Tikhonov, A.N.,
The Regularization of Ill-Posed Problems,
Dokl. Akad. Nauk.(SSR 153), No. 1, 1963, pp. 49-52.
BibRef
6300
Arsenin, V.Y.,
Regularization Method,
USSR Computational Math(8), 1968.
BibRef
6800
Good, I.J.,
Gaskins, R.A.,
Nonparametric Roughness Penalties for Preobability Densities,
Biometrika(58), 1971, pp. 255-277.
BibRef
7100
Shahraray, B., and
Anderson, D.J.,
Optimal Estiamtion of Contour Properties by
Cross-Validated Regularization,
PAMI(11), No. 6, June 1989, pp. 600-610.
IEEE DOI Analysis of parameters in regularization.
BibRef
8906
Lee, D., and
Pavlidis, T.,
One-Dimensional Regularization with Discontinuities,
PAMI(10), No. 6, November 1988, pp. 822-829.
IEEE DOI
BibRef
8811
Earlier:
ICCV87(572-577).
BibRef
Poggio, T., and
Girosi, F.,
Regularization Algorithms for Learning That Are Equivalent to
Multilayer Networks,
Science(247), No. 4945, February 23, 1990.
BibRef
9002
Girosi, F.,
Jones, M.J.,
Poggio, T.,
Regularization Theory and Neural Networks Architectures,
NeurComp(7), No. 2, March 1995, pp. 219-269.
BibRef
9503
Poggio, T., and
Girosi, F.,
Networks for Approximation and Learning,
PIEEE(78), No. 9, September 1990, pp. 1481-1497.
BibRef
9009
Earlier:
A Theory of Networks for Approximation and Learning,
MIT AI-TR-1140, 1989.
BibRef
Poggio, T.A.,
Torre, V., and
Koch, C.,
Computational Vision and Regularization Theory,
Nature(317), 1985, pp. 314-319.
BibRef
8500
Earlier:
without A3:
Ill-Posed Problems and Regularization Analysis in Early Vision,
DARPA84(257-263).
BibRef
And:
MIT AI Memo-773, April 1984.
WWW Link.
Computational Vision. A presentation of the basics of regularization and what it is
intended to solve.
BibRef
Taratorin, A.M.,
Sideman, S.,
Constrained regularized differentiation,
PAMI(16), No. 1, January 1994, pp. 88-92.
IEEE DOI
0401
BibRef
Bertero, M.,
Poggio, T.A., and
Torre, V.,
Ill-Posed Problems in Early Vision,
PIEEE(76), No. 8, August 1988, pp. 869-889.
BibRef
8808
Earlier:
MIT AI Memo924, May 1987.
WWW Link.
BibRef
Poggio, T.A.,
Early Vision:
From Computational Structure to Algorithms and Parallel Hardware,
CVGIP(31), No. 2, August 1985, pp. 139-155.
Elsevier DOI
See also Vision by Man and Machine.
BibRef
8508
Verri, A.[Alessandro],
Poggio, T.[Tomaso],
Regularization Theory and Shape Constraints,
MIT AI Memo-916, September 1986.
BibRef
8609
Karayiannis, N.B., and
Venetsanopoulos, A.N.,
Regularization Theory in Image Restoration:
The Stabilizing Functional Approach,
ASSP(38), No. 7, July 1990, pp. 1155-1179.
BibRef
9007
Unser, M.,
Aldroubi, A., and
Eden, M.,
Recursive Regularization Filters: Design, Properties, and Applications,
PAMI(13), No. 3, March 1991, pp. 272-277.
IEEE DOI
BibRef
9103
Thompson, A.M.,
Brown, J.C.,
Kay, J.W., and
Titterington, D.M.,
A Study of Methods of Choosing the Smoothing
Parameter in Image Restoration by Regularization,
PAMI(13), No. 4, April 1991, pp. 326-339.
IEEE DOI
BibRef
9104
Archer, G.,
Titterington, D.M.,
On Some Bayesian/Regularization Methods for Image Restoration,
IP(4), No. 7, July 1995, pp. 989-995.
IEEE DOI
0402
Restoration.
See also Bayesian Image Restoration: An Application to Edge-Preserving Surface Recovery.
BibRef
Tanaka, K.,
Titterington, D.M.,
Probabilistic image processing based on the Q-ising model by means of
the mean field method and loopy belief propagation,
ICPR04(II: 40-43).
IEEE DOI
0409
BibRef
Kang, M.G.,
Katsaggelos, A.K.,
General Choice of the Regularization Functional in
Regularized Image-Restoration,
IP(4), No. 5, May 1995, pp. 594-602.
IEEE DOI
See also Simultaneous Multichannel Image Restoration and Estimation of the Regularization Parameters.
BibRef
9505
Kang, M.G.,
Katsaggelos, A.K.,
Simultaneous Multichannel Image Restoration and Estimation of the
Regularization Parameters,
IP(6), No. 5, May 1997, pp. 774-778.
IEEE DOI
9705
See also General Choice of the Regularization Functional in Regularized Image-Restoration.
BibRef
Hong, M.C.,
Kang, M.G., and
Katsaggelos, A.K.,
An Iterative Weighted Regularized Algorithm for Improving the Resolution
of Video Sequences,
ICIP97(II: 474-477).
IEEE DOI
BibRef
9700
Stevenson, R.L.[Robert L.], and
Delp, E.J.[Edward J.],
Fitting Curves with Discontinuities,
Robust90(xx).
BibRef
9000
Reeves, S.J., and
Higdon, A.C.,
Perceptual Evaluation of the Mean Square Error Choice of
Regularization Parameter,
IP(4), No. 1, January 1995, pp. 107-110.
IEEE DOI Human evaluation of the results.
BibRef
9501
Li, S.Z.,
On Discontinuity-Adaptive Smoothness Priors in Computer Vision,
PAMI(17), No. 6, June 1995, pp. 576-586.
IEEE DOI
Surface Reconstruction.
Adaptive Smoothing.
BibRef
9506
O'Sullivan, J.A.,
Roughness penalties on finite domains,
IP(4), No. 9, September 1995, pp. 1258-1268.
IEEE DOI
0402
Penalty functions in Regularization.
BibRef
Lin, L.C.,
Kuo, C.C.J.,
On Theory and Regularization of Scale-Limited Extrapolation,
SP(54), No. 3, November 1996, pp. 225-237.
9701
BibRef
Charbonnier, P.,
Blanc-Féraud, L.[Laure],
Aubert, G.[Gilles],
Barlaud, M.,
Deterministic Edge-Preserving Regularization in Computed Imaging,
IP(6), No. 2, February 1997, pp. 298-311.
IEEE DOI
9703
BibRef
Earlier:
Two deterministic half-quadratic regularization algorithms for computed
imaging,
ICIP94(II: 168-172).
IEEE DOI
9411
BibRef
Koulibaly, P.M.,
Charbonnier, P.,
Blanc-Feraud, L.,
Laurette, I.,
Darcourt, J.,
Barlaud, M.,
Poisson statistic and half-quadratic regularization for emission
tomography reconstruction algorithm,
ICIP96(II: 729-732).
IEEE DOI
9610
BibRef
Blanc-Feraud, L.,
Charbonnier, P.,
Aubert, G.,
Barlaud, M.,
Nonlinear image processing: modeling and fast algorithm for
regularization with edge detection,
ICIP95(I: 474-477).
IEEE DOI
9510
BibRef
Aubert, G.,
Barlaud, M.,
Blanc-Feraud, L.,
Charbonnier, P.,
A deterministic algorithm for edge-preserving computed imaging using
Legendre transform,
ICPR94(C:188-191).
IEEE DOI
9410
BibRef
Nikolova, M.,
Idier, J.,
Mohammad-Djafari, A.,
Inversion of Large-Support Ill-Posed Linear-Operators Using a
Piecewise Gaussian MRF,
IP(7), No. 4, April 1998, pp. 571-585.
IEEE DOI
9804
BibRef
Radmoser, E.[Esther],
Scherzer, O.[Otmar],
Weickert, J.[Joachim],
Scale-Space Properties of Nonstationary Iterative Regularization
Methods,
JVCIR(11), No. 2, June 2000, pp. 96-114.
0008
BibRef
Earlier:
Scale-Space Properties of Regularization Methods,
ScaleSpace99(211-222).
BibRef
Gader, P.D.[Paul D.],
Khabou, M.A.[Mohamed A.],
Koldobsky, A.[Alexander],
Morphological regularization neural networks,
PR(33), No. 6, June 2000, pp. 935-944.
Elsevier DOI
0004
BibRef
Raudys, S.J.[Sarunas J.],
Scaled rotation regularization,
PR(33), No. 12, December 2000, pp. 1989-1998.
Elsevier DOI
0008
BibRef
Chambolle, A.,
Lucier, B.J.,
Interpreting translation-invariant wavelet shrinkage as a new image
smoothing scale space,
IP(10), No. 7, July 2001, pp. 993-1000.
IEEE DOI
0108
BibRef
Rivera, M.[Mariano],
Marroquin, J.L.[Jose L.],
Efficient half-quadratic regularization with granularity control,
IVC(21), No. 4, April 2003, pp. 345-357.
Elsevier DOI
0301
BibRef
Hinterberger, W.[Walter],
Hintermüller, M.[Michael],
Kunisch, K.[Karl],
von Oehsen, M.[Markus],
Scherzer, O.[Otmar],
Tube Methods for BV Regularization,
JMIV(19), No. 3, November 2003, pp. 219-235.
DOI Link
0310
Bounded variation regularization.
BibRef
Bredies, K.[Kristian],
Kunisch, K.[Karl],
Pock, T.[Thomas],
Total Generalized Variation,
SIIMS(3), No. 3, 2010, pp. 492-526.
DOI Link bounded variation, total generalized variation, tensor fields;
regularization, image denoising
BibRef
1000
Kunisch, K.[Karl],
Pock, T.[Thomas],
A Bilevel Optimization Approach for Parameter Learning in Variational
Models,
SIIMS(6), No. 2, 2013, pp. 938-983.
DOI Link
1307
BibRef
Scherzer, O.[Otmar],
Taut-String Algorithm and Regularization Programs with G-Norm Data Fit,
JMIV(23), No. 2, September 2005, pp. 135-143.
Springer DOI
0505
BibRef
Fuchs, M.[Matthias],
Scherzer, O.[Otmar],
Regularized Reconstruction of Shapes with Statistical a priori
Knowledge,
IJCV(79), No. 2, August 2008, pp. xx-yy.
Springer DOI
0711
BibRef
Fidler, T.[Thomas],
Grasmair, M.[Markus],
Scherzer, O.[Otmar],
Shape Reconstruction with A Priori Knowledge Based on Integral
Invariants,
SIIMS(5), No. 1 2012, pp. 726-745.
DOI Link
1208
BibRef
Vanzella, W.[Walter],
Pellegrino, F.A.[Felice Andrea],
Torre, V.[Vincent],
Self-Adaptive Regularization,
PAMI(26), No. 6, June 2004, pp. 804-809.
IEEE Abstract.
0404
Adapting the parameters for Mumford-Shah
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems. to
optimize details.
BibRef
Shkvarko, Y.V.,
Unifying Regularization and Bayesian Estimation Methods for Enhanced
Imaging With Remotely Sensed Data-Part I: Theory,
GeoRS(42), No. 5, May 2004, pp. 923-931.
IEEE Abstract.
0407
BibRef
Shkvarko, Y.V.,
Unifying Regularization and Bayesian Estimation Methods for Enhanced
Imaging With Remotely Sensed Data-Part II: Implementation and
Performance Issues,
GeoRS(42), No. 5, May 2004, pp. 932-940.
IEEE Abstract.
0407
BibRef
Shkvarko, Y.V.,
Unifying Experiment Design and Convex Regularization Techniques for
Enhanced Imaging With Uncertain Remote Sensing Data: Part I: Theory,
GeoRS(48), No. 1, January 2010, pp. 82-95.
IEEE DOI
1001
BibRef
Shkvarko, Y.V.,
Unifying Experiment Design and Convex Regularization Techniques for
Enhanced Imaging With Uncertain Remote Sensing Data: Part II: Adaptive
Implementation and Performance Issues,
GeoRS(48), No. 1, January 2010, pp. 96-111.
IEEE DOI
1001
BibRef
Shkvarko, Y.V.[Yuriy V.],
Vazquez-Bautista, R.[Rene],
Villalon-Turrubiates, I.E.[Ivan E.],
Fusion of Bayesian Maximum Entropy Spectral Estimation and Variational
Analysis Methods for Enhanced Radar Imaging,
ACIVS07(109-120).
Springer DOI
0708
BibRef
Shkvarko, Y.V.[Yuri V.],
Netjukhailo, A.S.[Alexey S.],
Fusion of Bayesian estimation and MTF inversion techniques for improved
array imaging in scattering media,
CAIP95(526-531).
Springer DOI
9509
BibRef
Shkvarko, Y.V.,
Leyva-Montiel, J.L.,
Villalon-Turrubiates, I.E.[Ivan E.],
Unifying the Experiment Design and Constrained Regularization Paradigms
for Reconstructive Imaging with Remote Sensing Data,
ICIP06(3241-3244).
IEEE DOI
0610
BibRef
Viéville, T.[Thierry],
An unbiased implementation of regularization mechanisms,
IVC(23), No. 11, 1 October 2005, pp. 981-998.
Elsevier DOI
0510
BibRef
Viéville, T.[Thierry],
Biologically plausible regularization mechanisms,
INRIARR-4625, Novembre 2002.
HTML Version.
0306
BibRef
Gutierrez, J.,
Ferri, F.J.,
Malo, J.,
Regularization Operators for Natural Images Based on Nonlinear
Perception Models,
IP(15), No. 1, January 2006, pp. 189-200.
IEEE DOI
0601
BibRef
Allain, M.,
Idier, J.,
Goussard, Y.,
On Global and Local Convergence of Half-Quadratic Algorithms,
IP(15), No. 5, May 2006, pp. 1130-1142.
IEEE DOI
0605
BibRef
Earlier:
ICIP02(II: 833-836).
IEEE DOI
0210
BibRef
Mignotte, M.[Max],
A Segmentation-Based Regularization Term for Image Deconvolution,
IP(15), No. 7, July 2006, pp. 1973-1984.
IEEE DOI
0606
BibRef
Earlier:
An Adaptive Segmentation-Based Regularization Term for Image
Restoration,
ICIP05(I: 901-904).
IEEE DOI
0512
BibRef
Mignotte, M.[Max],
A non-local regularization strategy for image deconvolution,
PRL(29), No. 16, 1 December 2008, pp. 2206-2212.
Elsevier DOI
0811
Image deconvolution or restoration, Non-local regularization;
Penalized likelihood, L-curve estimation
BibRef
He, L.[Lin],
Burger, M.[Martin],
Osher, S.J.[Stanley J.],
Iterative Total Variation Regularization with Non-Quadratic Fidelity,
JMIV(26), No. 1-2, November 2006, pp. 167-184.
Springer DOI
0701
See also Variational Problems and Partial Differential Equations on Implicit Surfaces.
BibRef
Goldstein, T.[Tom],
Osher, S.J.[Stanley J.],
The Split Bregman Method for L1-Regularized Problems,
SIIMS(2), No. 2, 2009, pp. 323-343.
constrained optimization, L1-regularization, compressed sensing, total
variation denoising
DOI Link
BibRef
0900
Grasmair, M.[Markus],
The Equivalence of the Taut String Algorithm and BV-Regularization,
JMIV(27), No. 1, January 2007, pp. 59-66.
Springer DOI
0702
BibRef
Grasmair, M.[Markus],
Locally Adaptive Total Variation Regularization,
SSVM09(331-342).
Springer DOI
0906
BibRef
Lie, J.[Johan],
Nordbotten, J.M.[Jan M.],
Inverse Scale Spaces for Nonlinear Regularization,
JMIV(27), No. 1, January 2007, pp. 41-50.
Springer DOI
0702
BibRef
Laligant, O.,
Truchetet, F.,
Meriaudeau, F.,
Regularization Preserving Localization of Close Edges,
SPLetters(14), No. 3, March 2007, pp. 185-188.
IEEE DOI
0703
BibRef
Steinke, F.[Florian],
Scholkopf, B.[Bernhard],
Kernels, regularization and differential equations,
PR(41), No. 11, November 2008, pp. 3271-3286.
Elsevier DOI
0808
Positive definite kernel, Differential equation, Gaussian process,
Reproducing kernel Hilbert space
BibRef
Steinke, F.[Florian],
Hein, M.[Matthias],
Scholkopf, B.[Bernhard],
Nonparametric Regression Between General Riemannian Manifolds,
SIIMS(3), No. 3, 2010, pp. 527-563.
DOI Link harmonic map, biharmonic map, Eells energy, regularized empirical risk
minimization, thin-plate spline
BibRef
1000
Erdem, E.[Erkut],
Tari, S.[Sibel],
Mumford-Shah Regularizer with Contextual Feedback,
JMIV(33), No. 1, January 2009, pp. xx-yy.
Springer DOI
0804
BibRef
Erdem, E.[Erkut],
Sancar-Yilmaz, A.[Aysun],
Tari, S.[Sibel],
Mumford-Shah Regularizer with Spatial Coherence,
SSVM07(545-555).
Springer DOI
0705
BibRef
Ban, S.J.,
Lee, C.W.,
Kim, S.W.,
Adaptive Regularization Parameter for Pseudo Affine Projection
Algorithm,
SPLetters(16), No. 5, May 2009, pp. 382-385.
IEEE DOI
0903
BibRef
Allard, W.K.[William K.],
Total Variation Regularization For Image Denoising, III. Examples.,
SIIMS(2), No. 2, 2009, pp. 532-568.
total variation, regularization, denoising
DOI Link
0905
BibRef
Hahn, J.Y.[Joo-Young],
Lee, C.O.[Chang-Ock],
A Nonlinear Structure Tensor with the Diffusivity Matrix Composed of
the Image Gradient,
JMIV(34), No. 2, June 2009, pp. xx-yy.
Springer DOI
0906
Nonlinear PDE for regularization.
BibRef
Mojabi, P.,
LoVetri, J.,
Enhancement of the Krylov Subspace Regularization for Microwave
Biomedical Imaging,
MedImg(28), No. 12, December 2009, pp. 2015-2019.
IEEE DOI
0912
edge preserving.
Apply to bones.
BibRef
Droske, M.[Marc],
Bertozzi, A.[Andrea],
Higher-Order Feature-Preserving Geometric Regularization,
SIIMS(3), No. 1, 2010, pp. 21-51.
DOI Link
1004
differential geometry, higher-order regularization, segmentation;
shape optimization, image processing
BibRef
Clason, C.[Christian],
Jin, B.[Bangti],
Kunisch, K.[Karl],
A Semismooth Newton Method for L^1 Data Fitting with Automatic Choice
of Regularization Parameters and Noise Calibration,
SIIMS(3), No. 2, 2010, pp. 199-231.
DOI Link L^1 data fitting, semismooth Newton, Fenchel duality, regularization
parameter, balancing principle, model function
BibRef
1000
Clason, C.[Christian],
Jin, B.[Bangti],
A Semismooth Newton Method for Nonlinear Parameter Identification
Problems with Impulsive Noise,
SIIMS(5), No. 2 2012, pp. 505.
DOI Link
1205
BibRef
Stefan, W.,
Renaut, R.A.,
Gelb, A.,
Improved Total Variation-Type Regularization Using
Higher Order Edge Detectors,
SIIMS(3), No. 2, 2010, pp. 232-251.
DOI Link total variation, higher order edge detectors
BibRef
1000
Koko, J.[Jonas],
Jehan-Besson, S.[Stéphanie],
An Augmented Lagrangian Method for TVg+L1-norm Minimization,
JMIV(38), No. 3, November 2010, pp. 182-196.
WWW Link.
1011
BibRef
Batard, T.[Thomas],
Clifford Bundles: A Common Framework For Image, Vector Field, and
Orthonormal Frame Field Regularization,
SIIMS(3), No. 3, 2010, pp. 670-701.
DOI Link
1011
regularization, heat equations, Clifford algebras, vector bundles;
differential geometry
BibRef
Batard, T.[Thomas],
Heat Equations on Vector Bundles:
Application to Color Image Regularization,
JMIV(41), No. 1-2, September 2011, pp. 59-85.
WWW Link.
1108
BibRef
Batard, T.[Thomas],
Sochen, N.A.[Nir A.],
Polyakov Action on (rho,G)-Equivariant Functions Application to Color
Image Regularization,
SSVM11(483-494).
Springer DOI
1201
BibRef
Moakher, M.[Maher],
Zéraï, M.[Mourad],
The Riemannian Geometry of the Space of Positive-Definite Matrices and
Its Application to the Regularization of Positive-Definite
Matrix-Valued Data,
JMIV(40), No. 2, June 2011, pp. 171-187.
WWW Link.
1103
BibRef
Goldman, M.,
Continuous Primal-Dual Methods For Image Processing,
SIIMS(4), No. 1, 2011, pp. 366-385.
DOI Link
1106
primal-dual methods, total variation regularization, a posteriori estimates
BibRef
Tafti, P.D.[Pouya Dehghani],
Unser, M.[Michael],
On Regularized Reconstruction of Vector Fields,
IP(20), No. 11, November 2011, pp. 3163-3178.
IEEE DOI
1110
BibRef
Ramirez, I.[Ignacio],
Sapiro, G.[Guillermo],
Universal Regularizers for Robust Sparse Coding and Modeling,
IP(21), No. 9, September 2012, pp. 3850-3864.
IEEE DOI
1208
BibRef
Xie, S.L.[Shou-Lie],
Rahardja, S.[Susanto],
Alternating Direction Method for Balanced Image Restoration,
IP(21), No. 11, November 2012, pp. 4557-4567.
IEEE DOI
1210
balanced regularization in restoration.
BibRef
Kadri-Harouna, S.,
Dérian, P.[Pierre],
Héas, P.,
Mémin, E.[Etienne],
Divergence-Free Wavelets and High Order Regularization,
IJCV(103), No. 1, May 2013, pp. 80-99.
Springer DOI
1305
BibRef
Ulfarsson, M.O.,
Solo, V.,
Tuning Parameter Selection for Underdetermined Reduced-Rank
Regression,
SPLetters(20), No. 9, 2013, pp. 881-884.
IEEE DOI
1308
Model selection
BibRef
Cremers, D.[Daniel],
Strekalovskiy, E.[Evgeny],
Total Cyclic Variation and Generalizations,
JMIV(47), No. 3, November 2013, pp. 258-277.
WWW Link.
1309
BibRef
Earlier: A2, A1:
Generalized ordering constraints for multilabel optimization,
ICCV11(2619-2626).
IEEE DOI
1201
Impose some constraints on label order.
BibRef
Earlier: A2, A1:
Total variation for cyclic structures:
Convex relaxation and efficient minimization,
CVPR11(1905-1911).
IEEE DOI
1106
Total variation regularizer for cyclic values (angles).
See also Natural Vectorial Total Variation Which Arises from Geometric Measure Theory, The.
BibRef
Souiai, M.,
Nieuwenhuis, C.[Claudia],
Strekalovskiy, E.[Evgeny],
Cremers, D.[Daniel],
Convex Optimization for Scene Understanding,
GMSU13(9-14)
IEEE DOI
1403
convex programming
See also Midrange Geometric Interactions for Semantic Segmentation.
See also Proximity Priors for Variational Semantic Segmentation and Recognition.
BibRef
Goldluecke, B.[Bastian],
Strekalovskiy, E.[Evgeny],
Cremers, D.[Daniel],
Tight Convex Relaxations for Vector-Valued Labeling,
SIIMS(6), No. 3, 2013, pp. 1626-1664.
DOI Link
1310
BibRef
Earlier: A2, A1, A3:
Tight convex relaxations for vector-valued labeling problems,
ICCV11(2328-2335).
IEEE DOI
1201
BibRef
Montegranario, H.[Hebert],
Espinosa, J.[Jairo],
Variational Regularization of 3D Data:
Experiments with MATLAB®,
Guo, W.,
Qin, J.,
Yin, W.,
A New Detail-Preserving Regularization Scheme,
SIIMS(7), No. 2, 2014, pp. 1309-1334.
DOI Link
1407
BibRef
Zeng, X.,
Figueiredo, M.A.T.,
Decreasing Weighted Sorted L_1 Regularization,
SPLetters(21), No. 10, October 2014, pp. 1240-1244.
IEEE DOI
1407
Abstracts
BibRef
Ferradans, S.[Sira],
Papadakis, N.[Nicolas],
Peyré, G.[Gabriel],
Aujol, J.F.[Jean-François],
Regularized Discrete Optimal Transport,
SIIMS(7), No. 3, 2014, pp. 1853-1882.
DOI Link
1410
See also Synthesizing and Mixing Stationary Gaussian Texture Models.
BibRef
Ferradans, S.[Sira],
Papadakis, N.[Nicolas],
Rabin, J.[Julien],
Peyré, G.[Gabriel],
Aujol, J.F.[Jean-François],
Regularized Discrete Optimal Transport,
SSVM13(428-439).
Springer DOI
1305
BibRef
Batard, T.[Thomas],
Bertalmío, M.[Marcelo],
On Covariant Derivatives and Their Applications to Image
Regularization,
SIIMS(7), No. 4, 2014, pp. 2393-2422.
DOI Link
1412
BibRef
And:
Duality Principle for Image Regularization and Perceptual Color
Correction Models,
SSVM15(449-460).
Springer DOI
1506
BibRef
Batard, T.[Thomas],
Bertalmío, M.[Marcelo],
A Geometric Model of Brightness Perception and Its Application to Color
Images Correction,
JMIV(60), No. 6, July 2018, pp. 849-881.
WWW Link.
1806
BibRef
Batard, T.[Thomas],
Maldonado, E.R.[Eduard Ramon],
Steidl, G.[Gabriele],
Bertalmío, M.[Marcelo],
A Connection Between Image Processing and Artificial Neural Networks
Layers Through a Geometric Model of Visual Perception,
SSVM19(459-471).
Springer DOI
1909
BibRef
Pham, D.S.[Duc-Son],
On group-wise regularization: Theory and efficient algorithms,
PR(48), No. 11, 2015, pp. 3728-3738.
Elsevier DOI
1506
lp Regularization
BibRef
Yang, Z.Z.[Zhen-Zhen],
Yang, Z.[Zhen],
Fast linearized alternating direction method of multipliers for the
augmented L1-regularized problem,
SIViP(9), No. 7, October 2015, pp. 1601-1612.
WWW Link.
1509
BibRef
Soubies, E.[Emmanuel],
Blanc-Féraud, L.[Laure],
Aubert, G.[Gilles],
A Continuous Exact L_0 Penalty (CEL0) for Least Squares Regularized
Problem,
SIIMS(8), No. 3, 2015, pp. 1607-1639.
DOI Link
1511
BibRef
And:
Erratum:
SIIMS(9), No. 1, 2016, pp. 490-494.
DOI Link
1604
BibRef
Zhang, Y.[Yong],
Ye, W.Z.[Wan-Zhou],
Regularization: Convergence of iterative thresholding algorithm,
JVCIR(33), No. 1, 2015, pp. 350-357.
Elsevier DOI
1512
L_1/2 regularization
BibRef
El Mouatasim, A.[Abdelkrim],
Wakrim, M.[Mohammed],
Control subgradient algorithm for image L_1 regularization,
SIViP(9), No. 1 Supp, December 2015, pp. 275-283.
WWW Link.
1601
BibRef
El Mouatasim, A.[Abdelkrim],
Control proximal gradient algorithm for image L_1 regularization,
SIViP(13), No. 6, September 2019, pp. 1113-1121.
WWW Link.
1908
BibRef
Painsky, A.,
Rosset, S.,
Cross-Validated Variable Selection in Tree-Based Methods Improves
Predictive Performance,
PAMI(39), No. 11, November 2017, pp. 2142-2153.
IEEE DOI
1710
Analytical models, Buildings, Computational modeling,
Regression tree analysis,
Vegetation, Classification and regression trees,
BibRef
Tuia, D.,
Flamary, R.,
Barlaud, M.,
Nonconvex Regularization in Remote Sensing,
GeoRS(54), No. 11, November 2016, pp. 6470-6480.
IEEE DOI
1610
Complexity theory
BibRef
Cui, Z.X.[Zhuo-Xu],
Fan, Q.B.[Qi-Bin],
Dong, Y.C.[Yi-Chuan],
Liu, T.[Tong],
A nonconvex nonsmooth regularization method with structure tensor
total variation,
JVCIR(43), No. 1, 2017, pp. 30-40.
Elsevier DOI
1702
Nonconvex nonsmooth regularization
BibRef
Lu, J.W.[Ji-Wen],
Peng, X.[Xi],
Deng, W.H.[Wei-Hong],
Mian, A.[Ajmal],
Regularization techniques for high-dimensional data analysis,
IVC(60), No. 1, 2017, pp. 1-3.
Elsevier DOI
1704
BibRef
Benning, M.[Martin],
Gilboa, G.[Guy],
Schönlieb, C.B.[Carola-Bibiane],
Learning parametrised regularisation functions via
quotient minimisation,
PAMM(16), No. 1, 2016, pp. 933-936.
DOI Link
1706
BibRef
Brinkmann, E.M.[Eva-Maria],
Burger, M.[Martin],
Grah, J.S.[Joana Sarah],
Unified Models for Second-Order TV-Type Regularisation in Imaging:
A New Perspective Based on Vector Operators,
JMIV(61), No. 5, June 2019, pp. 571-601.
Springer DOI
1906
BibRef
Benning, M.[Martin],
Gilboa, G.[Guy],
Grah, J.S.[Joana Sarah],
Schönlieb, C.B.[Carola-Bibiane],
Learning Filter Functions in Regularisers by Minimising Quotients,
SSVM17(511-523).
Springer DOI
1706
BibRef
Brinkmann, E.M.[Eva-Maria],
Burger, M.[Martin],
Rasch, J.[Julian],
Sutour, C.[Camille],
Bias Reduction in Variational Regularization,
JMIV(59), No. 3, November 2017, pp. 534-566.
Springer DOI
1710
BibRef
Chen, P.Y.,
Liu, S.,
Bias-Variance Tradeoff of Graph Laplacian Regularizer,
SPLetters(24), No. 8, August 2017, pp. 1118-1122.
IEEE DOI
1708
graph theory, signal processing, band-limited graph signals,
bias-variance tradeoff, graph Laplacian regularizer,
graph signal processing,
mediocre regularization parameter selecting,
multiple-sampled graph signals, near-optimal performance,
optimal regularization parameter scaling law,
random graph signals, semisupervised learning tasks,
signal-to-noise ratio parameter, spectral graph properties,
Eigenvalues and eigenfunctions, Laplace equations,
Reactive power, Semisupervised learning, Signal to noise ratio,
Symmetric matrices, Graph signal processing,
mean squared error (MSE) analysis, scaling law, spectral, graph, theory
BibRef
Åström, F.[Freddie],
Schnörr, C.[Christoph],
A geometric approach for color image regularization,
CVIU(165), No. 1, 2017, pp. 43-59.
Elsevier DOI
1712
BibRef
Earlier:
Double-Opponent Vectorial Total Variation,
ECCV16(II: 644-659).
Springer DOI
1611
BibRef
Yuan, J.[Jing],
Schnörr, C.[Christoph],
Steidl, G.[Gabriele],
Total-Variation Based Piecewise Affine Regularization,
SSVM09(552-564).
Springer DOI
0906
BibRef
Garrigos, G.[Guillaume],
Rosasco, L.[Lorenzo],
Villa, S.[Silvia],
Iterative Regularization via Dual Diagonal Descent,
JMIV(60), No. 2, February 2018, pp. 189-215.
Springer DOI
1802
BibRef
Bao, C.L.[Cheng-Long],
Barbastathis, G.[George],
Ji, H.[Hui],
Shen, Z.W.[Zuo-Wei],
Zhang, Z.Y.[Zheng-Yun],
Coherence Retrieval Using Trace Regularization,
SIIMS(11), No. 1, 2018, pp. 679-706.
DOI Link
1804
BibRef
Dey, P.,
Nag, K.,
Pal, T.,
Pal, N.R.,
Regularizing Multilayer Perceptron for Robustness,
SMCS(48), No. 8, August 2018, pp. 1255-1266.
IEEE DOI
1808
analogue circuits, mean square error methods,
multilayer perceptrons, multilayer perceptron,
robustness
BibRef
Ringholm, T.[Torbjørn],
Lazic, J.[Jasmina],
Schönlieb, C.B.[Carola-Bibiane],
Variational Image Regularization with Euler's Elastica Using a
Discrete Gradient Scheme,
SIIMS(11), No. 4, 2018, pp. 2665-2691.
DOI Link
1901
BibRef
Ong, F.,
Milanfar, P.,
Getreuer, P.,
Local Kernels That Approximate Bayesian Regularization and Proximal
Operators,
IP(28), No. 6, June 2019, pp. 3007-3019.
IEEE DOI
1905
adaptive filters, Bayes methods, filtering theory,
iterative methods, optimisation, variational techniques,
Huber loss
BibRef
Liu, W.,
Ma, X.,
Zhou, Y.,
Tao, D.,
Cheng, J.,
p-Laplacian Regularization for Scene Recognition,
Cyber(49), No. 8, August 2019, pp. 2927-2940.
IEEE DOI
1905
Manifolds, Laplace equations, Geometry,
Eigenvalues and eigenfunctions, Standards,
semi-supervised learning (SSL)
BibRef
Calatroni, L.,
Lanza, A.,
Pragliola, M.,
Sgallari, F.,
A Flexible Space-Variant Anisotropic Regularization for Image
Restoration with Automated Parameter Selection,
SIIMS(12), No. 2, 2019, pp. 1001-1037.
DOI Link
1907
BibRef
Lanza, A.,
Morigi, S.,
Selesnick, I.,
Sgallari, F.,
Sparsity-Inducing Nonconvex Nonseparable Regularization for Convex
Image Processing,
SIIMS(12), No. 2, 2019, pp. 1099-1134.
DOI Link
1907
BibRef
Ciak, R.[René],
Melching, M.[Melanie],
Scherzer, O.[Otmar],
Regularization with Metric Double Integrals of Functions with Values in
a Set of Vectors,
JMIV(61), No. 6, July 2019, pp. 824-848.
WWW Link.
1907
BibRef
Sun, X.,
Chen, B.,
Sun, H.,
Robust Image Compressive Sensing Based on Truncated Cauchy Loss and
Nonlocal Low-Rank Regularization,
SPLetters(26), No. 12, December 2019, pp. 1842-1846.
IEEE DOI
2001
data compression, image coding, image reconstruction,
impulse noise, iterative methods, quadratic programming,
robustness
BibRef
Parisotto, S.[Simone],
Masnou, S.[Simon],
Schönlieb, C.B.[Carola-Bibiane],
Higher-Order Total Directional Variation: Analysis,
SIIMS(13), No. 1, 2020, pp. 474-496.
DOI Link
2004
See also Total Generalized Variation.
BibRef
Parisotto, S.[Simone],
Lellmann, J.[Jan],
Masnou, S.[Simon],
Schönlieb, C.B.[Carola-Bibiane],
Higher-Order Total Directional Variation: Imaging Applications,
SIIMS(13), No. 4, 2020, pp. 2063-2104.
DOI Link
2012
BibRef
Bednarski, D.[Danielle],
Lellmann, J.[Jan],
Inverse Scale Space Iterations for Non-convex Variational Problems
Using Functional Lifting,
SSVM21(229-241).
Springer DOI
2106
BibRef
Wen, F.,
Ying, R.,
Liu, P.,
Qiu, R.C.,
Robust PCA Using Generalized Nonconvex Regularization,
CirSysVideo(30), No. 6, June 2020, pp. 1497-1510.
IEEE DOI
2006
Principal component analysis, Sparse matrices, Convergence,
Approximation algorithms, Minimization, Mathematical model,
nonconvex
BibRef
Chu, Y.,
Chan, S.C.,
Zhou, Y.,
Wu, M.,
A New Diffusion Variable Spatial Regularized QRRLS Algorithm,
SPLetters(27), 2020, pp. 995-999.
IEEE DOI
2007
Signal processing algorithms, Covariance matrices,
Probability density function, Maximum a posteriori estimation,
performance analysis
BibRef
Gavaskar, R.G.[Ruturaj G.],
Athalye, C.D.[Chirayu D.],
Chaudhury, K.N.[Kunal N.],
On Plug-and-Play Regularization Using Linear Denoisers,
IP(30), 2021, pp. 4802-4813.
IEEE DOI
2105
BibRef
Nair, P.[Pravin],
Chaudhury, K.N.[Kunal N.],
Plug-and-Play Regularization Using Linear Solvers,
IP(31), 2022, pp. 6344-6355.
IEEE DOI
2210
Kernel, Image reconstruction, Convergence, Superresolution,
Signal processing algorithms, Optimization, Linear systems,
Krylov solver
BibRef
Zhang, C.B.[Chang-Bin],
Jiang, P.T.[Peng-Tao],
Hou, Q.B.[Qi-Bin],
Wei, Y.C.[Yun-Chao],
Han, Q.[Qi],
Li, Z.[Zhen],
Cheng, M.M.[Ming-Ming],
Delving Deep Into Label Smoothing,
IP(30), 2021, pp. 5984-5996.
IEEE DOI
WWW Link.
2107
Code, Regularization. Training, Predictive models, Noise measurement, Smoothing methods,
Tools, Robustness, Cats, Regularization, classification, soft labels,
noisy labels
BibRef
Liu, H.[Hao],
Tai, X.C.[Xue-Cheng],
Kimmel, R.[Ron],
Glowinski, R.[Roland],
A Color Elastica Model for Vector-Valued Image Regularization,
SIIMS(14), No. 2, 2021, pp. 717-748.
DOI Link
2107
BibRef
Fan, B.J.[Bao-Jie],
Cong, Y.[Yang],
Tian, J.D.[Jian-Dong],
Tang, Y.D.[Yan-Dong],
Dynamic and reliable subtask tracker with general schatten p-norm
regularization,
PR(120), 2021, pp. 108129.
Elsevier DOI
2109
Reliable multi-subtask tracking, Weighted schatten -norm,
Hyper-graph regularization, Decision-evaluation strategy
BibRef
Kontar, R.[Raed],
Raskutti, G.[Garvesh],
Zhou, S.Y.[Shi-Yu],
Minimizing Negative Transfer of Knowledge in Multivariate Gaussian
Processes: A Scalable and Regularized Approach,
PAMI(43), No. 10, October 2021, pp. 3508-3522.
IEEE DOI
2109
Convolution, Gaussian processes, Covariance matrices,
Computational modeling, Estimation, Numerical models, Kernel, regularization
BibRef
Cohen, R.[Regev],
Elad, M.[Michael],
Milanfar, P.[Peyman],
Regularization by Denoising via Fixed-Point Projection (RED-PRO),
SIIMS(14), No. 3, 2021, pp. 1374-1406.
DOI Link
2110
BibRef
Manuel Vargas, V.[Víctor],
Gutiérrez, P.A.[Pedro Antonio],
Hervás-Martínez, C.[César],
Unimodal regularisation based on beta distribution for deep ordinal
regression,
PR(122), 2022, pp. 108310.
Elsevier DOI
2112
Ordinal regression, Unimodal distribution,
Convolutional network, Beta distribution, Stick-breaking
BibRef
Gholinejad, S.[Saeid],
Naeini, A.A.[Amin Alizadeh],
Amiri-Simkooei, A.[Alireza],
Optimization of RFM Problem Using Linearly Programed
L1-Regularization,
GeoRS(60), 2022, pp. 1-9.
IEEE DOI
2112
Mathematical model, Optimization, Estimation, Earth,
Linear programming, Computational modeling, Satellites,
RPC estimation
BibRef
Fan, Q.[Qing],
Liu, Y.[Yu],
Yang, T.[Tao],
Peng, H.[Hao],
Fast and Accurate Spectrum Estimation via Virtual Coarray
Interpolation Based on Truncated Nuclear Norm Regularization,
SPLetters(29), 2022, pp. 169-173.
IEEE DOI
2202
Covariance matrices, Interpolation, Spectral analysis, Estimation,
Direction-of-arrival estimation, Simulation, truncated nuclear norm
BibRef
Zhou, Z.Y.[Zhi-Yong],
A Unified Framework for Constructing Nonconvex Regularizations,
SPLetters(29), 2022, pp. 479-483.
IEEE DOI
2202
Probability density function, Weibull distribution,
Sparse matrices, Null space, Indexes, Urban areas, Tuning,
iteratively reweighted algorithms
BibRef
Sun, T.[Tao],
Li, D.S.[Dong-Sheng],
General nonconvex total variation and low-rank regularizations:
Model, algorithm and applications,
PR(130), 2022, pp. 108692.
Elsevier DOI
2206
Low-Rank, Total Variation,
Nonconvex and nonsmooth minimization, Regularization, image restoration
BibRef
Wu, C.L.[Chun-Lin],
Guo, X.Y.[Xue-Yan],
Gao, Y.M.[Yi-Ming],
Xue, Y.H.[Yun-Hua],
A General Non-Lipschitz Infimal Convolution Regularized Model:
Lower Bound Theory and Algorithm,
SIIMS(15), No. 3, 2022, pp. 1499-1538.
DOI Link
2209
BibRef
Li, Z.[Zhu],
Pérez-Suay, A.[Adrián],
Camps-Valls, G.[Gustau],
Sejdinovic, D.[Dino],
Kernel dependence regularizers and Gaussian processes with
applications to algorithmic fairness,
PR(132), 2022, pp. 108922.
Elsevier DOI
2209
Fairness, Kernel methods, Gaussian processes, Regularization,
Hilbert-Schmidt independence criterion
BibRef
Seyfi, M.[Mehdi],
Banitalebi-Dehkordi, A.[Amin],
Zhang, Y.[Yong],
Extending Momentum Contrast With Cross Similarity Consistency
Regularization,
CirSysVideo(32), No. 10, October 2022, pp. 6714-6727.
IEEE DOI
2210
Semantics, Task analysis, Visualization, Representation learning,
Training, Standards, Generators, Self-supervised learning,
unsupervised learning
BibRef
Abhishek,
Kumar-Yadav, R.[Rakesh],
Verma, S.[Shekhar],
Parzen Window Approximation on Riemannian Manifold,
PR(134), 2023, pp. 109081.
Elsevier DOI
2212
Parzen window, Data affinity, Graph Laplacian regularization,
Manifold regularization
BibRef
Zhang, H.[Hao],
Qu, D.[Dan],
Shao, K.[Keji],
Yang, X.[Xukui],
DropDim: A Regularization Method for Transformer Networks,
SPLetters(29), 2022, pp. 474-478.
IEEE DOI
2202
Task analysis, Transformers, Smoothing methods, Semantics, Training,
Neurons, Decoding, End-to-end, transformer, regularization, dropout
BibRef
Liu, H.[Hao],
Tai, X.C.[Xue-Cheng],
Kimmel, R.[Ron],
Glowinski, R.[Roland],
Elastica Models for Color Image Regularization,
SIIMS(16), No. 1, 2023, pp. 461-500.
DOI Link
2305
BibRef
Yu, D.X.[Deng-Xiu],
Kang, Q.[Qian],
Jin, J.W.[Jun-Wei],
Wang, Z.[Zhen],
Li, X.L.[Xue-Long],
Smoothing group L1/2 regularized discriminative broad learning system
for classification and regression,
PR(141), 2023, pp. 109656.
Elsevier DOI
2306
Broad learning system, Discriminative, Sparsity,
Smoothing group regularization, Optimization
BibRef
Laville, B.[Bastien],
Blanc-Feraud, L.[Laure],
Aubert, G.[Gilles],
Off-the-Grid Curve Reconstruction through Divergence Regularization:
An Extreme Point Result,
SIIMS(16), No. 2, 2023, pp. 867-885.
DOI Link
2306
BibRef
Chen, H.Y.[Huang-Yue],
Kong, L.C.[Ling-Chen],
Qu, W.T.[Wen-Tao],
Xiu, X.C.[Xian-Chao],
An Enhanced Regularized Clustering Method With Adaptive Spurious
Connection Detection,
SPLetters(30), 2023, pp. 1332-1336.
IEEE DOI
2310
BibRef
Zhou, X.[Xin],
Liu, X.W.[Xiao-Wen],
Zhang, G.[Gong],
Jia, L.[Luliang],
Wang, X.[Xu],
Zhao, Z.Y.[Zhi-Yuan],
An Iterative Threshold Algorithm of Log-Sum Regularization for Sparse
Problem,
CirSysVideo(33), No. 9, September 2023, pp. 4728-4740.
IEEE DOI
2310
BibRef
Wang, X.[Xin],
Dong, X.G.[Xiao-Gang],
Time Image De-Noising Method Based on Sparse Regularization,
IJIG(23), No. 5 2023, pp. 2550009.
DOI Link
2310
BibRef
Athalye, C.D.[Chirayu D.],
Chaudhury, K.N.[Kunal N.],
Kumar, B.[Bhartendu],
On the Contractivity of Plug-and-Play Operators,
SPLetters(30), 2023, pp. 1447-1451.
IEEE DOI
2310
BibRef
And:
Correction:
SPLetters(30), 2023, pp. 1817-1817.
IEEE DOI
2401
BibRef
Ming, H.[Hao],
Yang, H.[Hu],
L0 regularized logistic regression for large-scale data,
PR(146), 2024, pp. 110024.
Elsevier DOI
2311
Distributed learning, penalty, KKT conditions, Oracle property,
Correlated effects
BibRef
Bai, Y.[Yan],
Jiao, J.[Jile],
Lou, Y.H.[Yi-Hang],
Wu, S.S.[Sheng-Sen],
Liu, J.[Jun],
Feng, X.T.[Xue-Tao],
Duan, L.Y.[Ling-Yu],
Dual-Tuning: Joint Prototype Transfer and Structure Regularization
for Compatible Feature Learning,
MultMed(25), 2023, pp. 7287-7298.
IEEE DOI
2311
BibRef
Ferreira, H.H.[Hermes H.],
Gastal, E.S.L.[Eduardo S.L.],
Efficient 2D Tikhonov smoothness regularization with recursive
filtering,
PRL(175), 2023, pp. 95-103.
Elsevier DOI
2311
Image processing, Filtering, Convolution,
Frequency-domain analysis, Filtering algorithms
BibRef
de los Reyes, J.C.[Juan Carlos],
Bilevel Imaging Learning Problems as Mathematical Programs with
Complementarity Constraints: Reformulation and Theory,
SIIMS(16), No. 3, 2023, pp. 1655-1686.
DOI Link
2312
BibRef
Li, Y.X.[Yong-Xiang],
Zhou, Q.[Qiang],
Jiang, W.[Wei],
Tsui, K.L.[Kwok-Leung],
Optimal Composite Likelihood Estimation and Prediction for
Distributed Gaussian Process Modeling,
PAMI(46), No. 2, February 2024, pp. 1134-1147.
IEEE DOI
2401
BibRef
Cascarano, P.[Pasquale],
Benfenati, A.[Alessandro],
Kamilov, U.S.[Ulugbek S.],
Xu, X.J.[Xiao-Jian],
Constrained Regularization by Denoising With Automatic Parameter
Selection,
SPLetters(31), 2024, pp. 556-560.
IEEE DOI
2402
Standards, Image restoration, Noise reduction, Convex functions,
AWGN, Signal processing algorithms, Noise measurement,
discrepancy principle
BibRef
Sampaio, R.A.[Raphael Araujo],
Dias-Garcia, J.[Joaquim],
Poggi, M.[Marcus],
Vidal, T.[Thibaut],
Regularization and optimization in model-based clustering,
PR(150), 2024, pp. 110310.
Elsevier DOI
2403
Clustering, Gaussian Mixture Models, Regularization,
Optimization, Hybrid Genetic Algorithm
BibRef
Mondal, R.[Rahul],
Pal, T.[Tandra],
Dey, P.[Prasenjit],
Discriminative Regularized Input Manifold for multilayer perceptron,
PR(151), 2024, pp. 110421.
Elsevier DOI
2404
Discriminative regularization, Multilayer perceptron (MLP),
Discriminative Regularized Input Manifold (DRIM),
BibRef
Ghosh, A.[Avrajit],
McCann, M.[Michael],
Mitchell, M.[Madeline],
Ravishankar, S.[Saiprasad],
Learning Sparsity-Promoting Regularizers Using Bilevel Optimization,
SIIMS(17), No. 1, 2024, pp. 31-60.
DOI Link
2404
BibRef
Goujon, A.[Alexis],
Neumayer, S.[Sebastian],
Unser, M.[Michael],
Learning Weakly Convex Regularizers for Convergent
Image-Reconstruction Algorithms,
SIIMS(17), No. 1, 2024, pp. 91-115.
DOI Link
2404
BibRef
Iyer, S.S.[Siddharth S.],
Ong, F.[Frank],
Cao, X.Z.[Xiao-Zhi],
Liao, C.[Congyu],
Daniel, L.[Luca],
Tamir, J.I.[Jonathan I.],
Setsompop, K.[Kawin],
Polynomial Preconditioners for Regularized Linear Inverse Problems,
SIIMS(17), No. 1, 2024, pp. 116-146.
DOI Link
2404
BibRef
Zhang, Z.W.[Zhong-Wang],
Xu, Z.Q.J.[Zhi-Qin John],
Implicit Regularization of Dropout,
PAMI(46), No. 6, June 2024, pp. 4206-4217.
IEEE DOI
2405
Training, Artificial neural networks, Neurons, Complexity theory,
Stochastic processes, Jacobian matrices, Behavioral sciences,
implicit regularization
BibRef
Sinha, A.[Arghya],
Chaudhury, K.N.[Kunal N.],
On the Strong Convexity of PnP Regularization Using Linear Denoisers,
SPLetters(31), 2024, pp. 2790-2794.
IEEE DOI
2410
Signal processing algorithms, Convergence, Kernel, Standards,
Convex functions, Superresolution, Inverse problems, Indexes, strong convexity
BibRef
Zhang, M.Y.[Ming-Yan],
Zhang, M.L.[Ming-Li],
Zhao, F.[Feng],
Zhang, F.[Fan],
Liu, Y.P.[Ye-Peng],
Evans, A.[Alan],
Truncated Weighted Nuclear Norm Regularization and Sparsity for Image
Denoising,
ICIP23(1825-1829)
IEEE DOI
2312
BibRef
Katsuma, A.[Akari],
Kyochi, S.[Seisuke],
Ono, S.[Shunsuke],
Selesnick, I.[Ivan],
Epigraphically-Relaxed Linearly-Involved Generalized Moreau-Enhanced
Model for Layered Mixed Norm Regularization,
ICIP23(2240-2244)
IEEE DOI
2312
BibRef
Li, Z.[Zhemin],
Wang, H.X.[Hong-Xia],
Meng, D.Y.[De-Yu],
Regularize implicit neural representation by itself,
CVPR23(10280-10288)
IEEE DOI
2309
BibRef
Peng, Z.H.[Zheng-Hua],
Luo, Y.[Yu],
Chen, T.S.[Tian-Shui],
Xu, K.[Keke],
Huang, S.P.[Shuang-Ping],
Perception and Semantic Aware Regularization for Sequential
Confidence Calibration,
CVPR23(10658-10668)
IEEE DOI
2309
BibRef
Mohammadi, K.[Kiarash],
Zhao, H.[He],
Zhai, M.Y.[Meng-Yao],
Tung, F.[Frederick],
Ranking Regularization for Critical Rare Classes:
Minimizing False Positives at a High True Positive Rate,
CVPR23(15783-15792)
IEEE DOI
2309
BibRef
Chrysos, G.G.[Grigorios G.],
Wang, B.[Bohan],
Deng, J.K.[Jian-Kang],
Cevher, V.[Volkan],
Regularization of polynomial networks for image recognition,
CVPR23(16123-16132)
IEEE DOI
2309
BibRef
Marrie, J.[Juliette],
Arbel, M.[Michael],
Larlus, D.[Diane],
Mairal, J.[Julien],
SLACK: Stable Learning of Augmentations with Cold-Start and KL
Regularization,
CVPR23(24306-24314)
IEEE DOI
2309
BibRef
Zhu, Z.[Zeqi],
Pourtaherian, A.[Arash],
Waeijen, L.[Luc],
Bondarev, E.[Egor],
Moreira, O.[Orlando],
STAR: Sparse Thresholded Activation under partial-Regularization for
Activation Sparsity Exploration,
ECV23(4554-4563)
IEEE DOI
2309
BibRef
Oliveira, H.S.[Hugo S.],
Ribeiro, P.P.[Pedro P.],
Oliveira, H.P.[Helder P.],
Evaluation of Regularization Techniques for Transformers-based Models,
IbPRIA23(312-319).
Springer DOI
2307
BibRef
Shi, H.[Hui],
Traonmilin, Y.[Yann],
Aujol, J.F.[Jean-François],
Compressive Learning of Deep Regularization for Denoising,
SSVM23(162-174).
Springer DOI
2307
BibRef
Islam, M.[Mobarakol],
Glocker, B.[Ben],
Frequency Dropout:
Feature-level Regularization via Randomized Filtering,
MCV22(281-295).
Springer DOI
2304
BibRef
Massart, E.[Estelle],
Orthogonal regularizers in deep learning:
How to handle rectangular matrices?,
ICPR22(1294-1299)
IEEE DOI
2212
Deep learning, Training,
Feedforward neural networks, Behavioral sciences
BibRef
Xue, J.Q.[Jia-Qi],
Zhang, B.[Bin],
Adaptive Projected Clustering with Graph Regularization,
ICPR22(3007-3013)
IEEE DOI
2212
Adaptation models, Laplace equations, Graphical models, Clustering methods,
Clustering algorithms, Benchmark testing, Linear programming
BibRef
Laparra, V.[Valero],
Hepburn, A.[Alexander],
Johnson, J.E.[J. Emmanuel],
Malo, J.[Jesús],
Orthonormal Convolutions for the Rotation Based Iterative
Gaussianization,
ICIP22(4018-4022)
IEEE DOI
2211
Jacobian matrices, Convolution, Independent component analysis,
Transforms, Nonhomogeneous media, Iterative methods, Convolution,
information theory measures
BibRef
Lee, D.[Dogyoon],
Lee, J.[Jaeha],
Lee, J.[Junhyeop],
Lee, H.[Hyeongmin],
Lee, M.[Minhyeok],
Woo, S.[Sungmin],
Lee, S.Y.[Sang-Youn],
Regularization Strategy for Point Cloud via Rigidly Mixed Sample,
CVPR21(15895-15904)
IEEE DOI
2111
Deep learning, Measurement,
Shape, Feature extraction, Distortion
BibRef
Cai, L.H.[Lin-Hang],
An, Z.[Zhulin],
Yang, C.G.[Chuan-Guang],
Xu, Y.J.[Yong-Jun],
Softer Pruning, Incremental Regularization,
ICPR21(224-230)
IEEE DOI
2105
Training, Neural networks, Information filters, Filtering theory,
Softening, Convergence
BibRef
Mayo, P.,
Holmes, R.,
Achim, A.,
Iterative Cauchy Thresholding:
Regularisation With A Heavy-Tailed Prior,
ICIP20(2925-2929)
IEEE DOI
2011
Image reconstruction, Encoding, Optimization, Iterative algorithms,
Shape, Faces, Task analysis, iterative Cauchy thresholding, ISTA, IHT,
proximal operator
BibRef
Osada, G.[Genki],
Ahsan, B.[Budrul],
Bora, R.P.[Revoti Prasad],
Nishide, T.[Takashi],
Regularization with Latent Space Virtual Adversarial Training,
ECCV20(I:565-581).
Springer DOI
2011
BibRef
Izadinia, H.,
Garrigues, P.,
ViSeR: Visual Self-Regularization,
VL3W20(4058-4063)
IEEE DOI
2008
Visualization, Training, Genomics, Bioinformatics,
Perturbation methods, Data models, Image recognition
BibRef
Yun, S.,
Park, J.,
Lee, K.,
Shin, J.,
Regularizing Class-Wise Predictions via Self-Knowledge Distillation,
CVPR20(13873-13882)
IEEE DOI
2008
Task analysis, Error analysis, Training, Dogs, Standards,
Knowledge engineering, Calibration
BibRef
Yuan, L.,
Tay, F.E.,
Li, G.,
Wang, T.,
Feng, J.,
Revisiting Knowledge Distillation via Label Smoothing Regularization,
CVPR20(3902-3910)
IEEE DOI
2008
Computational modeling, Smoothing methods, Training,
Neural networks, Analytical models, Reliability, Standards
BibRef
Pal, A.,
Lane, C.,
Vidal, R.,
Haeffele, B.D.,
On the Regularization Properties of Structured Dropout,
CVPR20(7668-7676)
IEEE DOI
2008
Neurons, Training, Optimization, Biological neural networks,
Approximation algorithms, Closed-form solutions
BibRef
Yun, S.,
Han, D.,
Chun, S.,
Oh, S.J.,
Yoo, Y.,
Choe, J.,
CutMix: Regularization Strategy to Train Strong Classifiers With
Localizable Features,
ICCV19(6022-6031)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image classification, image resolution, Robustness
BibRef
Hu, M.Y.[Meng-Ying],
Han, H.[Hu],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Weakly Supervised Image Classification Through Noise Regularization,
CVPR19(11509-11517).
IEEE DOI
2002
BibRef
Vogt, T.[Thomas],
Lellmann, J.[Jan],
Functional Liftings of Vectorial Variational Problems with Laplacian
Regularization,
SSVM19(559-571).
Springer DOI
1909
BibRef
Kim, K.I.[Kwang In],
Park, J.[Juhyun],
Tompkin, J.[James],
High-Order Tensor Regularization with Application to Attribute
Ranking,
CVPR18(4349-4357)
IEEE DOI
1812
Manifolds, Measurement, Kernel, Training, Footwear, Harmonic analysis
BibRef
Aisheh, Z.A.[Zeina Abu],
Bougleux, S.[Sébastien],
Lézoray, O.[Olivier],
p-Laplacian Regularization of Signals on Directed Graphs,
ISVC18(650-661).
Springer DOI
1811
BibRef
Wang, D.[Dong],
Wang, B.[Bin],
Yao, H.X.[Hong-Xun],
Liu, H.[Hong],
Tombari, F.[Federico],
Local Image Descriptors with Statistical Losses,
ICIP18(1208-1212)
IEEE DOI
1809
Training, Robustness, Lighting,
Feature extraction, Benchmark testing,
Statistic information
BibRef
Xue, F.,
Pan, H.,
Liu, X.,
Liu, H.,
Liu, J.,
Optimization of regularization parameter for sparse reconstruction
based on predictive risk estimate,
ICIP17(1442-1446)
IEEE DOI
1803
Discrete wavelet transforms, Jacobian matrices, Minimization,
Optimized production technology, Sparse reconstruction,
predicted Stein's unbiased risk estimate (p-SURE)
BibRef
Kouw, W.M.,
Loog, M.,
On regularization parameter estimation under covariate shift,
ICPR16(426-431)
IEEE DOI
1705
Estimation, Parameter estimation,
Risk management, Temperature measurement, Training, Training, data
BibRef
Paget, M.[Mathias],
Tarel, J.P.[Jean-Philippe],
Caraffa, L.[Laurent],
Extending alpha-expansion to a larger set of regularization
functions,
ICIP15(1051-1055)
IEEE DOI
1512
a-expansion
BibRef
Kim, K.I.[Kwang In],
Tompkin, J.[James],
Pfister, H.[Hanspeter],
Theobalt, C.[Christian],
Local high-order regularization on data manifolds,
CVPR15(5473-5481)
IEEE DOI
1510
BibRef
Gurram, P.,
Rao, R.,
Entropy metric regularization for computational imaging with sensor
arrays,
AIPR14(1-8)
IEEE DOI
1504
Fourier transforms
BibRef
Sun, B.L.[Bo-Liang],
Tang, M.[Min],
Li, G.H.[Guo-Hui],
Sparse Online Co-regularization Using Conjugate Functions,
ICPR14(3666-3671)
IEEE DOI
1412
Algorithm design and analysis
BibRef
Gogna, A.[Anupriya],
Shukla, A.[Ankita],
Majumdar, A.[Angshul],
Matrix Recovery Using Split Bregman,
ICPR14(1031-1036)
IEEE DOI
1412
Matrix recovery from its lower dimensional projections.
BibRef
Gong, Y.H.[Yuan-Hao],
Sbalzarini, I.F.[Ivo F.],
Local weighted Gaussian curvature for image processing,
ICIP13(534-538)
IEEE DOI
1402
Approximation methods
BibRef
Gilboa, G.[Guy],
Expert Regularizers for Task Specific Processing,
SSVM13(24-35).
Springer DOI
1305
BibRef
Gui, J.[Jie],
Sun, Z.A.[Zhen-An],
Tan, T.N.[Tie-Niu],
Regularization parameter estimation for spectral regression
discriminant analysis based on perturbation theory,
ICPR12(401-404).
WWW Link.
1302
subspace learning method
BibRef
Pan, B.B.[Bin-Bin],
Lai, J.H.[Jian-Huang],
Shen, L.X.[Li-Xin],
Learning kernels from labels with ideal regularization,
ICPR12(505-508).
WWW Link.
1302
BibRef
Deledalle, C.A.[Charles-Alban],
Vaiter, S.[Samuel],
Peyre, G.[Gabriel],
Fadili, J.[Jalal],
Dossal, C.[Charles],
Unbiased risk estimation for sparse analysis regularization,
ICIP12(3053-3056).
IEEE DOI
1302
Generalized Stein Unbiased Risk Estimator (GSURE)
BibRef
Rosman, G.[Guy],
Wang, Y.[Yu],
Tai, X.C.[Xue-Cheng],
Kimmel, R.[Ron],
Bruckstein, A.M.[Alfred M.],
Fast Regularization of Matrix-Valued Images,
ECCV12(III: 173-186).
Springer DOI
1210
BibRef
Earlier:
Optimization11(19-43).
Springer DOI
1405
BibRef
Rabin, J.[Julien],
Peyré, G.[Gabriel],
Delon, J.[Julie],
Bernot, M.[Marc],
Wasserstein Barycenter and Its Application to Texture Mixing,
SSVM11(435-446).
Springer DOI
1201
BibRef
Rabin, J.[Julien],
Peyre, G.[Gabriel],
Wasserstein regularization of imaging problem,
ICIP11(1541-1544).
IEEE DOI
1201
BibRef
Florack, L.M.J.[Luc M.J.],
Regularization of Positive Definite Matrix Fields Based on
Multiplicative Calculus,
SSVM11(786-796).
Springer DOI
1201
BibRef
Sastry, C.S.,
Regularization of Incompletely, Irregularly and Randomly Sampled Data,
ICCVGIP08(158-162).
IEEE DOI
0812
BibRef
Lin, Y.Z.[You-Zuo],
Wohlberg, B.[Brendt],
Application of the UPRE Method to Optimal Parameter Selection for Large
Scale Regularization Problems,
Southwest08(89-92).
IEEE DOI
0803
BibRef
Chartrand, R.[Rick],
Nonconvex Regularization for Shape Preservation,
ICIP07(I: 293-296).
IEEE DOI
0709
BibRef
Chang, H.H.[Hsun-Hsien],
Moura, J.M.F.[Jose M. F.],
Classification by Cheeger Constant Regularization,
ICIP07(II: 209-212).
IEEE DOI
0709
BibRef
Lin, Z.[Zhu],
Islam, M.S.,
An Adaptive Edge-Preserving Variational Framework for Color Image
Regularization,
ICIP05(I: 101-104).
IEEE DOI
0512
BibRef
Chan, R.H.,
Ho, C.W.[Chung-Wa],
Leung, C.Y.[Chun-Yee],
Nikolova, M.,
Minimization of Detail-preserving Regularization Functional by Newton's
Method with Continuation,
ICIP05(I: 125-128).
IEEE DOI
0512
BibRef
Zhou, D.Y.[Deng-Yong],
Schölkopf, B.[Bernhard],
Regularization on Discrete Spaces,
DAGM05(361).
Springer DOI
0509
BibRef
Florack, L.M.J.[Luc M.J.],
Codomain scale space and regularization for high angular resolution
diffusion imaging,
Tensor08(1-6).
IEEE DOI
0806
BibRef
Florack, L.M.J.,
Duits, R.[Remco],
Bierkens, J.,
Tikhonov regularization versus scale space: A new result,
ICIP04(I: 271-274).
IEEE DOI
0505
BibRef
Yang, C.J.[Chang-Jiang],
Duraiswami, R.,
Davis, L.S.,
Near-optimal regularization parameters for applications in computer
vision,
ICPR02(II: 569-573).
IEEE DOI
0211
BibRef
Nikolova, M.,
Ng, M.,
Comparison of the main forms of half-quadratic regularization,
ICIP02(I: 349-352).
IEEE DOI
0210
BibRef
Yang, Z.Y.[Zhi-Yong],
Ma, S.D.[Song-De],
Beyond standard regularization theory,
CAIP97(289-296).
Springer DOI
9709
BibRef
Froehlinghaus, T.,
Buhmann, J.,
Regularizing Phase Based Stereo,
ICPR96(I: 451-455).
IEEE DOI
9608
(Rheinische Fr.-Wihelms-Univ., D)
BibRef
Gunsel, B.,
Guzelis, C.,
Supervised learning of smoothing parameters in image restoration by
regularization under cellular neural networks framework,
ICIP95(I: 470-473).
IEEE DOI
9510
BibRef
Howard, C.G.,
Bock, P.,
Using a hierarchical approach to avoid over-fitting in early vision,
ICPR94(A:826-829).
IEEE DOI
9410
BibRef
Szeliski, R.S.,
Regularization Uses Fractal Priors,
AAAI-87(749-754).
BibRef
8700
Hummel, R.,
Moniot, R.,
Solving Ill-Conditioned Problems by Minimizing Equation Error,
ICCV87(527-533).
BibRef
8700
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Inverse Problems .