], Chen, X.M.[Xue-Mei], Zhou, S.P.[Sui-Ping], Yu, H.[Hang], Guo, J.H.[Jian-Hua], Liu, Y.M.[Yan-Ming],
DUPnet: Water Body Segmentation with Dense Block and Multi-Scale Spatial Pyramid Pooling for Remote Sensing Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Chang, L.W.[Li-Wei], Cheng, L.[Lei], Huang, C.[Chang], Qin, S.J.[Shu-Jing], Fu, C.H.[Chen-Hao], Li, S.Q.[Shi-Qiong],
Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Niu, L.F.[Li-Feng], Kaufmann, H.[Hermann], Xu, G.C.[Guo-Chang], Zhang, G.Z.[Guang-Zong], Ji, C.[Chaonan], He, Y.F.[Yu-Fang], Sun, M.F.[Meng-Fei],
Triangle Water Index (TWI): An Advanced Approach for More Accurate Detection and Delineation of Water Surfaces in Sentinel-2 Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Chen, X.P.[Xiao-Peng], Gao, F.[Fang], Li, Y.Y.[Ying-Ye], Wang, B.[Bin], Li, X.J.[Xiao-Jie],
All-Weather and Superpixel Water Extraction Methods Based on Multisource Remote Sensing Data Fusion,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

He, W.[Weiye], Jiang, X.L.[Xian-Liang], Jin, G.[Guang],
RaRWS: A Radar-assisted Real-time Water Segmentation Network to Meet the Autonomous Navigation of USV in Inland Waterways,
ICPR22(4168-4174)
IEEE DOI 2212
Visualization, Fuses, Radar detection, Radar, Real-time systems, Surface fitting, Reflection BibRef

Wang, X.L.[Xiao-Liang], Zhou, G.S.[Guang-Sheng], Lv, X.M.[Xiao-Min], Zhou, L.[Li], Hu, M.C.[Ming-Cheng], He, X.H.[Xiao-Hui], Tian, Z.H.[Zhi-Hui],
Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Song, J.[Jia], Yan, X.B.[Xiang-Bing],
The Effect of Negative Samples on the Accuracy of Water Body Extraction Using Deep Learning Networks,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Yang, X.[Xiao], Chen, M.W.[Ming-Wei], Yu, C.J.[Cheng-Jun], Huang, H.Z.[Hao-Zhe], Yue, X.B.[Xia-Bin], Zhou, B.[Bei], Ni, M.[Ming],
WaterSegformer: A lightweight model for water body information extraction from remote sensing images,
IET-IPR(17), No. 3, 2023, pp. 862-871.
DOI Link 2303
convolutional neural nets, image segmentation, learning (artificial intelligence), remote sensing BibRef

Liu, S.[Shu], Wu, Y.F.[Yan-Feng], Zhang, G.X.[Guang-Xin], Lin, N.[Nan], Liu, Z.H.[Zi-Hao],
Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province,
RS(15), No. 6, 2023, pp. 1678.
DOI Link 2304
BibRef

Aravena, R.A.[Ricardo A.], Lyons, M.B.[Mitchell B.], Keith, D.A.[David A.],
Holistic Reduction to Compare and Create New Indices for Global Inter-Seasonal Monitoring: Case Study for High Resolution Surface Water Mapping,
RS(15), No. 8, 2023, pp. 2063.
DOI Link 2305
BibRef

Tan, J.B.[Jian-Bo], Tang, Y.[Yi], Liu, B.[Bin], Zhao, G.[Guang], Mu, Y.[Yu], Sun, M.J.[Ming-Jiang], Wang, B.[Bo],
A Self-Adaptive Thresholding Approach for Automatic Water Extraction Using Sentinel-1 SAR Imagery Based on OTSU Algorithm and Distance Block,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Kossieris, S.[Stylianos], Asgarimehr, M.[Milad], Wickert, J.[Jens],
Unsupervised Machine Learning for GNSS Reflectometry Inland Water Body Detection,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
BibRef

Zhao, M.[Minyan], O'Loughlin, F.[Fiachra],
Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type,
RS(15), No. 14, 2023, pp. 3677.
DOI Link 2307
BibRef

Zhang, Y.H.[Yong-Hong], Lu, H.Y.[Huan-Yu], Ma, G.Y.[Guang-Yi], Zhao, H.J.[Hua-Jun], Xie, D.L.[Dong-Lin], Geng, S.[Sutong], Tian, W.[Wei], Sian, K.T.C.L.K.[Kenny Thiam Choy Lim Kam],
MU-Net: Embedding MixFormer into Unet to Extract Water Bodies from Remote Sensing Images,
RS(15), No. 14, 2023, pp. 3559.
DOI Link 2307
BibRef

Huang, W.J.[Wen-Jing], Wang, F.Q.[Fu-Qiang], Duan, W.[Weili], Tang, L.[Lei], Qin, J.X.[Jing-Xiu], Meng, X.Y.[Xiao-Yu],
Image similarity-based gap filling method can effectively enrich surface water mapping information,
PandRS(202), 2023, pp. 528-544.
Elsevier DOI 2308
BibRef

Marinho, G.C.[Giovanna Carreira], Júnior, W.E.M.[Wilson Estécio Marcílio], Dias, M.A.[Mauricio Araujo], Eler, D.M.[Danilo Medeiros], Negri, R.G.[Rogério Galante], Casaca, W.[Wallace],
Dimensionality Reduction and Anomaly Detection Based on Kittler's Taxonomy: Analyzing Water Bodies in Two Dimensional Spaces,
RS(15), No. 16, 2023, pp. 4085.
DOI Link 2309
BibRef

Samaranayake, H.[Harin], Mudannayake, O.[Oshan], Perera, D.[Dushani], Kumarasinghe, P.[Prabhash], Suduwella, C.[Chathura], de Zoysa, K.[Kasun], Wimalaratne, P.[Prasad],
Detecting Water in Visual Image Streams from UAV with Flight Constraints,
JVCIR(96), 2023, pp. 103933.
Elsevier DOI 2310
Water Surface Identification, Unmanned Ariel Vehicles, Drones, UNet, Dense Optical Flow BibRef

de Andrade-Costa, D.[David], Bayissa, Y.[Yared], Junior, J.L.[Jader Lugon], Yamasaki, E.N.[Edna N.], Kyriakides, I.[Ioannis], Neto, A.J.S.[Antônio J. Silva],
Cyprus Surface Water Area Variation Based on the 1984-2021 Time Series Built from Remote Sensing Products,
RS(15), No. 22, 2023, pp. 5288.
DOI Link 2311
BibRef

Kang, J.[Jian], Guan, H.Y.[Hai-Yan], Ma, L.F.[Ling-Fei], Wang, L.[Lanying], Xu, Z.[Zhengsen], Li, J.[Jonathan],
WaterFormer: A coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery,
PandRS(206), 2023, pp. 222-241.
Elsevier DOI Code:
WWW Link. 2312
Optical remotely-sensed imagery, Convolutional neural networks (CNNs), Visual Transformer, Long-range dependency BibRef

Wang, R.F.[Rong-Fang], Zhang, C.C.[Chen-Chen], Chen, C.[Chao], Hao, H.X.[Hong-Xia], Li, W.B.[Wei-Bin], Jiao, L.C.[Li-Cheng],
A Multi-Modality Fusion and Gated Multi-Filter U-Net for Water Area Segmentation in Remote Sensing,
RS(16), No. 2, 2024, pp. 419.
DOI Link 2402
BibRef

Pang, Y.[Yunxuan], Yu, J.C.[Jun-Chuan], Xi, L.[Laidian], Ge, D.[Daqing], Zhou, P.[Ping], Hou, C.H.[Chang-Hong], He, P.[Peng], Zhao, L.[Liu],
Remote Sensing Extraction of Lakes on the Tibetan Plateau Based on the Google Earth Engine and Deep Learning,
RS(16), No. 3, 2024, pp. 583.
DOI Link 2402
BibRef

Shih, N.J.[Naai-Jung], Tasi, Y.T.[Yun-Ting], Qiu, Y.T.[Yi-Ting], Hsu, T.W.[Ting-Wei],
Inspecting Pond Fabric Using Unmanned Aerial Vehicle-Assisted Modeling, Smartphone Augmented Reality, and a Gaming Engine,
RS(16), No. 6, 2024, pp. 943.
DOI Link 2403
BibRef

Huang, C.[Chang], Chen, Y.[Yun], Zhang, S.Q.[Shi-Qiang], Li, L.Y.[Lin-Yi], Shi, K.F.[Kai-Fang], Liu, R.[Rui],
Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution via Blending with Landsat Data,
RS(8), No. 8, 2016, pp. 631.
DOI Link 1609
BibRef

Yan, X.B.[Xiang-Bing], Song, J.[Jia],
Terrain Shadow Interference Reduction for Water Surface Extraction in the Hindu Kush Himalaya Using a Transformer-Based Network,
RS(16), No. 11, 2024, pp. 2032.
DOI Link 2406
BibRef

Chen, J.[Jie], Wang, Y.K.[Yan-Kun], Wang, J.Z.[Jing-Zhe], Zhang, Y.H.[Ying-Hui], Xu, Y.[Yue], Yang, O.[Ou], Zhang, R.[Rui], Wang, J.[Jing], Wang, Z.S.[Zhen-Sheng], Lu, F.D.[Fei-Dong], Hu, Z.W.[Zhong-Wen],
The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis,
RS(16), No. 11, 2024, pp. 1984.
DOI Link 2406
BibRef

Su, Z.F.[Zhen-Feng], Xiang, L.[Longwei], Steffen, H.[Holger], Jia, L.[Lulu], Deng, F.[Fan], Wang, W.L.[Wen-Liang], Hu, K.Y.[Ke-Yu], Guo, J.J.[Jing-Jing], Nong, A.[Aile], Cui, H.[Haifu], Gao, P.[Peng],
A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery,
RS(16), No. 15, 2024, pp. 2749.
DOI Link 2408
BibRef

Ma, W.Q.[Wen-Qiu], Liu, X.[Xiao], Zhao, X.[Xinglei],
Extraction of River Water Bodies Based on ICESat-2 Photon Classification,
RS(16), No. 16, 2024, pp. 3034.
DOI Link 2408
BibRef

Li, Z.W.[Zhi-Wei], Xu, S.[Shaofen], Weng, Q.H.[Qi-Hao],
Beyond clouds: Seamless flood mapping using Harmonized Landsat and Sentinel-2 time series imagery and water occurrence data,
PandRS(216), 2024, pp. 185-199.
Elsevier DOI Code:
WWW Link. 2408
Flood mapping, Water body extraction, Cloud removal, HLS imagery, Cloudy and rainy environments, Time series BibRef

Atwood, E.C.[Elizabeth C.], Jackson, T.[Thomas], Laurenson, A.[Angus], Jönsson, B.F.[Bror F.], Spyrakos, E.[Evangelos], Jiang, D.[Dalin], Sent, G.[Giulia], Selmes, N.[Nick], Simis, S.[Stefan], Danne, O.[Olaf], Tyler, A.[Andrew], Groom, S.[Steve],
Framework for Regional to Global Extension of Optical Water Types for Remote Sensing of Optically Complex Transitional Water Bodies,
RS(16), No. 17, 2024, pp. 3267.
DOI Link 2409
BibRef

Li, N.[Nan], Xu, X.H.[Xiao-Hua], Huang, S.F.[Shi-Feng], Sun, Y.Y.[Ya-Yong], Ma, J.W.[Jian-Wei], Zhu, H.[He], Hu, M.C.[Meng-Cheng],
CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++,
RS(16), No. 18, 2024, pp. 3391.
DOI Link 2410
BibRef

Cheng, X.[Xi], Zhu, Q.[Qian], Song, Y.J.[Yu-Jian], Yang, J.[Jieyu], Wang, T.T.[Ting-Ting], Zhao, B.[Bin], Shen, Z.F.[Zhan-Feng],
Precise City-Scale Urban Water Body Semantic Segmentation and Open-Source Sampleset Construction Based on Very High-Resolution Remote Sensing: A Case Study in Chengdu,
RS(16), No. 20, 2024, pp. 3873.
DOI Link 2411
BibRef

Cheng, X.J.[Xue-Jun], Han, K.[Kuikui], Xu, J.[Jian], Li, G.Z.[Guo-Zhong], Xiao, X.[Xiao], Zhao, W.G.[Wen-Gang], Gao, X.J.[Xian-Jun],
SPFDNet: Water Extraction Method Based on Spatial Partition and Feature Decoupling,
RS(16), No. 21, 2024, pp. 3959.
DOI Link 2411
BibRef

O'Kane, S.[Sean], McCarthy, T.[Tim], Fealy, R.[Rowan], Kratzer, S.[Susanne],
A Validation of OLCI Sentinel-3 Water Products in the Baltic Sea and an Evaluation of the Effect of System Vicarious Calibration (SVC) on the Level-2 Water Products,
RS(16), No. 21, 2024, pp. 3932.
DOI Link 2411
BibRef


Liu, Y., Xiao, C.C.,
Water Extraction on the Hyperspectral Images of Gaofen-5 Satellite Using Spectral Indices,
ISPRS20(B3:441-446).
DOI Link 2012
BibRef

Nakano, T., Endo, R., Ohno, H., Iwahashi, J.,
Water Area Observation Experiment Using Optical Sensor for Extracting Inundation Boundary At Night,
ISPRS20(B3:169-173).
DOI Link 2012
BibRef

Akiyama, T.S., Junior, J.M.[J. Marcato], Gonçalves, W.N., Bressan, P.O., Eltner, A., Binder, F., Singer, T.,
Deep Learning Applied to Water Segmentation,
ISPRS20(B2:1189-1193).
DOI Link 2012
BibRef

Xu, R.G., Qiao, G., Wu, Y.J., Cao, Y.J.,
Extraction of Rivers and Lakes On Tibetan Plateau Based On Google Earth Engine,
CHGCS19(1797-1801).
DOI Link 1912
BibRef

Wieland, M., Martinis, S., Li, Y.,
Semantic Segmentation of Water Bodies in Multi-spectral Satellite Images for Situational Awareness in Emergency Response,
PIA19(273-277).
DOI Link 1912
BibRef

Han, X.F.[Xiao-Feng], Nguyen, C.[Chuong], You, S.D.[Shao-Di], Lu, J.F.[Jian-Feng],
Single Image Water Hazard Detection Using FCN with Reflection Attention Units,
ECCV18(VI: 105-121).
Springer DOI 1810
BibRef

Li, S., Wang, S., Zheng, Z., Wan, D., Feng, J.,
A New Algorithm for Water Information Extraction from High Resolution Remote Sensing Imagery,
ICIP16(4359-4363)
IEEE DOI 1610
Decision support systems BibRef

Grenzdörffer, G.J., Naumann, M.,
Investigations On The Possibilities Of Monitoring Coastal Changes Including Shallow Under Water Areas With Uas Photo Bathmetry,
ISPRS16(B1: 843-850).
DOI Link 1610
BibRef

Lian, S.Z.[Shi-Zhong], Chen, J.P.[Jiang-Ping], Luo, M.H.[Ming-Hai],
A Probability-based Statistical Method To Extract Water Body Of Tm Images With Missing Information,
ISPRS16(B2: 21-26).
DOI Link 1610
BibRef

Schmidt, A., Rottensteiner, F., Soergel, U., Heipke, C.,
A Graph Based Model for the Detection of Tidal Channels Using Marked Point Processes,
CMRT15(115-121).
DOI Link 1602
BibRef

Olasz, A., Kristóf, D., Belényesi, M., Bakos, K., Kovács, Z., Balázs, B., Szabó, S.,
IQPC 2015 TRACK: Water Detection and Classification on Multisource Remote Sensing and Terrain Data,
GeoBigData15(583-588).
DOI Link 1602
BibRef

Li-Chee-Ming, J., Murnaghan, K., Sherman, D., Poncos, V., Brisco, B., Armenakis, C.,
Validation of Spaceborne Radar Surface Water Mapping with Optical sUAS Images,
UAV-g15(363-368).
DOI Link 1512
BibRef

Bruinink, M.[Machiel], Chandarr, A.[Aswin], Rudinac, M.[Maja], van Overloop, P.J.[Peter-Jules], Jonker, P.[Pieter],
Portable, automatic water level estimation using mobile phone cameras,
MVA15(426-429)
IEEE DOI 1507
Cameras BibRef

Skurikhin, A.N., Wilson, C.J., Liljedahl, A., Rowland, J.C.,
Recursive active contours for hierarchical segmentation of wetlands in high-resolution satellite imagery of Arctic landscapes,
Southwest14(137-140)
IEEE DOI 1406
geophysical image processing BibRef

Kalkan, K., Bayram, B., Maktav, D., Sunar, F.,
Comparison of support vector machine and object based classification methods for coastline detection,
SSG13(125-127).
DOI Link 1402
BibRef

Sui, H.G., Chen, G., Hua, L.,
An automatic integrated image segmentation, registration and change detection method for water-body extraction using HSR images and GIS data,
SSG13(237-242).
DOI Link 1402
BibRef

Luo, C.F.[Cheng-Feng], Wang, Y.[Yuan], You, H.Y.[Hao-Yan], Liu, Z.J.[Zheng-Jun],
Monitoring the Changes of Lakes in the Source Region of Three Rivers with Remote Sensing Data from 1976 To 2009,
IWIDF13(15-18).
DOI Link 1311
BibRef

Smeeckaert, J., Mallet, C., David, N.,
Classification of Water Surfaces Using Airborne Topographic LIDAR Data,
Hannover13(321-326).
DOI Link 1308
BibRef

Honkavaara, E., Hakala, T., Kirjasniemi, J., Lindfors, A., Mäkynen, J., Nurminen, K., Ruokokoski, P., Saari, H., Markelin, L.,
New Light-Weight Stereosopic Spectrometric Airborne Imaging Technology for High-Resolution Environmental Remote Sensing: Case Studies in Water Quality Mapping,
Hannover13(139-144).
DOI Link 1308
BibRef

Yi, Y.H.[Yun-Hui], Wang, C.[Cheng], Li, J.[Jonathan],
Closed water body extraction from low-solution and Low SNR meteorological satellite imagery based on MSER,
CVRS12(226-229).
IEEE DOI 1302
BibRef

Bao, X.F.[Xin-Feng], Zinger, S.[Svitlana], Wijnhoven, R.[Rob], de With, P.H.N.[Peter H. N.],
Water Region Detection Supporting Ship Identification in Port Surveillance,
ACIVS12(444-454).
Springer DOI 1209
BibRef

Leach, J.H.J., Kitchingman, A.,
The Use of Modis Data To Define Natural Boundaries and Regions In The Marine Water Column,
ISPRS12(XXXIX-B8:545-550).
DOI Link 1209
BibRef

Tarikhi, P.,
Insar Of Aquatic Bodies,
ISPRS12(XXXIX-B7:85-90).
DOI Link 1209
BibRef

Lazaridou, M.A.,
Image Interpretation Of Coastal Areas,
ISPRS12(XXXIX-B8:171-174).
DOI Link 1209
BibRef

Nguyen, D.D.,
Water Body Extraction From Multi Spectral Image By Spectral Pattern Analysis,
ISPRS12(XXXIX-B8:181-186).
DOI Link 1209
BibRef

Sui, H.G., Xu, C.,
Automatic Extraction Of Water In High-resolution Sar Images Based On Multi-scale Level Set Method And Otsu Algorithm,
ISPRS12(XXXIX-B7:453-457).
DOI Link 1209
BibRef

Steinbacher, F., Pfennigbauer, M., Aufleger, M., Ullrich, A.,
High Resolution Airborne Shallow Water Mapping,
ISPRS12(XXXIX-B1:55-60).
DOI Link 1209
BibRef

d'Andrimont, R.[Raphael], Pekel, J.F.[Jean-Francois], Defourny, P.[Pierre],
Monitoring African surface water dynamic using medium resolution daily data allows anomalies detection in nearly real time,
MultiTemp11(241-244).
IEEE DOI 1109
BibRef

Schmidt, A., Rottensteiner, F., Sörgel, U.,
Detection of Water Surfaces in Full-Waveform Laser Scanning Data,
HighRes11(xx-yy).
PDF File. 1106
BibRef

Steinbacher, F.[Frank],
Airborne hydromapping area-wide surveying of shallow water areas,
CGC10(191).
PDF File. 1006
BibRef

Dialameh, A.[Ameneh], Faisal, K.[Kamil], Shaker, A.[Ahmed], Yan, W.Y.[Wai Yeung],
Remote sensing techniques as a tool for runoff water estimation,
CGC10(175).
PDF File. 1006
BibRef

Long, Z.Y.[Zhi-Yong], He, M.Y.[Ming-Yuan], Shi, H.Q.[Han-Qing], Rao, R.[Ruoyu],
Study on Water Bodies Extraction with FY3A Satellite Image,
CISP09(1-5).
IEEE DOI 0910
BibRef

Silveira, M.[Margarida], Nascimento, J.C.[Jacinto C.], Marques, J.S.[Jorge S.],
Level set segmentation with outlier rejection,
ICIP08(1085-1088).
IEEE DOI 0810
BibRef

Brzank, A., Heipke, C.,
Supervised Classification of Water Regions from Lidar Data in the Wadden Sea Using a Fuzzy Logic Concept,
Laser07(90).
PDF File. 0709
BibRef

Taniguchi, R.I., Kawaguchi, E.,
Knowledge-Based Image Analysis of Landsat Data: How to Extract and How to Describe Water Information,
ICPR86(1236-1239). BibRef 8600

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Water, Water Body Detection Using SAR .


Last update:Nov 26, 2024 at 16:40:19